1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021, Intel Corporation. */
3
4 #include "ice.h"
5 #include "ice_lib.h"
6 #include "ice_trace.h"
7
8 #define E810_OUT_PROP_DELAY_NS 1
9
10 #define UNKNOWN_INCVAL_E822 0x100000000ULL
11
12 static const struct ptp_pin_desc ice_pin_desc_e810t[] = {
13 /* name idx func chan */
14 { "GNSS", GNSS, PTP_PF_EXTTS, 0, { 0, } },
15 { "SMA1", SMA1, PTP_PF_NONE, 1, { 0, } },
16 { "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } },
17 { "SMA2", SMA2, PTP_PF_NONE, 2, { 0, } },
18 { "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } },
19 };
20
21 /**
22 * ice_get_sma_config_e810t
23 * @hw: pointer to the hw struct
24 * @ptp_pins: pointer to the ptp_pin_desc struture
25 *
26 * Read the configuration of the SMA control logic and put it into the
27 * ptp_pin_desc structure
28 */
29 static int
ice_get_sma_config_e810t(struct ice_hw * hw,struct ptp_pin_desc * ptp_pins)30 ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins)
31 {
32 u8 data, i;
33 int status;
34
35 /* Read initial pin state */
36 status = ice_read_sma_ctrl_e810t(hw, &data);
37 if (status)
38 return status;
39
40 /* initialize with defaults */
41 for (i = 0; i < NUM_PTP_PINS_E810T; i++) {
42 snprintf(ptp_pins[i].name, sizeof(ptp_pins[i].name),
43 "%s", ice_pin_desc_e810t[i].name);
44 ptp_pins[i].index = ice_pin_desc_e810t[i].index;
45 ptp_pins[i].func = ice_pin_desc_e810t[i].func;
46 ptp_pins[i].chan = ice_pin_desc_e810t[i].chan;
47 }
48
49 /* Parse SMA1/UFL1 */
50 switch (data & ICE_SMA1_MASK_E810T) {
51 case ICE_SMA1_MASK_E810T:
52 default:
53 ptp_pins[SMA1].func = PTP_PF_NONE;
54 ptp_pins[UFL1].func = PTP_PF_NONE;
55 break;
56 case ICE_SMA1_DIR_EN_E810T:
57 ptp_pins[SMA1].func = PTP_PF_PEROUT;
58 ptp_pins[UFL1].func = PTP_PF_NONE;
59 break;
60 case ICE_SMA1_TX_EN_E810T:
61 ptp_pins[SMA1].func = PTP_PF_EXTTS;
62 ptp_pins[UFL1].func = PTP_PF_NONE;
63 break;
64 case 0:
65 ptp_pins[SMA1].func = PTP_PF_EXTTS;
66 ptp_pins[UFL1].func = PTP_PF_PEROUT;
67 break;
68 }
69
70 /* Parse SMA2/UFL2 */
71 switch (data & ICE_SMA2_MASK_E810T) {
72 case ICE_SMA2_MASK_E810T:
73 default:
74 ptp_pins[SMA2].func = PTP_PF_NONE;
75 ptp_pins[UFL2].func = PTP_PF_NONE;
76 break;
77 case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
78 ptp_pins[SMA2].func = PTP_PF_EXTTS;
79 ptp_pins[UFL2].func = PTP_PF_NONE;
80 break;
81 case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
82 ptp_pins[SMA2].func = PTP_PF_PEROUT;
83 ptp_pins[UFL2].func = PTP_PF_NONE;
84 break;
85 case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T):
86 ptp_pins[SMA2].func = PTP_PF_NONE;
87 ptp_pins[UFL2].func = PTP_PF_EXTTS;
88 break;
89 case ICE_SMA2_DIR_EN_E810T:
90 ptp_pins[SMA2].func = PTP_PF_PEROUT;
91 ptp_pins[UFL2].func = PTP_PF_EXTTS;
92 break;
93 }
94
95 return 0;
96 }
97
98 /**
99 * ice_ptp_set_sma_config_e810t
100 * @hw: pointer to the hw struct
101 * @ptp_pins: pointer to the ptp_pin_desc struture
102 *
103 * Set the configuration of the SMA control logic based on the configuration in
104 * num_pins parameter
105 */
106 static int
ice_ptp_set_sma_config_e810t(struct ice_hw * hw,const struct ptp_pin_desc * ptp_pins)107 ice_ptp_set_sma_config_e810t(struct ice_hw *hw,
108 const struct ptp_pin_desc *ptp_pins)
109 {
110 int status;
111 u8 data;
112
113 /* SMA1 and UFL1 cannot be set to TX at the same time */
114 if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
115 ptp_pins[UFL1].func == PTP_PF_PEROUT)
116 return -EINVAL;
117
118 /* SMA2 and UFL2 cannot be set to RX at the same time */
119 if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
120 ptp_pins[UFL2].func == PTP_PF_EXTTS)
121 return -EINVAL;
122
123 /* Read initial pin state value */
124 status = ice_read_sma_ctrl_e810t(hw, &data);
125 if (status)
126 return status;
127
128 /* Set the right sate based on the desired configuration */
129 data &= ~ICE_SMA1_MASK_E810T;
130 if (ptp_pins[SMA1].func == PTP_PF_NONE &&
131 ptp_pins[UFL1].func == PTP_PF_NONE) {
132 dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled");
133 data |= ICE_SMA1_MASK_E810T;
134 } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
135 ptp_pins[UFL1].func == PTP_PF_NONE) {
136 dev_info(ice_hw_to_dev(hw), "SMA1 RX");
137 data |= ICE_SMA1_TX_EN_E810T;
138 } else if (ptp_pins[SMA1].func == PTP_PF_NONE &&
139 ptp_pins[UFL1].func == PTP_PF_PEROUT) {
140 /* U.FL 1 TX will always enable SMA 1 RX */
141 dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
142 } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
143 ptp_pins[UFL1].func == PTP_PF_PEROUT) {
144 dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
145 } else if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
146 ptp_pins[UFL1].func == PTP_PF_NONE) {
147 dev_info(ice_hw_to_dev(hw), "SMA1 TX");
148 data |= ICE_SMA1_DIR_EN_E810T;
149 }
150
151 data &= ~ICE_SMA2_MASK_E810T;
152 if (ptp_pins[SMA2].func == PTP_PF_NONE &&
153 ptp_pins[UFL2].func == PTP_PF_NONE) {
154 dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled");
155 data |= ICE_SMA2_MASK_E810T;
156 } else if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
157 ptp_pins[UFL2].func == PTP_PF_NONE) {
158 dev_info(ice_hw_to_dev(hw), "SMA2 RX");
159 data |= (ICE_SMA2_TX_EN_E810T |
160 ICE_SMA2_UFL2_RX_DIS_E810T);
161 } else if (ptp_pins[SMA2].func == PTP_PF_NONE &&
162 ptp_pins[UFL2].func == PTP_PF_EXTTS) {
163 dev_info(ice_hw_to_dev(hw), "UFL2 RX");
164 data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T);
165 } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
166 ptp_pins[UFL2].func == PTP_PF_NONE) {
167 dev_info(ice_hw_to_dev(hw), "SMA2 TX");
168 data |= (ICE_SMA2_DIR_EN_E810T |
169 ICE_SMA2_UFL2_RX_DIS_E810T);
170 } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
171 ptp_pins[UFL2].func == PTP_PF_EXTTS) {
172 dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX");
173 data |= ICE_SMA2_DIR_EN_E810T;
174 }
175
176 return ice_write_sma_ctrl_e810t(hw, data);
177 }
178
179 /**
180 * ice_ptp_set_sma_e810t
181 * @info: the driver's PTP info structure
182 * @pin: pin index in kernel structure
183 * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT)
184 *
185 * Set the configuration of a single SMA pin
186 */
187 static int
ice_ptp_set_sma_e810t(struct ptp_clock_info * info,unsigned int pin,enum ptp_pin_function func)188 ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin,
189 enum ptp_pin_function func)
190 {
191 struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T];
192 struct ice_pf *pf = ptp_info_to_pf(info);
193 struct ice_hw *hw = &pf->hw;
194 int err;
195
196 if (pin < SMA1 || func > PTP_PF_PEROUT)
197 return -EOPNOTSUPP;
198
199 err = ice_get_sma_config_e810t(hw, ptp_pins);
200 if (err)
201 return err;
202
203 /* Disable the same function on the other pin sharing the channel */
204 if (pin == SMA1 && ptp_pins[UFL1].func == func)
205 ptp_pins[UFL1].func = PTP_PF_NONE;
206 if (pin == UFL1 && ptp_pins[SMA1].func == func)
207 ptp_pins[SMA1].func = PTP_PF_NONE;
208
209 if (pin == SMA2 && ptp_pins[UFL2].func == func)
210 ptp_pins[UFL2].func = PTP_PF_NONE;
211 if (pin == UFL2 && ptp_pins[SMA2].func == func)
212 ptp_pins[SMA2].func = PTP_PF_NONE;
213
214 /* Set up new pin function in the temp table */
215 ptp_pins[pin].func = func;
216
217 return ice_ptp_set_sma_config_e810t(hw, ptp_pins);
218 }
219
220 /**
221 * ice_verify_pin_e810t
222 * @info: the driver's PTP info structure
223 * @pin: Pin index
224 * @func: Assigned function
225 * @chan: Assigned channel
226 *
227 * Verify if pin supports requested pin function. If the Check pins consistency.
228 * Reconfigure the SMA logic attached to the given pin to enable its
229 * desired functionality
230 */
231 static int
ice_verify_pin_e810t(struct ptp_clock_info * info,unsigned int pin,enum ptp_pin_function func,unsigned int chan)232 ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin,
233 enum ptp_pin_function func, unsigned int chan)
234 {
235 /* Don't allow channel reassignment */
236 if (chan != ice_pin_desc_e810t[pin].chan)
237 return -EOPNOTSUPP;
238
239 /* Check if functions are properly assigned */
240 switch (func) {
241 case PTP_PF_NONE:
242 break;
243 case PTP_PF_EXTTS:
244 if (pin == UFL1)
245 return -EOPNOTSUPP;
246 break;
247 case PTP_PF_PEROUT:
248 if (pin == UFL2 || pin == GNSS)
249 return -EOPNOTSUPP;
250 break;
251 case PTP_PF_PHYSYNC:
252 return -EOPNOTSUPP;
253 }
254
255 return ice_ptp_set_sma_e810t(info, pin, func);
256 }
257
258 /**
259 * ice_set_tx_tstamp - Enable or disable Tx timestamping
260 * @pf: The PF pointer to search in
261 * @on: bool value for whether timestamps are enabled or disabled
262 */
ice_set_tx_tstamp(struct ice_pf * pf,bool on)263 static void ice_set_tx_tstamp(struct ice_pf *pf, bool on)
264 {
265 struct ice_vsi *vsi;
266 u32 val;
267 u16 i;
268
269 vsi = ice_get_main_vsi(pf);
270 if (!vsi)
271 return;
272
273 /* Set the timestamp enable flag for all the Tx rings */
274 ice_for_each_txq(vsi, i) {
275 if (!vsi->tx_rings[i])
276 continue;
277 vsi->tx_rings[i]->ptp_tx = on;
278 }
279
280 /* Configure the Tx timestamp interrupt */
281 val = rd32(&pf->hw, PFINT_OICR_ENA);
282 if (on)
283 val |= PFINT_OICR_TSYN_TX_M;
284 else
285 val &= ~PFINT_OICR_TSYN_TX_M;
286 wr32(&pf->hw, PFINT_OICR_ENA, val);
287
288 pf->ptp.tstamp_config.tx_type = on ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
289 }
290
291 /**
292 * ice_set_rx_tstamp - Enable or disable Rx timestamping
293 * @pf: The PF pointer to search in
294 * @on: bool value for whether timestamps are enabled or disabled
295 */
ice_set_rx_tstamp(struct ice_pf * pf,bool on)296 static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
297 {
298 struct ice_vsi *vsi;
299 u16 i;
300
301 vsi = ice_get_main_vsi(pf);
302 if (!vsi)
303 return;
304
305 /* Set the timestamp flag for all the Rx rings */
306 ice_for_each_rxq(vsi, i) {
307 if (!vsi->rx_rings[i])
308 continue;
309 vsi->rx_rings[i]->ptp_rx = on;
310 }
311
312 pf->ptp.tstamp_config.rx_filter = on ? HWTSTAMP_FILTER_ALL :
313 HWTSTAMP_FILTER_NONE;
314 }
315
316 /**
317 * ice_ptp_cfg_timestamp - Configure timestamp for init/deinit
318 * @pf: Board private structure
319 * @ena: bool value to enable or disable time stamp
320 *
321 * This function will configure timestamping during PTP initialization
322 * and deinitialization
323 */
ice_ptp_cfg_timestamp(struct ice_pf * pf,bool ena)324 void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena)
325 {
326 ice_set_tx_tstamp(pf, ena);
327 ice_set_rx_tstamp(pf, ena);
328 }
329
330 /**
331 * ice_get_ptp_clock_index - Get the PTP clock index
332 * @pf: the PF pointer
333 *
334 * Determine the clock index of the PTP clock associated with this device. If
335 * this is the PF controlling the clock, just use the local access to the
336 * clock device pointer.
337 *
338 * Otherwise, read from the driver shared parameters to determine the clock
339 * index value.
340 *
341 * Returns: the index of the PTP clock associated with this device, or -1 if
342 * there is no associated clock.
343 */
ice_get_ptp_clock_index(struct ice_pf * pf)344 int ice_get_ptp_clock_index(struct ice_pf *pf)
345 {
346 struct device *dev = ice_pf_to_dev(pf);
347 enum ice_aqc_driver_params param_idx;
348 struct ice_hw *hw = &pf->hw;
349 u8 tmr_idx;
350 u32 value;
351 int err;
352
353 /* Use the ptp_clock structure if we're the main PF */
354 if (pf->ptp.clock)
355 return ptp_clock_index(pf->ptp.clock);
356
357 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
358 if (!tmr_idx)
359 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
360 else
361 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
362
363 err = ice_aq_get_driver_param(hw, param_idx, &value, NULL);
364 if (err) {
365 dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n",
366 err, ice_aq_str(hw->adminq.sq_last_status));
367 return -1;
368 }
369
370 /* The PTP clock index is an integer, and will be between 0 and
371 * INT_MAX. The highest bit of the driver shared parameter is used to
372 * indicate whether or not the currently stored clock index is valid.
373 */
374 if (!(value & PTP_SHARED_CLK_IDX_VALID))
375 return -1;
376
377 return value & ~PTP_SHARED_CLK_IDX_VALID;
378 }
379
380 /**
381 * ice_set_ptp_clock_index - Set the PTP clock index
382 * @pf: the PF pointer
383 *
384 * Set the PTP clock index for this device into the shared driver parameters,
385 * so that other PFs associated with this device can read it.
386 *
387 * If the PF is unable to store the clock index, it will log an error, but
388 * will continue operating PTP.
389 */
ice_set_ptp_clock_index(struct ice_pf * pf)390 static void ice_set_ptp_clock_index(struct ice_pf *pf)
391 {
392 struct device *dev = ice_pf_to_dev(pf);
393 enum ice_aqc_driver_params param_idx;
394 struct ice_hw *hw = &pf->hw;
395 u8 tmr_idx;
396 u32 value;
397 int err;
398
399 if (!pf->ptp.clock)
400 return;
401
402 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
403 if (!tmr_idx)
404 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
405 else
406 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
407
408 value = (u32)ptp_clock_index(pf->ptp.clock);
409 if (value > INT_MAX) {
410 dev_err(dev, "PTP Clock index is too large to store\n");
411 return;
412 }
413 value |= PTP_SHARED_CLK_IDX_VALID;
414
415 err = ice_aq_set_driver_param(hw, param_idx, value, NULL);
416 if (err) {
417 dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n",
418 err, ice_aq_str(hw->adminq.sq_last_status));
419 }
420 }
421
422 /**
423 * ice_clear_ptp_clock_index - Clear the PTP clock index
424 * @pf: the PF pointer
425 *
426 * Clear the PTP clock index for this device. Must be called when
427 * unregistering the PTP clock, in order to ensure other PFs stop reporting
428 * a clock object that no longer exists.
429 */
ice_clear_ptp_clock_index(struct ice_pf * pf)430 static void ice_clear_ptp_clock_index(struct ice_pf *pf)
431 {
432 struct device *dev = ice_pf_to_dev(pf);
433 enum ice_aqc_driver_params param_idx;
434 struct ice_hw *hw = &pf->hw;
435 u8 tmr_idx;
436 int err;
437
438 /* Do not clear the index if we don't own the timer */
439 if (!hw->func_caps.ts_func_info.src_tmr_owned)
440 return;
441
442 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
443 if (!tmr_idx)
444 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0;
445 else
446 param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1;
447
448 err = ice_aq_set_driver_param(hw, param_idx, 0, NULL);
449 if (err) {
450 dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n",
451 err, ice_aq_str(hw->adminq.sq_last_status));
452 }
453 }
454
455 /**
456 * ice_ptp_read_src_clk_reg - Read the source clock register
457 * @pf: Board private structure
458 * @sts: Optional parameter for holding a pair of system timestamps from
459 * the system clock. Will be ignored if NULL is given.
460 */
461 static u64
ice_ptp_read_src_clk_reg(struct ice_pf * pf,struct ptp_system_timestamp * sts)462 ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
463 {
464 struct ice_hw *hw = &pf->hw;
465 u32 hi, lo, lo2;
466 u8 tmr_idx;
467
468 tmr_idx = ice_get_ptp_src_clock_index(hw);
469 /* Read the system timestamp pre PHC read */
470 ptp_read_system_prets(sts);
471
472 lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
473
474 /* Read the system timestamp post PHC read */
475 ptp_read_system_postts(sts);
476
477 hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
478 lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
479
480 if (lo2 < lo) {
481 /* if TIME_L rolled over read TIME_L again and update
482 * system timestamps
483 */
484 ptp_read_system_prets(sts);
485 lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
486 ptp_read_system_postts(sts);
487 hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
488 }
489
490 return ((u64)hi << 32) | lo;
491 }
492
493 /**
494 * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
495 * @cached_phc_time: recently cached copy of PHC time
496 * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
497 *
498 * Hardware captures timestamps which contain only 32 bits of nominal
499 * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
500 * Note that the captured timestamp values may be 40 bits, but the lower
501 * 8 bits are sub-nanoseconds and generally discarded.
502 *
503 * Extend the 32bit nanosecond timestamp using the following algorithm and
504 * assumptions:
505 *
506 * 1) have a recently cached copy of the PHC time
507 * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
508 * seconds) before or after the PHC time was captured.
509 * 3) calculate the delta between the cached time and the timestamp
510 * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
511 * captured after the PHC time. In this case, the full timestamp is just
512 * the cached PHC time plus the delta.
513 * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
514 * timestamp was captured *before* the PHC time, i.e. because the PHC
515 * cache was updated after the timestamp was captured by hardware. In this
516 * case, the full timestamp is the cached time minus the inverse delta.
517 *
518 * This algorithm works even if the PHC time was updated after a Tx timestamp
519 * was requested, but before the Tx timestamp event was reported from
520 * hardware.
521 *
522 * This calculation primarily relies on keeping the cached PHC time up to
523 * date. If the timestamp was captured more than 2^31 nanoseconds after the
524 * PHC time, it is possible that the lower 32bits of PHC time have
525 * overflowed more than once, and we might generate an incorrect timestamp.
526 *
527 * This is prevented by (a) periodically updating the cached PHC time once
528 * a second, and (b) discarding any Tx timestamp packet if it has waited for
529 * a timestamp for more than one second.
530 */
ice_ptp_extend_32b_ts(u64 cached_phc_time,u32 in_tstamp)531 static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
532 {
533 u32 delta, phc_time_lo;
534 u64 ns;
535
536 /* Extract the lower 32 bits of the PHC time */
537 phc_time_lo = (u32)cached_phc_time;
538
539 /* Calculate the delta between the lower 32bits of the cached PHC
540 * time and the in_tstamp value
541 */
542 delta = (in_tstamp - phc_time_lo);
543
544 /* Do not assume that the in_tstamp is always more recent than the
545 * cached PHC time. If the delta is large, it indicates that the
546 * in_tstamp was taken in the past, and should be converted
547 * forward.
548 */
549 if (delta > (U32_MAX / 2)) {
550 /* reverse the delta calculation here */
551 delta = (phc_time_lo - in_tstamp);
552 ns = cached_phc_time - delta;
553 } else {
554 ns = cached_phc_time + delta;
555 }
556
557 return ns;
558 }
559
560 /**
561 * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
562 * @pf: Board private structure
563 * @in_tstamp: Ingress/egress 40b timestamp value
564 *
565 * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
566 * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
567 *
568 * *--------------------------------------------------------------*
569 * | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
570 * *--------------------------------------------------------------*
571 *
572 * The low bit is an indicator of whether the timestamp is valid. The next
573 * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
574 * and the remaining 32 bits are the lower 32 bits of the PHC timer.
575 *
576 * It is assumed that the caller verifies the timestamp is valid prior to
577 * calling this function.
578 *
579 * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
580 * time stored in the device private PTP structure as the basis for timestamp
581 * extension.
582 *
583 * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
584 * algorithm.
585 */
ice_ptp_extend_40b_ts(struct ice_pf * pf,u64 in_tstamp)586 static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
587 {
588 const u64 mask = GENMASK_ULL(31, 0);
589 unsigned long discard_time;
590
591 /* Discard the hardware timestamp if the cached PHC time is too old */
592 discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
593 if (time_is_before_jiffies(discard_time)) {
594 pf->ptp.tx_hwtstamp_discarded++;
595 return 0;
596 }
597
598 return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
599 (in_tstamp >> 8) & mask);
600 }
601
602 /**
603 * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps
604 * @tx: the PTP Tx timestamp tracker to check
605 *
606 * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready
607 * to accept new timestamp requests.
608 *
609 * Assumes the tx->lock spinlock is already held.
610 */
611 static bool
ice_ptp_is_tx_tracker_up(struct ice_ptp_tx * tx)612 ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx)
613 {
614 lockdep_assert_held(&tx->lock);
615
616 return tx->init && !tx->calibrating;
617 }
618
619 /**
620 * ice_ptp_process_tx_tstamp - Process Tx timestamps for a port
621 * @tx: the PTP Tx timestamp tracker
622 *
623 * Process timestamps captured by the PHY associated with this port. To do
624 * this, loop over each index with a waiting skb.
625 *
626 * If a given index has a valid timestamp, perform the following steps:
627 *
628 * 1) check that the timestamp request is not stale
629 * 2) check that a timestamp is ready and available in the PHY memory bank
630 * 3) read and copy the timestamp out of the PHY register
631 * 4) unlock the index by clearing the associated in_use bit
632 * 5) check if the timestamp is stale, and discard if so
633 * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value
634 * 7) send this 64 bit timestamp to the stack
635 *
636 * Note that we do not hold the tracking lock while reading the Tx timestamp.
637 * This is because reading the timestamp requires taking a mutex that might
638 * sleep.
639 *
640 * The only place where we set in_use is when a new timestamp is initiated
641 * with a slot index. This is only called in the hard xmit routine where an
642 * SKB has a request flag set. The only places where we clear this bit is this
643 * function, or during teardown when the Tx timestamp tracker is being
644 * removed. A timestamp index will never be re-used until the in_use bit for
645 * that index is cleared.
646 *
647 * If a Tx thread starts a new timestamp, we might not begin processing it
648 * right away but we will notice it at the end when we re-queue the task.
649 *
650 * If a Tx thread starts a new timestamp just after this function exits, the
651 * interrupt for that timestamp should re-trigger this function once
652 * a timestamp is ready.
653 *
654 * In cases where the PTP hardware clock was directly adjusted, some
655 * timestamps may not be able to safely use the timestamp extension math. In
656 * this case, software will set the stale bit for any outstanding Tx
657 * timestamps when the clock is adjusted. Then this function will discard
658 * those captured timestamps instead of sending them to the stack.
659 *
660 * If a Tx packet has been waiting for more than 2 seconds, it is not possible
661 * to correctly extend the timestamp using the cached PHC time. It is
662 * extremely unlikely that a packet will ever take this long to timestamp. If
663 * we detect a Tx timestamp request that has waited for this long we assume
664 * the packet will never be sent by hardware and discard it without reading
665 * the timestamp register.
666 */
ice_ptp_process_tx_tstamp(struct ice_ptp_tx * tx)667 static void ice_ptp_process_tx_tstamp(struct ice_ptp_tx *tx)
668 {
669 struct ice_ptp_port *ptp_port;
670 struct ice_pf *pf;
671 struct ice_hw *hw;
672 u64 tstamp_ready;
673 bool link_up;
674 int err;
675 u8 idx;
676
677 if (!tx->init)
678 return;
679
680 ptp_port = container_of(tx, struct ice_ptp_port, tx);
681 pf = ptp_port_to_pf(ptp_port);
682 hw = &pf->hw;
683
684 /* Read the Tx ready status first */
685 err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
686 if (err)
687 return;
688
689 /* Drop packets if the link went down */
690 link_up = ptp_port->link_up;
691
692 for_each_set_bit(idx, tx->in_use, tx->len) {
693 struct skb_shared_hwtstamps shhwtstamps = {};
694 u8 phy_idx = idx + tx->offset;
695 u64 raw_tstamp = 0, tstamp;
696 bool drop_ts = !link_up;
697 struct sk_buff *skb;
698
699 /* Drop packets which have waited for more than 2 seconds */
700 if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
701 drop_ts = true;
702
703 /* Count the number of Tx timestamps that timed out */
704 pf->ptp.tx_hwtstamp_timeouts++;
705 }
706
707 /* Only read a timestamp from the PHY if its marked as ready
708 * by the tstamp_ready register. This avoids unnecessary
709 * reading of timestamps which are not yet valid. This is
710 * important as we must read all timestamps which are valid
711 * and only timestamps which are valid during each interrupt.
712 * If we do not, the hardware logic for generating a new
713 * interrupt can get stuck on some devices.
714 */
715 if (!(tstamp_ready & BIT_ULL(phy_idx))) {
716 if (drop_ts)
717 goto skip_ts_read;
718
719 continue;
720 }
721
722 ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
723
724 err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp);
725 if (err && !drop_ts)
726 continue;
727
728 ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
729
730 /* For PHYs which don't implement a proper timestamp ready
731 * bitmap, verify that the timestamp value is different
732 * from the last cached timestamp. If it is not, skip this for
733 * now assuming it hasn't yet been captured by hardware.
734 */
735 if (!drop_ts && tx->verify_cached &&
736 raw_tstamp == tx->tstamps[idx].cached_tstamp)
737 continue;
738
739 /* Discard any timestamp value without the valid bit set */
740 if (!(raw_tstamp & ICE_PTP_TS_VALID))
741 drop_ts = true;
742
743 skip_ts_read:
744 spin_lock(&tx->lock);
745 if (tx->verify_cached && raw_tstamp)
746 tx->tstamps[idx].cached_tstamp = raw_tstamp;
747 clear_bit(idx, tx->in_use);
748 skb = tx->tstamps[idx].skb;
749 tx->tstamps[idx].skb = NULL;
750 if (test_and_clear_bit(idx, tx->stale))
751 drop_ts = true;
752 spin_unlock(&tx->lock);
753
754 /* It is unlikely but possible that the SKB will have been
755 * flushed at this point due to link change or teardown.
756 */
757 if (!skb)
758 continue;
759
760 if (drop_ts) {
761 dev_kfree_skb_any(skb);
762 continue;
763 }
764
765 /* Extend the timestamp using cached PHC time */
766 tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
767 if (tstamp) {
768 shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
769 ice_trace(tx_tstamp_complete, skb, idx);
770 }
771
772 skb_tstamp_tx(skb, &shhwtstamps);
773 dev_kfree_skb_any(skb);
774 }
775 }
776
777 /**
778 * ice_ptp_tx_tstamp - Process Tx timestamps for this function.
779 * @tx: Tx tracking structure to initialize
780 *
781 * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding incomplete
782 * Tx timestamps, or ICE_TX_TSTAMP_WORK_DONE otherwise.
783 */
ice_ptp_tx_tstamp(struct ice_ptp_tx * tx)784 static enum ice_tx_tstamp_work ice_ptp_tx_tstamp(struct ice_ptp_tx *tx)
785 {
786 bool more_timestamps;
787
788 if (!tx->init)
789 return ICE_TX_TSTAMP_WORK_DONE;
790
791 /* Process the Tx timestamp tracker */
792 ice_ptp_process_tx_tstamp(tx);
793
794 /* Check if there are outstanding Tx timestamps */
795 spin_lock(&tx->lock);
796 more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len);
797 spin_unlock(&tx->lock);
798
799 if (more_timestamps)
800 return ICE_TX_TSTAMP_WORK_PENDING;
801
802 return ICE_TX_TSTAMP_WORK_DONE;
803 }
804
805 /**
806 * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
807 * @tx: Tx tracking structure to initialize
808 *
809 * Assumes that the length has already been initialized. Do not call directly,
810 * use the ice_ptp_init_tx_* instead.
811 */
812 static int
ice_ptp_alloc_tx_tracker(struct ice_ptp_tx * tx)813 ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
814 {
815 unsigned long *in_use, *stale;
816 struct ice_tx_tstamp *tstamps;
817
818 tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL);
819 in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
820 stale = bitmap_zalloc(tx->len, GFP_KERNEL);
821
822 if (!tstamps || !in_use || !stale) {
823 kfree(tstamps);
824 bitmap_free(in_use);
825 bitmap_free(stale);
826
827 return -ENOMEM;
828 }
829
830 tx->tstamps = tstamps;
831 tx->in_use = in_use;
832 tx->stale = stale;
833 tx->init = 1;
834
835 spin_lock_init(&tx->lock);
836
837 return 0;
838 }
839
840 /**
841 * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
842 * @pf: Board private structure
843 * @tx: the tracker to flush
844 *
845 * Called during teardown when a Tx tracker is being removed.
846 */
847 static void
ice_ptp_flush_tx_tracker(struct ice_pf * pf,struct ice_ptp_tx * tx)848 ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
849 {
850 struct ice_hw *hw = &pf->hw;
851 u64 tstamp_ready;
852 int err;
853 u8 idx;
854
855 err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
856 if (err) {
857 dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n",
858 tx->block, err);
859
860 /* If we fail to read the Tx timestamp ready bitmap just
861 * skip clearing the PHY timestamps.
862 */
863 tstamp_ready = 0;
864 }
865
866 for_each_set_bit(idx, tx->in_use, tx->len) {
867 u8 phy_idx = idx + tx->offset;
868 struct sk_buff *skb;
869
870 /* In case this timestamp is ready, we need to clear it. */
871 if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx)))
872 ice_clear_phy_tstamp(hw, tx->block, phy_idx);
873
874 spin_lock(&tx->lock);
875 skb = tx->tstamps[idx].skb;
876 tx->tstamps[idx].skb = NULL;
877 clear_bit(idx, tx->in_use);
878 clear_bit(idx, tx->stale);
879 spin_unlock(&tx->lock);
880
881 /* Count the number of Tx timestamps flushed */
882 pf->ptp.tx_hwtstamp_flushed++;
883
884 /* Free the SKB after we've cleared the bit */
885 dev_kfree_skb_any(skb);
886 }
887 }
888
889 /**
890 * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale
891 * @tx: the tracker to mark
892 *
893 * Mark currently outstanding Tx timestamps as stale. This prevents sending
894 * their timestamp value to the stack. This is required to prevent extending
895 * the 40bit hardware timestamp incorrectly.
896 *
897 * This should be called when the PTP clock is modified such as after a set
898 * time request.
899 */
900 static void
ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx * tx)901 ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx)
902 {
903 spin_lock(&tx->lock);
904 bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len);
905 spin_unlock(&tx->lock);
906 }
907
908 /**
909 * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
910 * @pf: Board private structure
911 * @tx: Tx tracking structure to release
912 *
913 * Free memory associated with the Tx timestamp tracker.
914 */
915 static void
ice_ptp_release_tx_tracker(struct ice_pf * pf,struct ice_ptp_tx * tx)916 ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
917 {
918 spin_lock(&tx->lock);
919 tx->init = 0;
920 spin_unlock(&tx->lock);
921
922 /* wait for potentially outstanding interrupt to complete */
923 synchronize_irq(pf->oicr_irq.virq);
924
925 ice_ptp_flush_tx_tracker(pf, tx);
926
927 kfree(tx->tstamps);
928 tx->tstamps = NULL;
929
930 bitmap_free(tx->in_use);
931 tx->in_use = NULL;
932
933 bitmap_free(tx->stale);
934 tx->stale = NULL;
935
936 tx->len = 0;
937 }
938
939 /**
940 * ice_ptp_init_tx_e822 - Initialize tracking for Tx timestamps
941 * @pf: Board private structure
942 * @tx: the Tx tracking structure to initialize
943 * @port: the port this structure tracks
944 *
945 * Initialize the Tx timestamp tracker for this port. For generic MAC devices,
946 * the timestamp block is shared for all ports in the same quad. To avoid
947 * ports using the same timestamp index, logically break the block of
948 * registers into chunks based on the port number.
949 */
950 static int
ice_ptp_init_tx_e822(struct ice_pf * pf,struct ice_ptp_tx * tx,u8 port)951 ice_ptp_init_tx_e822(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
952 {
953 tx->block = port / ICE_PORTS_PER_QUAD;
954 tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E822;
955 tx->len = INDEX_PER_PORT_E822;
956 tx->verify_cached = 0;
957
958 return ice_ptp_alloc_tx_tracker(tx);
959 }
960
961 /**
962 * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
963 * @pf: Board private structure
964 * @tx: the Tx tracking structure to initialize
965 *
966 * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
967 * port has its own block of timestamps, independent of the other ports.
968 */
969 static int
ice_ptp_init_tx_e810(struct ice_pf * pf,struct ice_ptp_tx * tx)970 ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
971 {
972 tx->block = pf->hw.port_info->lport;
973 tx->offset = 0;
974 tx->len = INDEX_PER_PORT_E810;
975 /* The E810 PHY does not provide a timestamp ready bitmap. Instead,
976 * verify new timestamps against cached copy of the last read
977 * timestamp.
978 */
979 tx->verify_cached = 1;
980
981 return ice_ptp_alloc_tx_tracker(tx);
982 }
983
984 /**
985 * ice_ptp_update_cached_phctime - Update the cached PHC time values
986 * @pf: Board specific private structure
987 *
988 * This function updates the system time values which are cached in the PF
989 * structure and the Rx rings.
990 *
991 * This function must be called periodically to ensure that the cached value
992 * is never more than 2 seconds old.
993 *
994 * Note that the cached copy in the PF PTP structure is always updated, even
995 * if we can't update the copy in the Rx rings.
996 *
997 * Return:
998 * * 0 - OK, successfully updated
999 * * -EAGAIN - PF was busy, need to reschedule the update
1000 */
ice_ptp_update_cached_phctime(struct ice_pf * pf)1001 static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
1002 {
1003 struct device *dev = ice_pf_to_dev(pf);
1004 unsigned long update_before;
1005 u64 systime;
1006 int i;
1007
1008 update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
1009 if (pf->ptp.cached_phc_time &&
1010 time_is_before_jiffies(update_before)) {
1011 unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies;
1012
1013 dev_warn(dev, "%u msecs passed between update to cached PHC time\n",
1014 jiffies_to_msecs(time_taken));
1015 pf->ptp.late_cached_phc_updates++;
1016 }
1017
1018 /* Read the current PHC time */
1019 systime = ice_ptp_read_src_clk_reg(pf, NULL);
1020
1021 /* Update the cached PHC time stored in the PF structure */
1022 WRITE_ONCE(pf->ptp.cached_phc_time, systime);
1023 WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies);
1024
1025 if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
1026 return -EAGAIN;
1027
1028 ice_for_each_vsi(pf, i) {
1029 struct ice_vsi *vsi = pf->vsi[i];
1030 int j;
1031
1032 if (!vsi)
1033 continue;
1034
1035 if (vsi->type != ICE_VSI_PF)
1036 continue;
1037
1038 ice_for_each_rxq(vsi, j) {
1039 if (!vsi->rx_rings[j])
1040 continue;
1041 WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
1042 }
1043 }
1044 clear_bit(ICE_CFG_BUSY, pf->state);
1045
1046 return 0;
1047 }
1048
1049 /**
1050 * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update
1051 * @pf: Board specific private structure
1052 *
1053 * This function must be called when the cached PHC time is no longer valid,
1054 * such as after a time adjustment. It marks any currently outstanding Tx
1055 * timestamps as stale and updates the cached PHC time for both the PF and Rx
1056 * rings.
1057 *
1058 * If updating the PHC time cannot be done immediately, a warning message is
1059 * logged and the work item is scheduled immediately to minimize the window
1060 * with a wrong cached timestamp.
1061 */
ice_ptp_reset_cached_phctime(struct ice_pf * pf)1062 static void ice_ptp_reset_cached_phctime(struct ice_pf *pf)
1063 {
1064 struct device *dev = ice_pf_to_dev(pf);
1065 int err;
1066
1067 /* Update the cached PHC time immediately if possible, otherwise
1068 * schedule the work item to execute soon.
1069 */
1070 err = ice_ptp_update_cached_phctime(pf);
1071 if (err) {
1072 /* If another thread is updating the Rx rings, we won't
1073 * properly reset them here. This could lead to reporting of
1074 * invalid timestamps, but there isn't much we can do.
1075 */
1076 dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n",
1077 __func__);
1078
1079 /* Queue the work item to update the Rx rings when possible */
1080 kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work,
1081 msecs_to_jiffies(10));
1082 }
1083
1084 /* Mark any outstanding timestamps as stale, since they might have
1085 * been captured in hardware before the time update. This could lead
1086 * to us extending them with the wrong cached value resulting in
1087 * incorrect timestamp values.
1088 */
1089 ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx);
1090 }
1091
1092 /**
1093 * ice_ptp_read_time - Read the time from the device
1094 * @pf: Board private structure
1095 * @ts: timespec structure to hold the current time value
1096 * @sts: Optional parameter for holding a pair of system timestamps from
1097 * the system clock. Will be ignored if NULL is given.
1098 *
1099 * This function reads the source clock registers and stores them in a timespec.
1100 * However, since the registers are 64 bits of nanoseconds, we must convert the
1101 * result to a timespec before we can return.
1102 */
1103 static void
ice_ptp_read_time(struct ice_pf * pf,struct timespec64 * ts,struct ptp_system_timestamp * sts)1104 ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts,
1105 struct ptp_system_timestamp *sts)
1106 {
1107 u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts);
1108
1109 *ts = ns_to_timespec64(time_ns);
1110 }
1111
1112 /**
1113 * ice_ptp_write_init - Set PHC time to provided value
1114 * @pf: Board private structure
1115 * @ts: timespec structure that holds the new time value
1116 *
1117 * Set the PHC time to the specified time provided in the timespec.
1118 */
ice_ptp_write_init(struct ice_pf * pf,struct timespec64 * ts)1119 static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
1120 {
1121 u64 ns = timespec64_to_ns(ts);
1122 struct ice_hw *hw = &pf->hw;
1123
1124 return ice_ptp_init_time(hw, ns);
1125 }
1126
1127 /**
1128 * ice_ptp_write_adj - Adjust PHC clock time atomically
1129 * @pf: Board private structure
1130 * @adj: Adjustment in nanoseconds
1131 *
1132 * Perform an atomic adjustment of the PHC time by the specified number of
1133 * nanoseconds.
1134 */
ice_ptp_write_adj(struct ice_pf * pf,s32 adj)1135 static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
1136 {
1137 struct ice_hw *hw = &pf->hw;
1138
1139 return ice_ptp_adj_clock(hw, adj);
1140 }
1141
1142 /**
1143 * ice_base_incval - Get base timer increment value
1144 * @pf: Board private structure
1145 *
1146 * Look up the base timer increment value for this device. The base increment
1147 * value is used to define the nominal clock tick rate. This increment value
1148 * is programmed during device initialization. It is also used as the basis
1149 * for calculating adjustments using scaled_ppm.
1150 */
ice_base_incval(struct ice_pf * pf)1151 static u64 ice_base_incval(struct ice_pf *pf)
1152 {
1153 struct ice_hw *hw = &pf->hw;
1154 u64 incval;
1155
1156 if (ice_is_e810(hw))
1157 incval = ICE_PTP_NOMINAL_INCVAL_E810;
1158 else if (ice_e822_time_ref(hw) < NUM_ICE_TIME_REF_FREQ)
1159 incval = ice_e822_nominal_incval(ice_e822_time_ref(hw));
1160 else
1161 incval = UNKNOWN_INCVAL_E822;
1162
1163 dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
1164 incval);
1165
1166 return incval;
1167 }
1168
1169 /**
1170 * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
1171 * @port: PTP port for which Tx FIFO is checked
1172 */
ice_ptp_check_tx_fifo(struct ice_ptp_port * port)1173 static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
1174 {
1175 int quad = port->port_num / ICE_PORTS_PER_QUAD;
1176 int offs = port->port_num % ICE_PORTS_PER_QUAD;
1177 struct ice_pf *pf;
1178 struct ice_hw *hw;
1179 u32 val, phy_sts;
1180 int err;
1181
1182 pf = ptp_port_to_pf(port);
1183 hw = &pf->hw;
1184
1185 if (port->tx_fifo_busy_cnt == FIFO_OK)
1186 return 0;
1187
1188 /* need to read FIFO state */
1189 if (offs == 0 || offs == 1)
1190 err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO01_STATUS,
1191 &val);
1192 else
1193 err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO23_STATUS,
1194 &val);
1195
1196 if (err) {
1197 dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
1198 port->port_num, err);
1199 return err;
1200 }
1201
1202 if (offs & 0x1)
1203 phy_sts = (val & Q_REG_FIFO13_M) >> Q_REG_FIFO13_S;
1204 else
1205 phy_sts = (val & Q_REG_FIFO02_M) >> Q_REG_FIFO02_S;
1206
1207 if (phy_sts & FIFO_EMPTY) {
1208 port->tx_fifo_busy_cnt = FIFO_OK;
1209 return 0;
1210 }
1211
1212 port->tx_fifo_busy_cnt++;
1213
1214 dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
1215 port->tx_fifo_busy_cnt, port->port_num);
1216
1217 if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
1218 dev_dbg(ice_pf_to_dev(pf),
1219 "Port %d Tx FIFO still not empty; resetting quad %d\n",
1220 port->port_num, quad);
1221 ice_ptp_reset_ts_memory_quad_e822(hw, quad);
1222 port->tx_fifo_busy_cnt = FIFO_OK;
1223 return 0;
1224 }
1225
1226 return -EAGAIN;
1227 }
1228
1229 /**
1230 * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets
1231 * @work: Pointer to the kthread_work structure for this task
1232 *
1233 * Check whether hardware has completed measuring the Tx and Rx offset values
1234 * used to configure and enable vernier timestamp calibration.
1235 *
1236 * Once the offset in either direction is measured, configure the associated
1237 * registers with the calibrated offset values and enable timestamping. The Tx
1238 * and Rx directions are configured independently as soon as their associated
1239 * offsets are known.
1240 *
1241 * This function reschedules itself until both Tx and Rx calibration have
1242 * completed.
1243 */
ice_ptp_wait_for_offsets(struct kthread_work * work)1244 static void ice_ptp_wait_for_offsets(struct kthread_work *work)
1245 {
1246 struct ice_ptp_port *port;
1247 struct ice_pf *pf;
1248 struct ice_hw *hw;
1249 int tx_err;
1250 int rx_err;
1251
1252 port = container_of(work, struct ice_ptp_port, ov_work.work);
1253 pf = ptp_port_to_pf(port);
1254 hw = &pf->hw;
1255
1256 if (ice_is_reset_in_progress(pf->state)) {
1257 /* wait for device driver to complete reset */
1258 kthread_queue_delayed_work(pf->ptp.kworker,
1259 &port->ov_work,
1260 msecs_to_jiffies(100));
1261 return;
1262 }
1263
1264 tx_err = ice_ptp_check_tx_fifo(port);
1265 if (!tx_err)
1266 tx_err = ice_phy_cfg_tx_offset_e822(hw, port->port_num);
1267 rx_err = ice_phy_cfg_rx_offset_e822(hw, port->port_num);
1268 if (tx_err || rx_err) {
1269 /* Tx and/or Rx offset not yet configured, try again later */
1270 kthread_queue_delayed_work(pf->ptp.kworker,
1271 &port->ov_work,
1272 msecs_to_jiffies(100));
1273 return;
1274 }
1275 }
1276
1277 /**
1278 * ice_ptp_port_phy_stop - Stop timestamping for a PHY port
1279 * @ptp_port: PTP port to stop
1280 */
1281 static int
ice_ptp_port_phy_stop(struct ice_ptp_port * ptp_port)1282 ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
1283 {
1284 struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1285 u8 port = ptp_port->port_num;
1286 struct ice_hw *hw = &pf->hw;
1287 int err;
1288
1289 if (ice_is_e810(hw))
1290 return 0;
1291
1292 mutex_lock(&ptp_port->ps_lock);
1293
1294 kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1295
1296 err = ice_stop_phy_timer_e822(hw, port, true);
1297 if (err)
1298 dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
1299 port, err);
1300
1301 mutex_unlock(&ptp_port->ps_lock);
1302
1303 return err;
1304 }
1305
1306 /**
1307 * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
1308 * @ptp_port: PTP port for which the PHY start is set
1309 *
1310 * Start the PHY timestamping block, and initiate Vernier timestamping
1311 * calibration. If timestamping cannot be calibrated (such as if link is down)
1312 * then disable the timestamping block instead.
1313 */
1314 static int
ice_ptp_port_phy_restart(struct ice_ptp_port * ptp_port)1315 ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
1316 {
1317 struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1318 u8 port = ptp_port->port_num;
1319 struct ice_hw *hw = &pf->hw;
1320 int err;
1321
1322 if (ice_is_e810(hw))
1323 return 0;
1324
1325 if (!ptp_port->link_up)
1326 return ice_ptp_port_phy_stop(ptp_port);
1327
1328 mutex_lock(&ptp_port->ps_lock);
1329
1330 kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1331
1332 /* temporarily disable Tx timestamps while calibrating PHY offset */
1333 spin_lock(&ptp_port->tx.lock);
1334 ptp_port->tx.calibrating = true;
1335 spin_unlock(&ptp_port->tx.lock);
1336 ptp_port->tx_fifo_busy_cnt = 0;
1337
1338 /* Start the PHY timer in Vernier mode */
1339 err = ice_start_phy_timer_e822(hw, port);
1340 if (err)
1341 goto out_unlock;
1342
1343 /* Enable Tx timestamps right away */
1344 spin_lock(&ptp_port->tx.lock);
1345 ptp_port->tx.calibrating = false;
1346 spin_unlock(&ptp_port->tx.lock);
1347
1348 kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0);
1349
1350 out_unlock:
1351 if (err)
1352 dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
1353 port, err);
1354
1355 mutex_unlock(&ptp_port->ps_lock);
1356
1357 return err;
1358 }
1359
1360 /**
1361 * ice_ptp_link_change - Reconfigure PTP after link status change
1362 * @pf: Board private structure
1363 * @port: Port for which the PHY start is set
1364 * @linkup: Link is up or down
1365 */
ice_ptp_link_change(struct ice_pf * pf,u8 port,bool linkup)1366 void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup)
1367 {
1368 struct ice_ptp_port *ptp_port;
1369
1370 if (!test_bit(ICE_FLAG_PTP, pf->flags))
1371 return;
1372
1373 if (WARN_ON_ONCE(port >= ICE_NUM_EXTERNAL_PORTS))
1374 return;
1375
1376 ptp_port = &pf->ptp.port;
1377 if (WARN_ON_ONCE(ptp_port->port_num != port))
1378 return;
1379
1380 /* Update cached link status for this port immediately */
1381 ptp_port->link_up = linkup;
1382
1383 /* E810 devices do not need to reconfigure the PHY */
1384 if (ice_is_e810(&pf->hw))
1385 return;
1386
1387 ice_ptp_port_phy_restart(ptp_port);
1388 }
1389
1390 /**
1391 * ice_ptp_tx_ena_intr - Enable or disable the Tx timestamp interrupt
1392 * @pf: PF private structure
1393 * @ena: bool value to enable or disable interrupt
1394 * @threshold: Minimum number of packets at which intr is triggered
1395 *
1396 * Utility function to enable or disable Tx timestamp interrupt and threshold
1397 */
ice_ptp_tx_ena_intr(struct ice_pf * pf,bool ena,u32 threshold)1398 static int ice_ptp_tx_ena_intr(struct ice_pf *pf, bool ena, u32 threshold)
1399 {
1400 struct ice_hw *hw = &pf->hw;
1401 int err = 0;
1402 int quad;
1403 u32 val;
1404
1405 ice_ptp_reset_ts_memory(hw);
1406
1407 for (quad = 0; quad < ICE_MAX_QUAD; quad++) {
1408 err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1409 &val);
1410 if (err)
1411 break;
1412
1413 if (ena) {
1414 val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1415 val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
1416 val |= ((threshold << Q_REG_TX_MEM_GBL_CFG_INTR_THR_S) &
1417 Q_REG_TX_MEM_GBL_CFG_INTR_THR_M);
1418 } else {
1419 val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1420 }
1421
1422 err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1423 val);
1424 if (err)
1425 break;
1426 }
1427
1428 if (err)
1429 dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n",
1430 err);
1431 return err;
1432 }
1433
1434 /**
1435 * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
1436 * @pf: Board private structure
1437 */
ice_ptp_reset_phy_timestamping(struct ice_pf * pf)1438 static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
1439 {
1440 ice_ptp_port_phy_restart(&pf->ptp.port);
1441 }
1442
1443 /**
1444 * ice_ptp_adjfine - Adjust clock increment rate
1445 * @info: the driver's PTP info structure
1446 * @scaled_ppm: Parts per million with 16-bit fractional field
1447 *
1448 * Adjust the frequency of the clock by the indicated scaled ppm from the
1449 * base frequency.
1450 */
ice_ptp_adjfine(struct ptp_clock_info * info,long scaled_ppm)1451 static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
1452 {
1453 struct ice_pf *pf = ptp_info_to_pf(info);
1454 struct ice_hw *hw = &pf->hw;
1455 u64 incval;
1456 int err;
1457
1458 incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm);
1459 err = ice_ptp_write_incval_locked(hw, incval);
1460 if (err) {
1461 dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
1462 err);
1463 return -EIO;
1464 }
1465
1466 return 0;
1467 }
1468
1469 /**
1470 * ice_ptp_extts_event - Process PTP external clock event
1471 * @pf: Board private structure
1472 */
ice_ptp_extts_event(struct ice_pf * pf)1473 void ice_ptp_extts_event(struct ice_pf *pf)
1474 {
1475 struct ptp_clock_event event;
1476 struct ice_hw *hw = &pf->hw;
1477 u8 chan, tmr_idx;
1478 u32 hi, lo;
1479
1480 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1481 /* Event time is captured by one of the two matched registers
1482 * GLTSYN_EVNT_L: 32 LSB of sampled time event
1483 * GLTSYN_EVNT_H: 32 MSB of sampled time event
1484 * Event is defined in GLTSYN_EVNT_0 register
1485 */
1486 for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
1487 /* Check if channel is enabled */
1488 if (pf->ptp.ext_ts_irq & (1 << chan)) {
1489 lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
1490 hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
1491 event.timestamp = (((u64)hi) << 32) | lo;
1492 event.type = PTP_CLOCK_EXTTS;
1493 event.index = chan;
1494
1495 /* Fire event */
1496 ptp_clock_event(pf->ptp.clock, &event);
1497 pf->ptp.ext_ts_irq &= ~(1 << chan);
1498 }
1499 }
1500 }
1501
1502 /**
1503 * ice_ptp_cfg_extts - Configure EXTTS pin and channel
1504 * @pf: Board private structure
1505 * @ena: true to enable; false to disable
1506 * @chan: GPIO channel (0-3)
1507 * @gpio_pin: GPIO pin
1508 * @extts_flags: request flags from the ptp_extts_request.flags
1509 */
1510 static int
ice_ptp_cfg_extts(struct ice_pf * pf,bool ena,unsigned int chan,u32 gpio_pin,unsigned int extts_flags)1511 ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin,
1512 unsigned int extts_flags)
1513 {
1514 u32 func, aux_reg, gpio_reg, irq_reg;
1515 struct ice_hw *hw = &pf->hw;
1516 u8 tmr_idx;
1517
1518 if (chan > (unsigned int)pf->ptp.info.n_ext_ts)
1519 return -EINVAL;
1520
1521 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1522
1523 irq_reg = rd32(hw, PFINT_OICR_ENA);
1524
1525 if (ena) {
1526 /* Enable the interrupt */
1527 irq_reg |= PFINT_OICR_TSYN_EVNT_M;
1528 aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
1529
1530 #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE BIT(0)
1531 #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE BIT(1)
1532
1533 /* set event level to requested edge */
1534 if (extts_flags & PTP_FALLING_EDGE)
1535 aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
1536 if (extts_flags & PTP_RISING_EDGE)
1537 aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
1538
1539 /* Write GPIO CTL reg.
1540 * 0x1 is input sampled by EVENT register(channel)
1541 * + num_in_channels * tmr_idx
1542 */
1543 func = 1 + chan + (tmr_idx * 3);
1544 gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) &
1545 GLGEN_GPIO_CTL_PIN_FUNC_M);
1546 pf->ptp.ext_ts_chan |= (1 << chan);
1547 } else {
1548 /* clear the values we set to reset defaults */
1549 aux_reg = 0;
1550 gpio_reg = 0;
1551 pf->ptp.ext_ts_chan &= ~(1 << chan);
1552 if (!pf->ptp.ext_ts_chan)
1553 irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
1554 }
1555
1556 wr32(hw, PFINT_OICR_ENA, irq_reg);
1557 wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
1558 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
1559
1560 return 0;
1561 }
1562
1563 /**
1564 * ice_ptp_cfg_clkout - Configure clock to generate periodic wave
1565 * @pf: Board private structure
1566 * @chan: GPIO channel (0-3)
1567 * @config: desired periodic clk configuration. NULL will disable channel
1568 * @store: If set to true the values will be stored
1569 *
1570 * Configure the internal clock generator modules to generate the clock wave of
1571 * specified period.
1572 */
ice_ptp_cfg_clkout(struct ice_pf * pf,unsigned int chan,struct ice_perout_channel * config,bool store)1573 static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan,
1574 struct ice_perout_channel *config, bool store)
1575 {
1576 u64 current_time, period, start_time, phase;
1577 struct ice_hw *hw = &pf->hw;
1578 u32 func, val, gpio_pin;
1579 u8 tmr_idx;
1580
1581 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1582
1583 /* 0. Reset mode & out_en in AUX_OUT */
1584 wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
1585
1586 /* If we're disabling the output, clear out CLKO and TGT and keep
1587 * output level low
1588 */
1589 if (!config || !config->ena) {
1590 wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0);
1591 wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0);
1592 wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0);
1593
1594 val = GLGEN_GPIO_CTL_PIN_DIR_M;
1595 gpio_pin = pf->ptp.perout_channels[chan].gpio_pin;
1596 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1597
1598 /* Store the value if requested */
1599 if (store)
1600 memset(&pf->ptp.perout_channels[chan], 0,
1601 sizeof(struct ice_perout_channel));
1602
1603 return 0;
1604 }
1605 period = config->period;
1606 start_time = config->start_time;
1607 div64_u64_rem(start_time, period, &phase);
1608 gpio_pin = config->gpio_pin;
1609
1610 /* 1. Write clkout with half of required period value */
1611 if (period & 0x1) {
1612 dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
1613 goto err;
1614 }
1615
1616 period >>= 1;
1617
1618 /* For proper operation, the GLTSYN_CLKO must be larger than clock tick
1619 */
1620 #define MIN_PULSE 3
1621 if (period <= MIN_PULSE || period > U32_MAX) {
1622 dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33",
1623 MIN_PULSE * 2);
1624 goto err;
1625 }
1626
1627 wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
1628
1629 /* Allow time for programming before start_time is hit */
1630 current_time = ice_ptp_read_src_clk_reg(pf, NULL);
1631
1632 /* if start time is in the past start the timer at the nearest second
1633 * maintaining phase
1634 */
1635 if (start_time < current_time)
1636 start_time = div64_u64(current_time + NSEC_PER_SEC - 1,
1637 NSEC_PER_SEC) * NSEC_PER_SEC + phase;
1638
1639 if (ice_is_e810(hw))
1640 start_time -= E810_OUT_PROP_DELAY_NS;
1641 else
1642 start_time -= ice_e822_pps_delay(ice_e822_time_ref(hw));
1643
1644 /* 2. Write TARGET time */
1645 wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time));
1646 wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time));
1647
1648 /* 3. Write AUX_OUT register */
1649 val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
1650 wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
1651
1652 /* 4. write GPIO CTL reg */
1653 func = 8 + chan + (tmr_idx * 4);
1654 val = GLGEN_GPIO_CTL_PIN_DIR_M |
1655 ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M);
1656 wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1657
1658 /* Store the value if requested */
1659 if (store) {
1660 memcpy(&pf->ptp.perout_channels[chan], config,
1661 sizeof(struct ice_perout_channel));
1662 pf->ptp.perout_channels[chan].start_time = phase;
1663 }
1664
1665 return 0;
1666 err:
1667 dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n");
1668 return -EFAULT;
1669 }
1670
1671 /**
1672 * ice_ptp_disable_all_clkout - Disable all currently configured outputs
1673 * @pf: pointer to the PF structure
1674 *
1675 * Disable all currently configured clock outputs. This is necessary before
1676 * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to
1677 * re-enable the clocks again.
1678 */
ice_ptp_disable_all_clkout(struct ice_pf * pf)1679 static void ice_ptp_disable_all_clkout(struct ice_pf *pf)
1680 {
1681 uint i;
1682
1683 for (i = 0; i < pf->ptp.info.n_per_out; i++)
1684 if (pf->ptp.perout_channels[i].ena)
1685 ice_ptp_cfg_clkout(pf, i, NULL, false);
1686 }
1687
1688 /**
1689 * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs
1690 * @pf: pointer to the PF structure
1691 *
1692 * Enable all currently configured clock outputs. Use this after
1693 * ice_ptp_disable_all_clkout to reconfigure the output signals according to
1694 * their configuration.
1695 */
ice_ptp_enable_all_clkout(struct ice_pf * pf)1696 static void ice_ptp_enable_all_clkout(struct ice_pf *pf)
1697 {
1698 uint i;
1699
1700 for (i = 0; i < pf->ptp.info.n_per_out; i++)
1701 if (pf->ptp.perout_channels[i].ena)
1702 ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i],
1703 false);
1704 }
1705
1706 /**
1707 * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC
1708 * @info: the driver's PTP info structure
1709 * @rq: The requested feature to change
1710 * @on: Enable/disable flag
1711 */
1712 static int
ice_ptp_gpio_enable_e810(struct ptp_clock_info * info,struct ptp_clock_request * rq,int on)1713 ice_ptp_gpio_enable_e810(struct ptp_clock_info *info,
1714 struct ptp_clock_request *rq, int on)
1715 {
1716 struct ice_pf *pf = ptp_info_to_pf(info);
1717 struct ice_perout_channel clk_cfg = {0};
1718 bool sma_pres = false;
1719 unsigned int chan;
1720 u32 gpio_pin;
1721 int err;
1722
1723 if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
1724 sma_pres = true;
1725
1726 switch (rq->type) {
1727 case PTP_CLK_REQ_PEROUT:
1728 chan = rq->perout.index;
1729 if (sma_pres) {
1730 if (chan == ice_pin_desc_e810t[SMA1].chan)
1731 clk_cfg.gpio_pin = GPIO_20;
1732 else if (chan == ice_pin_desc_e810t[SMA2].chan)
1733 clk_cfg.gpio_pin = GPIO_22;
1734 else
1735 return -1;
1736 } else if (ice_is_e810t(&pf->hw)) {
1737 if (chan == 0)
1738 clk_cfg.gpio_pin = GPIO_20;
1739 else
1740 clk_cfg.gpio_pin = GPIO_22;
1741 } else if (chan == PPS_CLK_GEN_CHAN) {
1742 clk_cfg.gpio_pin = PPS_PIN_INDEX;
1743 } else {
1744 clk_cfg.gpio_pin = chan;
1745 }
1746
1747 clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) +
1748 rq->perout.period.nsec);
1749 clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) +
1750 rq->perout.start.nsec);
1751 clk_cfg.ena = !!on;
1752
1753 err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true);
1754 break;
1755 case PTP_CLK_REQ_EXTTS:
1756 chan = rq->extts.index;
1757 if (sma_pres) {
1758 if (chan < ice_pin_desc_e810t[SMA2].chan)
1759 gpio_pin = GPIO_21;
1760 else
1761 gpio_pin = GPIO_23;
1762 } else if (ice_is_e810t(&pf->hw)) {
1763 if (chan == 0)
1764 gpio_pin = GPIO_21;
1765 else
1766 gpio_pin = GPIO_23;
1767 } else {
1768 gpio_pin = chan;
1769 }
1770
1771 err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin,
1772 rq->extts.flags);
1773 break;
1774 default:
1775 return -EOPNOTSUPP;
1776 }
1777
1778 return err;
1779 }
1780
1781 /**
1782 * ice_ptp_gpio_enable_e823 - Enable/disable ancillary features of PHC
1783 * @info: the driver's PTP info structure
1784 * @rq: The requested feature to change
1785 * @on: Enable/disable flag
1786 */
ice_ptp_gpio_enable_e823(struct ptp_clock_info * info,struct ptp_clock_request * rq,int on)1787 static int ice_ptp_gpio_enable_e823(struct ptp_clock_info *info,
1788 struct ptp_clock_request *rq, int on)
1789 {
1790 struct ice_pf *pf = ptp_info_to_pf(info);
1791 struct ice_perout_channel clk_cfg = {0};
1792 int err;
1793
1794 switch (rq->type) {
1795 case PTP_CLK_REQ_PPS:
1796 clk_cfg.gpio_pin = PPS_PIN_INDEX;
1797 clk_cfg.period = NSEC_PER_SEC;
1798 clk_cfg.ena = !!on;
1799
1800 err = ice_ptp_cfg_clkout(pf, PPS_CLK_GEN_CHAN, &clk_cfg, true);
1801 break;
1802 case PTP_CLK_REQ_EXTTS:
1803 err = ice_ptp_cfg_extts(pf, !!on, rq->extts.index,
1804 TIME_SYNC_PIN_INDEX, rq->extts.flags);
1805 break;
1806 default:
1807 return -EOPNOTSUPP;
1808 }
1809
1810 return err;
1811 }
1812
1813 /**
1814 * ice_ptp_gettimex64 - Get the time of the clock
1815 * @info: the driver's PTP info structure
1816 * @ts: timespec64 structure to hold the current time value
1817 * @sts: Optional parameter for holding a pair of system timestamps from
1818 * the system clock. Will be ignored if NULL is given.
1819 *
1820 * Read the device clock and return the correct value on ns, after converting it
1821 * into a timespec struct.
1822 */
1823 static int
ice_ptp_gettimex64(struct ptp_clock_info * info,struct timespec64 * ts,struct ptp_system_timestamp * sts)1824 ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
1825 struct ptp_system_timestamp *sts)
1826 {
1827 struct ice_pf *pf = ptp_info_to_pf(info);
1828 struct ice_hw *hw = &pf->hw;
1829
1830 if (!ice_ptp_lock(hw)) {
1831 dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n");
1832 return -EBUSY;
1833 }
1834
1835 ice_ptp_read_time(pf, ts, sts);
1836 ice_ptp_unlock(hw);
1837
1838 return 0;
1839 }
1840
1841 /**
1842 * ice_ptp_settime64 - Set the time of the clock
1843 * @info: the driver's PTP info structure
1844 * @ts: timespec64 structure that holds the new time value
1845 *
1846 * Set the device clock to the user input value. The conversion from timespec
1847 * to ns happens in the write function.
1848 */
1849 static int
ice_ptp_settime64(struct ptp_clock_info * info,const struct timespec64 * ts)1850 ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
1851 {
1852 struct ice_pf *pf = ptp_info_to_pf(info);
1853 struct timespec64 ts64 = *ts;
1854 struct ice_hw *hw = &pf->hw;
1855 int err;
1856
1857 /* For Vernier mode, we need to recalibrate after new settime
1858 * Start with disabling timestamp block
1859 */
1860 if (pf->ptp.port.link_up)
1861 ice_ptp_port_phy_stop(&pf->ptp.port);
1862
1863 if (!ice_ptp_lock(hw)) {
1864 err = -EBUSY;
1865 goto exit;
1866 }
1867
1868 /* Disable periodic outputs */
1869 ice_ptp_disable_all_clkout(pf);
1870
1871 err = ice_ptp_write_init(pf, &ts64);
1872 ice_ptp_unlock(hw);
1873
1874 if (!err)
1875 ice_ptp_reset_cached_phctime(pf);
1876
1877 /* Reenable periodic outputs */
1878 ice_ptp_enable_all_clkout(pf);
1879
1880 /* Recalibrate and re-enable timestamp block */
1881 if (pf->ptp.port.link_up)
1882 ice_ptp_port_phy_restart(&pf->ptp.port);
1883 exit:
1884 if (err) {
1885 dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
1886 return err;
1887 }
1888
1889 return 0;
1890 }
1891
1892 /**
1893 * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
1894 * @info: the driver's PTP info structure
1895 * @delta: Offset in nanoseconds to adjust the time by
1896 */
ice_ptp_adjtime_nonatomic(struct ptp_clock_info * info,s64 delta)1897 static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
1898 {
1899 struct timespec64 now, then;
1900 int ret;
1901
1902 then = ns_to_timespec64(delta);
1903 ret = ice_ptp_gettimex64(info, &now, NULL);
1904 if (ret)
1905 return ret;
1906 now = timespec64_add(now, then);
1907
1908 return ice_ptp_settime64(info, (const struct timespec64 *)&now);
1909 }
1910
1911 /**
1912 * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
1913 * @info: the driver's PTP info structure
1914 * @delta: Offset in nanoseconds to adjust the time by
1915 */
ice_ptp_adjtime(struct ptp_clock_info * info,s64 delta)1916 static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
1917 {
1918 struct ice_pf *pf = ptp_info_to_pf(info);
1919 struct ice_hw *hw = &pf->hw;
1920 struct device *dev;
1921 int err;
1922
1923 dev = ice_pf_to_dev(pf);
1924
1925 /* Hardware only supports atomic adjustments using signed 32-bit
1926 * integers. For any adjustment outside this range, perform
1927 * a non-atomic get->adjust->set flow.
1928 */
1929 if (delta > S32_MAX || delta < S32_MIN) {
1930 dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
1931 return ice_ptp_adjtime_nonatomic(info, delta);
1932 }
1933
1934 if (!ice_ptp_lock(hw)) {
1935 dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
1936 return -EBUSY;
1937 }
1938
1939 /* Disable periodic outputs */
1940 ice_ptp_disable_all_clkout(pf);
1941
1942 err = ice_ptp_write_adj(pf, delta);
1943
1944 /* Reenable periodic outputs */
1945 ice_ptp_enable_all_clkout(pf);
1946
1947 ice_ptp_unlock(hw);
1948
1949 if (err) {
1950 dev_err(dev, "PTP failed to adjust time, err %d\n", err);
1951 return err;
1952 }
1953
1954 ice_ptp_reset_cached_phctime(pf);
1955
1956 return 0;
1957 }
1958
1959 #ifdef CONFIG_ICE_HWTS
1960 /**
1961 * ice_ptp_get_syncdevicetime - Get the cross time stamp info
1962 * @device: Current device time
1963 * @system: System counter value read synchronously with device time
1964 * @ctx: Context provided by timekeeping code
1965 *
1966 * Read device and system (ART) clock simultaneously and return the corrected
1967 * clock values in ns.
1968 */
1969 static int
ice_ptp_get_syncdevicetime(ktime_t * device,struct system_counterval_t * system,void * ctx)1970 ice_ptp_get_syncdevicetime(ktime_t *device,
1971 struct system_counterval_t *system,
1972 void *ctx)
1973 {
1974 struct ice_pf *pf = (struct ice_pf *)ctx;
1975 struct ice_hw *hw = &pf->hw;
1976 u32 hh_lock, hh_art_ctl;
1977 int i;
1978
1979 /* Get the HW lock */
1980 hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
1981 if (hh_lock & PFHH_SEM_BUSY_M) {
1982 dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n");
1983 return -EFAULT;
1984 }
1985
1986 /* Start the ART and device clock sync sequence */
1987 hh_art_ctl = rd32(hw, GLHH_ART_CTL);
1988 hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M;
1989 wr32(hw, GLHH_ART_CTL, hh_art_ctl);
1990
1991 #define MAX_HH_LOCK_TRIES 100
1992
1993 for (i = 0; i < MAX_HH_LOCK_TRIES; i++) {
1994 /* Wait for sync to complete */
1995 hh_art_ctl = rd32(hw, GLHH_ART_CTL);
1996 if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) {
1997 udelay(1);
1998 continue;
1999 } else {
2000 u32 hh_ts_lo, hh_ts_hi, tmr_idx;
2001 u64 hh_ts;
2002
2003 tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
2004 /* Read ART time */
2005 hh_ts_lo = rd32(hw, GLHH_ART_TIME_L);
2006 hh_ts_hi = rd32(hw, GLHH_ART_TIME_H);
2007 hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
2008 *system = convert_art_ns_to_tsc(hh_ts);
2009 /* Read Device source clock time */
2010 hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx));
2011 hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx));
2012 hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
2013 *device = ns_to_ktime(hh_ts);
2014 break;
2015 }
2016 }
2017 /* Release HW lock */
2018 hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
2019 hh_lock = hh_lock & ~PFHH_SEM_BUSY_M;
2020 wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock);
2021
2022 if (i == MAX_HH_LOCK_TRIES)
2023 return -ETIMEDOUT;
2024
2025 return 0;
2026 }
2027
2028 /**
2029 * ice_ptp_getcrosststamp_e822 - Capture a device cross timestamp
2030 * @info: the driver's PTP info structure
2031 * @cts: The memory to fill the cross timestamp info
2032 *
2033 * Capture a cross timestamp between the ART and the device PTP hardware
2034 * clock. Fill the cross timestamp information and report it back to the
2035 * caller.
2036 *
2037 * This is only valid for E822 devices which have support for generating the
2038 * cross timestamp via PCIe PTM.
2039 *
2040 * In order to correctly correlate the ART timestamp back to the TSC time, the
2041 * CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
2042 */
2043 static int
ice_ptp_getcrosststamp_e822(struct ptp_clock_info * info,struct system_device_crosststamp * cts)2044 ice_ptp_getcrosststamp_e822(struct ptp_clock_info *info,
2045 struct system_device_crosststamp *cts)
2046 {
2047 struct ice_pf *pf = ptp_info_to_pf(info);
2048
2049 return get_device_system_crosststamp(ice_ptp_get_syncdevicetime,
2050 pf, NULL, cts);
2051 }
2052 #endif /* CONFIG_ICE_HWTS */
2053
2054 /**
2055 * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
2056 * @pf: Board private structure
2057 * @ifr: ioctl data
2058 *
2059 * Copy the timestamping config to user buffer
2060 */
ice_ptp_get_ts_config(struct ice_pf * pf,struct ifreq * ifr)2061 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2062 {
2063 struct hwtstamp_config *config;
2064
2065 if (!test_bit(ICE_FLAG_PTP, pf->flags))
2066 return -EIO;
2067
2068 config = &pf->ptp.tstamp_config;
2069
2070 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
2071 -EFAULT : 0;
2072 }
2073
2074 /**
2075 * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
2076 * @pf: Board private structure
2077 * @config: hwtstamp settings requested or saved
2078 */
2079 static int
ice_ptp_set_timestamp_mode(struct ice_pf * pf,struct hwtstamp_config * config)2080 ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
2081 {
2082 switch (config->tx_type) {
2083 case HWTSTAMP_TX_OFF:
2084 ice_set_tx_tstamp(pf, false);
2085 break;
2086 case HWTSTAMP_TX_ON:
2087 ice_set_tx_tstamp(pf, true);
2088 break;
2089 default:
2090 return -ERANGE;
2091 }
2092
2093 switch (config->rx_filter) {
2094 case HWTSTAMP_FILTER_NONE:
2095 ice_set_rx_tstamp(pf, false);
2096 break;
2097 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2098 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2099 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2100 case HWTSTAMP_FILTER_PTP_V2_EVENT:
2101 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2102 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2103 case HWTSTAMP_FILTER_PTP_V2_SYNC:
2104 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2105 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2106 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2107 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2108 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2109 case HWTSTAMP_FILTER_NTP_ALL:
2110 case HWTSTAMP_FILTER_ALL:
2111 ice_set_rx_tstamp(pf, true);
2112 break;
2113 default:
2114 return -ERANGE;
2115 }
2116
2117 return 0;
2118 }
2119
2120 /**
2121 * ice_ptp_set_ts_config - ioctl interface to control the timestamping
2122 * @pf: Board private structure
2123 * @ifr: ioctl data
2124 *
2125 * Get the user config and store it
2126 */
ice_ptp_set_ts_config(struct ice_pf * pf,struct ifreq * ifr)2127 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2128 {
2129 struct hwtstamp_config config;
2130 int err;
2131
2132 if (!test_bit(ICE_FLAG_PTP, pf->flags))
2133 return -EAGAIN;
2134
2135 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2136 return -EFAULT;
2137
2138 err = ice_ptp_set_timestamp_mode(pf, &config);
2139 if (err)
2140 return err;
2141
2142 /* Return the actual configuration set */
2143 config = pf->ptp.tstamp_config;
2144
2145 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2146 -EFAULT : 0;
2147 }
2148
2149 /**
2150 * ice_ptp_rx_hwtstamp - Check for an Rx timestamp
2151 * @rx_ring: Ring to get the VSI info
2152 * @rx_desc: Receive descriptor
2153 * @skb: Particular skb to send timestamp with
2154 *
2155 * The driver receives a notification in the receive descriptor with timestamp.
2156 * The timestamp is in ns, so we must convert the result first.
2157 */
2158 void
ice_ptp_rx_hwtstamp(struct ice_rx_ring * rx_ring,union ice_32b_rx_flex_desc * rx_desc,struct sk_buff * skb)2159 ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring,
2160 union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb)
2161 {
2162 struct skb_shared_hwtstamps *hwtstamps;
2163 u64 ts_ns, cached_time;
2164 u32 ts_high;
2165
2166 if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID))
2167 return;
2168
2169 cached_time = READ_ONCE(rx_ring->cached_phctime);
2170
2171 /* Do not report a timestamp if we don't have a cached PHC time */
2172 if (!cached_time)
2173 return;
2174
2175 /* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached
2176 * PHC value, rather than accessing the PF. This also allows us to
2177 * simply pass the upper 32bits of nanoseconds directly. Calling
2178 * ice_ptp_extend_40b_ts is unnecessary as it would just discard these
2179 * bits itself.
2180 */
2181 ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
2182 ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high);
2183
2184 hwtstamps = skb_hwtstamps(skb);
2185 memset(hwtstamps, 0, sizeof(*hwtstamps));
2186 hwtstamps->hwtstamp = ns_to_ktime(ts_ns);
2187 }
2188
2189 /**
2190 * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins
2191 * @pf: pointer to the PF structure
2192 * @info: PTP clock info structure
2193 *
2194 * Disable the OS access to the SMA pins. Called to clear out the OS
2195 * indications of pin support when we fail to setup the E810-T SMA control
2196 * register.
2197 */
2198 static void
ice_ptp_disable_sma_pins_e810t(struct ice_pf * pf,struct ptp_clock_info * info)2199 ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2200 {
2201 struct device *dev = ice_pf_to_dev(pf);
2202
2203 dev_warn(dev, "Failed to configure E810-T SMA pin control\n");
2204
2205 info->enable = NULL;
2206 info->verify = NULL;
2207 info->n_pins = 0;
2208 info->n_ext_ts = 0;
2209 info->n_per_out = 0;
2210 }
2211
2212 /**
2213 * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins
2214 * @pf: pointer to the PF structure
2215 * @info: PTP clock info structure
2216 *
2217 * Finish setting up the SMA pins by allocating pin_config, and setting it up
2218 * according to the current status of the SMA. On failure, disable all of the
2219 * extended SMA pin support.
2220 */
2221 static void
ice_ptp_setup_sma_pins_e810t(struct ice_pf * pf,struct ptp_clock_info * info)2222 ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2223 {
2224 struct device *dev = ice_pf_to_dev(pf);
2225 int err;
2226
2227 /* Allocate memory for kernel pins interface */
2228 info->pin_config = devm_kcalloc(dev, info->n_pins,
2229 sizeof(*info->pin_config), GFP_KERNEL);
2230 if (!info->pin_config) {
2231 ice_ptp_disable_sma_pins_e810t(pf, info);
2232 return;
2233 }
2234
2235 /* Read current SMA status */
2236 err = ice_get_sma_config_e810t(&pf->hw, info->pin_config);
2237 if (err)
2238 ice_ptp_disable_sma_pins_e810t(pf, info);
2239 }
2240
2241 /**
2242 * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs
2243 * @pf: pointer to the PF instance
2244 * @info: PTP clock capabilities
2245 */
2246 static void
ice_ptp_setup_pins_e810(struct ice_pf * pf,struct ptp_clock_info * info)2247 ice_ptp_setup_pins_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2248 {
2249 if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
2250 info->n_ext_ts = N_EXT_TS_E810;
2251 info->n_per_out = N_PER_OUT_E810T;
2252 info->n_pins = NUM_PTP_PINS_E810T;
2253 info->verify = ice_verify_pin_e810t;
2254
2255 /* Complete setup of the SMA pins */
2256 ice_ptp_setup_sma_pins_e810t(pf, info);
2257 } else if (ice_is_e810t(&pf->hw)) {
2258 info->n_ext_ts = N_EXT_TS_NO_SMA_E810T;
2259 info->n_per_out = N_PER_OUT_NO_SMA_E810T;
2260 } else {
2261 info->n_per_out = N_PER_OUT_E810;
2262 info->n_ext_ts = N_EXT_TS_E810;
2263 }
2264 }
2265
2266 /**
2267 * ice_ptp_setup_pins_e823 - Setup PTP pins in sysfs
2268 * @pf: pointer to the PF instance
2269 * @info: PTP clock capabilities
2270 */
2271 static void
ice_ptp_setup_pins_e823(struct ice_pf * pf,struct ptp_clock_info * info)2272 ice_ptp_setup_pins_e823(struct ice_pf *pf, struct ptp_clock_info *info)
2273 {
2274 info->pps = 1;
2275 info->n_per_out = 0;
2276 info->n_ext_ts = 1;
2277 }
2278
2279 /**
2280 * ice_ptp_set_funcs_e822 - Set specialized functions for E822 support
2281 * @pf: Board private structure
2282 * @info: PTP info to fill
2283 *
2284 * Assign functions to the PTP capabiltiies structure for E822 devices.
2285 * Functions which operate across all device families should be set directly
2286 * in ice_ptp_set_caps. Only add functions here which are distinct for E822
2287 * devices.
2288 */
2289 static void
ice_ptp_set_funcs_e822(struct ice_pf * pf,struct ptp_clock_info * info)2290 ice_ptp_set_funcs_e822(struct ice_pf *pf, struct ptp_clock_info *info)
2291 {
2292 #ifdef CONFIG_ICE_HWTS
2293 if (boot_cpu_has(X86_FEATURE_ART) &&
2294 boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ))
2295 info->getcrosststamp = ice_ptp_getcrosststamp_e822;
2296 #endif /* CONFIG_ICE_HWTS */
2297 }
2298
2299 /**
2300 * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
2301 * @pf: Board private structure
2302 * @info: PTP info to fill
2303 *
2304 * Assign functions to the PTP capabiltiies structure for E810 devices.
2305 * Functions which operate across all device families should be set directly
2306 * in ice_ptp_set_caps. Only add functions here which are distinct for e810
2307 * devices.
2308 */
2309 static void
ice_ptp_set_funcs_e810(struct ice_pf * pf,struct ptp_clock_info * info)2310 ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2311 {
2312 info->enable = ice_ptp_gpio_enable_e810;
2313 ice_ptp_setup_pins_e810(pf, info);
2314 }
2315
2316 /**
2317 * ice_ptp_set_funcs_e823 - Set specialized functions for E823 support
2318 * @pf: Board private structure
2319 * @info: PTP info to fill
2320 *
2321 * Assign functions to the PTP capabiltiies structure for E823 devices.
2322 * Functions which operate across all device families should be set directly
2323 * in ice_ptp_set_caps. Only add functions here which are distinct for e823
2324 * devices.
2325 */
2326 static void
ice_ptp_set_funcs_e823(struct ice_pf * pf,struct ptp_clock_info * info)2327 ice_ptp_set_funcs_e823(struct ice_pf *pf, struct ptp_clock_info *info)
2328 {
2329 info->enable = ice_ptp_gpio_enable_e823;
2330 ice_ptp_setup_pins_e823(pf, info);
2331 }
2332
2333 /**
2334 * ice_ptp_set_caps - Set PTP capabilities
2335 * @pf: Board private structure
2336 */
ice_ptp_set_caps(struct ice_pf * pf)2337 static void ice_ptp_set_caps(struct ice_pf *pf)
2338 {
2339 struct ptp_clock_info *info = &pf->ptp.info;
2340 struct device *dev = ice_pf_to_dev(pf);
2341
2342 snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
2343 dev_driver_string(dev), dev_name(dev));
2344 info->owner = THIS_MODULE;
2345 info->max_adj = 100000000;
2346 info->adjtime = ice_ptp_adjtime;
2347 info->adjfine = ice_ptp_adjfine;
2348 info->gettimex64 = ice_ptp_gettimex64;
2349 info->settime64 = ice_ptp_settime64;
2350
2351 if (ice_is_e810(&pf->hw))
2352 ice_ptp_set_funcs_e810(pf, info);
2353 else if (ice_is_e823(&pf->hw))
2354 ice_ptp_set_funcs_e823(pf, info);
2355 else
2356 ice_ptp_set_funcs_e822(pf, info);
2357 }
2358
2359 /**
2360 * ice_ptp_create_clock - Create PTP clock device for userspace
2361 * @pf: Board private structure
2362 *
2363 * This function creates a new PTP clock device. It only creates one if we
2364 * don't already have one. Will return error if it can't create one, but success
2365 * if we already have a device. Should be used by ice_ptp_init to create clock
2366 * initially, and prevent global resets from creating new clock devices.
2367 */
ice_ptp_create_clock(struct ice_pf * pf)2368 static long ice_ptp_create_clock(struct ice_pf *pf)
2369 {
2370 struct ptp_clock_info *info;
2371 struct ptp_clock *clock;
2372 struct device *dev;
2373
2374 /* No need to create a clock device if we already have one */
2375 if (pf->ptp.clock)
2376 return 0;
2377
2378 ice_ptp_set_caps(pf);
2379
2380 info = &pf->ptp.info;
2381 dev = ice_pf_to_dev(pf);
2382
2383 /* Attempt to register the clock before enabling the hardware. */
2384 clock = ptp_clock_register(info, dev);
2385 if (IS_ERR(clock))
2386 return PTR_ERR(clock);
2387
2388 pf->ptp.clock = clock;
2389
2390 return 0;
2391 }
2392
2393 /**
2394 * ice_ptp_request_ts - Request an available Tx timestamp index
2395 * @tx: the PTP Tx timestamp tracker to request from
2396 * @skb: the SKB to associate with this timestamp request
2397 */
ice_ptp_request_ts(struct ice_ptp_tx * tx,struct sk_buff * skb)2398 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
2399 {
2400 u8 idx;
2401
2402 spin_lock(&tx->lock);
2403
2404 /* Check that this tracker is accepting new timestamp requests */
2405 if (!ice_ptp_is_tx_tracker_up(tx)) {
2406 spin_unlock(&tx->lock);
2407 return -1;
2408 }
2409
2410 /* Find and set the first available index */
2411 idx = find_first_zero_bit(tx->in_use, tx->len);
2412 if (idx < tx->len) {
2413 /* We got a valid index that no other thread could have set. Store
2414 * a reference to the skb and the start time to allow discarding old
2415 * requests.
2416 */
2417 set_bit(idx, tx->in_use);
2418 clear_bit(idx, tx->stale);
2419 tx->tstamps[idx].start = jiffies;
2420 tx->tstamps[idx].skb = skb_get(skb);
2421 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2422 ice_trace(tx_tstamp_request, skb, idx);
2423 }
2424
2425 spin_unlock(&tx->lock);
2426
2427 /* return the appropriate PHY timestamp register index, -1 if no
2428 * indexes were available.
2429 */
2430 if (idx >= tx->len)
2431 return -1;
2432 else
2433 return idx + tx->offset;
2434 }
2435
2436 /**
2437 * ice_ptp_process_ts - Process the PTP Tx timestamps
2438 * @pf: Board private structure
2439 *
2440 * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding Tx
2441 * timestamps that need processing, and ICE_TX_TSTAMP_WORK_DONE otherwise.
2442 */
ice_ptp_process_ts(struct ice_pf * pf)2443 enum ice_tx_tstamp_work ice_ptp_process_ts(struct ice_pf *pf)
2444 {
2445 return ice_ptp_tx_tstamp(&pf->ptp.port.tx);
2446 }
2447
ice_ptp_periodic_work(struct kthread_work * work)2448 static void ice_ptp_periodic_work(struct kthread_work *work)
2449 {
2450 struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
2451 struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
2452 int err;
2453
2454 if (!test_bit(ICE_FLAG_PTP, pf->flags))
2455 return;
2456
2457 err = ice_ptp_update_cached_phctime(pf);
2458
2459 /* Run twice a second or reschedule if phc update failed */
2460 kthread_queue_delayed_work(ptp->kworker, &ptp->work,
2461 msecs_to_jiffies(err ? 10 : 500));
2462 }
2463
2464 /**
2465 * ice_ptp_reset - Initialize PTP hardware clock support after reset
2466 * @pf: Board private structure
2467 */
ice_ptp_reset(struct ice_pf * pf)2468 void ice_ptp_reset(struct ice_pf *pf)
2469 {
2470 struct ice_ptp *ptp = &pf->ptp;
2471 struct ice_hw *hw = &pf->hw;
2472 struct timespec64 ts;
2473 int err, itr = 1;
2474 u64 time_diff;
2475
2476 if (test_bit(ICE_PFR_REQ, pf->state))
2477 goto pfr;
2478
2479 if (!hw->func_caps.ts_func_info.src_tmr_owned)
2480 goto reset_ts;
2481
2482 err = ice_ptp_init_phc(hw);
2483 if (err)
2484 goto err;
2485
2486 /* Acquire the global hardware lock */
2487 if (!ice_ptp_lock(hw)) {
2488 err = -EBUSY;
2489 goto err;
2490 }
2491
2492 /* Write the increment time value to PHY and LAN */
2493 err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2494 if (err) {
2495 ice_ptp_unlock(hw);
2496 goto err;
2497 }
2498
2499 /* Write the initial Time value to PHY and LAN using the cached PHC
2500 * time before the reset and time difference between stopping and
2501 * starting the clock.
2502 */
2503 if (ptp->cached_phc_time) {
2504 time_diff = ktime_get_real_ns() - ptp->reset_time;
2505 ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
2506 } else {
2507 ts = ktime_to_timespec64(ktime_get_real());
2508 }
2509 err = ice_ptp_write_init(pf, &ts);
2510 if (err) {
2511 ice_ptp_unlock(hw);
2512 goto err;
2513 }
2514
2515 /* Release the global hardware lock */
2516 ice_ptp_unlock(hw);
2517
2518 if (!ice_is_e810(hw)) {
2519 /* Enable quad interrupts */
2520 err = ice_ptp_tx_ena_intr(pf, true, itr);
2521 if (err)
2522 goto err;
2523 }
2524
2525 reset_ts:
2526 /* Restart the PHY timestamping block */
2527 ice_ptp_reset_phy_timestamping(pf);
2528
2529 pfr:
2530 /* Init Tx structures */
2531 if (ice_is_e810(&pf->hw)) {
2532 err = ice_ptp_init_tx_e810(pf, &ptp->port.tx);
2533 } else {
2534 kthread_init_delayed_work(&ptp->port.ov_work,
2535 ice_ptp_wait_for_offsets);
2536 err = ice_ptp_init_tx_e822(pf, &ptp->port.tx,
2537 ptp->port.port_num);
2538 }
2539 if (err)
2540 goto err;
2541
2542 set_bit(ICE_FLAG_PTP, pf->flags);
2543
2544 /* Start periodic work going */
2545 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2546
2547 dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
2548 return;
2549
2550 err:
2551 dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
2552 }
2553
2554 /**
2555 * ice_ptp_prepare_for_reset - Prepare PTP for reset
2556 * @pf: Board private structure
2557 */
ice_ptp_prepare_for_reset(struct ice_pf * pf)2558 void ice_ptp_prepare_for_reset(struct ice_pf *pf)
2559 {
2560 struct ice_ptp *ptp = &pf->ptp;
2561 u8 src_tmr;
2562
2563 clear_bit(ICE_FLAG_PTP, pf->flags);
2564
2565 /* Disable timestamping for both Tx and Rx */
2566 ice_ptp_cfg_timestamp(pf, false);
2567
2568 kthread_cancel_delayed_work_sync(&ptp->work);
2569
2570 if (test_bit(ICE_PFR_REQ, pf->state))
2571 return;
2572
2573 ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2574
2575 /* Disable periodic outputs */
2576 ice_ptp_disable_all_clkout(pf);
2577
2578 src_tmr = ice_get_ptp_src_clock_index(&pf->hw);
2579
2580 /* Disable source clock */
2581 wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);
2582
2583 /* Acquire PHC and system timer to restore after reset */
2584 ptp->reset_time = ktime_get_real_ns();
2585 }
2586
2587 /**
2588 * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
2589 * @pf: Board private structure
2590 *
2591 * Setup and initialize a PTP clock device that represents the device hardware
2592 * clock. Save the clock index for other functions connected to the same
2593 * hardware resource.
2594 */
ice_ptp_init_owner(struct ice_pf * pf)2595 static int ice_ptp_init_owner(struct ice_pf *pf)
2596 {
2597 struct ice_hw *hw = &pf->hw;
2598 struct timespec64 ts;
2599 int err, itr = 1;
2600
2601 err = ice_ptp_init_phc(hw);
2602 if (err) {
2603 dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
2604 err);
2605 return err;
2606 }
2607
2608 /* Acquire the global hardware lock */
2609 if (!ice_ptp_lock(hw)) {
2610 err = -EBUSY;
2611 goto err_exit;
2612 }
2613
2614 /* Write the increment time value to PHY and LAN */
2615 err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2616 if (err) {
2617 ice_ptp_unlock(hw);
2618 goto err_exit;
2619 }
2620
2621 ts = ktime_to_timespec64(ktime_get_real());
2622 /* Write the initial Time value to PHY and LAN */
2623 err = ice_ptp_write_init(pf, &ts);
2624 if (err) {
2625 ice_ptp_unlock(hw);
2626 goto err_exit;
2627 }
2628
2629 /* Release the global hardware lock */
2630 ice_ptp_unlock(hw);
2631
2632 if (!ice_is_e810(hw)) {
2633 /* Enable quad interrupts */
2634 err = ice_ptp_tx_ena_intr(pf, true, itr);
2635 if (err)
2636 goto err_exit;
2637 }
2638
2639 /* Ensure we have a clock device */
2640 err = ice_ptp_create_clock(pf);
2641 if (err)
2642 goto err_clk;
2643
2644 /* Store the PTP clock index for other PFs */
2645 ice_set_ptp_clock_index(pf);
2646
2647 return 0;
2648
2649 err_clk:
2650 pf->ptp.clock = NULL;
2651 err_exit:
2652 return err;
2653 }
2654
2655 /**
2656 * ice_ptp_init_work - Initialize PTP work threads
2657 * @pf: Board private structure
2658 * @ptp: PF PTP structure
2659 */
ice_ptp_init_work(struct ice_pf * pf,struct ice_ptp * ptp)2660 static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
2661 {
2662 struct kthread_worker *kworker;
2663
2664 /* Initialize work functions */
2665 kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
2666
2667 /* Allocate a kworker for handling work required for the ports
2668 * connected to the PTP hardware clock.
2669 */
2670 kworker = kthread_create_worker(0, "ice-ptp-%s",
2671 dev_name(ice_pf_to_dev(pf)));
2672 if (IS_ERR(kworker))
2673 return PTR_ERR(kworker);
2674
2675 ptp->kworker = kworker;
2676
2677 /* Start periodic work going */
2678 kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2679
2680 return 0;
2681 }
2682
2683 /**
2684 * ice_ptp_init_port - Initialize PTP port structure
2685 * @pf: Board private structure
2686 * @ptp_port: PTP port structure
2687 */
ice_ptp_init_port(struct ice_pf * pf,struct ice_ptp_port * ptp_port)2688 static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
2689 {
2690 mutex_init(&ptp_port->ps_lock);
2691
2692 if (ice_is_e810(&pf->hw))
2693 return ice_ptp_init_tx_e810(pf, &ptp_port->tx);
2694
2695 kthread_init_delayed_work(&ptp_port->ov_work,
2696 ice_ptp_wait_for_offsets);
2697 return ice_ptp_init_tx_e822(pf, &ptp_port->tx, ptp_port->port_num);
2698 }
2699
2700 /**
2701 * ice_ptp_init - Initialize PTP hardware clock support
2702 * @pf: Board private structure
2703 *
2704 * Set up the device for interacting with the PTP hardware clock for all
2705 * functions, both the function that owns the clock hardware, and the
2706 * functions connected to the clock hardware.
2707 *
2708 * The clock owner will allocate and register a ptp_clock with the
2709 * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
2710 * items used for asynchronous work such as Tx timestamps and periodic work.
2711 */
ice_ptp_init(struct ice_pf * pf)2712 void ice_ptp_init(struct ice_pf *pf)
2713 {
2714 struct ice_ptp *ptp = &pf->ptp;
2715 struct ice_hw *hw = &pf->hw;
2716 int err;
2717
2718 /* If this function owns the clock hardware, it must allocate and
2719 * configure the PTP clock device to represent it.
2720 */
2721 if (hw->func_caps.ts_func_info.src_tmr_owned) {
2722 err = ice_ptp_init_owner(pf);
2723 if (err)
2724 goto err;
2725 }
2726
2727 ptp->port.port_num = hw->pf_id;
2728 err = ice_ptp_init_port(pf, &ptp->port);
2729 if (err)
2730 goto err;
2731
2732 /* Start the PHY timestamping block */
2733 ice_ptp_reset_phy_timestamping(pf);
2734
2735 set_bit(ICE_FLAG_PTP, pf->flags);
2736 err = ice_ptp_init_work(pf, ptp);
2737 if (err)
2738 goto err;
2739
2740 dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
2741 return;
2742
2743 err:
2744 /* If we registered a PTP clock, release it */
2745 if (pf->ptp.clock) {
2746 ptp_clock_unregister(ptp->clock);
2747 pf->ptp.clock = NULL;
2748 }
2749 clear_bit(ICE_FLAG_PTP, pf->flags);
2750 dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
2751 }
2752
2753 /**
2754 * ice_ptp_release - Disable the driver/HW support and unregister the clock
2755 * @pf: Board private structure
2756 *
2757 * This function handles the cleanup work required from the initialization by
2758 * clearing out the important information and unregistering the clock
2759 */
ice_ptp_release(struct ice_pf * pf)2760 void ice_ptp_release(struct ice_pf *pf)
2761 {
2762 if (!test_bit(ICE_FLAG_PTP, pf->flags))
2763 return;
2764
2765 /* Disable timestamping for both Tx and Rx */
2766 ice_ptp_cfg_timestamp(pf, false);
2767
2768 ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2769
2770 clear_bit(ICE_FLAG_PTP, pf->flags);
2771
2772 kthread_cancel_delayed_work_sync(&pf->ptp.work);
2773
2774 ice_ptp_port_phy_stop(&pf->ptp.port);
2775 mutex_destroy(&pf->ptp.port.ps_lock);
2776 if (pf->ptp.kworker) {
2777 kthread_destroy_worker(pf->ptp.kworker);
2778 pf->ptp.kworker = NULL;
2779 }
2780
2781 if (!pf->ptp.clock)
2782 return;
2783
2784 /* Disable periodic outputs */
2785 ice_ptp_disable_all_clkout(pf);
2786
2787 ice_clear_ptp_clock_index(pf);
2788 ptp_clock_unregister(pf->ptp.clock);
2789 pf->ptp.clock = NULL;
2790
2791 dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
2792 }
2793