1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3
4 #include "ice_common.h"
5 #include "ice_flex_pipe.h"
6 #include "ice_flow.h"
7 #include "ice.h"
8
9 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
10 /* SWITCH */
11 {
12 ICE_SID_XLT0_SW,
13 ICE_SID_XLT_KEY_BUILDER_SW,
14 ICE_SID_XLT1_SW,
15 ICE_SID_XLT2_SW,
16 ICE_SID_PROFID_TCAM_SW,
17 ICE_SID_PROFID_REDIR_SW,
18 ICE_SID_FLD_VEC_SW,
19 ICE_SID_CDID_KEY_BUILDER_SW,
20 ICE_SID_CDID_REDIR_SW
21 },
22
23 /* ACL */
24 {
25 ICE_SID_XLT0_ACL,
26 ICE_SID_XLT_KEY_BUILDER_ACL,
27 ICE_SID_XLT1_ACL,
28 ICE_SID_XLT2_ACL,
29 ICE_SID_PROFID_TCAM_ACL,
30 ICE_SID_PROFID_REDIR_ACL,
31 ICE_SID_FLD_VEC_ACL,
32 ICE_SID_CDID_KEY_BUILDER_ACL,
33 ICE_SID_CDID_REDIR_ACL
34 },
35
36 /* FD */
37 {
38 ICE_SID_XLT0_FD,
39 ICE_SID_XLT_KEY_BUILDER_FD,
40 ICE_SID_XLT1_FD,
41 ICE_SID_XLT2_FD,
42 ICE_SID_PROFID_TCAM_FD,
43 ICE_SID_PROFID_REDIR_FD,
44 ICE_SID_FLD_VEC_FD,
45 ICE_SID_CDID_KEY_BUILDER_FD,
46 ICE_SID_CDID_REDIR_FD
47 },
48
49 /* RSS */
50 {
51 ICE_SID_XLT0_RSS,
52 ICE_SID_XLT_KEY_BUILDER_RSS,
53 ICE_SID_XLT1_RSS,
54 ICE_SID_XLT2_RSS,
55 ICE_SID_PROFID_TCAM_RSS,
56 ICE_SID_PROFID_REDIR_RSS,
57 ICE_SID_FLD_VEC_RSS,
58 ICE_SID_CDID_KEY_BUILDER_RSS,
59 ICE_SID_CDID_REDIR_RSS
60 },
61
62 /* PE */
63 {
64 ICE_SID_XLT0_PE,
65 ICE_SID_XLT_KEY_BUILDER_PE,
66 ICE_SID_XLT1_PE,
67 ICE_SID_XLT2_PE,
68 ICE_SID_PROFID_TCAM_PE,
69 ICE_SID_PROFID_REDIR_PE,
70 ICE_SID_FLD_VEC_PE,
71 ICE_SID_CDID_KEY_BUILDER_PE,
72 ICE_SID_CDID_REDIR_PE
73 }
74 };
75
76 /**
77 * ice_sect_id - returns section ID
78 * @blk: block type
79 * @sect: section type
80 *
81 * This helper function returns the proper section ID given a block type and a
82 * section type.
83 */
ice_sect_id(enum ice_block blk,enum ice_sect sect)84 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
85 {
86 return ice_sect_lkup[blk][sect];
87 }
88
89 /**
90 * ice_hw_ptype_ena - check if the PTYPE is enabled or not
91 * @hw: pointer to the HW structure
92 * @ptype: the hardware PTYPE
93 */
ice_hw_ptype_ena(struct ice_hw * hw,u16 ptype)94 bool ice_hw_ptype_ena(struct ice_hw *hw, u16 ptype)
95 {
96 return ptype < ICE_FLOW_PTYPE_MAX &&
97 test_bit(ptype, hw->hw_ptype);
98 }
99
100 /* Key creation */
101
102 #define ICE_DC_KEY 0x1 /* don't care */
103 #define ICE_DC_KEYINV 0x1
104 #define ICE_NM_KEY 0x0 /* never match */
105 #define ICE_NM_KEYINV 0x0
106 #define ICE_0_KEY 0x1 /* match 0 */
107 #define ICE_0_KEYINV 0x0
108 #define ICE_1_KEY 0x0 /* match 1 */
109 #define ICE_1_KEYINV 0x1
110
111 /**
112 * ice_gen_key_word - generate 16-bits of a key/mask word
113 * @val: the value
114 * @valid: valid bits mask (change only the valid bits)
115 * @dont_care: don't care mask
116 * @nvr_mtch: never match mask
117 * @key: pointer to an array of where the resulting key portion
118 * @key_inv: pointer to an array of where the resulting key invert portion
119 *
120 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
121 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
122 * of key and 8 bits of key invert.
123 *
124 * '0' = b01, always match a 0 bit
125 * '1' = b10, always match a 1 bit
126 * '?' = b11, don't care bit (always matches)
127 * '~' = b00, never match bit
128 *
129 * Input:
130 * val: b0 1 0 1 0 1
131 * dont_care: b0 0 1 1 0 0
132 * never_mtch: b0 0 0 0 1 1
133 * ------------------------------
134 * Result: key: b01 10 11 11 00 00
135 */
136 static int
ice_gen_key_word(u8 val,u8 valid,u8 dont_care,u8 nvr_mtch,u8 * key,u8 * key_inv)137 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
138 u8 *key_inv)
139 {
140 u8 in_key = *key, in_key_inv = *key_inv;
141 u8 i;
142
143 /* 'dont_care' and 'nvr_mtch' masks cannot overlap */
144 if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
145 return -EIO;
146
147 *key = 0;
148 *key_inv = 0;
149
150 /* encode the 8 bits into 8-bit key and 8-bit key invert */
151 for (i = 0; i < 8; i++) {
152 *key >>= 1;
153 *key_inv >>= 1;
154
155 if (!(valid & 0x1)) { /* change only valid bits */
156 *key |= (in_key & 0x1) << 7;
157 *key_inv |= (in_key_inv & 0x1) << 7;
158 } else if (dont_care & 0x1) { /* don't care bit */
159 *key |= ICE_DC_KEY << 7;
160 *key_inv |= ICE_DC_KEYINV << 7;
161 } else if (nvr_mtch & 0x1) { /* never match bit */
162 *key |= ICE_NM_KEY << 7;
163 *key_inv |= ICE_NM_KEYINV << 7;
164 } else if (val & 0x01) { /* exact 1 match */
165 *key |= ICE_1_KEY << 7;
166 *key_inv |= ICE_1_KEYINV << 7;
167 } else { /* exact 0 match */
168 *key |= ICE_0_KEY << 7;
169 *key_inv |= ICE_0_KEYINV << 7;
170 }
171
172 dont_care >>= 1;
173 nvr_mtch >>= 1;
174 valid >>= 1;
175 val >>= 1;
176 in_key >>= 1;
177 in_key_inv >>= 1;
178 }
179
180 return 0;
181 }
182
183 /**
184 * ice_bits_max_set - determine if the number of bits set is within a maximum
185 * @mask: pointer to the byte array which is the mask
186 * @size: the number of bytes in the mask
187 * @max: the max number of set bits
188 *
189 * This function determines if there are at most 'max' number of bits set in an
190 * array. Returns true if the number for bits set is <= max or will return false
191 * otherwise.
192 */
ice_bits_max_set(const u8 * mask,u16 size,u16 max)193 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
194 {
195 u16 count = 0;
196 u16 i;
197
198 /* check each byte */
199 for (i = 0; i < size; i++) {
200 /* if 0, go to next byte */
201 if (!mask[i])
202 continue;
203
204 /* We know there is at least one set bit in this byte because of
205 * the above check; if we already have found 'max' number of
206 * bits set, then we can return failure now.
207 */
208 if (count == max)
209 return false;
210
211 /* count the bits in this byte, checking threshold */
212 count += hweight8(mask[i]);
213 if (count > max)
214 return false;
215 }
216
217 return true;
218 }
219
220 /**
221 * ice_set_key - generate a variable sized key with multiples of 16-bits
222 * @key: pointer to where the key will be stored
223 * @size: the size of the complete key in bytes (must be even)
224 * @val: array of 8-bit values that makes up the value portion of the key
225 * @upd: array of 8-bit masks that determine what key portion to update
226 * @dc: array of 8-bit masks that make up the don't care mask
227 * @nm: array of 8-bit masks that make up the never match mask
228 * @off: the offset of the first byte in the key to update
229 * @len: the number of bytes in the key update
230 *
231 * This function generates a key from a value, a don't care mask and a never
232 * match mask.
233 * upd, dc, and nm are optional parameters, and can be NULL:
234 * upd == NULL --> upd mask is all 1's (update all bits)
235 * dc == NULL --> dc mask is all 0's (no don't care bits)
236 * nm == NULL --> nm mask is all 0's (no never match bits)
237 */
238 static int
ice_set_key(u8 * key,u16 size,u8 * val,u8 * upd,u8 * dc,u8 * nm,u16 off,u16 len)239 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
240 u16 len)
241 {
242 u16 half_size;
243 u16 i;
244
245 /* size must be a multiple of 2 bytes. */
246 if (size % 2)
247 return -EIO;
248
249 half_size = size / 2;
250 if (off + len > half_size)
251 return -EIO;
252
253 /* Make sure at most one bit is set in the never match mask. Having more
254 * than one never match mask bit set will cause HW to consume excessive
255 * power otherwise; this is a power management efficiency check.
256 */
257 #define ICE_NVR_MTCH_BITS_MAX 1
258 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
259 return -EIO;
260
261 for (i = 0; i < len; i++)
262 if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
263 dc ? dc[i] : 0, nm ? nm[i] : 0,
264 key + off + i, key + half_size + off + i))
265 return -EIO;
266
267 return 0;
268 }
269
270 /**
271 * ice_acquire_change_lock
272 * @hw: pointer to the HW structure
273 * @access: access type (read or write)
274 *
275 * This function will request ownership of the change lock.
276 */
277 int
ice_acquire_change_lock(struct ice_hw * hw,enum ice_aq_res_access_type access)278 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
279 {
280 return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
281 ICE_CHANGE_LOCK_TIMEOUT);
282 }
283
284 /**
285 * ice_release_change_lock
286 * @hw: pointer to the HW structure
287 *
288 * This function will release the change lock using the proper Admin Command.
289 */
ice_release_change_lock(struct ice_hw * hw)290 void ice_release_change_lock(struct ice_hw *hw)
291 {
292 ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
293 }
294
295 /**
296 * ice_get_open_tunnel_port - retrieve an open tunnel port
297 * @hw: pointer to the HW structure
298 * @port: returns open port
299 * @type: type of tunnel, can be TNL_LAST if it doesn't matter
300 */
301 bool
ice_get_open_tunnel_port(struct ice_hw * hw,u16 * port,enum ice_tunnel_type type)302 ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port,
303 enum ice_tunnel_type type)
304 {
305 bool res = false;
306 u16 i;
307
308 mutex_lock(&hw->tnl_lock);
309
310 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
311 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port &&
312 (type == TNL_LAST || type == hw->tnl.tbl[i].type)) {
313 *port = hw->tnl.tbl[i].port;
314 res = true;
315 break;
316 }
317
318 mutex_unlock(&hw->tnl_lock);
319
320 return res;
321 }
322
323 /**
324 * ice_upd_dvm_boost_entry
325 * @hw: pointer to the HW structure
326 * @entry: pointer to double vlan boost entry info
327 */
328 static int
ice_upd_dvm_boost_entry(struct ice_hw * hw,struct ice_dvm_entry * entry)329 ice_upd_dvm_boost_entry(struct ice_hw *hw, struct ice_dvm_entry *entry)
330 {
331 struct ice_boost_tcam_section *sect_rx, *sect_tx;
332 int status = -ENOSPC;
333 struct ice_buf_build *bld;
334 u8 val, dc, nm;
335
336 bld = ice_pkg_buf_alloc(hw);
337 if (!bld)
338 return -ENOMEM;
339
340 /* allocate 2 sections, one for Rx parser, one for Tx parser */
341 if (ice_pkg_buf_reserve_section(bld, 2))
342 goto ice_upd_dvm_boost_entry_err;
343
344 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
345 struct_size(sect_rx, tcam, 1));
346 if (!sect_rx)
347 goto ice_upd_dvm_boost_entry_err;
348 sect_rx->count = cpu_to_le16(1);
349
350 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
351 struct_size(sect_tx, tcam, 1));
352 if (!sect_tx)
353 goto ice_upd_dvm_boost_entry_err;
354 sect_tx->count = cpu_to_le16(1);
355
356 /* copy original boost entry to update package buffer */
357 memcpy(sect_rx->tcam, entry->boost_entry, sizeof(*sect_rx->tcam));
358
359 /* re-write the don't care and never match bits accordingly */
360 if (entry->enable) {
361 /* all bits are don't care */
362 val = 0x00;
363 dc = 0xFF;
364 nm = 0x00;
365 } else {
366 /* disable, one never match bit, the rest are don't care */
367 val = 0x00;
368 dc = 0xF7;
369 nm = 0x08;
370 }
371
372 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
373 &val, NULL, &dc, &nm, 0, sizeof(u8));
374
375 /* exact copy of entry to Tx section entry */
376 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
377
378 status = ice_update_pkg_no_lock(hw, ice_pkg_buf(bld), 1);
379
380 ice_upd_dvm_boost_entry_err:
381 ice_pkg_buf_free(hw, bld);
382
383 return status;
384 }
385
386 /**
387 * ice_set_dvm_boost_entries
388 * @hw: pointer to the HW structure
389 *
390 * Enable double vlan by updating the appropriate boost tcam entries.
391 */
ice_set_dvm_boost_entries(struct ice_hw * hw)392 int ice_set_dvm_boost_entries(struct ice_hw *hw)
393 {
394 u16 i;
395
396 for (i = 0; i < hw->dvm_upd.count; i++) {
397 int status;
398
399 status = ice_upd_dvm_boost_entry(hw, &hw->dvm_upd.tbl[i]);
400 if (status)
401 return status;
402 }
403
404 return 0;
405 }
406
407 /**
408 * ice_tunnel_idx_to_entry - convert linear index to the sparse one
409 * @hw: pointer to the HW structure
410 * @type: type of tunnel
411 * @idx: linear index
412 *
413 * Stack assumes we have 2 linear tables with indexes [0, count_valid),
414 * but really the port table may be sprase, and types are mixed, so convert
415 * the stack index into the device index.
416 */
ice_tunnel_idx_to_entry(struct ice_hw * hw,enum ice_tunnel_type type,u16 idx)417 static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type,
418 u16 idx)
419 {
420 u16 i;
421
422 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
423 if (hw->tnl.tbl[i].valid &&
424 hw->tnl.tbl[i].type == type &&
425 idx-- == 0)
426 return i;
427
428 WARN_ON_ONCE(1);
429 return 0;
430 }
431
432 /**
433 * ice_create_tunnel
434 * @hw: pointer to the HW structure
435 * @index: device table entry
436 * @type: type of tunnel
437 * @port: port of tunnel to create
438 *
439 * Create a tunnel by updating the parse graph in the parser. We do that by
440 * creating a package buffer with the tunnel info and issuing an update package
441 * command.
442 */
443 static int
ice_create_tunnel(struct ice_hw * hw,u16 index,enum ice_tunnel_type type,u16 port)444 ice_create_tunnel(struct ice_hw *hw, u16 index,
445 enum ice_tunnel_type type, u16 port)
446 {
447 struct ice_boost_tcam_section *sect_rx, *sect_tx;
448 struct ice_buf_build *bld;
449 int status = -ENOSPC;
450
451 mutex_lock(&hw->tnl_lock);
452
453 bld = ice_pkg_buf_alloc(hw);
454 if (!bld) {
455 status = -ENOMEM;
456 goto ice_create_tunnel_end;
457 }
458
459 /* allocate 2 sections, one for Rx parser, one for Tx parser */
460 if (ice_pkg_buf_reserve_section(bld, 2))
461 goto ice_create_tunnel_err;
462
463 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
464 struct_size(sect_rx, tcam, 1));
465 if (!sect_rx)
466 goto ice_create_tunnel_err;
467 sect_rx->count = cpu_to_le16(1);
468
469 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
470 struct_size(sect_tx, tcam, 1));
471 if (!sect_tx)
472 goto ice_create_tunnel_err;
473 sect_tx->count = cpu_to_le16(1);
474
475 /* copy original boost entry to update package buffer */
476 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
477 sizeof(*sect_rx->tcam));
478
479 /* over-write the never-match dest port key bits with the encoded port
480 * bits
481 */
482 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
483 (u8 *)&port, NULL, NULL, NULL,
484 (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key),
485 sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key));
486
487 /* exact copy of entry to Tx section entry */
488 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
489
490 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
491 if (!status)
492 hw->tnl.tbl[index].port = port;
493
494 ice_create_tunnel_err:
495 ice_pkg_buf_free(hw, bld);
496
497 ice_create_tunnel_end:
498 mutex_unlock(&hw->tnl_lock);
499
500 return status;
501 }
502
503 /**
504 * ice_destroy_tunnel
505 * @hw: pointer to the HW structure
506 * @index: device table entry
507 * @type: type of tunnel
508 * @port: port of tunnel to destroy (ignored if the all parameter is true)
509 *
510 * Destroys a tunnel or all tunnels by creating an update package buffer
511 * targeting the specific updates requested and then performing an update
512 * package.
513 */
514 static int
ice_destroy_tunnel(struct ice_hw * hw,u16 index,enum ice_tunnel_type type,u16 port)515 ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type,
516 u16 port)
517 {
518 struct ice_boost_tcam_section *sect_rx, *sect_tx;
519 struct ice_buf_build *bld;
520 int status = -ENOSPC;
521
522 mutex_lock(&hw->tnl_lock);
523
524 if (WARN_ON(!hw->tnl.tbl[index].valid ||
525 hw->tnl.tbl[index].type != type ||
526 hw->tnl.tbl[index].port != port)) {
527 status = -EIO;
528 goto ice_destroy_tunnel_end;
529 }
530
531 bld = ice_pkg_buf_alloc(hw);
532 if (!bld) {
533 status = -ENOMEM;
534 goto ice_destroy_tunnel_end;
535 }
536
537 /* allocate 2 sections, one for Rx parser, one for Tx parser */
538 if (ice_pkg_buf_reserve_section(bld, 2))
539 goto ice_destroy_tunnel_err;
540
541 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
542 struct_size(sect_rx, tcam, 1));
543 if (!sect_rx)
544 goto ice_destroy_tunnel_err;
545 sect_rx->count = cpu_to_le16(1);
546
547 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
548 struct_size(sect_tx, tcam, 1));
549 if (!sect_tx)
550 goto ice_destroy_tunnel_err;
551 sect_tx->count = cpu_to_le16(1);
552
553 /* copy original boost entry to update package buffer, one copy to Rx
554 * section, another copy to the Tx section
555 */
556 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
557 sizeof(*sect_rx->tcam));
558 memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry,
559 sizeof(*sect_tx->tcam));
560
561 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
562 if (!status)
563 hw->tnl.tbl[index].port = 0;
564
565 ice_destroy_tunnel_err:
566 ice_pkg_buf_free(hw, bld);
567
568 ice_destroy_tunnel_end:
569 mutex_unlock(&hw->tnl_lock);
570
571 return status;
572 }
573
ice_udp_tunnel_set_port(struct net_device * netdev,unsigned int table,unsigned int idx,struct udp_tunnel_info * ti)574 int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
575 unsigned int idx, struct udp_tunnel_info *ti)
576 {
577 struct ice_netdev_priv *np = netdev_priv(netdev);
578 struct ice_vsi *vsi = np->vsi;
579 struct ice_pf *pf = vsi->back;
580 enum ice_tunnel_type tnl_type;
581 int status;
582 u16 index;
583
584 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
585 index = ice_tunnel_idx_to_entry(&pf->hw, tnl_type, idx);
586
587 status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port));
588 if (status) {
589 netdev_err(netdev, "Error adding UDP tunnel - %d\n",
590 status);
591 return -EIO;
592 }
593
594 udp_tunnel_nic_set_port_priv(netdev, table, idx, index);
595 return 0;
596 }
597
ice_udp_tunnel_unset_port(struct net_device * netdev,unsigned int table,unsigned int idx,struct udp_tunnel_info * ti)598 int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
599 unsigned int idx, struct udp_tunnel_info *ti)
600 {
601 struct ice_netdev_priv *np = netdev_priv(netdev);
602 struct ice_vsi *vsi = np->vsi;
603 struct ice_pf *pf = vsi->back;
604 enum ice_tunnel_type tnl_type;
605 int status;
606
607 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
608
609 status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type,
610 ntohs(ti->port));
611 if (status) {
612 netdev_err(netdev, "Error removing UDP tunnel - %d\n",
613 status);
614 return -EIO;
615 }
616
617 return 0;
618 }
619
620 /**
621 * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index
622 * @hw: pointer to the hardware structure
623 * @blk: hardware block
624 * @prof: profile ID
625 * @fv_idx: field vector word index
626 * @prot: variable to receive the protocol ID
627 * @off: variable to receive the protocol offset
628 */
629 int
ice_find_prot_off(struct ice_hw * hw,enum ice_block blk,u8 prof,u16 fv_idx,u8 * prot,u16 * off)630 ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx,
631 u8 *prot, u16 *off)
632 {
633 struct ice_fv_word *fv_ext;
634
635 if (prof >= hw->blk[blk].es.count)
636 return -EINVAL;
637
638 if (fv_idx >= hw->blk[blk].es.fvw)
639 return -EINVAL;
640
641 fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw);
642
643 *prot = fv_ext[fv_idx].prot_id;
644 *off = fv_ext[fv_idx].off;
645
646 return 0;
647 }
648
649 /* PTG Management */
650
651 /**
652 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
653 * @hw: pointer to the hardware structure
654 * @blk: HW block
655 * @ptype: the ptype to search for
656 * @ptg: pointer to variable that receives the PTG
657 *
658 * This function will search the PTGs for a particular ptype, returning the
659 * PTG ID that contains it through the PTG parameter, with the value of
660 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
661 */
662 static int
ice_ptg_find_ptype(struct ice_hw * hw,enum ice_block blk,u16 ptype,u8 * ptg)663 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
664 {
665 if (ptype >= ICE_XLT1_CNT || !ptg)
666 return -EINVAL;
667
668 *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
669 return 0;
670 }
671
672 /**
673 * ice_ptg_alloc_val - Allocates a new packet type group ID by value
674 * @hw: pointer to the hardware structure
675 * @blk: HW block
676 * @ptg: the PTG to allocate
677 *
678 * This function allocates a given packet type group ID specified by the PTG
679 * parameter.
680 */
ice_ptg_alloc_val(struct ice_hw * hw,enum ice_block blk,u8 ptg)681 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
682 {
683 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
684 }
685
686 /**
687 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group
688 * @hw: pointer to the hardware structure
689 * @blk: HW block
690 * @ptype: the ptype to remove
691 * @ptg: the PTG to remove the ptype from
692 *
693 * This function will remove the ptype from the specific PTG, and move it to
694 * the default PTG (ICE_DEFAULT_PTG).
695 */
696 static int
ice_ptg_remove_ptype(struct ice_hw * hw,enum ice_block blk,u16 ptype,u8 ptg)697 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
698 {
699 struct ice_ptg_ptype **ch;
700 struct ice_ptg_ptype *p;
701
702 if (ptype > ICE_XLT1_CNT - 1)
703 return -EINVAL;
704
705 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
706 return -ENOENT;
707
708 /* Should not happen if .in_use is set, bad config */
709 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
710 return -EIO;
711
712 /* find the ptype within this PTG, and bypass the link over it */
713 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
714 ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
715 while (p) {
716 if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
717 *ch = p->next_ptype;
718 break;
719 }
720
721 ch = &p->next_ptype;
722 p = p->next_ptype;
723 }
724
725 hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
726 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
727
728 return 0;
729 }
730
731 /**
732 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
733 * @hw: pointer to the hardware structure
734 * @blk: HW block
735 * @ptype: the ptype to add or move
736 * @ptg: the PTG to add or move the ptype to
737 *
738 * This function will either add or move a ptype to a particular PTG depending
739 * on if the ptype is already part of another group. Note that using a
740 * destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
741 * default PTG.
742 */
743 static int
ice_ptg_add_mv_ptype(struct ice_hw * hw,enum ice_block blk,u16 ptype,u8 ptg)744 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
745 {
746 u8 original_ptg;
747 int status;
748
749 if (ptype > ICE_XLT1_CNT - 1)
750 return -EINVAL;
751
752 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
753 return -ENOENT;
754
755 status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
756 if (status)
757 return status;
758
759 /* Is ptype already in the correct PTG? */
760 if (original_ptg == ptg)
761 return 0;
762
763 /* Remove from original PTG and move back to the default PTG */
764 if (original_ptg != ICE_DEFAULT_PTG)
765 ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
766
767 /* Moving to default PTG? Then we're done with this request */
768 if (ptg == ICE_DEFAULT_PTG)
769 return 0;
770
771 /* Add ptype to PTG at beginning of list */
772 hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
773 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
774 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
775 &hw->blk[blk].xlt1.ptypes[ptype];
776
777 hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
778 hw->blk[blk].xlt1.t[ptype] = ptg;
779
780 return 0;
781 }
782
783 /* Block / table size info */
784 struct ice_blk_size_details {
785 u16 xlt1; /* # XLT1 entries */
786 u16 xlt2; /* # XLT2 entries */
787 u16 prof_tcam; /* # profile ID TCAM entries */
788 u16 prof_id; /* # profile IDs */
789 u8 prof_cdid_bits; /* # CDID one-hot bits used in key */
790 u16 prof_redir; /* # profile redirection entries */
791 u16 es; /* # extraction sequence entries */
792 u16 fvw; /* # field vector words */
793 u8 overwrite; /* overwrite existing entries allowed */
794 u8 reverse; /* reverse FV order */
795 };
796
797 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
798 /**
799 * Table Definitions
800 * XLT1 - Number of entries in XLT1 table
801 * XLT2 - Number of entries in XLT2 table
802 * TCAM - Number of entries Profile ID TCAM table
803 * CDID - Control Domain ID of the hardware block
804 * PRED - Number of entries in the Profile Redirection Table
805 * FV - Number of entries in the Field Vector
806 * FVW - Width (in WORDs) of the Field Vector
807 * OVR - Overwrite existing table entries
808 * REV - Reverse FV
809 */
810 /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */
811 /* Overwrite , Reverse FV */
812 /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48,
813 false, false },
814 /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32,
815 false, false },
816 /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
817 false, true },
818 /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
819 true, true },
820 /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24,
821 false, false },
822 };
823
824 enum ice_sid_all {
825 ICE_SID_XLT1_OFF = 0,
826 ICE_SID_XLT2_OFF,
827 ICE_SID_PR_OFF,
828 ICE_SID_PR_REDIR_OFF,
829 ICE_SID_ES_OFF,
830 ICE_SID_OFF_COUNT,
831 };
832
833 /* Characteristic handling */
834
835 /**
836 * ice_match_prop_lst - determine if properties of two lists match
837 * @list1: first properties list
838 * @list2: second properties list
839 *
840 * Count, cookies and the order must match in order to be considered equivalent.
841 */
842 static bool
ice_match_prop_lst(struct list_head * list1,struct list_head * list2)843 ice_match_prop_lst(struct list_head *list1, struct list_head *list2)
844 {
845 struct ice_vsig_prof *tmp1;
846 struct ice_vsig_prof *tmp2;
847 u16 chk_count = 0;
848 u16 count = 0;
849
850 /* compare counts */
851 list_for_each_entry(tmp1, list1, list)
852 count++;
853 list_for_each_entry(tmp2, list2, list)
854 chk_count++;
855 if (!count || count != chk_count)
856 return false;
857
858 tmp1 = list_first_entry(list1, struct ice_vsig_prof, list);
859 tmp2 = list_first_entry(list2, struct ice_vsig_prof, list);
860
861 /* profile cookies must compare, and in the exact same order to take
862 * into account priority
863 */
864 while (count--) {
865 if (tmp2->profile_cookie != tmp1->profile_cookie)
866 return false;
867
868 tmp1 = list_next_entry(tmp1, list);
869 tmp2 = list_next_entry(tmp2, list);
870 }
871
872 return true;
873 }
874
875 /* VSIG Management */
876
877 /**
878 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI
879 * @hw: pointer to the hardware structure
880 * @blk: HW block
881 * @vsi: VSI of interest
882 * @vsig: pointer to receive the VSI group
883 *
884 * This function will lookup the VSI entry in the XLT2 list and return
885 * the VSI group its associated with.
886 */
887 static int
ice_vsig_find_vsi(struct ice_hw * hw,enum ice_block blk,u16 vsi,u16 * vsig)888 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
889 {
890 if (!vsig || vsi >= ICE_MAX_VSI)
891 return -EINVAL;
892
893 /* As long as there's a default or valid VSIG associated with the input
894 * VSI, the functions returns a success. Any handling of VSIG will be
895 * done by the following add, update or remove functions.
896 */
897 *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
898
899 return 0;
900 }
901
902 /**
903 * ice_vsig_alloc_val - allocate a new VSIG by value
904 * @hw: pointer to the hardware structure
905 * @blk: HW block
906 * @vsig: the VSIG to allocate
907 *
908 * This function will allocate a given VSIG specified by the VSIG parameter.
909 */
ice_vsig_alloc_val(struct ice_hw * hw,enum ice_block blk,u16 vsig)910 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
911 {
912 u16 idx = vsig & ICE_VSIG_IDX_M;
913
914 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
915 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
916 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
917 }
918
919 return ICE_VSIG_VALUE(idx, hw->pf_id);
920 }
921
922 /**
923 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG
924 * @hw: pointer to the hardware structure
925 * @blk: HW block
926 *
927 * This function will iterate through the VSIG list and mark the first
928 * unused entry for the new VSIG entry as used and return that value.
929 */
ice_vsig_alloc(struct ice_hw * hw,enum ice_block blk)930 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
931 {
932 u16 i;
933
934 for (i = 1; i < ICE_MAX_VSIGS; i++)
935 if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
936 return ice_vsig_alloc_val(hw, blk, i);
937
938 return ICE_DEFAULT_VSIG;
939 }
940
941 /**
942 * ice_find_dup_props_vsig - find VSI group with a specified set of properties
943 * @hw: pointer to the hardware structure
944 * @blk: HW block
945 * @chs: characteristic list
946 * @vsig: returns the VSIG with the matching profiles, if found
947 *
948 * Each VSIG is associated with a characteristic set; i.e. all VSIs under
949 * a group have the same characteristic set. To check if there exists a VSIG
950 * which has the same characteristics as the input characteristics; this
951 * function will iterate through the XLT2 list and return the VSIG that has a
952 * matching configuration. In order to make sure that priorities are accounted
953 * for, the list must match exactly, including the order in which the
954 * characteristics are listed.
955 */
956 static int
ice_find_dup_props_vsig(struct ice_hw * hw,enum ice_block blk,struct list_head * chs,u16 * vsig)957 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
958 struct list_head *chs, u16 *vsig)
959 {
960 struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
961 u16 i;
962
963 for (i = 0; i < xlt2->count; i++)
964 if (xlt2->vsig_tbl[i].in_use &&
965 ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
966 *vsig = ICE_VSIG_VALUE(i, hw->pf_id);
967 return 0;
968 }
969
970 return -ENOENT;
971 }
972
973 /**
974 * ice_vsig_free - free VSI group
975 * @hw: pointer to the hardware structure
976 * @blk: HW block
977 * @vsig: VSIG to remove
978 *
979 * The function will remove all VSIs associated with the input VSIG and move
980 * them to the DEFAULT_VSIG and mark the VSIG available.
981 */
ice_vsig_free(struct ice_hw * hw,enum ice_block blk,u16 vsig)982 static int ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
983 {
984 struct ice_vsig_prof *dtmp, *del;
985 struct ice_vsig_vsi *vsi_cur;
986 u16 idx;
987
988 idx = vsig & ICE_VSIG_IDX_M;
989 if (idx >= ICE_MAX_VSIGS)
990 return -EINVAL;
991
992 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
993 return -ENOENT;
994
995 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
996
997 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
998 /* If the VSIG has at least 1 VSI then iterate through the
999 * list and remove the VSIs before deleting the group.
1000 */
1001 if (vsi_cur) {
1002 /* remove all vsis associated with this VSIG XLT2 entry */
1003 do {
1004 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
1005
1006 vsi_cur->vsig = ICE_DEFAULT_VSIG;
1007 vsi_cur->changed = 1;
1008 vsi_cur->next_vsi = NULL;
1009 vsi_cur = tmp;
1010 } while (vsi_cur);
1011
1012 /* NULL terminate head of VSI list */
1013 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
1014 }
1015
1016 /* free characteristic list */
1017 list_for_each_entry_safe(del, dtmp,
1018 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
1019 list) {
1020 list_del(&del->list);
1021 devm_kfree(ice_hw_to_dev(hw), del);
1022 }
1023
1024 /* if VSIG characteristic list was cleared for reset
1025 * re-initialize the list head
1026 */
1027 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
1028
1029 return 0;
1030 }
1031
1032 /**
1033 * ice_vsig_remove_vsi - remove VSI from VSIG
1034 * @hw: pointer to the hardware structure
1035 * @blk: HW block
1036 * @vsi: VSI to remove
1037 * @vsig: VSI group to remove from
1038 *
1039 * The function will remove the input VSI from its VSI group and move it
1040 * to the DEFAULT_VSIG.
1041 */
1042 static int
ice_vsig_remove_vsi(struct ice_hw * hw,enum ice_block blk,u16 vsi,u16 vsig)1043 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
1044 {
1045 struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
1046 u16 idx;
1047
1048 idx = vsig & ICE_VSIG_IDX_M;
1049
1050 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
1051 return -EINVAL;
1052
1053 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
1054 return -ENOENT;
1055
1056 /* entry already in default VSIG, don't have to remove */
1057 if (idx == ICE_DEFAULT_VSIG)
1058 return 0;
1059
1060 vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
1061 if (!(*vsi_head))
1062 return -EIO;
1063
1064 vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
1065 vsi_cur = (*vsi_head);
1066
1067 /* iterate the VSI list, skip over the entry to be removed */
1068 while (vsi_cur) {
1069 if (vsi_tgt == vsi_cur) {
1070 (*vsi_head) = vsi_cur->next_vsi;
1071 break;
1072 }
1073 vsi_head = &vsi_cur->next_vsi;
1074 vsi_cur = vsi_cur->next_vsi;
1075 }
1076
1077 /* verify if VSI was removed from group list */
1078 if (!vsi_cur)
1079 return -ENOENT;
1080
1081 vsi_cur->vsig = ICE_DEFAULT_VSIG;
1082 vsi_cur->changed = 1;
1083 vsi_cur->next_vsi = NULL;
1084
1085 return 0;
1086 }
1087
1088 /**
1089 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
1090 * @hw: pointer to the hardware structure
1091 * @blk: HW block
1092 * @vsi: VSI to move
1093 * @vsig: destination VSI group
1094 *
1095 * This function will move or add the input VSI to the target VSIG.
1096 * The function will find the original VSIG the VSI belongs to and
1097 * move the entry to the DEFAULT_VSIG, update the original VSIG and
1098 * then move entry to the new VSIG.
1099 */
1100 static int
ice_vsig_add_mv_vsi(struct ice_hw * hw,enum ice_block blk,u16 vsi,u16 vsig)1101 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
1102 {
1103 struct ice_vsig_vsi *tmp;
1104 u16 orig_vsig, idx;
1105 int status;
1106
1107 idx = vsig & ICE_VSIG_IDX_M;
1108
1109 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
1110 return -EINVAL;
1111
1112 /* if VSIG not in use and VSIG is not default type this VSIG
1113 * doesn't exist.
1114 */
1115 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
1116 vsig != ICE_DEFAULT_VSIG)
1117 return -ENOENT;
1118
1119 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
1120 if (status)
1121 return status;
1122
1123 /* no update required if vsigs match */
1124 if (orig_vsig == vsig)
1125 return 0;
1126
1127 if (orig_vsig != ICE_DEFAULT_VSIG) {
1128 /* remove entry from orig_vsig and add to default VSIG */
1129 status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
1130 if (status)
1131 return status;
1132 }
1133
1134 if (idx == ICE_DEFAULT_VSIG)
1135 return 0;
1136
1137 /* Create VSI entry and add VSIG and prop_mask values */
1138 hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
1139 hw->blk[blk].xlt2.vsis[vsi].changed = 1;
1140
1141 /* Add new entry to the head of the VSIG list */
1142 tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
1143 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
1144 &hw->blk[blk].xlt2.vsis[vsi];
1145 hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
1146 hw->blk[blk].xlt2.t[vsi] = vsig;
1147
1148 return 0;
1149 }
1150
1151 /**
1152 * ice_prof_has_mask_idx - determine if profile index masking is identical
1153 * @hw: pointer to the hardware structure
1154 * @blk: HW block
1155 * @prof: profile to check
1156 * @idx: profile index to check
1157 * @mask: mask to match
1158 */
1159 static bool
ice_prof_has_mask_idx(struct ice_hw * hw,enum ice_block blk,u8 prof,u16 idx,u16 mask)1160 ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx,
1161 u16 mask)
1162 {
1163 bool expect_no_mask = false;
1164 bool found = false;
1165 bool match = false;
1166 u16 i;
1167
1168 /* If mask is 0x0000 or 0xffff, then there is no masking */
1169 if (mask == 0 || mask == 0xffff)
1170 expect_no_mask = true;
1171
1172 /* Scan the enabled masks on this profile, for the specified idx */
1173 for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first +
1174 hw->blk[blk].masks.count; i++)
1175 if (hw->blk[blk].es.mask_ena[prof] & BIT(i))
1176 if (hw->blk[blk].masks.masks[i].in_use &&
1177 hw->blk[blk].masks.masks[i].idx == idx) {
1178 found = true;
1179 if (hw->blk[blk].masks.masks[i].mask == mask)
1180 match = true;
1181 break;
1182 }
1183
1184 if (expect_no_mask) {
1185 if (found)
1186 return false;
1187 } else {
1188 if (!match)
1189 return false;
1190 }
1191
1192 return true;
1193 }
1194
1195 /**
1196 * ice_prof_has_mask - determine if profile masking is identical
1197 * @hw: pointer to the hardware structure
1198 * @blk: HW block
1199 * @prof: profile to check
1200 * @masks: masks to match
1201 */
1202 static bool
ice_prof_has_mask(struct ice_hw * hw,enum ice_block blk,u8 prof,u16 * masks)1203 ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks)
1204 {
1205 u16 i;
1206
1207 /* es->mask_ena[prof] will have the mask */
1208 for (i = 0; i < hw->blk[blk].es.fvw; i++)
1209 if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i]))
1210 return false;
1211
1212 return true;
1213 }
1214
1215 /**
1216 * ice_find_prof_id_with_mask - find profile ID for a given field vector
1217 * @hw: pointer to the hardware structure
1218 * @blk: HW block
1219 * @fv: field vector to search for
1220 * @masks: masks for FV
1221 * @prof_id: receives the profile ID
1222 */
1223 static int
ice_find_prof_id_with_mask(struct ice_hw * hw,enum ice_block blk,struct ice_fv_word * fv,u16 * masks,u8 * prof_id)1224 ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk,
1225 struct ice_fv_word *fv, u16 *masks, u8 *prof_id)
1226 {
1227 struct ice_es *es = &hw->blk[blk].es;
1228 u8 i;
1229
1230 /* For FD, we don't want to re-use a existed profile with the same
1231 * field vector and mask. This will cause rule interference.
1232 */
1233 if (blk == ICE_BLK_FD)
1234 return -ENOENT;
1235
1236 for (i = 0; i < (u8)es->count; i++) {
1237 u16 off = i * es->fvw;
1238
1239 if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
1240 continue;
1241
1242 /* check if masks settings are the same for this profile */
1243 if (masks && !ice_prof_has_mask(hw, blk, i, masks))
1244 continue;
1245
1246 *prof_id = i;
1247 return 0;
1248 }
1249
1250 return -ENOENT;
1251 }
1252
1253 /**
1254 * ice_prof_id_rsrc_type - get profile ID resource type for a block type
1255 * @blk: the block type
1256 * @rsrc_type: pointer to variable to receive the resource type
1257 */
ice_prof_id_rsrc_type(enum ice_block blk,u16 * rsrc_type)1258 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
1259 {
1260 switch (blk) {
1261 case ICE_BLK_FD:
1262 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID;
1263 break;
1264 case ICE_BLK_RSS:
1265 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
1266 break;
1267 default:
1268 return false;
1269 }
1270 return true;
1271 }
1272
1273 /**
1274 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
1275 * @blk: the block type
1276 * @rsrc_type: pointer to variable to receive the resource type
1277 */
ice_tcam_ent_rsrc_type(enum ice_block blk,u16 * rsrc_type)1278 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
1279 {
1280 switch (blk) {
1281 case ICE_BLK_FD:
1282 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM;
1283 break;
1284 case ICE_BLK_RSS:
1285 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
1286 break;
1287 default:
1288 return false;
1289 }
1290 return true;
1291 }
1292
1293 /**
1294 * ice_alloc_tcam_ent - allocate hardware TCAM entry
1295 * @hw: pointer to the HW struct
1296 * @blk: the block to allocate the TCAM for
1297 * @btm: true to allocate from bottom of table, false to allocate from top
1298 * @tcam_idx: pointer to variable to receive the TCAM entry
1299 *
1300 * This function allocates a new entry in a Profile ID TCAM for a specific
1301 * block.
1302 */
1303 static int
ice_alloc_tcam_ent(struct ice_hw * hw,enum ice_block blk,bool btm,u16 * tcam_idx)1304 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm,
1305 u16 *tcam_idx)
1306 {
1307 u16 res_type;
1308
1309 if (!ice_tcam_ent_rsrc_type(blk, &res_type))
1310 return -EINVAL;
1311
1312 return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx);
1313 }
1314
1315 /**
1316 * ice_free_tcam_ent - free hardware TCAM entry
1317 * @hw: pointer to the HW struct
1318 * @blk: the block from which to free the TCAM entry
1319 * @tcam_idx: the TCAM entry to free
1320 *
1321 * This function frees an entry in a Profile ID TCAM for a specific block.
1322 */
1323 static int
ice_free_tcam_ent(struct ice_hw * hw,enum ice_block blk,u16 tcam_idx)1324 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
1325 {
1326 u16 res_type;
1327
1328 if (!ice_tcam_ent_rsrc_type(blk, &res_type))
1329 return -EINVAL;
1330
1331 return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
1332 }
1333
1334 /**
1335 * ice_alloc_prof_id - allocate profile ID
1336 * @hw: pointer to the HW struct
1337 * @blk: the block to allocate the profile ID for
1338 * @prof_id: pointer to variable to receive the profile ID
1339 *
1340 * This function allocates a new profile ID, which also corresponds to a Field
1341 * Vector (Extraction Sequence) entry.
1342 */
ice_alloc_prof_id(struct ice_hw * hw,enum ice_block blk,u8 * prof_id)1343 static int ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
1344 {
1345 u16 res_type;
1346 u16 get_prof;
1347 int status;
1348
1349 if (!ice_prof_id_rsrc_type(blk, &res_type))
1350 return -EINVAL;
1351
1352 status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
1353 if (!status)
1354 *prof_id = (u8)get_prof;
1355
1356 return status;
1357 }
1358
1359 /**
1360 * ice_free_prof_id - free profile ID
1361 * @hw: pointer to the HW struct
1362 * @blk: the block from which to free the profile ID
1363 * @prof_id: the profile ID to free
1364 *
1365 * This function frees a profile ID, which also corresponds to a Field Vector.
1366 */
ice_free_prof_id(struct ice_hw * hw,enum ice_block blk,u8 prof_id)1367 static int ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
1368 {
1369 u16 tmp_prof_id = (u16)prof_id;
1370 u16 res_type;
1371
1372 if (!ice_prof_id_rsrc_type(blk, &res_type))
1373 return -EINVAL;
1374
1375 return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
1376 }
1377
1378 /**
1379 * ice_prof_inc_ref - increment reference count for profile
1380 * @hw: pointer to the HW struct
1381 * @blk: the block from which to free the profile ID
1382 * @prof_id: the profile ID for which to increment the reference count
1383 */
ice_prof_inc_ref(struct ice_hw * hw,enum ice_block blk,u8 prof_id)1384 static int ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
1385 {
1386 if (prof_id > hw->blk[blk].es.count)
1387 return -EINVAL;
1388
1389 hw->blk[blk].es.ref_count[prof_id]++;
1390
1391 return 0;
1392 }
1393
1394 /**
1395 * ice_write_prof_mask_reg - write profile mask register
1396 * @hw: pointer to the HW struct
1397 * @blk: hardware block
1398 * @mask_idx: mask index
1399 * @idx: index of the FV which will use the mask
1400 * @mask: the 16-bit mask
1401 */
1402 static void
ice_write_prof_mask_reg(struct ice_hw * hw,enum ice_block blk,u16 mask_idx,u16 idx,u16 mask)1403 ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx,
1404 u16 idx, u16 mask)
1405 {
1406 u32 offset;
1407 u32 val;
1408
1409 switch (blk) {
1410 case ICE_BLK_RSS:
1411 offset = GLQF_HMASK(mask_idx);
1412 val = (idx << GLQF_HMASK_MSK_INDEX_S) & GLQF_HMASK_MSK_INDEX_M;
1413 val |= (mask << GLQF_HMASK_MASK_S) & GLQF_HMASK_MASK_M;
1414 break;
1415 case ICE_BLK_FD:
1416 offset = GLQF_FDMASK(mask_idx);
1417 val = (idx << GLQF_FDMASK_MSK_INDEX_S) & GLQF_FDMASK_MSK_INDEX_M;
1418 val |= (mask << GLQF_FDMASK_MASK_S) & GLQF_FDMASK_MASK_M;
1419 break;
1420 default:
1421 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
1422 blk);
1423 return;
1424 }
1425
1426 wr32(hw, offset, val);
1427 ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n",
1428 blk, idx, offset, val);
1429 }
1430
1431 /**
1432 * ice_write_prof_mask_enable_res - write profile mask enable register
1433 * @hw: pointer to the HW struct
1434 * @blk: hardware block
1435 * @prof_id: profile ID
1436 * @enable_mask: enable mask
1437 */
1438 static void
ice_write_prof_mask_enable_res(struct ice_hw * hw,enum ice_block blk,u16 prof_id,u32 enable_mask)1439 ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk,
1440 u16 prof_id, u32 enable_mask)
1441 {
1442 u32 offset;
1443
1444 switch (blk) {
1445 case ICE_BLK_RSS:
1446 offset = GLQF_HMASK_SEL(prof_id);
1447 break;
1448 case ICE_BLK_FD:
1449 offset = GLQF_FDMASK_SEL(prof_id);
1450 break;
1451 default:
1452 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
1453 blk);
1454 return;
1455 }
1456
1457 wr32(hw, offset, enable_mask);
1458 ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n",
1459 blk, prof_id, offset, enable_mask);
1460 }
1461
1462 /**
1463 * ice_init_prof_masks - initial prof masks
1464 * @hw: pointer to the HW struct
1465 * @blk: hardware block
1466 */
ice_init_prof_masks(struct ice_hw * hw,enum ice_block blk)1467 static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk)
1468 {
1469 u16 per_pf;
1470 u16 i;
1471
1472 mutex_init(&hw->blk[blk].masks.lock);
1473
1474 per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs;
1475
1476 hw->blk[blk].masks.count = per_pf;
1477 hw->blk[blk].masks.first = hw->pf_id * per_pf;
1478
1479 memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks));
1480
1481 for (i = hw->blk[blk].masks.first;
1482 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
1483 ice_write_prof_mask_reg(hw, blk, i, 0, 0);
1484 }
1485
1486 /**
1487 * ice_init_all_prof_masks - initialize all prof masks
1488 * @hw: pointer to the HW struct
1489 */
ice_init_all_prof_masks(struct ice_hw * hw)1490 static void ice_init_all_prof_masks(struct ice_hw *hw)
1491 {
1492 ice_init_prof_masks(hw, ICE_BLK_RSS);
1493 ice_init_prof_masks(hw, ICE_BLK_FD);
1494 }
1495
1496 /**
1497 * ice_alloc_prof_mask - allocate profile mask
1498 * @hw: pointer to the HW struct
1499 * @blk: hardware block
1500 * @idx: index of FV which will use the mask
1501 * @mask: the 16-bit mask
1502 * @mask_idx: variable to receive the mask index
1503 */
1504 static int
ice_alloc_prof_mask(struct ice_hw * hw,enum ice_block blk,u16 idx,u16 mask,u16 * mask_idx)1505 ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask,
1506 u16 *mask_idx)
1507 {
1508 bool found_unused = false, found_copy = false;
1509 u16 unused_idx = 0, copy_idx = 0;
1510 int status = -ENOSPC;
1511 u16 i;
1512
1513 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
1514 return -EINVAL;
1515
1516 mutex_lock(&hw->blk[blk].masks.lock);
1517
1518 for (i = hw->blk[blk].masks.first;
1519 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
1520 if (hw->blk[blk].masks.masks[i].in_use) {
1521 /* if mask is in use and it exactly duplicates the
1522 * desired mask and index, then in can be reused
1523 */
1524 if (hw->blk[blk].masks.masks[i].mask == mask &&
1525 hw->blk[blk].masks.masks[i].idx == idx) {
1526 found_copy = true;
1527 copy_idx = i;
1528 break;
1529 }
1530 } else {
1531 /* save off unused index, but keep searching in case
1532 * there is an exact match later on
1533 */
1534 if (!found_unused) {
1535 found_unused = true;
1536 unused_idx = i;
1537 }
1538 }
1539
1540 if (found_copy)
1541 i = copy_idx;
1542 else if (found_unused)
1543 i = unused_idx;
1544 else
1545 goto err_ice_alloc_prof_mask;
1546
1547 /* update mask for a new entry */
1548 if (found_unused) {
1549 hw->blk[blk].masks.masks[i].in_use = true;
1550 hw->blk[blk].masks.masks[i].mask = mask;
1551 hw->blk[blk].masks.masks[i].idx = idx;
1552 hw->blk[blk].masks.masks[i].ref = 0;
1553 ice_write_prof_mask_reg(hw, blk, i, idx, mask);
1554 }
1555
1556 hw->blk[blk].masks.masks[i].ref++;
1557 *mask_idx = i;
1558 status = 0;
1559
1560 err_ice_alloc_prof_mask:
1561 mutex_unlock(&hw->blk[blk].masks.lock);
1562
1563 return status;
1564 }
1565
1566 /**
1567 * ice_free_prof_mask - free profile mask
1568 * @hw: pointer to the HW struct
1569 * @blk: hardware block
1570 * @mask_idx: index of mask
1571 */
1572 static int
ice_free_prof_mask(struct ice_hw * hw,enum ice_block blk,u16 mask_idx)1573 ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx)
1574 {
1575 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
1576 return -EINVAL;
1577
1578 if (!(mask_idx >= hw->blk[blk].masks.first &&
1579 mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count))
1580 return -ENOENT;
1581
1582 mutex_lock(&hw->blk[blk].masks.lock);
1583
1584 if (!hw->blk[blk].masks.masks[mask_idx].in_use)
1585 goto exit_ice_free_prof_mask;
1586
1587 if (hw->blk[blk].masks.masks[mask_idx].ref > 1) {
1588 hw->blk[blk].masks.masks[mask_idx].ref--;
1589 goto exit_ice_free_prof_mask;
1590 }
1591
1592 /* remove mask */
1593 hw->blk[blk].masks.masks[mask_idx].in_use = false;
1594 hw->blk[blk].masks.masks[mask_idx].mask = 0;
1595 hw->blk[blk].masks.masks[mask_idx].idx = 0;
1596
1597 /* update mask as unused entry */
1598 ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk,
1599 mask_idx);
1600 ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0);
1601
1602 exit_ice_free_prof_mask:
1603 mutex_unlock(&hw->blk[blk].masks.lock);
1604
1605 return 0;
1606 }
1607
1608 /**
1609 * ice_free_prof_masks - free all profile masks for a profile
1610 * @hw: pointer to the HW struct
1611 * @blk: hardware block
1612 * @prof_id: profile ID
1613 */
1614 static int
ice_free_prof_masks(struct ice_hw * hw,enum ice_block blk,u16 prof_id)1615 ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id)
1616 {
1617 u32 mask_bm;
1618 u16 i;
1619
1620 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
1621 return -EINVAL;
1622
1623 mask_bm = hw->blk[blk].es.mask_ena[prof_id];
1624 for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++)
1625 if (mask_bm & BIT(i))
1626 ice_free_prof_mask(hw, blk, i);
1627
1628 return 0;
1629 }
1630
1631 /**
1632 * ice_shutdown_prof_masks - releases lock for masking
1633 * @hw: pointer to the HW struct
1634 * @blk: hardware block
1635 *
1636 * This should be called before unloading the driver
1637 */
ice_shutdown_prof_masks(struct ice_hw * hw,enum ice_block blk)1638 static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk)
1639 {
1640 u16 i;
1641
1642 mutex_lock(&hw->blk[blk].masks.lock);
1643
1644 for (i = hw->blk[blk].masks.first;
1645 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) {
1646 ice_write_prof_mask_reg(hw, blk, i, 0, 0);
1647
1648 hw->blk[blk].masks.masks[i].in_use = false;
1649 hw->blk[blk].masks.masks[i].idx = 0;
1650 hw->blk[blk].masks.masks[i].mask = 0;
1651 }
1652
1653 mutex_unlock(&hw->blk[blk].masks.lock);
1654 mutex_destroy(&hw->blk[blk].masks.lock);
1655 }
1656
1657 /**
1658 * ice_shutdown_all_prof_masks - releases all locks for masking
1659 * @hw: pointer to the HW struct
1660 *
1661 * This should be called before unloading the driver
1662 */
ice_shutdown_all_prof_masks(struct ice_hw * hw)1663 static void ice_shutdown_all_prof_masks(struct ice_hw *hw)
1664 {
1665 ice_shutdown_prof_masks(hw, ICE_BLK_RSS);
1666 ice_shutdown_prof_masks(hw, ICE_BLK_FD);
1667 }
1668
1669 /**
1670 * ice_update_prof_masking - set registers according to masking
1671 * @hw: pointer to the HW struct
1672 * @blk: hardware block
1673 * @prof_id: profile ID
1674 * @masks: masks
1675 */
1676 static int
ice_update_prof_masking(struct ice_hw * hw,enum ice_block blk,u16 prof_id,u16 * masks)1677 ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id,
1678 u16 *masks)
1679 {
1680 bool err = false;
1681 u32 ena_mask = 0;
1682 u16 idx;
1683 u16 i;
1684
1685 /* Only support FD and RSS masking, otherwise nothing to be done */
1686 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
1687 return 0;
1688
1689 for (i = 0; i < hw->blk[blk].es.fvw; i++)
1690 if (masks[i] && masks[i] != 0xFFFF) {
1691 if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) {
1692 ena_mask |= BIT(idx);
1693 } else {
1694 /* not enough bitmaps */
1695 err = true;
1696 break;
1697 }
1698 }
1699
1700 if (err) {
1701 /* free any bitmaps we have allocated */
1702 for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++)
1703 if (ena_mask & BIT(i))
1704 ice_free_prof_mask(hw, blk, i);
1705
1706 return -EIO;
1707 }
1708
1709 /* enable the masks for this profile */
1710 ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask);
1711
1712 /* store enabled masks with profile so that they can be freed later */
1713 hw->blk[blk].es.mask_ena[prof_id] = ena_mask;
1714
1715 return 0;
1716 }
1717
1718 /**
1719 * ice_write_es - write an extraction sequence to hardware
1720 * @hw: pointer to the HW struct
1721 * @blk: the block in which to write the extraction sequence
1722 * @prof_id: the profile ID to write
1723 * @fv: pointer to the extraction sequence to write - NULL to clear extraction
1724 */
1725 static void
ice_write_es(struct ice_hw * hw,enum ice_block blk,u8 prof_id,struct ice_fv_word * fv)1726 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
1727 struct ice_fv_word *fv)
1728 {
1729 u16 off;
1730
1731 off = prof_id * hw->blk[blk].es.fvw;
1732 if (!fv) {
1733 memset(&hw->blk[blk].es.t[off], 0,
1734 hw->blk[blk].es.fvw * sizeof(*fv));
1735 hw->blk[blk].es.written[prof_id] = false;
1736 } else {
1737 memcpy(&hw->blk[blk].es.t[off], fv,
1738 hw->blk[blk].es.fvw * sizeof(*fv));
1739 }
1740 }
1741
1742 /**
1743 * ice_prof_dec_ref - decrement reference count for profile
1744 * @hw: pointer to the HW struct
1745 * @blk: the block from which to free the profile ID
1746 * @prof_id: the profile ID for which to decrement the reference count
1747 */
1748 static int
ice_prof_dec_ref(struct ice_hw * hw,enum ice_block blk,u8 prof_id)1749 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
1750 {
1751 if (prof_id > hw->blk[blk].es.count)
1752 return -EINVAL;
1753
1754 if (hw->blk[blk].es.ref_count[prof_id] > 0) {
1755 if (!--hw->blk[blk].es.ref_count[prof_id]) {
1756 ice_write_es(hw, blk, prof_id, NULL);
1757 ice_free_prof_masks(hw, blk, prof_id);
1758 return ice_free_prof_id(hw, blk, prof_id);
1759 }
1760 }
1761
1762 return 0;
1763 }
1764
1765 /* Block / table section IDs */
1766 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
1767 /* SWITCH */
1768 { ICE_SID_XLT1_SW,
1769 ICE_SID_XLT2_SW,
1770 ICE_SID_PROFID_TCAM_SW,
1771 ICE_SID_PROFID_REDIR_SW,
1772 ICE_SID_FLD_VEC_SW
1773 },
1774
1775 /* ACL */
1776 { ICE_SID_XLT1_ACL,
1777 ICE_SID_XLT2_ACL,
1778 ICE_SID_PROFID_TCAM_ACL,
1779 ICE_SID_PROFID_REDIR_ACL,
1780 ICE_SID_FLD_VEC_ACL
1781 },
1782
1783 /* FD */
1784 { ICE_SID_XLT1_FD,
1785 ICE_SID_XLT2_FD,
1786 ICE_SID_PROFID_TCAM_FD,
1787 ICE_SID_PROFID_REDIR_FD,
1788 ICE_SID_FLD_VEC_FD
1789 },
1790
1791 /* RSS */
1792 { ICE_SID_XLT1_RSS,
1793 ICE_SID_XLT2_RSS,
1794 ICE_SID_PROFID_TCAM_RSS,
1795 ICE_SID_PROFID_REDIR_RSS,
1796 ICE_SID_FLD_VEC_RSS
1797 },
1798
1799 /* PE */
1800 { ICE_SID_XLT1_PE,
1801 ICE_SID_XLT2_PE,
1802 ICE_SID_PROFID_TCAM_PE,
1803 ICE_SID_PROFID_REDIR_PE,
1804 ICE_SID_FLD_VEC_PE
1805 }
1806 };
1807
1808 /**
1809 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables
1810 * @hw: pointer to the hardware structure
1811 * @blk: the HW block to initialize
1812 */
ice_init_sw_xlt1_db(struct ice_hw * hw,enum ice_block blk)1813 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
1814 {
1815 u16 pt;
1816
1817 for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
1818 u8 ptg;
1819
1820 ptg = hw->blk[blk].xlt1.t[pt];
1821 if (ptg != ICE_DEFAULT_PTG) {
1822 ice_ptg_alloc_val(hw, blk, ptg);
1823 ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
1824 }
1825 }
1826 }
1827
1828 /**
1829 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables
1830 * @hw: pointer to the hardware structure
1831 * @blk: the HW block to initialize
1832 */
ice_init_sw_xlt2_db(struct ice_hw * hw,enum ice_block blk)1833 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
1834 {
1835 u16 vsi;
1836
1837 for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
1838 u16 vsig;
1839
1840 vsig = hw->blk[blk].xlt2.t[vsi];
1841 if (vsig) {
1842 ice_vsig_alloc_val(hw, blk, vsig);
1843 ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
1844 /* no changes at this time, since this has been
1845 * initialized from the original package
1846 */
1847 hw->blk[blk].xlt2.vsis[vsi].changed = 0;
1848 }
1849 }
1850 }
1851
1852 /**
1853 * ice_init_sw_db - init software database from HW tables
1854 * @hw: pointer to the hardware structure
1855 */
ice_init_sw_db(struct ice_hw * hw)1856 static void ice_init_sw_db(struct ice_hw *hw)
1857 {
1858 u16 i;
1859
1860 for (i = 0; i < ICE_BLK_COUNT; i++) {
1861 ice_init_sw_xlt1_db(hw, (enum ice_block)i);
1862 ice_init_sw_xlt2_db(hw, (enum ice_block)i);
1863 }
1864 }
1865
1866 /**
1867 * ice_fill_tbl - Reads content of a single table type into database
1868 * @hw: pointer to the hardware structure
1869 * @block_id: Block ID of the table to copy
1870 * @sid: Section ID of the table to copy
1871 *
1872 * Will attempt to read the entire content of a given table of a single block
1873 * into the driver database. We assume that the buffer will always
1874 * be as large or larger than the data contained in the package. If
1875 * this condition is not met, there is most likely an error in the package
1876 * contents.
1877 */
ice_fill_tbl(struct ice_hw * hw,enum ice_block block_id,u32 sid)1878 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
1879 {
1880 u32 dst_len, sect_len, offset = 0;
1881 struct ice_prof_redir_section *pr;
1882 struct ice_prof_id_section *pid;
1883 struct ice_xlt1_section *xlt1;
1884 struct ice_xlt2_section *xlt2;
1885 struct ice_sw_fv_section *es;
1886 struct ice_pkg_enum state;
1887 u8 *src, *dst;
1888 void *sect;
1889
1890 /* if the HW segment pointer is null then the first iteration of
1891 * ice_pkg_enum_section() will fail. In this case the HW tables will
1892 * not be filled and return success.
1893 */
1894 if (!hw->seg) {
1895 ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
1896 return;
1897 }
1898
1899 memset(&state, 0, sizeof(state));
1900
1901 sect = ice_pkg_enum_section(hw->seg, &state, sid);
1902
1903 while (sect) {
1904 switch (sid) {
1905 case ICE_SID_XLT1_SW:
1906 case ICE_SID_XLT1_FD:
1907 case ICE_SID_XLT1_RSS:
1908 case ICE_SID_XLT1_ACL:
1909 case ICE_SID_XLT1_PE:
1910 xlt1 = sect;
1911 src = xlt1->value;
1912 sect_len = le16_to_cpu(xlt1->count) *
1913 sizeof(*hw->blk[block_id].xlt1.t);
1914 dst = hw->blk[block_id].xlt1.t;
1915 dst_len = hw->blk[block_id].xlt1.count *
1916 sizeof(*hw->blk[block_id].xlt1.t);
1917 break;
1918 case ICE_SID_XLT2_SW:
1919 case ICE_SID_XLT2_FD:
1920 case ICE_SID_XLT2_RSS:
1921 case ICE_SID_XLT2_ACL:
1922 case ICE_SID_XLT2_PE:
1923 xlt2 = sect;
1924 src = (__force u8 *)xlt2->value;
1925 sect_len = le16_to_cpu(xlt2->count) *
1926 sizeof(*hw->blk[block_id].xlt2.t);
1927 dst = (u8 *)hw->blk[block_id].xlt2.t;
1928 dst_len = hw->blk[block_id].xlt2.count *
1929 sizeof(*hw->blk[block_id].xlt2.t);
1930 break;
1931 case ICE_SID_PROFID_TCAM_SW:
1932 case ICE_SID_PROFID_TCAM_FD:
1933 case ICE_SID_PROFID_TCAM_RSS:
1934 case ICE_SID_PROFID_TCAM_ACL:
1935 case ICE_SID_PROFID_TCAM_PE:
1936 pid = sect;
1937 src = (u8 *)pid->entry;
1938 sect_len = le16_to_cpu(pid->count) *
1939 sizeof(*hw->blk[block_id].prof.t);
1940 dst = (u8 *)hw->blk[block_id].prof.t;
1941 dst_len = hw->blk[block_id].prof.count *
1942 sizeof(*hw->blk[block_id].prof.t);
1943 break;
1944 case ICE_SID_PROFID_REDIR_SW:
1945 case ICE_SID_PROFID_REDIR_FD:
1946 case ICE_SID_PROFID_REDIR_RSS:
1947 case ICE_SID_PROFID_REDIR_ACL:
1948 case ICE_SID_PROFID_REDIR_PE:
1949 pr = sect;
1950 src = pr->redir_value;
1951 sect_len = le16_to_cpu(pr->count) *
1952 sizeof(*hw->blk[block_id].prof_redir.t);
1953 dst = hw->blk[block_id].prof_redir.t;
1954 dst_len = hw->blk[block_id].prof_redir.count *
1955 sizeof(*hw->blk[block_id].prof_redir.t);
1956 break;
1957 case ICE_SID_FLD_VEC_SW:
1958 case ICE_SID_FLD_VEC_FD:
1959 case ICE_SID_FLD_VEC_RSS:
1960 case ICE_SID_FLD_VEC_ACL:
1961 case ICE_SID_FLD_VEC_PE:
1962 es = sect;
1963 src = (u8 *)es->fv;
1964 sect_len = (u32)(le16_to_cpu(es->count) *
1965 hw->blk[block_id].es.fvw) *
1966 sizeof(*hw->blk[block_id].es.t);
1967 dst = (u8 *)hw->blk[block_id].es.t;
1968 dst_len = (u32)(hw->blk[block_id].es.count *
1969 hw->blk[block_id].es.fvw) *
1970 sizeof(*hw->blk[block_id].es.t);
1971 break;
1972 default:
1973 return;
1974 }
1975
1976 /* if the section offset exceeds destination length, terminate
1977 * table fill.
1978 */
1979 if (offset > dst_len)
1980 return;
1981
1982 /* if the sum of section size and offset exceed destination size
1983 * then we are out of bounds of the HW table size for that PF.
1984 * Changing section length to fill the remaining table space
1985 * of that PF.
1986 */
1987 if ((offset + sect_len) > dst_len)
1988 sect_len = dst_len - offset;
1989
1990 memcpy(dst + offset, src, sect_len);
1991 offset += sect_len;
1992 sect = ice_pkg_enum_section(NULL, &state, sid);
1993 }
1994 }
1995
1996 /**
1997 * ice_fill_blk_tbls - Read package context for tables
1998 * @hw: pointer to the hardware structure
1999 *
2000 * Reads the current package contents and populates the driver
2001 * database with the data iteratively for all advanced feature
2002 * blocks. Assume that the HW tables have been allocated.
2003 */
ice_fill_blk_tbls(struct ice_hw * hw)2004 void ice_fill_blk_tbls(struct ice_hw *hw)
2005 {
2006 u8 i;
2007
2008 for (i = 0; i < ICE_BLK_COUNT; i++) {
2009 enum ice_block blk_id = (enum ice_block)i;
2010
2011 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
2012 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
2013 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
2014 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
2015 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
2016 }
2017
2018 ice_init_sw_db(hw);
2019 }
2020
2021 /**
2022 * ice_free_prof_map - free profile map
2023 * @hw: pointer to the hardware structure
2024 * @blk_idx: HW block index
2025 */
ice_free_prof_map(struct ice_hw * hw,u8 blk_idx)2026 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx)
2027 {
2028 struct ice_es *es = &hw->blk[blk_idx].es;
2029 struct ice_prof_map *del, *tmp;
2030
2031 mutex_lock(&es->prof_map_lock);
2032 list_for_each_entry_safe(del, tmp, &es->prof_map, list) {
2033 list_del(&del->list);
2034 devm_kfree(ice_hw_to_dev(hw), del);
2035 }
2036 INIT_LIST_HEAD(&es->prof_map);
2037 mutex_unlock(&es->prof_map_lock);
2038 }
2039
2040 /**
2041 * ice_free_flow_profs - free flow profile entries
2042 * @hw: pointer to the hardware structure
2043 * @blk_idx: HW block index
2044 */
ice_free_flow_profs(struct ice_hw * hw,u8 blk_idx)2045 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx)
2046 {
2047 struct ice_flow_prof *p, *tmp;
2048
2049 mutex_lock(&hw->fl_profs_locks[blk_idx]);
2050 list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) {
2051 struct ice_flow_entry *e, *t;
2052
2053 list_for_each_entry_safe(e, t, &p->entries, l_entry)
2054 ice_flow_rem_entry(hw, (enum ice_block)blk_idx,
2055 ICE_FLOW_ENTRY_HNDL(e));
2056
2057 list_del(&p->l_entry);
2058
2059 mutex_destroy(&p->entries_lock);
2060 devm_kfree(ice_hw_to_dev(hw), p);
2061 }
2062 mutex_unlock(&hw->fl_profs_locks[blk_idx]);
2063
2064 /* if driver is in reset and tables are being cleared
2065 * re-initialize the flow profile list heads
2066 */
2067 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
2068 }
2069
2070 /**
2071 * ice_free_vsig_tbl - free complete VSIG table entries
2072 * @hw: pointer to the hardware structure
2073 * @blk: the HW block on which to free the VSIG table entries
2074 */
ice_free_vsig_tbl(struct ice_hw * hw,enum ice_block blk)2075 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
2076 {
2077 u16 i;
2078
2079 if (!hw->blk[blk].xlt2.vsig_tbl)
2080 return;
2081
2082 for (i = 1; i < ICE_MAX_VSIGS; i++)
2083 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2084 ice_vsig_free(hw, blk, i);
2085 }
2086
2087 /**
2088 * ice_free_hw_tbls - free hardware table memory
2089 * @hw: pointer to the hardware structure
2090 */
ice_free_hw_tbls(struct ice_hw * hw)2091 void ice_free_hw_tbls(struct ice_hw *hw)
2092 {
2093 struct ice_rss_cfg *r, *rt;
2094 u8 i;
2095
2096 for (i = 0; i < ICE_BLK_COUNT; i++) {
2097 if (hw->blk[i].is_list_init) {
2098 struct ice_es *es = &hw->blk[i].es;
2099
2100 ice_free_prof_map(hw, i);
2101 mutex_destroy(&es->prof_map_lock);
2102
2103 ice_free_flow_profs(hw, i);
2104 mutex_destroy(&hw->fl_profs_locks[i]);
2105
2106 hw->blk[i].is_list_init = false;
2107 }
2108 ice_free_vsig_tbl(hw, (enum ice_block)i);
2109 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes);
2110 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl);
2111 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t);
2112 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t);
2113 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl);
2114 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis);
2115 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t);
2116 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t);
2117 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t);
2118 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count);
2119 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written);
2120 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena);
2121 }
2122
2123 list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) {
2124 list_del(&r->l_entry);
2125 devm_kfree(ice_hw_to_dev(hw), r);
2126 }
2127 mutex_destroy(&hw->rss_locks);
2128 ice_shutdown_all_prof_masks(hw);
2129 memset(hw->blk, 0, sizeof(hw->blk));
2130 }
2131
2132 /**
2133 * ice_init_flow_profs - init flow profile locks and list heads
2134 * @hw: pointer to the hardware structure
2135 * @blk_idx: HW block index
2136 */
ice_init_flow_profs(struct ice_hw * hw,u8 blk_idx)2137 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx)
2138 {
2139 mutex_init(&hw->fl_profs_locks[blk_idx]);
2140 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
2141 }
2142
2143 /**
2144 * ice_clear_hw_tbls - clear HW tables and flow profiles
2145 * @hw: pointer to the hardware structure
2146 */
ice_clear_hw_tbls(struct ice_hw * hw)2147 void ice_clear_hw_tbls(struct ice_hw *hw)
2148 {
2149 u8 i;
2150
2151 for (i = 0; i < ICE_BLK_COUNT; i++) {
2152 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
2153 struct ice_prof_tcam *prof = &hw->blk[i].prof;
2154 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
2155 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
2156 struct ice_es *es = &hw->blk[i].es;
2157
2158 if (hw->blk[i].is_list_init) {
2159 ice_free_prof_map(hw, i);
2160 ice_free_flow_profs(hw, i);
2161 }
2162
2163 ice_free_vsig_tbl(hw, (enum ice_block)i);
2164
2165 memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes));
2166 memset(xlt1->ptg_tbl, 0,
2167 ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl));
2168 memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t));
2169
2170 memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis));
2171 memset(xlt2->vsig_tbl, 0,
2172 xlt2->count * sizeof(*xlt2->vsig_tbl));
2173 memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t));
2174
2175 memset(prof->t, 0, prof->count * sizeof(*prof->t));
2176 memset(prof_redir->t, 0,
2177 prof_redir->count * sizeof(*prof_redir->t));
2178
2179 memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw);
2180 memset(es->ref_count, 0, es->count * sizeof(*es->ref_count));
2181 memset(es->written, 0, es->count * sizeof(*es->written));
2182 memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena));
2183 }
2184 }
2185
2186 /**
2187 * ice_init_hw_tbls - init hardware table memory
2188 * @hw: pointer to the hardware structure
2189 */
ice_init_hw_tbls(struct ice_hw * hw)2190 int ice_init_hw_tbls(struct ice_hw *hw)
2191 {
2192 u8 i;
2193
2194 mutex_init(&hw->rss_locks);
2195 INIT_LIST_HEAD(&hw->rss_list_head);
2196 ice_init_all_prof_masks(hw);
2197 for (i = 0; i < ICE_BLK_COUNT; i++) {
2198 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
2199 struct ice_prof_tcam *prof = &hw->blk[i].prof;
2200 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
2201 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
2202 struct ice_es *es = &hw->blk[i].es;
2203 u16 j;
2204
2205 if (hw->blk[i].is_list_init)
2206 continue;
2207
2208 ice_init_flow_profs(hw, i);
2209 mutex_init(&es->prof_map_lock);
2210 INIT_LIST_HEAD(&es->prof_map);
2211 hw->blk[i].is_list_init = true;
2212
2213 hw->blk[i].overwrite = blk_sizes[i].overwrite;
2214 es->reverse = blk_sizes[i].reverse;
2215
2216 xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
2217 xlt1->count = blk_sizes[i].xlt1;
2218
2219 xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
2220 sizeof(*xlt1->ptypes), GFP_KERNEL);
2221
2222 if (!xlt1->ptypes)
2223 goto err;
2224
2225 xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS,
2226 sizeof(*xlt1->ptg_tbl),
2227 GFP_KERNEL);
2228
2229 if (!xlt1->ptg_tbl)
2230 goto err;
2231
2232 xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
2233 sizeof(*xlt1->t), GFP_KERNEL);
2234 if (!xlt1->t)
2235 goto err;
2236
2237 xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
2238 xlt2->count = blk_sizes[i].xlt2;
2239
2240 xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
2241 sizeof(*xlt2->vsis), GFP_KERNEL);
2242
2243 if (!xlt2->vsis)
2244 goto err;
2245
2246 xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
2247 sizeof(*xlt2->vsig_tbl),
2248 GFP_KERNEL);
2249 if (!xlt2->vsig_tbl)
2250 goto err;
2251
2252 for (j = 0; j < xlt2->count; j++)
2253 INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
2254
2255 xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
2256 sizeof(*xlt2->t), GFP_KERNEL);
2257 if (!xlt2->t)
2258 goto err;
2259
2260 prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
2261 prof->count = blk_sizes[i].prof_tcam;
2262 prof->max_prof_id = blk_sizes[i].prof_id;
2263 prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
2264 prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count,
2265 sizeof(*prof->t), GFP_KERNEL);
2266
2267 if (!prof->t)
2268 goto err;
2269
2270 prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
2271 prof_redir->count = blk_sizes[i].prof_redir;
2272 prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw),
2273 prof_redir->count,
2274 sizeof(*prof_redir->t),
2275 GFP_KERNEL);
2276
2277 if (!prof_redir->t)
2278 goto err;
2279
2280 es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
2281 es->count = blk_sizes[i].es;
2282 es->fvw = blk_sizes[i].fvw;
2283 es->t = devm_kcalloc(ice_hw_to_dev(hw),
2284 (u32)(es->count * es->fvw),
2285 sizeof(*es->t), GFP_KERNEL);
2286 if (!es->t)
2287 goto err;
2288
2289 es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count,
2290 sizeof(*es->ref_count),
2291 GFP_KERNEL);
2292 if (!es->ref_count)
2293 goto err;
2294
2295 es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count,
2296 sizeof(*es->written), GFP_KERNEL);
2297 if (!es->written)
2298 goto err;
2299
2300 es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count,
2301 sizeof(*es->mask_ena), GFP_KERNEL);
2302 if (!es->mask_ena)
2303 goto err;
2304 }
2305 return 0;
2306
2307 err:
2308 ice_free_hw_tbls(hw);
2309 return -ENOMEM;
2310 }
2311
2312 /**
2313 * ice_prof_gen_key - generate profile ID key
2314 * @hw: pointer to the HW struct
2315 * @blk: the block in which to write profile ID to
2316 * @ptg: packet type group (PTG) portion of key
2317 * @vsig: VSIG portion of key
2318 * @cdid: CDID portion of key
2319 * @flags: flag portion of key
2320 * @vl_msk: valid mask
2321 * @dc_msk: don't care mask
2322 * @nm_msk: never match mask
2323 * @key: output of profile ID key
2324 */
2325 static int
ice_prof_gen_key(struct ice_hw * hw,enum ice_block blk,u8 ptg,u16 vsig,u8 cdid,u16 flags,u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],u8 key[ICE_TCAM_KEY_SZ])2326 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
2327 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
2328 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
2329 u8 key[ICE_TCAM_KEY_SZ])
2330 {
2331 struct ice_prof_id_key inkey;
2332
2333 inkey.xlt1 = ptg;
2334 inkey.xlt2_cdid = cpu_to_le16(vsig);
2335 inkey.flags = cpu_to_le16(flags);
2336
2337 switch (hw->blk[blk].prof.cdid_bits) {
2338 case 0:
2339 break;
2340 case 2:
2341 #define ICE_CD_2_M 0xC000U
2342 #define ICE_CD_2_S 14
2343 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M);
2344 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S);
2345 break;
2346 case 4:
2347 #define ICE_CD_4_M 0xF000U
2348 #define ICE_CD_4_S 12
2349 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M);
2350 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S);
2351 break;
2352 case 8:
2353 #define ICE_CD_8_M 0xFF00U
2354 #define ICE_CD_8_S 16
2355 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M);
2356 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S);
2357 break;
2358 default:
2359 ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
2360 break;
2361 }
2362
2363 return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
2364 nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
2365 }
2366
2367 /**
2368 * ice_tcam_write_entry - write TCAM entry
2369 * @hw: pointer to the HW struct
2370 * @blk: the block in which to write profile ID to
2371 * @idx: the entry index to write to
2372 * @prof_id: profile ID
2373 * @ptg: packet type group (PTG) portion of key
2374 * @vsig: VSIG portion of key
2375 * @cdid: CDID portion of key
2376 * @flags: flag portion of key
2377 * @vl_msk: valid mask
2378 * @dc_msk: don't care mask
2379 * @nm_msk: never match mask
2380 */
2381 static int
ice_tcam_write_entry(struct ice_hw * hw,enum ice_block blk,u16 idx,u8 prof_id,u8 ptg,u16 vsig,u8 cdid,u16 flags,u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])2382 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
2383 u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
2384 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
2385 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
2386 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
2387 {
2388 struct ice_prof_tcam_entry;
2389 int status;
2390
2391 status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
2392 dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
2393 if (!status) {
2394 hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx);
2395 hw->blk[blk].prof.t[idx].prof_id = prof_id;
2396 }
2397
2398 return status;
2399 }
2400
2401 /**
2402 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG
2403 * @hw: pointer to the hardware structure
2404 * @blk: HW block
2405 * @vsig: VSIG to query
2406 * @refs: pointer to variable to receive the reference count
2407 */
2408 static int
ice_vsig_get_ref(struct ice_hw * hw,enum ice_block blk,u16 vsig,u16 * refs)2409 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
2410 {
2411 u16 idx = vsig & ICE_VSIG_IDX_M;
2412 struct ice_vsig_vsi *ptr;
2413
2414 *refs = 0;
2415
2416 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2417 return -ENOENT;
2418
2419 ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2420 while (ptr) {
2421 (*refs)++;
2422 ptr = ptr->next_vsi;
2423 }
2424
2425 return 0;
2426 }
2427
2428 /**
2429 * ice_has_prof_vsig - check to see if VSIG has a specific profile
2430 * @hw: pointer to the hardware structure
2431 * @blk: HW block
2432 * @vsig: VSIG to check against
2433 * @hdl: profile handle
2434 */
2435 static bool
ice_has_prof_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsig,u64 hdl)2436 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
2437 {
2438 u16 idx = vsig & ICE_VSIG_IDX_M;
2439 struct ice_vsig_prof *ent;
2440
2441 list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
2442 list)
2443 if (ent->profile_cookie == hdl)
2444 return true;
2445
2446 ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n",
2447 vsig);
2448 return false;
2449 }
2450
2451 /**
2452 * ice_prof_bld_es - build profile ID extraction sequence changes
2453 * @hw: pointer to the HW struct
2454 * @blk: hardware block
2455 * @bld: the update package buffer build to add to
2456 * @chgs: the list of changes to make in hardware
2457 */
2458 static int
ice_prof_bld_es(struct ice_hw * hw,enum ice_block blk,struct ice_buf_build * bld,struct list_head * chgs)2459 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
2460 struct ice_buf_build *bld, struct list_head *chgs)
2461 {
2462 u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
2463 struct ice_chs_chg *tmp;
2464
2465 list_for_each_entry(tmp, chgs, list_entry)
2466 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
2467 u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
2468 struct ice_pkg_es *p;
2469 u32 id;
2470
2471 id = ice_sect_id(blk, ICE_VEC_TBL);
2472 p = ice_pkg_buf_alloc_section(bld, id,
2473 struct_size(p, es, 1) +
2474 vec_size -
2475 sizeof(p->es[0]));
2476
2477 if (!p)
2478 return -ENOSPC;
2479
2480 p->count = cpu_to_le16(1);
2481 p->offset = cpu_to_le16(tmp->prof_id);
2482
2483 memcpy(p->es, &hw->blk[blk].es.t[off], vec_size);
2484 }
2485
2486 return 0;
2487 }
2488
2489 /**
2490 * ice_prof_bld_tcam - build profile ID TCAM changes
2491 * @hw: pointer to the HW struct
2492 * @blk: hardware block
2493 * @bld: the update package buffer build to add to
2494 * @chgs: the list of changes to make in hardware
2495 */
2496 static int
ice_prof_bld_tcam(struct ice_hw * hw,enum ice_block blk,struct ice_buf_build * bld,struct list_head * chgs)2497 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
2498 struct ice_buf_build *bld, struct list_head *chgs)
2499 {
2500 struct ice_chs_chg *tmp;
2501
2502 list_for_each_entry(tmp, chgs, list_entry)
2503 if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
2504 struct ice_prof_id_section *p;
2505 u32 id;
2506
2507 id = ice_sect_id(blk, ICE_PROF_TCAM);
2508 p = ice_pkg_buf_alloc_section(bld, id,
2509 struct_size(p, entry, 1));
2510
2511 if (!p)
2512 return -ENOSPC;
2513
2514 p->count = cpu_to_le16(1);
2515 p->entry[0].addr = cpu_to_le16(tmp->tcam_idx);
2516 p->entry[0].prof_id = tmp->prof_id;
2517
2518 memcpy(p->entry[0].key,
2519 &hw->blk[blk].prof.t[tmp->tcam_idx].key,
2520 sizeof(hw->blk[blk].prof.t->key));
2521 }
2522
2523 return 0;
2524 }
2525
2526 /**
2527 * ice_prof_bld_xlt1 - build XLT1 changes
2528 * @blk: hardware block
2529 * @bld: the update package buffer build to add to
2530 * @chgs: the list of changes to make in hardware
2531 */
2532 static int
ice_prof_bld_xlt1(enum ice_block blk,struct ice_buf_build * bld,struct list_head * chgs)2533 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
2534 struct list_head *chgs)
2535 {
2536 struct ice_chs_chg *tmp;
2537
2538 list_for_each_entry(tmp, chgs, list_entry)
2539 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
2540 struct ice_xlt1_section *p;
2541 u32 id;
2542
2543 id = ice_sect_id(blk, ICE_XLT1);
2544 p = ice_pkg_buf_alloc_section(bld, id,
2545 struct_size(p, value, 1));
2546
2547 if (!p)
2548 return -ENOSPC;
2549
2550 p->count = cpu_to_le16(1);
2551 p->offset = cpu_to_le16(tmp->ptype);
2552 p->value[0] = tmp->ptg;
2553 }
2554
2555 return 0;
2556 }
2557
2558 /**
2559 * ice_prof_bld_xlt2 - build XLT2 changes
2560 * @blk: hardware block
2561 * @bld: the update package buffer build to add to
2562 * @chgs: the list of changes to make in hardware
2563 */
2564 static int
ice_prof_bld_xlt2(enum ice_block blk,struct ice_buf_build * bld,struct list_head * chgs)2565 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
2566 struct list_head *chgs)
2567 {
2568 struct ice_chs_chg *tmp;
2569
2570 list_for_each_entry(tmp, chgs, list_entry) {
2571 struct ice_xlt2_section *p;
2572 u32 id;
2573
2574 switch (tmp->type) {
2575 case ICE_VSIG_ADD:
2576 case ICE_VSI_MOVE:
2577 case ICE_VSIG_REM:
2578 id = ice_sect_id(blk, ICE_XLT2);
2579 p = ice_pkg_buf_alloc_section(bld, id,
2580 struct_size(p, value, 1));
2581
2582 if (!p)
2583 return -ENOSPC;
2584
2585 p->count = cpu_to_le16(1);
2586 p->offset = cpu_to_le16(tmp->vsi);
2587 p->value[0] = cpu_to_le16(tmp->vsig);
2588 break;
2589 default:
2590 break;
2591 }
2592 }
2593
2594 return 0;
2595 }
2596
2597 /**
2598 * ice_upd_prof_hw - update hardware using the change list
2599 * @hw: pointer to the HW struct
2600 * @blk: hardware block
2601 * @chgs: the list of changes to make in hardware
2602 */
2603 static int
ice_upd_prof_hw(struct ice_hw * hw,enum ice_block blk,struct list_head * chgs)2604 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
2605 struct list_head *chgs)
2606 {
2607 struct ice_buf_build *b;
2608 struct ice_chs_chg *tmp;
2609 u16 pkg_sects;
2610 u16 xlt1 = 0;
2611 u16 xlt2 = 0;
2612 u16 tcam = 0;
2613 u16 es = 0;
2614 int status;
2615 u16 sects;
2616
2617 /* count number of sections we need */
2618 list_for_each_entry(tmp, chgs, list_entry) {
2619 switch (tmp->type) {
2620 case ICE_PTG_ES_ADD:
2621 if (tmp->add_ptg)
2622 xlt1++;
2623 if (tmp->add_prof)
2624 es++;
2625 break;
2626 case ICE_TCAM_ADD:
2627 tcam++;
2628 break;
2629 case ICE_VSIG_ADD:
2630 case ICE_VSI_MOVE:
2631 case ICE_VSIG_REM:
2632 xlt2++;
2633 break;
2634 default:
2635 break;
2636 }
2637 }
2638 sects = xlt1 + xlt2 + tcam + es;
2639
2640 if (!sects)
2641 return 0;
2642
2643 /* Build update package buffer */
2644 b = ice_pkg_buf_alloc(hw);
2645 if (!b)
2646 return -ENOMEM;
2647
2648 status = ice_pkg_buf_reserve_section(b, sects);
2649 if (status)
2650 goto error_tmp;
2651
2652 /* Preserve order of table update: ES, TCAM, PTG, VSIG */
2653 if (es) {
2654 status = ice_prof_bld_es(hw, blk, b, chgs);
2655 if (status)
2656 goto error_tmp;
2657 }
2658
2659 if (tcam) {
2660 status = ice_prof_bld_tcam(hw, blk, b, chgs);
2661 if (status)
2662 goto error_tmp;
2663 }
2664
2665 if (xlt1) {
2666 status = ice_prof_bld_xlt1(blk, b, chgs);
2667 if (status)
2668 goto error_tmp;
2669 }
2670
2671 if (xlt2) {
2672 status = ice_prof_bld_xlt2(blk, b, chgs);
2673 if (status)
2674 goto error_tmp;
2675 }
2676
2677 /* After package buffer build check if the section count in buffer is
2678 * non-zero and matches the number of sections detected for package
2679 * update.
2680 */
2681 pkg_sects = ice_pkg_buf_get_active_sections(b);
2682 if (!pkg_sects || pkg_sects != sects) {
2683 status = -EINVAL;
2684 goto error_tmp;
2685 }
2686
2687 /* update package */
2688 status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
2689 if (status == -EIO)
2690 ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
2691
2692 error_tmp:
2693 ice_pkg_buf_free(hw, b);
2694 return status;
2695 }
2696
2697 /**
2698 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile
2699 * @hw: pointer to the HW struct
2700 * @prof_id: profile ID
2701 * @mask_sel: mask select
2702 *
2703 * This function enable any of the masks selected by the mask select parameter
2704 * for the profile specified.
2705 */
ice_update_fd_mask(struct ice_hw * hw,u16 prof_id,u32 mask_sel)2706 static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel)
2707 {
2708 wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel);
2709
2710 ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id,
2711 GLQF_FDMASK_SEL(prof_id), mask_sel);
2712 }
2713
2714 struct ice_fd_src_dst_pair {
2715 u8 prot_id;
2716 u8 count;
2717 u16 off;
2718 };
2719
2720 static const struct ice_fd_src_dst_pair ice_fd_pairs[] = {
2721 /* These are defined in pairs */
2722 { ICE_PROT_IPV4_OF_OR_S, 2, 12 },
2723 { ICE_PROT_IPV4_OF_OR_S, 2, 16 },
2724
2725 { ICE_PROT_IPV4_IL, 2, 12 },
2726 { ICE_PROT_IPV4_IL, 2, 16 },
2727
2728 { ICE_PROT_IPV6_OF_OR_S, 8, 8 },
2729 { ICE_PROT_IPV6_OF_OR_S, 8, 24 },
2730
2731 { ICE_PROT_IPV6_IL, 8, 8 },
2732 { ICE_PROT_IPV6_IL, 8, 24 },
2733
2734 { ICE_PROT_TCP_IL, 1, 0 },
2735 { ICE_PROT_TCP_IL, 1, 2 },
2736
2737 { ICE_PROT_UDP_OF, 1, 0 },
2738 { ICE_PROT_UDP_OF, 1, 2 },
2739
2740 { ICE_PROT_UDP_IL_OR_S, 1, 0 },
2741 { ICE_PROT_UDP_IL_OR_S, 1, 2 },
2742
2743 { ICE_PROT_SCTP_IL, 1, 0 },
2744 { ICE_PROT_SCTP_IL, 1, 2 }
2745 };
2746
2747 #define ICE_FD_SRC_DST_PAIR_COUNT ARRAY_SIZE(ice_fd_pairs)
2748
2749 /**
2750 * ice_update_fd_swap - set register appropriately for a FD FV extraction
2751 * @hw: pointer to the HW struct
2752 * @prof_id: profile ID
2753 * @es: extraction sequence (length of array is determined by the block)
2754 */
2755 static int
ice_update_fd_swap(struct ice_hw * hw,u16 prof_id,struct ice_fv_word * es)2756 ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es)
2757 {
2758 DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
2759 u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 };
2760 #define ICE_FD_FV_NOT_FOUND (-2)
2761 s8 first_free = ICE_FD_FV_NOT_FOUND;
2762 u8 used[ICE_MAX_FV_WORDS] = { 0 };
2763 s8 orig_free, si;
2764 u32 mask_sel = 0;
2765 u8 i, j, k;
2766
2767 bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
2768
2769 /* This code assumes that the Flow Director field vectors are assigned
2770 * from the end of the FV indexes working towards the zero index, that
2771 * only complete fields will be included and will be consecutive, and
2772 * that there are no gaps between valid indexes.
2773 */
2774
2775 /* Determine swap fields present */
2776 for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) {
2777 /* Find the first free entry, assuming right to left population.
2778 * This is where we can start adding additional pairs if needed.
2779 */
2780 if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id !=
2781 ICE_PROT_INVALID)
2782 first_free = i - 1;
2783
2784 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
2785 if (es[i].prot_id == ice_fd_pairs[j].prot_id &&
2786 es[i].off == ice_fd_pairs[j].off) {
2787 __set_bit(j, pair_list);
2788 pair_start[j] = i;
2789 }
2790 }
2791
2792 orig_free = first_free;
2793
2794 /* determine missing swap fields that need to be added */
2795 for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) {
2796 u8 bit1 = test_bit(i + 1, pair_list);
2797 u8 bit0 = test_bit(i, pair_list);
2798
2799 if (bit0 ^ bit1) {
2800 u8 index;
2801
2802 /* add the appropriate 'paired' entry */
2803 if (!bit0)
2804 index = i;
2805 else
2806 index = i + 1;
2807
2808 /* check for room */
2809 if (first_free + 1 < (s8)ice_fd_pairs[index].count)
2810 return -ENOSPC;
2811
2812 /* place in extraction sequence */
2813 for (k = 0; k < ice_fd_pairs[index].count; k++) {
2814 es[first_free - k].prot_id =
2815 ice_fd_pairs[index].prot_id;
2816 es[first_free - k].off =
2817 ice_fd_pairs[index].off + (k * 2);
2818
2819 if (k > first_free)
2820 return -EIO;
2821
2822 /* keep track of non-relevant fields */
2823 mask_sel |= BIT(first_free - k);
2824 }
2825
2826 pair_start[index] = first_free;
2827 first_free -= ice_fd_pairs[index].count;
2828 }
2829 }
2830
2831 /* fill in the swap array */
2832 si = hw->blk[ICE_BLK_FD].es.fvw - 1;
2833 while (si >= 0) {
2834 u8 indexes_used = 1;
2835
2836 /* assume flat at this index */
2837 #define ICE_SWAP_VALID 0x80
2838 used[si] = si | ICE_SWAP_VALID;
2839
2840 if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) {
2841 si -= indexes_used;
2842 continue;
2843 }
2844
2845 /* check for a swap location */
2846 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
2847 if (es[si].prot_id == ice_fd_pairs[j].prot_id &&
2848 es[si].off == ice_fd_pairs[j].off) {
2849 u8 idx;
2850
2851 /* determine the appropriate matching field */
2852 idx = j + ((j % 2) ? -1 : 1);
2853
2854 indexes_used = ice_fd_pairs[idx].count;
2855 for (k = 0; k < indexes_used; k++) {
2856 used[si - k] = (pair_start[idx] - k) |
2857 ICE_SWAP_VALID;
2858 }
2859
2860 break;
2861 }
2862
2863 si -= indexes_used;
2864 }
2865
2866 /* for each set of 4 swap and 4 inset indexes, write the appropriate
2867 * register
2868 */
2869 for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) {
2870 u32 raw_swap = 0;
2871 u32 raw_in = 0;
2872
2873 for (k = 0; k < 4; k++) {
2874 u8 idx;
2875
2876 idx = (j * 4) + k;
2877 if (used[idx] && !(mask_sel & BIT(idx))) {
2878 raw_swap |= used[idx] << (k * BITS_PER_BYTE);
2879 #define ICE_INSET_DFLT 0x9f
2880 raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE);
2881 }
2882 }
2883
2884 /* write the appropriate swap register set */
2885 wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap);
2886
2887 ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n",
2888 prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap);
2889
2890 /* write the appropriate inset register set */
2891 wr32(hw, GLQF_FDINSET(prof_id, j), raw_in);
2892
2893 ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n",
2894 prof_id, j, GLQF_FDINSET(prof_id, j), raw_in);
2895 }
2896
2897 /* initially clear the mask select for this profile */
2898 ice_update_fd_mask(hw, prof_id, 0);
2899
2900 return 0;
2901 }
2902
2903 /* The entries here needs to match the order of enum ice_ptype_attrib */
2904 static const struct ice_ptype_attrib_info ice_ptype_attributes[] = {
2905 { ICE_GTP_PDU_EH, ICE_GTP_PDU_FLAG_MASK },
2906 { ICE_GTP_SESSION, ICE_GTP_FLAGS_MASK },
2907 { ICE_GTP_DOWNLINK, ICE_GTP_FLAGS_MASK },
2908 { ICE_GTP_UPLINK, ICE_GTP_FLAGS_MASK },
2909 };
2910
2911 /**
2912 * ice_get_ptype_attrib_info - get PTYPE attribute information
2913 * @type: attribute type
2914 * @info: pointer to variable to the attribute information
2915 */
2916 static void
ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type,struct ice_ptype_attrib_info * info)2917 ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type,
2918 struct ice_ptype_attrib_info *info)
2919 {
2920 *info = ice_ptype_attributes[type];
2921 }
2922
2923 /**
2924 * ice_add_prof_attrib - add any PTG with attributes to profile
2925 * @prof: pointer to the profile to which PTG entries will be added
2926 * @ptg: PTG to be added
2927 * @ptype: PTYPE that needs to be looked up
2928 * @attr: array of attributes that will be considered
2929 * @attr_cnt: number of elements in the attribute array
2930 */
2931 static int
ice_add_prof_attrib(struct ice_prof_map * prof,u8 ptg,u16 ptype,const struct ice_ptype_attributes * attr,u16 attr_cnt)2932 ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype,
2933 const struct ice_ptype_attributes *attr, u16 attr_cnt)
2934 {
2935 bool found = false;
2936 u16 i;
2937
2938 for (i = 0; i < attr_cnt; i++)
2939 if (attr[i].ptype == ptype) {
2940 found = true;
2941
2942 prof->ptg[prof->ptg_cnt] = ptg;
2943 ice_get_ptype_attrib_info(attr[i].attrib,
2944 &prof->attr[prof->ptg_cnt]);
2945
2946 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
2947 return -ENOSPC;
2948 }
2949
2950 if (!found)
2951 return -ENOENT;
2952
2953 return 0;
2954 }
2955
2956 /**
2957 * ice_add_prof - add profile
2958 * @hw: pointer to the HW struct
2959 * @blk: hardware block
2960 * @id: profile tracking ID
2961 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits)
2962 * @attr: array of attributes
2963 * @attr_cnt: number of elements in attr array
2964 * @es: extraction sequence (length of array is determined by the block)
2965 * @masks: mask for extraction sequence
2966 *
2967 * This function registers a profile, which matches a set of PTYPES with a
2968 * particular extraction sequence. While the hardware profile is allocated
2969 * it will not be written until the first call to ice_add_flow that specifies
2970 * the ID value used here.
2971 */
2972 int
ice_add_prof(struct ice_hw * hw,enum ice_block blk,u64 id,u8 ptypes[],const struct ice_ptype_attributes * attr,u16 attr_cnt,struct ice_fv_word * es,u16 * masks)2973 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[],
2974 const struct ice_ptype_attributes *attr, u16 attr_cnt,
2975 struct ice_fv_word *es, u16 *masks)
2976 {
2977 u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE);
2978 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
2979 struct ice_prof_map *prof;
2980 u8 byte = 0;
2981 u8 prof_id;
2982 int status;
2983
2984 bitmap_zero(ptgs_used, ICE_XLT1_CNT);
2985
2986 mutex_lock(&hw->blk[blk].es.prof_map_lock);
2987
2988 /* search for existing profile */
2989 status = ice_find_prof_id_with_mask(hw, blk, es, masks, &prof_id);
2990 if (status) {
2991 /* allocate profile ID */
2992 status = ice_alloc_prof_id(hw, blk, &prof_id);
2993 if (status)
2994 goto err_ice_add_prof;
2995 if (blk == ICE_BLK_FD) {
2996 /* For Flow Director block, the extraction sequence may
2997 * need to be altered in the case where there are paired
2998 * fields that have no match. This is necessary because
2999 * for Flow Director, src and dest fields need to paired
3000 * for filter programming and these values are swapped
3001 * during Tx.
3002 */
3003 status = ice_update_fd_swap(hw, prof_id, es);
3004 if (status)
3005 goto err_ice_add_prof;
3006 }
3007 status = ice_update_prof_masking(hw, blk, prof_id, masks);
3008 if (status)
3009 goto err_ice_add_prof;
3010
3011 /* and write new es */
3012 ice_write_es(hw, blk, prof_id, es);
3013 }
3014
3015 ice_prof_inc_ref(hw, blk, prof_id);
3016
3017 /* add profile info */
3018 prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL);
3019 if (!prof) {
3020 status = -ENOMEM;
3021 goto err_ice_add_prof;
3022 }
3023
3024 prof->profile_cookie = id;
3025 prof->prof_id = prof_id;
3026 prof->ptg_cnt = 0;
3027 prof->context = 0;
3028
3029 /* build list of ptgs */
3030 while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) {
3031 u8 bit;
3032
3033 if (!ptypes[byte]) {
3034 bytes--;
3035 byte++;
3036 continue;
3037 }
3038
3039 /* Examine 8 bits per byte */
3040 for_each_set_bit(bit, (unsigned long *)&ptypes[byte],
3041 BITS_PER_BYTE) {
3042 u16 ptype;
3043 u8 ptg;
3044
3045 ptype = byte * BITS_PER_BYTE + bit;
3046
3047 /* The package should place all ptypes in a non-zero
3048 * PTG, so the following call should never fail.
3049 */
3050 if (ice_ptg_find_ptype(hw, blk, ptype, &ptg))
3051 continue;
3052
3053 /* If PTG is already added, skip and continue */
3054 if (test_bit(ptg, ptgs_used))
3055 continue;
3056
3057 __set_bit(ptg, ptgs_used);
3058 /* Check to see there are any attributes for
3059 * this PTYPE, and add them if found.
3060 */
3061 status = ice_add_prof_attrib(prof, ptg, ptype,
3062 attr, attr_cnt);
3063 if (status == -ENOSPC)
3064 break;
3065 if (status) {
3066 /* This is simple a PTYPE/PTG with no
3067 * attribute
3068 */
3069 prof->ptg[prof->ptg_cnt] = ptg;
3070 prof->attr[prof->ptg_cnt].flags = 0;
3071 prof->attr[prof->ptg_cnt].mask = 0;
3072
3073 if (++prof->ptg_cnt >=
3074 ICE_MAX_PTG_PER_PROFILE)
3075 break;
3076 }
3077 }
3078
3079 bytes--;
3080 byte++;
3081 }
3082
3083 list_add(&prof->list, &hw->blk[blk].es.prof_map);
3084 status = 0;
3085
3086 err_ice_add_prof:
3087 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3088 return status;
3089 }
3090
3091 /**
3092 * ice_search_prof_id - Search for a profile tracking ID
3093 * @hw: pointer to the HW struct
3094 * @blk: hardware block
3095 * @id: profile tracking ID
3096 *
3097 * This will search for a profile tracking ID which was previously added.
3098 * The profile map lock should be held before calling this function.
3099 */
3100 static struct ice_prof_map *
ice_search_prof_id(struct ice_hw * hw,enum ice_block blk,u64 id)3101 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id)
3102 {
3103 struct ice_prof_map *entry = NULL;
3104 struct ice_prof_map *map;
3105
3106 list_for_each_entry(map, &hw->blk[blk].es.prof_map, list)
3107 if (map->profile_cookie == id) {
3108 entry = map;
3109 break;
3110 }
3111
3112 return entry;
3113 }
3114
3115 /**
3116 * ice_vsig_prof_id_count - count profiles in a VSIG
3117 * @hw: pointer to the HW struct
3118 * @blk: hardware block
3119 * @vsig: VSIG to remove the profile from
3120 */
3121 static u16
ice_vsig_prof_id_count(struct ice_hw * hw,enum ice_block blk,u16 vsig)3122 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig)
3123 {
3124 u16 idx = vsig & ICE_VSIG_IDX_M, count = 0;
3125 struct ice_vsig_prof *p;
3126
3127 list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3128 list)
3129 count++;
3130
3131 return count;
3132 }
3133
3134 /**
3135 * ice_rel_tcam_idx - release a TCAM index
3136 * @hw: pointer to the HW struct
3137 * @blk: hardware block
3138 * @idx: the index to release
3139 */
ice_rel_tcam_idx(struct ice_hw * hw,enum ice_block blk,u16 idx)3140 static int ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx)
3141 {
3142 /* Masks to invoke a never match entry */
3143 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3144 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
3145 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
3146 int status;
3147
3148 /* write the TCAM entry */
3149 status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
3150 dc_msk, nm_msk);
3151 if (status)
3152 return status;
3153
3154 /* release the TCAM entry */
3155 status = ice_free_tcam_ent(hw, blk, idx);
3156
3157 return status;
3158 }
3159
3160 /**
3161 * ice_rem_prof_id - remove one profile from a VSIG
3162 * @hw: pointer to the HW struct
3163 * @blk: hardware block
3164 * @prof: pointer to profile structure to remove
3165 */
3166 static int
ice_rem_prof_id(struct ice_hw * hw,enum ice_block blk,struct ice_vsig_prof * prof)3167 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
3168 struct ice_vsig_prof *prof)
3169 {
3170 int status;
3171 u16 i;
3172
3173 for (i = 0; i < prof->tcam_count; i++)
3174 if (prof->tcam[i].in_use) {
3175 prof->tcam[i].in_use = false;
3176 status = ice_rel_tcam_idx(hw, blk,
3177 prof->tcam[i].tcam_idx);
3178 if (status)
3179 return -EIO;
3180 }
3181
3182 return 0;
3183 }
3184
3185 /**
3186 * ice_rem_vsig - remove VSIG
3187 * @hw: pointer to the HW struct
3188 * @blk: hardware block
3189 * @vsig: the VSIG to remove
3190 * @chg: the change list
3191 */
3192 static int
ice_rem_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsig,struct list_head * chg)3193 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
3194 struct list_head *chg)
3195 {
3196 u16 idx = vsig & ICE_VSIG_IDX_M;
3197 struct ice_vsig_vsi *vsi_cur;
3198 struct ice_vsig_prof *d, *t;
3199
3200 /* remove TCAM entries */
3201 list_for_each_entry_safe(d, t,
3202 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3203 list) {
3204 int status;
3205
3206 status = ice_rem_prof_id(hw, blk, d);
3207 if (status)
3208 return status;
3209
3210 list_del(&d->list);
3211 devm_kfree(ice_hw_to_dev(hw), d);
3212 }
3213
3214 /* Move all VSIS associated with this VSIG to the default VSIG */
3215 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3216 /* If the VSIG has at least 1 VSI then iterate through the list
3217 * and remove the VSIs before deleting the group.
3218 */
3219 if (vsi_cur)
3220 do {
3221 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
3222 struct ice_chs_chg *p;
3223
3224 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
3225 GFP_KERNEL);
3226 if (!p)
3227 return -ENOMEM;
3228
3229 p->type = ICE_VSIG_REM;
3230 p->orig_vsig = vsig;
3231 p->vsig = ICE_DEFAULT_VSIG;
3232 p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis;
3233
3234 list_add(&p->list_entry, chg);
3235
3236 vsi_cur = tmp;
3237 } while (vsi_cur);
3238
3239 return ice_vsig_free(hw, blk, vsig);
3240 }
3241
3242 /**
3243 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG
3244 * @hw: pointer to the HW struct
3245 * @blk: hardware block
3246 * @vsig: VSIG to remove the profile from
3247 * @hdl: profile handle indicating which profile to remove
3248 * @chg: list to receive a record of changes
3249 */
3250 static int
ice_rem_prof_id_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsig,u64 hdl,struct list_head * chg)3251 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
3252 struct list_head *chg)
3253 {
3254 u16 idx = vsig & ICE_VSIG_IDX_M;
3255 struct ice_vsig_prof *p, *t;
3256
3257 list_for_each_entry_safe(p, t,
3258 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3259 list)
3260 if (p->profile_cookie == hdl) {
3261 int status;
3262
3263 if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
3264 /* this is the last profile, remove the VSIG */
3265 return ice_rem_vsig(hw, blk, vsig, chg);
3266
3267 status = ice_rem_prof_id(hw, blk, p);
3268 if (!status) {
3269 list_del(&p->list);
3270 devm_kfree(ice_hw_to_dev(hw), p);
3271 }
3272 return status;
3273 }
3274
3275 return -ENOENT;
3276 }
3277
3278 /**
3279 * ice_rem_flow_all - remove all flows with a particular profile
3280 * @hw: pointer to the HW struct
3281 * @blk: hardware block
3282 * @id: profile tracking ID
3283 */
ice_rem_flow_all(struct ice_hw * hw,enum ice_block blk,u64 id)3284 static int ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id)
3285 {
3286 struct ice_chs_chg *del, *tmp;
3287 struct list_head chg;
3288 int status;
3289 u16 i;
3290
3291 INIT_LIST_HEAD(&chg);
3292
3293 for (i = 1; i < ICE_MAX_VSIGS; i++)
3294 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) {
3295 if (ice_has_prof_vsig(hw, blk, i, id)) {
3296 status = ice_rem_prof_id_vsig(hw, blk, i, id,
3297 &chg);
3298 if (status)
3299 goto err_ice_rem_flow_all;
3300 }
3301 }
3302
3303 status = ice_upd_prof_hw(hw, blk, &chg);
3304
3305 err_ice_rem_flow_all:
3306 list_for_each_entry_safe(del, tmp, &chg, list_entry) {
3307 list_del(&del->list_entry);
3308 devm_kfree(ice_hw_to_dev(hw), del);
3309 }
3310
3311 return status;
3312 }
3313
3314 /**
3315 * ice_rem_prof - remove profile
3316 * @hw: pointer to the HW struct
3317 * @blk: hardware block
3318 * @id: profile tracking ID
3319 *
3320 * This will remove the profile specified by the ID parameter, which was
3321 * previously created through ice_add_prof. If any existing entries
3322 * are associated with this profile, they will be removed as well.
3323 */
ice_rem_prof(struct ice_hw * hw,enum ice_block blk,u64 id)3324 int ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id)
3325 {
3326 struct ice_prof_map *pmap;
3327 int status;
3328
3329 mutex_lock(&hw->blk[blk].es.prof_map_lock);
3330
3331 pmap = ice_search_prof_id(hw, blk, id);
3332 if (!pmap) {
3333 status = -ENOENT;
3334 goto err_ice_rem_prof;
3335 }
3336
3337 /* remove all flows with this profile */
3338 status = ice_rem_flow_all(hw, blk, pmap->profile_cookie);
3339 if (status)
3340 goto err_ice_rem_prof;
3341
3342 /* dereference profile, and possibly remove */
3343 ice_prof_dec_ref(hw, blk, pmap->prof_id);
3344
3345 list_del(&pmap->list);
3346 devm_kfree(ice_hw_to_dev(hw), pmap);
3347
3348 err_ice_rem_prof:
3349 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3350 return status;
3351 }
3352
3353 /**
3354 * ice_get_prof - get profile
3355 * @hw: pointer to the HW struct
3356 * @blk: hardware block
3357 * @hdl: profile handle
3358 * @chg: change list
3359 */
3360 static int
ice_get_prof(struct ice_hw * hw,enum ice_block blk,u64 hdl,struct list_head * chg)3361 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl,
3362 struct list_head *chg)
3363 {
3364 struct ice_prof_map *map;
3365 struct ice_chs_chg *p;
3366 int status = 0;
3367 u16 i;
3368
3369 mutex_lock(&hw->blk[blk].es.prof_map_lock);
3370 /* Get the details on the profile specified by the handle ID */
3371 map = ice_search_prof_id(hw, blk, hdl);
3372 if (!map) {
3373 status = -ENOENT;
3374 goto err_ice_get_prof;
3375 }
3376
3377 for (i = 0; i < map->ptg_cnt; i++)
3378 if (!hw->blk[blk].es.written[map->prof_id]) {
3379 /* add ES to change list */
3380 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
3381 GFP_KERNEL);
3382 if (!p) {
3383 status = -ENOMEM;
3384 goto err_ice_get_prof;
3385 }
3386
3387 p->type = ICE_PTG_ES_ADD;
3388 p->ptype = 0;
3389 p->ptg = map->ptg[i];
3390 p->add_ptg = 0;
3391
3392 p->add_prof = 1;
3393 p->prof_id = map->prof_id;
3394
3395 hw->blk[blk].es.written[map->prof_id] = true;
3396
3397 list_add(&p->list_entry, chg);
3398 }
3399
3400 err_ice_get_prof:
3401 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3402 /* let caller clean up the change list */
3403 return status;
3404 }
3405
3406 /**
3407 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
3408 * @hw: pointer to the HW struct
3409 * @blk: hardware block
3410 * @vsig: VSIG from which to copy the list
3411 * @lst: output list
3412 *
3413 * This routine makes a copy of the list of profiles in the specified VSIG.
3414 */
3415 static int
ice_get_profs_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsig,struct list_head * lst)3416 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
3417 struct list_head *lst)
3418 {
3419 struct ice_vsig_prof *ent1, *ent2;
3420 u16 idx = vsig & ICE_VSIG_IDX_M;
3421
3422 list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3423 list) {
3424 struct ice_vsig_prof *p;
3425
3426 /* copy to the input list */
3427 p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p),
3428 GFP_KERNEL);
3429 if (!p)
3430 goto err_ice_get_profs_vsig;
3431
3432 list_add_tail(&p->list, lst);
3433 }
3434
3435 return 0;
3436
3437 err_ice_get_profs_vsig:
3438 list_for_each_entry_safe(ent1, ent2, lst, list) {
3439 list_del(&ent1->list);
3440 devm_kfree(ice_hw_to_dev(hw), ent1);
3441 }
3442
3443 return -ENOMEM;
3444 }
3445
3446 /**
3447 * ice_add_prof_to_lst - add profile entry to a list
3448 * @hw: pointer to the HW struct
3449 * @blk: hardware block
3450 * @lst: the list to be added to
3451 * @hdl: profile handle of entry to add
3452 */
3453 static int
ice_add_prof_to_lst(struct ice_hw * hw,enum ice_block blk,struct list_head * lst,u64 hdl)3454 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk,
3455 struct list_head *lst, u64 hdl)
3456 {
3457 struct ice_prof_map *map;
3458 struct ice_vsig_prof *p;
3459 int status = 0;
3460 u16 i;
3461
3462 mutex_lock(&hw->blk[blk].es.prof_map_lock);
3463 map = ice_search_prof_id(hw, blk, hdl);
3464 if (!map) {
3465 status = -ENOENT;
3466 goto err_ice_add_prof_to_lst;
3467 }
3468
3469 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3470 if (!p) {
3471 status = -ENOMEM;
3472 goto err_ice_add_prof_to_lst;
3473 }
3474
3475 p->profile_cookie = map->profile_cookie;
3476 p->prof_id = map->prof_id;
3477 p->tcam_count = map->ptg_cnt;
3478
3479 for (i = 0; i < map->ptg_cnt; i++) {
3480 p->tcam[i].prof_id = map->prof_id;
3481 p->tcam[i].tcam_idx = ICE_INVALID_TCAM;
3482 p->tcam[i].ptg = map->ptg[i];
3483 }
3484
3485 list_add(&p->list, lst);
3486
3487 err_ice_add_prof_to_lst:
3488 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3489 return status;
3490 }
3491
3492 /**
3493 * ice_move_vsi - move VSI to another VSIG
3494 * @hw: pointer to the HW struct
3495 * @blk: hardware block
3496 * @vsi: the VSI to move
3497 * @vsig: the VSIG to move the VSI to
3498 * @chg: the change list
3499 */
3500 static int
ice_move_vsi(struct ice_hw * hw,enum ice_block blk,u16 vsi,u16 vsig,struct list_head * chg)3501 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig,
3502 struct list_head *chg)
3503 {
3504 struct ice_chs_chg *p;
3505 u16 orig_vsig;
3506 int status;
3507
3508 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3509 if (!p)
3510 return -ENOMEM;
3511
3512 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
3513 if (!status)
3514 status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
3515
3516 if (status) {
3517 devm_kfree(ice_hw_to_dev(hw), p);
3518 return status;
3519 }
3520
3521 p->type = ICE_VSI_MOVE;
3522 p->vsi = vsi;
3523 p->orig_vsig = orig_vsig;
3524 p->vsig = vsig;
3525
3526 list_add(&p->list_entry, chg);
3527
3528 return 0;
3529 }
3530
3531 /**
3532 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list
3533 * @hw: pointer to the HW struct
3534 * @idx: the index of the TCAM entry to remove
3535 * @chg: the list of change structures to search
3536 */
3537 static void
ice_rem_chg_tcam_ent(struct ice_hw * hw,u16 idx,struct list_head * chg)3538 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg)
3539 {
3540 struct ice_chs_chg *pos, *tmp;
3541
3542 list_for_each_entry_safe(tmp, pos, chg, list_entry)
3543 if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) {
3544 list_del(&tmp->list_entry);
3545 devm_kfree(ice_hw_to_dev(hw), tmp);
3546 }
3547 }
3548
3549 /**
3550 * ice_prof_tcam_ena_dis - add enable or disable TCAM change
3551 * @hw: pointer to the HW struct
3552 * @blk: hardware block
3553 * @enable: true to enable, false to disable
3554 * @vsig: the VSIG of the TCAM entry
3555 * @tcam: pointer the TCAM info structure of the TCAM to disable
3556 * @chg: the change list
3557 *
3558 * This function appends an enable or disable TCAM entry in the change log
3559 */
3560 static int
ice_prof_tcam_ena_dis(struct ice_hw * hw,enum ice_block blk,bool enable,u16 vsig,struct ice_tcam_inf * tcam,struct list_head * chg)3561 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
3562 u16 vsig, struct ice_tcam_inf *tcam,
3563 struct list_head *chg)
3564 {
3565 struct ice_chs_chg *p;
3566 int status;
3567
3568 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3569 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
3570 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
3571
3572 /* if disabling, free the TCAM */
3573 if (!enable) {
3574 status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx);
3575
3576 /* if we have already created a change for this TCAM entry, then
3577 * we need to remove that entry, in order to prevent writing to
3578 * a TCAM entry we no longer will have ownership of.
3579 */
3580 ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg);
3581 tcam->tcam_idx = 0;
3582 tcam->in_use = 0;
3583 return status;
3584 }
3585
3586 /* for re-enabling, reallocate a TCAM */
3587 /* for entries with empty attribute masks, allocate entry from
3588 * the bottom of the TCAM table; otherwise, allocate from the
3589 * top of the table in order to give it higher priority
3590 */
3591 status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0,
3592 &tcam->tcam_idx);
3593 if (status)
3594 return status;
3595
3596 /* add TCAM to change list */
3597 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3598 if (!p)
3599 return -ENOMEM;
3600
3601 status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
3602 tcam->ptg, vsig, 0, tcam->attr.flags,
3603 vl_msk, dc_msk, nm_msk);
3604 if (status)
3605 goto err_ice_prof_tcam_ena_dis;
3606
3607 tcam->in_use = 1;
3608
3609 p->type = ICE_TCAM_ADD;
3610 p->add_tcam_idx = true;
3611 p->prof_id = tcam->prof_id;
3612 p->ptg = tcam->ptg;
3613 p->vsig = 0;
3614 p->tcam_idx = tcam->tcam_idx;
3615
3616 /* log change */
3617 list_add(&p->list_entry, chg);
3618
3619 return 0;
3620
3621 err_ice_prof_tcam_ena_dis:
3622 devm_kfree(ice_hw_to_dev(hw), p);
3623 return status;
3624 }
3625
3626 /**
3627 * ice_adj_prof_priorities - adjust profile based on priorities
3628 * @hw: pointer to the HW struct
3629 * @blk: hardware block
3630 * @vsig: the VSIG for which to adjust profile priorities
3631 * @chg: the change list
3632 */
3633 static int
ice_adj_prof_priorities(struct ice_hw * hw,enum ice_block blk,u16 vsig,struct list_head * chg)3634 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig,
3635 struct list_head *chg)
3636 {
3637 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
3638 struct ice_vsig_prof *t;
3639 int status;
3640 u16 idx;
3641
3642 bitmap_zero(ptgs_used, ICE_XLT1_CNT);
3643 idx = vsig & ICE_VSIG_IDX_M;
3644
3645 /* Priority is based on the order in which the profiles are added. The
3646 * newest added profile has highest priority and the oldest added
3647 * profile has the lowest priority. Since the profile property list for
3648 * a VSIG is sorted from newest to oldest, this code traverses the list
3649 * in order and enables the first of each PTG that it finds (that is not
3650 * already enabled); it also disables any duplicate PTGs that it finds
3651 * in the older profiles (that are currently enabled).
3652 */
3653
3654 list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3655 list) {
3656 u16 i;
3657
3658 for (i = 0; i < t->tcam_count; i++) {
3659 /* Scan the priorities from newest to oldest.
3660 * Make sure that the newest profiles take priority.
3661 */
3662 if (test_bit(t->tcam[i].ptg, ptgs_used) &&
3663 t->tcam[i].in_use) {
3664 /* need to mark this PTG as never match, as it
3665 * was already in use and therefore duplicate
3666 * (and lower priority)
3667 */
3668 status = ice_prof_tcam_ena_dis(hw, blk, false,
3669 vsig,
3670 &t->tcam[i],
3671 chg);
3672 if (status)
3673 return status;
3674 } else if (!test_bit(t->tcam[i].ptg, ptgs_used) &&
3675 !t->tcam[i].in_use) {
3676 /* need to enable this PTG, as it in not in use
3677 * and not enabled (highest priority)
3678 */
3679 status = ice_prof_tcam_ena_dis(hw, blk, true,
3680 vsig,
3681 &t->tcam[i],
3682 chg);
3683 if (status)
3684 return status;
3685 }
3686
3687 /* keep track of used ptgs */
3688 __set_bit(t->tcam[i].ptg, ptgs_used);
3689 }
3690 }
3691
3692 return 0;
3693 }
3694
3695 /**
3696 * ice_add_prof_id_vsig - add profile to VSIG
3697 * @hw: pointer to the HW struct
3698 * @blk: hardware block
3699 * @vsig: the VSIG to which this profile is to be added
3700 * @hdl: the profile handle indicating the profile to add
3701 * @rev: true to add entries to the end of the list
3702 * @chg: the change list
3703 */
3704 static int
ice_add_prof_id_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsig,u64 hdl,bool rev,struct list_head * chg)3705 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
3706 bool rev, struct list_head *chg)
3707 {
3708 /* Masks that ignore flags */
3709 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3710 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
3711 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
3712 struct ice_prof_map *map;
3713 struct ice_vsig_prof *t;
3714 struct ice_chs_chg *p;
3715 u16 vsig_idx, i;
3716 int status = 0;
3717
3718 /* Error, if this VSIG already has this profile */
3719 if (ice_has_prof_vsig(hw, blk, vsig, hdl))
3720 return -EEXIST;
3721
3722 /* new VSIG profile structure */
3723 t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL);
3724 if (!t)
3725 return -ENOMEM;
3726
3727 mutex_lock(&hw->blk[blk].es.prof_map_lock);
3728 /* Get the details on the profile specified by the handle ID */
3729 map = ice_search_prof_id(hw, blk, hdl);
3730 if (!map) {
3731 status = -ENOENT;
3732 goto err_ice_add_prof_id_vsig;
3733 }
3734
3735 t->profile_cookie = map->profile_cookie;
3736 t->prof_id = map->prof_id;
3737 t->tcam_count = map->ptg_cnt;
3738
3739 /* create TCAM entries */
3740 for (i = 0; i < map->ptg_cnt; i++) {
3741 u16 tcam_idx;
3742
3743 /* add TCAM to change list */
3744 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3745 if (!p) {
3746 status = -ENOMEM;
3747 goto err_ice_add_prof_id_vsig;
3748 }
3749
3750 /* allocate the TCAM entry index */
3751 /* for entries with empty attribute masks, allocate entry from
3752 * the bottom of the TCAM table; otherwise, allocate from the
3753 * top of the table in order to give it higher priority
3754 */
3755 status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0,
3756 &tcam_idx);
3757 if (status) {
3758 devm_kfree(ice_hw_to_dev(hw), p);
3759 goto err_ice_add_prof_id_vsig;
3760 }
3761
3762 t->tcam[i].ptg = map->ptg[i];
3763 t->tcam[i].prof_id = map->prof_id;
3764 t->tcam[i].tcam_idx = tcam_idx;
3765 t->tcam[i].attr = map->attr[i];
3766 t->tcam[i].in_use = true;
3767
3768 p->type = ICE_TCAM_ADD;
3769 p->add_tcam_idx = true;
3770 p->prof_id = t->tcam[i].prof_id;
3771 p->ptg = t->tcam[i].ptg;
3772 p->vsig = vsig;
3773 p->tcam_idx = t->tcam[i].tcam_idx;
3774
3775 /* write the TCAM entry */
3776 status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
3777 t->tcam[i].prof_id,
3778 t->tcam[i].ptg, vsig, 0, 0,
3779 vl_msk, dc_msk, nm_msk);
3780 if (status) {
3781 devm_kfree(ice_hw_to_dev(hw), p);
3782 goto err_ice_add_prof_id_vsig;
3783 }
3784
3785 /* log change */
3786 list_add(&p->list_entry, chg);
3787 }
3788
3789 /* add profile to VSIG */
3790 vsig_idx = vsig & ICE_VSIG_IDX_M;
3791 if (rev)
3792 list_add_tail(&t->list,
3793 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
3794 else
3795 list_add(&t->list,
3796 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
3797
3798 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3799 return status;
3800
3801 err_ice_add_prof_id_vsig:
3802 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3803 /* let caller clean up the change list */
3804 devm_kfree(ice_hw_to_dev(hw), t);
3805 return status;
3806 }
3807
3808 /**
3809 * ice_create_prof_id_vsig - add a new VSIG with a single profile
3810 * @hw: pointer to the HW struct
3811 * @blk: hardware block
3812 * @vsi: the initial VSI that will be in VSIG
3813 * @hdl: the profile handle of the profile that will be added to the VSIG
3814 * @chg: the change list
3815 */
3816 static int
ice_create_prof_id_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsi,u64 hdl,struct list_head * chg)3817 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl,
3818 struct list_head *chg)
3819 {
3820 struct ice_chs_chg *p;
3821 u16 new_vsig;
3822 int status;
3823
3824 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3825 if (!p)
3826 return -ENOMEM;
3827
3828 new_vsig = ice_vsig_alloc(hw, blk);
3829 if (!new_vsig) {
3830 status = -EIO;
3831 goto err_ice_create_prof_id_vsig;
3832 }
3833
3834 status = ice_move_vsi(hw, blk, vsi, new_vsig, chg);
3835 if (status)
3836 goto err_ice_create_prof_id_vsig;
3837
3838 status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg);
3839 if (status)
3840 goto err_ice_create_prof_id_vsig;
3841
3842 p->type = ICE_VSIG_ADD;
3843 p->vsi = vsi;
3844 p->orig_vsig = ICE_DEFAULT_VSIG;
3845 p->vsig = new_vsig;
3846
3847 list_add(&p->list_entry, chg);
3848
3849 return 0;
3850
3851 err_ice_create_prof_id_vsig:
3852 /* let caller clean up the change list */
3853 devm_kfree(ice_hw_to_dev(hw), p);
3854 return status;
3855 }
3856
3857 /**
3858 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles
3859 * @hw: pointer to the HW struct
3860 * @blk: hardware block
3861 * @vsi: the initial VSI that will be in VSIG
3862 * @lst: the list of profile that will be added to the VSIG
3863 * @new_vsig: return of new VSIG
3864 * @chg: the change list
3865 */
3866 static int
ice_create_vsig_from_lst(struct ice_hw * hw,enum ice_block blk,u16 vsi,struct list_head * lst,u16 * new_vsig,struct list_head * chg)3867 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi,
3868 struct list_head *lst, u16 *new_vsig,
3869 struct list_head *chg)
3870 {
3871 struct ice_vsig_prof *t;
3872 int status;
3873 u16 vsig;
3874
3875 vsig = ice_vsig_alloc(hw, blk);
3876 if (!vsig)
3877 return -EIO;
3878
3879 status = ice_move_vsi(hw, blk, vsi, vsig, chg);
3880 if (status)
3881 return status;
3882
3883 list_for_each_entry(t, lst, list) {
3884 /* Reverse the order here since we are copying the list */
3885 status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
3886 true, chg);
3887 if (status)
3888 return status;
3889 }
3890
3891 *new_vsig = vsig;
3892
3893 return 0;
3894 }
3895
3896 /**
3897 * ice_find_prof_vsig - find a VSIG with a specific profile handle
3898 * @hw: pointer to the HW struct
3899 * @blk: hardware block
3900 * @hdl: the profile handle of the profile to search for
3901 * @vsig: returns the VSIG with the matching profile
3902 */
3903 static bool
ice_find_prof_vsig(struct ice_hw * hw,enum ice_block blk,u64 hdl,u16 * vsig)3904 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig)
3905 {
3906 struct ice_vsig_prof *t;
3907 struct list_head lst;
3908 int status;
3909
3910 INIT_LIST_HEAD(&lst);
3911
3912 t = kzalloc(sizeof(*t), GFP_KERNEL);
3913 if (!t)
3914 return false;
3915
3916 t->profile_cookie = hdl;
3917 list_add(&t->list, &lst);
3918
3919 status = ice_find_dup_props_vsig(hw, blk, &lst, vsig);
3920
3921 list_del(&t->list);
3922 kfree(t);
3923
3924 return !status;
3925 }
3926
3927 /**
3928 * ice_add_prof_id_flow - add profile flow
3929 * @hw: pointer to the HW struct
3930 * @blk: hardware block
3931 * @vsi: the VSI to enable with the profile specified by ID
3932 * @hdl: profile handle
3933 *
3934 * Calling this function will update the hardware tables to enable the
3935 * profile indicated by the ID parameter for the VSIs specified in the VSI
3936 * array. Once successfully called, the flow will be enabled.
3937 */
3938 int
ice_add_prof_id_flow(struct ice_hw * hw,enum ice_block blk,u16 vsi,u64 hdl)3939 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
3940 {
3941 struct ice_vsig_prof *tmp1, *del1;
3942 struct ice_chs_chg *tmp, *del;
3943 struct list_head union_lst;
3944 struct list_head chg;
3945 int status;
3946 u16 vsig;
3947
3948 INIT_LIST_HEAD(&union_lst);
3949 INIT_LIST_HEAD(&chg);
3950
3951 /* Get profile */
3952 status = ice_get_prof(hw, blk, hdl, &chg);
3953 if (status)
3954 return status;
3955
3956 /* determine if VSI is already part of a VSIG */
3957 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
3958 if (!status && vsig) {
3959 bool only_vsi;
3960 u16 or_vsig;
3961 u16 ref;
3962
3963 /* found in VSIG */
3964 or_vsig = vsig;
3965
3966 /* make sure that there is no overlap/conflict between the new
3967 * characteristics and the existing ones; we don't support that
3968 * scenario
3969 */
3970 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) {
3971 status = -EEXIST;
3972 goto err_ice_add_prof_id_flow;
3973 }
3974
3975 /* last VSI in the VSIG? */
3976 status = ice_vsig_get_ref(hw, blk, vsig, &ref);
3977 if (status)
3978 goto err_ice_add_prof_id_flow;
3979 only_vsi = (ref == 1);
3980
3981 /* create a union of the current profiles and the one being
3982 * added
3983 */
3984 status = ice_get_profs_vsig(hw, blk, vsig, &union_lst);
3985 if (status)
3986 goto err_ice_add_prof_id_flow;
3987
3988 status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl);
3989 if (status)
3990 goto err_ice_add_prof_id_flow;
3991
3992 /* search for an existing VSIG with an exact charc match */
3993 status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig);
3994 if (!status) {
3995 /* move VSI to the VSIG that matches */
3996 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
3997 if (status)
3998 goto err_ice_add_prof_id_flow;
3999
4000 /* VSI has been moved out of or_vsig. If the or_vsig had
4001 * only that VSI it is now empty and can be removed.
4002 */
4003 if (only_vsi) {
4004 status = ice_rem_vsig(hw, blk, or_vsig, &chg);
4005 if (status)
4006 goto err_ice_add_prof_id_flow;
4007 }
4008 } else if (only_vsi) {
4009 /* If the original VSIG only contains one VSI, then it
4010 * will be the requesting VSI. In this case the VSI is
4011 * not sharing entries and we can simply add the new
4012 * profile to the VSIG.
4013 */
4014 status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false,
4015 &chg);
4016 if (status)
4017 goto err_ice_add_prof_id_flow;
4018
4019 /* Adjust priorities */
4020 status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
4021 if (status)
4022 goto err_ice_add_prof_id_flow;
4023 } else {
4024 /* No match, so we need a new VSIG */
4025 status = ice_create_vsig_from_lst(hw, blk, vsi,
4026 &union_lst, &vsig,
4027 &chg);
4028 if (status)
4029 goto err_ice_add_prof_id_flow;
4030
4031 /* Adjust priorities */
4032 status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
4033 if (status)
4034 goto err_ice_add_prof_id_flow;
4035 }
4036 } else {
4037 /* need to find or add a VSIG */
4038 /* search for an existing VSIG with an exact charc match */
4039 if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) {
4040 /* found an exact match */
4041 /* add or move VSI to the VSIG that matches */
4042 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4043 if (status)
4044 goto err_ice_add_prof_id_flow;
4045 } else {
4046 /* we did not find an exact match */
4047 /* we need to add a VSIG */
4048 status = ice_create_prof_id_vsig(hw, blk, vsi, hdl,
4049 &chg);
4050 if (status)
4051 goto err_ice_add_prof_id_flow;
4052 }
4053 }
4054
4055 /* update hardware */
4056 if (!status)
4057 status = ice_upd_prof_hw(hw, blk, &chg);
4058
4059 err_ice_add_prof_id_flow:
4060 list_for_each_entry_safe(del, tmp, &chg, list_entry) {
4061 list_del(&del->list_entry);
4062 devm_kfree(ice_hw_to_dev(hw), del);
4063 }
4064
4065 list_for_each_entry_safe(del1, tmp1, &union_lst, list) {
4066 list_del(&del1->list);
4067 devm_kfree(ice_hw_to_dev(hw), del1);
4068 }
4069
4070 return status;
4071 }
4072
4073 /**
4074 * ice_rem_prof_from_list - remove a profile from list
4075 * @hw: pointer to the HW struct
4076 * @lst: list to remove the profile from
4077 * @hdl: the profile handle indicating the profile to remove
4078 */
4079 static int
ice_rem_prof_from_list(struct ice_hw * hw,struct list_head * lst,u64 hdl)4080 ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl)
4081 {
4082 struct ice_vsig_prof *ent, *tmp;
4083
4084 list_for_each_entry_safe(ent, tmp, lst, list)
4085 if (ent->profile_cookie == hdl) {
4086 list_del(&ent->list);
4087 devm_kfree(ice_hw_to_dev(hw), ent);
4088 return 0;
4089 }
4090
4091 return -ENOENT;
4092 }
4093
4094 /**
4095 * ice_rem_prof_id_flow - remove flow
4096 * @hw: pointer to the HW struct
4097 * @blk: hardware block
4098 * @vsi: the VSI from which to remove the profile specified by ID
4099 * @hdl: profile tracking handle
4100 *
4101 * Calling this function will update the hardware tables to remove the
4102 * profile indicated by the ID parameter for the VSIs specified in the VSI
4103 * array. Once successfully called, the flow will be disabled.
4104 */
4105 int
ice_rem_prof_id_flow(struct ice_hw * hw,enum ice_block blk,u16 vsi,u64 hdl)4106 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
4107 {
4108 struct ice_vsig_prof *tmp1, *del1;
4109 struct ice_chs_chg *tmp, *del;
4110 struct list_head chg, copy;
4111 int status;
4112 u16 vsig;
4113
4114 INIT_LIST_HEAD(©);
4115 INIT_LIST_HEAD(&chg);
4116
4117 /* determine if VSI is already part of a VSIG */
4118 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
4119 if (!status && vsig) {
4120 bool last_profile;
4121 bool only_vsi;
4122 u16 ref;
4123
4124 /* found in VSIG */
4125 last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
4126 status = ice_vsig_get_ref(hw, blk, vsig, &ref);
4127 if (status)
4128 goto err_ice_rem_prof_id_flow;
4129 only_vsi = (ref == 1);
4130
4131 if (only_vsi) {
4132 /* If the original VSIG only contains one reference,
4133 * which will be the requesting VSI, then the VSI is not
4134 * sharing entries and we can simply remove the specific
4135 * characteristics from the VSIG.
4136 */
4137
4138 if (last_profile) {
4139 /* If there are no profiles left for this VSIG,
4140 * then simply remove the VSIG.
4141 */
4142 status = ice_rem_vsig(hw, blk, vsig, &chg);
4143 if (status)
4144 goto err_ice_rem_prof_id_flow;
4145 } else {
4146 status = ice_rem_prof_id_vsig(hw, blk, vsig,
4147 hdl, &chg);
4148 if (status)
4149 goto err_ice_rem_prof_id_flow;
4150
4151 /* Adjust priorities */
4152 status = ice_adj_prof_priorities(hw, blk, vsig,
4153 &chg);
4154 if (status)
4155 goto err_ice_rem_prof_id_flow;
4156 }
4157
4158 } else {
4159 /* Make a copy of the VSIG's list of Profiles */
4160 status = ice_get_profs_vsig(hw, blk, vsig, ©);
4161 if (status)
4162 goto err_ice_rem_prof_id_flow;
4163
4164 /* Remove specified profile entry from the list */
4165 status = ice_rem_prof_from_list(hw, ©, hdl);
4166 if (status)
4167 goto err_ice_rem_prof_id_flow;
4168
4169 if (list_empty(©)) {
4170 status = ice_move_vsi(hw, blk, vsi,
4171 ICE_DEFAULT_VSIG, &chg);
4172 if (status)
4173 goto err_ice_rem_prof_id_flow;
4174
4175 } else if (!ice_find_dup_props_vsig(hw, blk, ©,
4176 &vsig)) {
4177 /* found an exact match */
4178 /* add or move VSI to the VSIG that matches */
4179 /* Search for a VSIG with a matching profile
4180 * list
4181 */
4182
4183 /* Found match, move VSI to the matching VSIG */
4184 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4185 if (status)
4186 goto err_ice_rem_prof_id_flow;
4187 } else {
4188 /* since no existing VSIG supports this
4189 * characteristic pattern, we need to create a
4190 * new VSIG and TCAM entries
4191 */
4192 status = ice_create_vsig_from_lst(hw, blk, vsi,
4193 ©, &vsig,
4194 &chg);
4195 if (status)
4196 goto err_ice_rem_prof_id_flow;
4197
4198 /* Adjust priorities */
4199 status = ice_adj_prof_priorities(hw, blk, vsig,
4200 &chg);
4201 if (status)
4202 goto err_ice_rem_prof_id_flow;
4203 }
4204 }
4205 } else {
4206 status = -ENOENT;
4207 }
4208
4209 /* update hardware tables */
4210 if (!status)
4211 status = ice_upd_prof_hw(hw, blk, &chg);
4212
4213 err_ice_rem_prof_id_flow:
4214 list_for_each_entry_safe(del, tmp, &chg, list_entry) {
4215 list_del(&del->list_entry);
4216 devm_kfree(ice_hw_to_dev(hw), del);
4217 }
4218
4219 list_for_each_entry_safe(del1, tmp1, ©, list) {
4220 list_del(&del1->list);
4221 devm_kfree(ice_hw_to_dev(hw), del1);
4222 }
4223
4224 return status;
4225 }
4226