1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include <net/devlink.h>
5 #include "ice_sched.h"
6
7 /**
8 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
9 * @pi: port information structure
10 * @info: Scheduler element information from firmware
11 *
12 * This function inserts the root node of the scheduling tree topology
13 * to the SW DB.
14 */
15 static int
ice_sched_add_root_node(struct ice_port_info * pi,struct ice_aqc_txsched_elem_data * info)16 ice_sched_add_root_node(struct ice_port_info *pi,
17 struct ice_aqc_txsched_elem_data *info)
18 {
19 struct ice_sched_node *root;
20 struct ice_hw *hw;
21
22 if (!pi)
23 return -EINVAL;
24
25 hw = pi->hw;
26
27 root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL);
28 if (!root)
29 return -ENOMEM;
30
31 root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0],
32 sizeof(*root->children), GFP_KERNEL);
33 if (!root->children) {
34 devm_kfree(ice_hw_to_dev(hw), root);
35 return -ENOMEM;
36 }
37
38 memcpy(&root->info, info, sizeof(*info));
39 pi->root = root;
40 return 0;
41 }
42
43 /**
44 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
45 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
46 * @teid: node TEID to search
47 *
48 * This function searches for a node matching the TEID in the scheduling tree
49 * from the SW DB. The search is recursive and is restricted by the number of
50 * layers it has searched through; stopping at the max supported layer.
51 *
52 * This function needs to be called when holding the port_info->sched_lock
53 */
54 struct ice_sched_node *
ice_sched_find_node_by_teid(struct ice_sched_node * start_node,u32 teid)55 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
56 {
57 u16 i;
58
59 /* The TEID is same as that of the start_node */
60 if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
61 return start_node;
62
63 /* The node has no children or is at the max layer */
64 if (!start_node->num_children ||
65 start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
66 start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
67 return NULL;
68
69 /* Check if TEID matches to any of the children nodes */
70 for (i = 0; i < start_node->num_children; i++)
71 if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
72 return start_node->children[i];
73
74 /* Search within each child's sub-tree */
75 for (i = 0; i < start_node->num_children; i++) {
76 struct ice_sched_node *tmp;
77
78 tmp = ice_sched_find_node_by_teid(start_node->children[i],
79 teid);
80 if (tmp)
81 return tmp;
82 }
83
84 return NULL;
85 }
86
87 /**
88 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
89 * @hw: pointer to the HW struct
90 * @cmd_opc: cmd opcode
91 * @elems_req: number of elements to request
92 * @buf: pointer to buffer
93 * @buf_size: buffer size in bytes
94 * @elems_resp: returns total number of elements response
95 * @cd: pointer to command details structure or NULL
96 *
97 * This function sends a scheduling elements cmd (cmd_opc)
98 */
99 static int
ice_aqc_send_sched_elem_cmd(struct ice_hw * hw,enum ice_adminq_opc cmd_opc,u16 elems_req,void * buf,u16 buf_size,u16 * elems_resp,struct ice_sq_cd * cd)100 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
101 u16 elems_req, void *buf, u16 buf_size,
102 u16 *elems_resp, struct ice_sq_cd *cd)
103 {
104 struct ice_aqc_sched_elem_cmd *cmd;
105 struct ice_aq_desc desc;
106 int status;
107
108 cmd = &desc.params.sched_elem_cmd;
109 ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
110 cmd->num_elem_req = cpu_to_le16(elems_req);
111 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
112 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
113 if (!status && elems_resp)
114 *elems_resp = le16_to_cpu(cmd->num_elem_resp);
115
116 return status;
117 }
118
119 /**
120 * ice_aq_query_sched_elems - query scheduler elements
121 * @hw: pointer to the HW struct
122 * @elems_req: number of elements to query
123 * @buf: pointer to buffer
124 * @buf_size: buffer size in bytes
125 * @elems_ret: returns total number of elements returned
126 * @cd: pointer to command details structure or NULL
127 *
128 * Query scheduling elements (0x0404)
129 */
130 int
ice_aq_query_sched_elems(struct ice_hw * hw,u16 elems_req,struct ice_aqc_txsched_elem_data * buf,u16 buf_size,u16 * elems_ret,struct ice_sq_cd * cd)131 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
132 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
133 u16 *elems_ret, struct ice_sq_cd *cd)
134 {
135 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
136 elems_req, (void *)buf, buf_size,
137 elems_ret, cd);
138 }
139
140 /**
141 * ice_sched_add_node - Insert the Tx scheduler node in SW DB
142 * @pi: port information structure
143 * @layer: Scheduler layer of the node
144 * @info: Scheduler element information from firmware
145 * @prealloc_node: preallocated ice_sched_node struct for SW DB
146 *
147 * This function inserts a scheduler node to the SW DB.
148 */
149 int
ice_sched_add_node(struct ice_port_info * pi,u8 layer,struct ice_aqc_txsched_elem_data * info,struct ice_sched_node * prealloc_node)150 ice_sched_add_node(struct ice_port_info *pi, u8 layer,
151 struct ice_aqc_txsched_elem_data *info,
152 struct ice_sched_node *prealloc_node)
153 {
154 struct ice_aqc_txsched_elem_data elem;
155 struct ice_sched_node *parent;
156 struct ice_sched_node *node;
157 struct ice_hw *hw;
158 int status;
159
160 if (!pi)
161 return -EINVAL;
162
163 hw = pi->hw;
164
165 /* A valid parent node should be there */
166 parent = ice_sched_find_node_by_teid(pi->root,
167 le32_to_cpu(info->parent_teid));
168 if (!parent) {
169 ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n",
170 le32_to_cpu(info->parent_teid));
171 return -EINVAL;
172 }
173
174 /* query the current node information from FW before adding it
175 * to the SW DB
176 */
177 status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem);
178 if (status)
179 return status;
180
181 if (prealloc_node)
182 node = prealloc_node;
183 else
184 node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL);
185 if (!node)
186 return -ENOMEM;
187 if (hw->max_children[layer]) {
188 node->children = devm_kcalloc(ice_hw_to_dev(hw),
189 hw->max_children[layer],
190 sizeof(*node->children), GFP_KERNEL);
191 if (!node->children) {
192 devm_kfree(ice_hw_to_dev(hw), node);
193 return -ENOMEM;
194 }
195 }
196
197 node->in_use = true;
198 node->parent = parent;
199 node->tx_sched_layer = layer;
200 parent->children[parent->num_children++] = node;
201 node->info = elem;
202 return 0;
203 }
204
205 /**
206 * ice_aq_delete_sched_elems - delete scheduler elements
207 * @hw: pointer to the HW struct
208 * @grps_req: number of groups to delete
209 * @buf: pointer to buffer
210 * @buf_size: buffer size in bytes
211 * @grps_del: returns total number of elements deleted
212 * @cd: pointer to command details structure or NULL
213 *
214 * Delete scheduling elements (0x040F)
215 */
216 static int
ice_aq_delete_sched_elems(struct ice_hw * hw,u16 grps_req,struct ice_aqc_delete_elem * buf,u16 buf_size,u16 * grps_del,struct ice_sq_cd * cd)217 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
218 struct ice_aqc_delete_elem *buf, u16 buf_size,
219 u16 *grps_del, struct ice_sq_cd *cd)
220 {
221 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
222 grps_req, (void *)buf, buf_size,
223 grps_del, cd);
224 }
225
226 /**
227 * ice_sched_remove_elems - remove nodes from HW
228 * @hw: pointer to the HW struct
229 * @parent: pointer to the parent node
230 * @num_nodes: number of nodes
231 * @node_teids: array of node teids to be deleted
232 *
233 * This function remove nodes from HW
234 */
235 static int
ice_sched_remove_elems(struct ice_hw * hw,struct ice_sched_node * parent,u16 num_nodes,u32 * node_teids)236 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
237 u16 num_nodes, u32 *node_teids)
238 {
239 struct ice_aqc_delete_elem *buf;
240 u16 i, num_groups_removed = 0;
241 u16 buf_size;
242 int status;
243
244 buf_size = struct_size(buf, teid, num_nodes);
245 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
246 if (!buf)
247 return -ENOMEM;
248
249 buf->hdr.parent_teid = parent->info.node_teid;
250 buf->hdr.num_elems = cpu_to_le16(num_nodes);
251 for (i = 0; i < num_nodes; i++)
252 buf->teid[i] = cpu_to_le32(node_teids[i]);
253
254 status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
255 &num_groups_removed, NULL);
256 if (status || num_groups_removed != 1)
257 ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
258 hw->adminq.sq_last_status);
259
260 devm_kfree(ice_hw_to_dev(hw), buf);
261 return status;
262 }
263
264 /**
265 * ice_sched_get_first_node - get the first node of the given layer
266 * @pi: port information structure
267 * @parent: pointer the base node of the subtree
268 * @layer: layer number
269 *
270 * This function retrieves the first node of the given layer from the subtree
271 */
272 static struct ice_sched_node *
ice_sched_get_first_node(struct ice_port_info * pi,struct ice_sched_node * parent,u8 layer)273 ice_sched_get_first_node(struct ice_port_info *pi,
274 struct ice_sched_node *parent, u8 layer)
275 {
276 return pi->sib_head[parent->tc_num][layer];
277 }
278
279 /**
280 * ice_sched_get_tc_node - get pointer to TC node
281 * @pi: port information structure
282 * @tc: TC number
283 *
284 * This function returns the TC node pointer
285 */
ice_sched_get_tc_node(struct ice_port_info * pi,u8 tc)286 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
287 {
288 u8 i;
289
290 if (!pi || !pi->root)
291 return NULL;
292 for (i = 0; i < pi->root->num_children; i++)
293 if (pi->root->children[i]->tc_num == tc)
294 return pi->root->children[i];
295 return NULL;
296 }
297
298 /**
299 * ice_free_sched_node - Free a Tx scheduler node from SW DB
300 * @pi: port information structure
301 * @node: pointer to the ice_sched_node struct
302 *
303 * This function frees up a node from SW DB as well as from HW
304 *
305 * This function needs to be called with the port_info->sched_lock held
306 */
ice_free_sched_node(struct ice_port_info * pi,struct ice_sched_node * node)307 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
308 {
309 struct ice_sched_node *parent;
310 struct ice_hw *hw = pi->hw;
311 u8 i, j;
312
313 /* Free the children before freeing up the parent node
314 * The parent array is updated below and that shifts the nodes
315 * in the array. So always pick the first child if num children > 0
316 */
317 while (node->num_children)
318 ice_free_sched_node(pi, node->children[0]);
319
320 /* Leaf, TC and root nodes can't be deleted by SW */
321 if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
322 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
323 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
324 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
325 u32 teid = le32_to_cpu(node->info.node_teid);
326
327 ice_sched_remove_elems(hw, node->parent, 1, &teid);
328 }
329 parent = node->parent;
330 /* root has no parent */
331 if (parent) {
332 struct ice_sched_node *p;
333
334 /* update the parent */
335 for (i = 0; i < parent->num_children; i++)
336 if (parent->children[i] == node) {
337 for (j = i + 1; j < parent->num_children; j++)
338 parent->children[j - 1] =
339 parent->children[j];
340 parent->num_children--;
341 break;
342 }
343
344 p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
345 while (p) {
346 if (p->sibling == node) {
347 p->sibling = node->sibling;
348 break;
349 }
350 p = p->sibling;
351 }
352
353 /* update the sibling head if head is getting removed */
354 if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
355 pi->sib_head[node->tc_num][node->tx_sched_layer] =
356 node->sibling;
357 }
358
359 devm_kfree(ice_hw_to_dev(hw), node->children);
360 kfree(node->name);
361 xa_erase(&pi->sched_node_ids, node->id);
362 devm_kfree(ice_hw_to_dev(hw), node);
363 }
364
365 /**
366 * ice_aq_get_dflt_topo - gets default scheduler topology
367 * @hw: pointer to the HW struct
368 * @lport: logical port number
369 * @buf: pointer to buffer
370 * @buf_size: buffer size in bytes
371 * @num_branches: returns total number of queue to port branches
372 * @cd: pointer to command details structure or NULL
373 *
374 * Get default scheduler topology (0x400)
375 */
376 static int
ice_aq_get_dflt_topo(struct ice_hw * hw,u8 lport,struct ice_aqc_get_topo_elem * buf,u16 buf_size,u8 * num_branches,struct ice_sq_cd * cd)377 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
378 struct ice_aqc_get_topo_elem *buf, u16 buf_size,
379 u8 *num_branches, struct ice_sq_cd *cd)
380 {
381 struct ice_aqc_get_topo *cmd;
382 struct ice_aq_desc desc;
383 int status;
384
385 cmd = &desc.params.get_topo;
386 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
387 cmd->port_num = lport;
388 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
389 if (!status && num_branches)
390 *num_branches = cmd->num_branches;
391
392 return status;
393 }
394
395 /**
396 * ice_aq_add_sched_elems - adds scheduling element
397 * @hw: pointer to the HW struct
398 * @grps_req: the number of groups that are requested to be added
399 * @buf: pointer to buffer
400 * @buf_size: buffer size in bytes
401 * @grps_added: returns total number of groups added
402 * @cd: pointer to command details structure or NULL
403 *
404 * Add scheduling elements (0x0401)
405 */
406 static int
ice_aq_add_sched_elems(struct ice_hw * hw,u16 grps_req,struct ice_aqc_add_elem * buf,u16 buf_size,u16 * grps_added,struct ice_sq_cd * cd)407 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
408 struct ice_aqc_add_elem *buf, u16 buf_size,
409 u16 *grps_added, struct ice_sq_cd *cd)
410 {
411 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
412 grps_req, (void *)buf, buf_size,
413 grps_added, cd);
414 }
415
416 /**
417 * ice_aq_cfg_sched_elems - configures scheduler elements
418 * @hw: pointer to the HW struct
419 * @elems_req: number of elements to configure
420 * @buf: pointer to buffer
421 * @buf_size: buffer size in bytes
422 * @elems_cfgd: returns total number of elements configured
423 * @cd: pointer to command details structure or NULL
424 *
425 * Configure scheduling elements (0x0403)
426 */
427 static int
ice_aq_cfg_sched_elems(struct ice_hw * hw,u16 elems_req,struct ice_aqc_txsched_elem_data * buf,u16 buf_size,u16 * elems_cfgd,struct ice_sq_cd * cd)428 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
429 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
430 u16 *elems_cfgd, struct ice_sq_cd *cd)
431 {
432 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
433 elems_req, (void *)buf, buf_size,
434 elems_cfgd, cd);
435 }
436
437 /**
438 * ice_aq_move_sched_elems - move scheduler elements
439 * @hw: pointer to the HW struct
440 * @grps_req: number of groups to move
441 * @buf: pointer to buffer
442 * @buf_size: buffer size in bytes
443 * @grps_movd: returns total number of groups moved
444 * @cd: pointer to command details structure or NULL
445 *
446 * Move scheduling elements (0x0408)
447 */
448 int
ice_aq_move_sched_elems(struct ice_hw * hw,u16 grps_req,struct ice_aqc_move_elem * buf,u16 buf_size,u16 * grps_movd,struct ice_sq_cd * cd)449 ice_aq_move_sched_elems(struct ice_hw *hw, u16 grps_req,
450 struct ice_aqc_move_elem *buf, u16 buf_size,
451 u16 *grps_movd, struct ice_sq_cd *cd)
452 {
453 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems,
454 grps_req, (void *)buf, buf_size,
455 grps_movd, cd);
456 }
457
458 /**
459 * ice_aq_suspend_sched_elems - suspend scheduler elements
460 * @hw: pointer to the HW struct
461 * @elems_req: number of elements to suspend
462 * @buf: pointer to buffer
463 * @buf_size: buffer size in bytes
464 * @elems_ret: returns total number of elements suspended
465 * @cd: pointer to command details structure or NULL
466 *
467 * Suspend scheduling elements (0x0409)
468 */
469 static int
ice_aq_suspend_sched_elems(struct ice_hw * hw,u16 elems_req,__le32 * buf,u16 buf_size,u16 * elems_ret,struct ice_sq_cd * cd)470 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
471 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
472 {
473 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
474 elems_req, (void *)buf, buf_size,
475 elems_ret, cd);
476 }
477
478 /**
479 * ice_aq_resume_sched_elems - resume scheduler elements
480 * @hw: pointer to the HW struct
481 * @elems_req: number of elements to resume
482 * @buf: pointer to buffer
483 * @buf_size: buffer size in bytes
484 * @elems_ret: returns total number of elements resumed
485 * @cd: pointer to command details structure or NULL
486 *
487 * resume scheduling elements (0x040A)
488 */
489 static int
ice_aq_resume_sched_elems(struct ice_hw * hw,u16 elems_req,__le32 * buf,u16 buf_size,u16 * elems_ret,struct ice_sq_cd * cd)490 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
491 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
492 {
493 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
494 elems_req, (void *)buf, buf_size,
495 elems_ret, cd);
496 }
497
498 /**
499 * ice_aq_query_sched_res - query scheduler resource
500 * @hw: pointer to the HW struct
501 * @buf_size: buffer size in bytes
502 * @buf: pointer to buffer
503 * @cd: pointer to command details structure or NULL
504 *
505 * Query scheduler resource allocation (0x0412)
506 */
507 static int
ice_aq_query_sched_res(struct ice_hw * hw,u16 buf_size,struct ice_aqc_query_txsched_res_resp * buf,struct ice_sq_cd * cd)508 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
509 struct ice_aqc_query_txsched_res_resp *buf,
510 struct ice_sq_cd *cd)
511 {
512 struct ice_aq_desc desc;
513
514 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
515 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
516 }
517
518 /**
519 * ice_sched_suspend_resume_elems - suspend or resume HW nodes
520 * @hw: pointer to the HW struct
521 * @num_nodes: number of nodes
522 * @node_teids: array of node teids to be suspended or resumed
523 * @suspend: true means suspend / false means resume
524 *
525 * This function suspends or resumes HW nodes
526 */
527 int
ice_sched_suspend_resume_elems(struct ice_hw * hw,u8 num_nodes,u32 * node_teids,bool suspend)528 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
529 bool suspend)
530 {
531 u16 i, buf_size, num_elem_ret = 0;
532 __le32 *buf;
533 int status;
534
535 buf_size = sizeof(*buf) * num_nodes;
536 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
537 if (!buf)
538 return -ENOMEM;
539
540 for (i = 0; i < num_nodes; i++)
541 buf[i] = cpu_to_le32(node_teids[i]);
542
543 if (suspend)
544 status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
545 buf_size, &num_elem_ret,
546 NULL);
547 else
548 status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
549 buf_size, &num_elem_ret,
550 NULL);
551 if (status || num_elem_ret != num_nodes)
552 ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
553
554 devm_kfree(ice_hw_to_dev(hw), buf);
555 return status;
556 }
557
558 /**
559 * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
560 * @hw: pointer to the HW struct
561 * @vsi_handle: VSI handle
562 * @tc: TC number
563 * @new_numqs: number of queues
564 */
565 static int
ice_alloc_lan_q_ctx(struct ice_hw * hw,u16 vsi_handle,u8 tc,u16 new_numqs)566 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
567 {
568 struct ice_vsi_ctx *vsi_ctx;
569 struct ice_q_ctx *q_ctx;
570 u16 idx;
571
572 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
573 if (!vsi_ctx)
574 return -EINVAL;
575 /* allocate LAN queue contexts */
576 if (!vsi_ctx->lan_q_ctx[tc]) {
577 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
578 sizeof(*q_ctx), GFP_KERNEL);
579 if (!q_ctx)
580 return -ENOMEM;
581
582 for (idx = 0; idx < new_numqs; idx++) {
583 q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE;
584 q_ctx[idx].q_teid = ICE_INVAL_TEID;
585 }
586
587 vsi_ctx->lan_q_ctx[tc] = q_ctx;
588 vsi_ctx->num_lan_q_entries[tc] = new_numqs;
589 return 0;
590 }
591 /* num queues are increased, update the queue contexts */
592 if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
593 u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
594
595 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
596 sizeof(*q_ctx), GFP_KERNEL);
597 if (!q_ctx)
598 return -ENOMEM;
599
600 memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
601 prev_num * sizeof(*q_ctx));
602 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]);
603
604 for (idx = prev_num; idx < new_numqs; idx++) {
605 q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE;
606 q_ctx[idx].q_teid = ICE_INVAL_TEID;
607 }
608
609 vsi_ctx->lan_q_ctx[tc] = q_ctx;
610 vsi_ctx->num_lan_q_entries[tc] = new_numqs;
611 }
612 return 0;
613 }
614
615 /**
616 * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC
617 * @hw: pointer to the HW struct
618 * @vsi_handle: VSI handle
619 * @tc: TC number
620 * @new_numqs: number of queues
621 */
622 static int
ice_alloc_rdma_q_ctx(struct ice_hw * hw,u16 vsi_handle,u8 tc,u16 new_numqs)623 ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
624 {
625 struct ice_vsi_ctx *vsi_ctx;
626 struct ice_q_ctx *q_ctx;
627
628 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
629 if (!vsi_ctx)
630 return -EINVAL;
631 /* allocate RDMA queue contexts */
632 if (!vsi_ctx->rdma_q_ctx[tc]) {
633 vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
634 new_numqs,
635 sizeof(*q_ctx),
636 GFP_KERNEL);
637 if (!vsi_ctx->rdma_q_ctx[tc])
638 return -ENOMEM;
639 vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
640 return 0;
641 }
642 /* num queues are increased, update the queue contexts */
643 if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) {
644 u16 prev_num = vsi_ctx->num_rdma_q_entries[tc];
645
646 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
647 sizeof(*q_ctx), GFP_KERNEL);
648 if (!q_ctx)
649 return -ENOMEM;
650 memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc],
651 prev_num * sizeof(*q_ctx));
652 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->rdma_q_ctx[tc]);
653 vsi_ctx->rdma_q_ctx[tc] = q_ctx;
654 vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
655 }
656 return 0;
657 }
658
659 /**
660 * ice_aq_rl_profile - performs a rate limiting task
661 * @hw: pointer to the HW struct
662 * @opcode: opcode for add, query, or remove profile(s)
663 * @num_profiles: the number of profiles
664 * @buf: pointer to buffer
665 * @buf_size: buffer size in bytes
666 * @num_processed: number of processed add or remove profile(s) to return
667 * @cd: pointer to command details structure
668 *
669 * RL profile function to add, query, or remove profile(s)
670 */
671 static int
ice_aq_rl_profile(struct ice_hw * hw,enum ice_adminq_opc opcode,u16 num_profiles,struct ice_aqc_rl_profile_elem * buf,u16 buf_size,u16 * num_processed,struct ice_sq_cd * cd)672 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
673 u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
674 u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
675 {
676 struct ice_aqc_rl_profile *cmd;
677 struct ice_aq_desc desc;
678 int status;
679
680 cmd = &desc.params.rl_profile;
681
682 ice_fill_dflt_direct_cmd_desc(&desc, opcode);
683 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
684 cmd->num_profiles = cpu_to_le16(num_profiles);
685 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
686 if (!status && num_processed)
687 *num_processed = le16_to_cpu(cmd->num_processed);
688 return status;
689 }
690
691 /**
692 * ice_aq_add_rl_profile - adds rate limiting profile(s)
693 * @hw: pointer to the HW struct
694 * @num_profiles: the number of profile(s) to be add
695 * @buf: pointer to buffer
696 * @buf_size: buffer size in bytes
697 * @num_profiles_added: total number of profiles added to return
698 * @cd: pointer to command details structure
699 *
700 * Add RL profile (0x0410)
701 */
702 static int
ice_aq_add_rl_profile(struct ice_hw * hw,u16 num_profiles,struct ice_aqc_rl_profile_elem * buf,u16 buf_size,u16 * num_profiles_added,struct ice_sq_cd * cd)703 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
704 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
705 u16 *num_profiles_added, struct ice_sq_cd *cd)
706 {
707 return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
708 buf, buf_size, num_profiles_added, cd);
709 }
710
711 /**
712 * ice_aq_remove_rl_profile - removes RL profile(s)
713 * @hw: pointer to the HW struct
714 * @num_profiles: the number of profile(s) to remove
715 * @buf: pointer to buffer
716 * @buf_size: buffer size in bytes
717 * @num_profiles_removed: total number of profiles removed to return
718 * @cd: pointer to command details structure or NULL
719 *
720 * Remove RL profile (0x0415)
721 */
722 static int
ice_aq_remove_rl_profile(struct ice_hw * hw,u16 num_profiles,struct ice_aqc_rl_profile_elem * buf,u16 buf_size,u16 * num_profiles_removed,struct ice_sq_cd * cd)723 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
724 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
725 u16 *num_profiles_removed, struct ice_sq_cd *cd)
726 {
727 return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
728 num_profiles, buf, buf_size,
729 num_profiles_removed, cd);
730 }
731
732 /**
733 * ice_sched_del_rl_profile - remove RL profile
734 * @hw: pointer to the HW struct
735 * @rl_info: rate limit profile information
736 *
737 * If the profile ID is not referenced anymore, it removes profile ID with
738 * its associated parameters from HW DB,and locally. The caller needs to
739 * hold scheduler lock.
740 */
741 static int
ice_sched_del_rl_profile(struct ice_hw * hw,struct ice_aqc_rl_profile_info * rl_info)742 ice_sched_del_rl_profile(struct ice_hw *hw,
743 struct ice_aqc_rl_profile_info *rl_info)
744 {
745 struct ice_aqc_rl_profile_elem *buf;
746 u16 num_profiles_removed;
747 u16 num_profiles = 1;
748 int status;
749
750 if (rl_info->prof_id_ref != 0)
751 return -EBUSY;
752
753 /* Safe to remove profile ID */
754 buf = &rl_info->profile;
755 status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
756 &num_profiles_removed, NULL);
757 if (status || num_profiles_removed != num_profiles)
758 return -EIO;
759
760 /* Delete stale entry now */
761 list_del(&rl_info->list_entry);
762 devm_kfree(ice_hw_to_dev(hw), rl_info);
763 return status;
764 }
765
766 /**
767 * ice_sched_clear_rl_prof - clears RL prof entries
768 * @pi: port information structure
769 *
770 * This function removes all RL profile from HW as well as from SW DB.
771 */
ice_sched_clear_rl_prof(struct ice_port_info * pi)772 static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
773 {
774 u16 ln;
775
776 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
777 struct ice_aqc_rl_profile_info *rl_prof_elem;
778 struct ice_aqc_rl_profile_info *rl_prof_tmp;
779
780 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
781 &pi->rl_prof_list[ln], list_entry) {
782 struct ice_hw *hw = pi->hw;
783 int status;
784
785 rl_prof_elem->prof_id_ref = 0;
786 status = ice_sched_del_rl_profile(hw, rl_prof_elem);
787 if (status) {
788 ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
789 /* On error, free mem required */
790 list_del(&rl_prof_elem->list_entry);
791 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
792 }
793 }
794 }
795 }
796
797 /**
798 * ice_sched_clear_agg - clears the aggregator related information
799 * @hw: pointer to the hardware structure
800 *
801 * This function removes aggregator list and free up aggregator related memory
802 * previously allocated.
803 */
ice_sched_clear_agg(struct ice_hw * hw)804 void ice_sched_clear_agg(struct ice_hw *hw)
805 {
806 struct ice_sched_agg_info *agg_info;
807 struct ice_sched_agg_info *atmp;
808
809 list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) {
810 struct ice_sched_agg_vsi_info *agg_vsi_info;
811 struct ice_sched_agg_vsi_info *vtmp;
812
813 list_for_each_entry_safe(agg_vsi_info, vtmp,
814 &agg_info->agg_vsi_list, list_entry) {
815 list_del(&agg_vsi_info->list_entry);
816 devm_kfree(ice_hw_to_dev(hw), agg_vsi_info);
817 }
818 list_del(&agg_info->list_entry);
819 devm_kfree(ice_hw_to_dev(hw), agg_info);
820 }
821 }
822
823 /**
824 * ice_sched_clear_tx_topo - clears the scheduler tree nodes
825 * @pi: port information structure
826 *
827 * This function removes all the nodes from HW as well as from SW DB.
828 */
ice_sched_clear_tx_topo(struct ice_port_info * pi)829 static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
830 {
831 if (!pi)
832 return;
833 /* remove RL profiles related lists */
834 ice_sched_clear_rl_prof(pi);
835 if (pi->root) {
836 ice_free_sched_node(pi, pi->root);
837 pi->root = NULL;
838 }
839 }
840
841 /**
842 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
843 * @pi: port information structure
844 *
845 * Cleanup scheduling elements from SW DB
846 */
ice_sched_clear_port(struct ice_port_info * pi)847 void ice_sched_clear_port(struct ice_port_info *pi)
848 {
849 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
850 return;
851
852 pi->port_state = ICE_SCHED_PORT_STATE_INIT;
853 mutex_lock(&pi->sched_lock);
854 ice_sched_clear_tx_topo(pi);
855 mutex_unlock(&pi->sched_lock);
856 mutex_destroy(&pi->sched_lock);
857 }
858
859 /**
860 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
861 * @hw: pointer to the HW struct
862 *
863 * Cleanup scheduling elements from SW DB for all the ports
864 */
ice_sched_cleanup_all(struct ice_hw * hw)865 void ice_sched_cleanup_all(struct ice_hw *hw)
866 {
867 if (!hw)
868 return;
869
870 devm_kfree(ice_hw_to_dev(hw), hw->layer_info);
871 hw->layer_info = NULL;
872
873 ice_sched_clear_port(hw->port_info);
874
875 hw->num_tx_sched_layers = 0;
876 hw->num_tx_sched_phys_layers = 0;
877 hw->flattened_layers = 0;
878 hw->max_cgds = 0;
879 }
880
881 /**
882 * ice_sched_add_elems - add nodes to HW and SW DB
883 * @pi: port information structure
884 * @tc_node: pointer to the branch node
885 * @parent: pointer to the parent node
886 * @layer: layer number to add nodes
887 * @num_nodes: number of nodes
888 * @num_nodes_added: pointer to num nodes added
889 * @first_node_teid: if new nodes are added then return the TEID of first node
890 * @prealloc_nodes: preallocated nodes struct for software DB
891 *
892 * This function add nodes to HW as well as to SW DB for a given layer
893 */
894 int
ice_sched_add_elems(struct ice_port_info * pi,struct ice_sched_node * tc_node,struct ice_sched_node * parent,u8 layer,u16 num_nodes,u16 * num_nodes_added,u32 * first_node_teid,struct ice_sched_node ** prealloc_nodes)895 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
896 struct ice_sched_node *parent, u8 layer, u16 num_nodes,
897 u16 *num_nodes_added, u32 *first_node_teid,
898 struct ice_sched_node **prealloc_nodes)
899 {
900 struct ice_sched_node *prev, *new_node;
901 struct ice_aqc_add_elem *buf;
902 u16 i, num_groups_added = 0;
903 struct ice_hw *hw = pi->hw;
904 size_t buf_size;
905 int status = 0;
906 u32 teid;
907
908 buf_size = struct_size(buf, generic, num_nodes);
909 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
910 if (!buf)
911 return -ENOMEM;
912
913 buf->hdr.parent_teid = parent->info.node_teid;
914 buf->hdr.num_elems = cpu_to_le16(num_nodes);
915 for (i = 0; i < num_nodes; i++) {
916 buf->generic[i].parent_teid = parent->info.node_teid;
917 buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
918 buf->generic[i].data.valid_sections =
919 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
920 ICE_AQC_ELEM_VALID_EIR;
921 buf->generic[i].data.generic = 0;
922 buf->generic[i].data.cir_bw.bw_profile_idx =
923 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
924 buf->generic[i].data.cir_bw.bw_alloc =
925 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
926 buf->generic[i].data.eir_bw.bw_profile_idx =
927 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
928 buf->generic[i].data.eir_bw.bw_alloc =
929 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
930 }
931
932 status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
933 &num_groups_added, NULL);
934 if (status || num_groups_added != 1) {
935 ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
936 hw->adminq.sq_last_status);
937 devm_kfree(ice_hw_to_dev(hw), buf);
938 return -EIO;
939 }
940
941 *num_nodes_added = num_nodes;
942 /* add nodes to the SW DB */
943 for (i = 0; i < num_nodes; i++) {
944 if (prealloc_nodes)
945 status = ice_sched_add_node(pi, layer, &buf->generic[i], prealloc_nodes[i]);
946 else
947 status = ice_sched_add_node(pi, layer, &buf->generic[i], NULL);
948
949 if (status) {
950 ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n",
951 status);
952 break;
953 }
954
955 teid = le32_to_cpu(buf->generic[i].node_teid);
956 new_node = ice_sched_find_node_by_teid(parent, teid);
957 if (!new_node) {
958 ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid);
959 break;
960 }
961
962 new_node->sibling = NULL;
963 new_node->tc_num = tc_node->tc_num;
964 new_node->tx_weight = ICE_SCHED_DFLT_BW_WT;
965 new_node->tx_share = ICE_SCHED_DFLT_BW;
966 new_node->tx_max = ICE_SCHED_DFLT_BW;
967 new_node->name = kzalloc(SCHED_NODE_NAME_MAX_LEN, GFP_KERNEL);
968 if (!new_node->name)
969 return -ENOMEM;
970
971 status = xa_alloc(&pi->sched_node_ids, &new_node->id, NULL, XA_LIMIT(0, UINT_MAX),
972 GFP_KERNEL);
973 if (status) {
974 ice_debug(hw, ICE_DBG_SCHED, "xa_alloc failed for sched node status =%d\n",
975 status);
976 break;
977 }
978
979 snprintf(new_node->name, SCHED_NODE_NAME_MAX_LEN, "node_%u", new_node->id);
980
981 /* add it to previous node sibling pointer */
982 /* Note: siblings are not linked across branches */
983 prev = ice_sched_get_first_node(pi, tc_node, layer);
984 if (prev && prev != new_node) {
985 while (prev->sibling)
986 prev = prev->sibling;
987 prev->sibling = new_node;
988 }
989
990 /* initialize the sibling head */
991 if (!pi->sib_head[tc_node->tc_num][layer])
992 pi->sib_head[tc_node->tc_num][layer] = new_node;
993
994 if (i == 0)
995 *first_node_teid = teid;
996 }
997
998 devm_kfree(ice_hw_to_dev(hw), buf);
999 return status;
1000 }
1001
1002 /**
1003 * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer
1004 * @pi: port information structure
1005 * @tc_node: pointer to TC node
1006 * @parent: pointer to parent node
1007 * @layer: layer number to add nodes
1008 * @num_nodes: number of nodes to be added
1009 * @first_node_teid: pointer to the first node TEID
1010 * @num_nodes_added: pointer to number of nodes added
1011 *
1012 * Add nodes into specific HW layer.
1013 */
1014 static int
ice_sched_add_nodes_to_hw_layer(struct ice_port_info * pi,struct ice_sched_node * tc_node,struct ice_sched_node * parent,u8 layer,u16 num_nodes,u32 * first_node_teid,u16 * num_nodes_added)1015 ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi,
1016 struct ice_sched_node *tc_node,
1017 struct ice_sched_node *parent, u8 layer,
1018 u16 num_nodes, u32 *first_node_teid,
1019 u16 *num_nodes_added)
1020 {
1021 u16 max_child_nodes;
1022
1023 *num_nodes_added = 0;
1024
1025 if (!num_nodes)
1026 return 0;
1027
1028 if (!parent || layer < pi->hw->sw_entry_point_layer)
1029 return -EINVAL;
1030
1031 /* max children per node per layer */
1032 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1033
1034 /* current number of children + required nodes exceed max children */
1035 if ((parent->num_children + num_nodes) > max_child_nodes) {
1036 /* Fail if the parent is a TC node */
1037 if (parent == tc_node)
1038 return -EIO;
1039 return -ENOSPC;
1040 }
1041
1042 return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
1043 num_nodes_added, first_node_teid, NULL);
1044 }
1045
1046 /**
1047 * ice_sched_add_nodes_to_layer - Add nodes to a given layer
1048 * @pi: port information structure
1049 * @tc_node: pointer to TC node
1050 * @parent: pointer to parent node
1051 * @layer: layer number to add nodes
1052 * @num_nodes: number of nodes to be added
1053 * @first_node_teid: pointer to the first node TEID
1054 * @num_nodes_added: pointer to number of nodes added
1055 *
1056 * This function add nodes to a given layer.
1057 */
1058 int
ice_sched_add_nodes_to_layer(struct ice_port_info * pi,struct ice_sched_node * tc_node,struct ice_sched_node * parent,u8 layer,u16 num_nodes,u32 * first_node_teid,u16 * num_nodes_added)1059 ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
1060 struct ice_sched_node *tc_node,
1061 struct ice_sched_node *parent, u8 layer,
1062 u16 num_nodes, u32 *first_node_teid,
1063 u16 *num_nodes_added)
1064 {
1065 u32 *first_teid_ptr = first_node_teid;
1066 u16 new_num_nodes = num_nodes;
1067 int status = 0;
1068
1069 *num_nodes_added = 0;
1070 while (*num_nodes_added < num_nodes) {
1071 u16 max_child_nodes, num_added = 0;
1072 u32 temp;
1073
1074 status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent,
1075 layer, new_num_nodes,
1076 first_teid_ptr,
1077 &num_added);
1078 if (!status)
1079 *num_nodes_added += num_added;
1080 /* added more nodes than requested ? */
1081 if (*num_nodes_added > num_nodes) {
1082 ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes,
1083 *num_nodes_added);
1084 status = -EIO;
1085 break;
1086 }
1087 /* break if all the nodes are added successfully */
1088 if (!status && (*num_nodes_added == num_nodes))
1089 break;
1090 /* break if the error is not max limit */
1091 if (status && status != -ENOSPC)
1092 break;
1093 /* Exceeded the max children */
1094 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1095 /* utilize all the spaces if the parent is not full */
1096 if (parent->num_children < max_child_nodes) {
1097 new_num_nodes = max_child_nodes - parent->num_children;
1098 } else {
1099 /* This parent is full, try the next sibling */
1100 parent = parent->sibling;
1101 /* Don't modify the first node TEID memory if the
1102 * first node was added already in the above call.
1103 * Instead send some temp memory for all other
1104 * recursive calls.
1105 */
1106 if (num_added)
1107 first_teid_ptr = &temp;
1108
1109 new_num_nodes = num_nodes - *num_nodes_added;
1110 }
1111 }
1112 return status;
1113 }
1114
1115 /**
1116 * ice_sched_get_qgrp_layer - get the current queue group layer number
1117 * @hw: pointer to the HW struct
1118 *
1119 * This function returns the current queue group layer number
1120 */
ice_sched_get_qgrp_layer(struct ice_hw * hw)1121 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1122 {
1123 /* It's always total layers - 1, the array is 0 relative so -2 */
1124 return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1125 }
1126
1127 /**
1128 * ice_sched_get_vsi_layer - get the current VSI layer number
1129 * @hw: pointer to the HW struct
1130 *
1131 * This function returns the current VSI layer number
1132 */
ice_sched_get_vsi_layer(struct ice_hw * hw)1133 u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1134 {
1135 /* Num Layers VSI layer
1136 * 9 6
1137 * 7 4
1138 * 5 or less sw_entry_point_layer
1139 */
1140 /* calculate the VSI layer based on number of layers. */
1141 if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) {
1142 u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1143
1144 if (layer > hw->sw_entry_point_layer)
1145 return layer;
1146 }
1147 return hw->sw_entry_point_layer;
1148 }
1149
1150 /**
1151 * ice_sched_get_agg_layer - get the current aggregator layer number
1152 * @hw: pointer to the HW struct
1153 *
1154 * This function returns the current aggregator layer number
1155 */
ice_sched_get_agg_layer(struct ice_hw * hw)1156 u8 ice_sched_get_agg_layer(struct ice_hw *hw)
1157 {
1158 /* Num Layers aggregator layer
1159 * 9 4
1160 * 7 or less sw_entry_point_layer
1161 */
1162 /* calculate the aggregator layer based on number of layers. */
1163 if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) {
1164 u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET;
1165
1166 if (layer > hw->sw_entry_point_layer)
1167 return layer;
1168 }
1169 return hw->sw_entry_point_layer;
1170 }
1171
1172 /**
1173 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1174 * @pi: port information structure
1175 *
1176 * This function removes the leaf node that was created by the FW
1177 * during initialization
1178 */
ice_rm_dflt_leaf_node(struct ice_port_info * pi)1179 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1180 {
1181 struct ice_sched_node *node;
1182
1183 node = pi->root;
1184 while (node) {
1185 if (!node->num_children)
1186 break;
1187 node = node->children[0];
1188 }
1189 if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1190 u32 teid = le32_to_cpu(node->info.node_teid);
1191 int status;
1192
1193 /* remove the default leaf node */
1194 status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid);
1195 if (!status)
1196 ice_free_sched_node(pi, node);
1197 }
1198 }
1199
1200 /**
1201 * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1202 * @pi: port information structure
1203 *
1204 * This function frees all the nodes except root and TC that were created by
1205 * the FW during initialization
1206 */
ice_sched_rm_dflt_nodes(struct ice_port_info * pi)1207 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1208 {
1209 struct ice_sched_node *node;
1210
1211 ice_rm_dflt_leaf_node(pi);
1212
1213 /* remove the default nodes except TC and root nodes */
1214 node = pi->root;
1215 while (node) {
1216 if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1217 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1218 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1219 ice_free_sched_node(pi, node);
1220 break;
1221 }
1222
1223 if (!node->num_children)
1224 break;
1225 node = node->children[0];
1226 }
1227 }
1228
1229 /**
1230 * ice_sched_init_port - Initialize scheduler by querying information from FW
1231 * @pi: port info structure for the tree to cleanup
1232 *
1233 * This function is the initial call to find the total number of Tx scheduler
1234 * resources, default topology created by firmware and storing the information
1235 * in SW DB.
1236 */
ice_sched_init_port(struct ice_port_info * pi)1237 int ice_sched_init_port(struct ice_port_info *pi)
1238 {
1239 struct ice_aqc_get_topo_elem *buf;
1240 struct ice_hw *hw;
1241 u8 num_branches;
1242 u16 num_elems;
1243 int status;
1244 u8 i, j;
1245
1246 if (!pi)
1247 return -EINVAL;
1248 hw = pi->hw;
1249
1250 /* Query the Default Topology from FW */
1251 buf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
1252 if (!buf)
1253 return -ENOMEM;
1254
1255 /* Query default scheduling tree topology */
1256 status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1257 &num_branches, NULL);
1258 if (status)
1259 goto err_init_port;
1260
1261 /* num_branches should be between 1-8 */
1262 if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1263 ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1264 num_branches);
1265 status = -EINVAL;
1266 goto err_init_port;
1267 }
1268
1269 /* get the number of elements on the default/first branch */
1270 num_elems = le16_to_cpu(buf[0].hdr.num_elems);
1271
1272 /* num_elems should always be between 1-9 */
1273 if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1274 ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1275 num_elems);
1276 status = -EINVAL;
1277 goto err_init_port;
1278 }
1279
1280 /* If the last node is a leaf node then the index of the queue group
1281 * layer is two less than the number of elements.
1282 */
1283 if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1284 ICE_AQC_ELEM_TYPE_LEAF)
1285 pi->last_node_teid =
1286 le32_to_cpu(buf[0].generic[num_elems - 2].node_teid);
1287 else
1288 pi->last_node_teid =
1289 le32_to_cpu(buf[0].generic[num_elems - 1].node_teid);
1290
1291 /* Insert the Tx Sched root node */
1292 status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1293 if (status)
1294 goto err_init_port;
1295
1296 /* Parse the default tree and cache the information */
1297 for (i = 0; i < num_branches; i++) {
1298 num_elems = le16_to_cpu(buf[i].hdr.num_elems);
1299
1300 /* Skip root element as already inserted */
1301 for (j = 1; j < num_elems; j++) {
1302 /* update the sw entry point */
1303 if (buf[0].generic[j].data.elem_type ==
1304 ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1305 hw->sw_entry_point_layer = j;
1306
1307 status = ice_sched_add_node(pi, j, &buf[i].generic[j], NULL);
1308 if (status)
1309 goto err_init_port;
1310 }
1311 }
1312
1313 /* Remove the default nodes. */
1314 if (pi->root)
1315 ice_sched_rm_dflt_nodes(pi);
1316
1317 /* initialize the port for handling the scheduler tree */
1318 pi->port_state = ICE_SCHED_PORT_STATE_READY;
1319 mutex_init(&pi->sched_lock);
1320 for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1321 INIT_LIST_HEAD(&pi->rl_prof_list[i]);
1322
1323 err_init_port:
1324 if (status && pi->root) {
1325 ice_free_sched_node(pi, pi->root);
1326 pi->root = NULL;
1327 }
1328
1329 kfree(buf);
1330 return status;
1331 }
1332
1333 /**
1334 * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1335 * @hw: pointer to the HW struct
1336 *
1337 * query FW for allocated scheduler resources and store in HW struct
1338 */
ice_sched_query_res_alloc(struct ice_hw * hw)1339 int ice_sched_query_res_alloc(struct ice_hw *hw)
1340 {
1341 struct ice_aqc_query_txsched_res_resp *buf;
1342 __le16 max_sibl;
1343 int status = 0;
1344 u16 i;
1345
1346 if (hw->layer_info)
1347 return status;
1348
1349 buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL);
1350 if (!buf)
1351 return -ENOMEM;
1352
1353 status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1354 if (status)
1355 goto sched_query_out;
1356
1357 hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels);
1358 hw->num_tx_sched_phys_layers =
1359 le16_to_cpu(buf->sched_props.phys_levels);
1360 hw->flattened_layers = buf->sched_props.flattening_bitmap;
1361 hw->max_cgds = buf->sched_props.max_pf_cgds;
1362
1363 /* max sibling group size of current layer refers to the max children
1364 * of the below layer node.
1365 * layer 1 node max children will be layer 2 max sibling group size
1366 * layer 2 node max children will be layer 3 max sibling group size
1367 * and so on. This array will be populated from root (index 0) to
1368 * qgroup layer 7. Leaf node has no children.
1369 */
1370 for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1371 max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1372 hw->max_children[i] = le16_to_cpu(max_sibl);
1373 }
1374
1375 hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props,
1376 (hw->num_tx_sched_layers *
1377 sizeof(*hw->layer_info)),
1378 GFP_KERNEL);
1379 if (!hw->layer_info) {
1380 status = -ENOMEM;
1381 goto sched_query_out;
1382 }
1383
1384 sched_query_out:
1385 devm_kfree(ice_hw_to_dev(hw), buf);
1386 return status;
1387 }
1388
1389 /**
1390 * ice_sched_get_psm_clk_freq - determine the PSM clock frequency
1391 * @hw: pointer to the HW struct
1392 *
1393 * Determine the PSM clock frequency and store in HW struct
1394 */
ice_sched_get_psm_clk_freq(struct ice_hw * hw)1395 void ice_sched_get_psm_clk_freq(struct ice_hw *hw)
1396 {
1397 u32 val, clk_src;
1398
1399 val = rd32(hw, GLGEN_CLKSTAT_SRC);
1400 clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >>
1401 GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S;
1402
1403 #define PSM_CLK_SRC_367_MHZ 0x0
1404 #define PSM_CLK_SRC_416_MHZ 0x1
1405 #define PSM_CLK_SRC_446_MHZ 0x2
1406 #define PSM_CLK_SRC_390_MHZ 0x3
1407
1408 switch (clk_src) {
1409 case PSM_CLK_SRC_367_MHZ:
1410 hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ;
1411 break;
1412 case PSM_CLK_SRC_416_MHZ:
1413 hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ;
1414 break;
1415 case PSM_CLK_SRC_446_MHZ:
1416 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1417 break;
1418 case PSM_CLK_SRC_390_MHZ:
1419 hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ;
1420 break;
1421 default:
1422 ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n",
1423 clk_src);
1424 /* fall back to a safe default */
1425 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1426 }
1427 }
1428
1429 /**
1430 * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1431 * @hw: pointer to the HW struct
1432 * @base: pointer to the base node
1433 * @node: pointer to the node to search
1434 *
1435 * This function checks whether a given node is part of the base node
1436 * subtree or not
1437 */
1438 static bool
ice_sched_find_node_in_subtree(struct ice_hw * hw,struct ice_sched_node * base,struct ice_sched_node * node)1439 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1440 struct ice_sched_node *node)
1441 {
1442 u8 i;
1443
1444 for (i = 0; i < base->num_children; i++) {
1445 struct ice_sched_node *child = base->children[i];
1446
1447 if (node == child)
1448 return true;
1449
1450 if (child->tx_sched_layer > node->tx_sched_layer)
1451 return false;
1452
1453 /* this recursion is intentional, and wouldn't
1454 * go more than 8 calls
1455 */
1456 if (ice_sched_find_node_in_subtree(hw, child, node))
1457 return true;
1458 }
1459 return false;
1460 }
1461
1462 /**
1463 * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1464 * @pi: port information structure
1465 * @vsi_node: software VSI handle
1466 * @qgrp_node: first queue group node identified for scanning
1467 * @owner: LAN or RDMA
1468 *
1469 * This function retrieves a free LAN or RDMA queue group node by scanning
1470 * qgrp_node and its siblings for the queue group with the fewest number
1471 * of queues currently assigned.
1472 */
1473 static struct ice_sched_node *
ice_sched_get_free_qgrp(struct ice_port_info * pi,struct ice_sched_node * vsi_node,struct ice_sched_node * qgrp_node,u8 owner)1474 ice_sched_get_free_qgrp(struct ice_port_info *pi,
1475 struct ice_sched_node *vsi_node,
1476 struct ice_sched_node *qgrp_node, u8 owner)
1477 {
1478 struct ice_sched_node *min_qgrp;
1479 u8 min_children;
1480
1481 if (!qgrp_node)
1482 return qgrp_node;
1483 min_children = qgrp_node->num_children;
1484 if (!min_children)
1485 return qgrp_node;
1486 min_qgrp = qgrp_node;
1487 /* scan all queue groups until find a node which has less than the
1488 * minimum number of children. This way all queue group nodes get
1489 * equal number of shares and active. The bandwidth will be equally
1490 * distributed across all queues.
1491 */
1492 while (qgrp_node) {
1493 /* make sure the qgroup node is part of the VSI subtree */
1494 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1495 if (qgrp_node->num_children < min_children &&
1496 qgrp_node->owner == owner) {
1497 /* replace the new min queue group node */
1498 min_qgrp = qgrp_node;
1499 min_children = min_qgrp->num_children;
1500 /* break if it has no children, */
1501 if (!min_children)
1502 break;
1503 }
1504 qgrp_node = qgrp_node->sibling;
1505 }
1506 return min_qgrp;
1507 }
1508
1509 /**
1510 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1511 * @pi: port information structure
1512 * @vsi_handle: software VSI handle
1513 * @tc: branch number
1514 * @owner: LAN or RDMA
1515 *
1516 * This function retrieves a free LAN or RDMA queue group node
1517 */
1518 struct ice_sched_node *
ice_sched_get_free_qparent(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u8 owner)1519 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1520 u8 owner)
1521 {
1522 struct ice_sched_node *vsi_node, *qgrp_node;
1523 struct ice_vsi_ctx *vsi_ctx;
1524 u16 max_children;
1525 u8 qgrp_layer;
1526
1527 qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
1528 max_children = pi->hw->max_children[qgrp_layer];
1529
1530 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1531 if (!vsi_ctx)
1532 return NULL;
1533 vsi_node = vsi_ctx->sched.vsi_node[tc];
1534 /* validate invalid VSI ID */
1535 if (!vsi_node)
1536 return NULL;
1537
1538 /* get the first queue group node from VSI sub-tree */
1539 qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1540 while (qgrp_node) {
1541 /* make sure the qgroup node is part of the VSI subtree */
1542 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1543 if (qgrp_node->num_children < max_children &&
1544 qgrp_node->owner == owner)
1545 break;
1546 qgrp_node = qgrp_node->sibling;
1547 }
1548
1549 /* Select the best queue group */
1550 return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1551 }
1552
1553 /**
1554 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1555 * @pi: pointer to the port information structure
1556 * @tc_node: pointer to the TC node
1557 * @vsi_handle: software VSI handle
1558 *
1559 * This function retrieves a VSI node for a given VSI ID from a given
1560 * TC branch
1561 */
1562 static struct ice_sched_node *
ice_sched_get_vsi_node(struct ice_port_info * pi,struct ice_sched_node * tc_node,u16 vsi_handle)1563 ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1564 u16 vsi_handle)
1565 {
1566 struct ice_sched_node *node;
1567 u8 vsi_layer;
1568
1569 vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1570 node = ice_sched_get_first_node(pi, tc_node, vsi_layer);
1571
1572 /* Check whether it already exists */
1573 while (node) {
1574 if (node->vsi_handle == vsi_handle)
1575 return node;
1576 node = node->sibling;
1577 }
1578
1579 return node;
1580 }
1581
1582 /**
1583 * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID
1584 * @pi: pointer to the port information structure
1585 * @tc_node: pointer to the TC node
1586 * @agg_id: aggregator ID
1587 *
1588 * This function retrieves an aggregator node for a given aggregator ID from
1589 * a given TC branch
1590 */
1591 struct ice_sched_node *
ice_sched_get_agg_node(struct ice_port_info * pi,struct ice_sched_node * tc_node,u32 agg_id)1592 ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1593 u32 agg_id)
1594 {
1595 struct ice_sched_node *node;
1596 struct ice_hw *hw = pi->hw;
1597 u8 agg_layer;
1598
1599 if (!hw)
1600 return NULL;
1601 agg_layer = ice_sched_get_agg_layer(hw);
1602 node = ice_sched_get_first_node(pi, tc_node, agg_layer);
1603
1604 /* Check whether it already exists */
1605 while (node) {
1606 if (node->agg_id == agg_id)
1607 return node;
1608 node = node->sibling;
1609 }
1610
1611 return node;
1612 }
1613
1614 /**
1615 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1616 * @hw: pointer to the HW struct
1617 * @num_qs: number of queues
1618 * @num_nodes: num nodes array
1619 *
1620 * This function calculates the number of VSI child nodes based on the
1621 * number of queues.
1622 */
1623 static void
ice_sched_calc_vsi_child_nodes(struct ice_hw * hw,u16 num_qs,u16 * num_nodes)1624 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
1625 {
1626 u16 num = num_qs;
1627 u8 i, qgl, vsil;
1628
1629 qgl = ice_sched_get_qgrp_layer(hw);
1630 vsil = ice_sched_get_vsi_layer(hw);
1631
1632 /* calculate num nodes from queue group to VSI layer */
1633 for (i = qgl; i > vsil; i--) {
1634 /* round to the next integer if there is a remainder */
1635 num = DIV_ROUND_UP(num, hw->max_children[i]);
1636
1637 /* need at least one node */
1638 num_nodes[i] = num ? num : 1;
1639 }
1640 }
1641
1642 /**
1643 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1644 * @pi: port information structure
1645 * @vsi_handle: software VSI handle
1646 * @tc_node: pointer to the TC node
1647 * @num_nodes: pointer to the num nodes that needs to be added per layer
1648 * @owner: node owner (LAN or RDMA)
1649 *
1650 * This function adds the VSI child nodes to tree. It gets called for
1651 * LAN and RDMA separately.
1652 */
1653 static int
ice_sched_add_vsi_child_nodes(struct ice_port_info * pi,u16 vsi_handle,struct ice_sched_node * tc_node,u16 * num_nodes,u8 owner)1654 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1655 struct ice_sched_node *tc_node, u16 *num_nodes,
1656 u8 owner)
1657 {
1658 struct ice_sched_node *parent, *node;
1659 struct ice_hw *hw = pi->hw;
1660 u32 first_node_teid;
1661 u16 num_added = 0;
1662 u8 i, qgl, vsil;
1663
1664 qgl = ice_sched_get_qgrp_layer(hw);
1665 vsil = ice_sched_get_vsi_layer(hw);
1666 parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1667 for (i = vsil + 1; i <= qgl; i++) {
1668 int status;
1669
1670 if (!parent)
1671 return -EIO;
1672
1673 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1674 num_nodes[i],
1675 &first_node_teid,
1676 &num_added);
1677 if (status || num_nodes[i] != num_added)
1678 return -EIO;
1679
1680 /* The newly added node can be a new parent for the next
1681 * layer nodes
1682 */
1683 if (num_added) {
1684 parent = ice_sched_find_node_by_teid(tc_node,
1685 first_node_teid);
1686 node = parent;
1687 while (node) {
1688 node->owner = owner;
1689 node = node->sibling;
1690 }
1691 } else {
1692 parent = parent->children[0];
1693 }
1694 }
1695
1696 return 0;
1697 }
1698
1699 /**
1700 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1701 * @pi: pointer to the port info structure
1702 * @tc_node: pointer to TC node
1703 * @num_nodes: pointer to num nodes array
1704 *
1705 * This function calculates the number of supported nodes needed to add this
1706 * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1707 * layers
1708 */
1709 static void
ice_sched_calc_vsi_support_nodes(struct ice_port_info * pi,struct ice_sched_node * tc_node,u16 * num_nodes)1710 ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi,
1711 struct ice_sched_node *tc_node, u16 *num_nodes)
1712 {
1713 struct ice_sched_node *node;
1714 u8 vsil;
1715 int i;
1716
1717 vsil = ice_sched_get_vsi_layer(pi->hw);
1718 for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--)
1719 /* Add intermediate nodes if TC has no children and
1720 * need at least one node for VSI
1721 */
1722 if (!tc_node->num_children || i == vsil) {
1723 num_nodes[i]++;
1724 } else {
1725 /* If intermediate nodes are reached max children
1726 * then add a new one.
1727 */
1728 node = ice_sched_get_first_node(pi, tc_node, (u8)i);
1729 /* scan all the siblings */
1730 while (node) {
1731 if (node->num_children < pi->hw->max_children[i])
1732 break;
1733 node = node->sibling;
1734 }
1735
1736 /* tree has one intermediate node to add this new VSI.
1737 * So no need to calculate supported nodes for below
1738 * layers.
1739 */
1740 if (node)
1741 break;
1742 /* all the nodes are full, allocate a new one */
1743 num_nodes[i]++;
1744 }
1745 }
1746
1747 /**
1748 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1749 * @pi: port information structure
1750 * @vsi_handle: software VSI handle
1751 * @tc_node: pointer to TC node
1752 * @num_nodes: pointer to num nodes array
1753 *
1754 * This function adds the VSI supported nodes into Tx tree including the
1755 * VSI, its parent and intermediate nodes in below layers
1756 */
1757 static int
ice_sched_add_vsi_support_nodes(struct ice_port_info * pi,u16 vsi_handle,struct ice_sched_node * tc_node,u16 * num_nodes)1758 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1759 struct ice_sched_node *tc_node, u16 *num_nodes)
1760 {
1761 struct ice_sched_node *parent = tc_node;
1762 u32 first_node_teid;
1763 u16 num_added = 0;
1764 u8 i, vsil;
1765
1766 if (!pi)
1767 return -EINVAL;
1768
1769 vsil = ice_sched_get_vsi_layer(pi->hw);
1770 for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1771 int status;
1772
1773 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1774 i, num_nodes[i],
1775 &first_node_teid,
1776 &num_added);
1777 if (status || num_nodes[i] != num_added)
1778 return -EIO;
1779
1780 /* The newly added node can be a new parent for the next
1781 * layer nodes
1782 */
1783 if (num_added)
1784 parent = ice_sched_find_node_by_teid(tc_node,
1785 first_node_teid);
1786 else
1787 parent = parent->children[0];
1788
1789 if (!parent)
1790 return -EIO;
1791
1792 if (i == vsil)
1793 parent->vsi_handle = vsi_handle;
1794 }
1795
1796 return 0;
1797 }
1798
1799 /**
1800 * ice_sched_add_vsi_to_topo - add a new VSI into tree
1801 * @pi: port information structure
1802 * @vsi_handle: software VSI handle
1803 * @tc: TC number
1804 *
1805 * This function adds a new VSI into scheduler tree
1806 */
1807 static int
ice_sched_add_vsi_to_topo(struct ice_port_info * pi,u16 vsi_handle,u8 tc)1808 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1809 {
1810 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1811 struct ice_sched_node *tc_node;
1812
1813 tc_node = ice_sched_get_tc_node(pi, tc);
1814 if (!tc_node)
1815 return -EINVAL;
1816
1817 /* calculate number of supported nodes needed for this VSI */
1818 ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes);
1819
1820 /* add VSI supported nodes to TC subtree */
1821 return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1822 num_nodes);
1823 }
1824
1825 /**
1826 * ice_sched_update_vsi_child_nodes - update VSI child nodes
1827 * @pi: port information structure
1828 * @vsi_handle: software VSI handle
1829 * @tc: TC number
1830 * @new_numqs: new number of max queues
1831 * @owner: owner of this subtree
1832 *
1833 * This function updates the VSI child nodes based on the number of queues
1834 */
1835 static int
ice_sched_update_vsi_child_nodes(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 new_numqs,u8 owner)1836 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1837 u8 tc, u16 new_numqs, u8 owner)
1838 {
1839 u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1840 struct ice_sched_node *vsi_node;
1841 struct ice_sched_node *tc_node;
1842 struct ice_vsi_ctx *vsi_ctx;
1843 struct ice_hw *hw = pi->hw;
1844 u16 prev_numqs;
1845 int status = 0;
1846
1847 tc_node = ice_sched_get_tc_node(pi, tc);
1848 if (!tc_node)
1849 return -EIO;
1850
1851 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1852 if (!vsi_node)
1853 return -EIO;
1854
1855 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1856 if (!vsi_ctx)
1857 return -EINVAL;
1858
1859 if (owner == ICE_SCHED_NODE_OWNER_LAN)
1860 prev_numqs = vsi_ctx->sched.max_lanq[tc];
1861 else
1862 prev_numqs = vsi_ctx->sched.max_rdmaq[tc];
1863 /* num queues are not changed or less than the previous number */
1864 if (new_numqs <= prev_numqs)
1865 return status;
1866 if (owner == ICE_SCHED_NODE_OWNER_LAN) {
1867 status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1868 if (status)
1869 return status;
1870 } else {
1871 status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs);
1872 if (status)
1873 return status;
1874 }
1875
1876 if (new_numqs)
1877 ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
1878 /* Keep the max number of queue configuration all the time. Update the
1879 * tree only if number of queues > previous number of queues. This may
1880 * leave some extra nodes in the tree if number of queues < previous
1881 * number but that wouldn't harm anything. Removing those extra nodes
1882 * may complicate the code if those nodes are part of SRL or
1883 * individually rate limited.
1884 */
1885 status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
1886 new_num_nodes, owner);
1887 if (status)
1888 return status;
1889 if (owner == ICE_SCHED_NODE_OWNER_LAN)
1890 vsi_ctx->sched.max_lanq[tc] = new_numqs;
1891 else
1892 vsi_ctx->sched.max_rdmaq[tc] = new_numqs;
1893
1894 return 0;
1895 }
1896
1897 /**
1898 * ice_sched_cfg_vsi - configure the new/existing VSI
1899 * @pi: port information structure
1900 * @vsi_handle: software VSI handle
1901 * @tc: TC number
1902 * @maxqs: max number of queues
1903 * @owner: LAN or RDMA
1904 * @enable: TC enabled or disabled
1905 *
1906 * This function adds/updates VSI nodes based on the number of queues. If TC is
1907 * enabled and VSI is in suspended state then resume the VSI back. If TC is
1908 * disabled then suspend the VSI if it is not already.
1909 */
1910 int
ice_sched_cfg_vsi(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 maxqs,u8 owner,bool enable)1911 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
1912 u8 owner, bool enable)
1913 {
1914 struct ice_sched_node *vsi_node, *tc_node;
1915 struct ice_vsi_ctx *vsi_ctx;
1916 struct ice_hw *hw = pi->hw;
1917 int status = 0;
1918
1919 ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
1920 tc_node = ice_sched_get_tc_node(pi, tc);
1921 if (!tc_node)
1922 return -EINVAL;
1923 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1924 if (!vsi_ctx)
1925 return -EINVAL;
1926 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1927
1928 /* suspend the VSI if TC is not enabled */
1929 if (!enable) {
1930 if (vsi_node && vsi_node->in_use) {
1931 u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1932
1933 status = ice_sched_suspend_resume_elems(hw, 1, &teid,
1934 true);
1935 if (!status)
1936 vsi_node->in_use = false;
1937 }
1938 return status;
1939 }
1940
1941 /* TC is enabled, if it is a new VSI then add it to the tree */
1942 if (!vsi_node) {
1943 status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
1944 if (status)
1945 return status;
1946
1947 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1948 if (!vsi_node)
1949 return -EIO;
1950
1951 vsi_ctx->sched.vsi_node[tc] = vsi_node;
1952 vsi_node->in_use = true;
1953 /* invalidate the max queues whenever VSI gets added first time
1954 * into the scheduler tree (boot or after reset). We need to
1955 * recreate the child nodes all the time in these cases.
1956 */
1957 vsi_ctx->sched.max_lanq[tc] = 0;
1958 vsi_ctx->sched.max_rdmaq[tc] = 0;
1959 }
1960
1961 /* update the VSI child nodes */
1962 status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
1963 owner);
1964 if (status)
1965 return status;
1966
1967 /* TC is enabled, resume the VSI if it is in the suspend state */
1968 if (!vsi_node->in_use) {
1969 u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1970
1971 status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
1972 if (!status)
1973 vsi_node->in_use = true;
1974 }
1975
1976 return status;
1977 }
1978
1979 /**
1980 * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry
1981 * @pi: port information structure
1982 * @vsi_handle: software VSI handle
1983 *
1984 * This function removes single aggregator VSI info entry from
1985 * aggregator list.
1986 */
ice_sched_rm_agg_vsi_info(struct ice_port_info * pi,u16 vsi_handle)1987 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
1988 {
1989 struct ice_sched_agg_info *agg_info;
1990 struct ice_sched_agg_info *atmp;
1991
1992 list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list,
1993 list_entry) {
1994 struct ice_sched_agg_vsi_info *agg_vsi_info;
1995 struct ice_sched_agg_vsi_info *vtmp;
1996
1997 list_for_each_entry_safe(agg_vsi_info, vtmp,
1998 &agg_info->agg_vsi_list, list_entry)
1999 if (agg_vsi_info->vsi_handle == vsi_handle) {
2000 list_del(&agg_vsi_info->list_entry);
2001 devm_kfree(ice_hw_to_dev(pi->hw),
2002 agg_vsi_info);
2003 return;
2004 }
2005 }
2006 }
2007
2008 /**
2009 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
2010 * @node: pointer to the sub-tree node
2011 *
2012 * This function checks for a leaf node presence in a given sub-tree node.
2013 */
ice_sched_is_leaf_node_present(struct ice_sched_node * node)2014 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
2015 {
2016 u8 i;
2017
2018 for (i = 0; i < node->num_children; i++)
2019 if (ice_sched_is_leaf_node_present(node->children[i]))
2020 return true;
2021 /* check for a leaf node */
2022 return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
2023 }
2024
2025 /**
2026 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
2027 * @pi: port information structure
2028 * @vsi_handle: software VSI handle
2029 * @owner: LAN or RDMA
2030 *
2031 * This function removes the VSI and its LAN or RDMA children nodes from the
2032 * scheduler tree.
2033 */
2034 static int
ice_sched_rm_vsi_cfg(struct ice_port_info * pi,u16 vsi_handle,u8 owner)2035 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
2036 {
2037 struct ice_vsi_ctx *vsi_ctx;
2038 int status = -EINVAL;
2039 u8 i;
2040
2041 ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
2042 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2043 return status;
2044 mutex_lock(&pi->sched_lock);
2045 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
2046 if (!vsi_ctx)
2047 goto exit_sched_rm_vsi_cfg;
2048
2049 ice_for_each_traffic_class(i) {
2050 struct ice_sched_node *vsi_node, *tc_node;
2051 u8 j = 0;
2052
2053 tc_node = ice_sched_get_tc_node(pi, i);
2054 if (!tc_node)
2055 continue;
2056
2057 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2058 if (!vsi_node)
2059 continue;
2060
2061 if (ice_sched_is_leaf_node_present(vsi_node)) {
2062 ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i);
2063 status = -EBUSY;
2064 goto exit_sched_rm_vsi_cfg;
2065 }
2066 while (j < vsi_node->num_children) {
2067 if (vsi_node->children[j]->owner == owner) {
2068 ice_free_sched_node(pi, vsi_node->children[j]);
2069
2070 /* reset the counter again since the num
2071 * children will be updated after node removal
2072 */
2073 j = 0;
2074 } else {
2075 j++;
2076 }
2077 }
2078 /* remove the VSI if it has no children */
2079 if (!vsi_node->num_children) {
2080 ice_free_sched_node(pi, vsi_node);
2081 vsi_ctx->sched.vsi_node[i] = NULL;
2082
2083 /* clean up aggregator related VSI info if any */
2084 ice_sched_rm_agg_vsi_info(pi, vsi_handle);
2085 }
2086 if (owner == ICE_SCHED_NODE_OWNER_LAN)
2087 vsi_ctx->sched.max_lanq[i] = 0;
2088 else
2089 vsi_ctx->sched.max_rdmaq[i] = 0;
2090 }
2091 status = 0;
2092
2093 exit_sched_rm_vsi_cfg:
2094 mutex_unlock(&pi->sched_lock);
2095 return status;
2096 }
2097
2098 /**
2099 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
2100 * @pi: port information structure
2101 * @vsi_handle: software VSI handle
2102 *
2103 * This function clears the VSI and its LAN children nodes from scheduler tree
2104 * for all TCs.
2105 */
ice_rm_vsi_lan_cfg(struct ice_port_info * pi,u16 vsi_handle)2106 int ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
2107 {
2108 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
2109 }
2110
2111 /**
2112 * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes
2113 * @pi: port information structure
2114 * @vsi_handle: software VSI handle
2115 *
2116 * This function clears the VSI and its RDMA children nodes from scheduler tree
2117 * for all TCs.
2118 */
ice_rm_vsi_rdma_cfg(struct ice_port_info * pi,u16 vsi_handle)2119 int ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle)
2120 {
2121 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA);
2122 }
2123
2124 /**
2125 * ice_get_agg_info - get the aggregator ID
2126 * @hw: pointer to the hardware structure
2127 * @agg_id: aggregator ID
2128 *
2129 * This function validates aggregator ID. The function returns info if
2130 * aggregator ID is present in list otherwise it returns null.
2131 */
2132 static struct ice_sched_agg_info *
ice_get_agg_info(struct ice_hw * hw,u32 agg_id)2133 ice_get_agg_info(struct ice_hw *hw, u32 agg_id)
2134 {
2135 struct ice_sched_agg_info *agg_info;
2136
2137 list_for_each_entry(agg_info, &hw->agg_list, list_entry)
2138 if (agg_info->agg_id == agg_id)
2139 return agg_info;
2140
2141 return NULL;
2142 }
2143
2144 /**
2145 * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree
2146 * @hw: pointer to the HW struct
2147 * @node: pointer to a child node
2148 * @num_nodes: num nodes count array
2149 *
2150 * This function walks through the aggregator subtree to find a free parent
2151 * node
2152 */
2153 struct ice_sched_node *
ice_sched_get_free_vsi_parent(struct ice_hw * hw,struct ice_sched_node * node,u16 * num_nodes)2154 ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node,
2155 u16 *num_nodes)
2156 {
2157 u8 l = node->tx_sched_layer;
2158 u8 vsil, i;
2159
2160 vsil = ice_sched_get_vsi_layer(hw);
2161
2162 /* Is it VSI parent layer ? */
2163 if (l == vsil - 1)
2164 return (node->num_children < hw->max_children[l]) ? node : NULL;
2165
2166 /* We have intermediate nodes. Let's walk through the subtree. If the
2167 * intermediate node has space to add a new node then clear the count
2168 */
2169 if (node->num_children < hw->max_children[l])
2170 num_nodes[l] = 0;
2171 /* The below recursive call is intentional and wouldn't go more than
2172 * 2 or 3 iterations.
2173 */
2174
2175 for (i = 0; i < node->num_children; i++) {
2176 struct ice_sched_node *parent;
2177
2178 parent = ice_sched_get_free_vsi_parent(hw, node->children[i],
2179 num_nodes);
2180 if (parent)
2181 return parent;
2182 }
2183
2184 return NULL;
2185 }
2186
2187 /**
2188 * ice_sched_update_parent - update the new parent in SW DB
2189 * @new_parent: pointer to a new parent node
2190 * @node: pointer to a child node
2191 *
2192 * This function removes the child from the old parent and adds it to a new
2193 * parent
2194 */
2195 void
ice_sched_update_parent(struct ice_sched_node * new_parent,struct ice_sched_node * node)2196 ice_sched_update_parent(struct ice_sched_node *new_parent,
2197 struct ice_sched_node *node)
2198 {
2199 struct ice_sched_node *old_parent;
2200 u8 i, j;
2201
2202 old_parent = node->parent;
2203
2204 /* update the old parent children */
2205 for (i = 0; i < old_parent->num_children; i++)
2206 if (old_parent->children[i] == node) {
2207 for (j = i + 1; j < old_parent->num_children; j++)
2208 old_parent->children[j - 1] =
2209 old_parent->children[j];
2210 old_parent->num_children--;
2211 break;
2212 }
2213
2214 /* now move the node to a new parent */
2215 new_parent->children[new_parent->num_children++] = node;
2216 node->parent = new_parent;
2217 node->info.parent_teid = new_parent->info.node_teid;
2218 }
2219
2220 /**
2221 * ice_sched_move_nodes - move child nodes to a given parent
2222 * @pi: port information structure
2223 * @parent: pointer to parent node
2224 * @num_items: number of child nodes to be moved
2225 * @list: pointer to child node teids
2226 *
2227 * This function move the child nodes to a given parent.
2228 */
2229 int
ice_sched_move_nodes(struct ice_port_info * pi,struct ice_sched_node * parent,u16 num_items,u32 * list)2230 ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent,
2231 u16 num_items, u32 *list)
2232 {
2233 struct ice_aqc_move_elem *buf;
2234 struct ice_sched_node *node;
2235 u16 i, grps_movd = 0;
2236 struct ice_hw *hw;
2237 int status = 0;
2238 u16 buf_len;
2239
2240 hw = pi->hw;
2241
2242 if (!parent || !num_items)
2243 return -EINVAL;
2244
2245 /* Does parent have enough space */
2246 if (parent->num_children + num_items >
2247 hw->max_children[parent->tx_sched_layer])
2248 return -ENOSPC;
2249
2250 buf_len = struct_size(buf, teid, 1);
2251 buf = kzalloc(buf_len, GFP_KERNEL);
2252 if (!buf)
2253 return -ENOMEM;
2254
2255 for (i = 0; i < num_items; i++) {
2256 node = ice_sched_find_node_by_teid(pi->root, list[i]);
2257 if (!node) {
2258 status = -EINVAL;
2259 goto move_err_exit;
2260 }
2261
2262 buf->hdr.src_parent_teid = node->info.parent_teid;
2263 buf->hdr.dest_parent_teid = parent->info.node_teid;
2264 buf->teid[0] = node->info.node_teid;
2265 buf->hdr.num_elems = cpu_to_le16(1);
2266 status = ice_aq_move_sched_elems(hw, 1, buf, buf_len,
2267 &grps_movd, NULL);
2268 if (status && grps_movd != 1) {
2269 status = -EIO;
2270 goto move_err_exit;
2271 }
2272
2273 /* update the SW DB */
2274 ice_sched_update_parent(parent, node);
2275 }
2276
2277 move_err_exit:
2278 kfree(buf);
2279 return status;
2280 }
2281
2282 /**
2283 * ice_sched_move_vsi_to_agg - move VSI to aggregator node
2284 * @pi: port information structure
2285 * @vsi_handle: software VSI handle
2286 * @agg_id: aggregator ID
2287 * @tc: TC number
2288 *
2289 * This function moves a VSI to an aggregator node or its subtree.
2290 * Intermediate nodes may be created if required.
2291 */
2292 static int
ice_sched_move_vsi_to_agg(struct ice_port_info * pi,u16 vsi_handle,u32 agg_id,u8 tc)2293 ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id,
2294 u8 tc)
2295 {
2296 struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent;
2297 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2298 u32 first_node_teid, vsi_teid;
2299 u16 num_nodes_added;
2300 u8 aggl, vsil, i;
2301 int status;
2302
2303 tc_node = ice_sched_get_tc_node(pi, tc);
2304 if (!tc_node)
2305 return -EIO;
2306
2307 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2308 if (!agg_node)
2309 return -ENOENT;
2310
2311 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2312 if (!vsi_node)
2313 return -ENOENT;
2314
2315 /* Is this VSI already part of given aggregator? */
2316 if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node))
2317 return 0;
2318
2319 aggl = ice_sched_get_agg_layer(pi->hw);
2320 vsil = ice_sched_get_vsi_layer(pi->hw);
2321
2322 /* set intermediate node count to 1 between aggregator and VSI layers */
2323 for (i = aggl + 1; i < vsil; i++)
2324 num_nodes[i] = 1;
2325
2326 /* Check if the aggregator subtree has any free node to add the VSI */
2327 for (i = 0; i < agg_node->num_children; i++) {
2328 parent = ice_sched_get_free_vsi_parent(pi->hw,
2329 agg_node->children[i],
2330 num_nodes);
2331 if (parent)
2332 goto move_nodes;
2333 }
2334
2335 /* add new nodes */
2336 parent = agg_node;
2337 for (i = aggl + 1; i < vsil; i++) {
2338 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2339 num_nodes[i],
2340 &first_node_teid,
2341 &num_nodes_added);
2342 if (status || num_nodes[i] != num_nodes_added)
2343 return -EIO;
2344
2345 /* The newly added node can be a new parent for the next
2346 * layer nodes
2347 */
2348 if (num_nodes_added)
2349 parent = ice_sched_find_node_by_teid(tc_node,
2350 first_node_teid);
2351 else
2352 parent = parent->children[0];
2353
2354 if (!parent)
2355 return -EIO;
2356 }
2357
2358 move_nodes:
2359 vsi_teid = le32_to_cpu(vsi_node->info.node_teid);
2360 return ice_sched_move_nodes(pi, parent, 1, &vsi_teid);
2361 }
2362
2363 /**
2364 * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator
2365 * @pi: port information structure
2366 * @agg_info: aggregator info
2367 * @tc: traffic class number
2368 * @rm_vsi_info: true or false
2369 *
2370 * This function move all the VSI(s) to the default aggregator and delete
2371 * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The
2372 * caller holds the scheduler lock.
2373 */
2374 static int
ice_move_all_vsi_to_dflt_agg(struct ice_port_info * pi,struct ice_sched_agg_info * agg_info,u8 tc,bool rm_vsi_info)2375 ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi,
2376 struct ice_sched_agg_info *agg_info, u8 tc,
2377 bool rm_vsi_info)
2378 {
2379 struct ice_sched_agg_vsi_info *agg_vsi_info;
2380 struct ice_sched_agg_vsi_info *tmp;
2381 int status = 0;
2382
2383 list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list,
2384 list_entry) {
2385 u16 vsi_handle = agg_vsi_info->vsi_handle;
2386
2387 /* Move VSI to default aggregator */
2388 if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc))
2389 continue;
2390
2391 status = ice_sched_move_vsi_to_agg(pi, vsi_handle,
2392 ICE_DFLT_AGG_ID, tc);
2393 if (status)
2394 break;
2395
2396 clear_bit(tc, agg_vsi_info->tc_bitmap);
2397 if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) {
2398 list_del(&agg_vsi_info->list_entry);
2399 devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info);
2400 }
2401 }
2402
2403 return status;
2404 }
2405
2406 /**
2407 * ice_sched_is_agg_inuse - check whether the aggregator is in use or not
2408 * @pi: port information structure
2409 * @node: node pointer
2410 *
2411 * This function checks whether the aggregator is attached with any VSI or not.
2412 */
2413 static bool
ice_sched_is_agg_inuse(struct ice_port_info * pi,struct ice_sched_node * node)2414 ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node)
2415 {
2416 u8 vsil, i;
2417
2418 vsil = ice_sched_get_vsi_layer(pi->hw);
2419 if (node->tx_sched_layer < vsil - 1) {
2420 for (i = 0; i < node->num_children; i++)
2421 if (ice_sched_is_agg_inuse(pi, node->children[i]))
2422 return true;
2423 return false;
2424 } else {
2425 return node->num_children ? true : false;
2426 }
2427 }
2428
2429 /**
2430 * ice_sched_rm_agg_cfg - remove the aggregator node
2431 * @pi: port information structure
2432 * @agg_id: aggregator ID
2433 * @tc: TC number
2434 *
2435 * This function removes the aggregator node and intermediate nodes if any
2436 * from the given TC
2437 */
2438 static int
ice_sched_rm_agg_cfg(struct ice_port_info * pi,u32 agg_id,u8 tc)2439 ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2440 {
2441 struct ice_sched_node *tc_node, *agg_node;
2442 struct ice_hw *hw = pi->hw;
2443
2444 tc_node = ice_sched_get_tc_node(pi, tc);
2445 if (!tc_node)
2446 return -EIO;
2447
2448 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2449 if (!agg_node)
2450 return -ENOENT;
2451
2452 /* Can't remove the aggregator node if it has children */
2453 if (ice_sched_is_agg_inuse(pi, agg_node))
2454 return -EBUSY;
2455
2456 /* need to remove the whole subtree if aggregator node is the
2457 * only child.
2458 */
2459 while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) {
2460 struct ice_sched_node *parent = agg_node->parent;
2461
2462 if (!parent)
2463 return -EIO;
2464
2465 if (parent->num_children > 1)
2466 break;
2467
2468 agg_node = parent;
2469 }
2470
2471 ice_free_sched_node(pi, agg_node);
2472 return 0;
2473 }
2474
2475 /**
2476 * ice_rm_agg_cfg_tc - remove aggregator configuration for TC
2477 * @pi: port information structure
2478 * @agg_info: aggregator ID
2479 * @tc: TC number
2480 * @rm_vsi_info: bool value true or false
2481 *
2482 * This function removes aggregator reference to VSI of given TC. It removes
2483 * the aggregator configuration completely for requested TC. The caller needs
2484 * to hold the scheduler lock.
2485 */
2486 static int
ice_rm_agg_cfg_tc(struct ice_port_info * pi,struct ice_sched_agg_info * agg_info,u8 tc,bool rm_vsi_info)2487 ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info,
2488 u8 tc, bool rm_vsi_info)
2489 {
2490 int status = 0;
2491
2492 /* If nothing to remove - return success */
2493 if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2494 goto exit_rm_agg_cfg_tc;
2495
2496 status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info);
2497 if (status)
2498 goto exit_rm_agg_cfg_tc;
2499
2500 /* Delete aggregator node(s) */
2501 status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc);
2502 if (status)
2503 goto exit_rm_agg_cfg_tc;
2504
2505 clear_bit(tc, agg_info->tc_bitmap);
2506 exit_rm_agg_cfg_tc:
2507 return status;
2508 }
2509
2510 /**
2511 * ice_save_agg_tc_bitmap - save aggregator TC bitmap
2512 * @pi: port information structure
2513 * @agg_id: aggregator ID
2514 * @tc_bitmap: 8 bits TC bitmap
2515 *
2516 * Save aggregator TC bitmap. This function needs to be called with scheduler
2517 * lock held.
2518 */
2519 static int
ice_save_agg_tc_bitmap(struct ice_port_info * pi,u32 agg_id,unsigned long * tc_bitmap)2520 ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id,
2521 unsigned long *tc_bitmap)
2522 {
2523 struct ice_sched_agg_info *agg_info;
2524
2525 agg_info = ice_get_agg_info(pi->hw, agg_id);
2526 if (!agg_info)
2527 return -EINVAL;
2528 bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap,
2529 ICE_MAX_TRAFFIC_CLASS);
2530 return 0;
2531 }
2532
2533 /**
2534 * ice_sched_add_agg_cfg - create an aggregator node
2535 * @pi: port information structure
2536 * @agg_id: aggregator ID
2537 * @tc: TC number
2538 *
2539 * This function creates an aggregator node and intermediate nodes if required
2540 * for the given TC
2541 */
2542 static int
ice_sched_add_agg_cfg(struct ice_port_info * pi,u32 agg_id,u8 tc)2543 ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2544 {
2545 struct ice_sched_node *parent, *agg_node, *tc_node;
2546 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2547 struct ice_hw *hw = pi->hw;
2548 u32 first_node_teid;
2549 u16 num_nodes_added;
2550 int status = 0;
2551 u8 i, aggl;
2552
2553 tc_node = ice_sched_get_tc_node(pi, tc);
2554 if (!tc_node)
2555 return -EIO;
2556
2557 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2558 /* Does Agg node already exist ? */
2559 if (agg_node)
2560 return status;
2561
2562 aggl = ice_sched_get_agg_layer(hw);
2563
2564 /* need one node in Agg layer */
2565 num_nodes[aggl] = 1;
2566
2567 /* Check whether the intermediate nodes have space to add the
2568 * new aggregator. If they are full, then SW needs to allocate a new
2569 * intermediate node on those layers
2570 */
2571 for (i = hw->sw_entry_point_layer; i < aggl; i++) {
2572 parent = ice_sched_get_first_node(pi, tc_node, i);
2573
2574 /* scan all the siblings */
2575 while (parent) {
2576 if (parent->num_children < hw->max_children[i])
2577 break;
2578 parent = parent->sibling;
2579 }
2580
2581 /* all the nodes are full, reserve one for this layer */
2582 if (!parent)
2583 num_nodes[i]++;
2584 }
2585
2586 /* add the aggregator node */
2587 parent = tc_node;
2588 for (i = hw->sw_entry_point_layer; i <= aggl; i++) {
2589 if (!parent)
2590 return -EIO;
2591
2592 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2593 num_nodes[i],
2594 &first_node_teid,
2595 &num_nodes_added);
2596 if (status || num_nodes[i] != num_nodes_added)
2597 return -EIO;
2598
2599 /* The newly added node can be a new parent for the next
2600 * layer nodes
2601 */
2602 if (num_nodes_added) {
2603 parent = ice_sched_find_node_by_teid(tc_node,
2604 first_node_teid);
2605 /* register aggregator ID with the aggregator node */
2606 if (parent && i == aggl)
2607 parent->agg_id = agg_id;
2608 } else {
2609 parent = parent->children[0];
2610 }
2611 }
2612
2613 return 0;
2614 }
2615
2616 /**
2617 * ice_sched_cfg_agg - configure aggregator node
2618 * @pi: port information structure
2619 * @agg_id: aggregator ID
2620 * @agg_type: aggregator type queue, VSI, or aggregator group
2621 * @tc_bitmap: bits TC bitmap
2622 *
2623 * It registers a unique aggregator node into scheduler services. It
2624 * allows a user to register with a unique ID to track it's resources.
2625 * The aggregator type determines if this is a queue group, VSI group
2626 * or aggregator group. It then creates the aggregator node(s) for requested
2627 * TC(s) or removes an existing aggregator node including its configuration
2628 * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator
2629 * resources and remove aggregator ID.
2630 * This function needs to be called with scheduler lock held.
2631 */
2632 static int
ice_sched_cfg_agg(struct ice_port_info * pi,u32 agg_id,enum ice_agg_type agg_type,unsigned long * tc_bitmap)2633 ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id,
2634 enum ice_agg_type agg_type, unsigned long *tc_bitmap)
2635 {
2636 struct ice_sched_agg_info *agg_info;
2637 struct ice_hw *hw = pi->hw;
2638 int status = 0;
2639 u8 tc;
2640
2641 agg_info = ice_get_agg_info(hw, agg_id);
2642 if (!agg_info) {
2643 /* Create new entry for new aggregator ID */
2644 agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info),
2645 GFP_KERNEL);
2646 if (!agg_info)
2647 return -ENOMEM;
2648
2649 agg_info->agg_id = agg_id;
2650 agg_info->agg_type = agg_type;
2651 agg_info->tc_bitmap[0] = 0;
2652
2653 /* Initialize the aggregator VSI list head */
2654 INIT_LIST_HEAD(&agg_info->agg_vsi_list);
2655
2656 /* Add new entry in aggregator list */
2657 list_add(&agg_info->list_entry, &hw->agg_list);
2658 }
2659 /* Create aggregator node(s) for requested TC(s) */
2660 ice_for_each_traffic_class(tc) {
2661 if (!ice_is_tc_ena(*tc_bitmap, tc)) {
2662 /* Delete aggregator cfg TC if it exists previously */
2663 status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false);
2664 if (status)
2665 break;
2666 continue;
2667 }
2668
2669 /* Check if aggregator node for TC already exists */
2670 if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2671 continue;
2672
2673 /* Create new aggregator node for TC */
2674 status = ice_sched_add_agg_cfg(pi, agg_id, tc);
2675 if (status)
2676 break;
2677
2678 /* Save aggregator node's TC information */
2679 set_bit(tc, agg_info->tc_bitmap);
2680 }
2681
2682 return status;
2683 }
2684
2685 /**
2686 * ice_cfg_agg - config aggregator node
2687 * @pi: port information structure
2688 * @agg_id: aggregator ID
2689 * @agg_type: aggregator type queue, VSI, or aggregator group
2690 * @tc_bitmap: bits TC bitmap
2691 *
2692 * This function configures aggregator node(s).
2693 */
2694 int
ice_cfg_agg(struct ice_port_info * pi,u32 agg_id,enum ice_agg_type agg_type,u8 tc_bitmap)2695 ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type,
2696 u8 tc_bitmap)
2697 {
2698 unsigned long bitmap = tc_bitmap;
2699 int status;
2700
2701 mutex_lock(&pi->sched_lock);
2702 status = ice_sched_cfg_agg(pi, agg_id, agg_type, &bitmap);
2703 if (!status)
2704 status = ice_save_agg_tc_bitmap(pi, agg_id, &bitmap);
2705 mutex_unlock(&pi->sched_lock);
2706 return status;
2707 }
2708
2709 /**
2710 * ice_get_agg_vsi_info - get the aggregator ID
2711 * @agg_info: aggregator info
2712 * @vsi_handle: software VSI handle
2713 *
2714 * The function returns aggregator VSI info based on VSI handle. This function
2715 * needs to be called with scheduler lock held.
2716 */
2717 static struct ice_sched_agg_vsi_info *
ice_get_agg_vsi_info(struct ice_sched_agg_info * agg_info,u16 vsi_handle)2718 ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle)
2719 {
2720 struct ice_sched_agg_vsi_info *agg_vsi_info;
2721
2722 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry)
2723 if (agg_vsi_info->vsi_handle == vsi_handle)
2724 return agg_vsi_info;
2725
2726 return NULL;
2727 }
2728
2729 /**
2730 * ice_get_vsi_agg_info - get the aggregator info of VSI
2731 * @hw: pointer to the hardware structure
2732 * @vsi_handle: Sw VSI handle
2733 *
2734 * The function returns aggregator info of VSI represented via vsi_handle. The
2735 * VSI has in this case a different aggregator than the default one. This
2736 * function needs to be called with scheduler lock held.
2737 */
2738 static struct ice_sched_agg_info *
ice_get_vsi_agg_info(struct ice_hw * hw,u16 vsi_handle)2739 ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle)
2740 {
2741 struct ice_sched_agg_info *agg_info;
2742
2743 list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
2744 struct ice_sched_agg_vsi_info *agg_vsi_info;
2745
2746 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2747 if (agg_vsi_info)
2748 return agg_info;
2749 }
2750 return NULL;
2751 }
2752
2753 /**
2754 * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap
2755 * @pi: port information structure
2756 * @agg_id: aggregator ID
2757 * @vsi_handle: software VSI handle
2758 * @tc_bitmap: TC bitmap of enabled TC(s)
2759 *
2760 * Save VSI to aggregator TC bitmap. This function needs to call with scheduler
2761 * lock held.
2762 */
2763 static int
ice_save_agg_vsi_tc_bitmap(struct ice_port_info * pi,u32 agg_id,u16 vsi_handle,unsigned long * tc_bitmap)2764 ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2765 unsigned long *tc_bitmap)
2766 {
2767 struct ice_sched_agg_vsi_info *agg_vsi_info;
2768 struct ice_sched_agg_info *agg_info;
2769
2770 agg_info = ice_get_agg_info(pi->hw, agg_id);
2771 if (!agg_info)
2772 return -EINVAL;
2773 /* check if entry already exist */
2774 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2775 if (!agg_vsi_info)
2776 return -EINVAL;
2777 bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap,
2778 ICE_MAX_TRAFFIC_CLASS);
2779 return 0;
2780 }
2781
2782 /**
2783 * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator
2784 * @pi: port information structure
2785 * @agg_id: aggregator ID
2786 * @vsi_handle: software VSI handle
2787 * @tc_bitmap: TC bitmap of enabled TC(s)
2788 *
2789 * This function moves VSI to a new or default aggregator node. If VSI is
2790 * already associated to the aggregator node then no operation is performed on
2791 * the tree. This function needs to be called with scheduler lock held.
2792 */
2793 static int
ice_sched_assoc_vsi_to_agg(struct ice_port_info * pi,u32 agg_id,u16 vsi_handle,unsigned long * tc_bitmap)2794 ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id,
2795 u16 vsi_handle, unsigned long *tc_bitmap)
2796 {
2797 struct ice_sched_agg_vsi_info *agg_vsi_info, *iter, *old_agg_vsi_info = NULL;
2798 struct ice_sched_agg_info *agg_info, *old_agg_info;
2799 struct ice_hw *hw = pi->hw;
2800 int status = 0;
2801 u8 tc;
2802
2803 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2804 return -EINVAL;
2805 agg_info = ice_get_agg_info(hw, agg_id);
2806 if (!agg_info)
2807 return -EINVAL;
2808 /* If the VSI is already part of another aggregator then update
2809 * its VSI info list
2810 */
2811 old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
2812 if (old_agg_info && old_agg_info != agg_info) {
2813 struct ice_sched_agg_vsi_info *vtmp;
2814
2815 list_for_each_entry_safe(iter, vtmp,
2816 &old_agg_info->agg_vsi_list,
2817 list_entry)
2818 if (iter->vsi_handle == vsi_handle) {
2819 old_agg_vsi_info = iter;
2820 break;
2821 }
2822 }
2823
2824 /* check if entry already exist */
2825 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2826 if (!agg_vsi_info) {
2827 /* Create new entry for VSI under aggregator list */
2828 agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw),
2829 sizeof(*agg_vsi_info), GFP_KERNEL);
2830 if (!agg_vsi_info)
2831 return -EINVAL;
2832
2833 /* add VSI ID into the aggregator list */
2834 agg_vsi_info->vsi_handle = vsi_handle;
2835 list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list);
2836 }
2837 /* Move VSI node to new aggregator node for requested TC(s) */
2838 ice_for_each_traffic_class(tc) {
2839 if (!ice_is_tc_ena(*tc_bitmap, tc))
2840 continue;
2841
2842 /* Move VSI to new aggregator */
2843 status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc);
2844 if (status)
2845 break;
2846
2847 set_bit(tc, agg_vsi_info->tc_bitmap);
2848 if (old_agg_vsi_info)
2849 clear_bit(tc, old_agg_vsi_info->tc_bitmap);
2850 }
2851 if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) {
2852 list_del(&old_agg_vsi_info->list_entry);
2853 devm_kfree(ice_hw_to_dev(pi->hw), old_agg_vsi_info);
2854 }
2855 return status;
2856 }
2857
2858 /**
2859 * ice_sched_rm_unused_rl_prof - remove unused RL profile
2860 * @pi: port information structure
2861 *
2862 * This function removes unused rate limit profiles from the HW and
2863 * SW DB. The caller needs to hold scheduler lock.
2864 */
ice_sched_rm_unused_rl_prof(struct ice_port_info * pi)2865 static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi)
2866 {
2867 u16 ln;
2868
2869 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
2870 struct ice_aqc_rl_profile_info *rl_prof_elem;
2871 struct ice_aqc_rl_profile_info *rl_prof_tmp;
2872
2873 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
2874 &pi->rl_prof_list[ln], list_entry) {
2875 if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem))
2876 ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n");
2877 }
2878 }
2879 }
2880
2881 /**
2882 * ice_sched_update_elem - update element
2883 * @hw: pointer to the HW struct
2884 * @node: pointer to node
2885 * @info: node info to update
2886 *
2887 * Update the HW DB, and local SW DB of node. Update the scheduling
2888 * parameters of node from argument info data buffer (Info->data buf) and
2889 * returns success or error on config sched element failure. The caller
2890 * needs to hold scheduler lock.
2891 */
2892 static int
ice_sched_update_elem(struct ice_hw * hw,struct ice_sched_node * node,struct ice_aqc_txsched_elem_data * info)2893 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
2894 struct ice_aqc_txsched_elem_data *info)
2895 {
2896 struct ice_aqc_txsched_elem_data buf;
2897 u16 elem_cfgd = 0;
2898 u16 num_elems = 1;
2899 int status;
2900
2901 buf = *info;
2902 /* Parent TEID is reserved field in this aq call */
2903 buf.parent_teid = 0;
2904 /* Element type is reserved field in this aq call */
2905 buf.data.elem_type = 0;
2906 /* Flags is reserved field in this aq call */
2907 buf.data.flags = 0;
2908
2909 /* Update HW DB */
2910 /* Configure element node */
2911 status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
2912 &elem_cfgd, NULL);
2913 if (status || elem_cfgd != num_elems) {
2914 ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
2915 return -EIO;
2916 }
2917
2918 /* Config success case */
2919 /* Now update local SW DB */
2920 /* Only copy the data portion of info buffer */
2921 node->info.data = info->data;
2922 return status;
2923 }
2924
2925 /**
2926 * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
2927 * @hw: pointer to the HW struct
2928 * @node: sched node to configure
2929 * @rl_type: rate limit type CIR, EIR, or shared
2930 * @bw_alloc: BW weight/allocation
2931 *
2932 * This function configures node element's BW allocation.
2933 */
2934 static int
ice_sched_cfg_node_bw_alloc(struct ice_hw * hw,struct ice_sched_node * node,enum ice_rl_type rl_type,u16 bw_alloc)2935 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
2936 enum ice_rl_type rl_type, u16 bw_alloc)
2937 {
2938 struct ice_aqc_txsched_elem_data buf;
2939 struct ice_aqc_txsched_elem *data;
2940
2941 buf = node->info;
2942 data = &buf.data;
2943 if (rl_type == ICE_MIN_BW) {
2944 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
2945 data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2946 } else if (rl_type == ICE_MAX_BW) {
2947 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
2948 data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2949 } else {
2950 return -EINVAL;
2951 }
2952
2953 /* Configure element */
2954 return ice_sched_update_elem(hw, node, &buf);
2955 }
2956
2957 /**
2958 * ice_move_vsi_to_agg - moves VSI to new or default aggregator
2959 * @pi: port information structure
2960 * @agg_id: aggregator ID
2961 * @vsi_handle: software VSI handle
2962 * @tc_bitmap: TC bitmap of enabled TC(s)
2963 *
2964 * Move or associate VSI to a new or default aggregator node.
2965 */
2966 int
ice_move_vsi_to_agg(struct ice_port_info * pi,u32 agg_id,u16 vsi_handle,u8 tc_bitmap)2967 ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2968 u8 tc_bitmap)
2969 {
2970 unsigned long bitmap = tc_bitmap;
2971 int status;
2972
2973 mutex_lock(&pi->sched_lock);
2974 status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle,
2975 (unsigned long *)&bitmap);
2976 if (!status)
2977 status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle,
2978 (unsigned long *)&bitmap);
2979 mutex_unlock(&pi->sched_lock);
2980 return status;
2981 }
2982
2983 /**
2984 * ice_set_clear_cir_bw - set or clear CIR BW
2985 * @bw_t_info: bandwidth type information structure
2986 * @bw: bandwidth in Kbps - Kilo bits per sec
2987 *
2988 * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
2989 */
ice_set_clear_cir_bw(struct ice_bw_type_info * bw_t_info,u32 bw)2990 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2991 {
2992 if (bw == ICE_SCHED_DFLT_BW) {
2993 clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
2994 bw_t_info->cir_bw.bw = 0;
2995 } else {
2996 /* Save type of BW information */
2997 set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
2998 bw_t_info->cir_bw.bw = bw;
2999 }
3000 }
3001
3002 /**
3003 * ice_set_clear_eir_bw - set or clear EIR BW
3004 * @bw_t_info: bandwidth type information structure
3005 * @bw: bandwidth in Kbps - Kilo bits per sec
3006 *
3007 * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
3008 */
ice_set_clear_eir_bw(struct ice_bw_type_info * bw_t_info,u32 bw)3009 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3010 {
3011 if (bw == ICE_SCHED_DFLT_BW) {
3012 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3013 bw_t_info->eir_bw.bw = 0;
3014 } else {
3015 /* EIR BW and Shared BW profiles are mutually exclusive and
3016 * hence only one of them may be set for any given element.
3017 * First clear earlier saved shared BW information.
3018 */
3019 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3020 bw_t_info->shared_bw = 0;
3021 /* save EIR BW information */
3022 set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3023 bw_t_info->eir_bw.bw = bw;
3024 }
3025 }
3026
3027 /**
3028 * ice_set_clear_shared_bw - set or clear shared BW
3029 * @bw_t_info: bandwidth type information structure
3030 * @bw: bandwidth in Kbps - Kilo bits per sec
3031 *
3032 * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
3033 */
ice_set_clear_shared_bw(struct ice_bw_type_info * bw_t_info,u32 bw)3034 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3035 {
3036 if (bw == ICE_SCHED_DFLT_BW) {
3037 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3038 bw_t_info->shared_bw = 0;
3039 } else {
3040 /* EIR BW and Shared BW profiles are mutually exclusive and
3041 * hence only one of them may be set for any given element.
3042 * First clear earlier saved EIR BW information.
3043 */
3044 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3045 bw_t_info->eir_bw.bw = 0;
3046 /* save shared BW information */
3047 set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3048 bw_t_info->shared_bw = bw;
3049 }
3050 }
3051
3052 /**
3053 * ice_sched_save_vsi_bw - save VSI node's BW information
3054 * @pi: port information structure
3055 * @vsi_handle: sw VSI handle
3056 * @tc: traffic class
3057 * @rl_type: rate limit type min, max, or shared
3058 * @bw: bandwidth in Kbps - Kilo bits per sec
3059 *
3060 * Save BW information of VSI type node for post replay use.
3061 */
3062 static int
ice_sched_save_vsi_bw(struct ice_port_info * pi,u16 vsi_handle,u8 tc,enum ice_rl_type rl_type,u32 bw)3063 ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3064 enum ice_rl_type rl_type, u32 bw)
3065 {
3066 struct ice_vsi_ctx *vsi_ctx;
3067
3068 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3069 return -EINVAL;
3070 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3071 if (!vsi_ctx)
3072 return -EINVAL;
3073 switch (rl_type) {
3074 case ICE_MIN_BW:
3075 ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3076 break;
3077 case ICE_MAX_BW:
3078 ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3079 break;
3080 case ICE_SHARED_BW:
3081 ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3082 break;
3083 default:
3084 return -EINVAL;
3085 }
3086 return 0;
3087 }
3088
3089 /**
3090 * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
3091 * @hw: pointer to the HW struct
3092 * @bw: bandwidth in Kbps
3093 *
3094 * This function calculates the wakeup parameter of RL profile.
3095 */
ice_sched_calc_wakeup(struct ice_hw * hw,s32 bw)3096 static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw)
3097 {
3098 s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
3099 s32 wakeup_f_int;
3100 u16 wakeup = 0;
3101
3102 /* Get the wakeup integer value */
3103 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3104 wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec);
3105 if (wakeup_int > 63) {
3106 wakeup = (u16)((1 << 15) | wakeup_int);
3107 } else {
3108 /* Calculate fraction value up to 4 decimals
3109 * Convert Integer value to a constant multiplier
3110 */
3111 wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
3112 wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER *
3113 hw->psm_clk_freq, bytes_per_sec);
3114
3115 /* Get Fraction value */
3116 wakeup_f = wakeup_a - wakeup_b;
3117
3118 /* Round up the Fractional value via Ceil(Fractional value) */
3119 if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2))
3120 wakeup_f += 1;
3121
3122 wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION,
3123 ICE_RL_PROF_MULTIPLIER);
3124 wakeup |= (u16)(wakeup_int << 9);
3125 wakeup |= (u16)(0x1ff & wakeup_f_int);
3126 }
3127
3128 return wakeup;
3129 }
3130
3131 /**
3132 * ice_sched_bw_to_rl_profile - convert BW to profile parameters
3133 * @hw: pointer to the HW struct
3134 * @bw: bandwidth in Kbps
3135 * @profile: profile parameters to return
3136 *
3137 * This function converts the BW to profile structure format.
3138 */
3139 static int
ice_sched_bw_to_rl_profile(struct ice_hw * hw,u32 bw,struct ice_aqc_rl_profile_elem * profile)3140 ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw,
3141 struct ice_aqc_rl_profile_elem *profile)
3142 {
3143 s64 bytes_per_sec, ts_rate, mv_tmp;
3144 int status = -EINVAL;
3145 bool found = false;
3146 s32 encode = 0;
3147 s64 mv = 0;
3148 s32 i;
3149
3150 /* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
3151 if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
3152 return status;
3153
3154 /* Bytes per second from Kbps */
3155 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3156
3157 /* encode is 6 bits but really useful are 5 bits */
3158 for (i = 0; i < 64; i++) {
3159 u64 pow_result = BIT_ULL(i);
3160
3161 ts_rate = div64_long((s64)hw->psm_clk_freq,
3162 pow_result * ICE_RL_PROF_TS_MULTIPLIER);
3163 if (ts_rate <= 0)
3164 continue;
3165
3166 /* Multiplier value */
3167 mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
3168 ts_rate);
3169
3170 /* Round to the nearest ICE_RL_PROF_MULTIPLIER */
3171 mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
3172
3173 /* First multiplier value greater than the given
3174 * accuracy bytes
3175 */
3176 if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
3177 encode = i;
3178 found = true;
3179 break;
3180 }
3181 }
3182 if (found) {
3183 u16 wm;
3184
3185 wm = ice_sched_calc_wakeup(hw, bw);
3186 profile->rl_multiply = cpu_to_le16(mv);
3187 profile->wake_up_calc = cpu_to_le16(wm);
3188 profile->rl_encode = cpu_to_le16(encode);
3189 status = 0;
3190 } else {
3191 status = -ENOENT;
3192 }
3193
3194 return status;
3195 }
3196
3197 /**
3198 * ice_sched_add_rl_profile - add RL profile
3199 * @pi: port information structure
3200 * @rl_type: type of rate limit BW - min, max, or shared
3201 * @bw: bandwidth in Kbps - Kilo bits per sec
3202 * @layer_num: specifies in which layer to create profile
3203 *
3204 * This function first checks the existing list for corresponding BW
3205 * parameter. If it exists, it returns the associated profile otherwise
3206 * it creates a new rate limit profile for requested BW, and adds it to
3207 * the HW DB and local list. It returns the new profile or null on error.
3208 * The caller needs to hold the scheduler lock.
3209 */
3210 static struct ice_aqc_rl_profile_info *
ice_sched_add_rl_profile(struct ice_port_info * pi,enum ice_rl_type rl_type,u32 bw,u8 layer_num)3211 ice_sched_add_rl_profile(struct ice_port_info *pi,
3212 enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3213 {
3214 struct ice_aqc_rl_profile_info *rl_prof_elem;
3215 u16 profiles_added = 0, num_profiles = 1;
3216 struct ice_aqc_rl_profile_elem *buf;
3217 struct ice_hw *hw;
3218 u8 profile_type;
3219 int status;
3220
3221 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3222 return NULL;
3223 switch (rl_type) {
3224 case ICE_MIN_BW:
3225 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3226 break;
3227 case ICE_MAX_BW:
3228 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3229 break;
3230 case ICE_SHARED_BW:
3231 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3232 break;
3233 default:
3234 return NULL;
3235 }
3236
3237 if (!pi)
3238 return NULL;
3239 hw = pi->hw;
3240 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3241 list_entry)
3242 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3243 profile_type && rl_prof_elem->bw == bw)
3244 /* Return existing profile ID info */
3245 return rl_prof_elem;
3246
3247 /* Create new profile ID */
3248 rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem),
3249 GFP_KERNEL);
3250
3251 if (!rl_prof_elem)
3252 return NULL;
3253
3254 status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile);
3255 if (status)
3256 goto exit_add_rl_prof;
3257
3258 rl_prof_elem->bw = bw;
3259 /* layer_num is zero relative, and fw expects level from 1 to 9 */
3260 rl_prof_elem->profile.level = layer_num + 1;
3261 rl_prof_elem->profile.flags = profile_type;
3262 rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size);
3263
3264 /* Create new entry in HW DB */
3265 buf = &rl_prof_elem->profile;
3266 status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
3267 &profiles_added, NULL);
3268 if (status || profiles_added != num_profiles)
3269 goto exit_add_rl_prof;
3270
3271 /* Good entry - add in the list */
3272 rl_prof_elem->prof_id_ref = 0;
3273 list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]);
3274 return rl_prof_elem;
3275
3276 exit_add_rl_prof:
3277 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
3278 return NULL;
3279 }
3280
3281 /**
3282 * ice_sched_cfg_node_bw_lmt - configure node sched params
3283 * @hw: pointer to the HW struct
3284 * @node: sched node to configure
3285 * @rl_type: rate limit type CIR, EIR, or shared
3286 * @rl_prof_id: rate limit profile ID
3287 *
3288 * This function configures node element's BW limit.
3289 */
3290 static int
ice_sched_cfg_node_bw_lmt(struct ice_hw * hw,struct ice_sched_node * node,enum ice_rl_type rl_type,u16 rl_prof_id)3291 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
3292 enum ice_rl_type rl_type, u16 rl_prof_id)
3293 {
3294 struct ice_aqc_txsched_elem_data buf;
3295 struct ice_aqc_txsched_elem *data;
3296
3297 buf = node->info;
3298 data = &buf.data;
3299 switch (rl_type) {
3300 case ICE_MIN_BW:
3301 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
3302 data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3303 break;
3304 case ICE_MAX_BW:
3305 /* EIR BW and Shared BW profiles are mutually exclusive and
3306 * hence only one of them may be set for any given element
3307 */
3308 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3309 return -EIO;
3310 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3311 data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3312 break;
3313 case ICE_SHARED_BW:
3314 /* Check for removing shared BW */
3315 if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) {
3316 /* remove shared profile */
3317 data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED;
3318 data->srl_id = 0; /* clear SRL field */
3319
3320 /* enable back EIR to default profile */
3321 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3322 data->eir_bw.bw_profile_idx =
3323 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
3324 break;
3325 }
3326 /* EIR BW and Shared BW profiles are mutually exclusive and
3327 * hence only one of them may be set for any given element
3328 */
3329 if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) &&
3330 (le16_to_cpu(data->eir_bw.bw_profile_idx) !=
3331 ICE_SCHED_DFLT_RL_PROF_ID))
3332 return -EIO;
3333 /* EIR BW is set to default, disable it */
3334 data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR;
3335 /* Okay to enable shared BW now */
3336 data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
3337 data->srl_id = cpu_to_le16(rl_prof_id);
3338 break;
3339 default:
3340 /* Unknown rate limit type */
3341 return -EINVAL;
3342 }
3343
3344 /* Configure element */
3345 return ice_sched_update_elem(hw, node, &buf);
3346 }
3347
3348 /**
3349 * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
3350 * @node: sched node
3351 * @rl_type: rate limit type
3352 *
3353 * If existing profile matches, it returns the corresponding rate
3354 * limit profile ID, otherwise it returns an invalid ID as error.
3355 */
3356 static u16
ice_sched_get_node_rl_prof_id(struct ice_sched_node * node,enum ice_rl_type rl_type)3357 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
3358 enum ice_rl_type rl_type)
3359 {
3360 u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
3361 struct ice_aqc_txsched_elem *data;
3362
3363 data = &node->info.data;
3364 switch (rl_type) {
3365 case ICE_MIN_BW:
3366 if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
3367 rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx);
3368 break;
3369 case ICE_MAX_BW:
3370 if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
3371 rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx);
3372 break;
3373 case ICE_SHARED_BW:
3374 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3375 rl_prof_id = le16_to_cpu(data->srl_id);
3376 break;
3377 default:
3378 break;
3379 }
3380
3381 return rl_prof_id;
3382 }
3383
3384 /**
3385 * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
3386 * @pi: port information structure
3387 * @rl_type: type of rate limit BW - min, max, or shared
3388 * @layer_index: layer index
3389 *
3390 * This function returns requested profile creation layer.
3391 */
3392 static u8
ice_sched_get_rl_prof_layer(struct ice_port_info * pi,enum ice_rl_type rl_type,u8 layer_index)3393 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
3394 u8 layer_index)
3395 {
3396 struct ice_hw *hw = pi->hw;
3397
3398 if (layer_index >= hw->num_tx_sched_layers)
3399 return ICE_SCHED_INVAL_LAYER_NUM;
3400 switch (rl_type) {
3401 case ICE_MIN_BW:
3402 if (hw->layer_info[layer_index].max_cir_rl_profiles)
3403 return layer_index;
3404 break;
3405 case ICE_MAX_BW:
3406 if (hw->layer_info[layer_index].max_eir_rl_profiles)
3407 return layer_index;
3408 break;
3409 case ICE_SHARED_BW:
3410 /* if current layer doesn't support SRL profile creation
3411 * then try a layer up or down.
3412 */
3413 if (hw->layer_info[layer_index].max_srl_profiles)
3414 return layer_index;
3415 else if (layer_index < hw->num_tx_sched_layers - 1 &&
3416 hw->layer_info[layer_index + 1].max_srl_profiles)
3417 return layer_index + 1;
3418 else if (layer_index > 0 &&
3419 hw->layer_info[layer_index - 1].max_srl_profiles)
3420 return layer_index - 1;
3421 break;
3422 default:
3423 break;
3424 }
3425 return ICE_SCHED_INVAL_LAYER_NUM;
3426 }
3427
3428 /**
3429 * ice_sched_get_srl_node - get shared rate limit node
3430 * @node: tree node
3431 * @srl_layer: shared rate limit layer
3432 *
3433 * This function returns SRL node to be used for shared rate limit purpose.
3434 * The caller needs to hold scheduler lock.
3435 */
3436 static struct ice_sched_node *
ice_sched_get_srl_node(struct ice_sched_node * node,u8 srl_layer)3437 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
3438 {
3439 if (srl_layer > node->tx_sched_layer)
3440 return node->children[0];
3441 else if (srl_layer < node->tx_sched_layer)
3442 /* Node can't be created without a parent. It will always
3443 * have a valid parent except root node.
3444 */
3445 return node->parent;
3446 else
3447 return node;
3448 }
3449
3450 /**
3451 * ice_sched_rm_rl_profile - remove RL profile ID
3452 * @pi: port information structure
3453 * @layer_num: layer number where profiles are saved
3454 * @profile_type: profile type like EIR, CIR, or SRL
3455 * @profile_id: profile ID to remove
3456 *
3457 * This function removes rate limit profile from layer 'layer_num' of type
3458 * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
3459 * scheduler lock.
3460 */
3461 static int
ice_sched_rm_rl_profile(struct ice_port_info * pi,u8 layer_num,u8 profile_type,u16 profile_id)3462 ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type,
3463 u16 profile_id)
3464 {
3465 struct ice_aqc_rl_profile_info *rl_prof_elem;
3466 int status = 0;
3467
3468 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3469 return -EINVAL;
3470 /* Check the existing list for RL profile */
3471 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3472 list_entry)
3473 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3474 profile_type &&
3475 le16_to_cpu(rl_prof_elem->profile.profile_id) ==
3476 profile_id) {
3477 if (rl_prof_elem->prof_id_ref)
3478 rl_prof_elem->prof_id_ref--;
3479
3480 /* Remove old profile ID from database */
3481 status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem);
3482 if (status && status != -EBUSY)
3483 ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
3484 break;
3485 }
3486 if (status == -EBUSY)
3487 status = 0;
3488 return status;
3489 }
3490
3491 /**
3492 * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
3493 * @pi: port information structure
3494 * @node: pointer to node structure
3495 * @rl_type: rate limit type min, max, or shared
3496 * @layer_num: layer number where RL profiles are saved
3497 *
3498 * This function configures node element's BW rate limit profile ID of
3499 * type CIR, EIR, or SRL to default. This function needs to be called
3500 * with the scheduler lock held.
3501 */
3502 static int
ice_sched_set_node_bw_dflt(struct ice_port_info * pi,struct ice_sched_node * node,enum ice_rl_type rl_type,u8 layer_num)3503 ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
3504 struct ice_sched_node *node,
3505 enum ice_rl_type rl_type, u8 layer_num)
3506 {
3507 struct ice_hw *hw;
3508 u8 profile_type;
3509 u16 rl_prof_id;
3510 u16 old_id;
3511 int status;
3512
3513 hw = pi->hw;
3514 switch (rl_type) {
3515 case ICE_MIN_BW:
3516 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3517 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3518 break;
3519 case ICE_MAX_BW:
3520 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3521 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3522 break;
3523 case ICE_SHARED_BW:
3524 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3525 /* No SRL is configured for default case */
3526 rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
3527 break;
3528 default:
3529 return -EINVAL;
3530 }
3531 /* Save existing RL prof ID for later clean up */
3532 old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3533 /* Configure BW scheduling parameters */
3534 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3535 if (status)
3536 return status;
3537
3538 /* Remove stale RL profile ID */
3539 if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
3540 old_id == ICE_SCHED_INVAL_PROF_ID)
3541 return 0;
3542
3543 return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id);
3544 }
3545
3546 /**
3547 * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness
3548 * @pi: port information structure
3549 * @node: pointer to node structure
3550 * @layer_num: layer number where rate limit profiles are saved
3551 * @rl_type: rate limit type min, max, or shared
3552 * @bw: bandwidth value
3553 *
3554 * This function prepares node element's bandwidth to SRL or EIR exclusively.
3555 * EIR BW and Shared BW profiles are mutually exclusive and hence only one of
3556 * them may be set for any given element. This function needs to be called
3557 * with the scheduler lock held.
3558 */
3559 static int
ice_sched_set_eir_srl_excl(struct ice_port_info * pi,struct ice_sched_node * node,u8 layer_num,enum ice_rl_type rl_type,u32 bw)3560 ice_sched_set_eir_srl_excl(struct ice_port_info *pi,
3561 struct ice_sched_node *node,
3562 u8 layer_num, enum ice_rl_type rl_type, u32 bw)
3563 {
3564 if (rl_type == ICE_SHARED_BW) {
3565 /* SRL node passed in this case, it may be different node */
3566 if (bw == ICE_SCHED_DFLT_BW)
3567 /* SRL being removed, ice_sched_cfg_node_bw_lmt()
3568 * enables EIR to default. EIR is not set in this
3569 * case, so no additional action is required.
3570 */
3571 return 0;
3572
3573 /* SRL being configured, set EIR to default here.
3574 * ice_sched_cfg_node_bw_lmt() disables EIR when it
3575 * configures SRL
3576 */
3577 return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW,
3578 layer_num);
3579 } else if (rl_type == ICE_MAX_BW &&
3580 node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) {
3581 /* Remove Shared profile. Set default shared BW call
3582 * removes shared profile for a node.
3583 */
3584 return ice_sched_set_node_bw_dflt(pi, node,
3585 ICE_SHARED_BW,
3586 layer_num);
3587 }
3588 return 0;
3589 }
3590
3591 /**
3592 * ice_sched_set_node_bw - set node's bandwidth
3593 * @pi: port information structure
3594 * @node: tree node
3595 * @rl_type: rate limit type min, max, or shared
3596 * @bw: bandwidth in Kbps - Kilo bits per sec
3597 * @layer_num: layer number
3598 *
3599 * This function adds new profile corresponding to requested BW, configures
3600 * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
3601 * ID from local database. The caller needs to hold scheduler lock.
3602 */
3603 int
ice_sched_set_node_bw(struct ice_port_info * pi,struct ice_sched_node * node,enum ice_rl_type rl_type,u32 bw,u8 layer_num)3604 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
3605 enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3606 {
3607 struct ice_aqc_rl_profile_info *rl_prof_info;
3608 struct ice_hw *hw = pi->hw;
3609 u16 old_id, rl_prof_id;
3610 int status = -EINVAL;
3611
3612 rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num);
3613 if (!rl_prof_info)
3614 return status;
3615
3616 rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id);
3617
3618 /* Save existing RL prof ID for later clean up */
3619 old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3620 /* Configure BW scheduling parameters */
3621 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3622 if (status)
3623 return status;
3624
3625 /* New changes has been applied */
3626 /* Increment the profile ID reference count */
3627 rl_prof_info->prof_id_ref++;
3628
3629 /* Check for old ID removal */
3630 if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
3631 old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
3632 return 0;
3633
3634 return ice_sched_rm_rl_profile(pi, layer_num,
3635 rl_prof_info->profile.flags &
3636 ICE_AQC_RL_PROFILE_TYPE_M, old_id);
3637 }
3638
3639 /**
3640 * ice_sched_set_node_priority - set node's priority
3641 * @pi: port information structure
3642 * @node: tree node
3643 * @priority: number 0-7 representing priority among siblings
3644 *
3645 * This function sets priority of a node among it's siblings.
3646 */
3647 int
ice_sched_set_node_priority(struct ice_port_info * pi,struct ice_sched_node * node,u16 priority)3648 ice_sched_set_node_priority(struct ice_port_info *pi, struct ice_sched_node *node,
3649 u16 priority)
3650 {
3651 struct ice_aqc_txsched_elem_data buf;
3652 struct ice_aqc_txsched_elem *data;
3653
3654 buf = node->info;
3655 data = &buf.data;
3656
3657 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
3658 data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_PRIO_M, priority);
3659
3660 return ice_sched_update_elem(pi->hw, node, &buf);
3661 }
3662
3663 /**
3664 * ice_sched_set_node_weight - set node's weight
3665 * @pi: port information structure
3666 * @node: tree node
3667 * @weight: number 1-200 representing weight for WFQ
3668 *
3669 * This function sets weight of the node for WFQ algorithm.
3670 */
3671 int
ice_sched_set_node_weight(struct ice_port_info * pi,struct ice_sched_node * node,u16 weight)3672 ice_sched_set_node_weight(struct ice_port_info *pi, struct ice_sched_node *node, u16 weight)
3673 {
3674 struct ice_aqc_txsched_elem_data buf;
3675 struct ice_aqc_txsched_elem *data;
3676
3677 buf = node->info;
3678 data = &buf.data;
3679
3680 data->valid_sections = ICE_AQC_ELEM_VALID_CIR | ICE_AQC_ELEM_VALID_EIR |
3681 ICE_AQC_ELEM_VALID_GENERIC;
3682 data->cir_bw.bw_alloc = cpu_to_le16(weight);
3683 data->eir_bw.bw_alloc = cpu_to_le16(weight);
3684
3685 data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_SP_M, 0x0);
3686
3687 return ice_sched_update_elem(pi->hw, node, &buf);
3688 }
3689
3690 /**
3691 * ice_sched_set_node_bw_lmt - set node's BW limit
3692 * @pi: port information structure
3693 * @node: tree node
3694 * @rl_type: rate limit type min, max, or shared
3695 * @bw: bandwidth in Kbps - Kilo bits per sec
3696 *
3697 * It updates node's BW limit parameters like BW RL profile ID of type CIR,
3698 * EIR, or SRL. The caller needs to hold scheduler lock.
3699 */
3700 int
ice_sched_set_node_bw_lmt(struct ice_port_info * pi,struct ice_sched_node * node,enum ice_rl_type rl_type,u32 bw)3701 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
3702 enum ice_rl_type rl_type, u32 bw)
3703 {
3704 struct ice_sched_node *cfg_node = node;
3705 int status;
3706
3707 struct ice_hw *hw;
3708 u8 layer_num;
3709
3710 if (!pi)
3711 return -EINVAL;
3712 hw = pi->hw;
3713 /* Remove unused RL profile IDs from HW and SW DB */
3714 ice_sched_rm_unused_rl_prof(pi);
3715 layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
3716 node->tx_sched_layer);
3717 if (layer_num >= hw->num_tx_sched_layers)
3718 return -EINVAL;
3719
3720 if (rl_type == ICE_SHARED_BW) {
3721 /* SRL node may be different */
3722 cfg_node = ice_sched_get_srl_node(node, layer_num);
3723 if (!cfg_node)
3724 return -EIO;
3725 }
3726 /* EIR BW and Shared BW profiles are mutually exclusive and
3727 * hence only one of them may be set for any given element
3728 */
3729 status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type,
3730 bw);
3731 if (status)
3732 return status;
3733 if (bw == ICE_SCHED_DFLT_BW)
3734 return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type,
3735 layer_num);
3736 return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num);
3737 }
3738
3739 /**
3740 * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
3741 * @pi: port information structure
3742 * @node: pointer to node structure
3743 * @rl_type: rate limit type min, max, or shared
3744 *
3745 * This function configures node element's BW rate limit profile ID of
3746 * type CIR, EIR, or SRL to default. This function needs to be called
3747 * with the scheduler lock held.
3748 */
3749 static int
ice_sched_set_node_bw_dflt_lmt(struct ice_port_info * pi,struct ice_sched_node * node,enum ice_rl_type rl_type)3750 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
3751 struct ice_sched_node *node,
3752 enum ice_rl_type rl_type)
3753 {
3754 return ice_sched_set_node_bw_lmt(pi, node, rl_type,
3755 ICE_SCHED_DFLT_BW);
3756 }
3757
3758 /**
3759 * ice_sched_validate_srl_node - Check node for SRL applicability
3760 * @node: sched node to configure
3761 * @sel_layer: selected SRL layer
3762 *
3763 * This function checks if the SRL can be applied to a selected layer node on
3764 * behalf of the requested node (first argument). This function needs to be
3765 * called with scheduler lock held.
3766 */
3767 static int
ice_sched_validate_srl_node(struct ice_sched_node * node,u8 sel_layer)3768 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
3769 {
3770 /* SRL profiles are not available on all layers. Check if the
3771 * SRL profile can be applied to a node above or below the
3772 * requested node. SRL configuration is possible only if the
3773 * selected layer's node has single child.
3774 */
3775 if (sel_layer == node->tx_sched_layer ||
3776 ((sel_layer == node->tx_sched_layer + 1) &&
3777 node->num_children == 1) ||
3778 ((sel_layer == node->tx_sched_layer - 1) &&
3779 (node->parent && node->parent->num_children == 1)))
3780 return 0;
3781
3782 return -EIO;
3783 }
3784
3785 /**
3786 * ice_sched_save_q_bw - save queue node's BW information
3787 * @q_ctx: queue context structure
3788 * @rl_type: rate limit type min, max, or shared
3789 * @bw: bandwidth in Kbps - Kilo bits per sec
3790 *
3791 * Save BW information of queue type node for post replay use.
3792 */
3793 static int
ice_sched_save_q_bw(struct ice_q_ctx * q_ctx,enum ice_rl_type rl_type,u32 bw)3794 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
3795 {
3796 switch (rl_type) {
3797 case ICE_MIN_BW:
3798 ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
3799 break;
3800 case ICE_MAX_BW:
3801 ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
3802 break;
3803 case ICE_SHARED_BW:
3804 ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
3805 break;
3806 default:
3807 return -EINVAL;
3808 }
3809 return 0;
3810 }
3811
3812 /**
3813 * ice_sched_set_q_bw_lmt - sets queue BW limit
3814 * @pi: port information structure
3815 * @vsi_handle: sw VSI handle
3816 * @tc: traffic class
3817 * @q_handle: software queue handle
3818 * @rl_type: min, max, or shared
3819 * @bw: bandwidth in Kbps
3820 *
3821 * This function sets BW limit of queue scheduling node.
3822 */
3823 static int
ice_sched_set_q_bw_lmt(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 q_handle,enum ice_rl_type rl_type,u32 bw)3824 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3825 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3826 {
3827 struct ice_sched_node *node;
3828 struct ice_q_ctx *q_ctx;
3829 int status = -EINVAL;
3830
3831 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3832 return -EINVAL;
3833 mutex_lock(&pi->sched_lock);
3834 q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
3835 if (!q_ctx)
3836 goto exit_q_bw_lmt;
3837 node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
3838 if (!node) {
3839 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
3840 goto exit_q_bw_lmt;
3841 }
3842
3843 /* Return error if it is not a leaf node */
3844 if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
3845 goto exit_q_bw_lmt;
3846
3847 /* SRL bandwidth layer selection */
3848 if (rl_type == ICE_SHARED_BW) {
3849 u8 sel_layer; /* selected layer */
3850
3851 sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
3852 node->tx_sched_layer);
3853 if (sel_layer >= pi->hw->num_tx_sched_layers) {
3854 status = -EINVAL;
3855 goto exit_q_bw_lmt;
3856 }
3857 status = ice_sched_validate_srl_node(node, sel_layer);
3858 if (status)
3859 goto exit_q_bw_lmt;
3860 }
3861
3862 if (bw == ICE_SCHED_DFLT_BW)
3863 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3864 else
3865 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3866
3867 if (!status)
3868 status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
3869
3870 exit_q_bw_lmt:
3871 mutex_unlock(&pi->sched_lock);
3872 return status;
3873 }
3874
3875 /**
3876 * ice_cfg_q_bw_lmt - configure queue BW limit
3877 * @pi: port information structure
3878 * @vsi_handle: sw VSI handle
3879 * @tc: traffic class
3880 * @q_handle: software queue handle
3881 * @rl_type: min, max, or shared
3882 * @bw: bandwidth in Kbps
3883 *
3884 * This function configures BW limit of queue scheduling node.
3885 */
3886 int
ice_cfg_q_bw_lmt(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 q_handle,enum ice_rl_type rl_type,u32 bw)3887 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3888 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3889 {
3890 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3891 bw);
3892 }
3893
3894 /**
3895 * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
3896 * @pi: port information structure
3897 * @vsi_handle: sw VSI handle
3898 * @tc: traffic class
3899 * @q_handle: software queue handle
3900 * @rl_type: min, max, or shared
3901 *
3902 * This function configures BW default limit of queue scheduling node.
3903 */
3904 int
ice_cfg_q_bw_dflt_lmt(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 q_handle,enum ice_rl_type rl_type)3905 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3906 u16 q_handle, enum ice_rl_type rl_type)
3907 {
3908 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3909 ICE_SCHED_DFLT_BW);
3910 }
3911
3912 /**
3913 * ice_sched_get_node_by_id_type - get node from ID type
3914 * @pi: port information structure
3915 * @id: identifier
3916 * @agg_type: type of aggregator
3917 * @tc: traffic class
3918 *
3919 * This function returns node identified by ID of type aggregator, and
3920 * based on traffic class (TC). This function needs to be called with
3921 * the scheduler lock held.
3922 */
3923 static struct ice_sched_node *
ice_sched_get_node_by_id_type(struct ice_port_info * pi,u32 id,enum ice_agg_type agg_type,u8 tc)3924 ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id,
3925 enum ice_agg_type agg_type, u8 tc)
3926 {
3927 struct ice_sched_node *node = NULL;
3928
3929 switch (agg_type) {
3930 case ICE_AGG_TYPE_VSI: {
3931 struct ice_vsi_ctx *vsi_ctx;
3932 u16 vsi_handle = (u16)id;
3933
3934 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3935 break;
3936 /* Get sched_vsi_info */
3937 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3938 if (!vsi_ctx)
3939 break;
3940 node = vsi_ctx->sched.vsi_node[tc];
3941 break;
3942 }
3943
3944 case ICE_AGG_TYPE_AGG: {
3945 struct ice_sched_node *tc_node;
3946
3947 tc_node = ice_sched_get_tc_node(pi, tc);
3948 if (tc_node)
3949 node = ice_sched_get_agg_node(pi, tc_node, id);
3950 break;
3951 }
3952
3953 default:
3954 break;
3955 }
3956
3957 return node;
3958 }
3959
3960 /**
3961 * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC
3962 * @pi: port information structure
3963 * @id: ID (software VSI handle or AGG ID)
3964 * @agg_type: aggregator type (VSI or AGG type node)
3965 * @tc: traffic class
3966 * @rl_type: min or max
3967 * @bw: bandwidth in Kbps
3968 *
3969 * This function sets BW limit of VSI or Aggregator scheduling node
3970 * based on TC information from passed in argument BW.
3971 */
3972 static int
ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info * pi,u32 id,enum ice_agg_type agg_type,u8 tc,enum ice_rl_type rl_type,u32 bw)3973 ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id,
3974 enum ice_agg_type agg_type, u8 tc,
3975 enum ice_rl_type rl_type, u32 bw)
3976 {
3977 struct ice_sched_node *node;
3978 int status = -EINVAL;
3979
3980 if (!pi)
3981 return status;
3982
3983 if (rl_type == ICE_UNKNOWN_BW)
3984 return status;
3985
3986 mutex_lock(&pi->sched_lock);
3987 node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc);
3988 if (!node) {
3989 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n");
3990 goto exit_set_node_bw_lmt_per_tc;
3991 }
3992 if (bw == ICE_SCHED_DFLT_BW)
3993 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3994 else
3995 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3996
3997 exit_set_node_bw_lmt_per_tc:
3998 mutex_unlock(&pi->sched_lock);
3999 return status;
4000 }
4001
4002 /**
4003 * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC
4004 * @pi: port information structure
4005 * @vsi_handle: software VSI handle
4006 * @tc: traffic class
4007 * @rl_type: min or max
4008 * @bw: bandwidth in Kbps
4009 *
4010 * This function configures BW limit of VSI scheduling node based on TC
4011 * information.
4012 */
4013 int
ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info * pi,u16 vsi_handle,u8 tc,enum ice_rl_type rl_type,u32 bw)4014 ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4015 enum ice_rl_type rl_type, u32 bw)
4016 {
4017 int status;
4018
4019 status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
4020 ICE_AGG_TYPE_VSI,
4021 tc, rl_type, bw);
4022 if (!status) {
4023 mutex_lock(&pi->sched_lock);
4024 status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
4025 mutex_unlock(&pi->sched_lock);
4026 }
4027 return status;
4028 }
4029
4030 /**
4031 * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC
4032 * @pi: port information structure
4033 * @vsi_handle: software VSI handle
4034 * @tc: traffic class
4035 * @rl_type: min or max
4036 *
4037 * This function configures default BW limit of VSI scheduling node based on TC
4038 * information.
4039 */
4040 int
ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info * pi,u16 vsi_handle,u8 tc,enum ice_rl_type rl_type)4041 ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4042 enum ice_rl_type rl_type)
4043 {
4044 int status;
4045
4046 status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
4047 ICE_AGG_TYPE_VSI,
4048 tc, rl_type,
4049 ICE_SCHED_DFLT_BW);
4050 if (!status) {
4051 mutex_lock(&pi->sched_lock);
4052 status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type,
4053 ICE_SCHED_DFLT_BW);
4054 mutex_unlock(&pi->sched_lock);
4055 }
4056 return status;
4057 }
4058
4059 /**
4060 * ice_cfg_rl_burst_size - Set burst size value
4061 * @hw: pointer to the HW struct
4062 * @bytes: burst size in bytes
4063 *
4064 * This function configures/set the burst size to requested new value. The new
4065 * burst size value is used for future rate limit calls. It doesn't change the
4066 * existing or previously created RL profiles.
4067 */
ice_cfg_rl_burst_size(struct ice_hw * hw,u32 bytes)4068 int ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
4069 {
4070 u16 burst_size_to_prog;
4071
4072 if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
4073 bytes > ICE_MAX_BURST_SIZE_ALLOWED)
4074 return -EINVAL;
4075 if (ice_round_to_num(bytes, 64) <=
4076 ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
4077 /* 64 byte granularity case */
4078 /* Disable MSB granularity bit */
4079 burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
4080 /* round number to nearest 64 byte granularity */
4081 bytes = ice_round_to_num(bytes, 64);
4082 /* The value is in 64 byte chunks */
4083 burst_size_to_prog |= (u16)(bytes / 64);
4084 } else {
4085 /* k bytes granularity case */
4086 /* Enable MSB granularity bit */
4087 burst_size_to_prog = ICE_KBYTE_GRANULARITY;
4088 /* round number to nearest 1024 granularity */
4089 bytes = ice_round_to_num(bytes, 1024);
4090 /* check rounding doesn't go beyond allowed */
4091 if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
4092 bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
4093 /* The value is in k bytes */
4094 burst_size_to_prog |= (u16)(bytes / 1024);
4095 }
4096 hw->max_burst_size = burst_size_to_prog;
4097 return 0;
4098 }
4099
4100 /**
4101 * ice_sched_replay_node_prio - re-configure node priority
4102 * @hw: pointer to the HW struct
4103 * @node: sched node to configure
4104 * @priority: priority value
4105 *
4106 * This function configures node element's priority value. It
4107 * needs to be called with scheduler lock held.
4108 */
4109 static int
ice_sched_replay_node_prio(struct ice_hw * hw,struct ice_sched_node * node,u8 priority)4110 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
4111 u8 priority)
4112 {
4113 struct ice_aqc_txsched_elem_data buf;
4114 struct ice_aqc_txsched_elem *data;
4115 int status;
4116
4117 buf = node->info;
4118 data = &buf.data;
4119 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
4120 data->generic = priority;
4121
4122 /* Configure element */
4123 status = ice_sched_update_elem(hw, node, &buf);
4124 return status;
4125 }
4126
4127 /**
4128 * ice_sched_replay_node_bw - replay node(s) BW
4129 * @hw: pointer to the HW struct
4130 * @node: sched node to configure
4131 * @bw_t_info: BW type information
4132 *
4133 * This function restores node's BW from bw_t_info. The caller needs
4134 * to hold the scheduler lock.
4135 */
4136 static int
ice_sched_replay_node_bw(struct ice_hw * hw,struct ice_sched_node * node,struct ice_bw_type_info * bw_t_info)4137 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
4138 struct ice_bw_type_info *bw_t_info)
4139 {
4140 struct ice_port_info *pi = hw->port_info;
4141 int status = -EINVAL;
4142 u16 bw_alloc;
4143
4144 if (!node)
4145 return status;
4146 if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
4147 return 0;
4148 if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) {
4149 status = ice_sched_replay_node_prio(hw, node,
4150 bw_t_info->generic);
4151 if (status)
4152 return status;
4153 }
4154 if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) {
4155 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
4156 bw_t_info->cir_bw.bw);
4157 if (status)
4158 return status;
4159 }
4160 if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) {
4161 bw_alloc = bw_t_info->cir_bw.bw_alloc;
4162 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
4163 bw_alloc);
4164 if (status)
4165 return status;
4166 }
4167 if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) {
4168 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
4169 bw_t_info->eir_bw.bw);
4170 if (status)
4171 return status;
4172 }
4173 if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) {
4174 bw_alloc = bw_t_info->eir_bw.bw_alloc;
4175 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
4176 bw_alloc);
4177 if (status)
4178 return status;
4179 }
4180 if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap))
4181 status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
4182 bw_t_info->shared_bw);
4183 return status;
4184 }
4185
4186 /**
4187 * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap
4188 * @pi: port info struct
4189 * @tc_bitmap: 8 bits TC bitmap to check
4190 * @ena_tc_bitmap: 8 bits enabled TC bitmap to return
4191 *
4192 * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs
4193 * may be missing, it returns enabled TCs. This function needs to be called with
4194 * scheduler lock held.
4195 */
4196 static void
ice_sched_get_ena_tc_bitmap(struct ice_port_info * pi,unsigned long * tc_bitmap,unsigned long * ena_tc_bitmap)4197 ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi,
4198 unsigned long *tc_bitmap,
4199 unsigned long *ena_tc_bitmap)
4200 {
4201 u8 tc;
4202
4203 /* Some TC(s) may be missing after reset, adjust for replay */
4204 ice_for_each_traffic_class(tc)
4205 if (ice_is_tc_ena(*tc_bitmap, tc) &&
4206 (ice_sched_get_tc_node(pi, tc)))
4207 set_bit(tc, ena_tc_bitmap);
4208 }
4209
4210 /**
4211 * ice_sched_replay_agg - recreate aggregator node(s)
4212 * @hw: pointer to the HW struct
4213 *
4214 * This function recreate aggregator type nodes which are not replayed earlier.
4215 * It also replay aggregator BW information. These aggregator nodes are not
4216 * associated with VSI type node yet.
4217 */
ice_sched_replay_agg(struct ice_hw * hw)4218 void ice_sched_replay_agg(struct ice_hw *hw)
4219 {
4220 struct ice_port_info *pi = hw->port_info;
4221 struct ice_sched_agg_info *agg_info;
4222
4223 mutex_lock(&pi->sched_lock);
4224 list_for_each_entry(agg_info, &hw->agg_list, list_entry)
4225 /* replay aggregator (re-create aggregator node) */
4226 if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap,
4227 ICE_MAX_TRAFFIC_CLASS)) {
4228 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4229 int status;
4230
4231 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4232 ice_sched_get_ena_tc_bitmap(pi,
4233 agg_info->replay_tc_bitmap,
4234 replay_bitmap);
4235 status = ice_sched_cfg_agg(hw->port_info,
4236 agg_info->agg_id,
4237 ICE_AGG_TYPE_AGG,
4238 replay_bitmap);
4239 if (status) {
4240 dev_info(ice_hw_to_dev(hw),
4241 "Replay agg id[%d] failed\n",
4242 agg_info->agg_id);
4243 /* Move on to next one */
4244 continue;
4245 }
4246 }
4247 mutex_unlock(&pi->sched_lock);
4248 }
4249
4250 /**
4251 * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization
4252 * @hw: pointer to the HW struct
4253 *
4254 * This function initialize aggregator(s) TC bitmap to zero. A required
4255 * preinit step for replaying aggregators.
4256 */
ice_sched_replay_agg_vsi_preinit(struct ice_hw * hw)4257 void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw)
4258 {
4259 struct ice_port_info *pi = hw->port_info;
4260 struct ice_sched_agg_info *agg_info;
4261
4262 mutex_lock(&pi->sched_lock);
4263 list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
4264 struct ice_sched_agg_vsi_info *agg_vsi_info;
4265
4266 agg_info->tc_bitmap[0] = 0;
4267 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list,
4268 list_entry)
4269 agg_vsi_info->tc_bitmap[0] = 0;
4270 }
4271 mutex_unlock(&pi->sched_lock);
4272 }
4273
4274 /**
4275 * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s)
4276 * @hw: pointer to the HW struct
4277 * @vsi_handle: software VSI handle
4278 *
4279 * This function replays aggregator node, VSI to aggregator type nodes, and
4280 * their node bandwidth information. This function needs to be called with
4281 * scheduler lock held.
4282 */
ice_sched_replay_vsi_agg(struct ice_hw * hw,u16 vsi_handle)4283 static int ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4284 {
4285 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4286 struct ice_sched_agg_vsi_info *agg_vsi_info;
4287 struct ice_port_info *pi = hw->port_info;
4288 struct ice_sched_agg_info *agg_info;
4289 int status;
4290
4291 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4292 if (!ice_is_vsi_valid(hw, vsi_handle))
4293 return -EINVAL;
4294 agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
4295 if (!agg_info)
4296 return 0; /* Not present in list - default Agg case */
4297 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
4298 if (!agg_vsi_info)
4299 return 0; /* Not present in list - default Agg case */
4300 ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap,
4301 replay_bitmap);
4302 /* Replay aggregator node associated to vsi_handle */
4303 status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id,
4304 ICE_AGG_TYPE_AGG, replay_bitmap);
4305 if (status)
4306 return status;
4307
4308 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4309 ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap,
4310 replay_bitmap);
4311 /* Move this VSI (vsi_handle) to above aggregator */
4312 return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle,
4313 replay_bitmap);
4314 }
4315
4316 /**
4317 * ice_replay_vsi_agg - replay VSI to aggregator node
4318 * @hw: pointer to the HW struct
4319 * @vsi_handle: software VSI handle
4320 *
4321 * This function replays association of VSI to aggregator type nodes, and
4322 * node bandwidth information.
4323 */
ice_replay_vsi_agg(struct ice_hw * hw,u16 vsi_handle)4324 int ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4325 {
4326 struct ice_port_info *pi = hw->port_info;
4327 int status;
4328
4329 mutex_lock(&pi->sched_lock);
4330 status = ice_sched_replay_vsi_agg(hw, vsi_handle);
4331 mutex_unlock(&pi->sched_lock);
4332 return status;
4333 }
4334
4335 /**
4336 * ice_sched_replay_q_bw - replay queue type node BW
4337 * @pi: port information structure
4338 * @q_ctx: queue context structure
4339 *
4340 * This function replays queue type node bandwidth. This function needs to be
4341 * called with scheduler lock held.
4342 */
ice_sched_replay_q_bw(struct ice_port_info * pi,struct ice_q_ctx * q_ctx)4343 int ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
4344 {
4345 struct ice_sched_node *q_node;
4346
4347 /* Following also checks the presence of node in tree */
4348 q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
4349 if (!q_node)
4350 return -EINVAL;
4351 return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
4352 }
4353