xref: /openbmc/linux/drivers/net/ethernet/intel/ice/ice_sriov.c (revision 0f9b4c3ca5fdf3e177266ef994071b1a03f07318)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice_base.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_flow.h"
11 #include "ice_eswitch.h"
12 #include "ice_virtchnl_allowlist.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_vf_vsi_vlan_ops.h"
15 #include "ice_vlan.h"
16 
17 /**
18  * ice_free_vf_entries - Free all VF entries from the hash table
19  * @pf: pointer to the PF structure
20  *
21  * Iterate over the VF hash table, removing and releasing all VF entries.
22  * Called during VF teardown or as cleanup during failed VF initialization.
23  */
ice_free_vf_entries(struct ice_pf * pf)24 static void ice_free_vf_entries(struct ice_pf *pf)
25 {
26 	struct ice_vfs *vfs = &pf->vfs;
27 	struct hlist_node *tmp;
28 	struct ice_vf *vf;
29 	unsigned int bkt;
30 
31 	/* Remove all VFs from the hash table and release their main
32 	 * reference. Once all references to the VF are dropped, ice_put_vf()
33 	 * will call ice_release_vf which will remove the VF memory.
34 	 */
35 	lockdep_assert_held(&vfs->table_lock);
36 
37 	hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) {
38 		hash_del_rcu(&vf->entry);
39 		ice_deinitialize_vf_entry(vf);
40 		ice_put_vf(vf);
41 	}
42 }
43 
44 /**
45  * ice_free_vf_res - Free a VF's resources
46  * @vf: pointer to the VF info
47  */
ice_free_vf_res(struct ice_vf * vf)48 static void ice_free_vf_res(struct ice_vf *vf)
49 {
50 	struct ice_pf *pf = vf->pf;
51 	int i, last_vector_idx;
52 
53 	/* First, disable VF's configuration API to prevent OS from
54 	 * accessing the VF's VSI after it's freed or invalidated.
55 	 */
56 	clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
57 	ice_vf_fdir_exit(vf);
58 	/* free VF control VSI */
59 	if (vf->ctrl_vsi_idx != ICE_NO_VSI)
60 		ice_vf_ctrl_vsi_release(vf);
61 
62 	/* free VSI and disconnect it from the parent uplink */
63 	if (vf->lan_vsi_idx != ICE_NO_VSI) {
64 		ice_vf_vsi_release(vf);
65 		vf->num_mac = 0;
66 	}
67 
68 	last_vector_idx = vf->first_vector_idx + pf->vfs.num_msix_per - 1;
69 
70 	/* clear VF MDD event information */
71 	memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
72 	memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
73 
74 	/* Disable interrupts so that VF starts in a known state */
75 	for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
76 		wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
77 		ice_flush(&pf->hw);
78 	}
79 	/* reset some of the state variables keeping track of the resources */
80 	clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
81 	clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
82 }
83 
84 /**
85  * ice_dis_vf_mappings
86  * @vf: pointer to the VF structure
87  */
ice_dis_vf_mappings(struct ice_vf * vf)88 static void ice_dis_vf_mappings(struct ice_vf *vf)
89 {
90 	struct ice_pf *pf = vf->pf;
91 	struct ice_vsi *vsi;
92 	struct device *dev;
93 	int first, last, v;
94 	struct ice_hw *hw;
95 
96 	hw = &pf->hw;
97 	vsi = ice_get_vf_vsi(vf);
98 	if (WARN_ON(!vsi))
99 		return;
100 
101 	dev = ice_pf_to_dev(pf);
102 	wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
103 	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
104 
105 	first = vf->first_vector_idx;
106 	last = first + pf->vfs.num_msix_per - 1;
107 	for (v = first; v <= last; v++) {
108 		u32 reg;
109 
110 		reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) &
111 			GLINT_VECT2FUNC_IS_PF_M) |
112 		       ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
113 			GLINT_VECT2FUNC_PF_NUM_M));
114 		wr32(hw, GLINT_VECT2FUNC(v), reg);
115 	}
116 
117 	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
118 		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
119 	else
120 		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
121 
122 	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
123 		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
124 	else
125 		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
126 }
127 
128 /**
129  * ice_sriov_free_msix_res - Reset/free any used MSIX resources
130  * @pf: pointer to the PF structure
131  *
132  * Since no MSIX entries are taken from the pf->irq_tracker then just clear
133  * the pf->sriov_base_vector.
134  *
135  * Returns 0 on success, and -EINVAL on error.
136  */
ice_sriov_free_msix_res(struct ice_pf * pf)137 static int ice_sriov_free_msix_res(struct ice_pf *pf)
138 {
139 	if (!pf)
140 		return -EINVAL;
141 
142 	pf->sriov_base_vector = 0;
143 
144 	return 0;
145 }
146 
147 /**
148  * ice_free_vfs - Free all VFs
149  * @pf: pointer to the PF structure
150  */
ice_free_vfs(struct ice_pf * pf)151 void ice_free_vfs(struct ice_pf *pf)
152 {
153 	struct device *dev = ice_pf_to_dev(pf);
154 	struct ice_vfs *vfs = &pf->vfs;
155 	struct ice_hw *hw = &pf->hw;
156 	struct ice_vf *vf;
157 	unsigned int bkt;
158 
159 	if (!ice_has_vfs(pf))
160 		return;
161 
162 	while (test_and_set_bit(ICE_VF_DIS, pf->state))
163 		usleep_range(1000, 2000);
164 
165 	/* Disable IOV before freeing resources. This lets any VF drivers
166 	 * running in the host get themselves cleaned up before we yank
167 	 * the carpet out from underneath their feet.
168 	 */
169 	if (!pci_vfs_assigned(pf->pdev))
170 		pci_disable_sriov(pf->pdev);
171 	else
172 		dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
173 
174 	mutex_lock(&vfs->table_lock);
175 
176 	ice_eswitch_release(pf);
177 
178 	ice_for_each_vf(pf, bkt, vf) {
179 		mutex_lock(&vf->cfg_lock);
180 
181 		ice_dis_vf_qs(vf);
182 
183 		if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
184 			/* disable VF qp mappings and set VF disable state */
185 			ice_dis_vf_mappings(vf);
186 			set_bit(ICE_VF_STATE_DIS, vf->vf_states);
187 			ice_free_vf_res(vf);
188 		}
189 
190 		if (!pci_vfs_assigned(pf->pdev)) {
191 			u32 reg_idx, bit_idx;
192 
193 			reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
194 			bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
195 			wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
196 		}
197 
198 		mutex_unlock(&vf->cfg_lock);
199 	}
200 
201 	if (ice_sriov_free_msix_res(pf))
202 		dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
203 
204 	vfs->num_qps_per = 0;
205 	ice_free_vf_entries(pf);
206 
207 	mutex_unlock(&vfs->table_lock);
208 
209 	clear_bit(ICE_VF_DIS, pf->state);
210 	clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
211 }
212 
213 /**
214  * ice_vf_vsi_setup - Set up a VF VSI
215  * @vf: VF to setup VSI for
216  *
217  * Returns pointer to the successfully allocated VSI struct on success,
218  * otherwise returns NULL on failure.
219  */
ice_vf_vsi_setup(struct ice_vf * vf)220 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
221 {
222 	struct ice_vsi_cfg_params params = {};
223 	struct ice_pf *pf = vf->pf;
224 	struct ice_vsi *vsi;
225 
226 	params.type = ICE_VSI_VF;
227 	params.pi = ice_vf_get_port_info(vf);
228 	params.vf = vf;
229 	params.flags = ICE_VSI_FLAG_INIT;
230 
231 	vsi = ice_vsi_setup(pf, &params);
232 
233 	if (!vsi) {
234 		dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
235 		ice_vf_invalidate_vsi(vf);
236 		return NULL;
237 	}
238 
239 	vf->lan_vsi_idx = vsi->idx;
240 	vf->lan_vsi_num = vsi->vsi_num;
241 
242 	return vsi;
243 }
244 
245 /**
246  * ice_calc_vf_first_vector_idx - Calculate MSIX vector index in the PF space
247  * @pf: pointer to PF structure
248  * @vf: pointer to VF that the first MSIX vector index is being calculated for
249  *
250  * This returns the first MSIX vector index in PF space that is used by this VF.
251  * This index is used when accessing PF relative registers such as
252  * GLINT_VECT2FUNC and GLINT_DYN_CTL.
253  * This will always be the OICR index in the AVF driver so any functionality
254  * using vf->first_vector_idx for queue configuration will have to increment by
255  * 1 to avoid meddling with the OICR index.
256  */
ice_calc_vf_first_vector_idx(struct ice_pf * pf,struct ice_vf * vf)257 static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf)
258 {
259 	return pf->sriov_base_vector + vf->vf_id * pf->vfs.num_msix_per;
260 }
261 
262 /**
263  * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
264  * @vf: VF to enable MSIX mappings for
265  *
266  * Some of the registers need to be indexed/configured using hardware global
267  * device values and other registers need 0-based values, which represent PF
268  * based values.
269  */
ice_ena_vf_msix_mappings(struct ice_vf * vf)270 static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
271 {
272 	int device_based_first_msix, device_based_last_msix;
273 	int pf_based_first_msix, pf_based_last_msix, v;
274 	struct ice_pf *pf = vf->pf;
275 	int device_based_vf_id;
276 	struct ice_hw *hw;
277 	u32 reg;
278 
279 	hw = &pf->hw;
280 	pf_based_first_msix = vf->first_vector_idx;
281 	pf_based_last_msix = (pf_based_first_msix + pf->vfs.num_msix_per) - 1;
282 
283 	device_based_first_msix = pf_based_first_msix +
284 		pf->hw.func_caps.common_cap.msix_vector_first_id;
285 	device_based_last_msix =
286 		(device_based_first_msix + pf->vfs.num_msix_per) - 1;
287 	device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
288 
289 	reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) &
290 		VPINT_ALLOC_FIRST_M) |
291 	       ((device_based_last_msix << VPINT_ALLOC_LAST_S) &
292 		VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M);
293 	wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
294 
295 	reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S)
296 		 & VPINT_ALLOC_PCI_FIRST_M) |
297 	       ((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) &
298 		VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M);
299 	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
300 
301 	/* map the interrupts to its functions */
302 	for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
303 		reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) &
304 			GLINT_VECT2FUNC_VF_NUM_M) |
305 		       ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
306 			GLINT_VECT2FUNC_PF_NUM_M));
307 		wr32(hw, GLINT_VECT2FUNC(v), reg);
308 	}
309 
310 	/* Map mailbox interrupt to VF MSI-X vector 0 */
311 	wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
312 }
313 
314 /**
315  * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
316  * @vf: VF to enable the mappings for
317  * @max_txq: max Tx queues allowed on the VF's VSI
318  * @max_rxq: max Rx queues allowed on the VF's VSI
319  */
ice_ena_vf_q_mappings(struct ice_vf * vf,u16 max_txq,u16 max_rxq)320 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
321 {
322 	struct device *dev = ice_pf_to_dev(vf->pf);
323 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
324 	struct ice_hw *hw = &vf->pf->hw;
325 	u32 reg;
326 
327 	if (WARN_ON(!vsi))
328 		return;
329 
330 	/* set regardless of mapping mode */
331 	wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
332 
333 	/* VF Tx queues allocation */
334 	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
335 		/* set the VF PF Tx queue range
336 		 * VFNUMQ value should be set to (number of queues - 1). A value
337 		 * of 0 means 1 queue and a value of 255 means 256 queues
338 		 */
339 		reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) &
340 			VPLAN_TX_QBASE_VFFIRSTQ_M) |
341 		       (((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) &
342 			VPLAN_TX_QBASE_VFNUMQ_M));
343 		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
344 	} else {
345 		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
346 	}
347 
348 	/* set regardless of mapping mode */
349 	wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
350 
351 	/* VF Rx queues allocation */
352 	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
353 		/* set the VF PF Rx queue range
354 		 * VFNUMQ value should be set to (number of queues - 1). A value
355 		 * of 0 means 1 queue and a value of 255 means 256 queues
356 		 */
357 		reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) &
358 			VPLAN_RX_QBASE_VFFIRSTQ_M) |
359 		       (((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) &
360 			VPLAN_RX_QBASE_VFNUMQ_M));
361 		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
362 	} else {
363 		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
364 	}
365 }
366 
367 /**
368  * ice_ena_vf_mappings - enable VF MSIX and queue mapping
369  * @vf: pointer to the VF structure
370  */
ice_ena_vf_mappings(struct ice_vf * vf)371 static void ice_ena_vf_mappings(struct ice_vf *vf)
372 {
373 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
374 
375 	if (WARN_ON(!vsi))
376 		return;
377 
378 	ice_ena_vf_msix_mappings(vf);
379 	ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
380 }
381 
382 /**
383  * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
384  * @vf: VF to calculate the register index for
385  * @q_vector: a q_vector associated to the VF
386  */
ice_calc_vf_reg_idx(struct ice_vf * vf,struct ice_q_vector * q_vector)387 int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
388 {
389 	struct ice_pf *pf;
390 
391 	if (!vf || !q_vector)
392 		return -EINVAL;
393 
394 	pf = vf->pf;
395 
396 	/* always add one to account for the OICR being the first MSIX */
397 	return pf->sriov_base_vector + pf->vfs.num_msix_per * vf->vf_id +
398 		q_vector->v_idx + 1;
399 }
400 
401 /**
402  * ice_sriov_set_msix_res - Set any used MSIX resources
403  * @pf: pointer to PF structure
404  * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
405  *
406  * This function allows SR-IOV resources to be taken from the end of the PF's
407  * allowed HW MSIX vectors so that the irq_tracker will not be affected. We
408  * just set the pf->sriov_base_vector and return success.
409  *
410  * If there are not enough resources available, return an error. This should
411  * always be caught by ice_set_per_vf_res().
412  *
413  * Return 0 on success, and -EINVAL when there are not enough MSIX vectors
414  * in the PF's space available for SR-IOV.
415  */
ice_sriov_set_msix_res(struct ice_pf * pf,u16 num_msix_needed)416 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
417 {
418 	u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
419 	int vectors_used = ice_get_max_used_msix_vector(pf);
420 	int sriov_base_vector;
421 
422 	sriov_base_vector = total_vectors - num_msix_needed;
423 
424 	/* make sure we only grab irq_tracker entries from the list end and
425 	 * that we have enough available MSIX vectors
426 	 */
427 	if (sriov_base_vector < vectors_used)
428 		return -EINVAL;
429 
430 	pf->sriov_base_vector = sriov_base_vector;
431 
432 	return 0;
433 }
434 
435 /**
436  * ice_set_per_vf_res - check if vectors and queues are available
437  * @pf: pointer to the PF structure
438  * @num_vfs: the number of SR-IOV VFs being configured
439  *
440  * First, determine HW interrupts from common pool. If we allocate fewer VFs, we
441  * get more vectors and can enable more queues per VF. Note that this does not
442  * grab any vectors from the SW pool already allocated. Also note, that all
443  * vector counts include one for each VF's miscellaneous interrupt vector
444  * (i.e. OICR).
445  *
446  * Minimum VFs - 2 vectors, 1 queue pair
447  * Small VFs - 5 vectors, 4 queue pairs
448  * Medium VFs - 17 vectors, 16 queue pairs
449  *
450  * Second, determine number of queue pairs per VF by starting with a pre-defined
451  * maximum each VF supports. If this is not possible, then we adjust based on
452  * queue pairs available on the device.
453  *
454  * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
455  * by each VF during VF initialization and reset.
456  */
ice_set_per_vf_res(struct ice_pf * pf,u16 num_vfs)457 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs)
458 {
459 	int vectors_used = ice_get_max_used_msix_vector(pf);
460 	u16 num_msix_per_vf, num_txq, num_rxq, avail_qs;
461 	int msix_avail_per_vf, msix_avail_for_sriov;
462 	struct device *dev = ice_pf_to_dev(pf);
463 	int err;
464 
465 	lockdep_assert_held(&pf->vfs.table_lock);
466 
467 	if (!num_vfs)
468 		return -EINVAL;
469 
470 	/* determine MSI-X resources per VF */
471 	msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors -
472 		vectors_used;
473 	msix_avail_per_vf = msix_avail_for_sriov / num_vfs;
474 	if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
475 		num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
476 	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
477 		num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
478 	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
479 		num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
480 	} else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
481 		num_msix_per_vf = ICE_MIN_INTR_PER_VF;
482 	} else {
483 		dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
484 			msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
485 			num_vfs);
486 		return -ENOSPC;
487 	}
488 
489 	num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
490 			ICE_MAX_RSS_QS_PER_VF);
491 	avail_qs = ice_get_avail_txq_count(pf) / num_vfs;
492 	if (!avail_qs)
493 		num_txq = 0;
494 	else if (num_txq > avail_qs)
495 		num_txq = rounddown_pow_of_two(avail_qs);
496 
497 	num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
498 			ICE_MAX_RSS_QS_PER_VF);
499 	avail_qs = ice_get_avail_rxq_count(pf) / num_vfs;
500 	if (!avail_qs)
501 		num_rxq = 0;
502 	else if (num_rxq > avail_qs)
503 		num_rxq = rounddown_pow_of_two(avail_qs);
504 
505 	if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) {
506 		dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
507 			ICE_MIN_QS_PER_VF, num_vfs);
508 		return -ENOSPC;
509 	}
510 
511 	err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs);
512 	if (err) {
513 		dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n",
514 			num_vfs, err);
515 		return err;
516 	}
517 
518 	/* only allow equal Tx/Rx queue count (i.e. queue pairs) */
519 	pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq);
520 	pf->vfs.num_msix_per = num_msix_per_vf;
521 	dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
522 		 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per);
523 
524 	return 0;
525 }
526 
527 /**
528  * ice_init_vf_vsi_res - initialize/setup VF VSI resources
529  * @vf: VF to initialize/setup the VSI for
530  *
531  * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
532  * VF VSI's broadcast filter and is only used during initial VF creation.
533  */
ice_init_vf_vsi_res(struct ice_vf * vf)534 static int ice_init_vf_vsi_res(struct ice_vf *vf)
535 {
536 	struct ice_pf *pf = vf->pf;
537 	struct ice_vsi *vsi;
538 	int err;
539 
540 	vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf);
541 
542 	vsi = ice_vf_vsi_setup(vf);
543 	if (!vsi)
544 		return -ENOMEM;
545 
546 	err = ice_vf_init_host_cfg(vf, vsi);
547 	if (err)
548 		goto release_vsi;
549 
550 	return 0;
551 
552 release_vsi:
553 	ice_vf_vsi_release(vf);
554 	return err;
555 }
556 
557 /**
558  * ice_start_vfs - start VFs so they are ready to be used by SR-IOV
559  * @pf: PF the VFs are associated with
560  */
ice_start_vfs(struct ice_pf * pf)561 static int ice_start_vfs(struct ice_pf *pf)
562 {
563 	struct ice_hw *hw = &pf->hw;
564 	unsigned int bkt, it_cnt;
565 	struct ice_vf *vf;
566 	int retval;
567 
568 	lockdep_assert_held(&pf->vfs.table_lock);
569 
570 	it_cnt = 0;
571 	ice_for_each_vf(pf, bkt, vf) {
572 		vf->vf_ops->clear_reset_trigger(vf);
573 
574 		retval = ice_init_vf_vsi_res(vf);
575 		if (retval) {
576 			dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
577 				vf->vf_id, retval);
578 			goto teardown;
579 		}
580 
581 		set_bit(ICE_VF_STATE_INIT, vf->vf_states);
582 		ice_ena_vf_mappings(vf);
583 		wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
584 		it_cnt++;
585 	}
586 
587 	ice_flush(hw);
588 	return 0;
589 
590 teardown:
591 	ice_for_each_vf(pf, bkt, vf) {
592 		if (it_cnt == 0)
593 			break;
594 
595 		ice_dis_vf_mappings(vf);
596 		ice_vf_vsi_release(vf);
597 		it_cnt--;
598 	}
599 
600 	return retval;
601 }
602 
603 /**
604  * ice_sriov_free_vf - Free VF memory after all references are dropped
605  * @vf: pointer to VF to free
606  *
607  * Called by ice_put_vf through ice_release_vf once the last reference to a VF
608  * structure has been dropped.
609  */
ice_sriov_free_vf(struct ice_vf * vf)610 static void ice_sriov_free_vf(struct ice_vf *vf)
611 {
612 	mutex_destroy(&vf->cfg_lock);
613 
614 	kfree_rcu(vf, rcu);
615 }
616 
617 /**
618  * ice_sriov_clear_reset_state - clears VF Reset status register
619  * @vf: the vf to configure
620  */
ice_sriov_clear_reset_state(struct ice_vf * vf)621 static void ice_sriov_clear_reset_state(struct ice_vf *vf)
622 {
623 	struct ice_hw *hw = &vf->pf->hw;
624 
625 	/* Clear the reset status register so that VF immediately sees that
626 	 * the device is resetting, even if hardware hasn't yet gotten around
627 	 * to clearing VFGEN_RSTAT for us.
628 	 */
629 	wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS);
630 }
631 
632 /**
633  * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers
634  * @vf: the vf to configure
635  */
ice_sriov_clear_mbx_register(struct ice_vf * vf)636 static void ice_sriov_clear_mbx_register(struct ice_vf *vf)
637 {
638 	struct ice_pf *pf = vf->pf;
639 
640 	wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0);
641 	wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0);
642 }
643 
644 /**
645  * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF
646  * @vf: pointer to VF structure
647  * @is_vflr: true if reset occurred due to VFLR
648  *
649  * Trigger and cleanup after a VF reset for a SR-IOV VF.
650  */
ice_sriov_trigger_reset_register(struct ice_vf * vf,bool is_vflr)651 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr)
652 {
653 	struct ice_pf *pf = vf->pf;
654 	u32 reg, reg_idx, bit_idx;
655 	unsigned int vf_abs_id, i;
656 	struct device *dev;
657 	struct ice_hw *hw;
658 
659 	dev = ice_pf_to_dev(pf);
660 	hw = &pf->hw;
661 	vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
662 
663 	/* In the case of a VFLR, HW has already reset the VF and we just need
664 	 * to clean up. Otherwise we must first trigger the reset using the
665 	 * VFRTRIG register.
666 	 */
667 	if (!is_vflr) {
668 		reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
669 		reg |= VPGEN_VFRTRIG_VFSWR_M;
670 		wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
671 	}
672 
673 	/* clear the VFLR bit in GLGEN_VFLRSTAT */
674 	reg_idx = (vf_abs_id) / 32;
675 	bit_idx = (vf_abs_id) % 32;
676 	wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
677 	ice_flush(hw);
678 
679 	wr32(hw, PF_PCI_CIAA,
680 	     VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
681 	for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
682 		reg = rd32(hw, PF_PCI_CIAD);
683 		/* no transactions pending so stop polling */
684 		if ((reg & VF_TRANS_PENDING_M) == 0)
685 			break;
686 
687 		dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
688 		udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
689 	}
690 }
691 
692 /**
693  * ice_sriov_poll_reset_status - poll SRIOV VF reset status
694  * @vf: pointer to VF structure
695  *
696  * Returns true when reset is successful, else returns false
697  */
ice_sriov_poll_reset_status(struct ice_vf * vf)698 static bool ice_sriov_poll_reset_status(struct ice_vf *vf)
699 {
700 	struct ice_pf *pf = vf->pf;
701 	unsigned int i;
702 	u32 reg;
703 
704 	for (i = 0; i < 10; i++) {
705 		/* VF reset requires driver to first reset the VF and then
706 		 * poll the status register to make sure that the reset
707 		 * completed successfully.
708 		 */
709 		reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id));
710 		if (reg & VPGEN_VFRSTAT_VFRD_M)
711 			return true;
712 
713 		/* only sleep if the reset is not done */
714 		usleep_range(10, 20);
715 	}
716 	return false;
717 }
718 
719 /**
720  * ice_sriov_clear_reset_trigger - enable VF to access hardware
721  * @vf: VF to enabled hardware access for
722  */
ice_sriov_clear_reset_trigger(struct ice_vf * vf)723 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf)
724 {
725 	struct ice_hw *hw = &vf->pf->hw;
726 	u32 reg;
727 
728 	reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
729 	reg &= ~VPGEN_VFRTRIG_VFSWR_M;
730 	wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
731 	ice_flush(hw);
732 }
733 
734 /**
735  * ice_sriov_create_vsi - Create a new VSI for a VF
736  * @vf: VF to create the VSI for
737  *
738  * This is called by ice_vf_recreate_vsi to create the new VSI after the old
739  * VSI has been released.
740  */
ice_sriov_create_vsi(struct ice_vf * vf)741 static int ice_sriov_create_vsi(struct ice_vf *vf)
742 {
743 	struct ice_vsi *vsi;
744 
745 	vsi = ice_vf_vsi_setup(vf);
746 	if (!vsi)
747 		return -ENOMEM;
748 
749 	return 0;
750 }
751 
752 /**
753  * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
754  * @vf: VF to perform tasks on
755  */
ice_sriov_post_vsi_rebuild(struct ice_vf * vf)756 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf)
757 {
758 	ice_ena_vf_mappings(vf);
759 	wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
760 }
761 
762 static const struct ice_vf_ops ice_sriov_vf_ops = {
763 	.reset_type = ICE_VF_RESET,
764 	.free = ice_sriov_free_vf,
765 	.clear_reset_state = ice_sriov_clear_reset_state,
766 	.clear_mbx_register = ice_sriov_clear_mbx_register,
767 	.trigger_reset_register = ice_sriov_trigger_reset_register,
768 	.poll_reset_status = ice_sriov_poll_reset_status,
769 	.clear_reset_trigger = ice_sriov_clear_reset_trigger,
770 	.irq_close = NULL,
771 	.create_vsi = ice_sriov_create_vsi,
772 	.post_vsi_rebuild = ice_sriov_post_vsi_rebuild,
773 };
774 
775 /**
776  * ice_create_vf_entries - Allocate and insert VF entries
777  * @pf: pointer to the PF structure
778  * @num_vfs: the number of VFs to allocate
779  *
780  * Allocate new VF entries and insert them into the hash table. Set some
781  * basic default fields for initializing the new VFs.
782  *
783  * After this function exits, the hash table will have num_vfs entries
784  * inserted.
785  *
786  * Returns 0 on success or an integer error code on failure.
787  */
ice_create_vf_entries(struct ice_pf * pf,u16 num_vfs)788 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs)
789 {
790 	struct ice_vfs *vfs = &pf->vfs;
791 	struct ice_vf *vf;
792 	u16 vf_id;
793 	int err;
794 
795 	lockdep_assert_held(&vfs->table_lock);
796 
797 	for (vf_id = 0; vf_id < num_vfs; vf_id++) {
798 		vf = kzalloc(sizeof(*vf), GFP_KERNEL);
799 		if (!vf) {
800 			err = -ENOMEM;
801 			goto err_free_entries;
802 		}
803 		kref_init(&vf->refcnt);
804 
805 		vf->pf = pf;
806 		vf->vf_id = vf_id;
807 
808 		/* set sriov vf ops for VFs created during SRIOV flow */
809 		vf->vf_ops = &ice_sriov_vf_ops;
810 
811 		ice_initialize_vf_entry(vf);
812 
813 		vf->vf_sw_id = pf->first_sw;
814 
815 		hash_add_rcu(vfs->table, &vf->entry, vf_id);
816 	}
817 
818 	return 0;
819 
820 err_free_entries:
821 	ice_free_vf_entries(pf);
822 	return err;
823 }
824 
825 /**
826  * ice_ena_vfs - enable VFs so they are ready to be used
827  * @pf: pointer to the PF structure
828  * @num_vfs: number of VFs to enable
829  */
ice_ena_vfs(struct ice_pf * pf,u16 num_vfs)830 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
831 {
832 	struct device *dev = ice_pf_to_dev(pf);
833 	struct ice_hw *hw = &pf->hw;
834 	int ret;
835 
836 	/* Disable global interrupt 0 so we don't try to handle the VFLR. */
837 	wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
838 	     ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
839 	set_bit(ICE_OICR_INTR_DIS, pf->state);
840 	ice_flush(hw);
841 
842 	ret = pci_enable_sriov(pf->pdev, num_vfs);
843 	if (ret)
844 		goto err_unroll_intr;
845 
846 	mutex_lock(&pf->vfs.table_lock);
847 
848 	ret = ice_set_per_vf_res(pf, num_vfs);
849 	if (ret) {
850 		dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n",
851 			num_vfs, ret);
852 		goto err_unroll_sriov;
853 	}
854 
855 	ret = ice_create_vf_entries(pf, num_vfs);
856 	if (ret) {
857 		dev_err(dev, "Failed to allocate VF entries for %d VFs\n",
858 			num_vfs);
859 		goto err_unroll_sriov;
860 	}
861 
862 	ret = ice_start_vfs(pf);
863 	if (ret) {
864 		dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret);
865 		ret = -EAGAIN;
866 		goto err_unroll_vf_entries;
867 	}
868 
869 	clear_bit(ICE_VF_DIS, pf->state);
870 
871 	ret = ice_eswitch_configure(pf);
872 	if (ret) {
873 		dev_err(dev, "Failed to configure eswitch, err %d\n", ret);
874 		goto err_unroll_sriov;
875 	}
876 
877 	/* rearm global interrupts */
878 	if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state))
879 		ice_irq_dynamic_ena(hw, NULL, NULL);
880 
881 	mutex_unlock(&pf->vfs.table_lock);
882 
883 	return 0;
884 
885 err_unroll_vf_entries:
886 	ice_free_vf_entries(pf);
887 err_unroll_sriov:
888 	mutex_unlock(&pf->vfs.table_lock);
889 	pci_disable_sriov(pf->pdev);
890 err_unroll_intr:
891 	/* rearm interrupts here */
892 	ice_irq_dynamic_ena(hw, NULL, NULL);
893 	clear_bit(ICE_OICR_INTR_DIS, pf->state);
894 	return ret;
895 }
896 
897 /**
898  * ice_pci_sriov_ena - Enable or change number of VFs
899  * @pf: pointer to the PF structure
900  * @num_vfs: number of VFs to allocate
901  *
902  * Returns 0 on success and negative on failure
903  */
ice_pci_sriov_ena(struct ice_pf * pf,int num_vfs)904 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
905 {
906 	struct device *dev = ice_pf_to_dev(pf);
907 	int err;
908 
909 	if (!num_vfs) {
910 		ice_free_vfs(pf);
911 		return 0;
912 	}
913 
914 	if (num_vfs > pf->vfs.num_supported) {
915 		dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
916 			num_vfs, pf->vfs.num_supported);
917 		return -EOPNOTSUPP;
918 	}
919 
920 	dev_info(dev, "Enabling %d VFs\n", num_vfs);
921 	err = ice_ena_vfs(pf, num_vfs);
922 	if (err) {
923 		dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
924 		return err;
925 	}
926 
927 	set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
928 	return 0;
929 }
930 
931 /**
932  * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
933  * @pf: PF to enabled SR-IOV on
934  */
ice_check_sriov_allowed(struct ice_pf * pf)935 static int ice_check_sriov_allowed(struct ice_pf *pf)
936 {
937 	struct device *dev = ice_pf_to_dev(pf);
938 
939 	if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
940 		dev_err(dev, "This device is not capable of SR-IOV\n");
941 		return -EOPNOTSUPP;
942 	}
943 
944 	if (ice_is_safe_mode(pf)) {
945 		dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
946 		return -EOPNOTSUPP;
947 	}
948 
949 	if (!ice_pf_state_is_nominal(pf)) {
950 		dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
951 		return -EBUSY;
952 	}
953 
954 	return 0;
955 }
956 
957 /**
958  * ice_sriov_configure - Enable or change number of VFs via sysfs
959  * @pdev: pointer to a pci_dev structure
960  * @num_vfs: number of VFs to allocate or 0 to free VFs
961  *
962  * This function is called when the user updates the number of VFs in sysfs. On
963  * success return whatever num_vfs was set to by the caller. Return negative on
964  * failure.
965  */
ice_sriov_configure(struct pci_dev * pdev,int num_vfs)966 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
967 {
968 	struct ice_pf *pf = pci_get_drvdata(pdev);
969 	struct device *dev = ice_pf_to_dev(pf);
970 	int err;
971 
972 	err = ice_check_sriov_allowed(pf);
973 	if (err)
974 		return err;
975 
976 	if (!num_vfs) {
977 		if (!pci_vfs_assigned(pdev)) {
978 			ice_free_vfs(pf);
979 			return 0;
980 		}
981 
982 		dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
983 		return -EBUSY;
984 	}
985 
986 	err = ice_pci_sriov_ena(pf, num_vfs);
987 	if (err)
988 		return err;
989 
990 	return num_vfs;
991 }
992 
993 /**
994  * ice_process_vflr_event - Free VF resources via IRQ calls
995  * @pf: pointer to the PF structure
996  *
997  * called from the VFLR IRQ handler to
998  * free up VF resources and state variables
999  */
ice_process_vflr_event(struct ice_pf * pf)1000 void ice_process_vflr_event(struct ice_pf *pf)
1001 {
1002 	struct ice_hw *hw = &pf->hw;
1003 	struct ice_vf *vf;
1004 	unsigned int bkt;
1005 	u32 reg;
1006 
1007 	if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
1008 	    !ice_has_vfs(pf))
1009 		return;
1010 
1011 	mutex_lock(&pf->vfs.table_lock);
1012 	ice_for_each_vf(pf, bkt, vf) {
1013 		u32 reg_idx, bit_idx;
1014 
1015 		reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
1016 		bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
1017 		/* read GLGEN_VFLRSTAT register to find out the flr VFs */
1018 		reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
1019 		if (reg & BIT(bit_idx))
1020 			/* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
1021 			ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
1022 	}
1023 	mutex_unlock(&pf->vfs.table_lock);
1024 }
1025 
1026 /**
1027  * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
1028  * @pf: PF used to index all VFs
1029  * @pfq: queue index relative to the PF's function space
1030  *
1031  * If no VF is found who owns the pfq then return NULL, otherwise return a
1032  * pointer to the VF who owns the pfq
1033  *
1034  * If this function returns non-NULL, it acquires a reference count of the VF
1035  * structure. The caller is responsible for calling ice_put_vf() to drop this
1036  * reference.
1037  */
ice_get_vf_from_pfq(struct ice_pf * pf,u16 pfq)1038 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
1039 {
1040 	struct ice_vf *vf;
1041 	unsigned int bkt;
1042 
1043 	rcu_read_lock();
1044 	ice_for_each_vf_rcu(pf, bkt, vf) {
1045 		struct ice_vsi *vsi;
1046 		u16 rxq_idx;
1047 
1048 		vsi = ice_get_vf_vsi(vf);
1049 		if (!vsi)
1050 			continue;
1051 
1052 		ice_for_each_rxq(vsi, rxq_idx)
1053 			if (vsi->rxq_map[rxq_idx] == pfq) {
1054 				struct ice_vf *found;
1055 
1056 				if (kref_get_unless_zero(&vf->refcnt))
1057 					found = vf;
1058 				else
1059 					found = NULL;
1060 				rcu_read_unlock();
1061 				return found;
1062 			}
1063 	}
1064 	rcu_read_unlock();
1065 
1066 	return NULL;
1067 }
1068 
1069 /**
1070  * ice_globalq_to_pfq - convert from global queue index to PF space queue index
1071  * @pf: PF used for conversion
1072  * @globalq: global queue index used to convert to PF space queue index
1073  */
ice_globalq_to_pfq(struct ice_pf * pf,u32 globalq)1074 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
1075 {
1076 	return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
1077 }
1078 
1079 /**
1080  * ice_vf_lan_overflow_event - handle LAN overflow event for a VF
1081  * @pf: PF that the LAN overflow event happened on
1082  * @event: structure holding the event information for the LAN overflow event
1083  *
1084  * Determine if the LAN overflow event was caused by a VF queue. If it was not
1085  * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
1086  * reset on the offending VF.
1087  */
1088 void
ice_vf_lan_overflow_event(struct ice_pf * pf,struct ice_rq_event_info * event)1089 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1090 {
1091 	u32 gldcb_rtctq, queue;
1092 	struct ice_vf *vf;
1093 
1094 	gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
1095 	dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
1096 
1097 	/* event returns device global Rx queue number */
1098 	queue = (gldcb_rtctq & GLDCB_RTCTQ_RXQNUM_M) >>
1099 		GLDCB_RTCTQ_RXQNUM_S;
1100 
1101 	vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
1102 	if (!vf)
1103 		return;
1104 
1105 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1106 	ice_put_vf(vf);
1107 }
1108 
1109 /**
1110  * ice_set_vf_spoofchk
1111  * @netdev: network interface device structure
1112  * @vf_id: VF identifier
1113  * @ena: flag to enable or disable feature
1114  *
1115  * Enable or disable VF spoof checking
1116  */
ice_set_vf_spoofchk(struct net_device * netdev,int vf_id,bool ena)1117 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
1118 {
1119 	struct ice_netdev_priv *np = netdev_priv(netdev);
1120 	struct ice_pf *pf = np->vsi->back;
1121 	struct ice_vsi *vf_vsi;
1122 	struct device *dev;
1123 	struct ice_vf *vf;
1124 	int ret;
1125 
1126 	dev = ice_pf_to_dev(pf);
1127 
1128 	vf = ice_get_vf_by_id(pf, vf_id);
1129 	if (!vf)
1130 		return -EINVAL;
1131 
1132 	ret = ice_check_vf_ready_for_cfg(vf);
1133 	if (ret)
1134 		goto out_put_vf;
1135 
1136 	vf_vsi = ice_get_vf_vsi(vf);
1137 	if (!vf_vsi) {
1138 		netdev_err(netdev, "VSI %d for VF %d is null\n",
1139 			   vf->lan_vsi_idx, vf->vf_id);
1140 		ret = -EINVAL;
1141 		goto out_put_vf;
1142 	}
1143 
1144 	if (vf_vsi->type != ICE_VSI_VF) {
1145 		netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
1146 			   vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
1147 		ret = -ENODEV;
1148 		goto out_put_vf;
1149 	}
1150 
1151 	if (ena == vf->spoofchk) {
1152 		dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
1153 		ret = 0;
1154 		goto out_put_vf;
1155 	}
1156 
1157 	ret = ice_vsi_apply_spoofchk(vf_vsi, ena);
1158 	if (ret)
1159 		dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n",
1160 			ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret);
1161 	else
1162 		vf->spoofchk = ena;
1163 
1164 out_put_vf:
1165 	ice_put_vf(vf);
1166 	return ret;
1167 }
1168 
1169 /**
1170  * ice_get_vf_cfg
1171  * @netdev: network interface device structure
1172  * @vf_id: VF identifier
1173  * @ivi: VF configuration structure
1174  *
1175  * return VF configuration
1176  */
1177 int
ice_get_vf_cfg(struct net_device * netdev,int vf_id,struct ifla_vf_info * ivi)1178 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
1179 {
1180 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1181 	struct ice_vf *vf;
1182 	int ret;
1183 
1184 	vf = ice_get_vf_by_id(pf, vf_id);
1185 	if (!vf)
1186 		return -EINVAL;
1187 
1188 	ret = ice_check_vf_ready_for_cfg(vf);
1189 	if (ret)
1190 		goto out_put_vf;
1191 
1192 	ivi->vf = vf_id;
1193 	ether_addr_copy(ivi->mac, vf->hw_lan_addr);
1194 
1195 	/* VF configuration for VLAN and applicable QoS */
1196 	ivi->vlan = ice_vf_get_port_vlan_id(vf);
1197 	ivi->qos = ice_vf_get_port_vlan_prio(vf);
1198 	if (ice_vf_is_port_vlan_ena(vf))
1199 		ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf));
1200 
1201 	ivi->trusted = vf->trusted;
1202 	ivi->spoofchk = vf->spoofchk;
1203 	if (!vf->link_forced)
1204 		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
1205 	else if (vf->link_up)
1206 		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
1207 	else
1208 		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
1209 	ivi->max_tx_rate = vf->max_tx_rate;
1210 	ivi->min_tx_rate = vf->min_tx_rate;
1211 
1212 out_put_vf:
1213 	ice_put_vf(vf);
1214 	return ret;
1215 }
1216 
1217 /**
1218  * ice_set_vf_mac
1219  * @netdev: network interface device structure
1220  * @vf_id: VF identifier
1221  * @mac: MAC address
1222  *
1223  * program VF MAC address
1224  */
ice_set_vf_mac(struct net_device * netdev,int vf_id,u8 * mac)1225 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1226 {
1227 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1228 	struct ice_vf *vf;
1229 	int ret;
1230 
1231 	if (is_multicast_ether_addr(mac)) {
1232 		netdev_err(netdev, "%pM not a valid unicast address\n", mac);
1233 		return -EINVAL;
1234 	}
1235 
1236 	vf = ice_get_vf_by_id(pf, vf_id);
1237 	if (!vf)
1238 		return -EINVAL;
1239 
1240 	/* nothing left to do, unicast MAC already set */
1241 	if (ether_addr_equal(vf->dev_lan_addr, mac) &&
1242 	    ether_addr_equal(vf->hw_lan_addr, mac)) {
1243 		ret = 0;
1244 		goto out_put_vf;
1245 	}
1246 
1247 	ret = ice_check_vf_ready_for_cfg(vf);
1248 	if (ret)
1249 		goto out_put_vf;
1250 
1251 	mutex_lock(&vf->cfg_lock);
1252 
1253 	/* VF is notified of its new MAC via the PF's response to the
1254 	 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
1255 	 */
1256 	ether_addr_copy(vf->dev_lan_addr, mac);
1257 	ether_addr_copy(vf->hw_lan_addr, mac);
1258 	if (is_zero_ether_addr(mac)) {
1259 		/* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
1260 		vf->pf_set_mac = false;
1261 		netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
1262 			    vf->vf_id);
1263 	} else {
1264 		/* PF will add MAC rule for the VF */
1265 		vf->pf_set_mac = true;
1266 		netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
1267 			    mac, vf_id);
1268 	}
1269 
1270 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1271 	mutex_unlock(&vf->cfg_lock);
1272 
1273 out_put_vf:
1274 	ice_put_vf(vf);
1275 	return ret;
1276 }
1277 
1278 /**
1279  * ice_set_vf_trust
1280  * @netdev: network interface device structure
1281  * @vf_id: VF identifier
1282  * @trusted: Boolean value to enable/disable trusted VF
1283  *
1284  * Enable or disable a given VF as trusted
1285  */
ice_set_vf_trust(struct net_device * netdev,int vf_id,bool trusted)1286 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
1287 {
1288 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1289 	struct ice_vf *vf;
1290 	int ret;
1291 
1292 	vf = ice_get_vf_by_id(pf, vf_id);
1293 	if (!vf)
1294 		return -EINVAL;
1295 
1296 	if (ice_is_eswitch_mode_switchdev(pf)) {
1297 		dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n");
1298 		return -EOPNOTSUPP;
1299 	}
1300 
1301 	ret = ice_check_vf_ready_for_cfg(vf);
1302 	if (ret)
1303 		goto out_put_vf;
1304 
1305 	/* Check if already trusted */
1306 	if (trusted == vf->trusted) {
1307 		ret = 0;
1308 		goto out_put_vf;
1309 	}
1310 
1311 	mutex_lock(&vf->cfg_lock);
1312 
1313 	vf->trusted = trusted;
1314 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1315 	dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
1316 		 vf_id, trusted ? "" : "un");
1317 
1318 	mutex_unlock(&vf->cfg_lock);
1319 
1320 out_put_vf:
1321 	ice_put_vf(vf);
1322 	return ret;
1323 }
1324 
1325 /**
1326  * ice_set_vf_link_state
1327  * @netdev: network interface device structure
1328  * @vf_id: VF identifier
1329  * @link_state: required link state
1330  *
1331  * Set VF's link state, irrespective of physical link state status
1332  */
ice_set_vf_link_state(struct net_device * netdev,int vf_id,int link_state)1333 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
1334 {
1335 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1336 	struct ice_vf *vf;
1337 	int ret;
1338 
1339 	vf = ice_get_vf_by_id(pf, vf_id);
1340 	if (!vf)
1341 		return -EINVAL;
1342 
1343 	ret = ice_check_vf_ready_for_cfg(vf);
1344 	if (ret)
1345 		goto out_put_vf;
1346 
1347 	switch (link_state) {
1348 	case IFLA_VF_LINK_STATE_AUTO:
1349 		vf->link_forced = false;
1350 		break;
1351 	case IFLA_VF_LINK_STATE_ENABLE:
1352 		vf->link_forced = true;
1353 		vf->link_up = true;
1354 		break;
1355 	case IFLA_VF_LINK_STATE_DISABLE:
1356 		vf->link_forced = true;
1357 		vf->link_up = false;
1358 		break;
1359 	default:
1360 		ret = -EINVAL;
1361 		goto out_put_vf;
1362 	}
1363 
1364 	ice_vc_notify_vf_link_state(vf);
1365 
1366 out_put_vf:
1367 	ice_put_vf(vf);
1368 	return ret;
1369 }
1370 
1371 /**
1372  * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs
1373  * @pf: PF associated with VFs
1374  */
ice_calc_all_vfs_min_tx_rate(struct ice_pf * pf)1375 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf)
1376 {
1377 	struct ice_vf *vf;
1378 	unsigned int bkt;
1379 	int rate = 0;
1380 
1381 	rcu_read_lock();
1382 	ice_for_each_vf_rcu(pf, bkt, vf)
1383 		rate += vf->min_tx_rate;
1384 	rcu_read_unlock();
1385 
1386 	return rate;
1387 }
1388 
1389 /**
1390  * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription
1391  * @vf: VF trying to configure min_tx_rate
1392  * @min_tx_rate: min Tx rate in Mbps
1393  *
1394  * Check if the min_tx_rate being passed in will cause oversubscription of total
1395  * min_tx_rate based on the current link speed and all other VFs configured
1396  * min_tx_rate
1397  *
1398  * Return true if the passed min_tx_rate would cause oversubscription, else
1399  * return false
1400  */
1401 static bool
ice_min_tx_rate_oversubscribed(struct ice_vf * vf,int min_tx_rate)1402 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate)
1403 {
1404 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
1405 	int all_vfs_min_tx_rate;
1406 	int link_speed_mbps;
1407 
1408 	if (WARN_ON(!vsi))
1409 		return false;
1410 
1411 	link_speed_mbps = ice_get_link_speed_mbps(vsi);
1412 	all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf);
1413 
1414 	/* this VF's previous rate is being overwritten */
1415 	all_vfs_min_tx_rate -= vf->min_tx_rate;
1416 
1417 	if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) {
1418 		dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n",
1419 			min_tx_rate, vf->vf_id,
1420 			all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps,
1421 			link_speed_mbps);
1422 		return true;
1423 	}
1424 
1425 	return false;
1426 }
1427 
1428 /**
1429  * ice_set_vf_bw - set min/max VF bandwidth
1430  * @netdev: network interface device structure
1431  * @vf_id: VF identifier
1432  * @min_tx_rate: Minimum Tx rate in Mbps
1433  * @max_tx_rate: Maximum Tx rate in Mbps
1434  */
1435 int
ice_set_vf_bw(struct net_device * netdev,int vf_id,int min_tx_rate,int max_tx_rate)1436 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate,
1437 	      int max_tx_rate)
1438 {
1439 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1440 	struct ice_vsi *vsi;
1441 	struct device *dev;
1442 	struct ice_vf *vf;
1443 	int ret;
1444 
1445 	dev = ice_pf_to_dev(pf);
1446 
1447 	vf = ice_get_vf_by_id(pf, vf_id);
1448 	if (!vf)
1449 		return -EINVAL;
1450 
1451 	ret = ice_check_vf_ready_for_cfg(vf);
1452 	if (ret)
1453 		goto out_put_vf;
1454 
1455 	vsi = ice_get_vf_vsi(vf);
1456 	if (!vsi) {
1457 		ret = -EINVAL;
1458 		goto out_put_vf;
1459 	}
1460 
1461 	if (min_tx_rate && ice_is_dcb_active(pf)) {
1462 		dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n");
1463 		ret = -EOPNOTSUPP;
1464 		goto out_put_vf;
1465 	}
1466 
1467 	if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) {
1468 		ret = -EINVAL;
1469 		goto out_put_vf;
1470 	}
1471 
1472 	if (vf->min_tx_rate != (unsigned int)min_tx_rate) {
1473 		ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000);
1474 		if (ret) {
1475 			dev_err(dev, "Unable to set min-tx-rate for VF %d\n",
1476 				vf->vf_id);
1477 			goto out_put_vf;
1478 		}
1479 
1480 		vf->min_tx_rate = min_tx_rate;
1481 	}
1482 
1483 	if (vf->max_tx_rate != (unsigned int)max_tx_rate) {
1484 		ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000);
1485 		if (ret) {
1486 			dev_err(dev, "Unable to set max-tx-rate for VF %d\n",
1487 				vf->vf_id);
1488 			goto out_put_vf;
1489 		}
1490 
1491 		vf->max_tx_rate = max_tx_rate;
1492 	}
1493 
1494 out_put_vf:
1495 	ice_put_vf(vf);
1496 	return ret;
1497 }
1498 
1499 /**
1500  * ice_get_vf_stats - populate some stats for the VF
1501  * @netdev: the netdev of the PF
1502  * @vf_id: the host OS identifier (0-255)
1503  * @vf_stats: pointer to the OS memory to be initialized
1504  */
ice_get_vf_stats(struct net_device * netdev,int vf_id,struct ifla_vf_stats * vf_stats)1505 int ice_get_vf_stats(struct net_device *netdev, int vf_id,
1506 		     struct ifla_vf_stats *vf_stats)
1507 {
1508 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1509 	struct ice_eth_stats *stats;
1510 	struct ice_vsi *vsi;
1511 	struct ice_vf *vf;
1512 	int ret;
1513 
1514 	vf = ice_get_vf_by_id(pf, vf_id);
1515 	if (!vf)
1516 		return -EINVAL;
1517 
1518 	ret = ice_check_vf_ready_for_cfg(vf);
1519 	if (ret)
1520 		goto out_put_vf;
1521 
1522 	vsi = ice_get_vf_vsi(vf);
1523 	if (!vsi) {
1524 		ret = -EINVAL;
1525 		goto out_put_vf;
1526 	}
1527 
1528 	ice_update_eth_stats(vsi);
1529 	stats = &vsi->eth_stats;
1530 
1531 	memset(vf_stats, 0, sizeof(*vf_stats));
1532 
1533 	vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
1534 		stats->rx_multicast;
1535 	vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
1536 		stats->tx_multicast;
1537 	vf_stats->rx_bytes   = stats->rx_bytes;
1538 	vf_stats->tx_bytes   = stats->tx_bytes;
1539 	vf_stats->broadcast  = stats->rx_broadcast;
1540 	vf_stats->multicast  = stats->rx_multicast;
1541 	vf_stats->rx_dropped = stats->rx_discards;
1542 	vf_stats->tx_dropped = stats->tx_discards;
1543 
1544 out_put_vf:
1545 	ice_put_vf(vf);
1546 	return ret;
1547 }
1548 
1549 /**
1550  * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported
1551  * @hw: hardware structure used to check the VLAN mode
1552  * @vlan_proto: VLAN TPID being checked
1553  *
1554  * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q
1555  * and ETH_P_8021AD are supported. If the device is configured in Single VLAN
1556  * Mode (SVM), then only ETH_P_8021Q is supported.
1557  */
1558 static bool
ice_is_supported_port_vlan_proto(struct ice_hw * hw,u16 vlan_proto)1559 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto)
1560 {
1561 	bool is_supported = false;
1562 
1563 	switch (vlan_proto) {
1564 	case ETH_P_8021Q:
1565 		is_supported = true;
1566 		break;
1567 	case ETH_P_8021AD:
1568 		if (ice_is_dvm_ena(hw))
1569 			is_supported = true;
1570 		break;
1571 	}
1572 
1573 	return is_supported;
1574 }
1575 
1576 /**
1577  * ice_set_vf_port_vlan
1578  * @netdev: network interface device structure
1579  * @vf_id: VF identifier
1580  * @vlan_id: VLAN ID being set
1581  * @qos: priority setting
1582  * @vlan_proto: VLAN protocol
1583  *
1584  * program VF Port VLAN ID and/or QoS
1585  */
1586 int
ice_set_vf_port_vlan(struct net_device * netdev,int vf_id,u16 vlan_id,u8 qos,__be16 vlan_proto)1587 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
1588 		     __be16 vlan_proto)
1589 {
1590 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1591 	u16 local_vlan_proto = ntohs(vlan_proto);
1592 	struct device *dev;
1593 	struct ice_vf *vf;
1594 	int ret;
1595 
1596 	dev = ice_pf_to_dev(pf);
1597 
1598 	if (vlan_id >= VLAN_N_VID || qos > 7) {
1599 		dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
1600 			vf_id, vlan_id, qos);
1601 		return -EINVAL;
1602 	}
1603 
1604 	if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) {
1605 		dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n",
1606 			local_vlan_proto);
1607 		return -EPROTONOSUPPORT;
1608 	}
1609 
1610 	vf = ice_get_vf_by_id(pf, vf_id);
1611 	if (!vf)
1612 		return -EINVAL;
1613 
1614 	ret = ice_check_vf_ready_for_cfg(vf);
1615 	if (ret)
1616 		goto out_put_vf;
1617 
1618 	if (ice_vf_get_port_vlan_prio(vf) == qos &&
1619 	    ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto &&
1620 	    ice_vf_get_port_vlan_id(vf) == vlan_id) {
1621 		/* duplicate request, so just return success */
1622 		dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n",
1623 			vlan_id, qos, local_vlan_proto);
1624 		ret = 0;
1625 		goto out_put_vf;
1626 	}
1627 
1628 	mutex_lock(&vf->cfg_lock);
1629 
1630 	vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos);
1631 	if (ice_vf_is_port_vlan_ena(vf))
1632 		dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n",
1633 			 vlan_id, qos, local_vlan_proto, vf_id);
1634 	else
1635 		dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
1636 
1637 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1638 	mutex_unlock(&vf->cfg_lock);
1639 
1640 out_put_vf:
1641 	ice_put_vf(vf);
1642 	return ret;
1643 }
1644 
1645 /**
1646  * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
1647  * @vf: pointer to the VF structure
1648  */
ice_print_vf_rx_mdd_event(struct ice_vf * vf)1649 void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
1650 {
1651 	struct ice_pf *pf = vf->pf;
1652 	struct device *dev;
1653 
1654 	dev = ice_pf_to_dev(pf);
1655 
1656 	dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1657 		 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
1658 		 vf->dev_lan_addr,
1659 		 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1660 			  ? "on" : "off");
1661 }
1662 
1663 /**
1664  * ice_print_vfs_mdd_events - print VFs malicious driver detect event
1665  * @pf: pointer to the PF structure
1666  *
1667  * Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
1668  */
ice_print_vfs_mdd_events(struct ice_pf * pf)1669 void ice_print_vfs_mdd_events(struct ice_pf *pf)
1670 {
1671 	struct device *dev = ice_pf_to_dev(pf);
1672 	struct ice_hw *hw = &pf->hw;
1673 	struct ice_vf *vf;
1674 	unsigned int bkt;
1675 
1676 	/* check that there are pending MDD events to print */
1677 	if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state))
1678 		return;
1679 
1680 	/* VF MDD event logs are rate limited to one second intervals */
1681 	if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1))
1682 		return;
1683 
1684 	pf->vfs.last_printed_mdd_jiffies = jiffies;
1685 
1686 	mutex_lock(&pf->vfs.table_lock);
1687 	ice_for_each_vf(pf, bkt, vf) {
1688 		/* only print Rx MDD event message if there are new events */
1689 		if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
1690 			vf->mdd_rx_events.last_printed =
1691 							vf->mdd_rx_events.count;
1692 			ice_print_vf_rx_mdd_event(vf);
1693 		}
1694 
1695 		/* only print Tx MDD event message if there are new events */
1696 		if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
1697 			vf->mdd_tx_events.last_printed =
1698 							vf->mdd_tx_events.count;
1699 
1700 			dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n",
1701 				 vf->mdd_tx_events.count, hw->pf_id, vf->vf_id,
1702 				 vf->dev_lan_addr);
1703 		}
1704 	}
1705 	mutex_unlock(&pf->vfs.table_lock);
1706 }
1707 
1708 /**
1709  * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
1710  * @pdev: pointer to a pci_dev structure
1711  *
1712  * Called when recovering from a PF FLR to restore interrupt capability to
1713  * the VFs.
1714  */
ice_restore_all_vfs_msi_state(struct pci_dev * pdev)1715 void ice_restore_all_vfs_msi_state(struct pci_dev *pdev)
1716 {
1717 	u16 vf_id;
1718 	int pos;
1719 
1720 	if (!pci_num_vf(pdev))
1721 		return;
1722 
1723 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1724 	if (pos) {
1725 		struct pci_dev *vfdev;
1726 
1727 		pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID,
1728 				     &vf_id);
1729 		vfdev = pci_get_device(pdev->vendor, vf_id, NULL);
1730 		while (vfdev) {
1731 			if (vfdev->is_virtfn && vfdev->physfn == pdev)
1732 				pci_restore_msi_state(vfdev);
1733 			vfdev = pci_get_device(pdev->vendor, vf_id,
1734 					       vfdev);
1735 		}
1736 	}
1737 }
1738