xref: /openbmc/linux/drivers/net/ethernet/intel/ice/ice_common.c (revision 0f9b4c3ca5fdf3e177266ef994071b1a03f07318)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 #include "ice_ptp_hw.h"
9 
10 #define ICE_PF_RESET_WAIT_COUNT	300
11 
12 static const char * const ice_link_mode_str_low[] = {
13 	[0] = "100BASE_TX",
14 	[1] = "100M_SGMII",
15 	[2] = "1000BASE_T",
16 	[3] = "1000BASE_SX",
17 	[4] = "1000BASE_LX",
18 	[5] = "1000BASE_KX",
19 	[6] = "1G_SGMII",
20 	[7] = "2500BASE_T",
21 	[8] = "2500BASE_X",
22 	[9] = "2500BASE_KX",
23 	[10] = "5GBASE_T",
24 	[11] = "5GBASE_KR",
25 	[12] = "10GBASE_T",
26 	[13] = "10G_SFI_DA",
27 	[14] = "10GBASE_SR",
28 	[15] = "10GBASE_LR",
29 	[16] = "10GBASE_KR_CR1",
30 	[17] = "10G_SFI_AOC_ACC",
31 	[18] = "10G_SFI_C2C",
32 	[19] = "25GBASE_T",
33 	[20] = "25GBASE_CR",
34 	[21] = "25GBASE_CR_S",
35 	[22] = "25GBASE_CR1",
36 	[23] = "25GBASE_SR",
37 	[24] = "25GBASE_LR",
38 	[25] = "25GBASE_KR",
39 	[26] = "25GBASE_KR_S",
40 	[27] = "25GBASE_KR1",
41 	[28] = "25G_AUI_AOC_ACC",
42 	[29] = "25G_AUI_C2C",
43 	[30] = "40GBASE_CR4",
44 	[31] = "40GBASE_SR4",
45 	[32] = "40GBASE_LR4",
46 	[33] = "40GBASE_KR4",
47 	[34] = "40G_XLAUI_AOC_ACC",
48 	[35] = "40G_XLAUI",
49 	[36] = "50GBASE_CR2",
50 	[37] = "50GBASE_SR2",
51 	[38] = "50GBASE_LR2",
52 	[39] = "50GBASE_KR2",
53 	[40] = "50G_LAUI2_AOC_ACC",
54 	[41] = "50G_LAUI2",
55 	[42] = "50G_AUI2_AOC_ACC",
56 	[43] = "50G_AUI2",
57 	[44] = "50GBASE_CP",
58 	[45] = "50GBASE_SR",
59 	[46] = "50GBASE_FR",
60 	[47] = "50GBASE_LR",
61 	[48] = "50GBASE_KR_PAM4",
62 	[49] = "50G_AUI1_AOC_ACC",
63 	[50] = "50G_AUI1",
64 	[51] = "100GBASE_CR4",
65 	[52] = "100GBASE_SR4",
66 	[53] = "100GBASE_LR4",
67 	[54] = "100GBASE_KR4",
68 	[55] = "100G_CAUI4_AOC_ACC",
69 	[56] = "100G_CAUI4",
70 	[57] = "100G_AUI4_AOC_ACC",
71 	[58] = "100G_AUI4",
72 	[59] = "100GBASE_CR_PAM4",
73 	[60] = "100GBASE_KR_PAM4",
74 	[61] = "100GBASE_CP2",
75 	[62] = "100GBASE_SR2",
76 	[63] = "100GBASE_DR",
77 };
78 
79 static const char * const ice_link_mode_str_high[] = {
80 	[0] = "100GBASE_KR2_PAM4",
81 	[1] = "100G_CAUI2_AOC_ACC",
82 	[2] = "100G_CAUI2",
83 	[3] = "100G_AUI2_AOC_ACC",
84 	[4] = "100G_AUI2",
85 };
86 
87 /**
88  * ice_dump_phy_type - helper function to dump phy_type
89  * @hw: pointer to the HW structure
90  * @low: 64 bit value for phy_type_low
91  * @high: 64 bit value for phy_type_high
92  * @prefix: prefix string to differentiate multiple dumps
93  */
94 static void
ice_dump_phy_type(struct ice_hw * hw,u64 low,u64 high,const char * prefix)95 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
96 {
97 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
98 
99 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
100 		if (low & BIT_ULL(i))
101 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
102 				  prefix, i, ice_link_mode_str_low[i]);
103 	}
104 
105 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
106 
107 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
108 		if (high & BIT_ULL(i))
109 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
110 				  prefix, i, ice_link_mode_str_high[i]);
111 	}
112 }
113 
114 /**
115  * ice_set_mac_type - Sets MAC type
116  * @hw: pointer to the HW structure
117  *
118  * This function sets the MAC type of the adapter based on the
119  * vendor ID and device ID stored in the HW structure.
120  */
ice_set_mac_type(struct ice_hw * hw)121 static int ice_set_mac_type(struct ice_hw *hw)
122 {
123 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
124 		return -ENODEV;
125 
126 	switch (hw->device_id) {
127 	case ICE_DEV_ID_E810C_BACKPLANE:
128 	case ICE_DEV_ID_E810C_QSFP:
129 	case ICE_DEV_ID_E810C_SFP:
130 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
131 	case ICE_DEV_ID_E810_XXV_QSFP:
132 	case ICE_DEV_ID_E810_XXV_SFP:
133 		hw->mac_type = ICE_MAC_E810;
134 		break;
135 	case ICE_DEV_ID_E823C_10G_BASE_T:
136 	case ICE_DEV_ID_E823C_BACKPLANE:
137 	case ICE_DEV_ID_E823C_QSFP:
138 	case ICE_DEV_ID_E823C_SFP:
139 	case ICE_DEV_ID_E823C_SGMII:
140 	case ICE_DEV_ID_E822C_10G_BASE_T:
141 	case ICE_DEV_ID_E822C_BACKPLANE:
142 	case ICE_DEV_ID_E822C_QSFP:
143 	case ICE_DEV_ID_E822C_SFP:
144 	case ICE_DEV_ID_E822C_SGMII:
145 	case ICE_DEV_ID_E822L_10G_BASE_T:
146 	case ICE_DEV_ID_E822L_BACKPLANE:
147 	case ICE_DEV_ID_E822L_SFP:
148 	case ICE_DEV_ID_E822L_SGMII:
149 	case ICE_DEV_ID_E823L_10G_BASE_T:
150 	case ICE_DEV_ID_E823L_1GBE:
151 	case ICE_DEV_ID_E823L_BACKPLANE:
152 	case ICE_DEV_ID_E823L_QSFP:
153 	case ICE_DEV_ID_E823L_SFP:
154 		hw->mac_type = ICE_MAC_GENERIC;
155 		break;
156 	case ICE_DEV_ID_E830_BACKPLANE:
157 	case ICE_DEV_ID_E830_QSFP56:
158 	case ICE_DEV_ID_E830_SFP:
159 	case ICE_DEV_ID_E830_SFP_DD:
160 		hw->mac_type = ICE_MAC_E830;
161 		break;
162 	default:
163 		hw->mac_type = ICE_MAC_UNKNOWN;
164 		break;
165 	}
166 
167 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
168 	return 0;
169 }
170 
171 /**
172  * ice_is_e810
173  * @hw: pointer to the hardware structure
174  *
175  * returns true if the device is E810 based, false if not.
176  */
ice_is_e810(struct ice_hw * hw)177 bool ice_is_e810(struct ice_hw *hw)
178 {
179 	return hw->mac_type == ICE_MAC_E810;
180 }
181 
182 /**
183  * ice_is_e810t
184  * @hw: pointer to the hardware structure
185  *
186  * returns true if the device is E810T based, false if not.
187  */
ice_is_e810t(struct ice_hw * hw)188 bool ice_is_e810t(struct ice_hw *hw)
189 {
190 	switch (hw->device_id) {
191 	case ICE_DEV_ID_E810C_SFP:
192 		switch (hw->subsystem_device_id) {
193 		case ICE_SUBDEV_ID_E810T:
194 		case ICE_SUBDEV_ID_E810T2:
195 		case ICE_SUBDEV_ID_E810T3:
196 		case ICE_SUBDEV_ID_E810T4:
197 		case ICE_SUBDEV_ID_E810T6:
198 		case ICE_SUBDEV_ID_E810T7:
199 			return true;
200 		}
201 		break;
202 	case ICE_DEV_ID_E810C_QSFP:
203 		switch (hw->subsystem_device_id) {
204 		case ICE_SUBDEV_ID_E810T2:
205 		case ICE_SUBDEV_ID_E810T3:
206 		case ICE_SUBDEV_ID_E810T5:
207 			return true;
208 		}
209 		break;
210 	default:
211 		break;
212 	}
213 
214 	return false;
215 }
216 
217 /**
218  * ice_is_e823
219  * @hw: pointer to the hardware structure
220  *
221  * returns true if the device is E823-L or E823-C based, false if not.
222  */
ice_is_e823(struct ice_hw * hw)223 bool ice_is_e823(struct ice_hw *hw)
224 {
225 	switch (hw->device_id) {
226 	case ICE_DEV_ID_E823L_BACKPLANE:
227 	case ICE_DEV_ID_E823L_SFP:
228 	case ICE_DEV_ID_E823L_10G_BASE_T:
229 	case ICE_DEV_ID_E823L_1GBE:
230 	case ICE_DEV_ID_E823L_QSFP:
231 	case ICE_DEV_ID_E823C_BACKPLANE:
232 	case ICE_DEV_ID_E823C_QSFP:
233 	case ICE_DEV_ID_E823C_SFP:
234 	case ICE_DEV_ID_E823C_10G_BASE_T:
235 	case ICE_DEV_ID_E823C_SGMII:
236 		return true;
237 	default:
238 		return false;
239 	}
240 }
241 
242 /**
243  * ice_clear_pf_cfg - Clear PF configuration
244  * @hw: pointer to the hardware structure
245  *
246  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
247  * configuration, flow director filters, etc.).
248  */
ice_clear_pf_cfg(struct ice_hw * hw)249 int ice_clear_pf_cfg(struct ice_hw *hw)
250 {
251 	struct ice_aq_desc desc;
252 
253 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
254 
255 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
256 }
257 
258 /**
259  * ice_aq_manage_mac_read - manage MAC address read command
260  * @hw: pointer to the HW struct
261  * @buf: a virtual buffer to hold the manage MAC read response
262  * @buf_size: Size of the virtual buffer
263  * @cd: pointer to command details structure or NULL
264  *
265  * This function is used to return per PF station MAC address (0x0107).
266  * NOTE: Upon successful completion of this command, MAC address information
267  * is returned in user specified buffer. Please interpret user specified
268  * buffer as "manage_mac_read" response.
269  * Response such as various MAC addresses are stored in HW struct (port.mac)
270  * ice_discover_dev_caps is expected to be called before this function is
271  * called.
272  */
273 static int
ice_aq_manage_mac_read(struct ice_hw * hw,void * buf,u16 buf_size,struct ice_sq_cd * cd)274 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
275 		       struct ice_sq_cd *cd)
276 {
277 	struct ice_aqc_manage_mac_read_resp *resp;
278 	struct ice_aqc_manage_mac_read *cmd;
279 	struct ice_aq_desc desc;
280 	int status;
281 	u16 flags;
282 	u8 i;
283 
284 	cmd = &desc.params.mac_read;
285 
286 	if (buf_size < sizeof(*resp))
287 		return -EINVAL;
288 
289 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
290 
291 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
292 	if (status)
293 		return status;
294 
295 	resp = buf;
296 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
297 
298 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
299 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
300 		return -EIO;
301 	}
302 
303 	/* A single port can report up to two (LAN and WoL) addresses */
304 	for (i = 0; i < cmd->num_addr; i++)
305 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
306 			ether_addr_copy(hw->port_info->mac.lan_addr,
307 					resp[i].mac_addr);
308 			ether_addr_copy(hw->port_info->mac.perm_addr,
309 					resp[i].mac_addr);
310 			break;
311 		}
312 
313 	return 0;
314 }
315 
316 /**
317  * ice_aq_get_phy_caps - returns PHY capabilities
318  * @pi: port information structure
319  * @qual_mods: report qualified modules
320  * @report_mode: report mode capabilities
321  * @pcaps: structure for PHY capabilities to be filled
322  * @cd: pointer to command details structure or NULL
323  *
324  * Returns the various PHY capabilities supported on the Port (0x0600)
325  */
326 int
ice_aq_get_phy_caps(struct ice_port_info * pi,bool qual_mods,u8 report_mode,struct ice_aqc_get_phy_caps_data * pcaps,struct ice_sq_cd * cd)327 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
328 		    struct ice_aqc_get_phy_caps_data *pcaps,
329 		    struct ice_sq_cd *cd)
330 {
331 	struct ice_aqc_get_phy_caps *cmd;
332 	u16 pcaps_size = sizeof(*pcaps);
333 	struct ice_aq_desc desc;
334 	const char *prefix;
335 	struct ice_hw *hw;
336 	int status;
337 
338 	cmd = &desc.params.get_phy;
339 
340 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
341 		return -EINVAL;
342 	hw = pi->hw;
343 
344 	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
345 	    !ice_fw_supports_report_dflt_cfg(hw))
346 		return -EINVAL;
347 
348 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
349 
350 	if (qual_mods)
351 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
352 
353 	cmd->param0 |= cpu_to_le16(report_mode);
354 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
355 
356 	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
357 
358 	switch (report_mode) {
359 	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
360 		prefix = "phy_caps_media";
361 		break;
362 	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
363 		prefix = "phy_caps_no_media";
364 		break;
365 	case ICE_AQC_REPORT_ACTIVE_CFG:
366 		prefix = "phy_caps_active";
367 		break;
368 	case ICE_AQC_REPORT_DFLT_CFG:
369 		prefix = "phy_caps_default";
370 		break;
371 	default:
372 		prefix = "phy_caps_invalid";
373 	}
374 
375 	ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
376 			  le64_to_cpu(pcaps->phy_type_high), prefix);
377 
378 	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
379 		  prefix, report_mode);
380 	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
381 	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
382 		  pcaps->low_power_ctrl_an);
383 	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
384 		  pcaps->eee_cap);
385 	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
386 		  pcaps->eeer_value);
387 	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
388 		  pcaps->link_fec_options);
389 	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
390 		  prefix, pcaps->module_compliance_enforcement);
391 	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
392 		  prefix, pcaps->extended_compliance_code);
393 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
394 		  pcaps->module_type[0]);
395 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
396 		  pcaps->module_type[1]);
397 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
398 		  pcaps->module_type[2]);
399 
400 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
401 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
402 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
403 		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
404 		       sizeof(pi->phy.link_info.module_type));
405 	}
406 
407 	return status;
408 }
409 
410 /**
411  * ice_aq_get_link_topo_handle - get link topology node return status
412  * @pi: port information structure
413  * @node_type: requested node type
414  * @cd: pointer to command details structure or NULL
415  *
416  * Get link topology node return status for specified node type (0x06E0)
417  *
418  * Node type cage can be used to determine if cage is present. If AQC
419  * returns error (ENOENT), then no cage present. If no cage present, then
420  * connection type is backplane or BASE-T.
421  */
422 static int
ice_aq_get_link_topo_handle(struct ice_port_info * pi,u8 node_type,struct ice_sq_cd * cd)423 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
424 			    struct ice_sq_cd *cd)
425 {
426 	struct ice_aqc_get_link_topo *cmd;
427 	struct ice_aq_desc desc;
428 
429 	cmd = &desc.params.get_link_topo;
430 
431 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
432 
433 	cmd->addr.topo_params.node_type_ctx =
434 		(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
435 		 ICE_AQC_LINK_TOPO_NODE_CTX_S);
436 
437 	/* set node type */
438 	cmd->addr.topo_params.node_type_ctx |=
439 		(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
440 
441 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
442 }
443 
444 /**
445  * ice_is_media_cage_present
446  * @pi: port information structure
447  *
448  * Returns true if media cage is present, else false. If no cage, then
449  * media type is backplane or BASE-T.
450  */
ice_is_media_cage_present(struct ice_port_info * pi)451 static bool ice_is_media_cage_present(struct ice_port_info *pi)
452 {
453 	/* Node type cage can be used to determine if cage is present. If AQC
454 	 * returns error (ENOENT), then no cage present. If no cage present then
455 	 * connection type is backplane or BASE-T.
456 	 */
457 	return !ice_aq_get_link_topo_handle(pi,
458 					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
459 					    NULL);
460 }
461 
462 /**
463  * ice_get_media_type - Gets media type
464  * @pi: port information structure
465  */
ice_get_media_type(struct ice_port_info * pi)466 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
467 {
468 	struct ice_link_status *hw_link_info;
469 
470 	if (!pi)
471 		return ICE_MEDIA_UNKNOWN;
472 
473 	hw_link_info = &pi->phy.link_info;
474 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
475 		/* If more than one media type is selected, report unknown */
476 		return ICE_MEDIA_UNKNOWN;
477 
478 	if (hw_link_info->phy_type_low) {
479 		/* 1G SGMII is a special case where some DA cable PHYs
480 		 * may show this as an option when it really shouldn't
481 		 * be since SGMII is meant to be between a MAC and a PHY
482 		 * in a backplane. Try to detect this case and handle it
483 		 */
484 		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
485 		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
486 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
487 		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
488 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
489 			return ICE_MEDIA_DA;
490 
491 		switch (hw_link_info->phy_type_low) {
492 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
493 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
494 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
495 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
496 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
497 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
498 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
499 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
500 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
501 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
502 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
503 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
504 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
505 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
506 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
507 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
508 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
509 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
510 		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
511 		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
512 		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
513 		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
514 		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
515 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
516 		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
517 		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
518 			return ICE_MEDIA_FIBER;
519 		case ICE_PHY_TYPE_LOW_100BASE_TX:
520 		case ICE_PHY_TYPE_LOW_1000BASE_T:
521 		case ICE_PHY_TYPE_LOW_2500BASE_T:
522 		case ICE_PHY_TYPE_LOW_5GBASE_T:
523 		case ICE_PHY_TYPE_LOW_10GBASE_T:
524 		case ICE_PHY_TYPE_LOW_25GBASE_T:
525 			return ICE_MEDIA_BASET;
526 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
527 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
528 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
529 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
530 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
531 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
532 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
533 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
534 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
535 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
536 			return ICE_MEDIA_DA;
537 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
538 		case ICE_PHY_TYPE_LOW_40G_XLAUI:
539 		case ICE_PHY_TYPE_LOW_50G_LAUI2:
540 		case ICE_PHY_TYPE_LOW_50G_AUI2:
541 		case ICE_PHY_TYPE_LOW_50G_AUI1:
542 		case ICE_PHY_TYPE_LOW_100G_AUI4:
543 		case ICE_PHY_TYPE_LOW_100G_CAUI4:
544 			if (ice_is_media_cage_present(pi))
545 				return ICE_MEDIA_DA;
546 			fallthrough;
547 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
548 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
549 		case ICE_PHY_TYPE_LOW_2500BASE_X:
550 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
551 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
552 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
553 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
554 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
555 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
556 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
557 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
558 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
559 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
560 			return ICE_MEDIA_BACKPLANE;
561 		}
562 	} else {
563 		switch (hw_link_info->phy_type_high) {
564 		case ICE_PHY_TYPE_HIGH_100G_AUI2:
565 		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
566 			if (ice_is_media_cage_present(pi))
567 				return ICE_MEDIA_DA;
568 			fallthrough;
569 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
570 			return ICE_MEDIA_BACKPLANE;
571 		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
572 		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
573 			return ICE_MEDIA_FIBER;
574 		}
575 	}
576 	return ICE_MEDIA_UNKNOWN;
577 }
578 
579 /**
580  * ice_aq_get_link_info
581  * @pi: port information structure
582  * @ena_lse: enable/disable LinkStatusEvent reporting
583  * @link: pointer to link status structure - optional
584  * @cd: pointer to command details structure or NULL
585  *
586  * Get Link Status (0x607). Returns the link status of the adapter.
587  */
588 int
ice_aq_get_link_info(struct ice_port_info * pi,bool ena_lse,struct ice_link_status * link,struct ice_sq_cd * cd)589 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
590 		     struct ice_link_status *link, struct ice_sq_cd *cd)
591 {
592 	struct ice_aqc_get_link_status_data link_data = { 0 };
593 	struct ice_aqc_get_link_status *resp;
594 	struct ice_link_status *li_old, *li;
595 	enum ice_media_type *hw_media_type;
596 	struct ice_fc_info *hw_fc_info;
597 	bool tx_pause, rx_pause;
598 	struct ice_aq_desc desc;
599 	struct ice_hw *hw;
600 	u16 cmd_flags;
601 	int status;
602 
603 	if (!pi)
604 		return -EINVAL;
605 	hw = pi->hw;
606 	li_old = &pi->phy.link_info_old;
607 	hw_media_type = &pi->phy.media_type;
608 	li = &pi->phy.link_info;
609 	hw_fc_info = &pi->fc;
610 
611 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
612 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
613 	resp = &desc.params.get_link_status;
614 	resp->cmd_flags = cpu_to_le16(cmd_flags);
615 	resp->lport_num = pi->lport;
616 
617 	status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
618 
619 	if (status)
620 		return status;
621 
622 	/* save off old link status information */
623 	*li_old = *li;
624 
625 	/* update current link status information */
626 	li->link_speed = le16_to_cpu(link_data.link_speed);
627 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
628 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
629 	*hw_media_type = ice_get_media_type(pi);
630 	li->link_info = link_data.link_info;
631 	li->link_cfg_err = link_data.link_cfg_err;
632 	li->an_info = link_data.an_info;
633 	li->ext_info = link_data.ext_info;
634 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
635 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
636 	li->topo_media_conflict = link_data.topo_media_conflict;
637 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
638 				      ICE_AQ_CFG_PACING_TYPE_M);
639 
640 	/* update fc info */
641 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
642 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
643 	if (tx_pause && rx_pause)
644 		hw_fc_info->current_mode = ICE_FC_FULL;
645 	else if (tx_pause)
646 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
647 	else if (rx_pause)
648 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
649 	else
650 		hw_fc_info->current_mode = ICE_FC_NONE;
651 
652 	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
653 
654 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
655 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
656 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
657 		  (unsigned long long)li->phy_type_low);
658 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
659 		  (unsigned long long)li->phy_type_high);
660 	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
661 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
662 	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
663 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
664 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
665 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
666 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
667 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
668 		  li->max_frame_size);
669 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
670 
671 	/* save link status information */
672 	if (link)
673 		*link = *li;
674 
675 	/* flag cleared so calling functions don't call AQ again */
676 	pi->phy.get_link_info = false;
677 
678 	return 0;
679 }
680 
681 /**
682  * ice_fill_tx_timer_and_fc_thresh
683  * @hw: pointer to the HW struct
684  * @cmd: pointer to MAC cfg structure
685  *
686  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
687  * descriptor
688  */
689 static void
ice_fill_tx_timer_and_fc_thresh(struct ice_hw * hw,struct ice_aqc_set_mac_cfg * cmd)690 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
691 				struct ice_aqc_set_mac_cfg *cmd)
692 {
693 	u32 val, fc_thres_m;
694 
695 	/* We read back the transmit timer and FC threshold value of
696 	 * LFC. Thus, we will use index =
697 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
698 	 *
699 	 * Also, because we are operating on transmit timer and FC
700 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
701 	 */
702 #define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
703 #define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
704 
705 	if (hw->mac_type == ICE_MAC_E830) {
706 		/* Retrieve the transmit timer */
707 		val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
708 		cmd->tx_tmr_value =
709 			le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
710 
711 		/* Retrieve the fc threshold */
712 		val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
713 		fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
714 	} else {
715 		/* Retrieve the transmit timer */
716 		val = rd32(hw,
717 			   E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
718 		cmd->tx_tmr_value =
719 			le16_encode_bits(val,
720 					 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
721 
722 		/* Retrieve the fc threshold */
723 		val = rd32(hw,
724 			   E800_REFRESH_TMR(E800_IDX_OF_LFC));
725 		fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
726 	}
727 	cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m);
728 }
729 
730 /**
731  * ice_aq_set_mac_cfg
732  * @hw: pointer to the HW struct
733  * @max_frame_size: Maximum Frame Size to be supported
734  * @cd: pointer to command details structure or NULL
735  *
736  * Set MAC configuration (0x0603)
737  */
738 int
ice_aq_set_mac_cfg(struct ice_hw * hw,u16 max_frame_size,struct ice_sq_cd * cd)739 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
740 {
741 	struct ice_aqc_set_mac_cfg *cmd;
742 	struct ice_aq_desc desc;
743 
744 	cmd = &desc.params.set_mac_cfg;
745 
746 	if (max_frame_size == 0)
747 		return -EINVAL;
748 
749 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
750 
751 	cmd->max_frame_size = cpu_to_le16(max_frame_size);
752 
753 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
754 
755 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
756 }
757 
758 /**
759  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
760  * @hw: pointer to the HW struct
761  */
ice_init_fltr_mgmt_struct(struct ice_hw * hw)762 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
763 {
764 	struct ice_switch_info *sw;
765 	int status;
766 
767 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
768 				       sizeof(*hw->switch_info), GFP_KERNEL);
769 	sw = hw->switch_info;
770 
771 	if (!sw)
772 		return -ENOMEM;
773 
774 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
775 	sw->prof_res_bm_init = 0;
776 
777 	status = ice_init_def_sw_recp(hw);
778 	if (status) {
779 		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
780 		return status;
781 	}
782 	return 0;
783 }
784 
785 /**
786  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
787  * @hw: pointer to the HW struct
788  */
ice_cleanup_fltr_mgmt_struct(struct ice_hw * hw)789 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
790 {
791 	struct ice_switch_info *sw = hw->switch_info;
792 	struct ice_vsi_list_map_info *v_pos_map;
793 	struct ice_vsi_list_map_info *v_tmp_map;
794 	struct ice_sw_recipe *recps;
795 	u8 i;
796 
797 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
798 				 list_entry) {
799 		list_del(&v_pos_map->list_entry);
800 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
801 	}
802 	recps = sw->recp_list;
803 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
804 		struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
805 
806 		recps[i].root_rid = i;
807 		list_for_each_entry_safe(rg_entry, tmprg_entry,
808 					 &recps[i].rg_list, l_entry) {
809 			list_del(&rg_entry->l_entry);
810 			devm_kfree(ice_hw_to_dev(hw), rg_entry);
811 		}
812 
813 		if (recps[i].adv_rule) {
814 			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
815 			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
816 
817 			mutex_destroy(&recps[i].filt_rule_lock);
818 			list_for_each_entry_safe(lst_itr, tmp_entry,
819 						 &recps[i].filt_rules,
820 						 list_entry) {
821 				list_del(&lst_itr->list_entry);
822 				devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
823 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
824 			}
825 		} else {
826 			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
827 
828 			mutex_destroy(&recps[i].filt_rule_lock);
829 			list_for_each_entry_safe(lst_itr, tmp_entry,
830 						 &recps[i].filt_rules,
831 						 list_entry) {
832 				list_del(&lst_itr->list_entry);
833 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
834 			}
835 		}
836 		devm_kfree(ice_hw_to_dev(hw), recps[i].root_buf);
837 	}
838 	ice_rm_all_sw_replay_rule_info(hw);
839 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
840 	devm_kfree(ice_hw_to_dev(hw), sw);
841 }
842 
843 /**
844  * ice_get_fw_log_cfg - get FW logging configuration
845  * @hw: pointer to the HW struct
846  */
ice_get_fw_log_cfg(struct ice_hw * hw)847 static int ice_get_fw_log_cfg(struct ice_hw *hw)
848 {
849 	struct ice_aq_desc desc;
850 	__le16 *config;
851 	int status;
852 	u16 size;
853 
854 	size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX;
855 	config = kzalloc(size, GFP_KERNEL);
856 	if (!config)
857 		return -ENOMEM;
858 
859 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
860 
861 	status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
862 	if (!status) {
863 		u16 i;
864 
865 		/* Save FW logging information into the HW structure */
866 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
867 			u16 v, m, flgs;
868 
869 			v = le16_to_cpu(config[i]);
870 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
871 			flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
872 
873 			if (m < ICE_AQC_FW_LOG_ID_MAX)
874 				hw->fw_log.evnts[m].cur = flgs;
875 		}
876 	}
877 
878 	kfree(config);
879 
880 	return status;
881 }
882 
883 /**
884  * ice_cfg_fw_log - configure FW logging
885  * @hw: pointer to the HW struct
886  * @enable: enable certain FW logging events if true, disable all if false
887  *
888  * This function enables/disables the FW logging via Rx CQ events and a UART
889  * port based on predetermined configurations. FW logging via the Rx CQ can be
890  * enabled/disabled for individual PF's. However, FW logging via the UART can
891  * only be enabled/disabled for all PFs on the same device.
892  *
893  * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
894  * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
895  * before initializing the device.
896  *
897  * When re/configuring FW logging, callers need to update the "cfg" elements of
898  * the hw->fw_log.evnts array with the desired logging event configurations for
899  * modules of interest. When disabling FW logging completely, the callers can
900  * just pass false in the "enable" parameter. On completion, the function will
901  * update the "cur" element of the hw->fw_log.evnts array with the resulting
902  * logging event configurations of the modules that are being re/configured. FW
903  * logging modules that are not part of a reconfiguration operation retain their
904  * previous states.
905  *
906  * Before resetting the device, it is recommended that the driver disables FW
907  * logging before shutting down the control queue. When disabling FW logging
908  * ("enable" = false), the latest configurations of FW logging events stored in
909  * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
910  * a device reset.
911  *
912  * When enabling FW logging to emit log messages via the Rx CQ during the
913  * device's initialization phase, a mechanism alternative to interrupt handlers
914  * needs to be used to extract FW log messages from the Rx CQ periodically and
915  * to prevent the Rx CQ from being full and stalling other types of control
916  * messages from FW to SW. Interrupts are typically disabled during the device's
917  * initialization phase.
918  */
ice_cfg_fw_log(struct ice_hw * hw,bool enable)919 static int ice_cfg_fw_log(struct ice_hw *hw, bool enable)
920 {
921 	struct ice_aqc_fw_logging *cmd;
922 	u16 i, chgs = 0, len = 0;
923 	struct ice_aq_desc desc;
924 	__le16 *data = NULL;
925 	u8 actv_evnts = 0;
926 	void *buf = NULL;
927 	int status = 0;
928 
929 	if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
930 		return 0;
931 
932 	/* Disable FW logging only when the control queue is still responsive */
933 	if (!enable &&
934 	    (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
935 		return 0;
936 
937 	/* Get current FW log settings */
938 	status = ice_get_fw_log_cfg(hw);
939 	if (status)
940 		return status;
941 
942 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
943 	cmd = &desc.params.fw_logging;
944 
945 	/* Indicate which controls are valid */
946 	if (hw->fw_log.cq_en)
947 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
948 
949 	if (hw->fw_log.uart_en)
950 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
951 
952 	if (enable) {
953 		/* Fill in an array of entries with FW logging modules and
954 		 * logging events being reconfigured.
955 		 */
956 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
957 			u16 val;
958 
959 			/* Keep track of enabled event types */
960 			actv_evnts |= hw->fw_log.evnts[i].cfg;
961 
962 			if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
963 				continue;
964 
965 			if (!data) {
966 				data = devm_kcalloc(ice_hw_to_dev(hw),
967 						    ICE_AQC_FW_LOG_ID_MAX,
968 						    sizeof(*data),
969 						    GFP_KERNEL);
970 				if (!data)
971 					return -ENOMEM;
972 			}
973 
974 			val = i << ICE_AQC_FW_LOG_ID_S;
975 			val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
976 			data[chgs++] = cpu_to_le16(val);
977 		}
978 
979 		/* Only enable FW logging if at least one module is specified.
980 		 * If FW logging is currently enabled but all modules are not
981 		 * enabled to emit log messages, disable FW logging altogether.
982 		 */
983 		if (actv_evnts) {
984 			/* Leave if there is effectively no change */
985 			if (!chgs)
986 				goto out;
987 
988 			if (hw->fw_log.cq_en)
989 				cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
990 
991 			if (hw->fw_log.uart_en)
992 				cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
993 
994 			buf = data;
995 			len = sizeof(*data) * chgs;
996 			desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
997 		}
998 	}
999 
1000 	status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
1001 	if (!status) {
1002 		/* Update the current configuration to reflect events enabled.
1003 		 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
1004 		 * logging mode is enabled for the device. They do not reflect
1005 		 * actual modules being enabled to emit log messages. So, their
1006 		 * values remain unchanged even when all modules are disabled.
1007 		 */
1008 		u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
1009 
1010 		hw->fw_log.actv_evnts = actv_evnts;
1011 		for (i = 0; i < cnt; i++) {
1012 			u16 v, m;
1013 
1014 			if (!enable) {
1015 				/* When disabling all FW logging events as part
1016 				 * of device's de-initialization, the original
1017 				 * configurations are retained, and can be used
1018 				 * to reconfigure FW logging later if the device
1019 				 * is re-initialized.
1020 				 */
1021 				hw->fw_log.evnts[i].cur = 0;
1022 				continue;
1023 			}
1024 
1025 			v = le16_to_cpu(data[i]);
1026 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
1027 			hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
1028 		}
1029 	}
1030 
1031 out:
1032 	devm_kfree(ice_hw_to_dev(hw), data);
1033 
1034 	return status;
1035 }
1036 
1037 /**
1038  * ice_output_fw_log
1039  * @hw: pointer to the HW struct
1040  * @desc: pointer to the AQ message descriptor
1041  * @buf: pointer to the buffer accompanying the AQ message
1042  *
1043  * Formats a FW Log message and outputs it via the standard driver logs.
1044  */
ice_output_fw_log(struct ice_hw * hw,struct ice_aq_desc * desc,void * buf)1045 void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
1046 {
1047 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
1048 	ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
1049 			le16_to_cpu(desc->datalen));
1050 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
1051 }
1052 
1053 /**
1054  * ice_get_itr_intrl_gran
1055  * @hw: pointer to the HW struct
1056  *
1057  * Determines the ITR/INTRL granularities based on the maximum aggregate
1058  * bandwidth according to the device's configuration during power-on.
1059  */
ice_get_itr_intrl_gran(struct ice_hw * hw)1060 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
1061 {
1062 	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
1063 			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
1064 			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
1065 
1066 	switch (max_agg_bw) {
1067 	case ICE_MAX_AGG_BW_200G:
1068 	case ICE_MAX_AGG_BW_100G:
1069 	case ICE_MAX_AGG_BW_50G:
1070 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
1071 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
1072 		break;
1073 	case ICE_MAX_AGG_BW_25G:
1074 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
1075 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
1076 		break;
1077 	}
1078 }
1079 
1080 /**
1081  * ice_init_hw - main hardware initialization routine
1082  * @hw: pointer to the hardware structure
1083  */
ice_init_hw(struct ice_hw * hw)1084 int ice_init_hw(struct ice_hw *hw)
1085 {
1086 	struct ice_aqc_get_phy_caps_data *pcaps;
1087 	u16 mac_buf_len;
1088 	void *mac_buf;
1089 	int status;
1090 
1091 	/* Set MAC type based on DeviceID */
1092 	status = ice_set_mac_type(hw);
1093 	if (status)
1094 		return status;
1095 
1096 	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
1097 			 PF_FUNC_RID_FUNC_NUM_M) >>
1098 		PF_FUNC_RID_FUNC_NUM_S;
1099 
1100 	status = ice_reset(hw, ICE_RESET_PFR);
1101 	if (status)
1102 		return status;
1103 
1104 	ice_get_itr_intrl_gran(hw);
1105 
1106 	status = ice_create_all_ctrlq(hw);
1107 	if (status)
1108 		goto err_unroll_cqinit;
1109 
1110 	/* Enable FW logging. Not fatal if this fails. */
1111 	status = ice_cfg_fw_log(hw, true);
1112 	if (status)
1113 		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
1114 
1115 	status = ice_clear_pf_cfg(hw);
1116 	if (status)
1117 		goto err_unroll_cqinit;
1118 
1119 	/* Set bit to enable Flow Director filters */
1120 	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1121 	INIT_LIST_HEAD(&hw->fdir_list_head);
1122 
1123 	ice_clear_pxe_mode(hw);
1124 
1125 	status = ice_init_nvm(hw);
1126 	if (status)
1127 		goto err_unroll_cqinit;
1128 
1129 	status = ice_get_caps(hw);
1130 	if (status)
1131 		goto err_unroll_cqinit;
1132 
1133 	if (!hw->port_info)
1134 		hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1135 					     sizeof(*hw->port_info),
1136 					     GFP_KERNEL);
1137 	if (!hw->port_info) {
1138 		status = -ENOMEM;
1139 		goto err_unroll_cqinit;
1140 	}
1141 
1142 	/* set the back pointer to HW */
1143 	hw->port_info->hw = hw;
1144 
1145 	/* Initialize port_info struct with switch configuration data */
1146 	status = ice_get_initial_sw_cfg(hw);
1147 	if (status)
1148 		goto err_unroll_alloc;
1149 
1150 	hw->evb_veb = true;
1151 
1152 	/* init xarray for identifying scheduling nodes uniquely */
1153 	xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1154 
1155 	/* Query the allocated resources for Tx scheduler */
1156 	status = ice_sched_query_res_alloc(hw);
1157 	if (status) {
1158 		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1159 		goto err_unroll_alloc;
1160 	}
1161 	ice_sched_get_psm_clk_freq(hw);
1162 
1163 	/* Initialize port_info struct with scheduler data */
1164 	status = ice_sched_init_port(hw->port_info);
1165 	if (status)
1166 		goto err_unroll_sched;
1167 
1168 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
1169 	if (!pcaps) {
1170 		status = -ENOMEM;
1171 		goto err_unroll_sched;
1172 	}
1173 
1174 	/* Initialize port_info struct with PHY capabilities */
1175 	status = ice_aq_get_phy_caps(hw->port_info, false,
1176 				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1177 				     NULL);
1178 	devm_kfree(ice_hw_to_dev(hw), pcaps);
1179 	if (status)
1180 		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1181 			 status);
1182 
1183 	/* Initialize port_info struct with link information */
1184 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1185 	if (status)
1186 		goto err_unroll_sched;
1187 
1188 	/* need a valid SW entry point to build a Tx tree */
1189 	if (!hw->sw_entry_point_layer) {
1190 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1191 		status = -EIO;
1192 		goto err_unroll_sched;
1193 	}
1194 	INIT_LIST_HEAD(&hw->agg_list);
1195 	/* Initialize max burst size */
1196 	if (!hw->max_burst_size)
1197 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1198 
1199 	status = ice_init_fltr_mgmt_struct(hw);
1200 	if (status)
1201 		goto err_unroll_sched;
1202 
1203 	/* Get MAC information */
1204 	/* A single port can report up to two (LAN and WoL) addresses */
1205 	mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
1206 			       sizeof(struct ice_aqc_manage_mac_read_resp),
1207 			       GFP_KERNEL);
1208 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1209 
1210 	if (!mac_buf) {
1211 		status = -ENOMEM;
1212 		goto err_unroll_fltr_mgmt_struct;
1213 	}
1214 
1215 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1216 	devm_kfree(ice_hw_to_dev(hw), mac_buf);
1217 
1218 	if (status)
1219 		goto err_unroll_fltr_mgmt_struct;
1220 	/* enable jumbo frame support at MAC level */
1221 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1222 	if (status)
1223 		goto err_unroll_fltr_mgmt_struct;
1224 	/* Obtain counter base index which would be used by flow director */
1225 	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1226 	if (status)
1227 		goto err_unroll_fltr_mgmt_struct;
1228 	status = ice_init_hw_tbls(hw);
1229 	if (status)
1230 		goto err_unroll_fltr_mgmt_struct;
1231 	mutex_init(&hw->tnl_lock);
1232 	return 0;
1233 
1234 err_unroll_fltr_mgmt_struct:
1235 	ice_cleanup_fltr_mgmt_struct(hw);
1236 err_unroll_sched:
1237 	ice_sched_cleanup_all(hw);
1238 err_unroll_alloc:
1239 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1240 err_unroll_cqinit:
1241 	ice_destroy_all_ctrlq(hw);
1242 	return status;
1243 }
1244 
1245 /**
1246  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1247  * @hw: pointer to the hardware structure
1248  *
1249  * This should be called only during nominal operation, not as a result of
1250  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1251  * applicable initializations if it fails for any reason.
1252  */
ice_deinit_hw(struct ice_hw * hw)1253 void ice_deinit_hw(struct ice_hw *hw)
1254 {
1255 	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1256 	ice_cleanup_fltr_mgmt_struct(hw);
1257 
1258 	ice_sched_cleanup_all(hw);
1259 	ice_sched_clear_agg(hw);
1260 	ice_free_seg(hw);
1261 	ice_free_hw_tbls(hw);
1262 	mutex_destroy(&hw->tnl_lock);
1263 
1264 	/* Attempt to disable FW logging before shutting down control queues */
1265 	ice_cfg_fw_log(hw, false);
1266 	ice_destroy_all_ctrlq(hw);
1267 
1268 	/* Clear VSI contexts if not already cleared */
1269 	ice_clear_all_vsi_ctx(hw);
1270 }
1271 
1272 /**
1273  * ice_check_reset - Check to see if a global reset is complete
1274  * @hw: pointer to the hardware structure
1275  */
ice_check_reset(struct ice_hw * hw)1276 int ice_check_reset(struct ice_hw *hw)
1277 {
1278 	u32 cnt, reg = 0, grst_timeout, uld_mask;
1279 
1280 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1281 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1282 	 * Add 1sec for outstanding AQ commands that can take a long time.
1283 	 */
1284 	grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1285 			GLGEN_RSTCTL_GRSTDEL_S) + 10;
1286 
1287 	for (cnt = 0; cnt < grst_timeout; cnt++) {
1288 		mdelay(100);
1289 		reg = rd32(hw, GLGEN_RSTAT);
1290 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1291 			break;
1292 	}
1293 
1294 	if (cnt == grst_timeout) {
1295 		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1296 		return -EIO;
1297 	}
1298 
1299 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1300 				 GLNVM_ULD_PCIER_DONE_1_M |\
1301 				 GLNVM_ULD_CORER_DONE_M |\
1302 				 GLNVM_ULD_GLOBR_DONE_M |\
1303 				 GLNVM_ULD_POR_DONE_M |\
1304 				 GLNVM_ULD_POR_DONE_1_M |\
1305 				 GLNVM_ULD_PCIER_DONE_2_M)
1306 
1307 	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1308 					  GLNVM_ULD_PE_DONE_M : 0);
1309 
1310 	/* Device is Active; check Global Reset processes are done */
1311 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1312 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1313 		if (reg == uld_mask) {
1314 			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1315 			break;
1316 		}
1317 		mdelay(10);
1318 	}
1319 
1320 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1321 		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1322 			  reg);
1323 		return -EIO;
1324 	}
1325 
1326 	return 0;
1327 }
1328 
1329 /**
1330  * ice_pf_reset - Reset the PF
1331  * @hw: pointer to the hardware structure
1332  *
1333  * If a global reset has been triggered, this function checks
1334  * for its completion and then issues the PF reset
1335  */
ice_pf_reset(struct ice_hw * hw)1336 static int ice_pf_reset(struct ice_hw *hw)
1337 {
1338 	u32 cnt, reg;
1339 
1340 	/* If at function entry a global reset was already in progress, i.e.
1341 	 * state is not 'device active' or any of the reset done bits are not
1342 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1343 	 * global reset is done.
1344 	 */
1345 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1346 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1347 		/* poll on global reset currently in progress until done */
1348 		if (ice_check_reset(hw))
1349 			return -EIO;
1350 
1351 		return 0;
1352 	}
1353 
1354 	/* Reset the PF */
1355 	reg = rd32(hw, PFGEN_CTRL);
1356 
1357 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1358 
1359 	/* Wait for the PFR to complete. The wait time is the global config lock
1360 	 * timeout plus the PFR timeout which will account for a possible reset
1361 	 * that is occurring during a download package operation.
1362 	 */
1363 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1364 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1365 		reg = rd32(hw, PFGEN_CTRL);
1366 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1367 			break;
1368 
1369 		mdelay(1);
1370 	}
1371 
1372 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1373 		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1374 		return -EIO;
1375 	}
1376 
1377 	return 0;
1378 }
1379 
1380 /**
1381  * ice_reset - Perform different types of reset
1382  * @hw: pointer to the hardware structure
1383  * @req: reset request
1384  *
1385  * This function triggers a reset as specified by the req parameter.
1386  *
1387  * Note:
1388  * If anything other than a PF reset is triggered, PXE mode is restored.
1389  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1390  * interface has been restored in the rebuild flow.
1391  */
ice_reset(struct ice_hw * hw,enum ice_reset_req req)1392 int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1393 {
1394 	u32 val = 0;
1395 
1396 	switch (req) {
1397 	case ICE_RESET_PFR:
1398 		return ice_pf_reset(hw);
1399 	case ICE_RESET_CORER:
1400 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1401 		val = GLGEN_RTRIG_CORER_M;
1402 		break;
1403 	case ICE_RESET_GLOBR:
1404 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1405 		val = GLGEN_RTRIG_GLOBR_M;
1406 		break;
1407 	default:
1408 		return -EINVAL;
1409 	}
1410 
1411 	val |= rd32(hw, GLGEN_RTRIG);
1412 	wr32(hw, GLGEN_RTRIG, val);
1413 	ice_flush(hw);
1414 
1415 	/* wait for the FW to be ready */
1416 	return ice_check_reset(hw);
1417 }
1418 
1419 /**
1420  * ice_copy_rxq_ctx_to_hw
1421  * @hw: pointer to the hardware structure
1422  * @ice_rxq_ctx: pointer to the rxq context
1423  * @rxq_index: the index of the Rx queue
1424  *
1425  * Copies rxq context from dense structure to HW register space
1426  */
1427 static int
ice_copy_rxq_ctx_to_hw(struct ice_hw * hw,u8 * ice_rxq_ctx,u32 rxq_index)1428 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1429 {
1430 	u8 i;
1431 
1432 	if (!ice_rxq_ctx)
1433 		return -EINVAL;
1434 
1435 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1436 		return -EINVAL;
1437 
1438 	/* Copy each dword separately to HW */
1439 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1440 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1441 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1442 
1443 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1444 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1445 	}
1446 
1447 	return 0;
1448 }
1449 
1450 /* LAN Rx Queue Context */
1451 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1452 	/* Field		Width	LSB */
1453 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1454 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1455 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1456 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1457 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1458 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1459 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1460 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1461 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1462 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1463 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1464 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1465 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1466 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1467 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1468 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1469 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1470 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1471 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1472 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1473 	{ 0 }
1474 };
1475 
1476 /**
1477  * ice_write_rxq_ctx
1478  * @hw: pointer to the hardware structure
1479  * @rlan_ctx: pointer to the rxq context
1480  * @rxq_index: the index of the Rx queue
1481  *
1482  * Converts rxq context from sparse to dense structure and then writes
1483  * it to HW register space and enables the hardware to prefetch descriptors
1484  * instead of only fetching them on demand
1485  */
1486 int
ice_write_rxq_ctx(struct ice_hw * hw,struct ice_rlan_ctx * rlan_ctx,u32 rxq_index)1487 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1488 		  u32 rxq_index)
1489 {
1490 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1491 
1492 	if (!rlan_ctx)
1493 		return -EINVAL;
1494 
1495 	rlan_ctx->prefena = 1;
1496 
1497 	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1498 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1499 }
1500 
1501 /* LAN Tx Queue Context */
1502 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1503 				    /* Field			Width	LSB */
1504 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1505 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1506 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1507 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1508 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1509 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1510 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1511 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1512 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1513 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1514 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1515 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1516 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1517 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1518 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1519 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1520 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1521 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1522 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1523 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1524 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1525 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1526 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1527 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1528 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1529 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1530 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1531 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1532 	{ 0 }
1533 };
1534 
1535 /* Sideband Queue command wrappers */
1536 
1537 /**
1538  * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1539  * @hw: pointer to the HW struct
1540  * @desc: descriptor describing the command
1541  * @buf: buffer to use for indirect commands (NULL for direct commands)
1542  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1543  * @cd: pointer to command details structure
1544  */
1545 static int
ice_sbq_send_cmd(struct ice_hw * hw,struct ice_sbq_cmd_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1546 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1547 		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1548 {
1549 	return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1550 			       (struct ice_aq_desc *)desc, buf, buf_size, cd);
1551 }
1552 
1553 /**
1554  * ice_sbq_rw_reg - Fill Sideband Queue command
1555  * @hw: pointer to the HW struct
1556  * @in: message info to be filled in descriptor
1557  */
ice_sbq_rw_reg(struct ice_hw * hw,struct ice_sbq_msg_input * in)1558 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in)
1559 {
1560 	struct ice_sbq_cmd_desc desc = {0};
1561 	struct ice_sbq_msg_req msg = {0};
1562 	u16 msg_len;
1563 	int status;
1564 
1565 	msg_len = sizeof(msg);
1566 
1567 	msg.dest_dev = in->dest_dev;
1568 	msg.opcode = in->opcode;
1569 	msg.flags = ICE_SBQ_MSG_FLAGS;
1570 	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1571 	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1572 	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1573 
1574 	if (in->opcode)
1575 		msg.data = cpu_to_le32(in->data);
1576 	else
1577 		/* data read comes back in completion, so shorten the struct by
1578 		 * sizeof(msg.data)
1579 		 */
1580 		msg_len -= sizeof(msg.data);
1581 
1582 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
1583 	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1584 	desc.param0.cmd_len = cpu_to_le16(msg_len);
1585 	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1586 	if (!status && !in->opcode)
1587 		in->data = le32_to_cpu
1588 			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1589 	return status;
1590 }
1591 
1592 /* FW Admin Queue command wrappers */
1593 
1594 /* Software lock/mutex that is meant to be held while the Global Config Lock
1595  * in firmware is acquired by the software to prevent most (but not all) types
1596  * of AQ commands from being sent to FW
1597  */
1598 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1599 
1600 /**
1601  * ice_should_retry_sq_send_cmd
1602  * @opcode: AQ opcode
1603  *
1604  * Decide if we should retry the send command routine for the ATQ, depending
1605  * on the opcode.
1606  */
ice_should_retry_sq_send_cmd(u16 opcode)1607 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1608 {
1609 	switch (opcode) {
1610 	case ice_aqc_opc_get_link_topo:
1611 	case ice_aqc_opc_lldp_stop:
1612 	case ice_aqc_opc_lldp_start:
1613 	case ice_aqc_opc_lldp_filter_ctrl:
1614 		return true;
1615 	}
1616 
1617 	return false;
1618 }
1619 
1620 /**
1621  * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1622  * @hw: pointer to the HW struct
1623  * @cq: pointer to the specific Control queue
1624  * @desc: prefilled descriptor describing the command
1625  * @buf: buffer to use for indirect commands (or NULL for direct commands)
1626  * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1627  * @cd: pointer to command details structure
1628  *
1629  * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1630  * Queue if the EBUSY AQ error is returned.
1631  */
1632 static int
ice_sq_send_cmd_retry(struct ice_hw * hw,struct ice_ctl_q_info * cq,struct ice_aq_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1633 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1634 		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1635 		      struct ice_sq_cd *cd)
1636 {
1637 	struct ice_aq_desc desc_cpy;
1638 	bool is_cmd_for_retry;
1639 	u8 idx = 0;
1640 	u16 opcode;
1641 	int status;
1642 
1643 	opcode = le16_to_cpu(desc->opcode);
1644 	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1645 	memset(&desc_cpy, 0, sizeof(desc_cpy));
1646 
1647 	if (is_cmd_for_retry) {
1648 		/* All retryable cmds are direct, without buf. */
1649 		WARN_ON(buf);
1650 
1651 		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1652 	}
1653 
1654 	do {
1655 		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1656 
1657 		if (!is_cmd_for_retry || !status ||
1658 		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1659 			break;
1660 
1661 		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1662 
1663 		msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1664 
1665 	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1666 
1667 	return status;
1668 }
1669 
1670 /**
1671  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1672  * @hw: pointer to the HW struct
1673  * @desc: descriptor describing the command
1674  * @buf: buffer to use for indirect commands (NULL for direct commands)
1675  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1676  * @cd: pointer to command details structure
1677  *
1678  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1679  */
1680 int
ice_aq_send_cmd(struct ice_hw * hw,struct ice_aq_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1681 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1682 		u16 buf_size, struct ice_sq_cd *cd)
1683 {
1684 	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1685 	bool lock_acquired = false;
1686 	int status;
1687 
1688 	/* When a package download is in process (i.e. when the firmware's
1689 	 * Global Configuration Lock resource is held), only the Download
1690 	 * Package, Get Version, Get Package Info List, Upload Section,
1691 	 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1692 	 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1693 	 * Recipes to Profile Association, and Release Resource (with resource
1694 	 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1695 	 * must block until the package download completes and the Global Config
1696 	 * Lock is released.  See also ice_acquire_global_cfg_lock().
1697 	 */
1698 	switch (le16_to_cpu(desc->opcode)) {
1699 	case ice_aqc_opc_download_pkg:
1700 	case ice_aqc_opc_get_pkg_info_list:
1701 	case ice_aqc_opc_get_ver:
1702 	case ice_aqc_opc_upload_section:
1703 	case ice_aqc_opc_update_pkg:
1704 	case ice_aqc_opc_set_port_params:
1705 	case ice_aqc_opc_get_vlan_mode_parameters:
1706 	case ice_aqc_opc_set_vlan_mode_parameters:
1707 	case ice_aqc_opc_add_recipe:
1708 	case ice_aqc_opc_recipe_to_profile:
1709 	case ice_aqc_opc_get_recipe:
1710 	case ice_aqc_opc_get_recipe_to_profile:
1711 		break;
1712 	case ice_aqc_opc_release_res:
1713 		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1714 			break;
1715 		fallthrough;
1716 	default:
1717 		mutex_lock(&ice_global_cfg_lock_sw);
1718 		lock_acquired = true;
1719 		break;
1720 	}
1721 
1722 	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1723 	if (lock_acquired)
1724 		mutex_unlock(&ice_global_cfg_lock_sw);
1725 
1726 	return status;
1727 }
1728 
1729 /**
1730  * ice_aq_get_fw_ver
1731  * @hw: pointer to the HW struct
1732  * @cd: pointer to command details structure or NULL
1733  *
1734  * Get the firmware version (0x0001) from the admin queue commands
1735  */
ice_aq_get_fw_ver(struct ice_hw * hw,struct ice_sq_cd * cd)1736 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1737 {
1738 	struct ice_aqc_get_ver *resp;
1739 	struct ice_aq_desc desc;
1740 	int status;
1741 
1742 	resp = &desc.params.get_ver;
1743 
1744 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1745 
1746 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1747 
1748 	if (!status) {
1749 		hw->fw_branch = resp->fw_branch;
1750 		hw->fw_maj_ver = resp->fw_major;
1751 		hw->fw_min_ver = resp->fw_minor;
1752 		hw->fw_patch = resp->fw_patch;
1753 		hw->fw_build = le32_to_cpu(resp->fw_build);
1754 		hw->api_branch = resp->api_branch;
1755 		hw->api_maj_ver = resp->api_major;
1756 		hw->api_min_ver = resp->api_minor;
1757 		hw->api_patch = resp->api_patch;
1758 	}
1759 
1760 	return status;
1761 }
1762 
1763 /**
1764  * ice_aq_send_driver_ver
1765  * @hw: pointer to the HW struct
1766  * @dv: driver's major, minor version
1767  * @cd: pointer to command details structure or NULL
1768  *
1769  * Send the driver version (0x0002) to the firmware
1770  */
1771 int
ice_aq_send_driver_ver(struct ice_hw * hw,struct ice_driver_ver * dv,struct ice_sq_cd * cd)1772 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1773 		       struct ice_sq_cd *cd)
1774 {
1775 	struct ice_aqc_driver_ver *cmd;
1776 	struct ice_aq_desc desc;
1777 	u16 len;
1778 
1779 	cmd = &desc.params.driver_ver;
1780 
1781 	if (!dv)
1782 		return -EINVAL;
1783 
1784 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1785 
1786 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1787 	cmd->major_ver = dv->major_ver;
1788 	cmd->minor_ver = dv->minor_ver;
1789 	cmd->build_ver = dv->build_ver;
1790 	cmd->subbuild_ver = dv->subbuild_ver;
1791 
1792 	len = 0;
1793 	while (len < sizeof(dv->driver_string) &&
1794 	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1795 		len++;
1796 
1797 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1798 }
1799 
1800 /**
1801  * ice_aq_q_shutdown
1802  * @hw: pointer to the HW struct
1803  * @unloading: is the driver unloading itself
1804  *
1805  * Tell the Firmware that we're shutting down the AdminQ and whether
1806  * or not the driver is unloading as well (0x0003).
1807  */
ice_aq_q_shutdown(struct ice_hw * hw,bool unloading)1808 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1809 {
1810 	struct ice_aqc_q_shutdown *cmd;
1811 	struct ice_aq_desc desc;
1812 
1813 	cmd = &desc.params.q_shutdown;
1814 
1815 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1816 
1817 	if (unloading)
1818 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1819 
1820 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1821 }
1822 
1823 /**
1824  * ice_aq_req_res
1825  * @hw: pointer to the HW struct
1826  * @res: resource ID
1827  * @access: access type
1828  * @sdp_number: resource number
1829  * @timeout: the maximum time in ms that the driver may hold the resource
1830  * @cd: pointer to command details structure or NULL
1831  *
1832  * Requests common resource using the admin queue commands (0x0008).
1833  * When attempting to acquire the Global Config Lock, the driver can
1834  * learn of three states:
1835  *  1) 0 -         acquired lock, and can perform download package
1836  *  2) -EIO -      did not get lock, driver should fail to load
1837  *  3) -EALREADY - did not get lock, but another driver has
1838  *                 successfully downloaded the package; the driver does
1839  *                 not have to download the package and can continue
1840  *                 loading
1841  *
1842  * Note that if the caller is in an acquire lock, perform action, release lock
1843  * phase of operation, it is possible that the FW may detect a timeout and issue
1844  * a CORER. In this case, the driver will receive a CORER interrupt and will
1845  * have to determine its cause. The calling thread that is handling this flow
1846  * will likely get an error propagated back to it indicating the Download
1847  * Package, Update Package or the Release Resource AQ commands timed out.
1848  */
1849 static int
ice_aq_req_res(struct ice_hw * hw,enum ice_aq_res_ids res,enum ice_aq_res_access_type access,u8 sdp_number,u32 * timeout,struct ice_sq_cd * cd)1850 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1851 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1852 	       struct ice_sq_cd *cd)
1853 {
1854 	struct ice_aqc_req_res *cmd_resp;
1855 	struct ice_aq_desc desc;
1856 	int status;
1857 
1858 	cmd_resp = &desc.params.res_owner;
1859 
1860 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1861 
1862 	cmd_resp->res_id = cpu_to_le16(res);
1863 	cmd_resp->access_type = cpu_to_le16(access);
1864 	cmd_resp->res_number = cpu_to_le32(sdp_number);
1865 	cmd_resp->timeout = cpu_to_le32(*timeout);
1866 	*timeout = 0;
1867 
1868 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1869 
1870 	/* The completion specifies the maximum time in ms that the driver
1871 	 * may hold the resource in the Timeout field.
1872 	 */
1873 
1874 	/* Global config lock response utilizes an additional status field.
1875 	 *
1876 	 * If the Global config lock resource is held by some other driver, the
1877 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1878 	 * and the timeout field indicates the maximum time the current owner
1879 	 * of the resource has to free it.
1880 	 */
1881 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1882 		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1883 			*timeout = le32_to_cpu(cmd_resp->timeout);
1884 			return 0;
1885 		} else if (le16_to_cpu(cmd_resp->status) ==
1886 			   ICE_AQ_RES_GLBL_IN_PROG) {
1887 			*timeout = le32_to_cpu(cmd_resp->timeout);
1888 			return -EIO;
1889 		} else if (le16_to_cpu(cmd_resp->status) ==
1890 			   ICE_AQ_RES_GLBL_DONE) {
1891 			return -EALREADY;
1892 		}
1893 
1894 		/* invalid FW response, force a timeout immediately */
1895 		*timeout = 0;
1896 		return -EIO;
1897 	}
1898 
1899 	/* If the resource is held by some other driver, the command completes
1900 	 * with a busy return value and the timeout field indicates the maximum
1901 	 * time the current owner of the resource has to free it.
1902 	 */
1903 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1904 		*timeout = le32_to_cpu(cmd_resp->timeout);
1905 
1906 	return status;
1907 }
1908 
1909 /**
1910  * ice_aq_release_res
1911  * @hw: pointer to the HW struct
1912  * @res: resource ID
1913  * @sdp_number: resource number
1914  * @cd: pointer to command details structure or NULL
1915  *
1916  * release common resource using the admin queue commands (0x0009)
1917  */
1918 static int
ice_aq_release_res(struct ice_hw * hw,enum ice_aq_res_ids res,u8 sdp_number,struct ice_sq_cd * cd)1919 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1920 		   struct ice_sq_cd *cd)
1921 {
1922 	struct ice_aqc_req_res *cmd;
1923 	struct ice_aq_desc desc;
1924 
1925 	cmd = &desc.params.res_owner;
1926 
1927 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1928 
1929 	cmd->res_id = cpu_to_le16(res);
1930 	cmd->res_number = cpu_to_le32(sdp_number);
1931 
1932 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1933 }
1934 
1935 /**
1936  * ice_acquire_res
1937  * @hw: pointer to the HW structure
1938  * @res: resource ID
1939  * @access: access type (read or write)
1940  * @timeout: timeout in milliseconds
1941  *
1942  * This function will attempt to acquire the ownership of a resource.
1943  */
1944 int
ice_acquire_res(struct ice_hw * hw,enum ice_aq_res_ids res,enum ice_aq_res_access_type access,u32 timeout)1945 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1946 		enum ice_aq_res_access_type access, u32 timeout)
1947 {
1948 #define ICE_RES_POLLING_DELAY_MS	10
1949 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1950 	u32 time_left = timeout;
1951 	int status;
1952 
1953 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1954 
1955 	/* A return code of -EALREADY means that another driver has
1956 	 * previously acquired the resource and performed any necessary updates;
1957 	 * in this case the caller does not obtain the resource and has no
1958 	 * further work to do.
1959 	 */
1960 	if (status == -EALREADY)
1961 		goto ice_acquire_res_exit;
1962 
1963 	if (status)
1964 		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1965 
1966 	/* If necessary, poll until the current lock owner timeouts */
1967 	timeout = time_left;
1968 	while (status && timeout && time_left) {
1969 		mdelay(delay);
1970 		timeout = (timeout > delay) ? timeout - delay : 0;
1971 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1972 
1973 		if (status == -EALREADY)
1974 			/* lock free, but no work to do */
1975 			break;
1976 
1977 		if (!status)
1978 			/* lock acquired */
1979 			break;
1980 	}
1981 	if (status && status != -EALREADY)
1982 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1983 
1984 ice_acquire_res_exit:
1985 	if (status == -EALREADY) {
1986 		if (access == ICE_RES_WRITE)
1987 			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1988 		else
1989 			ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
1990 	}
1991 	return status;
1992 }
1993 
1994 /**
1995  * ice_release_res
1996  * @hw: pointer to the HW structure
1997  * @res: resource ID
1998  *
1999  * This function will release a resource using the proper Admin Command.
2000  */
ice_release_res(struct ice_hw * hw,enum ice_aq_res_ids res)2001 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
2002 {
2003 	unsigned long timeout;
2004 	int status;
2005 
2006 	/* there are some rare cases when trying to release the resource
2007 	 * results in an admin queue timeout, so handle them correctly
2008 	 */
2009 	timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
2010 	do {
2011 		status = ice_aq_release_res(hw, res, 0, NULL);
2012 		if (status != -EIO)
2013 			break;
2014 		usleep_range(1000, 2000);
2015 	} while (time_before(jiffies, timeout));
2016 }
2017 
2018 /**
2019  * ice_aq_alloc_free_res - command to allocate/free resources
2020  * @hw: pointer to the HW struct
2021  * @buf: Indirect buffer to hold data parameters and response
2022  * @buf_size: size of buffer for indirect commands
2023  * @opc: pass in the command opcode
2024  *
2025  * Helper function to allocate/free resources using the admin queue commands
2026  */
ice_aq_alloc_free_res(struct ice_hw * hw,struct ice_aqc_alloc_free_res_elem * buf,u16 buf_size,enum ice_adminq_opc opc)2027 int ice_aq_alloc_free_res(struct ice_hw *hw,
2028 			  struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
2029 			  enum ice_adminq_opc opc)
2030 {
2031 	struct ice_aqc_alloc_free_res_cmd *cmd;
2032 	struct ice_aq_desc desc;
2033 
2034 	cmd = &desc.params.sw_res_ctrl;
2035 
2036 	if (!buf || buf_size < flex_array_size(buf, elem, 1))
2037 		return -EINVAL;
2038 
2039 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2040 
2041 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2042 
2043 	cmd->num_entries = cpu_to_le16(1);
2044 
2045 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL);
2046 }
2047 
2048 /**
2049  * ice_alloc_hw_res - allocate resource
2050  * @hw: pointer to the HW struct
2051  * @type: type of resource
2052  * @num: number of resources to allocate
2053  * @btm: allocate from bottom
2054  * @res: pointer to array that will receive the resources
2055  */
2056 int
ice_alloc_hw_res(struct ice_hw * hw,u16 type,u16 num,bool btm,u16 * res)2057 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2058 {
2059 	struct ice_aqc_alloc_free_res_elem *buf;
2060 	u16 buf_len;
2061 	int status;
2062 
2063 	buf_len = struct_size(buf, elem, num);
2064 	buf = kzalloc(buf_len, GFP_KERNEL);
2065 	if (!buf)
2066 		return -ENOMEM;
2067 
2068 	/* Prepare buffer to allocate resource. */
2069 	buf->num_elems = cpu_to_le16(num);
2070 	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2071 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2072 	if (btm)
2073 		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2074 
2075 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
2076 	if (status)
2077 		goto ice_alloc_res_exit;
2078 
2079 	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
2080 
2081 ice_alloc_res_exit:
2082 	kfree(buf);
2083 	return status;
2084 }
2085 
2086 /**
2087  * ice_free_hw_res - free allocated HW resource
2088  * @hw: pointer to the HW struct
2089  * @type: type of resource to free
2090  * @num: number of resources
2091  * @res: pointer to array that contains the resources to free
2092  */
ice_free_hw_res(struct ice_hw * hw,u16 type,u16 num,u16 * res)2093 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2094 {
2095 	struct ice_aqc_alloc_free_res_elem *buf;
2096 	u16 buf_len;
2097 	int status;
2098 
2099 	buf_len = struct_size(buf, elem, num);
2100 	buf = kzalloc(buf_len, GFP_KERNEL);
2101 	if (!buf)
2102 		return -ENOMEM;
2103 
2104 	/* Prepare buffer to free resource. */
2105 	buf->num_elems = cpu_to_le16(num);
2106 	buf->res_type = cpu_to_le16(type);
2107 	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2108 
2109 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
2110 	if (status)
2111 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2112 
2113 	kfree(buf);
2114 	return status;
2115 }
2116 
2117 /**
2118  * ice_get_num_per_func - determine number of resources per PF
2119  * @hw: pointer to the HW structure
2120  * @max: value to be evenly split between each PF
2121  *
2122  * Determine the number of valid functions by going through the bitmap returned
2123  * from parsing capabilities and use this to calculate the number of resources
2124  * per PF based on the max value passed in.
2125  */
ice_get_num_per_func(struct ice_hw * hw,u32 max)2126 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2127 {
2128 	u8 funcs;
2129 
2130 #define ICE_CAPS_VALID_FUNCS_M	0xFF
2131 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2132 			 ICE_CAPS_VALID_FUNCS_M);
2133 
2134 	if (!funcs)
2135 		return 0;
2136 
2137 	return max / funcs;
2138 }
2139 
2140 /**
2141  * ice_parse_common_caps - parse common device/function capabilities
2142  * @hw: pointer to the HW struct
2143  * @caps: pointer to common capabilities structure
2144  * @elem: the capability element to parse
2145  * @prefix: message prefix for tracing capabilities
2146  *
2147  * Given a capability element, extract relevant details into the common
2148  * capability structure.
2149  *
2150  * Returns: true if the capability matches one of the common capability ids,
2151  * false otherwise.
2152  */
2153 static bool
ice_parse_common_caps(struct ice_hw * hw,struct ice_hw_common_caps * caps,struct ice_aqc_list_caps_elem * elem,const char * prefix)2154 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2155 		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
2156 {
2157 	u32 logical_id = le32_to_cpu(elem->logical_id);
2158 	u32 phys_id = le32_to_cpu(elem->phys_id);
2159 	u32 number = le32_to_cpu(elem->number);
2160 	u16 cap = le16_to_cpu(elem->cap);
2161 	bool found = true;
2162 
2163 	switch (cap) {
2164 	case ICE_AQC_CAPS_VALID_FUNCTIONS:
2165 		caps->valid_functions = number;
2166 		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2167 			  caps->valid_functions);
2168 		break;
2169 	case ICE_AQC_CAPS_SRIOV:
2170 		caps->sr_iov_1_1 = (number == 1);
2171 		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2172 			  caps->sr_iov_1_1);
2173 		break;
2174 	case ICE_AQC_CAPS_DCB:
2175 		caps->dcb = (number == 1);
2176 		caps->active_tc_bitmap = logical_id;
2177 		caps->maxtc = phys_id;
2178 		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2179 		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2180 			  caps->active_tc_bitmap);
2181 		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2182 		break;
2183 	case ICE_AQC_CAPS_RSS:
2184 		caps->rss_table_size = number;
2185 		caps->rss_table_entry_width = logical_id;
2186 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2187 			  caps->rss_table_size);
2188 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2189 			  caps->rss_table_entry_width);
2190 		break;
2191 	case ICE_AQC_CAPS_RXQS:
2192 		caps->num_rxq = number;
2193 		caps->rxq_first_id = phys_id;
2194 		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2195 			  caps->num_rxq);
2196 		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2197 			  caps->rxq_first_id);
2198 		break;
2199 	case ICE_AQC_CAPS_TXQS:
2200 		caps->num_txq = number;
2201 		caps->txq_first_id = phys_id;
2202 		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2203 			  caps->num_txq);
2204 		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2205 			  caps->txq_first_id);
2206 		break;
2207 	case ICE_AQC_CAPS_MSIX:
2208 		caps->num_msix_vectors = number;
2209 		caps->msix_vector_first_id = phys_id;
2210 		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2211 			  caps->num_msix_vectors);
2212 		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2213 			  caps->msix_vector_first_id);
2214 		break;
2215 	case ICE_AQC_CAPS_PENDING_NVM_VER:
2216 		caps->nvm_update_pending_nvm = true;
2217 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2218 		break;
2219 	case ICE_AQC_CAPS_PENDING_OROM_VER:
2220 		caps->nvm_update_pending_orom = true;
2221 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2222 		break;
2223 	case ICE_AQC_CAPS_PENDING_NET_VER:
2224 		caps->nvm_update_pending_netlist = true;
2225 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2226 		break;
2227 	case ICE_AQC_CAPS_NVM_MGMT:
2228 		caps->nvm_unified_update =
2229 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2230 			true : false;
2231 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2232 			  caps->nvm_unified_update);
2233 		break;
2234 	case ICE_AQC_CAPS_RDMA:
2235 		caps->rdma = (number == 1);
2236 		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2237 		break;
2238 	case ICE_AQC_CAPS_MAX_MTU:
2239 		caps->max_mtu = number;
2240 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2241 			  prefix, caps->max_mtu);
2242 		break;
2243 	case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2244 		caps->pcie_reset_avoidance = (number > 0);
2245 		ice_debug(hw, ICE_DBG_INIT,
2246 			  "%s: pcie_reset_avoidance = %d\n", prefix,
2247 			  caps->pcie_reset_avoidance);
2248 		break;
2249 	case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2250 		caps->reset_restrict_support = (number == 1);
2251 		ice_debug(hw, ICE_DBG_INIT,
2252 			  "%s: reset_restrict_support = %d\n", prefix,
2253 			  caps->reset_restrict_support);
2254 		break;
2255 	case ICE_AQC_CAPS_FW_LAG_SUPPORT:
2256 		caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG);
2257 		ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2258 			  prefix, caps->roce_lag);
2259 		caps->sriov_lag = !!(number & ICE_AQC_BIT_SRIOV_LAG);
2260 		ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2261 			  prefix, caps->sriov_lag);
2262 		break;
2263 	default:
2264 		/* Not one of the recognized common capabilities */
2265 		found = false;
2266 	}
2267 
2268 	return found;
2269 }
2270 
2271 /**
2272  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2273  * @hw: pointer to the HW structure
2274  * @caps: pointer to capabilities structure to fix
2275  *
2276  * Re-calculate the capabilities that are dependent on the number of physical
2277  * ports; i.e. some features are not supported or function differently on
2278  * devices with more than 4 ports.
2279  */
2280 static void
ice_recalc_port_limited_caps(struct ice_hw * hw,struct ice_hw_common_caps * caps)2281 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2282 {
2283 	/* This assumes device capabilities are always scanned before function
2284 	 * capabilities during the initialization flow.
2285 	 */
2286 	if (hw->dev_caps.num_funcs > 4) {
2287 		/* Max 4 TCs per port */
2288 		caps->maxtc = 4;
2289 		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2290 			  caps->maxtc);
2291 		if (caps->rdma) {
2292 			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2293 			caps->rdma = 0;
2294 		}
2295 
2296 		/* print message only when processing device capabilities
2297 		 * during initialization.
2298 		 */
2299 		if (caps == &hw->dev_caps.common_cap)
2300 			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2301 	}
2302 }
2303 
2304 /**
2305  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2306  * @hw: pointer to the HW struct
2307  * @func_p: pointer to function capabilities structure
2308  * @cap: pointer to the capability element to parse
2309  *
2310  * Extract function capabilities for ICE_AQC_CAPS_VF.
2311  */
2312 static void
ice_parse_vf_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct ice_aqc_list_caps_elem * cap)2313 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2314 		       struct ice_aqc_list_caps_elem *cap)
2315 {
2316 	u32 logical_id = le32_to_cpu(cap->logical_id);
2317 	u32 number = le32_to_cpu(cap->number);
2318 
2319 	func_p->num_allocd_vfs = number;
2320 	func_p->vf_base_id = logical_id;
2321 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2322 		  func_p->num_allocd_vfs);
2323 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2324 		  func_p->vf_base_id);
2325 }
2326 
2327 /**
2328  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2329  * @hw: pointer to the HW struct
2330  * @func_p: pointer to function capabilities structure
2331  * @cap: pointer to the capability element to parse
2332  *
2333  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2334  */
2335 static void
ice_parse_vsi_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct ice_aqc_list_caps_elem * cap)2336 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2337 			struct ice_aqc_list_caps_elem *cap)
2338 {
2339 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2340 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2341 		  le32_to_cpu(cap->number));
2342 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2343 		  func_p->guar_num_vsi);
2344 }
2345 
2346 /**
2347  * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2348  * @hw: pointer to the HW struct
2349  * @func_p: pointer to function capabilities structure
2350  * @cap: pointer to the capability element to parse
2351  *
2352  * Extract function capabilities for ICE_AQC_CAPS_1588.
2353  */
2354 static void
ice_parse_1588_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct ice_aqc_list_caps_elem * cap)2355 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2356 			 struct ice_aqc_list_caps_elem *cap)
2357 {
2358 	struct ice_ts_func_info *info = &func_p->ts_func_info;
2359 	u32 number = le32_to_cpu(cap->number);
2360 
2361 	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2362 	func_p->common_cap.ieee_1588 = info->ena;
2363 
2364 	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2365 	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2366 	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2367 	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2368 
2369 	info->clk_freq = (number & ICE_TS_CLK_FREQ_M) >> ICE_TS_CLK_FREQ_S;
2370 	info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2371 
2372 	if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2373 		info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2374 	} else {
2375 		/* Unknown clock frequency, so assume a (probably incorrect)
2376 		 * default to avoid out-of-bounds look ups of frequency
2377 		 * related information.
2378 		 */
2379 		ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2380 			  info->clk_freq);
2381 		info->time_ref = ICE_TIME_REF_FREQ_25_000;
2382 	}
2383 
2384 	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2385 		  func_p->common_cap.ieee_1588);
2386 	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2387 		  info->src_tmr_owned);
2388 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2389 		  info->tmr_ena);
2390 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2391 		  info->tmr_index_owned);
2392 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2393 		  info->tmr_index_assoc);
2394 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2395 		  info->clk_freq);
2396 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2397 		  info->clk_src);
2398 }
2399 
2400 /**
2401  * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2402  * @hw: pointer to the HW struct
2403  * @func_p: pointer to function capabilities structure
2404  *
2405  * Extract function capabilities for ICE_AQC_CAPS_FD.
2406  */
2407 static void
ice_parse_fdir_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p)2408 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2409 {
2410 	u32 reg_val, gsize, bsize;
2411 
2412 	reg_val = rd32(hw, GLQF_FD_SIZE);
2413 	switch (hw->mac_type) {
2414 	case ICE_MAC_E830:
2415 		gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2416 		bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2417 		break;
2418 	case ICE_MAC_E810:
2419 	default:
2420 		gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2421 		bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2422 	}
2423 	func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize);
2424 	func_p->fd_fltr_best_effort = bsize;
2425 
2426 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2427 		  func_p->fd_fltr_guar);
2428 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2429 		  func_p->fd_fltr_best_effort);
2430 }
2431 
2432 /**
2433  * ice_parse_func_caps - Parse function capabilities
2434  * @hw: pointer to the HW struct
2435  * @func_p: pointer to function capabilities structure
2436  * @buf: buffer containing the function capability records
2437  * @cap_count: the number of capabilities
2438  *
2439  * Helper function to parse function (0x000A) capabilities list. For
2440  * capabilities shared between device and function, this relies on
2441  * ice_parse_common_caps.
2442  *
2443  * Loop through the list of provided capabilities and extract the relevant
2444  * data into the function capabilities structured.
2445  */
2446 static void
ice_parse_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,void * buf,u32 cap_count)2447 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2448 		    void *buf, u32 cap_count)
2449 {
2450 	struct ice_aqc_list_caps_elem *cap_resp;
2451 	u32 i;
2452 
2453 	cap_resp = buf;
2454 
2455 	memset(func_p, 0, sizeof(*func_p));
2456 
2457 	for (i = 0; i < cap_count; i++) {
2458 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2459 		bool found;
2460 
2461 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2462 					      &cap_resp[i], "func caps");
2463 
2464 		switch (cap) {
2465 		case ICE_AQC_CAPS_VF:
2466 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2467 			break;
2468 		case ICE_AQC_CAPS_VSI:
2469 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2470 			break;
2471 		case ICE_AQC_CAPS_1588:
2472 			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2473 			break;
2474 		case ICE_AQC_CAPS_FD:
2475 			ice_parse_fdir_func_caps(hw, func_p);
2476 			break;
2477 		default:
2478 			/* Don't list common capabilities as unknown */
2479 			if (!found)
2480 				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2481 					  i, cap);
2482 			break;
2483 		}
2484 	}
2485 
2486 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2487 }
2488 
2489 /**
2490  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2491  * @hw: pointer to the HW struct
2492  * @dev_p: pointer to device capabilities structure
2493  * @cap: capability element to parse
2494  *
2495  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2496  */
2497 static void
ice_parse_valid_functions_cap(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2498 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2499 			      struct ice_aqc_list_caps_elem *cap)
2500 {
2501 	u32 number = le32_to_cpu(cap->number);
2502 
2503 	dev_p->num_funcs = hweight32(number);
2504 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2505 		  dev_p->num_funcs);
2506 }
2507 
2508 /**
2509  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2510  * @hw: pointer to the HW struct
2511  * @dev_p: pointer to device capabilities structure
2512  * @cap: capability element to parse
2513  *
2514  * Parse ICE_AQC_CAPS_VF for device capabilities.
2515  */
2516 static void
ice_parse_vf_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2517 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2518 		      struct ice_aqc_list_caps_elem *cap)
2519 {
2520 	u32 number = le32_to_cpu(cap->number);
2521 
2522 	dev_p->num_vfs_exposed = number;
2523 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2524 		  dev_p->num_vfs_exposed);
2525 }
2526 
2527 /**
2528  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2529  * @hw: pointer to the HW struct
2530  * @dev_p: pointer to device capabilities structure
2531  * @cap: capability element to parse
2532  *
2533  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2534  */
2535 static void
ice_parse_vsi_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2536 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2537 		       struct ice_aqc_list_caps_elem *cap)
2538 {
2539 	u32 number = le32_to_cpu(cap->number);
2540 
2541 	dev_p->num_vsi_allocd_to_host = number;
2542 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2543 		  dev_p->num_vsi_allocd_to_host);
2544 }
2545 
2546 /**
2547  * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2548  * @hw: pointer to the HW struct
2549  * @dev_p: pointer to device capabilities structure
2550  * @cap: capability element to parse
2551  *
2552  * Parse ICE_AQC_CAPS_1588 for device capabilities.
2553  */
2554 static void
ice_parse_1588_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2555 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2556 			struct ice_aqc_list_caps_elem *cap)
2557 {
2558 	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2559 	u32 logical_id = le32_to_cpu(cap->logical_id);
2560 	u32 phys_id = le32_to_cpu(cap->phys_id);
2561 	u32 number = le32_to_cpu(cap->number);
2562 
2563 	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2564 	dev_p->common_cap.ieee_1588 = info->ena;
2565 
2566 	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2567 	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2568 	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2569 
2570 	info->tmr1_owner = (number & ICE_TS_TMR1_OWNR_M) >> ICE_TS_TMR1_OWNR_S;
2571 	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2572 	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2573 
2574 	info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2575 
2576 	info->ena_ports = logical_id;
2577 	info->tmr_own_map = phys_id;
2578 
2579 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2580 		  dev_p->common_cap.ieee_1588);
2581 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2582 		  info->tmr0_owner);
2583 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2584 		  info->tmr0_owned);
2585 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2586 		  info->tmr0_ena);
2587 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2588 		  info->tmr1_owner);
2589 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2590 		  info->tmr1_owned);
2591 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2592 		  info->tmr1_ena);
2593 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2594 		  info->ts_ll_read);
2595 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2596 		  info->ena_ports);
2597 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2598 		  info->tmr_own_map);
2599 }
2600 
2601 /**
2602  * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2603  * @hw: pointer to the HW struct
2604  * @dev_p: pointer to device capabilities structure
2605  * @cap: capability element to parse
2606  *
2607  * Parse ICE_AQC_CAPS_FD for device capabilities.
2608  */
2609 static void
ice_parse_fdir_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2610 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2611 			struct ice_aqc_list_caps_elem *cap)
2612 {
2613 	u32 number = le32_to_cpu(cap->number);
2614 
2615 	dev_p->num_flow_director_fltr = number;
2616 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2617 		  dev_p->num_flow_director_fltr);
2618 }
2619 
2620 /**
2621  * ice_parse_dev_caps - Parse device capabilities
2622  * @hw: pointer to the HW struct
2623  * @dev_p: pointer to device capabilities structure
2624  * @buf: buffer containing the device capability records
2625  * @cap_count: the number of capabilities
2626  *
2627  * Helper device to parse device (0x000B) capabilities list. For
2628  * capabilities shared between device and function, this relies on
2629  * ice_parse_common_caps.
2630  *
2631  * Loop through the list of provided capabilities and extract the relevant
2632  * data into the device capabilities structured.
2633  */
2634 static void
ice_parse_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,void * buf,u32 cap_count)2635 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2636 		   void *buf, u32 cap_count)
2637 {
2638 	struct ice_aqc_list_caps_elem *cap_resp;
2639 	u32 i;
2640 
2641 	cap_resp = buf;
2642 
2643 	memset(dev_p, 0, sizeof(*dev_p));
2644 
2645 	for (i = 0; i < cap_count; i++) {
2646 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2647 		bool found;
2648 
2649 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2650 					      &cap_resp[i], "dev caps");
2651 
2652 		switch (cap) {
2653 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2654 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2655 			break;
2656 		case ICE_AQC_CAPS_VF:
2657 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2658 			break;
2659 		case ICE_AQC_CAPS_VSI:
2660 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2661 			break;
2662 		case ICE_AQC_CAPS_1588:
2663 			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2664 			break;
2665 		case  ICE_AQC_CAPS_FD:
2666 			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2667 			break;
2668 		default:
2669 			/* Don't list common capabilities as unknown */
2670 			if (!found)
2671 				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2672 					  i, cap);
2673 			break;
2674 		}
2675 	}
2676 
2677 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2678 }
2679 
2680 /**
2681  * ice_aq_get_netlist_node
2682  * @hw: pointer to the hw struct
2683  * @cmd: get_link_topo AQ structure
2684  * @node_part_number: output node part number if node found
2685  * @node_handle: output node handle parameter if node found
2686  */
2687 static int
ice_aq_get_netlist_node(struct ice_hw * hw,struct ice_aqc_get_link_topo * cmd,u8 * node_part_number,u16 * node_handle)2688 ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
2689 			u8 *node_part_number, u16 *node_handle)
2690 {
2691 	struct ice_aq_desc desc;
2692 
2693 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
2694 	desc.params.get_link_topo = *cmd;
2695 
2696 	if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
2697 		return -EIO;
2698 
2699 	if (node_handle)
2700 		*node_handle = le16_to_cpu(desc.params.get_link_topo.addr.handle);
2701 	if (node_part_number)
2702 		*node_part_number = desc.params.get_link_topo.node_part_num;
2703 
2704 	return 0;
2705 }
2706 
2707 /**
2708  * ice_is_pf_c827 - check if pf contains c827 phy
2709  * @hw: pointer to the hw struct
2710  */
ice_is_pf_c827(struct ice_hw * hw)2711 bool ice_is_pf_c827(struct ice_hw *hw)
2712 {
2713 	struct ice_aqc_get_link_topo cmd = {};
2714 	u8 node_part_number;
2715 	u16 node_handle;
2716 	int status;
2717 
2718 	if (hw->mac_type != ICE_MAC_E810)
2719 		return false;
2720 
2721 	if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
2722 		return true;
2723 
2724 	cmd.addr.topo_params.node_type_ctx =
2725 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
2726 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
2727 	cmd.addr.topo_params.index = 0;
2728 
2729 	status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
2730 					 &node_handle);
2731 
2732 	if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
2733 		return false;
2734 
2735 	if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
2736 		return true;
2737 
2738 	return false;
2739 }
2740 
2741 /**
2742  * ice_aq_list_caps - query function/device capabilities
2743  * @hw: pointer to the HW struct
2744  * @buf: a buffer to hold the capabilities
2745  * @buf_size: size of the buffer
2746  * @cap_count: if not NULL, set to the number of capabilities reported
2747  * @opc: capabilities type to discover, device or function
2748  * @cd: pointer to command details structure or NULL
2749  *
2750  * Get the function (0x000A) or device (0x000B) capabilities description from
2751  * firmware and store it in the buffer.
2752  *
2753  * If the cap_count pointer is not NULL, then it is set to the number of
2754  * capabilities firmware will report. Note that if the buffer size is too
2755  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2756  * cap_count will still be updated in this case. It is recommended that the
2757  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2758  * firmware could return) to avoid this.
2759  */
2760 int
ice_aq_list_caps(struct ice_hw * hw,void * buf,u16 buf_size,u32 * cap_count,enum ice_adminq_opc opc,struct ice_sq_cd * cd)2761 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2762 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2763 {
2764 	struct ice_aqc_list_caps *cmd;
2765 	struct ice_aq_desc desc;
2766 	int status;
2767 
2768 	cmd = &desc.params.get_cap;
2769 
2770 	if (opc != ice_aqc_opc_list_func_caps &&
2771 	    opc != ice_aqc_opc_list_dev_caps)
2772 		return -EINVAL;
2773 
2774 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2775 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2776 
2777 	if (cap_count)
2778 		*cap_count = le32_to_cpu(cmd->count);
2779 
2780 	return status;
2781 }
2782 
2783 /**
2784  * ice_discover_dev_caps - Read and extract device capabilities
2785  * @hw: pointer to the hardware structure
2786  * @dev_caps: pointer to device capabilities structure
2787  *
2788  * Read the device capabilities and extract them into the dev_caps structure
2789  * for later use.
2790  */
2791 int
ice_discover_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_caps)2792 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2793 {
2794 	u32 cap_count = 0;
2795 	void *cbuf;
2796 	int status;
2797 
2798 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2799 	if (!cbuf)
2800 		return -ENOMEM;
2801 
2802 	/* Although the driver doesn't know the number of capabilities the
2803 	 * device will return, we can simply send a 4KB buffer, the maximum
2804 	 * possible size that firmware can return.
2805 	 */
2806 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2807 
2808 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2809 				  ice_aqc_opc_list_dev_caps, NULL);
2810 	if (!status)
2811 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2812 	kfree(cbuf);
2813 
2814 	return status;
2815 }
2816 
2817 /**
2818  * ice_discover_func_caps - Read and extract function capabilities
2819  * @hw: pointer to the hardware structure
2820  * @func_caps: pointer to function capabilities structure
2821  *
2822  * Read the function capabilities and extract them into the func_caps structure
2823  * for later use.
2824  */
2825 static int
ice_discover_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_caps)2826 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2827 {
2828 	u32 cap_count = 0;
2829 	void *cbuf;
2830 	int status;
2831 
2832 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2833 	if (!cbuf)
2834 		return -ENOMEM;
2835 
2836 	/* Although the driver doesn't know the number of capabilities the
2837 	 * device will return, we can simply send a 4KB buffer, the maximum
2838 	 * possible size that firmware can return.
2839 	 */
2840 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2841 
2842 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2843 				  ice_aqc_opc_list_func_caps, NULL);
2844 	if (!status)
2845 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2846 	kfree(cbuf);
2847 
2848 	return status;
2849 }
2850 
2851 /**
2852  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2853  * @hw: pointer to the hardware structure
2854  */
ice_set_safe_mode_caps(struct ice_hw * hw)2855 void ice_set_safe_mode_caps(struct ice_hw *hw)
2856 {
2857 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2858 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2859 	struct ice_hw_common_caps cached_caps;
2860 	u32 num_funcs;
2861 
2862 	/* cache some func_caps values that should be restored after memset */
2863 	cached_caps = func_caps->common_cap;
2864 
2865 	/* unset func capabilities */
2866 	memset(func_caps, 0, sizeof(*func_caps));
2867 
2868 #define ICE_RESTORE_FUNC_CAP(name) \
2869 	func_caps->common_cap.name = cached_caps.name
2870 
2871 	/* restore cached values */
2872 	ICE_RESTORE_FUNC_CAP(valid_functions);
2873 	ICE_RESTORE_FUNC_CAP(txq_first_id);
2874 	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2875 	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2876 	ICE_RESTORE_FUNC_CAP(max_mtu);
2877 	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2878 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2879 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2880 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2881 
2882 	/* one Tx and one Rx queue in safe mode */
2883 	func_caps->common_cap.num_rxq = 1;
2884 	func_caps->common_cap.num_txq = 1;
2885 
2886 	/* two MSIX vectors, one for traffic and one for misc causes */
2887 	func_caps->common_cap.num_msix_vectors = 2;
2888 	func_caps->guar_num_vsi = 1;
2889 
2890 	/* cache some dev_caps values that should be restored after memset */
2891 	cached_caps = dev_caps->common_cap;
2892 	num_funcs = dev_caps->num_funcs;
2893 
2894 	/* unset dev capabilities */
2895 	memset(dev_caps, 0, sizeof(*dev_caps));
2896 
2897 #define ICE_RESTORE_DEV_CAP(name) \
2898 	dev_caps->common_cap.name = cached_caps.name
2899 
2900 	/* restore cached values */
2901 	ICE_RESTORE_DEV_CAP(valid_functions);
2902 	ICE_RESTORE_DEV_CAP(txq_first_id);
2903 	ICE_RESTORE_DEV_CAP(rxq_first_id);
2904 	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2905 	ICE_RESTORE_DEV_CAP(max_mtu);
2906 	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2907 	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2908 	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2909 	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2910 	dev_caps->num_funcs = num_funcs;
2911 
2912 	/* one Tx and one Rx queue per function in safe mode */
2913 	dev_caps->common_cap.num_rxq = num_funcs;
2914 	dev_caps->common_cap.num_txq = num_funcs;
2915 
2916 	/* two MSIX vectors per function */
2917 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2918 }
2919 
2920 /**
2921  * ice_get_caps - get info about the HW
2922  * @hw: pointer to the hardware structure
2923  */
ice_get_caps(struct ice_hw * hw)2924 int ice_get_caps(struct ice_hw *hw)
2925 {
2926 	int status;
2927 
2928 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
2929 	if (status)
2930 		return status;
2931 
2932 	return ice_discover_func_caps(hw, &hw->func_caps);
2933 }
2934 
2935 /**
2936  * ice_aq_manage_mac_write - manage MAC address write command
2937  * @hw: pointer to the HW struct
2938  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2939  * @flags: flags to control write behavior
2940  * @cd: pointer to command details structure or NULL
2941  *
2942  * This function is used to write MAC address to the NVM (0x0108).
2943  */
2944 int
ice_aq_manage_mac_write(struct ice_hw * hw,const u8 * mac_addr,u8 flags,struct ice_sq_cd * cd)2945 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2946 			struct ice_sq_cd *cd)
2947 {
2948 	struct ice_aqc_manage_mac_write *cmd;
2949 	struct ice_aq_desc desc;
2950 
2951 	cmd = &desc.params.mac_write;
2952 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2953 
2954 	cmd->flags = flags;
2955 	ether_addr_copy(cmd->mac_addr, mac_addr);
2956 
2957 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2958 }
2959 
2960 /**
2961  * ice_aq_clear_pxe_mode
2962  * @hw: pointer to the HW struct
2963  *
2964  * Tell the firmware that the driver is taking over from PXE (0x0110).
2965  */
ice_aq_clear_pxe_mode(struct ice_hw * hw)2966 static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
2967 {
2968 	struct ice_aq_desc desc;
2969 
2970 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2971 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2972 
2973 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2974 }
2975 
2976 /**
2977  * ice_clear_pxe_mode - clear pxe operations mode
2978  * @hw: pointer to the HW struct
2979  *
2980  * Make sure all PXE mode settings are cleared, including things
2981  * like descriptor fetch/write-back mode.
2982  */
ice_clear_pxe_mode(struct ice_hw * hw)2983 void ice_clear_pxe_mode(struct ice_hw *hw)
2984 {
2985 	if (ice_check_sq_alive(hw, &hw->adminq))
2986 		ice_aq_clear_pxe_mode(hw);
2987 }
2988 
2989 /**
2990  * ice_aq_set_port_params - set physical port parameters.
2991  * @pi: pointer to the port info struct
2992  * @double_vlan: if set double VLAN is enabled
2993  * @cd: pointer to command details structure or NULL
2994  *
2995  * Set Physical port parameters (0x0203)
2996  */
2997 int
ice_aq_set_port_params(struct ice_port_info * pi,bool double_vlan,struct ice_sq_cd * cd)2998 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
2999 		       struct ice_sq_cd *cd)
3000 
3001 {
3002 	struct ice_aqc_set_port_params *cmd;
3003 	struct ice_hw *hw = pi->hw;
3004 	struct ice_aq_desc desc;
3005 	u16 cmd_flags = 0;
3006 
3007 	cmd = &desc.params.set_port_params;
3008 
3009 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
3010 	if (double_vlan)
3011 		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
3012 	cmd->cmd_flags = cpu_to_le16(cmd_flags);
3013 
3014 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3015 }
3016 
3017 /**
3018  * ice_is_100m_speed_supported
3019  * @hw: pointer to the HW struct
3020  *
3021  * returns true if 100M speeds are supported by the device,
3022  * false otherwise.
3023  */
ice_is_100m_speed_supported(struct ice_hw * hw)3024 bool ice_is_100m_speed_supported(struct ice_hw *hw)
3025 {
3026 	switch (hw->device_id) {
3027 	case ICE_DEV_ID_E822C_SGMII:
3028 	case ICE_DEV_ID_E822L_SGMII:
3029 	case ICE_DEV_ID_E823L_1GBE:
3030 	case ICE_DEV_ID_E823C_SGMII:
3031 		return true;
3032 	default:
3033 		return false;
3034 	}
3035 }
3036 
3037 /**
3038  * ice_get_link_speed_based_on_phy_type - returns link speed
3039  * @phy_type_low: lower part of phy_type
3040  * @phy_type_high: higher part of phy_type
3041  *
3042  * This helper function will convert an entry in PHY type structure
3043  * [phy_type_low, phy_type_high] to its corresponding link speed.
3044  * Note: In the structure of [phy_type_low, phy_type_high], there should
3045  * be one bit set, as this function will convert one PHY type to its
3046  * speed.
3047  * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3048  * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3049  */
3050 static u16
ice_get_link_speed_based_on_phy_type(u64 phy_type_low,u64 phy_type_high)3051 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3052 {
3053 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3054 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3055 
3056 	switch (phy_type_low) {
3057 	case ICE_PHY_TYPE_LOW_100BASE_TX:
3058 	case ICE_PHY_TYPE_LOW_100M_SGMII:
3059 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3060 		break;
3061 	case ICE_PHY_TYPE_LOW_1000BASE_T:
3062 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
3063 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
3064 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
3065 	case ICE_PHY_TYPE_LOW_1G_SGMII:
3066 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3067 		break;
3068 	case ICE_PHY_TYPE_LOW_2500BASE_T:
3069 	case ICE_PHY_TYPE_LOW_2500BASE_X:
3070 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
3071 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3072 		break;
3073 	case ICE_PHY_TYPE_LOW_5GBASE_T:
3074 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
3075 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3076 		break;
3077 	case ICE_PHY_TYPE_LOW_10GBASE_T:
3078 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3079 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
3080 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
3081 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3082 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3083 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3084 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3085 		break;
3086 	case ICE_PHY_TYPE_LOW_25GBASE_T:
3087 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3088 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3089 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3090 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3091 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3092 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3093 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3094 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3095 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3096 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3097 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3098 		break;
3099 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3100 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3101 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3102 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3103 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3104 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3105 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3106 		break;
3107 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3108 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3109 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3110 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3111 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3112 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3113 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3114 	case ICE_PHY_TYPE_LOW_50G_AUI2:
3115 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3116 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3117 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3118 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3119 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3120 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3121 	case ICE_PHY_TYPE_LOW_50G_AUI1:
3122 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3123 		break;
3124 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3125 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3126 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3127 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3128 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3129 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3130 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3131 	case ICE_PHY_TYPE_LOW_100G_AUI4:
3132 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3133 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3134 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3135 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3136 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3137 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3138 		break;
3139 	default:
3140 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3141 		break;
3142 	}
3143 
3144 	switch (phy_type_high) {
3145 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3146 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3147 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3148 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3149 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3150 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3151 		break;
3152 	default:
3153 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3154 		break;
3155 	}
3156 
3157 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3158 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3159 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3160 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3161 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3162 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3163 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3164 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3165 		return speed_phy_type_low;
3166 	else
3167 		return speed_phy_type_high;
3168 }
3169 
3170 /**
3171  * ice_update_phy_type
3172  * @phy_type_low: pointer to the lower part of phy_type
3173  * @phy_type_high: pointer to the higher part of phy_type
3174  * @link_speeds_bitmap: targeted link speeds bitmap
3175  *
3176  * Note: For the link_speeds_bitmap structure, you can check it at
3177  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3178  * link_speeds_bitmap include multiple speeds.
3179  *
3180  * Each entry in this [phy_type_low, phy_type_high] structure will
3181  * present a certain link speed. This helper function will turn on bits
3182  * in [phy_type_low, phy_type_high] structure based on the value of
3183  * link_speeds_bitmap input parameter.
3184  */
3185 void
ice_update_phy_type(u64 * phy_type_low,u64 * phy_type_high,u16 link_speeds_bitmap)3186 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3187 		    u16 link_speeds_bitmap)
3188 {
3189 	u64 pt_high;
3190 	u64 pt_low;
3191 	int index;
3192 	u16 speed;
3193 
3194 	/* We first check with low part of phy_type */
3195 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3196 		pt_low = BIT_ULL(index);
3197 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3198 
3199 		if (link_speeds_bitmap & speed)
3200 			*phy_type_low |= BIT_ULL(index);
3201 	}
3202 
3203 	/* We then check with high part of phy_type */
3204 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3205 		pt_high = BIT_ULL(index);
3206 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3207 
3208 		if (link_speeds_bitmap & speed)
3209 			*phy_type_high |= BIT_ULL(index);
3210 	}
3211 }
3212 
3213 /**
3214  * ice_aq_set_phy_cfg
3215  * @hw: pointer to the HW struct
3216  * @pi: port info structure of the interested logical port
3217  * @cfg: structure with PHY configuration data to be set
3218  * @cd: pointer to command details structure or NULL
3219  *
3220  * Set the various PHY configuration parameters supported on the Port.
3221  * One or more of the Set PHY config parameters may be ignored in an MFP
3222  * mode as the PF may not have the privilege to set some of the PHY Config
3223  * parameters. This status will be indicated by the command response (0x0601).
3224  */
3225 int
ice_aq_set_phy_cfg(struct ice_hw * hw,struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,struct ice_sq_cd * cd)3226 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3227 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3228 {
3229 	struct ice_aq_desc desc;
3230 	int status;
3231 
3232 	if (!cfg)
3233 		return -EINVAL;
3234 
3235 	/* Ensure that only valid bits of cfg->caps can be turned on. */
3236 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3237 		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3238 			  cfg->caps);
3239 
3240 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3241 	}
3242 
3243 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3244 	desc.params.set_phy.lport_num = pi->lport;
3245 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3246 
3247 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3248 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3249 		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3250 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3251 		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3252 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3253 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3254 		  cfg->low_power_ctrl_an);
3255 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3256 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3257 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3258 		  cfg->link_fec_opt);
3259 
3260 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3261 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3262 		status = 0;
3263 
3264 	if (!status)
3265 		pi->phy.curr_user_phy_cfg = *cfg;
3266 
3267 	return status;
3268 }
3269 
3270 /**
3271  * ice_update_link_info - update status of the HW network link
3272  * @pi: port info structure of the interested logical port
3273  */
ice_update_link_info(struct ice_port_info * pi)3274 int ice_update_link_info(struct ice_port_info *pi)
3275 {
3276 	struct ice_link_status *li;
3277 	int status;
3278 
3279 	if (!pi)
3280 		return -EINVAL;
3281 
3282 	li = &pi->phy.link_info;
3283 
3284 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3285 	if (status)
3286 		return status;
3287 
3288 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3289 		struct ice_aqc_get_phy_caps_data *pcaps;
3290 		struct ice_hw *hw;
3291 
3292 		hw = pi->hw;
3293 		pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
3294 				     GFP_KERNEL);
3295 		if (!pcaps)
3296 			return -ENOMEM;
3297 
3298 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3299 					     pcaps, NULL);
3300 
3301 		devm_kfree(ice_hw_to_dev(hw), pcaps);
3302 	}
3303 
3304 	return status;
3305 }
3306 
3307 /**
3308  * ice_cache_phy_user_req
3309  * @pi: port information structure
3310  * @cache_data: PHY logging data
3311  * @cache_mode: PHY logging mode
3312  *
3313  * Log the user request on (FC, FEC, SPEED) for later use.
3314  */
3315 static void
ice_cache_phy_user_req(struct ice_port_info * pi,struct ice_phy_cache_mode_data cache_data,enum ice_phy_cache_mode cache_mode)3316 ice_cache_phy_user_req(struct ice_port_info *pi,
3317 		       struct ice_phy_cache_mode_data cache_data,
3318 		       enum ice_phy_cache_mode cache_mode)
3319 {
3320 	if (!pi)
3321 		return;
3322 
3323 	switch (cache_mode) {
3324 	case ICE_FC_MODE:
3325 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3326 		break;
3327 	case ICE_SPEED_MODE:
3328 		pi->phy.curr_user_speed_req =
3329 			cache_data.data.curr_user_speed_req;
3330 		break;
3331 	case ICE_FEC_MODE:
3332 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3333 		break;
3334 	default:
3335 		break;
3336 	}
3337 }
3338 
3339 /**
3340  * ice_caps_to_fc_mode
3341  * @caps: PHY capabilities
3342  *
3343  * Convert PHY FC capabilities to ice FC mode
3344  */
ice_caps_to_fc_mode(u8 caps)3345 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3346 {
3347 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3348 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3349 		return ICE_FC_FULL;
3350 
3351 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3352 		return ICE_FC_TX_PAUSE;
3353 
3354 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3355 		return ICE_FC_RX_PAUSE;
3356 
3357 	return ICE_FC_NONE;
3358 }
3359 
3360 /**
3361  * ice_caps_to_fec_mode
3362  * @caps: PHY capabilities
3363  * @fec_options: Link FEC options
3364  *
3365  * Convert PHY FEC capabilities to ice FEC mode
3366  */
ice_caps_to_fec_mode(u8 caps,u8 fec_options)3367 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3368 {
3369 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3370 		return ICE_FEC_AUTO;
3371 
3372 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3373 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3374 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3375 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3376 		return ICE_FEC_BASER;
3377 
3378 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3379 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3380 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3381 		return ICE_FEC_RS;
3382 
3383 	return ICE_FEC_NONE;
3384 }
3385 
3386 /**
3387  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3388  * @pi: port information structure
3389  * @cfg: PHY configuration data to set FC mode
3390  * @req_mode: FC mode to configure
3391  */
3392 int
ice_cfg_phy_fc(struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,enum ice_fc_mode req_mode)3393 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3394 	       enum ice_fc_mode req_mode)
3395 {
3396 	struct ice_phy_cache_mode_data cache_data;
3397 	u8 pause_mask = 0x0;
3398 
3399 	if (!pi || !cfg)
3400 		return -EINVAL;
3401 
3402 	switch (req_mode) {
3403 	case ICE_FC_FULL:
3404 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3405 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3406 		break;
3407 	case ICE_FC_RX_PAUSE:
3408 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3409 		break;
3410 	case ICE_FC_TX_PAUSE:
3411 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3412 		break;
3413 	default:
3414 		break;
3415 	}
3416 
3417 	/* clear the old pause settings */
3418 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3419 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3420 
3421 	/* set the new capabilities */
3422 	cfg->caps |= pause_mask;
3423 
3424 	/* Cache user FC request */
3425 	cache_data.data.curr_user_fc_req = req_mode;
3426 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3427 
3428 	return 0;
3429 }
3430 
3431 /**
3432  * ice_set_fc
3433  * @pi: port information structure
3434  * @aq_failures: pointer to status code, specific to ice_set_fc routine
3435  * @ena_auto_link_update: enable automatic link update
3436  *
3437  * Set the requested flow control mode.
3438  */
3439 int
ice_set_fc(struct ice_port_info * pi,u8 * aq_failures,bool ena_auto_link_update)3440 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3441 {
3442 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3443 	struct ice_aqc_get_phy_caps_data *pcaps;
3444 	struct ice_hw *hw;
3445 	int status;
3446 
3447 	if (!pi || !aq_failures)
3448 		return -EINVAL;
3449 
3450 	*aq_failures = 0;
3451 	hw = pi->hw;
3452 
3453 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
3454 	if (!pcaps)
3455 		return -ENOMEM;
3456 
3457 	/* Get the current PHY config */
3458 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3459 				     pcaps, NULL);
3460 	if (status) {
3461 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3462 		goto out;
3463 	}
3464 
3465 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3466 
3467 	/* Configure the set PHY data */
3468 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3469 	if (status)
3470 		goto out;
3471 
3472 	/* If the capabilities have changed, then set the new config */
3473 	if (cfg.caps != pcaps->caps) {
3474 		int retry_count, retry_max = 10;
3475 
3476 		/* Auto restart link so settings take effect */
3477 		if (ena_auto_link_update)
3478 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3479 
3480 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3481 		if (status) {
3482 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3483 			goto out;
3484 		}
3485 
3486 		/* Update the link info
3487 		 * It sometimes takes a really long time for link to
3488 		 * come back from the atomic reset. Thus, we wait a
3489 		 * little bit.
3490 		 */
3491 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3492 			status = ice_update_link_info(pi);
3493 
3494 			if (!status)
3495 				break;
3496 
3497 			mdelay(100);
3498 		}
3499 
3500 		if (status)
3501 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3502 	}
3503 
3504 out:
3505 	devm_kfree(ice_hw_to_dev(hw), pcaps);
3506 	return status;
3507 }
3508 
3509 /**
3510  * ice_phy_caps_equals_cfg
3511  * @phy_caps: PHY capabilities
3512  * @phy_cfg: PHY configuration
3513  *
3514  * Helper function to determine if PHY capabilities matches PHY
3515  * configuration
3516  */
3517 bool
ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data * phy_caps,struct ice_aqc_set_phy_cfg_data * phy_cfg)3518 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3519 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3520 {
3521 	u8 caps_mask, cfg_mask;
3522 
3523 	if (!phy_caps || !phy_cfg)
3524 		return false;
3525 
3526 	/* These bits are not common between capabilities and configuration.
3527 	 * Do not use them to determine equality.
3528 	 */
3529 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3530 					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3531 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3532 
3533 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3534 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3535 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3536 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3537 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3538 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3539 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3540 		return false;
3541 
3542 	return true;
3543 }
3544 
3545 /**
3546  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3547  * @pi: port information structure
3548  * @caps: PHY ability structure to copy date from
3549  * @cfg: PHY configuration structure to copy data to
3550  *
3551  * Helper function to copy AQC PHY get ability data to PHY set configuration
3552  * data structure
3553  */
3554 void
ice_copy_phy_caps_to_cfg(struct ice_port_info * pi,struct ice_aqc_get_phy_caps_data * caps,struct ice_aqc_set_phy_cfg_data * cfg)3555 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3556 			 struct ice_aqc_get_phy_caps_data *caps,
3557 			 struct ice_aqc_set_phy_cfg_data *cfg)
3558 {
3559 	if (!pi || !caps || !cfg)
3560 		return;
3561 
3562 	memset(cfg, 0, sizeof(*cfg));
3563 	cfg->phy_type_low = caps->phy_type_low;
3564 	cfg->phy_type_high = caps->phy_type_high;
3565 	cfg->caps = caps->caps;
3566 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3567 	cfg->eee_cap = caps->eee_cap;
3568 	cfg->eeer_value = caps->eeer_value;
3569 	cfg->link_fec_opt = caps->link_fec_options;
3570 	cfg->module_compliance_enforcement =
3571 		caps->module_compliance_enforcement;
3572 }
3573 
3574 /**
3575  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3576  * @pi: port information structure
3577  * @cfg: PHY configuration data to set FEC mode
3578  * @fec: FEC mode to configure
3579  */
3580 int
ice_cfg_phy_fec(struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,enum ice_fec_mode fec)3581 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3582 		enum ice_fec_mode fec)
3583 {
3584 	struct ice_aqc_get_phy_caps_data *pcaps;
3585 	struct ice_hw *hw;
3586 	int status;
3587 
3588 	if (!pi || !cfg)
3589 		return -EINVAL;
3590 
3591 	hw = pi->hw;
3592 
3593 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3594 	if (!pcaps)
3595 		return -ENOMEM;
3596 
3597 	status = ice_aq_get_phy_caps(pi, false,
3598 				     (ice_fw_supports_report_dflt_cfg(hw) ?
3599 				      ICE_AQC_REPORT_DFLT_CFG :
3600 				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3601 	if (status)
3602 		goto out;
3603 
3604 	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3605 	cfg->link_fec_opt = pcaps->link_fec_options;
3606 
3607 	switch (fec) {
3608 	case ICE_FEC_BASER:
3609 		/* Clear RS bits, and AND BASE-R ability
3610 		 * bits and OR request bits.
3611 		 */
3612 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3613 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3614 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3615 			ICE_AQC_PHY_FEC_25G_KR_REQ;
3616 		break;
3617 	case ICE_FEC_RS:
3618 		/* Clear BASE-R bits, and AND RS ability
3619 		 * bits and OR request bits.
3620 		 */
3621 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3622 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3623 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3624 		break;
3625 	case ICE_FEC_NONE:
3626 		/* Clear all FEC option bits. */
3627 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3628 		break;
3629 	case ICE_FEC_AUTO:
3630 		/* AND auto FEC bit, and all caps bits. */
3631 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3632 		cfg->link_fec_opt |= pcaps->link_fec_options;
3633 		break;
3634 	default:
3635 		status = -EINVAL;
3636 		break;
3637 	}
3638 
3639 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3640 	    !ice_fw_supports_report_dflt_cfg(hw)) {
3641 		struct ice_link_default_override_tlv tlv = { 0 };
3642 
3643 		status = ice_get_link_default_override(&tlv, pi);
3644 		if (status)
3645 			goto out;
3646 
3647 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3648 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3649 			cfg->link_fec_opt = tlv.fec_options;
3650 	}
3651 
3652 out:
3653 	kfree(pcaps);
3654 
3655 	return status;
3656 }
3657 
3658 /**
3659  * ice_get_link_status - get status of the HW network link
3660  * @pi: port information structure
3661  * @link_up: pointer to bool (true/false = linkup/linkdown)
3662  *
3663  * Variable link_up is true if link is up, false if link is down.
3664  * The variable link_up is invalid if status is non zero. As a
3665  * result of this call, link status reporting becomes enabled
3666  */
ice_get_link_status(struct ice_port_info * pi,bool * link_up)3667 int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3668 {
3669 	struct ice_phy_info *phy_info;
3670 	int status = 0;
3671 
3672 	if (!pi || !link_up)
3673 		return -EINVAL;
3674 
3675 	phy_info = &pi->phy;
3676 
3677 	if (phy_info->get_link_info) {
3678 		status = ice_update_link_info(pi);
3679 
3680 		if (status)
3681 			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3682 				  status);
3683 	}
3684 
3685 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3686 
3687 	return status;
3688 }
3689 
3690 /**
3691  * ice_aq_set_link_restart_an
3692  * @pi: pointer to the port information structure
3693  * @ena_link: if true: enable link, if false: disable link
3694  * @cd: pointer to command details structure or NULL
3695  *
3696  * Sets up the link and restarts the Auto-Negotiation over the link.
3697  */
3698 int
ice_aq_set_link_restart_an(struct ice_port_info * pi,bool ena_link,struct ice_sq_cd * cd)3699 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3700 			   struct ice_sq_cd *cd)
3701 {
3702 	struct ice_aqc_restart_an *cmd;
3703 	struct ice_aq_desc desc;
3704 
3705 	cmd = &desc.params.restart_an;
3706 
3707 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3708 
3709 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3710 	cmd->lport_num = pi->lport;
3711 	if (ena_link)
3712 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3713 	else
3714 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3715 
3716 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3717 }
3718 
3719 /**
3720  * ice_aq_set_event_mask
3721  * @hw: pointer to the HW struct
3722  * @port_num: port number of the physical function
3723  * @mask: event mask to be set
3724  * @cd: pointer to command details structure or NULL
3725  *
3726  * Set event mask (0x0613)
3727  */
3728 int
ice_aq_set_event_mask(struct ice_hw * hw,u8 port_num,u16 mask,struct ice_sq_cd * cd)3729 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3730 		      struct ice_sq_cd *cd)
3731 {
3732 	struct ice_aqc_set_event_mask *cmd;
3733 	struct ice_aq_desc desc;
3734 
3735 	cmd = &desc.params.set_event_mask;
3736 
3737 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3738 
3739 	cmd->lport_num = port_num;
3740 
3741 	cmd->event_mask = cpu_to_le16(mask);
3742 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3743 }
3744 
3745 /**
3746  * ice_aq_set_mac_loopback
3747  * @hw: pointer to the HW struct
3748  * @ena_lpbk: Enable or Disable loopback
3749  * @cd: pointer to command details structure or NULL
3750  *
3751  * Enable/disable loopback on a given port
3752  */
3753 int
ice_aq_set_mac_loopback(struct ice_hw * hw,bool ena_lpbk,struct ice_sq_cd * cd)3754 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3755 {
3756 	struct ice_aqc_set_mac_lb *cmd;
3757 	struct ice_aq_desc desc;
3758 
3759 	cmd = &desc.params.set_mac_lb;
3760 
3761 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3762 	if (ena_lpbk)
3763 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3764 
3765 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3766 }
3767 
3768 /**
3769  * ice_aq_set_port_id_led
3770  * @pi: pointer to the port information
3771  * @is_orig_mode: is this LED set to original mode (by the net-list)
3772  * @cd: pointer to command details structure or NULL
3773  *
3774  * Set LED value for the given port (0x06e9)
3775  */
3776 int
ice_aq_set_port_id_led(struct ice_port_info * pi,bool is_orig_mode,struct ice_sq_cd * cd)3777 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3778 		       struct ice_sq_cd *cd)
3779 {
3780 	struct ice_aqc_set_port_id_led *cmd;
3781 	struct ice_hw *hw = pi->hw;
3782 	struct ice_aq_desc desc;
3783 
3784 	cmd = &desc.params.set_port_id_led;
3785 
3786 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3787 
3788 	if (is_orig_mode)
3789 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3790 	else
3791 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3792 
3793 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3794 }
3795 
3796 /**
3797  * ice_aq_get_port_options
3798  * @hw: pointer to the HW struct
3799  * @options: buffer for the resultant port options
3800  * @option_count: input - size of the buffer in port options structures,
3801  *                output - number of returned port options
3802  * @lport: logical port to call the command with (optional)
3803  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3804  *               when PF owns more than 1 port it must be true
3805  * @active_option_idx: index of active port option in returned buffer
3806  * @active_option_valid: active option in returned buffer is valid
3807  * @pending_option_idx: index of pending port option in returned buffer
3808  * @pending_option_valid: pending option in returned buffer is valid
3809  *
3810  * Calls Get Port Options AQC (0x06ea) and verifies result.
3811  */
3812 int
ice_aq_get_port_options(struct ice_hw * hw,struct ice_aqc_get_port_options_elem * options,u8 * option_count,u8 lport,bool lport_valid,u8 * active_option_idx,bool * active_option_valid,u8 * pending_option_idx,bool * pending_option_valid)3813 ice_aq_get_port_options(struct ice_hw *hw,
3814 			struct ice_aqc_get_port_options_elem *options,
3815 			u8 *option_count, u8 lport, bool lport_valid,
3816 			u8 *active_option_idx, bool *active_option_valid,
3817 			u8 *pending_option_idx, bool *pending_option_valid)
3818 {
3819 	struct ice_aqc_get_port_options *cmd;
3820 	struct ice_aq_desc desc;
3821 	int status;
3822 	u8 i;
3823 
3824 	/* options buffer shall be able to hold max returned options */
3825 	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
3826 		return -EINVAL;
3827 
3828 	cmd = &desc.params.get_port_options;
3829 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
3830 
3831 	if (lport_valid)
3832 		cmd->lport_num = lport;
3833 	cmd->lport_num_valid = lport_valid;
3834 
3835 	status = ice_aq_send_cmd(hw, &desc, options,
3836 				 *option_count * sizeof(*options), NULL);
3837 	if (status)
3838 		return status;
3839 
3840 	/* verify direct FW response & set output parameters */
3841 	*option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
3842 				  cmd->port_options_count);
3843 	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
3844 	*active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
3845 					 cmd->port_options);
3846 	if (*active_option_valid) {
3847 		*active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
3848 					       cmd->port_options);
3849 		if (*active_option_idx > (*option_count - 1))
3850 			return -EIO;
3851 		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
3852 			  *active_option_idx);
3853 	}
3854 
3855 	*pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
3856 					  cmd->pending_port_option_status);
3857 	if (*pending_option_valid) {
3858 		*pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
3859 						cmd->pending_port_option_status);
3860 		if (*pending_option_idx > (*option_count - 1))
3861 			return -EIO;
3862 		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
3863 			  *pending_option_idx);
3864 	}
3865 
3866 	/* mask output options fields */
3867 	for (i = 0; i < *option_count; i++) {
3868 		options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
3869 					   options[i].pmd);
3870 		options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
3871 						      options[i].max_lane_speed);
3872 		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
3873 			  options[i].pmd, options[i].max_lane_speed);
3874 	}
3875 
3876 	return 0;
3877 }
3878 
3879 /**
3880  * ice_aq_set_port_option
3881  * @hw: pointer to the HW struct
3882  * @lport: logical port to call the command with
3883  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3884  *               when PF owns more than 1 port it must be true
3885  * @new_option: new port option to be written
3886  *
3887  * Calls Set Port Options AQC (0x06eb).
3888  */
3889 int
ice_aq_set_port_option(struct ice_hw * hw,u8 lport,u8 lport_valid,u8 new_option)3890 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
3891 		       u8 new_option)
3892 {
3893 	struct ice_aqc_set_port_option *cmd;
3894 	struct ice_aq_desc desc;
3895 
3896 	if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
3897 		return -EINVAL;
3898 
3899 	cmd = &desc.params.set_port_option;
3900 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
3901 
3902 	if (lport_valid)
3903 		cmd->lport_num = lport;
3904 
3905 	cmd->lport_num_valid = lport_valid;
3906 	cmd->selected_port_option = new_option;
3907 
3908 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3909 }
3910 
3911 /**
3912  * ice_aq_sff_eeprom
3913  * @hw: pointer to the HW struct
3914  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3915  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3916  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3917  * @page: QSFP page
3918  * @set_page: set or ignore the page
3919  * @data: pointer to data buffer to be read/written to the I2C device.
3920  * @length: 1-16 for read, 1 for write.
3921  * @write: 0 read, 1 for write.
3922  * @cd: pointer to command details structure or NULL
3923  *
3924  * Read/Write SFF EEPROM (0x06EE)
3925  */
3926 int
ice_aq_sff_eeprom(struct ice_hw * hw,u16 lport,u8 bus_addr,u16 mem_addr,u8 page,u8 set_page,u8 * data,u8 length,bool write,struct ice_sq_cd * cd)3927 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3928 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3929 		  bool write, struct ice_sq_cd *cd)
3930 {
3931 	struct ice_aqc_sff_eeprom *cmd;
3932 	struct ice_aq_desc desc;
3933 	int status;
3934 
3935 	if (!data || (mem_addr & 0xff00))
3936 		return -EINVAL;
3937 
3938 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3939 	cmd = &desc.params.read_write_sff_param;
3940 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
3941 	cmd->lport_num = (u8)(lport & 0xff);
3942 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3943 	cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) &
3944 					 ICE_AQC_SFF_I2CBUS_7BIT_M) |
3945 					((set_page <<
3946 					  ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3947 					 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3948 	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3949 	cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3950 	if (write)
3951 		cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE);
3952 
3953 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3954 	return status;
3955 }
3956 
ice_lut_type_to_size(enum ice_lut_type type)3957 static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
3958 {
3959 	switch (type) {
3960 	case ICE_LUT_VSI:
3961 		return ICE_LUT_VSI_SIZE;
3962 	case ICE_LUT_GLOBAL:
3963 		return ICE_LUT_GLOBAL_SIZE;
3964 	case ICE_LUT_PF:
3965 		return ICE_LUT_PF_SIZE;
3966 	}
3967 	WARN_ONCE(1, "incorrect type passed");
3968 	return ICE_LUT_VSI_SIZE;
3969 }
3970 
ice_lut_size_to_flag(enum ice_lut_size size)3971 static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
3972 {
3973 	switch (size) {
3974 	case ICE_LUT_VSI_SIZE:
3975 		return ICE_AQC_LUT_SIZE_SMALL;
3976 	case ICE_LUT_GLOBAL_SIZE:
3977 		return ICE_AQC_LUT_SIZE_512;
3978 	case ICE_LUT_PF_SIZE:
3979 		return ICE_AQC_LUT_SIZE_2K;
3980 	}
3981 	WARN_ONCE(1, "incorrect size passed");
3982 	return 0;
3983 }
3984 
3985 /**
3986  * __ice_aq_get_set_rss_lut
3987  * @hw: pointer to the hardware structure
3988  * @params: RSS LUT parameters
3989  * @set: set true to set the table, false to get the table
3990  *
3991  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3992  */
3993 static int
__ice_aq_get_set_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * params,bool set)3994 __ice_aq_get_set_rss_lut(struct ice_hw *hw,
3995 			 struct ice_aq_get_set_rss_lut_params *params, bool set)
3996 {
3997 	u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
3998 	enum ice_lut_type lut_type = params->lut_type;
3999 	struct ice_aqc_get_set_rss_lut *desc_params;
4000 	enum ice_aqc_lut_flags flags;
4001 	enum ice_lut_size lut_size;
4002 	struct ice_aq_desc desc;
4003 	u8 *lut = params->lut;
4004 
4005 
4006 	if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
4007 		return -EINVAL;
4008 
4009 	lut_size = ice_lut_type_to_size(lut_type);
4010 	if (lut_size > params->lut_size)
4011 		return -EINVAL;
4012 	else if (set && lut_size != params->lut_size)
4013 		return -EINVAL;
4014 
4015 	opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
4016 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
4017 	if (set)
4018 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4019 
4020 	desc_params = &desc.params.get_set_rss_lut;
4021 	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4022 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4023 
4024 	if (lut_type == ICE_LUT_GLOBAL)
4025 		glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
4026 					  params->global_lut_id);
4027 
4028 	flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size);
4029 	desc_params->flags = cpu_to_le16(flags);
4030 
4031 	return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
4032 }
4033 
4034 /**
4035  * ice_aq_get_rss_lut
4036  * @hw: pointer to the hardware structure
4037  * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4038  *
4039  * get the RSS lookup table, PF or VSI type
4040  */
4041 int
ice_aq_get_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * get_params)4042 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4043 {
4044 	return __ice_aq_get_set_rss_lut(hw, get_params, false);
4045 }
4046 
4047 /**
4048  * ice_aq_set_rss_lut
4049  * @hw: pointer to the hardware structure
4050  * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4051  *
4052  * set the RSS lookup table, PF or VSI type
4053  */
4054 int
ice_aq_set_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * set_params)4055 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4056 {
4057 	return __ice_aq_get_set_rss_lut(hw, set_params, true);
4058 }
4059 
4060 /**
4061  * __ice_aq_get_set_rss_key
4062  * @hw: pointer to the HW struct
4063  * @vsi_id: VSI FW index
4064  * @key: pointer to key info struct
4065  * @set: set true to set the key, false to get the key
4066  *
4067  * get (0x0B04) or set (0x0B02) the RSS key per VSI
4068  */
4069 static int
__ice_aq_get_set_rss_key(struct ice_hw * hw,u16 vsi_id,struct ice_aqc_get_set_rss_keys * key,bool set)4070 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4071 			 struct ice_aqc_get_set_rss_keys *key, bool set)
4072 {
4073 	struct ice_aqc_get_set_rss_key *desc_params;
4074 	u16 key_size = sizeof(*key);
4075 	struct ice_aq_desc desc;
4076 
4077 	if (set) {
4078 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4079 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4080 	} else {
4081 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4082 	}
4083 
4084 	desc_params = &desc.params.get_set_rss_key;
4085 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4086 
4087 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4088 }
4089 
4090 /**
4091  * ice_aq_get_rss_key
4092  * @hw: pointer to the HW struct
4093  * @vsi_handle: software VSI handle
4094  * @key: pointer to key info struct
4095  *
4096  * get the RSS key per VSI
4097  */
4098 int
ice_aq_get_rss_key(struct ice_hw * hw,u16 vsi_handle,struct ice_aqc_get_set_rss_keys * key)4099 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4100 		   struct ice_aqc_get_set_rss_keys *key)
4101 {
4102 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4103 		return -EINVAL;
4104 
4105 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4106 					key, false);
4107 }
4108 
4109 /**
4110  * ice_aq_set_rss_key
4111  * @hw: pointer to the HW struct
4112  * @vsi_handle: software VSI handle
4113  * @keys: pointer to key info struct
4114  *
4115  * set the RSS key per VSI
4116  */
4117 int
ice_aq_set_rss_key(struct ice_hw * hw,u16 vsi_handle,struct ice_aqc_get_set_rss_keys * keys)4118 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4119 		   struct ice_aqc_get_set_rss_keys *keys)
4120 {
4121 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4122 		return -EINVAL;
4123 
4124 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4125 					keys, true);
4126 }
4127 
4128 /**
4129  * ice_aq_add_lan_txq
4130  * @hw: pointer to the hardware structure
4131  * @num_qgrps: Number of added queue groups
4132  * @qg_list: list of queue groups to be added
4133  * @buf_size: size of buffer for indirect command
4134  * @cd: pointer to command details structure or NULL
4135  *
4136  * Add Tx LAN queue (0x0C30)
4137  *
4138  * NOTE:
4139  * Prior to calling add Tx LAN queue:
4140  * Initialize the following as part of the Tx queue context:
4141  * Completion queue ID if the queue uses Completion queue, Quanta profile,
4142  * Cache profile and Packet shaper profile.
4143  *
4144  * After add Tx LAN queue AQ command is completed:
4145  * Interrupts should be associated with specific queues,
4146  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4147  * flow.
4148  */
4149 static int
ice_aq_add_lan_txq(struct ice_hw * hw,u8 num_qgrps,struct ice_aqc_add_tx_qgrp * qg_list,u16 buf_size,struct ice_sq_cd * cd)4150 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4151 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4152 		   struct ice_sq_cd *cd)
4153 {
4154 	struct ice_aqc_add_tx_qgrp *list;
4155 	struct ice_aqc_add_txqs *cmd;
4156 	struct ice_aq_desc desc;
4157 	u16 i, sum_size = 0;
4158 
4159 	cmd = &desc.params.add_txqs;
4160 
4161 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4162 
4163 	if (!qg_list)
4164 		return -EINVAL;
4165 
4166 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4167 		return -EINVAL;
4168 
4169 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4170 		sum_size += struct_size(list, txqs, list->num_txqs);
4171 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4172 						      list->num_txqs);
4173 	}
4174 
4175 	if (buf_size != sum_size)
4176 		return -EINVAL;
4177 
4178 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4179 
4180 	cmd->num_qgrps = num_qgrps;
4181 
4182 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4183 }
4184 
4185 /**
4186  * ice_aq_dis_lan_txq
4187  * @hw: pointer to the hardware structure
4188  * @num_qgrps: number of groups in the list
4189  * @qg_list: the list of groups to disable
4190  * @buf_size: the total size of the qg_list buffer in bytes
4191  * @rst_src: if called due to reset, specifies the reset source
4192  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4193  * @cd: pointer to command details structure or NULL
4194  *
4195  * Disable LAN Tx queue (0x0C31)
4196  */
4197 static int
ice_aq_dis_lan_txq(struct ice_hw * hw,u8 num_qgrps,struct ice_aqc_dis_txq_item * qg_list,u16 buf_size,enum ice_disq_rst_src rst_src,u16 vmvf_num,struct ice_sq_cd * cd)4198 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4199 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4200 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4201 		   struct ice_sq_cd *cd)
4202 {
4203 	struct ice_aqc_dis_txq_item *item;
4204 	struct ice_aqc_dis_txqs *cmd;
4205 	struct ice_aq_desc desc;
4206 	u16 i, sz = 0;
4207 	int status;
4208 
4209 	cmd = &desc.params.dis_txqs;
4210 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4211 
4212 	/* qg_list can be NULL only in VM/VF reset flow */
4213 	if (!qg_list && !rst_src)
4214 		return -EINVAL;
4215 
4216 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4217 		return -EINVAL;
4218 
4219 	cmd->num_entries = num_qgrps;
4220 
4221 	cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
4222 					    ICE_AQC_Q_DIS_TIMEOUT_M);
4223 
4224 	switch (rst_src) {
4225 	case ICE_VM_RESET:
4226 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4227 		cmd->vmvf_and_timeout |=
4228 			cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
4229 		break;
4230 	case ICE_VF_RESET:
4231 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4232 		/* In this case, FW expects vmvf_num to be absolute VF ID */
4233 		cmd->vmvf_and_timeout |=
4234 			cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
4235 				    ICE_AQC_Q_DIS_VMVF_NUM_M);
4236 		break;
4237 	case ICE_NO_RESET:
4238 	default:
4239 		break;
4240 	}
4241 
4242 	/* flush pipe on time out */
4243 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4244 	/* If no queue group info, we are in a reset flow. Issue the AQ */
4245 	if (!qg_list)
4246 		goto do_aq;
4247 
4248 	/* set RD bit to indicate that command buffer is provided by the driver
4249 	 * and it needs to be read by the firmware
4250 	 */
4251 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4252 
4253 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4254 		u16 item_size = struct_size(item, q_id, item->num_qs);
4255 
4256 		/* If the num of queues is even, add 2 bytes of padding */
4257 		if ((item->num_qs % 2) == 0)
4258 			item_size += 2;
4259 
4260 		sz += item_size;
4261 
4262 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4263 	}
4264 
4265 	if (buf_size != sz)
4266 		return -EINVAL;
4267 
4268 do_aq:
4269 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4270 	if (status) {
4271 		if (!qg_list)
4272 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4273 				  vmvf_num, hw->adminq.sq_last_status);
4274 		else
4275 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4276 				  le16_to_cpu(qg_list[0].q_id[0]),
4277 				  hw->adminq.sq_last_status);
4278 	}
4279 	return status;
4280 }
4281 
4282 /**
4283  * ice_aq_cfg_lan_txq
4284  * @hw: pointer to the hardware structure
4285  * @buf: buffer for command
4286  * @buf_size: size of buffer in bytes
4287  * @num_qs: number of queues being configured
4288  * @oldport: origination lport
4289  * @newport: destination lport
4290  * @cd: pointer to command details structure or NULL
4291  *
4292  * Move/Configure LAN Tx queue (0x0C32)
4293  *
4294  * There is a better AQ command to use for moving nodes, so only coding
4295  * this one for configuring the node.
4296  */
4297 int
ice_aq_cfg_lan_txq(struct ice_hw * hw,struct ice_aqc_cfg_txqs_buf * buf,u16 buf_size,u16 num_qs,u8 oldport,u8 newport,struct ice_sq_cd * cd)4298 ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4299 		   u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4300 		   struct ice_sq_cd *cd)
4301 {
4302 	struct ice_aqc_cfg_txqs *cmd;
4303 	struct ice_aq_desc desc;
4304 	int status;
4305 
4306 	cmd = &desc.params.cfg_txqs;
4307 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs);
4308 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4309 
4310 	if (!buf)
4311 		return -EINVAL;
4312 
4313 	cmd->cmd_type = ICE_AQC_Q_CFG_TC_CHNG;
4314 	cmd->num_qs = num_qs;
4315 	cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4316 	cmd->port_num_chng |= (newport << ICE_AQC_Q_CFG_DST_PRT_S) &
4317 			      ICE_AQC_Q_CFG_DST_PRT_M;
4318 	cmd->time_out = (5 << ICE_AQC_Q_CFG_TIMEOUT_S) &
4319 			ICE_AQC_Q_CFG_TIMEOUT_M;
4320 	cmd->blocked_cgds = 0;
4321 
4322 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4323 	if (status)
4324 		ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4325 			  hw->adminq.sq_last_status);
4326 	return status;
4327 }
4328 
4329 /**
4330  * ice_aq_add_rdma_qsets
4331  * @hw: pointer to the hardware structure
4332  * @num_qset_grps: Number of RDMA Qset groups
4333  * @qset_list: list of Qset groups to be added
4334  * @buf_size: size of buffer for indirect command
4335  * @cd: pointer to command details structure or NULL
4336  *
4337  * Add Tx RDMA Qsets (0x0C33)
4338  */
4339 static int
ice_aq_add_rdma_qsets(struct ice_hw * hw,u8 num_qset_grps,struct ice_aqc_add_rdma_qset_data * qset_list,u16 buf_size,struct ice_sq_cd * cd)4340 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4341 		      struct ice_aqc_add_rdma_qset_data *qset_list,
4342 		      u16 buf_size, struct ice_sq_cd *cd)
4343 {
4344 	struct ice_aqc_add_rdma_qset_data *list;
4345 	struct ice_aqc_add_rdma_qset *cmd;
4346 	struct ice_aq_desc desc;
4347 	u16 i, sum_size = 0;
4348 
4349 	cmd = &desc.params.add_rdma_qset;
4350 
4351 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4352 
4353 	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4354 		return -EINVAL;
4355 
4356 	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4357 		u16 num_qsets = le16_to_cpu(list->num_qsets);
4358 
4359 		sum_size += struct_size(list, rdma_qsets, num_qsets);
4360 		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4361 							     num_qsets);
4362 	}
4363 
4364 	if (buf_size != sum_size)
4365 		return -EINVAL;
4366 
4367 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4368 
4369 	cmd->num_qset_grps = num_qset_grps;
4370 
4371 	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4372 }
4373 
4374 /* End of FW Admin Queue command wrappers */
4375 
4376 /**
4377  * ice_write_byte - write a byte to a packed context structure
4378  * @src_ctx:  the context structure to read from
4379  * @dest_ctx: the context to be written to
4380  * @ce_info:  a description of the struct to be filled
4381  */
4382 static void
ice_write_byte(u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)4383 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4384 {
4385 	u8 src_byte, dest_byte, mask;
4386 	u8 *from, *dest;
4387 	u16 shift_width;
4388 
4389 	/* copy from the next struct field */
4390 	from = src_ctx + ce_info->offset;
4391 
4392 	/* prepare the bits and mask */
4393 	shift_width = ce_info->lsb % 8;
4394 	mask = (u8)(BIT(ce_info->width) - 1);
4395 
4396 	src_byte = *from;
4397 	src_byte &= mask;
4398 
4399 	/* shift to correct alignment */
4400 	mask <<= shift_width;
4401 	src_byte <<= shift_width;
4402 
4403 	/* get the current bits from the target bit string */
4404 	dest = dest_ctx + (ce_info->lsb / 8);
4405 
4406 	memcpy(&dest_byte, dest, sizeof(dest_byte));
4407 
4408 	dest_byte &= ~mask;	/* get the bits not changing */
4409 	dest_byte |= src_byte;	/* add in the new bits */
4410 
4411 	/* put it all back */
4412 	memcpy(dest, &dest_byte, sizeof(dest_byte));
4413 }
4414 
4415 /**
4416  * ice_write_word - write a word to a packed context structure
4417  * @src_ctx:  the context structure to read from
4418  * @dest_ctx: the context to be written to
4419  * @ce_info:  a description of the struct to be filled
4420  */
4421 static void
ice_write_word(u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)4422 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4423 {
4424 	u16 src_word, mask;
4425 	__le16 dest_word;
4426 	u8 *from, *dest;
4427 	u16 shift_width;
4428 
4429 	/* copy from the next struct field */
4430 	from = src_ctx + ce_info->offset;
4431 
4432 	/* prepare the bits and mask */
4433 	shift_width = ce_info->lsb % 8;
4434 	mask = BIT(ce_info->width) - 1;
4435 
4436 	/* don't swizzle the bits until after the mask because the mask bits
4437 	 * will be in a different bit position on big endian machines
4438 	 */
4439 	src_word = *(u16 *)from;
4440 	src_word &= mask;
4441 
4442 	/* shift to correct alignment */
4443 	mask <<= shift_width;
4444 	src_word <<= shift_width;
4445 
4446 	/* get the current bits from the target bit string */
4447 	dest = dest_ctx + (ce_info->lsb / 8);
4448 
4449 	memcpy(&dest_word, dest, sizeof(dest_word));
4450 
4451 	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
4452 	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
4453 
4454 	/* put it all back */
4455 	memcpy(dest, &dest_word, sizeof(dest_word));
4456 }
4457 
4458 /**
4459  * ice_write_dword - write a dword to a packed context structure
4460  * @src_ctx:  the context structure to read from
4461  * @dest_ctx: the context to be written to
4462  * @ce_info:  a description of the struct to be filled
4463  */
4464 static void
ice_write_dword(u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)4465 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4466 {
4467 	u32 src_dword, mask;
4468 	__le32 dest_dword;
4469 	u8 *from, *dest;
4470 	u16 shift_width;
4471 
4472 	/* copy from the next struct field */
4473 	from = src_ctx + ce_info->offset;
4474 
4475 	/* prepare the bits and mask */
4476 	shift_width = ce_info->lsb % 8;
4477 
4478 	/* if the field width is exactly 32 on an x86 machine, then the shift
4479 	 * operation will not work because the SHL instructions count is masked
4480 	 * to 5 bits so the shift will do nothing
4481 	 */
4482 	if (ce_info->width < 32)
4483 		mask = BIT(ce_info->width) - 1;
4484 	else
4485 		mask = (u32)~0;
4486 
4487 	/* don't swizzle the bits until after the mask because the mask bits
4488 	 * will be in a different bit position on big endian machines
4489 	 */
4490 	src_dword = *(u32 *)from;
4491 	src_dword &= mask;
4492 
4493 	/* shift to correct alignment */
4494 	mask <<= shift_width;
4495 	src_dword <<= shift_width;
4496 
4497 	/* get the current bits from the target bit string */
4498 	dest = dest_ctx + (ce_info->lsb / 8);
4499 
4500 	memcpy(&dest_dword, dest, sizeof(dest_dword));
4501 
4502 	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
4503 	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
4504 
4505 	/* put it all back */
4506 	memcpy(dest, &dest_dword, sizeof(dest_dword));
4507 }
4508 
4509 /**
4510  * ice_write_qword - write a qword to a packed context structure
4511  * @src_ctx:  the context structure to read from
4512  * @dest_ctx: the context to be written to
4513  * @ce_info:  a description of the struct to be filled
4514  */
4515 static void
ice_write_qword(u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)4516 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4517 {
4518 	u64 src_qword, mask;
4519 	__le64 dest_qword;
4520 	u8 *from, *dest;
4521 	u16 shift_width;
4522 
4523 	/* copy from the next struct field */
4524 	from = src_ctx + ce_info->offset;
4525 
4526 	/* prepare the bits and mask */
4527 	shift_width = ce_info->lsb % 8;
4528 
4529 	/* if the field width is exactly 64 on an x86 machine, then the shift
4530 	 * operation will not work because the SHL instructions count is masked
4531 	 * to 6 bits so the shift will do nothing
4532 	 */
4533 	if (ce_info->width < 64)
4534 		mask = BIT_ULL(ce_info->width) - 1;
4535 	else
4536 		mask = (u64)~0;
4537 
4538 	/* don't swizzle the bits until after the mask because the mask bits
4539 	 * will be in a different bit position on big endian machines
4540 	 */
4541 	src_qword = *(u64 *)from;
4542 	src_qword &= mask;
4543 
4544 	/* shift to correct alignment */
4545 	mask <<= shift_width;
4546 	src_qword <<= shift_width;
4547 
4548 	/* get the current bits from the target bit string */
4549 	dest = dest_ctx + (ce_info->lsb / 8);
4550 
4551 	memcpy(&dest_qword, dest, sizeof(dest_qword));
4552 
4553 	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
4554 	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
4555 
4556 	/* put it all back */
4557 	memcpy(dest, &dest_qword, sizeof(dest_qword));
4558 }
4559 
4560 /**
4561  * ice_set_ctx - set context bits in packed structure
4562  * @hw: pointer to the hardware structure
4563  * @src_ctx:  pointer to a generic non-packed context structure
4564  * @dest_ctx: pointer to memory for the packed structure
4565  * @ce_info:  a description of the structure to be transformed
4566  */
4567 int
ice_set_ctx(struct ice_hw * hw,u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)4568 ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4569 	    const struct ice_ctx_ele *ce_info)
4570 {
4571 	int f;
4572 
4573 	for (f = 0; ce_info[f].width; f++) {
4574 		/* We have to deal with each element of the FW response
4575 		 * using the correct size so that we are correct regardless
4576 		 * of the endianness of the machine.
4577 		 */
4578 		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4579 			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4580 				  f, ce_info[f].width, ce_info[f].size_of);
4581 			continue;
4582 		}
4583 		switch (ce_info[f].size_of) {
4584 		case sizeof(u8):
4585 			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
4586 			break;
4587 		case sizeof(u16):
4588 			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
4589 			break;
4590 		case sizeof(u32):
4591 			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
4592 			break;
4593 		case sizeof(u64):
4594 			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
4595 			break;
4596 		default:
4597 			return -EINVAL;
4598 		}
4599 	}
4600 
4601 	return 0;
4602 }
4603 
4604 /**
4605  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4606  * @hw: pointer to the HW struct
4607  * @vsi_handle: software VSI handle
4608  * @tc: TC number
4609  * @q_handle: software queue handle
4610  */
4611 struct ice_q_ctx *
ice_get_lan_q_ctx(struct ice_hw * hw,u16 vsi_handle,u8 tc,u16 q_handle)4612 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4613 {
4614 	struct ice_vsi_ctx *vsi;
4615 	struct ice_q_ctx *q_ctx;
4616 
4617 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4618 	if (!vsi)
4619 		return NULL;
4620 	if (q_handle >= vsi->num_lan_q_entries[tc])
4621 		return NULL;
4622 	if (!vsi->lan_q_ctx[tc])
4623 		return NULL;
4624 	q_ctx = vsi->lan_q_ctx[tc];
4625 	return &q_ctx[q_handle];
4626 }
4627 
4628 /**
4629  * ice_ena_vsi_txq
4630  * @pi: port information structure
4631  * @vsi_handle: software VSI handle
4632  * @tc: TC number
4633  * @q_handle: software queue handle
4634  * @num_qgrps: Number of added queue groups
4635  * @buf: list of queue groups to be added
4636  * @buf_size: size of buffer for indirect command
4637  * @cd: pointer to command details structure or NULL
4638  *
4639  * This function adds one LAN queue
4640  */
4641 int
ice_ena_vsi_txq(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 q_handle,u8 num_qgrps,struct ice_aqc_add_tx_qgrp * buf,u16 buf_size,struct ice_sq_cd * cd)4642 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4643 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4644 		struct ice_sq_cd *cd)
4645 {
4646 	struct ice_aqc_txsched_elem_data node = { 0 };
4647 	struct ice_sched_node *parent;
4648 	struct ice_q_ctx *q_ctx;
4649 	struct ice_hw *hw;
4650 	int status;
4651 
4652 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4653 		return -EIO;
4654 
4655 	if (num_qgrps > 1 || buf->num_txqs > 1)
4656 		return -ENOSPC;
4657 
4658 	hw = pi->hw;
4659 
4660 	if (!ice_is_vsi_valid(hw, vsi_handle))
4661 		return -EINVAL;
4662 
4663 	mutex_lock(&pi->sched_lock);
4664 
4665 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4666 	if (!q_ctx) {
4667 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4668 			  q_handle);
4669 		status = -EINVAL;
4670 		goto ena_txq_exit;
4671 	}
4672 
4673 	/* find a parent node */
4674 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4675 					    ICE_SCHED_NODE_OWNER_LAN);
4676 	if (!parent) {
4677 		status = -EINVAL;
4678 		goto ena_txq_exit;
4679 	}
4680 
4681 	buf->parent_teid = parent->info.node_teid;
4682 	node.parent_teid = parent->info.node_teid;
4683 	/* Mark that the values in the "generic" section as valid. The default
4684 	 * value in the "generic" section is zero. This means that :
4685 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4686 	 * - 0 priority among siblings, indicated by Bit 1-3.
4687 	 * - WFQ, indicated by Bit 4.
4688 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4689 	 * Bit 5-6.
4690 	 * - Bit 7 is reserved.
4691 	 * Without setting the generic section as valid in valid_sections, the
4692 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4693 	 */
4694 	buf->txqs[0].info.valid_sections =
4695 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4696 		ICE_AQC_ELEM_VALID_EIR;
4697 	buf->txqs[0].info.generic = 0;
4698 	buf->txqs[0].info.cir_bw.bw_profile_idx =
4699 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4700 	buf->txqs[0].info.cir_bw.bw_alloc =
4701 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4702 	buf->txqs[0].info.eir_bw.bw_profile_idx =
4703 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4704 	buf->txqs[0].info.eir_bw.bw_alloc =
4705 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4706 
4707 	/* add the LAN queue */
4708 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4709 	if (status) {
4710 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4711 			  le16_to_cpu(buf->txqs[0].txq_id),
4712 			  hw->adminq.sq_last_status);
4713 		goto ena_txq_exit;
4714 	}
4715 
4716 	node.node_teid = buf->txqs[0].q_teid;
4717 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4718 	q_ctx->q_handle = q_handle;
4719 	q_ctx->q_teid = le32_to_cpu(node.node_teid);
4720 
4721 	/* add a leaf node into scheduler tree queue layer */
4722 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
4723 	if (!status)
4724 		status = ice_sched_replay_q_bw(pi, q_ctx);
4725 
4726 ena_txq_exit:
4727 	mutex_unlock(&pi->sched_lock);
4728 	return status;
4729 }
4730 
4731 /**
4732  * ice_dis_vsi_txq
4733  * @pi: port information structure
4734  * @vsi_handle: software VSI handle
4735  * @tc: TC number
4736  * @num_queues: number of queues
4737  * @q_handles: pointer to software queue handle array
4738  * @q_ids: pointer to the q_id array
4739  * @q_teids: pointer to queue node teids
4740  * @rst_src: if called due to reset, specifies the reset source
4741  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4742  * @cd: pointer to command details structure or NULL
4743  *
4744  * This function removes queues and their corresponding nodes in SW DB
4745  */
4746 int
ice_dis_vsi_txq(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u8 num_queues,u16 * q_handles,u16 * q_ids,u32 * q_teids,enum ice_disq_rst_src rst_src,u16 vmvf_num,struct ice_sq_cd * cd)4747 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4748 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4749 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4750 		struct ice_sq_cd *cd)
4751 {
4752 	struct ice_aqc_dis_txq_item *qg_list;
4753 	struct ice_q_ctx *q_ctx;
4754 	int status = -ENOENT;
4755 	struct ice_hw *hw;
4756 	u16 i, buf_size;
4757 
4758 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4759 		return -EIO;
4760 
4761 	hw = pi->hw;
4762 
4763 	if (!num_queues) {
4764 		/* if queue is disabled already yet the disable queue command
4765 		 * has to be sent to complete the VF reset, then call
4766 		 * ice_aq_dis_lan_txq without any queue information
4767 		 */
4768 		if (rst_src)
4769 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4770 						  vmvf_num, NULL);
4771 		return -EIO;
4772 	}
4773 
4774 	buf_size = struct_size(qg_list, q_id, 1);
4775 	qg_list = kzalloc(buf_size, GFP_KERNEL);
4776 	if (!qg_list)
4777 		return -ENOMEM;
4778 
4779 	mutex_lock(&pi->sched_lock);
4780 
4781 	for (i = 0; i < num_queues; i++) {
4782 		struct ice_sched_node *node;
4783 
4784 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4785 		if (!node)
4786 			continue;
4787 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4788 		if (!q_ctx) {
4789 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4790 				  q_handles[i]);
4791 			continue;
4792 		}
4793 		if (q_ctx->q_handle != q_handles[i]) {
4794 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4795 				  q_ctx->q_handle, q_handles[i]);
4796 			continue;
4797 		}
4798 		qg_list->parent_teid = node->info.parent_teid;
4799 		qg_list->num_qs = 1;
4800 		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4801 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4802 					    vmvf_num, cd);
4803 
4804 		if (status)
4805 			break;
4806 		ice_free_sched_node(pi, node);
4807 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4808 		q_ctx->q_teid = ICE_INVAL_TEID;
4809 	}
4810 	mutex_unlock(&pi->sched_lock);
4811 	kfree(qg_list);
4812 	return status;
4813 }
4814 
4815 /**
4816  * ice_cfg_vsi_qs - configure the new/existing VSI queues
4817  * @pi: port information structure
4818  * @vsi_handle: software VSI handle
4819  * @tc_bitmap: TC bitmap
4820  * @maxqs: max queues array per TC
4821  * @owner: LAN or RDMA
4822  *
4823  * This function adds/updates the VSI queues per TC.
4824  */
4825 static int
ice_cfg_vsi_qs(struct ice_port_info * pi,u16 vsi_handle,u8 tc_bitmap,u16 * maxqs,u8 owner)4826 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4827 	       u16 *maxqs, u8 owner)
4828 {
4829 	int status = 0;
4830 	u8 i;
4831 
4832 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4833 		return -EIO;
4834 
4835 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4836 		return -EINVAL;
4837 
4838 	mutex_lock(&pi->sched_lock);
4839 
4840 	ice_for_each_traffic_class(i) {
4841 		/* configuration is possible only if TC node is present */
4842 		if (!ice_sched_get_tc_node(pi, i))
4843 			continue;
4844 
4845 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4846 					   ice_is_tc_ena(tc_bitmap, i));
4847 		if (status)
4848 			break;
4849 	}
4850 
4851 	mutex_unlock(&pi->sched_lock);
4852 	return status;
4853 }
4854 
4855 /**
4856  * ice_cfg_vsi_lan - configure VSI LAN queues
4857  * @pi: port information structure
4858  * @vsi_handle: software VSI handle
4859  * @tc_bitmap: TC bitmap
4860  * @max_lanqs: max LAN queues array per TC
4861  *
4862  * This function adds/updates the VSI LAN queues per TC.
4863  */
4864 int
ice_cfg_vsi_lan(struct ice_port_info * pi,u16 vsi_handle,u8 tc_bitmap,u16 * max_lanqs)4865 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4866 		u16 *max_lanqs)
4867 {
4868 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4869 			      ICE_SCHED_NODE_OWNER_LAN);
4870 }
4871 
4872 /**
4873  * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4874  * @pi: port information structure
4875  * @vsi_handle: software VSI handle
4876  * @tc_bitmap: TC bitmap
4877  * @max_rdmaqs: max RDMA queues array per TC
4878  *
4879  * This function adds/updates the VSI RDMA queues per TC.
4880  */
4881 int
ice_cfg_vsi_rdma(struct ice_port_info * pi,u16 vsi_handle,u16 tc_bitmap,u16 * max_rdmaqs)4882 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4883 		 u16 *max_rdmaqs)
4884 {
4885 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
4886 			      ICE_SCHED_NODE_OWNER_RDMA);
4887 }
4888 
4889 /**
4890  * ice_ena_vsi_rdma_qset
4891  * @pi: port information structure
4892  * @vsi_handle: software VSI handle
4893  * @tc: TC number
4894  * @rdma_qset: pointer to RDMA Qset
4895  * @num_qsets: number of RDMA Qsets
4896  * @qset_teid: pointer to Qset node TEIDs
4897  *
4898  * This function adds RDMA Qset
4899  */
4900 int
ice_ena_vsi_rdma_qset(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 * rdma_qset,u16 num_qsets,u32 * qset_teid)4901 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4902 		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4903 {
4904 	struct ice_aqc_txsched_elem_data node = { 0 };
4905 	struct ice_aqc_add_rdma_qset_data *buf;
4906 	struct ice_sched_node *parent;
4907 	struct ice_hw *hw;
4908 	u16 i, buf_size;
4909 	int ret;
4910 
4911 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4912 		return -EIO;
4913 	hw = pi->hw;
4914 
4915 	if (!ice_is_vsi_valid(hw, vsi_handle))
4916 		return -EINVAL;
4917 
4918 	buf_size = struct_size(buf, rdma_qsets, num_qsets);
4919 	buf = kzalloc(buf_size, GFP_KERNEL);
4920 	if (!buf)
4921 		return -ENOMEM;
4922 	mutex_lock(&pi->sched_lock);
4923 
4924 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4925 					    ICE_SCHED_NODE_OWNER_RDMA);
4926 	if (!parent) {
4927 		ret = -EINVAL;
4928 		goto rdma_error_exit;
4929 	}
4930 	buf->parent_teid = parent->info.node_teid;
4931 	node.parent_teid = parent->info.node_teid;
4932 
4933 	buf->num_qsets = cpu_to_le16(num_qsets);
4934 	for (i = 0; i < num_qsets; i++) {
4935 		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
4936 		buf->rdma_qsets[i].info.valid_sections =
4937 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4938 			ICE_AQC_ELEM_VALID_EIR;
4939 		buf->rdma_qsets[i].info.generic = 0;
4940 		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
4941 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4942 		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
4943 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4944 		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
4945 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4946 		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
4947 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4948 	}
4949 	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
4950 	if (ret) {
4951 		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
4952 		goto rdma_error_exit;
4953 	}
4954 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4955 	for (i = 0; i < num_qsets; i++) {
4956 		node.node_teid = buf->rdma_qsets[i].qset_teid;
4957 		ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
4958 					 &node, NULL);
4959 		if (ret)
4960 			break;
4961 		qset_teid[i] = le32_to_cpu(node.node_teid);
4962 	}
4963 rdma_error_exit:
4964 	mutex_unlock(&pi->sched_lock);
4965 	kfree(buf);
4966 	return ret;
4967 }
4968 
4969 /**
4970  * ice_dis_vsi_rdma_qset - free RDMA resources
4971  * @pi: port_info struct
4972  * @count: number of RDMA Qsets to free
4973  * @qset_teid: TEID of Qset node
4974  * @q_id: list of queue IDs being disabled
4975  */
4976 int
ice_dis_vsi_rdma_qset(struct ice_port_info * pi,u16 count,u32 * qset_teid,u16 * q_id)4977 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
4978 		      u16 *q_id)
4979 {
4980 	struct ice_aqc_dis_txq_item *qg_list;
4981 	struct ice_hw *hw;
4982 	int status = 0;
4983 	u16 qg_size;
4984 	int i;
4985 
4986 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4987 		return -EIO;
4988 
4989 	hw = pi->hw;
4990 
4991 	qg_size = struct_size(qg_list, q_id, 1);
4992 	qg_list = kzalloc(qg_size, GFP_KERNEL);
4993 	if (!qg_list)
4994 		return -ENOMEM;
4995 
4996 	mutex_lock(&pi->sched_lock);
4997 
4998 	for (i = 0; i < count; i++) {
4999 		struct ice_sched_node *node;
5000 
5001 		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
5002 		if (!node)
5003 			continue;
5004 
5005 		qg_list->parent_teid = node->info.parent_teid;
5006 		qg_list->num_qs = 1;
5007 		qg_list->q_id[0] =
5008 			cpu_to_le16(q_id[i] |
5009 				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
5010 
5011 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
5012 					    ICE_NO_RESET, 0, NULL);
5013 		if (status)
5014 			break;
5015 
5016 		ice_free_sched_node(pi, node);
5017 	}
5018 
5019 	mutex_unlock(&pi->sched_lock);
5020 	kfree(qg_list);
5021 	return status;
5022 }
5023 
5024 /**
5025  * ice_replay_pre_init - replay pre initialization
5026  * @hw: pointer to the HW struct
5027  *
5028  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5029  */
ice_replay_pre_init(struct ice_hw * hw)5030 static int ice_replay_pre_init(struct ice_hw *hw)
5031 {
5032 	struct ice_switch_info *sw = hw->switch_info;
5033 	u8 i;
5034 
5035 	/* Delete old entries from replay filter list head if there is any */
5036 	ice_rm_all_sw_replay_rule_info(hw);
5037 	/* In start of replay, move entries into replay_rules list, it
5038 	 * will allow adding rules entries back to filt_rules list,
5039 	 * which is operational list.
5040 	 */
5041 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5042 		list_replace_init(&sw->recp_list[i].filt_rules,
5043 				  &sw->recp_list[i].filt_replay_rules);
5044 	ice_sched_replay_agg_vsi_preinit(hw);
5045 
5046 	return 0;
5047 }
5048 
5049 /**
5050  * ice_replay_vsi - replay VSI configuration
5051  * @hw: pointer to the HW struct
5052  * @vsi_handle: driver VSI handle
5053  *
5054  * Restore all VSI configuration after reset. It is required to call this
5055  * function with main VSI first.
5056  */
ice_replay_vsi(struct ice_hw * hw,u16 vsi_handle)5057 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5058 {
5059 	int status;
5060 
5061 	if (!ice_is_vsi_valid(hw, vsi_handle))
5062 		return -EINVAL;
5063 
5064 	/* Replay pre-initialization if there is any */
5065 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5066 		status = ice_replay_pre_init(hw);
5067 		if (status)
5068 			return status;
5069 	}
5070 	/* Replay per VSI all RSS configurations */
5071 	status = ice_replay_rss_cfg(hw, vsi_handle);
5072 	if (status)
5073 		return status;
5074 	/* Replay per VSI all filters */
5075 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5076 	if (!status)
5077 		status = ice_replay_vsi_agg(hw, vsi_handle);
5078 	return status;
5079 }
5080 
5081 /**
5082  * ice_replay_post - post replay configuration cleanup
5083  * @hw: pointer to the HW struct
5084  *
5085  * Post replay cleanup.
5086  */
ice_replay_post(struct ice_hw * hw)5087 void ice_replay_post(struct ice_hw *hw)
5088 {
5089 	/* Delete old entries from replay filter list head */
5090 	ice_rm_all_sw_replay_rule_info(hw);
5091 	ice_sched_replay_agg(hw);
5092 }
5093 
5094 /**
5095  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5096  * @hw: ptr to the hardware info
5097  * @reg: offset of 64 bit HW register to read from
5098  * @prev_stat_loaded: bool to specify if previous stats are loaded
5099  * @prev_stat: ptr to previous loaded stat value
5100  * @cur_stat: ptr to current stat value
5101  */
5102 void
ice_stat_update40(struct ice_hw * hw,u32 reg,bool prev_stat_loaded,u64 * prev_stat,u64 * cur_stat)5103 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5104 		  u64 *prev_stat, u64 *cur_stat)
5105 {
5106 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5107 
5108 	/* device stats are not reset at PFR, they likely will not be zeroed
5109 	 * when the driver starts. Thus, save the value from the first read
5110 	 * without adding to the statistic value so that we report stats which
5111 	 * count up from zero.
5112 	 */
5113 	if (!prev_stat_loaded) {
5114 		*prev_stat = new_data;
5115 		return;
5116 	}
5117 
5118 	/* Calculate the difference between the new and old values, and then
5119 	 * add it to the software stat value.
5120 	 */
5121 	if (new_data >= *prev_stat)
5122 		*cur_stat += new_data - *prev_stat;
5123 	else
5124 		/* to manage the potential roll-over */
5125 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5126 
5127 	/* Update the previously stored value to prepare for next read */
5128 	*prev_stat = new_data;
5129 }
5130 
5131 /**
5132  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5133  * @hw: ptr to the hardware info
5134  * @reg: offset of HW register to read from
5135  * @prev_stat_loaded: bool to specify if previous stats are loaded
5136  * @prev_stat: ptr to previous loaded stat value
5137  * @cur_stat: ptr to current stat value
5138  */
5139 void
ice_stat_update32(struct ice_hw * hw,u32 reg,bool prev_stat_loaded,u64 * prev_stat,u64 * cur_stat)5140 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5141 		  u64 *prev_stat, u64 *cur_stat)
5142 {
5143 	u32 new_data;
5144 
5145 	new_data = rd32(hw, reg);
5146 
5147 	/* device stats are not reset at PFR, they likely will not be zeroed
5148 	 * when the driver starts. Thus, save the value from the first read
5149 	 * without adding to the statistic value so that we report stats which
5150 	 * count up from zero.
5151 	 */
5152 	if (!prev_stat_loaded) {
5153 		*prev_stat = new_data;
5154 		return;
5155 	}
5156 
5157 	/* Calculate the difference between the new and old values, and then
5158 	 * add it to the software stat value.
5159 	 */
5160 	if (new_data >= *prev_stat)
5161 		*cur_stat += new_data - *prev_stat;
5162 	else
5163 		/* to manage the potential roll-over */
5164 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5165 
5166 	/* Update the previously stored value to prepare for next read */
5167 	*prev_stat = new_data;
5168 }
5169 
5170 /**
5171  * ice_sched_query_elem - query element information from HW
5172  * @hw: pointer to the HW struct
5173  * @node_teid: node TEID to be queried
5174  * @buf: buffer to element information
5175  *
5176  * This function queries HW element information
5177  */
5178 int
ice_sched_query_elem(struct ice_hw * hw,u32 node_teid,struct ice_aqc_txsched_elem_data * buf)5179 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5180 		     struct ice_aqc_txsched_elem_data *buf)
5181 {
5182 	u16 buf_size, num_elem_ret = 0;
5183 	int status;
5184 
5185 	buf_size = sizeof(*buf);
5186 	memset(buf, 0, buf_size);
5187 	buf->node_teid = cpu_to_le32(node_teid);
5188 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5189 					  NULL);
5190 	if (status || num_elem_ret != 1)
5191 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5192 	return status;
5193 }
5194 
5195 /**
5196  * ice_aq_read_i2c
5197  * @hw: pointer to the hw struct
5198  * @topo_addr: topology address for a device to communicate with
5199  * @bus_addr: 7-bit I2C bus address
5200  * @addr: I2C memory address (I2C offset) with up to 16 bits
5201  * @params: I2C parameters: bit [7] - Repeated start,
5202  *			    bits [6:5] data offset size,
5203  *			    bit [4] - I2C address type,
5204  *			    bits [3:0] - data size to read (0-16 bytes)
5205  * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5206  * @cd: pointer to command details structure or NULL
5207  *
5208  * Read I2C (0x06E2)
5209  */
5210 int
ice_aq_read_i2c(struct ice_hw * hw,struct ice_aqc_link_topo_addr topo_addr,u16 bus_addr,__le16 addr,u8 params,u8 * data,struct ice_sq_cd * cd)5211 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5212 		u16 bus_addr, __le16 addr, u8 params, u8 *data,
5213 		struct ice_sq_cd *cd)
5214 {
5215 	struct ice_aq_desc desc = { 0 };
5216 	struct ice_aqc_i2c *cmd;
5217 	u8 data_size;
5218 	int status;
5219 
5220 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5221 	cmd = &desc.params.read_write_i2c;
5222 
5223 	if (!data)
5224 		return -EINVAL;
5225 
5226 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5227 
5228 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5229 	cmd->topo_addr = topo_addr;
5230 	cmd->i2c_params = params;
5231 	cmd->i2c_addr = addr;
5232 
5233 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5234 	if (!status) {
5235 		struct ice_aqc_read_i2c_resp *resp;
5236 		u8 i;
5237 
5238 		resp = &desc.params.read_i2c_resp;
5239 		for (i = 0; i < data_size; i++) {
5240 			*data = resp->i2c_data[i];
5241 			data++;
5242 		}
5243 	}
5244 
5245 	return status;
5246 }
5247 
5248 /**
5249  * ice_aq_write_i2c
5250  * @hw: pointer to the hw struct
5251  * @topo_addr: topology address for a device to communicate with
5252  * @bus_addr: 7-bit I2C bus address
5253  * @addr: I2C memory address (I2C offset) with up to 16 bits
5254  * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5255  * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5256  * @cd: pointer to command details structure or NULL
5257  *
5258  * Write I2C (0x06E3)
5259  *
5260  * * Return:
5261  * * 0             - Successful write to the i2c device
5262  * * -EINVAL       - Data size greater than 4 bytes
5263  * * -EIO          - FW error
5264  */
5265 int
ice_aq_write_i2c(struct ice_hw * hw,struct ice_aqc_link_topo_addr topo_addr,u16 bus_addr,__le16 addr,u8 params,const u8 * data,struct ice_sq_cd * cd)5266 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5267 		 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
5268 		 struct ice_sq_cd *cd)
5269 {
5270 	struct ice_aq_desc desc = { 0 };
5271 	struct ice_aqc_i2c *cmd;
5272 	u8 data_size;
5273 
5274 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5275 	cmd = &desc.params.read_write_i2c;
5276 
5277 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5278 
5279 	/* data_size limited to 4 */
5280 	if (data_size > 4)
5281 		return -EINVAL;
5282 
5283 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5284 	cmd->topo_addr = topo_addr;
5285 	cmd->i2c_params = params;
5286 	cmd->i2c_addr = addr;
5287 
5288 	memcpy(cmd->i2c_data, data, data_size);
5289 
5290 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5291 }
5292 
5293 /**
5294  * ice_aq_set_driver_param - Set driver parameter to share via firmware
5295  * @hw: pointer to the HW struct
5296  * @idx: parameter index to set
5297  * @value: the value to set the parameter to
5298  * @cd: pointer to command details structure or NULL
5299  *
5300  * Set the value of one of the software defined parameters. All PFs connected
5301  * to this device can read the value using ice_aq_get_driver_param.
5302  *
5303  * Note that firmware provides no synchronization or locking, and will not
5304  * save the parameter value during a device reset. It is expected that
5305  * a single PF will write the parameter value, while all other PFs will only
5306  * read it.
5307  */
5308 int
ice_aq_set_driver_param(struct ice_hw * hw,enum ice_aqc_driver_params idx,u32 value,struct ice_sq_cd * cd)5309 ice_aq_set_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
5310 			u32 value, struct ice_sq_cd *cd)
5311 {
5312 	struct ice_aqc_driver_shared_params *cmd;
5313 	struct ice_aq_desc desc;
5314 
5315 	if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
5316 		return -EIO;
5317 
5318 	cmd = &desc.params.drv_shared_params;
5319 
5320 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
5321 
5322 	cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_SET;
5323 	cmd->param_indx = idx;
5324 	cmd->param_val = cpu_to_le32(value);
5325 
5326 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5327 }
5328 
5329 /**
5330  * ice_aq_get_driver_param - Get driver parameter shared via firmware
5331  * @hw: pointer to the HW struct
5332  * @idx: parameter index to set
5333  * @value: storage to return the shared parameter
5334  * @cd: pointer to command details structure or NULL
5335  *
5336  * Get the value of one of the software defined parameters.
5337  *
5338  * Note that firmware provides no synchronization or locking. It is expected
5339  * that only a single PF will write a given parameter.
5340  */
5341 int
ice_aq_get_driver_param(struct ice_hw * hw,enum ice_aqc_driver_params idx,u32 * value,struct ice_sq_cd * cd)5342 ice_aq_get_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
5343 			u32 *value, struct ice_sq_cd *cd)
5344 {
5345 	struct ice_aqc_driver_shared_params *cmd;
5346 	struct ice_aq_desc desc;
5347 	int status;
5348 
5349 	if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
5350 		return -EIO;
5351 
5352 	cmd = &desc.params.drv_shared_params;
5353 
5354 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
5355 
5356 	cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_GET;
5357 	cmd->param_indx = idx;
5358 
5359 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5360 	if (status)
5361 		return status;
5362 
5363 	*value = le32_to_cpu(cmd->param_val);
5364 
5365 	return 0;
5366 }
5367 
5368 /**
5369  * ice_aq_set_gpio
5370  * @hw: pointer to the hw struct
5371  * @gpio_ctrl_handle: GPIO controller node handle
5372  * @pin_idx: IO Number of the GPIO that needs to be set
5373  * @value: SW provide IO value to set in the LSB
5374  * @cd: pointer to command details structure or NULL
5375  *
5376  * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5377  */
5378 int
ice_aq_set_gpio(struct ice_hw * hw,u16 gpio_ctrl_handle,u8 pin_idx,bool value,struct ice_sq_cd * cd)5379 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5380 		struct ice_sq_cd *cd)
5381 {
5382 	struct ice_aqc_gpio *cmd;
5383 	struct ice_aq_desc desc;
5384 
5385 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
5386 	cmd = &desc.params.read_write_gpio;
5387 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5388 	cmd->gpio_num = pin_idx;
5389 	cmd->gpio_val = value ? 1 : 0;
5390 
5391 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5392 }
5393 
5394 /**
5395  * ice_aq_get_gpio
5396  * @hw: pointer to the hw struct
5397  * @gpio_ctrl_handle: GPIO controller node handle
5398  * @pin_idx: IO Number of the GPIO that needs to be set
5399  * @value: IO value read
5400  * @cd: pointer to command details structure or NULL
5401  *
5402  * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5403  * the topology
5404  */
5405 int
ice_aq_get_gpio(struct ice_hw * hw,u16 gpio_ctrl_handle,u8 pin_idx,bool * value,struct ice_sq_cd * cd)5406 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5407 		bool *value, struct ice_sq_cd *cd)
5408 {
5409 	struct ice_aqc_gpio *cmd;
5410 	struct ice_aq_desc desc;
5411 	int status;
5412 
5413 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
5414 	cmd = &desc.params.read_write_gpio;
5415 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5416 	cmd->gpio_num = pin_idx;
5417 
5418 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5419 	if (status)
5420 		return status;
5421 
5422 	*value = !!cmd->gpio_val;
5423 	return 0;
5424 }
5425 
5426 /**
5427  * ice_is_fw_api_min_ver
5428  * @hw: pointer to the hardware structure
5429  * @maj: major version
5430  * @min: minor version
5431  * @patch: patch version
5432  *
5433  * Checks if the firmware API is minimum version
5434  */
ice_is_fw_api_min_ver(struct ice_hw * hw,u8 maj,u8 min,u8 patch)5435 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
5436 {
5437 	if (hw->api_maj_ver == maj) {
5438 		if (hw->api_min_ver > min)
5439 			return true;
5440 		if (hw->api_min_ver == min && hw->api_patch >= patch)
5441 			return true;
5442 	} else if (hw->api_maj_ver > maj) {
5443 		return true;
5444 	}
5445 
5446 	return false;
5447 }
5448 
5449 /**
5450  * ice_fw_supports_link_override
5451  * @hw: pointer to the hardware structure
5452  *
5453  * Checks if the firmware supports link override
5454  */
ice_fw_supports_link_override(struct ice_hw * hw)5455 bool ice_fw_supports_link_override(struct ice_hw *hw)
5456 {
5457 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
5458 				     ICE_FW_API_LINK_OVERRIDE_MIN,
5459 				     ICE_FW_API_LINK_OVERRIDE_PATCH);
5460 }
5461 
5462 /**
5463  * ice_get_link_default_override
5464  * @ldo: pointer to the link default override struct
5465  * @pi: pointer to the port info struct
5466  *
5467  * Gets the link default override for a port
5468  */
5469 int
ice_get_link_default_override(struct ice_link_default_override_tlv * ldo,struct ice_port_info * pi)5470 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5471 			      struct ice_port_info *pi)
5472 {
5473 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
5474 	struct ice_hw *hw = pi->hw;
5475 	int status;
5476 
5477 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
5478 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5479 	if (status) {
5480 		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5481 		return status;
5482 	}
5483 
5484 	/* Each port has its own config; calculate for our port */
5485 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5486 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5487 
5488 	/* link options first */
5489 	status = ice_read_sr_word(hw, tlv_start, &buf);
5490 	if (status) {
5491 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5492 		return status;
5493 	}
5494 	ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
5495 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5496 		ICE_LINK_OVERRIDE_PHY_CFG_S;
5497 
5498 	/* link PHY config */
5499 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5500 	status = ice_read_sr_word(hw, offset, &buf);
5501 	if (status) {
5502 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5503 		return status;
5504 	}
5505 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5506 
5507 	/* PHY types low */
5508 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5509 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5510 		status = ice_read_sr_word(hw, (offset + i), &buf);
5511 		if (status) {
5512 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5513 			return status;
5514 		}
5515 		/* shift 16 bits at a time to fill 64 bits */
5516 		ldo->phy_type_low |= ((u64)buf << (i * 16));
5517 	}
5518 
5519 	/* PHY types high */
5520 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5521 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5522 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5523 		status = ice_read_sr_word(hw, (offset + i), &buf);
5524 		if (status) {
5525 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5526 			return status;
5527 		}
5528 		/* shift 16 bits at a time to fill 64 bits */
5529 		ldo->phy_type_high |= ((u64)buf << (i * 16));
5530 	}
5531 
5532 	return status;
5533 }
5534 
5535 /**
5536  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5537  * @caps: get PHY capability data
5538  */
ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data * caps)5539 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5540 {
5541 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5542 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5543 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
5544 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
5545 		return true;
5546 
5547 	return false;
5548 }
5549 
5550 /**
5551  * ice_aq_set_lldp_mib - Set the LLDP MIB
5552  * @hw: pointer to the HW struct
5553  * @mib_type: Local, Remote or both Local and Remote MIBs
5554  * @buf: pointer to the caller-supplied buffer to store the MIB block
5555  * @buf_size: size of the buffer (in bytes)
5556  * @cd: pointer to command details structure or NULL
5557  *
5558  * Set the LLDP MIB. (0x0A08)
5559  */
5560 int
ice_aq_set_lldp_mib(struct ice_hw * hw,u8 mib_type,void * buf,u16 buf_size,struct ice_sq_cd * cd)5561 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
5562 		    struct ice_sq_cd *cd)
5563 {
5564 	struct ice_aqc_lldp_set_local_mib *cmd;
5565 	struct ice_aq_desc desc;
5566 
5567 	cmd = &desc.params.lldp_set_mib;
5568 
5569 	if (buf_size == 0 || !buf)
5570 		return -EINVAL;
5571 
5572 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
5573 
5574 	desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
5575 	desc.datalen = cpu_to_le16(buf_size);
5576 
5577 	cmd->type = mib_type;
5578 	cmd->length = cpu_to_le16(buf_size);
5579 
5580 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
5581 }
5582 
5583 /**
5584  * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
5585  * @hw: pointer to HW struct
5586  */
ice_fw_supports_lldp_fltr_ctrl(struct ice_hw * hw)5587 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
5588 {
5589 	if (hw->mac_type != ICE_MAC_E810)
5590 		return false;
5591 
5592 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
5593 				     ICE_FW_API_LLDP_FLTR_MIN,
5594 				     ICE_FW_API_LLDP_FLTR_PATCH);
5595 }
5596 
5597 /**
5598  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
5599  * @hw: pointer to HW struct
5600  * @vsi_num: absolute HW index for VSI
5601  * @add: boolean for if adding or removing a filter
5602  */
5603 int
ice_lldp_fltr_add_remove(struct ice_hw * hw,u16 vsi_num,bool add)5604 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
5605 {
5606 	struct ice_aqc_lldp_filter_ctrl *cmd;
5607 	struct ice_aq_desc desc;
5608 
5609 	cmd = &desc.params.lldp_filter_ctrl;
5610 
5611 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
5612 
5613 	if (add)
5614 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
5615 	else
5616 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
5617 
5618 	cmd->vsi_num = cpu_to_le16(vsi_num);
5619 
5620 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5621 }
5622 
5623 /**
5624  * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
5625  * @hw: pointer to HW struct
5626  */
ice_lldp_execute_pending_mib(struct ice_hw * hw)5627 int ice_lldp_execute_pending_mib(struct ice_hw *hw)
5628 {
5629 	struct ice_aq_desc desc;
5630 
5631 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
5632 
5633 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5634 }
5635 
5636 /**
5637  * ice_fw_supports_report_dflt_cfg
5638  * @hw: pointer to the hardware structure
5639  *
5640  * Checks if the firmware supports report default configuration
5641  */
ice_fw_supports_report_dflt_cfg(struct ice_hw * hw)5642 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
5643 {
5644 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
5645 				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
5646 				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
5647 }
5648 
5649 /* each of the indexes into the following array match the speed of a return
5650  * value from the list of AQ returned speeds like the range:
5651  * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
5652  * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
5653  * array. The array is defined as 15 elements long because the link_speed
5654  * returned by the firmware is a 16 bit * value, but is indexed
5655  * by [fls(speed) - 1]
5656  */
5657 static const u32 ice_aq_to_link_speed[] = {
5658 	SPEED_10,	/* BIT(0) */
5659 	SPEED_100,
5660 	SPEED_1000,
5661 	SPEED_2500,
5662 	SPEED_5000,
5663 	SPEED_10000,
5664 	SPEED_20000,
5665 	SPEED_25000,
5666 	SPEED_40000,
5667 	SPEED_50000,
5668 	SPEED_100000,	/* BIT(10) */
5669 };
5670 
5671 /**
5672  * ice_get_link_speed - get integer speed from table
5673  * @index: array index from fls(aq speed) - 1
5674  *
5675  * Returns: u32 value containing integer speed
5676  */
ice_get_link_speed(u16 index)5677 u32 ice_get_link_speed(u16 index)
5678 {
5679 	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
5680 		return 0;
5681 
5682 	return ice_aq_to_link_speed[index];
5683 }
5684