1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_flow.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_devlink.h"
11 #include "ice_vsi_vlan_ops.h"
12
13 /**
14 * ice_vsi_type_str - maps VSI type enum to string equivalents
15 * @vsi_type: VSI type enum
16 */
ice_vsi_type_str(enum ice_vsi_type vsi_type)17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18 {
19 switch (vsi_type) {
20 case ICE_VSI_PF:
21 return "ICE_VSI_PF";
22 case ICE_VSI_VF:
23 return "ICE_VSI_VF";
24 case ICE_VSI_CTRL:
25 return "ICE_VSI_CTRL";
26 case ICE_VSI_CHNL:
27 return "ICE_VSI_CHNL";
28 case ICE_VSI_LB:
29 return "ICE_VSI_LB";
30 case ICE_VSI_SWITCHDEV_CTRL:
31 return "ICE_VSI_SWITCHDEV_CTRL";
32 default:
33 return "unknown";
34 }
35 }
36
37 /**
38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39 * @vsi: the VSI being configured
40 * @ena: start or stop the Rx rings
41 *
42 * First enable/disable all of the Rx rings, flush any remaining writes, and
43 * then verify that they have all been enabled/disabled successfully. This will
44 * let all of the register writes complete when enabling/disabling the Rx rings
45 * before waiting for the change in hardware to complete.
46 */
ice_vsi_ctrl_all_rx_rings(struct ice_vsi * vsi,bool ena)47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48 {
49 int ret = 0;
50 u16 i;
51
52 ice_for_each_rxq(vsi, i)
53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54
55 ice_flush(&vsi->back->hw);
56
57 ice_for_each_rxq(vsi, i) {
58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59 if (ret)
60 break;
61 }
62
63 return ret;
64 }
65
66 /**
67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68 * @vsi: VSI pointer
69 *
70 * On error: returns error code (negative)
71 * On success: returns 0
72 */
ice_vsi_alloc_arrays(struct ice_vsi * vsi)73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74 {
75 struct ice_pf *pf = vsi->back;
76 struct device *dev;
77
78 dev = ice_pf_to_dev(pf);
79 if (vsi->type == ICE_VSI_CHNL)
80 return 0;
81
82 /* allocate memory for both Tx and Rx ring pointers */
83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84 sizeof(*vsi->tx_rings), GFP_KERNEL);
85 if (!vsi->tx_rings)
86 return -ENOMEM;
87
88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89 sizeof(*vsi->rx_rings), GFP_KERNEL);
90 if (!vsi->rx_rings)
91 goto err_rings;
92
93 /* txq_map needs to have enough space to track both Tx (stack) rings
94 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95 * so use num_possible_cpus() as we want to always provide XDP ring
96 * per CPU, regardless of queue count settings from user that might
97 * have come from ethtool's set_channels() callback;
98 */
99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100 sizeof(*vsi->txq_map), GFP_KERNEL);
101
102 if (!vsi->txq_map)
103 goto err_txq_map;
104
105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106 sizeof(*vsi->rxq_map), GFP_KERNEL);
107 if (!vsi->rxq_map)
108 goto err_rxq_map;
109
110 /* There is no need to allocate q_vectors for a loopback VSI. */
111 if (vsi->type == ICE_VSI_LB)
112 return 0;
113
114 /* allocate memory for q_vector pointers */
115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116 sizeof(*vsi->q_vectors), GFP_KERNEL);
117 if (!vsi->q_vectors)
118 goto err_vectors;
119
120 return 0;
121
122 err_vectors:
123 devm_kfree(dev, vsi->rxq_map);
124 err_rxq_map:
125 devm_kfree(dev, vsi->txq_map);
126 err_txq_map:
127 devm_kfree(dev, vsi->rx_rings);
128 err_rings:
129 devm_kfree(dev, vsi->tx_rings);
130 return -ENOMEM;
131 }
132
133 /**
134 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
135 * @vsi: the VSI being configured
136 */
ice_vsi_set_num_desc(struct ice_vsi * vsi)137 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
138 {
139 switch (vsi->type) {
140 case ICE_VSI_PF:
141 case ICE_VSI_SWITCHDEV_CTRL:
142 case ICE_VSI_CTRL:
143 case ICE_VSI_LB:
144 /* a user could change the values of num_[tr]x_desc using
145 * ethtool -G so we should keep those values instead of
146 * overwriting them with the defaults.
147 */
148 if (!vsi->num_rx_desc)
149 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
150 if (!vsi->num_tx_desc)
151 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
152 break;
153 default:
154 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
155 vsi->type);
156 break;
157 }
158 }
159
160 /**
161 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
162 * @vsi: the VSI being configured
163 *
164 * Return 0 on success and a negative value on error
165 */
ice_vsi_set_num_qs(struct ice_vsi * vsi)166 static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
167 {
168 enum ice_vsi_type vsi_type = vsi->type;
169 struct ice_pf *pf = vsi->back;
170 struct ice_vf *vf = vsi->vf;
171
172 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
173 return;
174
175 switch (vsi_type) {
176 case ICE_VSI_PF:
177 if (vsi->req_txq) {
178 vsi->alloc_txq = vsi->req_txq;
179 vsi->num_txq = vsi->req_txq;
180 } else {
181 vsi->alloc_txq = min3(pf->num_lan_msix,
182 ice_get_avail_txq_count(pf),
183 (u16)num_online_cpus());
184 }
185
186 pf->num_lan_tx = vsi->alloc_txq;
187
188 /* only 1 Rx queue unless RSS is enabled */
189 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
190 vsi->alloc_rxq = 1;
191 } else {
192 if (vsi->req_rxq) {
193 vsi->alloc_rxq = vsi->req_rxq;
194 vsi->num_rxq = vsi->req_rxq;
195 } else {
196 vsi->alloc_rxq = min3(pf->num_lan_msix,
197 ice_get_avail_rxq_count(pf),
198 (u16)num_online_cpus());
199 }
200 }
201
202 pf->num_lan_rx = vsi->alloc_rxq;
203
204 vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
205 max_t(int, vsi->alloc_rxq,
206 vsi->alloc_txq));
207 break;
208 case ICE_VSI_SWITCHDEV_CTRL:
209 /* The number of queues for ctrl VSI is equal to number of VFs.
210 * Each ring is associated to the corresponding VF_PR netdev.
211 */
212 vsi->alloc_txq = ice_get_num_vfs(pf);
213 vsi->alloc_rxq = vsi->alloc_txq;
214 vsi->num_q_vectors = 1;
215 break;
216 case ICE_VSI_VF:
217 if (vf->num_req_qs)
218 vf->num_vf_qs = vf->num_req_qs;
219 vsi->alloc_txq = vf->num_vf_qs;
220 vsi->alloc_rxq = vf->num_vf_qs;
221 /* pf->vfs.num_msix_per includes (VF miscellaneous vector +
222 * data queue interrupts). Since vsi->num_q_vectors is number
223 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
224 * original vector count
225 */
226 vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF;
227 break;
228 case ICE_VSI_CTRL:
229 vsi->alloc_txq = 1;
230 vsi->alloc_rxq = 1;
231 vsi->num_q_vectors = 1;
232 break;
233 case ICE_VSI_CHNL:
234 vsi->alloc_txq = 0;
235 vsi->alloc_rxq = 0;
236 break;
237 case ICE_VSI_LB:
238 vsi->alloc_txq = 1;
239 vsi->alloc_rxq = 1;
240 break;
241 default:
242 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
243 break;
244 }
245
246 ice_vsi_set_num_desc(vsi);
247 }
248
249 /**
250 * ice_get_free_slot - get the next non-NULL location index in array
251 * @array: array to search
252 * @size: size of the array
253 * @curr: last known occupied index to be used as a search hint
254 *
255 * void * is being used to keep the functionality generic. This lets us use this
256 * function on any array of pointers.
257 */
ice_get_free_slot(void * array,int size,int curr)258 static int ice_get_free_slot(void *array, int size, int curr)
259 {
260 int **tmp_array = (int **)array;
261 int next;
262
263 if (curr < (size - 1) && !tmp_array[curr + 1]) {
264 next = curr + 1;
265 } else {
266 int i = 0;
267
268 while ((i < size) && (tmp_array[i]))
269 i++;
270 if (i == size)
271 next = ICE_NO_VSI;
272 else
273 next = i;
274 }
275 return next;
276 }
277
278 /**
279 * ice_vsi_delete_from_hw - delete a VSI from the switch
280 * @vsi: pointer to VSI being removed
281 */
ice_vsi_delete_from_hw(struct ice_vsi * vsi)282 static void ice_vsi_delete_from_hw(struct ice_vsi *vsi)
283 {
284 struct ice_pf *pf = vsi->back;
285 struct ice_vsi_ctx *ctxt;
286 int status;
287
288 ice_fltr_remove_all(vsi);
289 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
290 if (!ctxt)
291 return;
292
293 if (vsi->type == ICE_VSI_VF)
294 ctxt->vf_num = vsi->vf->vf_id;
295 ctxt->vsi_num = vsi->vsi_num;
296
297 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
298
299 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
300 if (status)
301 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
302 vsi->vsi_num, status);
303
304 kfree(ctxt);
305 }
306
307 /**
308 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
309 * @vsi: pointer to VSI being cleared
310 */
ice_vsi_free_arrays(struct ice_vsi * vsi)311 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
312 {
313 struct ice_pf *pf = vsi->back;
314 struct device *dev;
315
316 dev = ice_pf_to_dev(pf);
317
318 /* free the ring and vector containers */
319 devm_kfree(dev, vsi->q_vectors);
320 vsi->q_vectors = NULL;
321 devm_kfree(dev, vsi->tx_rings);
322 vsi->tx_rings = NULL;
323 devm_kfree(dev, vsi->rx_rings);
324 vsi->rx_rings = NULL;
325 devm_kfree(dev, vsi->txq_map);
326 vsi->txq_map = NULL;
327 devm_kfree(dev, vsi->rxq_map);
328 vsi->rxq_map = NULL;
329 }
330
331 /**
332 * ice_vsi_free_stats - Free the ring statistics structures
333 * @vsi: VSI pointer
334 */
ice_vsi_free_stats(struct ice_vsi * vsi)335 static void ice_vsi_free_stats(struct ice_vsi *vsi)
336 {
337 struct ice_vsi_stats *vsi_stat;
338 struct ice_pf *pf = vsi->back;
339 int i;
340
341 if (vsi->type == ICE_VSI_CHNL)
342 return;
343 if (!pf->vsi_stats)
344 return;
345
346 vsi_stat = pf->vsi_stats[vsi->idx];
347 if (!vsi_stat)
348 return;
349
350 ice_for_each_alloc_txq(vsi, i) {
351 if (vsi_stat->tx_ring_stats[i]) {
352 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
353 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
354 }
355 }
356
357 ice_for_each_alloc_rxq(vsi, i) {
358 if (vsi_stat->rx_ring_stats[i]) {
359 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
360 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
361 }
362 }
363
364 kfree(vsi_stat->tx_ring_stats);
365 kfree(vsi_stat->rx_ring_stats);
366 kfree(vsi_stat);
367 pf->vsi_stats[vsi->idx] = NULL;
368 }
369
370 /**
371 * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
372 * @vsi: VSI which is having stats allocated
373 */
ice_vsi_alloc_ring_stats(struct ice_vsi * vsi)374 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
375 {
376 struct ice_ring_stats **tx_ring_stats;
377 struct ice_ring_stats **rx_ring_stats;
378 struct ice_vsi_stats *vsi_stats;
379 struct ice_pf *pf = vsi->back;
380 u16 i;
381
382 vsi_stats = pf->vsi_stats[vsi->idx];
383 tx_ring_stats = vsi_stats->tx_ring_stats;
384 rx_ring_stats = vsi_stats->rx_ring_stats;
385
386 /* Allocate Tx ring stats */
387 ice_for_each_alloc_txq(vsi, i) {
388 struct ice_ring_stats *ring_stats;
389 struct ice_tx_ring *ring;
390
391 ring = vsi->tx_rings[i];
392 ring_stats = tx_ring_stats[i];
393
394 if (!ring_stats) {
395 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
396 if (!ring_stats)
397 goto err_out;
398
399 WRITE_ONCE(tx_ring_stats[i], ring_stats);
400 }
401
402 ring->ring_stats = ring_stats;
403 }
404
405 /* Allocate Rx ring stats */
406 ice_for_each_alloc_rxq(vsi, i) {
407 struct ice_ring_stats *ring_stats;
408 struct ice_rx_ring *ring;
409
410 ring = vsi->rx_rings[i];
411 ring_stats = rx_ring_stats[i];
412
413 if (!ring_stats) {
414 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
415 if (!ring_stats)
416 goto err_out;
417
418 WRITE_ONCE(rx_ring_stats[i], ring_stats);
419 }
420
421 ring->ring_stats = ring_stats;
422 }
423
424 return 0;
425
426 err_out:
427 ice_vsi_free_stats(vsi);
428 return -ENOMEM;
429 }
430
431 /**
432 * ice_vsi_free - clean up and deallocate the provided VSI
433 * @vsi: pointer to VSI being cleared
434 *
435 * This deallocates the VSI's queue resources, removes it from the PF's
436 * VSI array if necessary, and deallocates the VSI
437 */
ice_vsi_free(struct ice_vsi * vsi)438 static void ice_vsi_free(struct ice_vsi *vsi)
439 {
440 struct ice_pf *pf = NULL;
441 struct device *dev;
442
443 if (!vsi || !vsi->back)
444 return;
445
446 pf = vsi->back;
447 dev = ice_pf_to_dev(pf);
448
449 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
450 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
451 return;
452 }
453
454 mutex_lock(&pf->sw_mutex);
455 /* updates the PF for this cleared VSI */
456
457 pf->vsi[vsi->idx] = NULL;
458 pf->next_vsi = vsi->idx;
459
460 ice_vsi_free_stats(vsi);
461 ice_vsi_free_arrays(vsi);
462 mutex_destroy(&vsi->xdp_state_lock);
463 mutex_unlock(&pf->sw_mutex);
464 devm_kfree(dev, vsi);
465 }
466
ice_vsi_delete(struct ice_vsi * vsi)467 void ice_vsi_delete(struct ice_vsi *vsi)
468 {
469 ice_vsi_delete_from_hw(vsi);
470 ice_vsi_free(vsi);
471 }
472
473 /**
474 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
475 * @irq: interrupt number
476 * @data: pointer to a q_vector
477 */
ice_msix_clean_ctrl_vsi(int __always_unused irq,void * data)478 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
479 {
480 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
481
482 if (!q_vector->tx.tx_ring)
483 return IRQ_HANDLED;
484
485 #define FDIR_RX_DESC_CLEAN_BUDGET 64
486 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
487 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
488
489 return IRQ_HANDLED;
490 }
491
492 /**
493 * ice_msix_clean_rings - MSIX mode Interrupt Handler
494 * @irq: interrupt number
495 * @data: pointer to a q_vector
496 */
ice_msix_clean_rings(int __always_unused irq,void * data)497 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
498 {
499 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
500
501 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
502 return IRQ_HANDLED;
503
504 q_vector->total_events++;
505
506 napi_schedule(&q_vector->napi);
507
508 return IRQ_HANDLED;
509 }
510
ice_eswitch_msix_clean_rings(int __always_unused irq,void * data)511 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data)
512 {
513 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
514 struct ice_pf *pf = q_vector->vsi->back;
515 struct ice_vf *vf;
516 unsigned int bkt;
517
518 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
519 return IRQ_HANDLED;
520
521 rcu_read_lock();
522 ice_for_each_vf_rcu(pf, bkt, vf)
523 napi_schedule(&vf->repr->q_vector->napi);
524 rcu_read_unlock();
525
526 return IRQ_HANDLED;
527 }
528
529 /**
530 * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
531 * @vsi: VSI pointer
532 */
ice_vsi_alloc_stat_arrays(struct ice_vsi * vsi)533 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
534 {
535 struct ice_vsi_stats *vsi_stat;
536 struct ice_pf *pf = vsi->back;
537
538 if (vsi->type == ICE_VSI_CHNL)
539 return 0;
540 if (!pf->vsi_stats)
541 return -ENOENT;
542
543 if (pf->vsi_stats[vsi->idx])
544 /* realloc will happen in rebuild path */
545 return 0;
546
547 vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
548 if (!vsi_stat)
549 return -ENOMEM;
550
551 vsi_stat->tx_ring_stats =
552 kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
553 GFP_KERNEL);
554 if (!vsi_stat->tx_ring_stats)
555 goto err_alloc_tx;
556
557 vsi_stat->rx_ring_stats =
558 kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
559 GFP_KERNEL);
560 if (!vsi_stat->rx_ring_stats)
561 goto err_alloc_rx;
562
563 pf->vsi_stats[vsi->idx] = vsi_stat;
564
565 return 0;
566
567 err_alloc_rx:
568 kfree(vsi_stat->rx_ring_stats);
569 err_alloc_tx:
570 kfree(vsi_stat->tx_ring_stats);
571 kfree(vsi_stat);
572 pf->vsi_stats[vsi->idx] = NULL;
573 return -ENOMEM;
574 }
575
576 /**
577 * ice_vsi_alloc_def - set default values for already allocated VSI
578 * @vsi: ptr to VSI
579 * @ch: ptr to channel
580 */
581 static int
ice_vsi_alloc_def(struct ice_vsi * vsi,struct ice_channel * ch)582 ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch)
583 {
584 if (vsi->type != ICE_VSI_CHNL) {
585 ice_vsi_set_num_qs(vsi);
586 if (ice_vsi_alloc_arrays(vsi))
587 return -ENOMEM;
588 }
589
590 vsi->irq_dyn_alloc = pci_msix_can_alloc_dyn(vsi->back->pdev);
591
592 switch (vsi->type) {
593 case ICE_VSI_SWITCHDEV_CTRL:
594 /* Setup eswitch MSIX irq handler for VSI */
595 vsi->irq_handler = ice_eswitch_msix_clean_rings;
596 break;
597 case ICE_VSI_PF:
598 /* Setup default MSIX irq handler for VSI */
599 vsi->irq_handler = ice_msix_clean_rings;
600 break;
601 case ICE_VSI_CTRL:
602 /* Setup ctrl VSI MSIX irq handler */
603 vsi->irq_handler = ice_msix_clean_ctrl_vsi;
604 break;
605 case ICE_VSI_CHNL:
606 if (!ch)
607 return -EINVAL;
608
609 vsi->num_rxq = ch->num_rxq;
610 vsi->num_txq = ch->num_txq;
611 vsi->next_base_q = ch->base_q;
612 break;
613 case ICE_VSI_VF:
614 case ICE_VSI_LB:
615 break;
616 default:
617 ice_vsi_free_arrays(vsi);
618 return -EINVAL;
619 }
620
621 return 0;
622 }
623
624 /**
625 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
626 * @pf: board private structure
627 *
628 * Reserves a VSI index from the PF and allocates an empty VSI structure
629 * without a type. The VSI structure must later be initialized by calling
630 * ice_vsi_cfg().
631 *
632 * returns a pointer to a VSI on success, NULL on failure.
633 */
ice_vsi_alloc(struct ice_pf * pf)634 static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf)
635 {
636 struct device *dev = ice_pf_to_dev(pf);
637 struct ice_vsi *vsi = NULL;
638
639 /* Need to protect the allocation of the VSIs at the PF level */
640 mutex_lock(&pf->sw_mutex);
641
642 /* If we have already allocated our maximum number of VSIs,
643 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
644 * is available to be populated
645 */
646 if (pf->next_vsi == ICE_NO_VSI) {
647 dev_dbg(dev, "out of VSI slots!\n");
648 goto unlock_pf;
649 }
650
651 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
652 if (!vsi)
653 goto unlock_pf;
654
655 vsi->back = pf;
656 set_bit(ICE_VSI_DOWN, vsi->state);
657
658 /* fill slot and make note of the index */
659 vsi->idx = pf->next_vsi;
660 pf->vsi[pf->next_vsi] = vsi;
661
662 /* prepare pf->next_vsi for next use */
663 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
664 pf->next_vsi);
665
666 mutex_init(&vsi->xdp_state_lock);
667
668 unlock_pf:
669 mutex_unlock(&pf->sw_mutex);
670 return vsi;
671 }
672
673 /**
674 * ice_alloc_fd_res - Allocate FD resource for a VSI
675 * @vsi: pointer to the ice_vsi
676 *
677 * This allocates the FD resources
678 *
679 * Returns 0 on success, -EPERM on no-op or -EIO on failure
680 */
ice_alloc_fd_res(struct ice_vsi * vsi)681 static int ice_alloc_fd_res(struct ice_vsi *vsi)
682 {
683 struct ice_pf *pf = vsi->back;
684 u32 g_val, b_val;
685
686 /* Flow Director filters are only allocated/assigned to the PF VSI or
687 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
688 * add/delete filters so resources are not allocated to it
689 */
690 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
691 return -EPERM;
692
693 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
694 vsi->type == ICE_VSI_CHNL))
695 return -EPERM;
696
697 /* FD filters from guaranteed pool per VSI */
698 g_val = pf->hw.func_caps.fd_fltr_guar;
699 if (!g_val)
700 return -EPERM;
701
702 /* FD filters from best effort pool */
703 b_val = pf->hw.func_caps.fd_fltr_best_effort;
704 if (!b_val)
705 return -EPERM;
706
707 /* PF main VSI gets only 64 FD resources from guaranteed pool
708 * when ADQ is configured.
709 */
710 #define ICE_PF_VSI_GFLTR 64
711
712 /* determine FD filter resources per VSI from shared(best effort) and
713 * dedicated pool
714 */
715 if (vsi->type == ICE_VSI_PF) {
716 vsi->num_gfltr = g_val;
717 /* if MQPRIO is configured, main VSI doesn't get all FD
718 * resources from guaranteed pool. PF VSI gets 64 FD resources
719 */
720 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
721 if (g_val < ICE_PF_VSI_GFLTR)
722 return -EPERM;
723 /* allow bare minimum entries for PF VSI */
724 vsi->num_gfltr = ICE_PF_VSI_GFLTR;
725 }
726
727 /* each VSI gets same "best_effort" quota */
728 vsi->num_bfltr = b_val;
729 } else if (vsi->type == ICE_VSI_VF) {
730 vsi->num_gfltr = 0;
731
732 /* each VSI gets same "best_effort" quota */
733 vsi->num_bfltr = b_val;
734 } else {
735 struct ice_vsi *main_vsi;
736 int numtc;
737
738 main_vsi = ice_get_main_vsi(pf);
739 if (!main_vsi)
740 return -EPERM;
741
742 if (!main_vsi->all_numtc)
743 return -EINVAL;
744
745 /* figure out ADQ numtc */
746 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
747
748 /* only one TC but still asking resources for channels,
749 * invalid config
750 */
751 if (numtc < ICE_CHNL_START_TC)
752 return -EPERM;
753
754 g_val -= ICE_PF_VSI_GFLTR;
755 /* channel VSIs gets equal share from guaranteed pool */
756 vsi->num_gfltr = g_val / numtc;
757
758 /* each VSI gets same "best_effort" quota */
759 vsi->num_bfltr = b_val;
760 }
761
762 return 0;
763 }
764
765 /**
766 * ice_vsi_get_qs - Assign queues from PF to VSI
767 * @vsi: the VSI to assign queues to
768 *
769 * Returns 0 on success and a negative value on error
770 */
ice_vsi_get_qs(struct ice_vsi * vsi)771 static int ice_vsi_get_qs(struct ice_vsi *vsi)
772 {
773 struct ice_pf *pf = vsi->back;
774 struct ice_qs_cfg tx_qs_cfg = {
775 .qs_mutex = &pf->avail_q_mutex,
776 .pf_map = pf->avail_txqs,
777 .pf_map_size = pf->max_pf_txqs,
778 .q_count = vsi->alloc_txq,
779 .scatter_count = ICE_MAX_SCATTER_TXQS,
780 .vsi_map = vsi->txq_map,
781 .vsi_map_offset = 0,
782 .mapping_mode = ICE_VSI_MAP_CONTIG
783 };
784 struct ice_qs_cfg rx_qs_cfg = {
785 .qs_mutex = &pf->avail_q_mutex,
786 .pf_map = pf->avail_rxqs,
787 .pf_map_size = pf->max_pf_rxqs,
788 .q_count = vsi->alloc_rxq,
789 .scatter_count = ICE_MAX_SCATTER_RXQS,
790 .vsi_map = vsi->rxq_map,
791 .vsi_map_offset = 0,
792 .mapping_mode = ICE_VSI_MAP_CONTIG
793 };
794 int ret;
795
796 if (vsi->type == ICE_VSI_CHNL)
797 return 0;
798
799 ret = __ice_vsi_get_qs(&tx_qs_cfg);
800 if (ret)
801 return ret;
802 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
803
804 ret = __ice_vsi_get_qs(&rx_qs_cfg);
805 if (ret)
806 return ret;
807 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
808
809 return 0;
810 }
811
812 /**
813 * ice_vsi_put_qs - Release queues from VSI to PF
814 * @vsi: the VSI that is going to release queues
815 */
ice_vsi_put_qs(struct ice_vsi * vsi)816 static void ice_vsi_put_qs(struct ice_vsi *vsi)
817 {
818 struct ice_pf *pf = vsi->back;
819 int i;
820
821 mutex_lock(&pf->avail_q_mutex);
822
823 ice_for_each_alloc_txq(vsi, i) {
824 clear_bit(vsi->txq_map[i], pf->avail_txqs);
825 vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
826 }
827
828 ice_for_each_alloc_rxq(vsi, i) {
829 clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
830 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
831 }
832
833 mutex_unlock(&pf->avail_q_mutex);
834 }
835
836 /**
837 * ice_is_safe_mode
838 * @pf: pointer to the PF struct
839 *
840 * returns true if driver is in safe mode, false otherwise
841 */
ice_is_safe_mode(struct ice_pf * pf)842 bool ice_is_safe_mode(struct ice_pf *pf)
843 {
844 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
845 }
846
847 /**
848 * ice_is_rdma_ena
849 * @pf: pointer to the PF struct
850 *
851 * returns true if RDMA is currently supported, false otherwise
852 */
ice_is_rdma_ena(struct ice_pf * pf)853 bool ice_is_rdma_ena(struct ice_pf *pf)
854 {
855 return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
856 }
857
858 /**
859 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
860 * @vsi: the VSI being cleaned up
861 *
862 * This function deletes RSS input set for all flows that were configured
863 * for this VSI
864 */
ice_vsi_clean_rss_flow_fld(struct ice_vsi * vsi)865 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
866 {
867 struct ice_pf *pf = vsi->back;
868 int status;
869
870 if (ice_is_safe_mode(pf))
871 return;
872
873 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
874 if (status)
875 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
876 vsi->vsi_num, status);
877 }
878
879 /**
880 * ice_rss_clean - Delete RSS related VSI structures and configuration
881 * @vsi: the VSI being removed
882 */
ice_rss_clean(struct ice_vsi * vsi)883 static void ice_rss_clean(struct ice_vsi *vsi)
884 {
885 struct ice_pf *pf = vsi->back;
886 struct device *dev;
887
888 dev = ice_pf_to_dev(pf);
889
890 devm_kfree(dev, vsi->rss_hkey_user);
891 devm_kfree(dev, vsi->rss_lut_user);
892
893 ice_vsi_clean_rss_flow_fld(vsi);
894 /* remove RSS replay list */
895 if (!ice_is_safe_mode(pf))
896 ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
897 }
898
899 /**
900 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
901 * @vsi: the VSI being configured
902 */
ice_vsi_set_rss_params(struct ice_vsi * vsi)903 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
904 {
905 struct ice_hw_common_caps *cap;
906 struct ice_pf *pf = vsi->back;
907 u16 max_rss_size;
908
909 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
910 vsi->rss_size = 1;
911 return;
912 }
913
914 cap = &pf->hw.func_caps.common_cap;
915 max_rss_size = BIT(cap->rss_table_entry_width);
916 switch (vsi->type) {
917 case ICE_VSI_CHNL:
918 case ICE_VSI_PF:
919 /* PF VSI will inherit RSS instance of PF */
920 vsi->rss_table_size = (u16)cap->rss_table_size;
921 if (vsi->type == ICE_VSI_CHNL)
922 vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size);
923 else
924 vsi->rss_size = min_t(u16, num_online_cpus(),
925 max_rss_size);
926 vsi->rss_lut_type = ICE_LUT_PF;
927 break;
928 case ICE_VSI_SWITCHDEV_CTRL:
929 vsi->rss_table_size = ICE_LUT_VSI_SIZE;
930 vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size);
931 vsi->rss_lut_type = ICE_LUT_VSI;
932 break;
933 case ICE_VSI_VF:
934 /* VF VSI will get a small RSS table.
935 * For VSI_LUT, LUT size should be set to 64 bytes.
936 */
937 vsi->rss_table_size = ICE_LUT_VSI_SIZE;
938 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
939 vsi->rss_lut_type = ICE_LUT_VSI;
940 break;
941 case ICE_VSI_LB:
942 break;
943 default:
944 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
945 ice_vsi_type_str(vsi->type));
946 break;
947 }
948 }
949
950 /**
951 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
952 * @hw: HW structure used to determine the VLAN mode of the device
953 * @ctxt: the VSI context being set
954 *
955 * This initializes a default VSI context for all sections except the Queues.
956 */
ice_set_dflt_vsi_ctx(struct ice_hw * hw,struct ice_vsi_ctx * ctxt)957 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
958 {
959 u32 table = 0;
960
961 memset(&ctxt->info, 0, sizeof(ctxt->info));
962 /* VSI's should be allocated from shared pool */
963 ctxt->alloc_from_pool = true;
964 /* Src pruning enabled by default */
965 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
966 /* Traffic from VSI can be sent to LAN */
967 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
968 /* allow all untagged/tagged packets by default on Tx */
969 ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL &
970 ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >>
971 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S);
972 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
973 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
974 *
975 * DVM - leave inner VLAN in packet by default
976 */
977 if (ice_is_dvm_ena(hw)) {
978 ctxt->info.inner_vlan_flags |=
979 FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_EMODE_M,
980 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING);
981 ctxt->info.outer_vlan_flags =
982 (ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL <<
983 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) &
984 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M;
985 ctxt->info.outer_vlan_flags |=
986 (ICE_AQ_VSI_OUTER_TAG_VLAN_8100 <<
987 ICE_AQ_VSI_OUTER_TAG_TYPE_S) &
988 ICE_AQ_VSI_OUTER_TAG_TYPE_M;
989 ctxt->info.outer_vlan_flags |=
990 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
991 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
992 }
993 /* Have 1:1 UP mapping for both ingress/egress tables */
994 table |= ICE_UP_TABLE_TRANSLATE(0, 0);
995 table |= ICE_UP_TABLE_TRANSLATE(1, 1);
996 table |= ICE_UP_TABLE_TRANSLATE(2, 2);
997 table |= ICE_UP_TABLE_TRANSLATE(3, 3);
998 table |= ICE_UP_TABLE_TRANSLATE(4, 4);
999 table |= ICE_UP_TABLE_TRANSLATE(5, 5);
1000 table |= ICE_UP_TABLE_TRANSLATE(6, 6);
1001 table |= ICE_UP_TABLE_TRANSLATE(7, 7);
1002 ctxt->info.ingress_table = cpu_to_le32(table);
1003 ctxt->info.egress_table = cpu_to_le32(table);
1004 /* Have 1:1 UP mapping for outer to inner UP table */
1005 ctxt->info.outer_up_table = cpu_to_le32(table);
1006 /* No Outer tag support outer_tag_flags remains to zero */
1007 }
1008
1009 /**
1010 * ice_vsi_setup_q_map - Setup a VSI queue map
1011 * @vsi: the VSI being configured
1012 * @ctxt: VSI context structure
1013 */
ice_vsi_setup_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt)1014 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1015 {
1016 u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
1017 u16 num_txq_per_tc, num_rxq_per_tc;
1018 u16 qcount_tx = vsi->alloc_txq;
1019 u16 qcount_rx = vsi->alloc_rxq;
1020 u8 netdev_tc = 0;
1021 int i;
1022
1023 if (!vsi->tc_cfg.numtc) {
1024 /* at least TC0 should be enabled by default */
1025 vsi->tc_cfg.numtc = 1;
1026 vsi->tc_cfg.ena_tc = 1;
1027 }
1028
1029 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
1030 if (!num_rxq_per_tc)
1031 num_rxq_per_tc = 1;
1032 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
1033 if (!num_txq_per_tc)
1034 num_txq_per_tc = 1;
1035
1036 /* find the (rounded up) power-of-2 of qcount */
1037 pow = (u16)order_base_2(num_rxq_per_tc);
1038
1039 /* TC mapping is a function of the number of Rx queues assigned to the
1040 * VSI for each traffic class and the offset of these queues.
1041 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
1042 * queues allocated to TC0. No:of queues is a power-of-2.
1043 *
1044 * If TC is not enabled, the queue offset is set to 0, and allocate one
1045 * queue, this way, traffic for the given TC will be sent to the default
1046 * queue.
1047 *
1048 * Setup number and offset of Rx queues for all TCs for the VSI
1049 */
1050 ice_for_each_traffic_class(i) {
1051 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1052 /* TC is not enabled */
1053 vsi->tc_cfg.tc_info[i].qoffset = 0;
1054 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1055 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1056 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1057 ctxt->info.tc_mapping[i] = 0;
1058 continue;
1059 }
1060
1061 /* TC is enabled */
1062 vsi->tc_cfg.tc_info[i].qoffset = offset;
1063 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1064 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1065 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1066
1067 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1068 ICE_AQ_VSI_TC_Q_OFFSET_M) |
1069 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1070 ICE_AQ_VSI_TC_Q_NUM_M);
1071 offset += num_rxq_per_tc;
1072 tx_count += num_txq_per_tc;
1073 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1074 }
1075
1076 /* if offset is non-zero, means it is calculated correctly based on
1077 * enabled TCs for a given VSI otherwise qcount_rx will always
1078 * be correct and non-zero because it is based off - VSI's
1079 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1080 * at least 1)
1081 */
1082 if (offset)
1083 rx_count = offset;
1084 else
1085 rx_count = num_rxq_per_tc;
1086
1087 if (rx_count > vsi->alloc_rxq) {
1088 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1089 rx_count, vsi->alloc_rxq);
1090 return -EINVAL;
1091 }
1092
1093 if (tx_count > vsi->alloc_txq) {
1094 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1095 tx_count, vsi->alloc_txq);
1096 return -EINVAL;
1097 }
1098
1099 vsi->num_txq = tx_count;
1100 vsi->num_rxq = rx_count;
1101
1102 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1103 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1104 /* since there is a chance that num_rxq could have been changed
1105 * in the above for loop, make num_txq equal to num_rxq.
1106 */
1107 vsi->num_txq = vsi->num_rxq;
1108 }
1109
1110 /* Rx queue mapping */
1111 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1112 /* q_mapping buffer holds the info for the first queue allocated for
1113 * this VSI in the PF space and also the number of queues associated
1114 * with this VSI.
1115 */
1116 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1117 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1118
1119 return 0;
1120 }
1121
1122 /**
1123 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1124 * @ctxt: the VSI context being set
1125 * @vsi: the VSI being configured
1126 */
ice_set_fd_vsi_ctx(struct ice_vsi_ctx * ctxt,struct ice_vsi * vsi)1127 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1128 {
1129 u8 dflt_q_group, dflt_q_prio;
1130 u16 dflt_q, report_q, val;
1131
1132 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1133 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1134 return;
1135
1136 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1137 ctxt->info.valid_sections |= cpu_to_le16(val);
1138 dflt_q = 0;
1139 dflt_q_group = 0;
1140 report_q = 0;
1141 dflt_q_prio = 0;
1142
1143 /* enable flow director filtering/programming */
1144 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1145 ctxt->info.fd_options = cpu_to_le16(val);
1146 /* max of allocated flow director filters */
1147 ctxt->info.max_fd_fltr_dedicated =
1148 cpu_to_le16(vsi->num_gfltr);
1149 /* max of shared flow director filters any VSI may program */
1150 ctxt->info.max_fd_fltr_shared =
1151 cpu_to_le16(vsi->num_bfltr);
1152 /* default queue index within the VSI of the default FD */
1153 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
1154 ICE_AQ_VSI_FD_DEF_Q_M);
1155 /* target queue or queue group to the FD filter */
1156 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
1157 ICE_AQ_VSI_FD_DEF_GRP_M);
1158 ctxt->info.fd_def_q = cpu_to_le16(val);
1159 /* queue index on which FD filter completion is reported */
1160 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
1161 ICE_AQ_VSI_FD_REPORT_Q_M);
1162 /* priority of the default qindex action */
1163 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
1164 ICE_AQ_VSI_FD_DEF_PRIORITY_M);
1165 ctxt->info.fd_report_opt = cpu_to_le16(val);
1166 }
1167
1168 /**
1169 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1170 * @ctxt: the VSI context being set
1171 * @vsi: the VSI being configured
1172 */
ice_set_rss_vsi_ctx(struct ice_vsi_ctx * ctxt,struct ice_vsi * vsi)1173 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1174 {
1175 u8 lut_type, hash_type;
1176 struct device *dev;
1177 struct ice_pf *pf;
1178
1179 pf = vsi->back;
1180 dev = ice_pf_to_dev(pf);
1181
1182 switch (vsi->type) {
1183 case ICE_VSI_CHNL:
1184 case ICE_VSI_PF:
1185 /* PF VSI will inherit RSS instance of PF */
1186 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1187 hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1188 break;
1189 case ICE_VSI_VF:
1190 /* VF VSI will gets a small RSS table which is a VSI LUT type */
1191 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1192 hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1193 break;
1194 default:
1195 dev_dbg(dev, "Unsupported VSI type %s\n",
1196 ice_vsi_type_str(vsi->type));
1197 return;
1198 }
1199
1200 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1201 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1202 (hash_type & ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
1203 }
1204
1205 static void
ice_chnl_vsi_setup_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt)1206 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1207 {
1208 struct ice_pf *pf = vsi->back;
1209 u16 qcount, qmap;
1210 u8 offset = 0;
1211 int pow;
1212
1213 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1214
1215 pow = order_base_2(qcount);
1216 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1217 ICE_AQ_VSI_TC_Q_OFFSET_M) |
1218 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1219 ICE_AQ_VSI_TC_Q_NUM_M);
1220
1221 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1222 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1223 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1224 ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1225 }
1226
1227 /**
1228 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
1229 * @vsi: VSI to check whether or not VLAN pruning is enabled.
1230 *
1231 * returns true if Rx VLAN pruning is enabled and false otherwise.
1232 */
ice_vsi_is_vlan_pruning_ena(struct ice_vsi * vsi)1233 static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
1234 {
1235 return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1236 }
1237
1238 /**
1239 * ice_vsi_init - Create and initialize a VSI
1240 * @vsi: the VSI being configured
1241 * @vsi_flags: VSI configuration flags
1242 *
1243 * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to
1244 * reconfigure an existing context.
1245 *
1246 * This initializes a VSI context depending on the VSI type to be added and
1247 * passes it down to the add_vsi aq command to create a new VSI.
1248 */
ice_vsi_init(struct ice_vsi * vsi,u32 vsi_flags)1249 static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags)
1250 {
1251 struct ice_pf *pf = vsi->back;
1252 struct ice_hw *hw = &pf->hw;
1253 struct ice_vsi_ctx *ctxt;
1254 struct device *dev;
1255 int ret = 0;
1256
1257 dev = ice_pf_to_dev(pf);
1258 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1259 if (!ctxt)
1260 return -ENOMEM;
1261
1262 switch (vsi->type) {
1263 case ICE_VSI_CTRL:
1264 case ICE_VSI_LB:
1265 case ICE_VSI_PF:
1266 ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1267 break;
1268 case ICE_VSI_SWITCHDEV_CTRL:
1269 case ICE_VSI_CHNL:
1270 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1271 break;
1272 case ICE_VSI_VF:
1273 ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1274 /* VF number here is the absolute VF number (0-255) */
1275 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1276 break;
1277 default:
1278 ret = -ENODEV;
1279 goto out;
1280 }
1281
1282 /* Handle VLAN pruning for channel VSI if main VSI has VLAN
1283 * prune enabled
1284 */
1285 if (vsi->type == ICE_VSI_CHNL) {
1286 struct ice_vsi *main_vsi;
1287
1288 main_vsi = ice_get_main_vsi(pf);
1289 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1290 ctxt->info.sw_flags2 |=
1291 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1292 else
1293 ctxt->info.sw_flags2 &=
1294 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1295 }
1296
1297 ice_set_dflt_vsi_ctx(hw, ctxt);
1298 if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1299 ice_set_fd_vsi_ctx(ctxt, vsi);
1300 /* if the switch is in VEB mode, allow VSI loopback */
1301 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1302 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1303
1304 /* Set LUT type and HASH type if RSS is enabled */
1305 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1306 vsi->type != ICE_VSI_CTRL) {
1307 ice_set_rss_vsi_ctx(ctxt, vsi);
1308 /* if updating VSI context, make sure to set valid_section:
1309 * to indicate which section of VSI context being updated
1310 */
1311 if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1312 ctxt->info.valid_sections |=
1313 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1314 }
1315
1316 ctxt->info.sw_id = vsi->port_info->sw_id;
1317 if (vsi->type == ICE_VSI_CHNL) {
1318 ice_chnl_vsi_setup_q_map(vsi, ctxt);
1319 } else {
1320 ret = ice_vsi_setup_q_map(vsi, ctxt);
1321 if (ret)
1322 goto out;
1323
1324 if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1325 /* means VSI being updated */
1326 /* must to indicate which section of VSI context are
1327 * being modified
1328 */
1329 ctxt->info.valid_sections |=
1330 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1331 }
1332
1333 /* Allow control frames out of main VSI */
1334 if (vsi->type == ICE_VSI_PF) {
1335 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1336 ctxt->info.valid_sections |=
1337 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1338 }
1339
1340 if (vsi_flags & ICE_VSI_FLAG_INIT) {
1341 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1342 if (ret) {
1343 dev_err(dev, "Add VSI failed, err %d\n", ret);
1344 ret = -EIO;
1345 goto out;
1346 }
1347 } else {
1348 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1349 if (ret) {
1350 dev_err(dev, "Update VSI failed, err %d\n", ret);
1351 ret = -EIO;
1352 goto out;
1353 }
1354 }
1355
1356 /* keep context for update VSI operations */
1357 vsi->info = ctxt->info;
1358
1359 /* record VSI number returned */
1360 vsi->vsi_num = ctxt->vsi_num;
1361
1362 out:
1363 kfree(ctxt);
1364 return ret;
1365 }
1366
1367 /**
1368 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1369 * @vsi: the VSI having rings deallocated
1370 */
ice_vsi_clear_rings(struct ice_vsi * vsi)1371 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1372 {
1373 int i;
1374
1375 /* Avoid stale references by clearing map from vector to ring */
1376 if (vsi->q_vectors) {
1377 ice_for_each_q_vector(vsi, i) {
1378 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1379
1380 if (q_vector) {
1381 q_vector->tx.tx_ring = NULL;
1382 q_vector->rx.rx_ring = NULL;
1383 }
1384 }
1385 }
1386
1387 if (vsi->tx_rings) {
1388 ice_for_each_alloc_txq(vsi, i) {
1389 if (vsi->tx_rings[i]) {
1390 kfree_rcu(vsi->tx_rings[i], rcu);
1391 WRITE_ONCE(vsi->tx_rings[i], NULL);
1392 }
1393 }
1394 }
1395 if (vsi->rx_rings) {
1396 ice_for_each_alloc_rxq(vsi, i) {
1397 if (vsi->rx_rings[i]) {
1398 kfree_rcu(vsi->rx_rings[i], rcu);
1399 WRITE_ONCE(vsi->rx_rings[i], NULL);
1400 }
1401 }
1402 }
1403 }
1404
1405 /**
1406 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1407 * @vsi: VSI which is having rings allocated
1408 */
ice_vsi_alloc_rings(struct ice_vsi * vsi)1409 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1410 {
1411 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1412 struct ice_pf *pf = vsi->back;
1413 struct device *dev;
1414 u16 i;
1415
1416 dev = ice_pf_to_dev(pf);
1417 /* Allocate Tx rings */
1418 ice_for_each_alloc_txq(vsi, i) {
1419 struct ice_tx_ring *ring;
1420
1421 /* allocate with kzalloc(), free with kfree_rcu() */
1422 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1423
1424 if (!ring)
1425 goto err_out;
1426
1427 ring->q_index = i;
1428 ring->reg_idx = vsi->txq_map[i];
1429 ring->vsi = vsi;
1430 ring->tx_tstamps = &pf->ptp.port.tx;
1431 ring->dev = dev;
1432 ring->count = vsi->num_tx_desc;
1433 ring->txq_teid = ICE_INVAL_TEID;
1434 if (dvm_ena)
1435 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1436 else
1437 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1438 WRITE_ONCE(vsi->tx_rings[i], ring);
1439 }
1440
1441 /* Allocate Rx rings */
1442 ice_for_each_alloc_rxq(vsi, i) {
1443 struct ice_rx_ring *ring;
1444
1445 /* allocate with kzalloc(), free with kfree_rcu() */
1446 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1447 if (!ring)
1448 goto err_out;
1449
1450 ring->q_index = i;
1451 ring->reg_idx = vsi->rxq_map[i];
1452 ring->vsi = vsi;
1453 ring->netdev = vsi->netdev;
1454 ring->dev = dev;
1455 ring->count = vsi->num_rx_desc;
1456 ring->cached_phctime = pf->ptp.cached_phc_time;
1457 WRITE_ONCE(vsi->rx_rings[i], ring);
1458 }
1459
1460 return 0;
1461
1462 err_out:
1463 ice_vsi_clear_rings(vsi);
1464 return -ENOMEM;
1465 }
1466
1467 /**
1468 * ice_vsi_manage_rss_lut - disable/enable RSS
1469 * @vsi: the VSI being changed
1470 * @ena: boolean value indicating if this is an enable or disable request
1471 *
1472 * In the event of disable request for RSS, this function will zero out RSS
1473 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1474 * LUT.
1475 */
ice_vsi_manage_rss_lut(struct ice_vsi * vsi,bool ena)1476 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1477 {
1478 u8 *lut;
1479
1480 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1481 if (!lut)
1482 return;
1483
1484 if (ena) {
1485 if (vsi->rss_lut_user)
1486 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1487 else
1488 ice_fill_rss_lut(lut, vsi->rss_table_size,
1489 vsi->rss_size);
1490 }
1491
1492 ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1493 kfree(lut);
1494 }
1495
1496 /**
1497 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1498 * @vsi: VSI to be configured
1499 * @disable: set to true to have FCS / CRC in the frame data
1500 */
ice_vsi_cfg_crc_strip(struct ice_vsi * vsi,bool disable)1501 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1502 {
1503 int i;
1504
1505 ice_for_each_rxq(vsi, i)
1506 if (disable)
1507 vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1508 else
1509 vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1510 }
1511
1512 /**
1513 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1514 * @vsi: VSI to be configured
1515 */
ice_vsi_cfg_rss_lut_key(struct ice_vsi * vsi)1516 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1517 {
1518 struct ice_pf *pf = vsi->back;
1519 struct device *dev;
1520 u8 *lut, *key;
1521 int err;
1522
1523 dev = ice_pf_to_dev(pf);
1524 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1525 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1526 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1527 } else {
1528 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1529
1530 /* If orig_rss_size is valid and it is less than determined
1531 * main VSI's rss_size, update main VSI's rss_size to be
1532 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1533 * RSS table gets programmed to be correct (whatever it was
1534 * to begin with (prior to setup-tc for ADQ config)
1535 */
1536 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1537 vsi->orig_rss_size <= vsi->num_rxq) {
1538 vsi->rss_size = vsi->orig_rss_size;
1539 /* now orig_rss_size is used, reset it to zero */
1540 vsi->orig_rss_size = 0;
1541 }
1542 }
1543
1544 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1545 if (!lut)
1546 return -ENOMEM;
1547
1548 if (vsi->rss_lut_user)
1549 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1550 else
1551 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1552
1553 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1554 if (err) {
1555 dev_err(dev, "set_rss_lut failed, error %d\n", err);
1556 goto ice_vsi_cfg_rss_exit;
1557 }
1558
1559 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1560 if (!key) {
1561 err = -ENOMEM;
1562 goto ice_vsi_cfg_rss_exit;
1563 }
1564
1565 if (vsi->rss_hkey_user)
1566 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1567 else
1568 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1569
1570 err = ice_set_rss_key(vsi, key);
1571 if (err)
1572 dev_err(dev, "set_rss_key failed, error %d\n", err);
1573
1574 kfree(key);
1575 ice_vsi_cfg_rss_exit:
1576 kfree(lut);
1577 return err;
1578 }
1579
1580 /**
1581 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1582 * @vsi: VSI to be configured
1583 *
1584 * This function will only be called during the VF VSI setup. Upon successful
1585 * completion of package download, this function will configure default RSS
1586 * input sets for VF VSI.
1587 */
ice_vsi_set_vf_rss_flow_fld(struct ice_vsi * vsi)1588 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1589 {
1590 struct ice_pf *pf = vsi->back;
1591 struct device *dev;
1592 int status;
1593
1594 dev = ice_pf_to_dev(pf);
1595 if (ice_is_safe_mode(pf)) {
1596 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1597 vsi->vsi_num);
1598 return;
1599 }
1600
1601 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
1602 if (status)
1603 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1604 vsi->vsi_num, status);
1605 }
1606
1607 /**
1608 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1609 * @vsi: VSI to be configured
1610 *
1611 * This function will only be called after successful download package call
1612 * during initialization of PF. Since the downloaded package will erase the
1613 * RSS section, this function will configure RSS input sets for different
1614 * flow types. The last profile added has the highest priority, therefore 2
1615 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1616 * (i.e. IPv4 src/dst TCP src/dst port).
1617 */
ice_vsi_set_rss_flow_fld(struct ice_vsi * vsi)1618 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1619 {
1620 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
1621 struct ice_pf *pf = vsi->back;
1622 struct ice_hw *hw = &pf->hw;
1623 struct device *dev;
1624 int status;
1625
1626 dev = ice_pf_to_dev(pf);
1627 if (ice_is_safe_mode(pf)) {
1628 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1629 vsi_num);
1630 return;
1631 }
1632 /* configure RSS for IPv4 with input set IP src/dst */
1633 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1634 ICE_FLOW_SEG_HDR_IPV4);
1635 if (status)
1636 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n",
1637 vsi_num, status);
1638
1639 /* configure RSS for IPv6 with input set IPv6 src/dst */
1640 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1641 ICE_FLOW_SEG_HDR_IPV6);
1642 if (status)
1643 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n",
1644 vsi_num, status);
1645
1646 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1647 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
1648 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
1649 if (status)
1650 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n",
1651 vsi_num, status);
1652
1653 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1654 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
1655 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
1656 if (status)
1657 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n",
1658 vsi_num, status);
1659
1660 /* configure RSS for sctp4 with input set IP src/dst */
1661 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1662 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
1663 if (status)
1664 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n",
1665 vsi_num, status);
1666
1667 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1668 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
1669 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
1670 if (status)
1671 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n",
1672 vsi_num, status);
1673
1674 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1675 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
1676 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
1677 if (status)
1678 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n",
1679 vsi_num, status);
1680
1681 /* configure RSS for sctp6 with input set IPv6 src/dst */
1682 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1683 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
1684 if (status)
1685 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n",
1686 vsi_num, status);
1687
1688 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI,
1689 ICE_FLOW_SEG_HDR_ESP);
1690 if (status)
1691 dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n",
1692 vsi_num, status);
1693 }
1694
1695 /**
1696 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1697 * @vsi: VSI
1698 */
ice_vsi_cfg_frame_size(struct ice_vsi * vsi)1699 static void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1700 {
1701 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1702 vsi->max_frame = ICE_MAX_FRAME_LEGACY_RX;
1703 vsi->rx_buf_len = ICE_RXBUF_1664;
1704 #if (PAGE_SIZE < 8192)
1705 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1706 (vsi->netdev->mtu <= ETH_DATA_LEN)) {
1707 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
1708 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
1709 #endif
1710 } else {
1711 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1712 vsi->rx_buf_len = ICE_RXBUF_3072;
1713 }
1714 }
1715
1716 /**
1717 * ice_pf_state_is_nominal - checks the PF for nominal state
1718 * @pf: pointer to PF to check
1719 *
1720 * Check the PF's state for a collection of bits that would indicate
1721 * the PF is in a state that would inhibit normal operation for
1722 * driver functionality.
1723 *
1724 * Returns true if PF is in a nominal state, false otherwise
1725 */
ice_pf_state_is_nominal(struct ice_pf * pf)1726 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1727 {
1728 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1729
1730 if (!pf)
1731 return false;
1732
1733 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1734 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1735 return false;
1736
1737 return true;
1738 }
1739
1740 /**
1741 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1742 * @vsi: the VSI to be updated
1743 */
ice_update_eth_stats(struct ice_vsi * vsi)1744 void ice_update_eth_stats(struct ice_vsi *vsi)
1745 {
1746 struct ice_eth_stats *prev_es, *cur_es;
1747 struct ice_hw *hw = &vsi->back->hw;
1748 struct ice_pf *pf = vsi->back;
1749 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */
1750
1751 prev_es = &vsi->eth_stats_prev;
1752 cur_es = &vsi->eth_stats;
1753
1754 if (ice_is_reset_in_progress(pf->state))
1755 vsi->stat_offsets_loaded = false;
1756
1757 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1758 &prev_es->rx_bytes, &cur_es->rx_bytes);
1759
1760 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1761 &prev_es->rx_unicast, &cur_es->rx_unicast);
1762
1763 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1764 &prev_es->rx_multicast, &cur_es->rx_multicast);
1765
1766 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1767 &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1768
1769 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1770 &prev_es->rx_discards, &cur_es->rx_discards);
1771
1772 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1773 &prev_es->tx_bytes, &cur_es->tx_bytes);
1774
1775 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1776 &prev_es->tx_unicast, &cur_es->tx_unicast);
1777
1778 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1779 &prev_es->tx_multicast, &cur_es->tx_multicast);
1780
1781 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1782 &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1783
1784 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1785 &prev_es->tx_errors, &cur_es->tx_errors);
1786
1787 vsi->stat_offsets_loaded = true;
1788 }
1789
1790 /**
1791 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1792 * @hw: HW pointer
1793 * @pf_q: index of the Rx queue in the PF's queue space
1794 * @rxdid: flexible descriptor RXDID
1795 * @prio: priority for the RXDID for this queue
1796 * @ena_ts: true to enable timestamp and false to disable timestamp
1797 */
1798 void
ice_write_qrxflxp_cntxt(struct ice_hw * hw,u16 pf_q,u32 rxdid,u32 prio,bool ena_ts)1799 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1800 bool ena_ts)
1801 {
1802 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1803
1804 /* clear any previous values */
1805 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1806 QRXFLXP_CNTXT_RXDID_PRIO_M |
1807 QRXFLXP_CNTXT_TS_M);
1808
1809 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
1810 QRXFLXP_CNTXT_RXDID_IDX_M;
1811
1812 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
1813 QRXFLXP_CNTXT_RXDID_PRIO_M;
1814
1815 if (ena_ts)
1816 /* Enable TimeSync on this queue */
1817 regval |= QRXFLXP_CNTXT_TS_M;
1818
1819 wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1820 }
1821
ice_vsi_cfg_single_rxq(struct ice_vsi * vsi,u16 q_idx)1822 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
1823 {
1824 if (q_idx >= vsi->num_rxq)
1825 return -EINVAL;
1826
1827 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
1828 }
1829
ice_vsi_cfg_single_txq(struct ice_vsi * vsi,struct ice_tx_ring ** tx_rings,u16 q_idx)1830 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx)
1831 {
1832 struct ice_aqc_add_tx_qgrp *qg_buf;
1833 int err;
1834
1835 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
1836 return -EINVAL;
1837
1838 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1839 if (!qg_buf)
1840 return -ENOMEM;
1841
1842 qg_buf->num_txqs = 1;
1843
1844 err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
1845 kfree(qg_buf);
1846 return err;
1847 }
1848
1849 /**
1850 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1851 * @vsi: the VSI being configured
1852 *
1853 * Return 0 on success and a negative value on error
1854 * Configure the Rx VSI for operation.
1855 */
ice_vsi_cfg_rxqs(struct ice_vsi * vsi)1856 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1857 {
1858 u16 i;
1859
1860 if (vsi->type == ICE_VSI_VF)
1861 goto setup_rings;
1862
1863 ice_vsi_cfg_frame_size(vsi);
1864 setup_rings:
1865 /* set up individual rings */
1866 ice_for_each_rxq(vsi, i) {
1867 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
1868
1869 if (err)
1870 return err;
1871 }
1872
1873 return 0;
1874 }
1875
1876 /**
1877 * ice_vsi_cfg_txqs - Configure the VSI for Tx
1878 * @vsi: the VSI being configured
1879 * @rings: Tx ring array to be configured
1880 * @count: number of Tx ring array elements
1881 *
1882 * Return 0 on success and a negative value on error
1883 * Configure the Tx VSI for operation.
1884 */
1885 static int
ice_vsi_cfg_txqs(struct ice_vsi * vsi,struct ice_tx_ring ** rings,u16 count)1886 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
1887 {
1888 struct ice_aqc_add_tx_qgrp *qg_buf;
1889 u16 q_idx = 0;
1890 int err = 0;
1891
1892 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1893 if (!qg_buf)
1894 return -ENOMEM;
1895
1896 qg_buf->num_txqs = 1;
1897
1898 for (q_idx = 0; q_idx < count; q_idx++) {
1899 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
1900 if (err)
1901 goto err_cfg_txqs;
1902 }
1903
1904 err_cfg_txqs:
1905 kfree(qg_buf);
1906 return err;
1907 }
1908
1909 /**
1910 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1911 * @vsi: the VSI being configured
1912 *
1913 * Return 0 on success and a negative value on error
1914 * Configure the Tx VSI for operation.
1915 */
ice_vsi_cfg_lan_txqs(struct ice_vsi * vsi)1916 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1917 {
1918 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1919 }
1920
1921 /**
1922 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1923 * @vsi: the VSI being configured
1924 *
1925 * Return 0 on success and a negative value on error
1926 * Configure the Tx queues dedicated for XDP in given VSI for operation.
1927 */
ice_vsi_cfg_xdp_txqs(struct ice_vsi * vsi)1928 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1929 {
1930 int ret;
1931 int i;
1932
1933 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1934 if (ret)
1935 return ret;
1936
1937 ice_for_each_rxq(vsi, i)
1938 ice_tx_xsk_pool(vsi, i);
1939
1940 return 0;
1941 }
1942
1943 /**
1944 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1945 * @intrl: interrupt rate limit in usecs
1946 * @gran: interrupt rate limit granularity in usecs
1947 *
1948 * This function converts a decimal interrupt rate limit in usecs to the format
1949 * expected by firmware.
1950 */
ice_intrl_usec_to_reg(u8 intrl,u8 gran)1951 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1952 {
1953 u32 val = intrl / gran;
1954
1955 if (val)
1956 return val | GLINT_RATE_INTRL_ENA_M;
1957 return 0;
1958 }
1959
1960 /**
1961 * ice_write_intrl - write throttle rate limit to interrupt specific register
1962 * @q_vector: pointer to interrupt specific structure
1963 * @intrl: throttle rate limit in microseconds to write
1964 */
ice_write_intrl(struct ice_q_vector * q_vector,u8 intrl)1965 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1966 {
1967 struct ice_hw *hw = &q_vector->vsi->back->hw;
1968
1969 wr32(hw, GLINT_RATE(q_vector->reg_idx),
1970 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
1971 }
1972
ice_pull_qvec_from_rc(struct ice_ring_container * rc)1973 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
1974 {
1975 switch (rc->type) {
1976 case ICE_RX_CONTAINER:
1977 if (rc->rx_ring)
1978 return rc->rx_ring->q_vector;
1979 break;
1980 case ICE_TX_CONTAINER:
1981 if (rc->tx_ring)
1982 return rc->tx_ring->q_vector;
1983 break;
1984 default:
1985 break;
1986 }
1987
1988 return NULL;
1989 }
1990
1991 /**
1992 * __ice_write_itr - write throttle rate to register
1993 * @q_vector: pointer to interrupt data structure
1994 * @rc: pointer to ring container
1995 * @itr: throttle rate in microseconds to write
1996 */
__ice_write_itr(struct ice_q_vector * q_vector,struct ice_ring_container * rc,u16 itr)1997 static void __ice_write_itr(struct ice_q_vector *q_vector,
1998 struct ice_ring_container *rc, u16 itr)
1999 {
2000 struct ice_hw *hw = &q_vector->vsi->back->hw;
2001
2002 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
2003 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
2004 }
2005
2006 /**
2007 * ice_write_itr - write throttle rate to queue specific register
2008 * @rc: pointer to ring container
2009 * @itr: throttle rate in microseconds to write
2010 */
ice_write_itr(struct ice_ring_container * rc,u16 itr)2011 void ice_write_itr(struct ice_ring_container *rc, u16 itr)
2012 {
2013 struct ice_q_vector *q_vector;
2014
2015 q_vector = ice_pull_qvec_from_rc(rc);
2016 if (!q_vector)
2017 return;
2018
2019 __ice_write_itr(q_vector, rc, itr);
2020 }
2021
2022 /**
2023 * ice_set_q_vector_intrl - set up interrupt rate limiting
2024 * @q_vector: the vector to be configured
2025 *
2026 * Interrupt rate limiting is local to the vector, not per-queue so we must
2027 * detect if either ring container has dynamic moderation enabled to decide
2028 * what to set the interrupt rate limit to via INTRL settings. In the case that
2029 * dynamic moderation is disabled on both, write the value with the cached
2030 * setting to make sure INTRL register matches the user visible value.
2031 */
ice_set_q_vector_intrl(struct ice_q_vector * q_vector)2032 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
2033 {
2034 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
2035 /* in the case of dynamic enabled, cap each vector to no more
2036 * than (4 us) 250,000 ints/sec, which allows low latency
2037 * but still less than 500,000 interrupts per second, which
2038 * reduces CPU a bit in the case of the lowest latency
2039 * setting. The 4 here is a value in microseconds.
2040 */
2041 ice_write_intrl(q_vector, 4);
2042 } else {
2043 ice_write_intrl(q_vector, q_vector->intrl);
2044 }
2045 }
2046
2047 /**
2048 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
2049 * @vsi: the VSI being configured
2050 *
2051 * This configures MSIX mode interrupts for the PF VSI, and should not be used
2052 * for the VF VSI.
2053 */
ice_vsi_cfg_msix(struct ice_vsi * vsi)2054 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
2055 {
2056 struct ice_pf *pf = vsi->back;
2057 struct ice_hw *hw = &pf->hw;
2058 u16 txq = 0, rxq = 0;
2059 int i, q;
2060
2061 ice_for_each_q_vector(vsi, i) {
2062 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2063 u16 reg_idx = q_vector->reg_idx;
2064
2065 ice_cfg_itr(hw, q_vector);
2066
2067 /* Both Transmit Queue Interrupt Cause Control register
2068 * and Receive Queue Interrupt Cause control register
2069 * expects MSIX_INDX field to be the vector index
2070 * within the function space and not the absolute
2071 * vector index across PF or across device.
2072 * For SR-IOV VF VSIs queue vector index always starts
2073 * with 1 since first vector index(0) is used for OICR
2074 * in VF space. Since VMDq and other PF VSIs are within
2075 * the PF function space, use the vector index that is
2076 * tracked for this PF.
2077 */
2078 for (q = 0; q < q_vector->num_ring_tx; q++) {
2079 ice_cfg_txq_interrupt(vsi, txq, reg_idx,
2080 q_vector->tx.itr_idx);
2081 txq++;
2082 }
2083
2084 for (q = 0; q < q_vector->num_ring_rx; q++) {
2085 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
2086 q_vector->rx.itr_idx);
2087 rxq++;
2088 }
2089 }
2090 }
2091
2092 /**
2093 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
2094 * @vsi: the VSI whose rings are to be enabled
2095 *
2096 * Returns 0 on success and a negative value on error
2097 */
ice_vsi_start_all_rx_rings(struct ice_vsi * vsi)2098 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
2099 {
2100 return ice_vsi_ctrl_all_rx_rings(vsi, true);
2101 }
2102
2103 /**
2104 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
2105 * @vsi: the VSI whose rings are to be disabled
2106 *
2107 * Returns 0 on success and a negative value on error
2108 */
ice_vsi_stop_all_rx_rings(struct ice_vsi * vsi)2109 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
2110 {
2111 return ice_vsi_ctrl_all_rx_rings(vsi, false);
2112 }
2113
2114 /**
2115 * ice_vsi_stop_tx_rings - Disable Tx rings
2116 * @vsi: the VSI being configured
2117 * @rst_src: reset source
2118 * @rel_vmvf_num: Relative ID of VF/VM
2119 * @rings: Tx ring array to be stopped
2120 * @count: number of Tx ring array elements
2121 */
2122 static int
ice_vsi_stop_tx_rings(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num,struct ice_tx_ring ** rings,u16 count)2123 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2124 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
2125 {
2126 u16 q_idx;
2127
2128 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2129 return -EINVAL;
2130
2131 for (q_idx = 0; q_idx < count; q_idx++) {
2132 struct ice_txq_meta txq_meta = { };
2133 int status;
2134
2135 if (!rings || !rings[q_idx])
2136 return -EINVAL;
2137
2138 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2139 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2140 rings[q_idx], &txq_meta);
2141
2142 if (status)
2143 return status;
2144 }
2145
2146 return 0;
2147 }
2148
2149 /**
2150 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2151 * @vsi: the VSI being configured
2152 * @rst_src: reset source
2153 * @rel_vmvf_num: Relative ID of VF/VM
2154 */
2155 int
ice_vsi_stop_lan_tx_rings(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num)2156 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2157 u16 rel_vmvf_num)
2158 {
2159 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2160 }
2161
2162 /**
2163 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2164 * @vsi: the VSI being configured
2165 */
ice_vsi_stop_xdp_tx_rings(struct ice_vsi * vsi)2166 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2167 {
2168 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2169 }
2170
2171 /**
2172 * ice_vsi_is_rx_queue_active
2173 * @vsi: the VSI being configured
2174 *
2175 * Return true if at least one queue is active.
2176 */
ice_vsi_is_rx_queue_active(struct ice_vsi * vsi)2177 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
2178 {
2179 struct ice_pf *pf = vsi->back;
2180 struct ice_hw *hw = &pf->hw;
2181 int i;
2182
2183 ice_for_each_rxq(vsi, i) {
2184 u32 rx_reg;
2185 int pf_q;
2186
2187 pf_q = vsi->rxq_map[i];
2188 rx_reg = rd32(hw, QRX_CTRL(pf_q));
2189 if (rx_reg & QRX_CTRL_QENA_STAT_M)
2190 return true;
2191 }
2192
2193 return false;
2194 }
2195
ice_vsi_set_tc_cfg(struct ice_vsi * vsi)2196 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2197 {
2198 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2199 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2200 vsi->tc_cfg.numtc = 1;
2201 return;
2202 }
2203
2204 /* set VSI TC information based on DCB config */
2205 ice_vsi_set_dcb_tc_cfg(vsi);
2206 }
2207
2208 /**
2209 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2210 * @vsi: the VSI being configured
2211 * @tx: bool to determine Tx or Rx rule
2212 * @create: bool to determine create or remove Rule
2213 */
ice_cfg_sw_lldp(struct ice_vsi * vsi,bool tx,bool create)2214 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2215 {
2216 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2217 enum ice_sw_fwd_act_type act);
2218 struct ice_pf *pf = vsi->back;
2219 struct device *dev;
2220 int status;
2221
2222 dev = ice_pf_to_dev(pf);
2223 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2224
2225 if (tx) {
2226 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2227 ICE_DROP_PACKET);
2228 } else {
2229 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2230 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2231 create);
2232 } else {
2233 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2234 ICE_FWD_TO_VSI);
2235 }
2236 }
2237
2238 if (status)
2239 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2240 create ? "adding" : "removing", tx ? "TX" : "RX",
2241 vsi->vsi_num, status);
2242 }
2243
2244 /**
2245 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2246 * @vsi: pointer to the VSI
2247 *
2248 * This function will allocate new scheduler aggregator now if needed and will
2249 * move specified VSI into it.
2250 */
ice_set_agg_vsi(struct ice_vsi * vsi)2251 static void ice_set_agg_vsi(struct ice_vsi *vsi)
2252 {
2253 struct device *dev = ice_pf_to_dev(vsi->back);
2254 struct ice_agg_node *agg_node_iter = NULL;
2255 u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2256 struct ice_agg_node *agg_node = NULL;
2257 int node_offset, max_agg_nodes = 0;
2258 struct ice_port_info *port_info;
2259 struct ice_pf *pf = vsi->back;
2260 u32 agg_node_id_start = 0;
2261 int status;
2262
2263 /* create (as needed) scheduler aggregator node and move VSI into
2264 * corresponding aggregator node
2265 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2266 * - VF aggregator nodes will contain VF VSI
2267 */
2268 port_info = pf->hw.port_info;
2269 if (!port_info)
2270 return;
2271
2272 switch (vsi->type) {
2273 case ICE_VSI_CTRL:
2274 case ICE_VSI_CHNL:
2275 case ICE_VSI_LB:
2276 case ICE_VSI_PF:
2277 case ICE_VSI_SWITCHDEV_CTRL:
2278 max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2279 agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2280 agg_node_iter = &pf->pf_agg_node[0];
2281 break;
2282 case ICE_VSI_VF:
2283 /* user can create 'n' VFs on a given PF, but since max children
2284 * per aggregator node can be only 64. Following code handles
2285 * aggregator(s) for VF VSIs, either selects a agg_node which
2286 * was already created provided num_vsis < 64, otherwise
2287 * select next available node, which will be created
2288 */
2289 max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2290 agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2291 agg_node_iter = &pf->vf_agg_node[0];
2292 break;
2293 default:
2294 /* other VSI type, handle later if needed */
2295 dev_dbg(dev, "unexpected VSI type %s\n",
2296 ice_vsi_type_str(vsi->type));
2297 return;
2298 }
2299
2300 /* find the appropriate aggregator node */
2301 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2302 /* see if we can find space in previously created
2303 * node if num_vsis < 64, otherwise skip
2304 */
2305 if (agg_node_iter->num_vsis &&
2306 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2307 agg_node_iter++;
2308 continue;
2309 }
2310
2311 if (agg_node_iter->valid &&
2312 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2313 agg_id = agg_node_iter->agg_id;
2314 agg_node = agg_node_iter;
2315 break;
2316 }
2317
2318 /* find unclaimed agg_id */
2319 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2320 agg_id = node_offset + agg_node_id_start;
2321 agg_node = agg_node_iter;
2322 break;
2323 }
2324 /* move to next agg_node */
2325 agg_node_iter++;
2326 }
2327
2328 if (!agg_node)
2329 return;
2330
2331 /* if selected aggregator node was not created, create it */
2332 if (!agg_node->valid) {
2333 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2334 (u8)vsi->tc_cfg.ena_tc);
2335 if (status) {
2336 dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2337 agg_id);
2338 return;
2339 }
2340 /* aggregator node is created, store the needed info */
2341 agg_node->valid = true;
2342 agg_node->agg_id = agg_id;
2343 }
2344
2345 /* move VSI to corresponding aggregator node */
2346 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2347 (u8)vsi->tc_cfg.ena_tc);
2348 if (status) {
2349 dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2350 vsi->idx, agg_id);
2351 return;
2352 }
2353
2354 /* keep active children count for aggregator node */
2355 agg_node->num_vsis++;
2356
2357 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2358 * to aggregator node
2359 */
2360 vsi->agg_node = agg_node;
2361 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2362 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2363 vsi->agg_node->num_vsis);
2364 }
2365
ice_vsi_cfg_tc_lan(struct ice_pf * pf,struct ice_vsi * vsi)2366 static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi)
2367 {
2368 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2369 struct device *dev = ice_pf_to_dev(pf);
2370 int ret, i;
2371
2372 /* configure VSI nodes based on number of queues and TC's */
2373 ice_for_each_traffic_class(i) {
2374 if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2375 continue;
2376
2377 if (vsi->type == ICE_VSI_CHNL) {
2378 if (!vsi->alloc_txq && vsi->num_txq)
2379 max_txqs[i] = vsi->num_txq;
2380 else
2381 max_txqs[i] = pf->num_lan_tx;
2382 } else {
2383 max_txqs[i] = vsi->alloc_txq;
2384 }
2385
2386 if (vsi->type == ICE_VSI_PF)
2387 max_txqs[i] += vsi->num_xdp_txq;
2388 }
2389
2390 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2391 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2392 max_txqs);
2393 if (ret) {
2394 dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2395 vsi->vsi_num, ret);
2396 return ret;
2397 }
2398
2399 return 0;
2400 }
2401
2402 /**
2403 * ice_vsi_cfg_def - configure default VSI based on the type
2404 * @vsi: pointer to VSI
2405 * @params: the parameters to configure this VSI with
2406 */
2407 static int
ice_vsi_cfg_def(struct ice_vsi * vsi,struct ice_vsi_cfg_params * params)2408 ice_vsi_cfg_def(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2409 {
2410 struct device *dev = ice_pf_to_dev(vsi->back);
2411 struct ice_pf *pf = vsi->back;
2412 int ret;
2413
2414 vsi->vsw = pf->first_sw;
2415
2416 ret = ice_vsi_alloc_def(vsi, params->ch);
2417 if (ret)
2418 return ret;
2419
2420 /* allocate memory for Tx/Rx ring stat pointers */
2421 ret = ice_vsi_alloc_stat_arrays(vsi);
2422 if (ret)
2423 goto unroll_vsi_alloc;
2424
2425 ice_alloc_fd_res(vsi);
2426
2427 ret = ice_vsi_get_qs(vsi);
2428 if (ret) {
2429 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2430 vsi->idx);
2431 goto unroll_vsi_alloc_stat;
2432 }
2433
2434 /* set RSS capabilities */
2435 ice_vsi_set_rss_params(vsi);
2436
2437 /* set TC configuration */
2438 ice_vsi_set_tc_cfg(vsi);
2439
2440 /* create the VSI */
2441 ret = ice_vsi_init(vsi, params->flags);
2442 if (ret)
2443 goto unroll_get_qs;
2444
2445 ice_vsi_init_vlan_ops(vsi);
2446
2447 switch (vsi->type) {
2448 case ICE_VSI_CTRL:
2449 case ICE_VSI_SWITCHDEV_CTRL:
2450 case ICE_VSI_PF:
2451 ret = ice_vsi_alloc_q_vectors(vsi);
2452 if (ret)
2453 goto unroll_vsi_init;
2454
2455 ret = ice_vsi_alloc_rings(vsi);
2456 if (ret)
2457 goto unroll_vector_base;
2458
2459 ret = ice_vsi_alloc_ring_stats(vsi);
2460 if (ret)
2461 goto unroll_vector_base;
2462
2463 ice_vsi_map_rings_to_vectors(vsi);
2464 vsi->stat_offsets_loaded = false;
2465
2466 if (ice_is_xdp_ena_vsi(vsi)) {
2467 ret = ice_vsi_determine_xdp_res(vsi);
2468 if (ret)
2469 goto unroll_vector_base;
2470 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog,
2471 ICE_XDP_CFG_PART);
2472 if (ret)
2473 goto unroll_vector_base;
2474 }
2475
2476 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2477 if (vsi->type != ICE_VSI_CTRL)
2478 /* Do not exit if configuring RSS had an issue, at
2479 * least receive traffic on first queue. Hence no
2480 * need to capture return value
2481 */
2482 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2483 ice_vsi_cfg_rss_lut_key(vsi);
2484 ice_vsi_set_rss_flow_fld(vsi);
2485 }
2486 ice_init_arfs(vsi);
2487 break;
2488 case ICE_VSI_CHNL:
2489 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2490 ice_vsi_cfg_rss_lut_key(vsi);
2491 ice_vsi_set_rss_flow_fld(vsi);
2492 }
2493 break;
2494 case ICE_VSI_VF:
2495 /* VF driver will take care of creating netdev for this type and
2496 * map queues to vectors through Virtchnl, PF driver only
2497 * creates a VSI and corresponding structures for bookkeeping
2498 * purpose
2499 */
2500 ret = ice_vsi_alloc_q_vectors(vsi);
2501 if (ret)
2502 goto unroll_vsi_init;
2503
2504 ret = ice_vsi_alloc_rings(vsi);
2505 if (ret)
2506 goto unroll_alloc_q_vector;
2507
2508 ret = ice_vsi_alloc_ring_stats(vsi);
2509 if (ret)
2510 goto unroll_vector_base;
2511
2512 vsi->stat_offsets_loaded = false;
2513
2514 /* Do not exit if configuring RSS had an issue, at least
2515 * receive traffic on first queue. Hence no need to capture
2516 * return value
2517 */
2518 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2519 ice_vsi_cfg_rss_lut_key(vsi);
2520 ice_vsi_set_vf_rss_flow_fld(vsi);
2521 }
2522 break;
2523 case ICE_VSI_LB:
2524 ret = ice_vsi_alloc_rings(vsi);
2525 if (ret)
2526 goto unroll_vsi_init;
2527
2528 ret = ice_vsi_alloc_ring_stats(vsi);
2529 if (ret)
2530 goto unroll_vector_base;
2531
2532 break;
2533 default:
2534 /* clean up the resources and exit */
2535 ret = -EINVAL;
2536 goto unroll_vsi_init;
2537 }
2538
2539 return 0;
2540
2541 unroll_vector_base:
2542 /* reclaim SW interrupts back to the common pool */
2543 unroll_alloc_q_vector:
2544 ice_vsi_free_q_vectors(vsi);
2545 unroll_vsi_init:
2546 ice_vsi_delete_from_hw(vsi);
2547 unroll_get_qs:
2548 ice_vsi_put_qs(vsi);
2549 unroll_vsi_alloc_stat:
2550 ice_vsi_free_stats(vsi);
2551 unroll_vsi_alloc:
2552 ice_vsi_free_arrays(vsi);
2553 return ret;
2554 }
2555
2556 /**
2557 * ice_vsi_cfg - configure a previously allocated VSI
2558 * @vsi: pointer to VSI
2559 * @params: parameters used to configure this VSI
2560 */
ice_vsi_cfg(struct ice_vsi * vsi,struct ice_vsi_cfg_params * params)2561 int ice_vsi_cfg(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
2562 {
2563 struct ice_pf *pf = vsi->back;
2564 int ret;
2565
2566 if (WARN_ON(params->type == ICE_VSI_VF && !params->vf))
2567 return -EINVAL;
2568
2569 vsi->type = params->type;
2570 vsi->port_info = params->pi;
2571
2572 /* For VSIs which don't have a connected VF, this will be NULL */
2573 vsi->vf = params->vf;
2574
2575 ret = ice_vsi_cfg_def(vsi, params);
2576 if (ret)
2577 return ret;
2578
2579 ret = ice_vsi_cfg_tc_lan(vsi->back, vsi);
2580 if (ret)
2581 ice_vsi_decfg(vsi);
2582
2583 if (vsi->type == ICE_VSI_CTRL) {
2584 if (vsi->vf) {
2585 WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI);
2586 vsi->vf->ctrl_vsi_idx = vsi->idx;
2587 } else {
2588 WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI);
2589 pf->ctrl_vsi_idx = vsi->idx;
2590 }
2591 }
2592
2593 return ret;
2594 }
2595
2596 /**
2597 * ice_vsi_decfg - remove all VSI configuration
2598 * @vsi: pointer to VSI
2599 */
ice_vsi_decfg(struct ice_vsi * vsi)2600 void ice_vsi_decfg(struct ice_vsi *vsi)
2601 {
2602 struct ice_pf *pf = vsi->back;
2603 int err;
2604
2605 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2606 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2607 if (err)
2608 dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2609 vsi->vsi_num, err);
2610
2611 if (ice_is_xdp_ena_vsi(vsi))
2612 /* return value check can be skipped here, it always returns
2613 * 0 if reset is in progress
2614 */
2615 ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_PART);
2616
2617 ice_vsi_clear_rings(vsi);
2618 ice_vsi_free_q_vectors(vsi);
2619 ice_vsi_put_qs(vsi);
2620 ice_vsi_free_arrays(vsi);
2621
2622 /* SR-IOV determines needed MSIX resources all at once instead of per
2623 * VSI since when VFs are spawned we know how many VFs there are and how
2624 * many interrupts each VF needs. SR-IOV MSIX resources are also
2625 * cleared in the same manner.
2626 */
2627
2628 if (vsi->type == ICE_VSI_VF &&
2629 vsi->agg_node && vsi->agg_node->valid)
2630 vsi->agg_node->num_vsis--;
2631 }
2632
2633 /**
2634 * ice_vsi_setup - Set up a VSI by a given type
2635 * @pf: board private structure
2636 * @params: parameters to use when creating the VSI
2637 *
2638 * This allocates the sw VSI structure and its queue resources.
2639 *
2640 * Returns pointer to the successfully allocated and configured VSI sw struct on
2641 * success, NULL on failure.
2642 */
2643 struct ice_vsi *
ice_vsi_setup(struct ice_pf * pf,struct ice_vsi_cfg_params * params)2644 ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params)
2645 {
2646 struct device *dev = ice_pf_to_dev(pf);
2647 struct ice_vsi *vsi;
2648 int ret;
2649
2650 /* ice_vsi_setup can only initialize a new VSI, and we must have
2651 * a port_info structure for it.
2652 */
2653 if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) ||
2654 WARN_ON(!params->pi))
2655 return NULL;
2656
2657 vsi = ice_vsi_alloc(pf);
2658 if (!vsi) {
2659 dev_err(dev, "could not allocate VSI\n");
2660 return NULL;
2661 }
2662
2663 ret = ice_vsi_cfg(vsi, params);
2664 if (ret)
2665 goto err_vsi_cfg;
2666
2667 /* Add switch rule to drop all Tx Flow Control Frames, of look up
2668 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2669 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2670 * The rule is added once for PF VSI in order to create appropriate
2671 * recipe, since VSI/VSI list is ignored with drop action...
2672 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to
2673 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2674 * settings in the HW.
2675 */
2676 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) {
2677 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2678 ICE_DROP_PACKET);
2679 ice_cfg_sw_lldp(vsi, true, true);
2680 }
2681
2682 if (!vsi->agg_node)
2683 ice_set_agg_vsi(vsi);
2684
2685 return vsi;
2686
2687 err_vsi_cfg:
2688 ice_vsi_free(vsi);
2689
2690 return NULL;
2691 }
2692
2693 /**
2694 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2695 * @vsi: the VSI being cleaned up
2696 */
ice_vsi_release_msix(struct ice_vsi * vsi)2697 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2698 {
2699 struct ice_pf *pf = vsi->back;
2700 struct ice_hw *hw = &pf->hw;
2701 u32 txq = 0;
2702 u32 rxq = 0;
2703 int i, q;
2704
2705 ice_for_each_q_vector(vsi, i) {
2706 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2707
2708 ice_write_intrl(q_vector, 0);
2709 for (q = 0; q < q_vector->num_ring_tx; q++) {
2710 ice_write_itr(&q_vector->tx, 0);
2711 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2712 if (ice_is_xdp_ena_vsi(vsi)) {
2713 u32 xdp_txq = txq + vsi->num_xdp_txq;
2714
2715 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2716 }
2717 txq++;
2718 }
2719
2720 for (q = 0; q < q_vector->num_ring_rx; q++) {
2721 ice_write_itr(&q_vector->rx, 0);
2722 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2723 rxq++;
2724 }
2725 }
2726
2727 ice_flush(hw);
2728 }
2729
2730 /**
2731 * ice_vsi_free_irq - Free the IRQ association with the OS
2732 * @vsi: the VSI being configured
2733 */
ice_vsi_free_irq(struct ice_vsi * vsi)2734 void ice_vsi_free_irq(struct ice_vsi *vsi)
2735 {
2736 struct ice_pf *pf = vsi->back;
2737 int i;
2738
2739 if (!vsi->q_vectors || !vsi->irqs_ready)
2740 return;
2741
2742 ice_vsi_release_msix(vsi);
2743 if (vsi->type == ICE_VSI_VF)
2744 return;
2745
2746 vsi->irqs_ready = false;
2747 ice_free_cpu_rx_rmap(vsi);
2748
2749 ice_for_each_q_vector(vsi, i) {
2750 int irq_num;
2751
2752 irq_num = vsi->q_vectors[i]->irq.virq;
2753
2754 /* free only the irqs that were actually requested */
2755 if (!vsi->q_vectors[i] ||
2756 !(vsi->q_vectors[i]->num_ring_tx ||
2757 vsi->q_vectors[i]->num_ring_rx))
2758 continue;
2759
2760 /* clear the affinity notifier in the IRQ descriptor */
2761 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2762 irq_set_affinity_notifier(irq_num, NULL);
2763
2764 /* clear the affinity_mask in the IRQ descriptor */
2765 irq_set_affinity_hint(irq_num, NULL);
2766 synchronize_irq(irq_num);
2767 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2768 }
2769 }
2770
2771 /**
2772 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2773 * @vsi: the VSI having resources freed
2774 */
ice_vsi_free_tx_rings(struct ice_vsi * vsi)2775 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2776 {
2777 int i;
2778
2779 if (!vsi->tx_rings)
2780 return;
2781
2782 ice_for_each_txq(vsi, i)
2783 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2784 ice_free_tx_ring(vsi->tx_rings[i]);
2785 }
2786
2787 /**
2788 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2789 * @vsi: the VSI having resources freed
2790 */
ice_vsi_free_rx_rings(struct ice_vsi * vsi)2791 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2792 {
2793 int i;
2794
2795 if (!vsi->rx_rings)
2796 return;
2797
2798 ice_for_each_rxq(vsi, i)
2799 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2800 ice_free_rx_ring(vsi->rx_rings[i]);
2801 }
2802
2803 /**
2804 * ice_vsi_close - Shut down a VSI
2805 * @vsi: the VSI being shut down
2806 */
ice_vsi_close(struct ice_vsi * vsi)2807 void ice_vsi_close(struct ice_vsi *vsi)
2808 {
2809 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2810 ice_down(vsi);
2811
2812 ice_vsi_free_irq(vsi);
2813 ice_vsi_free_tx_rings(vsi);
2814 ice_vsi_free_rx_rings(vsi);
2815 }
2816
2817 /**
2818 * ice_ena_vsi - resume a VSI
2819 * @vsi: the VSI being resume
2820 * @locked: is the rtnl_lock already held
2821 */
ice_ena_vsi(struct ice_vsi * vsi,bool locked)2822 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2823 {
2824 int err = 0;
2825
2826 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2827 return 0;
2828
2829 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2830
2831 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2832 if (netif_running(vsi->netdev)) {
2833 if (!locked)
2834 rtnl_lock();
2835
2836 err = ice_open_internal(vsi->netdev);
2837
2838 if (!locked)
2839 rtnl_unlock();
2840 }
2841 } else if (vsi->type == ICE_VSI_CTRL) {
2842 err = ice_vsi_open_ctrl(vsi);
2843 }
2844
2845 return err;
2846 }
2847
2848 /**
2849 * ice_dis_vsi - pause a VSI
2850 * @vsi: the VSI being paused
2851 * @locked: is the rtnl_lock already held
2852 */
ice_dis_vsi(struct ice_vsi * vsi,bool locked)2853 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2854 {
2855 if (test_bit(ICE_VSI_DOWN, vsi->state))
2856 return;
2857
2858 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2859
2860 if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2861 if (netif_running(vsi->netdev)) {
2862 if (!locked)
2863 rtnl_lock();
2864
2865 ice_vsi_close(vsi);
2866
2867 if (!locked)
2868 rtnl_unlock();
2869 } else {
2870 ice_vsi_close(vsi);
2871 }
2872 } else if (vsi->type == ICE_VSI_CTRL ||
2873 vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
2874 ice_vsi_close(vsi);
2875 }
2876 }
2877
2878 /**
2879 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2880 * @vsi: the VSI being un-configured
2881 */
ice_vsi_dis_irq(struct ice_vsi * vsi)2882 void ice_vsi_dis_irq(struct ice_vsi *vsi)
2883 {
2884 struct ice_pf *pf = vsi->back;
2885 struct ice_hw *hw = &pf->hw;
2886 u32 val;
2887 int i;
2888
2889 /* disable interrupt causation from each queue */
2890 if (vsi->tx_rings) {
2891 ice_for_each_txq(vsi, i) {
2892 if (vsi->tx_rings[i]) {
2893 u16 reg;
2894
2895 reg = vsi->tx_rings[i]->reg_idx;
2896 val = rd32(hw, QINT_TQCTL(reg));
2897 val &= ~QINT_TQCTL_CAUSE_ENA_M;
2898 wr32(hw, QINT_TQCTL(reg), val);
2899 }
2900 }
2901 }
2902
2903 if (vsi->rx_rings) {
2904 ice_for_each_rxq(vsi, i) {
2905 if (vsi->rx_rings[i]) {
2906 u16 reg;
2907
2908 reg = vsi->rx_rings[i]->reg_idx;
2909 val = rd32(hw, QINT_RQCTL(reg));
2910 val &= ~QINT_RQCTL_CAUSE_ENA_M;
2911 wr32(hw, QINT_RQCTL(reg), val);
2912 }
2913 }
2914 }
2915
2916 /* disable each interrupt */
2917 ice_for_each_q_vector(vsi, i) {
2918 if (!vsi->q_vectors[i])
2919 continue;
2920 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2921 }
2922
2923 ice_flush(hw);
2924
2925 /* don't call synchronize_irq() for VF's from the host */
2926 if (vsi->type == ICE_VSI_VF)
2927 return;
2928
2929 ice_for_each_q_vector(vsi, i)
2930 synchronize_irq(vsi->q_vectors[i]->irq.virq);
2931 }
2932
2933 /**
2934 * ice_vsi_release - Delete a VSI and free its resources
2935 * @vsi: the VSI being removed
2936 *
2937 * Returns 0 on success or < 0 on error
2938 */
ice_vsi_release(struct ice_vsi * vsi)2939 int ice_vsi_release(struct ice_vsi *vsi)
2940 {
2941 struct ice_pf *pf;
2942
2943 if (!vsi->back)
2944 return -ENODEV;
2945 pf = vsi->back;
2946
2947 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2948 ice_rss_clean(vsi);
2949
2950 ice_vsi_close(vsi);
2951
2952 /* The Rx rule will only exist to remove if the LLDP FW
2953 * engine is currently stopped
2954 */
2955 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF &&
2956 !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2957 ice_cfg_sw_lldp(vsi, false, false);
2958
2959 ice_vsi_decfg(vsi);
2960
2961 /* retain SW VSI data structure since it is needed to unregister and
2962 * free VSI netdev when PF is not in reset recovery pending state,\
2963 * for ex: during rmmod.
2964 */
2965 if (!ice_is_reset_in_progress(pf->state))
2966 ice_vsi_delete(vsi);
2967
2968 return 0;
2969 }
2970
2971 /**
2972 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2973 * @vsi: VSI connected with q_vectors
2974 * @coalesce: array of struct with stored coalesce
2975 *
2976 * Returns array size.
2977 */
2978 static int
ice_vsi_rebuild_get_coalesce(struct ice_vsi * vsi,struct ice_coalesce_stored * coalesce)2979 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2980 struct ice_coalesce_stored *coalesce)
2981 {
2982 int i;
2983
2984 ice_for_each_q_vector(vsi, i) {
2985 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2986
2987 coalesce[i].itr_tx = q_vector->tx.itr_settings;
2988 coalesce[i].itr_rx = q_vector->rx.itr_settings;
2989 coalesce[i].intrl = q_vector->intrl;
2990
2991 if (i < vsi->num_txq)
2992 coalesce[i].tx_valid = true;
2993 if (i < vsi->num_rxq)
2994 coalesce[i].rx_valid = true;
2995 }
2996
2997 return vsi->num_q_vectors;
2998 }
2999
3000 /**
3001 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
3002 * @vsi: VSI connected with q_vectors
3003 * @coalesce: pointer to array of struct with stored coalesce
3004 * @size: size of coalesce array
3005 *
3006 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
3007 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
3008 * to default value.
3009 */
3010 static void
ice_vsi_rebuild_set_coalesce(struct ice_vsi * vsi,struct ice_coalesce_stored * coalesce,int size)3011 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
3012 struct ice_coalesce_stored *coalesce, int size)
3013 {
3014 struct ice_ring_container *rc;
3015 int i;
3016
3017 if ((size && !coalesce) || !vsi)
3018 return;
3019
3020 /* There are a couple of cases that have to be handled here:
3021 * 1. The case where the number of queue vectors stays the same, but
3022 * the number of Tx or Rx rings changes (the first for loop)
3023 * 2. The case where the number of queue vectors increased (the
3024 * second for loop)
3025 */
3026 for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
3027 /* There are 2 cases to handle here and they are the same for
3028 * both Tx and Rx:
3029 * if the entry was valid previously (coalesce[i].[tr]x_valid
3030 * and the loop variable is less than the number of rings
3031 * allocated, then write the previous values
3032 *
3033 * if the entry was not valid previously, but the number of
3034 * rings is less than are allocated (this means the number of
3035 * rings increased from previously), then write out the
3036 * values in the first element
3037 *
3038 * Also, always write the ITR, even if in ITR_IS_DYNAMIC
3039 * as there is no harm because the dynamic algorithm
3040 * will just overwrite.
3041 */
3042 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
3043 rc = &vsi->q_vectors[i]->rx;
3044 rc->itr_settings = coalesce[i].itr_rx;
3045 ice_write_itr(rc, rc->itr_setting);
3046 } else if (i < vsi->alloc_rxq) {
3047 rc = &vsi->q_vectors[i]->rx;
3048 rc->itr_settings = coalesce[0].itr_rx;
3049 ice_write_itr(rc, rc->itr_setting);
3050 }
3051
3052 if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
3053 rc = &vsi->q_vectors[i]->tx;
3054 rc->itr_settings = coalesce[i].itr_tx;
3055 ice_write_itr(rc, rc->itr_setting);
3056 } else if (i < vsi->alloc_txq) {
3057 rc = &vsi->q_vectors[i]->tx;
3058 rc->itr_settings = coalesce[0].itr_tx;
3059 ice_write_itr(rc, rc->itr_setting);
3060 }
3061
3062 vsi->q_vectors[i]->intrl = coalesce[i].intrl;
3063 ice_set_q_vector_intrl(vsi->q_vectors[i]);
3064 }
3065
3066 /* the number of queue vectors increased so write whatever is in
3067 * the first element
3068 */
3069 for (; i < vsi->num_q_vectors; i++) {
3070 /* transmit */
3071 rc = &vsi->q_vectors[i]->tx;
3072 rc->itr_settings = coalesce[0].itr_tx;
3073 ice_write_itr(rc, rc->itr_setting);
3074
3075 /* receive */
3076 rc = &vsi->q_vectors[i]->rx;
3077 rc->itr_settings = coalesce[0].itr_rx;
3078 ice_write_itr(rc, rc->itr_setting);
3079
3080 vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3081 ice_set_q_vector_intrl(vsi->q_vectors[i]);
3082 }
3083 }
3084
3085 /**
3086 * ice_vsi_realloc_stat_arrays - Frees unused stat structures or alloc new ones
3087 * @vsi: VSI pointer
3088 */
3089 static int
ice_vsi_realloc_stat_arrays(struct ice_vsi * vsi)3090 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi)
3091 {
3092 u16 req_txq = vsi->req_txq ? vsi->req_txq : vsi->alloc_txq;
3093 u16 req_rxq = vsi->req_rxq ? vsi->req_rxq : vsi->alloc_rxq;
3094 struct ice_ring_stats **tx_ring_stats;
3095 struct ice_ring_stats **rx_ring_stats;
3096 struct ice_vsi_stats *vsi_stat;
3097 struct ice_pf *pf = vsi->back;
3098 u16 prev_txq = vsi->alloc_txq;
3099 u16 prev_rxq = vsi->alloc_rxq;
3100 int i;
3101
3102 vsi_stat = pf->vsi_stats[vsi->idx];
3103
3104 if (req_txq < prev_txq) {
3105 for (i = req_txq; i < prev_txq; i++) {
3106 if (vsi_stat->tx_ring_stats[i]) {
3107 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
3108 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
3109 }
3110 }
3111 }
3112
3113 tx_ring_stats = vsi_stat->tx_ring_stats;
3114 vsi_stat->tx_ring_stats =
3115 krealloc_array(vsi_stat->tx_ring_stats, req_txq,
3116 sizeof(*vsi_stat->tx_ring_stats),
3117 GFP_KERNEL | __GFP_ZERO);
3118 if (!vsi_stat->tx_ring_stats) {
3119 vsi_stat->tx_ring_stats = tx_ring_stats;
3120 return -ENOMEM;
3121 }
3122
3123 if (req_rxq < prev_rxq) {
3124 for (i = req_rxq; i < prev_rxq; i++) {
3125 if (vsi_stat->rx_ring_stats[i]) {
3126 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
3127 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
3128 }
3129 }
3130 }
3131
3132 rx_ring_stats = vsi_stat->rx_ring_stats;
3133 vsi_stat->rx_ring_stats =
3134 krealloc_array(vsi_stat->rx_ring_stats, req_rxq,
3135 sizeof(*vsi_stat->rx_ring_stats),
3136 GFP_KERNEL | __GFP_ZERO);
3137 if (!vsi_stat->rx_ring_stats) {
3138 vsi_stat->rx_ring_stats = rx_ring_stats;
3139 return -ENOMEM;
3140 }
3141
3142 return 0;
3143 }
3144
3145 /**
3146 * ice_vsi_rebuild - Rebuild VSI after reset
3147 * @vsi: VSI to be rebuild
3148 * @vsi_flags: flags used for VSI rebuild flow
3149 *
3150 * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or
3151 * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware.
3152 *
3153 * Returns 0 on success and negative value on failure
3154 */
ice_vsi_rebuild(struct ice_vsi * vsi,u32 vsi_flags)3155 int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags)
3156 {
3157 struct ice_vsi_cfg_params params = {};
3158 struct ice_coalesce_stored *coalesce;
3159 int prev_num_q_vectors;
3160 struct ice_pf *pf;
3161 int ret;
3162
3163 if (!vsi)
3164 return -EINVAL;
3165
3166 params = ice_vsi_to_params(vsi);
3167 params.flags = vsi_flags;
3168
3169 pf = vsi->back;
3170 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
3171 return -EINVAL;
3172
3173 mutex_lock(&vsi->xdp_state_lock);
3174
3175 ret = ice_vsi_realloc_stat_arrays(vsi);
3176 if (ret)
3177 goto unlock;
3178
3179 ice_vsi_decfg(vsi);
3180 ret = ice_vsi_cfg_def(vsi, ¶ms);
3181 if (ret)
3182 goto unlock;
3183
3184 coalesce = kcalloc(vsi->num_q_vectors,
3185 sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3186 if (!coalesce) {
3187 ret = -ENOMEM;
3188 goto decfg;
3189 }
3190
3191 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3192
3193 ret = ice_vsi_cfg_tc_lan(pf, vsi);
3194 if (ret) {
3195 if (vsi_flags & ICE_VSI_FLAG_INIT) {
3196 ret = -EIO;
3197 goto free_coalesce;
3198 }
3199
3200 ret = ice_schedule_reset(pf, ICE_RESET_PFR);
3201 goto free_coalesce;
3202 }
3203
3204 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3205 clear_bit(ICE_VSI_REBUILD_PENDING, vsi->state);
3206
3207 free_coalesce:
3208 kfree(coalesce);
3209 decfg:
3210 if (ret)
3211 ice_vsi_decfg(vsi);
3212 unlock:
3213 mutex_unlock(&vsi->xdp_state_lock);
3214 return ret;
3215 }
3216
3217 /**
3218 * ice_is_reset_in_progress - check for a reset in progress
3219 * @state: PF state field
3220 */
ice_is_reset_in_progress(unsigned long * state)3221 bool ice_is_reset_in_progress(unsigned long *state)
3222 {
3223 return test_bit(ICE_RESET_OICR_RECV, state) ||
3224 test_bit(ICE_PFR_REQ, state) ||
3225 test_bit(ICE_CORER_REQ, state) ||
3226 test_bit(ICE_GLOBR_REQ, state);
3227 }
3228
3229 /**
3230 * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3231 * @pf: pointer to the PF structure
3232 * @timeout: length of time to wait, in jiffies
3233 *
3234 * Wait (sleep) for a short time until the driver finishes cleaning up from
3235 * a device reset. The caller must be able to sleep. Use this to delay
3236 * operations that could fail while the driver is cleaning up after a device
3237 * reset.
3238 *
3239 * Returns 0 on success, -EBUSY if the reset is not finished within the
3240 * timeout, and -ERESTARTSYS if the thread was interrupted.
3241 */
ice_wait_for_reset(struct ice_pf * pf,unsigned long timeout)3242 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3243 {
3244 long ret;
3245
3246 ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3247 !ice_is_reset_in_progress(pf->state),
3248 timeout);
3249 if (ret < 0)
3250 return ret;
3251 else if (!ret)
3252 return -EBUSY;
3253 else
3254 return 0;
3255 }
3256
3257 /**
3258 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3259 * @vsi: VSI being configured
3260 * @ctx: the context buffer returned from AQ VSI update command
3261 */
ice_vsi_update_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctx)3262 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3263 {
3264 vsi->info.mapping_flags = ctx->info.mapping_flags;
3265 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3266 sizeof(vsi->info.q_mapping));
3267 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3268 sizeof(vsi->info.tc_mapping));
3269 }
3270
3271 /**
3272 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3273 * @vsi: the VSI being configured
3274 * @ena_tc: TC map to be enabled
3275 */
ice_vsi_cfg_netdev_tc(struct ice_vsi * vsi,u8 ena_tc)3276 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3277 {
3278 struct net_device *netdev = vsi->netdev;
3279 struct ice_pf *pf = vsi->back;
3280 int numtc = vsi->tc_cfg.numtc;
3281 struct ice_dcbx_cfg *dcbcfg;
3282 u8 netdev_tc;
3283 int i;
3284
3285 if (!netdev)
3286 return;
3287
3288 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3289 if (vsi->type == ICE_VSI_CHNL)
3290 return;
3291
3292 if (!ena_tc) {
3293 netdev_reset_tc(netdev);
3294 return;
3295 }
3296
3297 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3298 numtc = vsi->all_numtc;
3299
3300 if (netdev_set_num_tc(netdev, numtc))
3301 return;
3302
3303 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3304
3305 ice_for_each_traffic_class(i)
3306 if (vsi->tc_cfg.ena_tc & BIT(i))
3307 netdev_set_tc_queue(netdev,
3308 vsi->tc_cfg.tc_info[i].netdev_tc,
3309 vsi->tc_cfg.tc_info[i].qcount_tx,
3310 vsi->tc_cfg.tc_info[i].qoffset);
3311 /* setup TC queue map for CHNL TCs */
3312 ice_for_each_chnl_tc(i) {
3313 if (!(vsi->all_enatc & BIT(i)))
3314 break;
3315 if (!vsi->mqprio_qopt.qopt.count[i])
3316 break;
3317 netdev_set_tc_queue(netdev, i,
3318 vsi->mqprio_qopt.qopt.count[i],
3319 vsi->mqprio_qopt.qopt.offset[i]);
3320 }
3321
3322 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3323 return;
3324
3325 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3326 u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3327
3328 /* Get the mapped netdev TC# for the UP */
3329 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3330 netdev_set_prio_tc_map(netdev, i, netdev_tc);
3331 }
3332 }
3333
3334 /**
3335 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3336 * @vsi: the VSI being configured,
3337 * @ctxt: VSI context structure
3338 * @ena_tc: number of traffic classes to enable
3339 *
3340 * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3341 */
3342 static int
ice_vsi_setup_q_map_mqprio(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt,u8 ena_tc)3343 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3344 u8 ena_tc)
3345 {
3346 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3347 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3348 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3349 u16 new_txq, new_rxq;
3350 u8 netdev_tc = 0;
3351 int i;
3352
3353 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3354
3355 pow = order_base_2(tc0_qcount);
3356 qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
3357 ICE_AQ_VSI_TC_Q_OFFSET_M) |
3358 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M);
3359
3360 ice_for_each_traffic_class(i) {
3361 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3362 /* TC is not enabled */
3363 vsi->tc_cfg.tc_info[i].qoffset = 0;
3364 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3365 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3366 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3367 ctxt->info.tc_mapping[i] = 0;
3368 continue;
3369 }
3370
3371 offset = vsi->mqprio_qopt.qopt.offset[i];
3372 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3373 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3374 vsi->tc_cfg.tc_info[i].qoffset = offset;
3375 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3376 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3377 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3378 }
3379
3380 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3381 ice_for_each_chnl_tc(i) {
3382 if (!(vsi->all_enatc & BIT(i)))
3383 continue;
3384 offset = vsi->mqprio_qopt.qopt.offset[i];
3385 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3386 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3387 }
3388 }
3389
3390 new_txq = offset + qcount_tx;
3391 if (new_txq > vsi->alloc_txq) {
3392 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3393 new_txq, vsi->alloc_txq);
3394 return -EINVAL;
3395 }
3396
3397 new_rxq = offset + qcount_rx;
3398 if (new_rxq > vsi->alloc_rxq) {
3399 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3400 new_rxq, vsi->alloc_rxq);
3401 return -EINVAL;
3402 }
3403
3404 /* Set actual Tx/Rx queue pairs */
3405 vsi->num_txq = new_txq;
3406 vsi->num_rxq = new_rxq;
3407
3408 /* Setup queue TC[0].qmap for given VSI context */
3409 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3410 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3411 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3412
3413 /* Find queue count available for channel VSIs and starting offset
3414 * for channel VSIs
3415 */
3416 if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3417 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3418 vsi->next_base_q = tc0_qcount;
3419 }
3420 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq);
3421 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq);
3422 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3423 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3424
3425 return 0;
3426 }
3427
3428 /**
3429 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3430 * @vsi: VSI to be configured
3431 * @ena_tc: TC bitmap
3432 *
3433 * VSI queues expected to be quiesced before calling this function
3434 */
ice_vsi_cfg_tc(struct ice_vsi * vsi,u8 ena_tc)3435 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3436 {
3437 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3438 struct ice_pf *pf = vsi->back;
3439 struct ice_tc_cfg old_tc_cfg;
3440 struct ice_vsi_ctx *ctx;
3441 struct device *dev;
3442 int i, ret = 0;
3443 u8 num_tc = 0;
3444
3445 dev = ice_pf_to_dev(pf);
3446 if (vsi->tc_cfg.ena_tc == ena_tc &&
3447 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3448 return 0;
3449
3450 ice_for_each_traffic_class(i) {
3451 /* build bitmap of enabled TCs */
3452 if (ena_tc & BIT(i))
3453 num_tc++;
3454 /* populate max_txqs per TC */
3455 max_txqs[i] = vsi->alloc_txq;
3456 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3457 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3458 */
3459 if (vsi->type == ICE_VSI_CHNL &&
3460 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3461 max_txqs[i] = vsi->num_txq;
3462 }
3463
3464 memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3465 vsi->tc_cfg.ena_tc = ena_tc;
3466 vsi->tc_cfg.numtc = num_tc;
3467
3468 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3469 if (!ctx)
3470 return -ENOMEM;
3471
3472 ctx->vf_num = 0;
3473 ctx->info = vsi->info;
3474
3475 if (vsi->type == ICE_VSI_PF &&
3476 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3477 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3478 else
3479 ret = ice_vsi_setup_q_map(vsi, ctx);
3480
3481 if (ret) {
3482 memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3483 goto out;
3484 }
3485
3486 /* must to indicate which section of VSI context are being modified */
3487 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3488 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3489 if (ret) {
3490 dev_info(dev, "Failed VSI Update\n");
3491 goto out;
3492 }
3493
3494 if (vsi->type == ICE_VSI_PF &&
3495 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3496 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3497 else
3498 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3499 vsi->tc_cfg.ena_tc, max_txqs);
3500
3501 if (ret) {
3502 dev_err(dev, "VSI %d failed TC config, error %d\n",
3503 vsi->vsi_num, ret);
3504 goto out;
3505 }
3506 ice_vsi_update_q_map(vsi, ctx);
3507 vsi->info.valid_sections = 0;
3508
3509 ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3510 out:
3511 kfree(ctx);
3512 return ret;
3513 }
3514
3515 /**
3516 * ice_update_ring_stats - Update ring statistics
3517 * @stats: stats to be updated
3518 * @pkts: number of processed packets
3519 * @bytes: number of processed bytes
3520 *
3521 * This function assumes that caller has acquired a u64_stats_sync lock.
3522 */
ice_update_ring_stats(struct ice_q_stats * stats,u64 pkts,u64 bytes)3523 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3524 {
3525 stats->bytes += bytes;
3526 stats->pkts += pkts;
3527 }
3528
3529 /**
3530 * ice_update_tx_ring_stats - Update Tx ring specific counters
3531 * @tx_ring: ring to update
3532 * @pkts: number of processed packets
3533 * @bytes: number of processed bytes
3534 */
ice_update_tx_ring_stats(struct ice_tx_ring * tx_ring,u64 pkts,u64 bytes)3535 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3536 {
3537 u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3538 ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
3539 u64_stats_update_end(&tx_ring->ring_stats->syncp);
3540 }
3541
3542 /**
3543 * ice_update_rx_ring_stats - Update Rx ring specific counters
3544 * @rx_ring: ring to update
3545 * @pkts: number of processed packets
3546 * @bytes: number of processed bytes
3547 */
ice_update_rx_ring_stats(struct ice_rx_ring * rx_ring,u64 pkts,u64 bytes)3548 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3549 {
3550 u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3551 ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
3552 u64_stats_update_end(&rx_ring->ring_stats->syncp);
3553 }
3554
3555 /**
3556 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3557 * @pi: port info of the switch with default VSI
3558 *
3559 * Return true if the there is a single VSI in default forwarding VSI list
3560 */
ice_is_dflt_vsi_in_use(struct ice_port_info * pi)3561 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3562 {
3563 bool exists = false;
3564
3565 ice_check_if_dflt_vsi(pi, 0, &exists);
3566 return exists;
3567 }
3568
3569 /**
3570 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3571 * @vsi: VSI to compare against default forwarding VSI
3572 *
3573 * If this VSI passed in is the default forwarding VSI then return true, else
3574 * return false
3575 */
ice_is_vsi_dflt_vsi(struct ice_vsi * vsi)3576 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3577 {
3578 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3579 }
3580
3581 /**
3582 * ice_set_dflt_vsi - set the default forwarding VSI
3583 * @vsi: VSI getting set as the default forwarding VSI on the switch
3584 *
3585 * If the VSI passed in is already the default VSI and it's enabled just return
3586 * success.
3587 *
3588 * Otherwise try to set the VSI passed in as the switch's default VSI and
3589 * return the result.
3590 */
ice_set_dflt_vsi(struct ice_vsi * vsi)3591 int ice_set_dflt_vsi(struct ice_vsi *vsi)
3592 {
3593 struct device *dev;
3594 int status;
3595
3596 if (!vsi)
3597 return -EINVAL;
3598
3599 dev = ice_pf_to_dev(vsi->back);
3600
3601 if (ice_lag_is_switchdev_running(vsi->back)) {
3602 dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n",
3603 vsi->vsi_num);
3604 return 0;
3605 }
3606
3607 /* the VSI passed in is already the default VSI */
3608 if (ice_is_vsi_dflt_vsi(vsi)) {
3609 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3610 vsi->vsi_num);
3611 return 0;
3612 }
3613
3614 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
3615 if (status) {
3616 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3617 vsi->vsi_num, status);
3618 return status;
3619 }
3620
3621 return 0;
3622 }
3623
3624 /**
3625 * ice_clear_dflt_vsi - clear the default forwarding VSI
3626 * @vsi: VSI to remove from filter list
3627 *
3628 * If the switch has no default VSI or it's not enabled then return error.
3629 *
3630 * Otherwise try to clear the default VSI and return the result.
3631 */
ice_clear_dflt_vsi(struct ice_vsi * vsi)3632 int ice_clear_dflt_vsi(struct ice_vsi *vsi)
3633 {
3634 struct device *dev;
3635 int status;
3636
3637 if (!vsi)
3638 return -EINVAL;
3639
3640 dev = ice_pf_to_dev(vsi->back);
3641
3642 /* there is no default VSI configured */
3643 if (!ice_is_dflt_vsi_in_use(vsi->port_info))
3644 return -ENODEV;
3645
3646 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
3647 ICE_FLTR_RX);
3648 if (status) {
3649 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3650 vsi->vsi_num, status);
3651 return -EIO;
3652 }
3653
3654 return 0;
3655 }
3656
3657 /**
3658 * ice_get_link_speed_mbps - get link speed in Mbps
3659 * @vsi: the VSI whose link speed is being queried
3660 *
3661 * Return current VSI link speed and 0 if the speed is unknown.
3662 */
ice_get_link_speed_mbps(struct ice_vsi * vsi)3663 int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3664 {
3665 unsigned int link_speed;
3666
3667 link_speed = vsi->port_info->phy.link_info.link_speed;
3668
3669 return (int)ice_get_link_speed(fls(link_speed) - 1);
3670 }
3671
3672 /**
3673 * ice_get_link_speed_kbps - get link speed in Kbps
3674 * @vsi: the VSI whose link speed is being queried
3675 *
3676 * Return current VSI link speed and 0 if the speed is unknown.
3677 */
ice_get_link_speed_kbps(struct ice_vsi * vsi)3678 int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3679 {
3680 int speed_mbps;
3681
3682 speed_mbps = ice_get_link_speed_mbps(vsi);
3683
3684 return speed_mbps * 1000;
3685 }
3686
3687 /**
3688 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3689 * @vsi: VSI to be configured
3690 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3691 *
3692 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3693 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3694 * on TC 0.
3695 */
ice_set_min_bw_limit(struct ice_vsi * vsi,u64 min_tx_rate)3696 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3697 {
3698 struct ice_pf *pf = vsi->back;
3699 struct device *dev;
3700 int status;
3701 int speed;
3702
3703 dev = ice_pf_to_dev(pf);
3704 if (!vsi->port_info) {
3705 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3706 vsi->idx, vsi->type);
3707 return -EINVAL;
3708 }
3709
3710 speed = ice_get_link_speed_kbps(vsi);
3711 if (min_tx_rate > (u64)speed) {
3712 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3713 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3714 speed);
3715 return -EINVAL;
3716 }
3717
3718 /* Configure min BW for VSI limit */
3719 if (min_tx_rate) {
3720 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3721 ICE_MIN_BW, min_tx_rate);
3722 if (status) {
3723 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3724 min_tx_rate, ice_vsi_type_str(vsi->type),
3725 vsi->idx);
3726 return status;
3727 }
3728
3729 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3730 min_tx_rate, ice_vsi_type_str(vsi->type));
3731 } else {
3732 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3733 vsi->idx, 0,
3734 ICE_MIN_BW);
3735 if (status) {
3736 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3737 ice_vsi_type_str(vsi->type), vsi->idx);
3738 return status;
3739 }
3740
3741 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3742 ice_vsi_type_str(vsi->type), vsi->idx);
3743 }
3744
3745 return 0;
3746 }
3747
3748 /**
3749 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3750 * @vsi: VSI to be configured
3751 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3752 *
3753 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3754 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3755 * on TC 0.
3756 */
ice_set_max_bw_limit(struct ice_vsi * vsi,u64 max_tx_rate)3757 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3758 {
3759 struct ice_pf *pf = vsi->back;
3760 struct device *dev;
3761 int status;
3762 int speed;
3763
3764 dev = ice_pf_to_dev(pf);
3765 if (!vsi->port_info) {
3766 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3767 vsi->idx, vsi->type);
3768 return -EINVAL;
3769 }
3770
3771 speed = ice_get_link_speed_kbps(vsi);
3772 if (max_tx_rate > (u64)speed) {
3773 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3774 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3775 speed);
3776 return -EINVAL;
3777 }
3778
3779 /* Configure max BW for VSI limit */
3780 if (max_tx_rate) {
3781 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3782 ICE_MAX_BW, max_tx_rate);
3783 if (status) {
3784 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3785 max_tx_rate, ice_vsi_type_str(vsi->type),
3786 vsi->idx);
3787 return status;
3788 }
3789
3790 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3791 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3792 } else {
3793 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3794 vsi->idx, 0,
3795 ICE_MAX_BW);
3796 if (status) {
3797 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3798 ice_vsi_type_str(vsi->type), vsi->idx);
3799 return status;
3800 }
3801
3802 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3803 ice_vsi_type_str(vsi->type), vsi->idx);
3804 }
3805
3806 return 0;
3807 }
3808
3809 /**
3810 * ice_set_link - turn on/off physical link
3811 * @vsi: VSI to modify physical link on
3812 * @ena: turn on/off physical link
3813 */
ice_set_link(struct ice_vsi * vsi,bool ena)3814 int ice_set_link(struct ice_vsi *vsi, bool ena)
3815 {
3816 struct device *dev = ice_pf_to_dev(vsi->back);
3817 struct ice_port_info *pi = vsi->port_info;
3818 struct ice_hw *hw = pi->hw;
3819 int status;
3820
3821 if (vsi->type != ICE_VSI_PF)
3822 return -EINVAL;
3823
3824 status = ice_aq_set_link_restart_an(pi, ena, NULL);
3825
3826 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3827 * this is not a fatal error, so print a warning message and return
3828 * a success code. Return an error if FW returns an error code other
3829 * than ICE_AQ_RC_EMODE
3830 */
3831 if (status == -EIO) {
3832 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3833 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
3834 (ena ? "ON" : "OFF"), status,
3835 ice_aq_str(hw->adminq.sq_last_status));
3836 } else if (status) {
3837 dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
3838 (ena ? "ON" : "OFF"), status,
3839 ice_aq_str(hw->adminq.sq_last_status));
3840 return status;
3841 }
3842
3843 return 0;
3844 }
3845
3846 /**
3847 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
3848 * @vsi: VSI used to add VLAN filters
3849 *
3850 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
3851 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
3852 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
3853 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
3854 *
3855 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
3856 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
3857 * traffic in SVM, since the VLAN TPID isn't part of filtering.
3858 *
3859 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
3860 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
3861 * part of filtering.
3862 */
ice_vsi_add_vlan_zero(struct ice_vsi * vsi)3863 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
3864 {
3865 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3866 struct ice_vlan vlan;
3867 int err;
3868
3869 vlan = ICE_VLAN(0, 0, 0);
3870 err = vlan_ops->add_vlan(vsi, &vlan);
3871 if (err && err != -EEXIST)
3872 return err;
3873
3874 /* in SVM both VLAN 0 filters are identical */
3875 if (!ice_is_dvm_ena(&vsi->back->hw))
3876 return 0;
3877
3878 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3879 err = vlan_ops->add_vlan(vsi, &vlan);
3880 if (err && err != -EEXIST)
3881 return err;
3882
3883 return 0;
3884 }
3885
3886 /**
3887 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
3888 * @vsi: VSI used to add VLAN filters
3889 *
3890 * Delete the VLAN 0 filters in the same manner that they were added in
3891 * ice_vsi_add_vlan_zero.
3892 */
ice_vsi_del_vlan_zero(struct ice_vsi * vsi)3893 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
3894 {
3895 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3896 struct ice_vlan vlan;
3897 int err;
3898
3899 vlan = ICE_VLAN(0, 0, 0);
3900 err = vlan_ops->del_vlan(vsi, &vlan);
3901 if (err && err != -EEXIST)
3902 return err;
3903
3904 /* in SVM both VLAN 0 filters are identical */
3905 if (!ice_is_dvm_ena(&vsi->back->hw))
3906 return 0;
3907
3908 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3909 err = vlan_ops->del_vlan(vsi, &vlan);
3910 if (err && err != -EEXIST)
3911 return err;
3912
3913 /* when deleting the last VLAN filter, make sure to disable the VLAN
3914 * promisc mode so the filter isn't left by accident
3915 */
3916 return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3917 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3918 }
3919
3920 /**
3921 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
3922 * @vsi: VSI used to get the VLAN mode
3923 *
3924 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
3925 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
3926 */
ice_vsi_num_zero_vlans(struct ice_vsi * vsi)3927 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
3928 {
3929 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2
3930 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1
3931 /* no VLAN 0 filter is created when a port VLAN is active */
3932 if (vsi->type == ICE_VSI_VF) {
3933 if (WARN_ON(!vsi->vf))
3934 return 0;
3935
3936 if (ice_vf_is_port_vlan_ena(vsi->vf))
3937 return 0;
3938 }
3939
3940 if (ice_is_dvm_ena(&vsi->back->hw))
3941 return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
3942 else
3943 return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
3944 }
3945
3946 /**
3947 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
3948 * @vsi: VSI used to determine if any non-zero VLANs have been added
3949 */
ice_vsi_has_non_zero_vlans(struct ice_vsi * vsi)3950 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
3951 {
3952 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
3953 }
3954
3955 /**
3956 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
3957 * @vsi: VSI used to get the number of non-zero VLANs added
3958 */
ice_vsi_num_non_zero_vlans(struct ice_vsi * vsi)3959 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
3960 {
3961 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
3962 }
3963
3964 /**
3965 * ice_is_feature_supported
3966 * @pf: pointer to the struct ice_pf instance
3967 * @f: feature enum to be checked
3968 *
3969 * returns true if feature is supported, false otherwise
3970 */
ice_is_feature_supported(struct ice_pf * pf,enum ice_feature f)3971 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
3972 {
3973 if (f < 0 || f >= ICE_F_MAX)
3974 return false;
3975
3976 return test_bit(f, pf->features);
3977 }
3978
3979 /**
3980 * ice_set_feature_support
3981 * @pf: pointer to the struct ice_pf instance
3982 * @f: feature enum to set
3983 */
ice_set_feature_support(struct ice_pf * pf,enum ice_feature f)3984 void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
3985 {
3986 if (f < 0 || f >= ICE_F_MAX)
3987 return;
3988
3989 set_bit(f, pf->features);
3990 }
3991
3992 /**
3993 * ice_clear_feature_support
3994 * @pf: pointer to the struct ice_pf instance
3995 * @f: feature enum to clear
3996 */
ice_clear_feature_support(struct ice_pf * pf,enum ice_feature f)3997 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
3998 {
3999 if (f < 0 || f >= ICE_F_MAX)
4000 return;
4001
4002 clear_bit(f, pf->features);
4003 }
4004
4005 /**
4006 * ice_init_feature_support
4007 * @pf: pointer to the struct ice_pf instance
4008 *
4009 * called during init to setup supported feature
4010 */
ice_init_feature_support(struct ice_pf * pf)4011 void ice_init_feature_support(struct ice_pf *pf)
4012 {
4013 switch (pf->hw.device_id) {
4014 case ICE_DEV_ID_E810C_BACKPLANE:
4015 case ICE_DEV_ID_E810C_QSFP:
4016 case ICE_DEV_ID_E810C_SFP:
4017 ice_set_feature_support(pf, ICE_F_DSCP);
4018 ice_set_feature_support(pf, ICE_F_PTP_EXTTS);
4019 if (ice_is_e810t(&pf->hw)) {
4020 ice_set_feature_support(pf, ICE_F_SMA_CTRL);
4021 if (ice_gnss_is_gps_present(&pf->hw))
4022 ice_set_feature_support(pf, ICE_F_GNSS);
4023 }
4024 break;
4025 default:
4026 break;
4027 }
4028
4029 if (pf->hw.mac_type == ICE_MAC_E830)
4030 ice_set_feature_support(pf, ICE_F_MBX_LIMIT);
4031 }
4032
4033 /**
4034 * ice_vsi_update_security - update security block in VSI
4035 * @vsi: pointer to VSI structure
4036 * @fill: function pointer to fill ctx
4037 */
4038 int
ice_vsi_update_security(struct ice_vsi * vsi,void (* fill)(struct ice_vsi_ctx *))4039 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
4040 {
4041 struct ice_vsi_ctx ctx = { 0 };
4042
4043 ctx.info = vsi->info;
4044 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
4045 fill(&ctx);
4046
4047 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4048 return -ENODEV;
4049
4050 vsi->info = ctx.info;
4051 return 0;
4052 }
4053
4054 /**
4055 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
4056 * @ctx: pointer to VSI ctx structure
4057 */
ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx * ctx)4058 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
4059 {
4060 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
4061 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4062 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4063 }
4064
4065 /**
4066 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
4067 * @ctx: pointer to VSI ctx structure
4068 */
ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx * ctx)4069 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
4070 {
4071 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
4072 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4073 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4074 }
4075
4076 /**
4077 * ice_vsi_ctx_set_allow_override - allow destination override on VSI
4078 * @ctx: pointer to VSI ctx structure
4079 */
ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx * ctx)4080 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
4081 {
4082 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4083 }
4084
4085 /**
4086 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
4087 * @ctx: pointer to VSI ctx structure
4088 */
ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx * ctx)4089 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
4090 {
4091 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
4092 }
4093
4094 /**
4095 * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit
4096 * @vsi: pointer to VSI structure
4097 * @set: set or unset the bit
4098 */
4099 int
ice_vsi_update_local_lb(struct ice_vsi * vsi,bool set)4100 ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set)
4101 {
4102 struct ice_vsi_ctx ctx = {
4103 .info = vsi->info,
4104 };
4105
4106 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
4107 if (set)
4108 ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4109 else
4110 ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4111
4112 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4113 return -ENODEV;
4114
4115 vsi->info = ctx.info;
4116 return 0;
4117 }
4118