1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3
4 #include <net/xdp_sock_drv.h>
5 #include "ice_base.h"
6 #include "ice_lib.h"
7 #include "ice_dcb_lib.h"
8 #include "ice_sriov.h"
9
10 /**
11 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
12 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
13 *
14 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
15 */
__ice_vsi_get_qs_contig(struct ice_qs_cfg * qs_cfg)16 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
17 {
18 unsigned int offset, i;
19
20 mutex_lock(qs_cfg->qs_mutex);
21 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
22 0, qs_cfg->q_count, 0);
23 if (offset >= qs_cfg->pf_map_size) {
24 mutex_unlock(qs_cfg->qs_mutex);
25 return -ENOMEM;
26 }
27
28 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
29 for (i = 0; i < qs_cfg->q_count; i++)
30 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
31 mutex_unlock(qs_cfg->qs_mutex);
32
33 return 0;
34 }
35
36 /**
37 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
38 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
39 *
40 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
41 */
__ice_vsi_get_qs_sc(struct ice_qs_cfg * qs_cfg)42 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
43 {
44 unsigned int i, index = 0;
45
46 mutex_lock(qs_cfg->qs_mutex);
47 for (i = 0; i < qs_cfg->q_count; i++) {
48 index = find_next_zero_bit(qs_cfg->pf_map,
49 qs_cfg->pf_map_size, index);
50 if (index >= qs_cfg->pf_map_size)
51 goto err_scatter;
52 set_bit(index, qs_cfg->pf_map);
53 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
54 }
55 mutex_unlock(qs_cfg->qs_mutex);
56
57 return 0;
58 err_scatter:
59 for (index = 0; index < i; index++) {
60 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
61 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
62 }
63 mutex_unlock(qs_cfg->qs_mutex);
64
65 return -ENOMEM;
66 }
67
68 /**
69 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
70 * @pf: the PF being configured
71 * @pf_q: the PF queue
72 * @ena: enable or disable state of the queue
73 *
74 * This routine will wait for the given Rx queue of the PF to reach the
75 * enabled or disabled state.
76 * Returns -ETIMEDOUT in case of failing to reach the requested state after
77 * multiple retries; else will return 0 in case of success.
78 */
ice_pf_rxq_wait(struct ice_pf * pf,int pf_q,bool ena)79 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
80 {
81 int i;
82
83 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
84 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
85 QRX_CTRL_QENA_STAT_M))
86 return 0;
87
88 usleep_range(20, 40);
89 }
90
91 return -ETIMEDOUT;
92 }
93
94 /**
95 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
96 * @vsi: the VSI being configured
97 * @v_idx: index of the vector in the VSI struct
98 *
99 * We allocate one q_vector and set default value for ITR setting associated
100 * with this q_vector. If allocation fails we return -ENOMEM.
101 */
ice_vsi_alloc_q_vector(struct ice_vsi * vsi,u16 v_idx)102 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
103 {
104 struct ice_pf *pf = vsi->back;
105 struct ice_q_vector *q_vector;
106 int err;
107
108 /* allocate q_vector */
109 q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL);
110 if (!q_vector)
111 return -ENOMEM;
112
113 q_vector->vsi = vsi;
114 q_vector->v_idx = v_idx;
115 q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
116 q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
117 q_vector->tx.itr_mode = ITR_DYNAMIC;
118 q_vector->rx.itr_mode = ITR_DYNAMIC;
119 q_vector->tx.type = ICE_TX_CONTAINER;
120 q_vector->rx.type = ICE_RX_CONTAINER;
121 q_vector->irq.index = -ENOENT;
122
123 if (vsi->type == ICE_VSI_VF) {
124 q_vector->reg_idx = ice_calc_vf_reg_idx(vsi->vf, q_vector);
125 goto out;
126 } else if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
127 struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi);
128
129 if (ctrl_vsi) {
130 if (unlikely(!ctrl_vsi->q_vectors)) {
131 err = -ENOENT;
132 goto err_free_q_vector;
133 }
134
135 q_vector->irq = ctrl_vsi->q_vectors[0]->irq;
136 goto skip_alloc;
137 }
138 }
139
140 q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc);
141 if (q_vector->irq.index < 0) {
142 err = -ENOMEM;
143 goto err_free_q_vector;
144 }
145
146 skip_alloc:
147 q_vector->reg_idx = q_vector->irq.index;
148
149 /* only set affinity_mask if the CPU is online */
150 if (cpu_online(v_idx))
151 cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
152
153 /* This will not be called in the driver load path because the netdev
154 * will not be created yet. All other cases with register the NAPI
155 * handler here (i.e. resume, reset/rebuild, etc.)
156 */
157 if (vsi->netdev)
158 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll);
159
160 out:
161 /* tie q_vector and VSI together */
162 vsi->q_vectors[v_idx] = q_vector;
163
164 return 0;
165
166 err_free_q_vector:
167 kfree(q_vector);
168
169 return err;
170 }
171
172 /**
173 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
174 * @vsi: VSI having the memory freed
175 * @v_idx: index of the vector to be freed
176 */
ice_free_q_vector(struct ice_vsi * vsi,int v_idx)177 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
178 {
179 struct ice_q_vector *q_vector;
180 struct ice_pf *pf = vsi->back;
181 struct ice_tx_ring *tx_ring;
182 struct ice_rx_ring *rx_ring;
183 struct device *dev;
184
185 dev = ice_pf_to_dev(pf);
186 if (!vsi->q_vectors[v_idx]) {
187 dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
188 return;
189 }
190 q_vector = vsi->q_vectors[v_idx];
191
192 ice_for_each_tx_ring(tx_ring, q_vector->tx)
193 tx_ring->q_vector = NULL;
194 ice_for_each_rx_ring(rx_ring, q_vector->rx)
195 rx_ring->q_vector = NULL;
196
197 /* only VSI with an associated netdev is set up with NAPI */
198 if (vsi->netdev)
199 netif_napi_del(&q_vector->napi);
200
201 /* release MSIX interrupt if q_vector had interrupt allocated */
202 if (q_vector->irq.index < 0)
203 goto free_q_vector;
204
205 /* only free last VF ctrl vsi interrupt */
206 if (vsi->type == ICE_VSI_CTRL && vsi->vf &&
207 ice_get_vf_ctrl_vsi(pf, vsi))
208 goto free_q_vector;
209
210 ice_free_irq(pf, q_vector->irq);
211
212 free_q_vector:
213 kfree(q_vector);
214 vsi->q_vectors[v_idx] = NULL;
215 }
216
217 /**
218 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
219 * @hw: board specific structure
220 */
ice_cfg_itr_gran(struct ice_hw * hw)221 static void ice_cfg_itr_gran(struct ice_hw *hw)
222 {
223 u32 regval = rd32(hw, GLINT_CTL);
224
225 /* no need to update global register if ITR gran is already set */
226 if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
227 (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
228 GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
229 (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
230 GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
231 (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
232 GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
233 (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
234 GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
235 return;
236
237 regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
238 GLINT_CTL_ITR_GRAN_200_M) |
239 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
240 GLINT_CTL_ITR_GRAN_100_M) |
241 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
242 GLINT_CTL_ITR_GRAN_50_M) |
243 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
244 GLINT_CTL_ITR_GRAN_25_M);
245 wr32(hw, GLINT_CTL, regval);
246 }
247
248 /**
249 * ice_calc_txq_handle - calculate the queue handle
250 * @vsi: VSI that ring belongs to
251 * @ring: ring to get the absolute queue index
252 * @tc: traffic class number
253 */
ice_calc_txq_handle(struct ice_vsi * vsi,struct ice_tx_ring * ring,u8 tc)254 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc)
255 {
256 WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
257
258 if (ring->ch)
259 return ring->q_index - ring->ch->base_q;
260
261 /* Idea here for calculation is that we subtract the number of queue
262 * count from TC that ring belongs to from it's absolute queue index
263 * and as a result we get the queue's index within TC.
264 */
265 return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
266 }
267
268 /**
269 * ice_eswitch_calc_txq_handle
270 * @ring: pointer to ring which unique index is needed
271 *
272 * To correctly work with many netdevs ring->q_index of Tx rings on switchdev
273 * VSI can repeat. Hardware ring setup requires unique q_index. Calculate it
274 * here by finding index in vsi->tx_rings of this ring.
275 *
276 * Return ICE_INVAL_Q_INDEX when index wasn't found. Should never happen,
277 * because VSI is get from ring->vsi, so it has to be present in this VSI.
278 */
ice_eswitch_calc_txq_handle(struct ice_tx_ring * ring)279 static u16 ice_eswitch_calc_txq_handle(struct ice_tx_ring *ring)
280 {
281 struct ice_vsi *vsi = ring->vsi;
282 int i;
283
284 ice_for_each_txq(vsi, i) {
285 if (vsi->tx_rings[i] == ring)
286 return i;
287 }
288
289 return ICE_INVAL_Q_INDEX;
290 }
291
292 /**
293 * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
294 * @ring: The Tx ring to configure
295 *
296 * This enables/disables XPS for a given Tx descriptor ring
297 * based on the TCs enabled for the VSI that ring belongs to.
298 */
ice_cfg_xps_tx_ring(struct ice_tx_ring * ring)299 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring)
300 {
301 if (!ring->q_vector || !ring->netdev)
302 return;
303
304 /* We only initialize XPS once, so as not to overwrite user settings */
305 if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
306 return;
307
308 netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask,
309 ring->q_index);
310 }
311
312 /**
313 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
314 * @ring: The Tx ring to configure
315 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
316 * @pf_q: queue index in the PF space
317 *
318 * Configure the Tx descriptor ring in TLAN context.
319 */
320 static void
ice_setup_tx_ctx(struct ice_tx_ring * ring,struct ice_tlan_ctx * tlan_ctx,u16 pf_q)321 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
322 {
323 struct ice_vsi *vsi = ring->vsi;
324 struct ice_hw *hw = &vsi->back->hw;
325
326 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
327
328 tlan_ctx->port_num = vsi->port_info->lport;
329
330 /* Transmit Queue Length */
331 tlan_ctx->qlen = ring->count;
332
333 ice_set_cgd_num(tlan_ctx, ring->dcb_tc);
334
335 /* PF number */
336 tlan_ctx->pf_num = hw->pf_id;
337
338 /* queue belongs to a specific VSI type
339 * VF / VM index should be programmed per vmvf_type setting:
340 * for vmvf_type = VF, it is VF number between 0-256
341 * for vmvf_type = VM, it is VM number between 0-767
342 * for PF or EMP this field should be set to zero
343 */
344 switch (vsi->type) {
345 case ICE_VSI_LB:
346 case ICE_VSI_CTRL:
347 case ICE_VSI_PF:
348 if (ring->ch)
349 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
350 else
351 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
352 break;
353 case ICE_VSI_VF:
354 /* Firmware expects vmvf_num to be absolute VF ID */
355 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id;
356 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
357 break;
358 case ICE_VSI_SWITCHDEV_CTRL:
359 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
360 break;
361 default:
362 return;
363 }
364
365 /* make sure the context is associated with the right VSI */
366 if (ring->ch)
367 tlan_ctx->src_vsi = ring->ch->vsi_num;
368 else
369 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
370
371 /* Restrict Tx timestamps to the PF VSI */
372 switch (vsi->type) {
373 case ICE_VSI_PF:
374 tlan_ctx->tsyn_ena = 1;
375 break;
376 default:
377 break;
378 }
379
380 tlan_ctx->tso_ena = ICE_TX_LEGACY;
381 tlan_ctx->tso_qnum = pf_q;
382
383 /* Legacy or Advanced Host Interface:
384 * 0: Advanced Host Interface
385 * 1: Legacy Host Interface
386 */
387 tlan_ctx->legacy_int = ICE_TX_LEGACY;
388 }
389
390 /**
391 * ice_rx_offset - Return expected offset into page to access data
392 * @rx_ring: Ring we are requesting offset of
393 *
394 * Returns the offset value for ring into the data buffer.
395 */
ice_rx_offset(struct ice_rx_ring * rx_ring)396 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring)
397 {
398 if (ice_ring_uses_build_skb(rx_ring))
399 return ICE_SKB_PAD;
400 return 0;
401 }
402
403 /**
404 * ice_setup_rx_ctx - Configure a receive ring context
405 * @ring: The Rx ring to configure
406 *
407 * Configure the Rx descriptor ring in RLAN context.
408 */
ice_setup_rx_ctx(struct ice_rx_ring * ring)409 static int ice_setup_rx_ctx(struct ice_rx_ring *ring)
410 {
411 struct ice_vsi *vsi = ring->vsi;
412 u32 rxdid = ICE_RXDID_FLEX_NIC;
413 struct ice_rlan_ctx rlan_ctx;
414 struct ice_hw *hw;
415 u16 pf_q;
416 int err;
417
418 hw = &vsi->back->hw;
419
420 /* what is Rx queue number in global space of 2K Rx queues */
421 pf_q = vsi->rxq_map[ring->q_index];
422
423 /* clear the context structure first */
424 memset(&rlan_ctx, 0, sizeof(rlan_ctx));
425
426 /* Receive Queue Base Address.
427 * Indicates the starting address of the descriptor queue defined in
428 * 128 Byte units.
429 */
430 rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S;
431
432 rlan_ctx.qlen = ring->count;
433
434 /* Receive Packet Data Buffer Size.
435 * The Packet Data Buffer Size is defined in 128 byte units.
436 */
437 rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len,
438 BIT_ULL(ICE_RLAN_CTX_DBUF_S));
439
440 /* use 32 byte descriptors */
441 rlan_ctx.dsize = 1;
442
443 /* Strip the Ethernet CRC bytes before the packet is posted to host
444 * memory.
445 */
446 rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS);
447
448 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor
449 * and it needs to remain 1 for non-DVM capable configurations to not
450 * break backward compatibility for VF drivers. Setting this field to 0
451 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND
452 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to
453 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will
454 * check for the tag
455 */
456 if (ice_is_dvm_ena(hw))
457 if (vsi->type == ICE_VSI_VF &&
458 ice_vf_is_port_vlan_ena(vsi->vf))
459 rlan_ctx.l2tsel = 1;
460 else
461 rlan_ctx.l2tsel = 0;
462 else
463 rlan_ctx.l2tsel = 1;
464
465 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
466 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
467 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
468
469 /* This controls whether VLAN is stripped from inner headers
470 * The VLAN in the inner L2 header is stripped to the receive
471 * descriptor if enabled by this flag.
472 */
473 rlan_ctx.showiv = 0;
474
475 /* Max packet size for this queue - must not be set to a larger value
476 * than 5 x DBUF
477 */
478 rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
479 ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len);
480
481 /* Rx queue threshold in units of 64 */
482 rlan_ctx.lrxqthresh = 1;
483
484 /* Enable Flexible Descriptors in the queue context which
485 * allows this driver to select a specific receive descriptor format
486 * increasing context priority to pick up profile ID; default is 0x01;
487 * setting to 0x03 to ensure profile is programming if prev context is
488 * of same priority
489 */
490 if (vsi->type != ICE_VSI_VF)
491 ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
492 else
493 ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3,
494 false);
495
496 /* Absolute queue number out of 2K needs to be passed */
497 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
498 if (err) {
499 dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
500 pf_q, err);
501 return -EIO;
502 }
503
504 if (vsi->type == ICE_VSI_VF)
505 return 0;
506
507 /* configure Rx buffer alignment */
508 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
509 ice_clear_ring_build_skb_ena(ring);
510 else
511 ice_set_ring_build_skb_ena(ring);
512
513 ring->rx_offset = ice_rx_offset(ring);
514
515 /* init queue specific tail register */
516 ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
517 writel(0, ring->tail);
518
519 return 0;
520 }
521
522 /**
523 * ice_get_frame_sz - calculate xdp_buff::frame_sz
524 * @rx_ring: the ring being configured
525 *
526 * Return frame size based on underlying PAGE_SIZE
527 */
ice_get_frame_sz(struct ice_rx_ring * rx_ring)528 static unsigned int ice_get_frame_sz(struct ice_rx_ring *rx_ring)
529 {
530 unsigned int frame_sz;
531
532 #if (PAGE_SIZE >= 8192)
533 frame_sz = rx_ring->rx_buf_len;
534 #else
535 frame_sz = ice_rx_pg_size(rx_ring) / 2;
536 #endif
537
538 return frame_sz;
539 }
540
541 /**
542 * ice_vsi_cfg_rxq - Configure an Rx queue
543 * @ring: the ring being configured
544 *
545 * Return 0 on success and a negative value on error.
546 */
ice_vsi_cfg_rxq(struct ice_rx_ring * ring)547 int ice_vsi_cfg_rxq(struct ice_rx_ring *ring)
548 {
549 struct device *dev = ice_pf_to_dev(ring->vsi->back);
550 u32 num_bufs = ICE_RX_DESC_UNUSED(ring);
551 int err;
552
553 ring->rx_buf_len = ring->vsi->rx_buf_len;
554
555 if (ring->vsi->type == ICE_VSI_PF) {
556 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
557 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
558 ring->q_index,
559 ring->q_vector->napi.napi_id,
560 ring->rx_buf_len);
561 if (err)
562 return err;
563 }
564
565 ring->xsk_pool = ice_xsk_pool(ring);
566 if (ring->xsk_pool) {
567 xdp_rxq_info_unreg(&ring->xdp_rxq);
568
569 ring->rx_buf_len =
570 xsk_pool_get_rx_frame_size(ring->xsk_pool);
571 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
572 ring->q_index,
573 ring->q_vector->napi.napi_id,
574 ring->rx_buf_len);
575 if (err)
576 return err;
577 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
578 MEM_TYPE_XSK_BUFF_POOL,
579 NULL);
580 if (err)
581 return err;
582 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
583
584 dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
585 ring->q_index);
586 } else {
587 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
588 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
589 ring->q_index,
590 ring->q_vector->napi.napi_id,
591 ring->rx_buf_len);
592 if (err)
593 return err;
594 }
595
596 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
597 MEM_TYPE_PAGE_SHARED,
598 NULL);
599 if (err)
600 return err;
601 }
602 }
603
604 xdp_init_buff(&ring->xdp, ice_get_frame_sz(ring), &ring->xdp_rxq);
605 ring->xdp.data = NULL;
606 err = ice_setup_rx_ctx(ring);
607 if (err) {
608 dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
609 ring->q_index, err);
610 return err;
611 }
612
613 if (ring->xsk_pool) {
614 bool ok;
615
616 if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
617 dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
618 num_bufs, ring->q_index);
619 dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
620
621 return 0;
622 }
623
624 ok = ice_alloc_rx_bufs_zc(ring, num_bufs);
625 if (!ok) {
626 u16 pf_q = ring->vsi->rxq_map[ring->q_index];
627
628 dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
629 ring->q_index, pf_q);
630 }
631
632 return 0;
633 }
634
635 ice_alloc_rx_bufs(ring, num_bufs);
636
637 return 0;
638 }
639
640 /**
641 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
642 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
643 *
644 * This function first tries to find contiguous space. If it is not successful,
645 * it tries with the scatter approach.
646 *
647 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
648 */
__ice_vsi_get_qs(struct ice_qs_cfg * qs_cfg)649 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
650 {
651 int ret = 0;
652
653 ret = __ice_vsi_get_qs_contig(qs_cfg);
654 if (ret) {
655 /* contig failed, so try with scatter approach */
656 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
657 qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
658 qs_cfg->scatter_count);
659 ret = __ice_vsi_get_qs_sc(qs_cfg);
660 }
661 return ret;
662 }
663
664 /**
665 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
666 * @vsi: the VSI being configured
667 * @ena: start or stop the Rx ring
668 * @rxq_idx: 0-based Rx queue index for the VSI passed in
669 * @wait: wait or don't wait for configuration to finish in hardware
670 *
671 * Return 0 on success and negative on error.
672 */
673 int
ice_vsi_ctrl_one_rx_ring(struct ice_vsi * vsi,bool ena,u16 rxq_idx,bool wait)674 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
675 {
676 int pf_q = vsi->rxq_map[rxq_idx];
677 struct ice_pf *pf = vsi->back;
678 struct ice_hw *hw = &pf->hw;
679 u32 rx_reg;
680
681 rx_reg = rd32(hw, QRX_CTRL(pf_q));
682
683 /* Skip if the queue is already in the requested state */
684 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
685 return 0;
686
687 /* turn on/off the queue */
688 if (ena)
689 rx_reg |= QRX_CTRL_QENA_REQ_M;
690 else
691 rx_reg &= ~QRX_CTRL_QENA_REQ_M;
692 wr32(hw, QRX_CTRL(pf_q), rx_reg);
693
694 if (!wait)
695 return 0;
696
697 ice_flush(hw);
698 return ice_pf_rxq_wait(pf, pf_q, ena);
699 }
700
701 /**
702 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
703 * @vsi: the VSI being configured
704 * @ena: true/false to verify Rx ring has been enabled/disabled respectively
705 * @rxq_idx: 0-based Rx queue index for the VSI passed in
706 *
707 * This routine will wait for the given Rx queue of the VSI to reach the
708 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
709 * the requested state after multiple retries; else will return 0 in case of
710 * success.
711 */
ice_vsi_wait_one_rx_ring(struct ice_vsi * vsi,bool ena,u16 rxq_idx)712 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
713 {
714 int pf_q = vsi->rxq_map[rxq_idx];
715 struct ice_pf *pf = vsi->back;
716
717 return ice_pf_rxq_wait(pf, pf_q, ena);
718 }
719
720 /**
721 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
722 * @vsi: the VSI being configured
723 *
724 * We allocate one q_vector per queue interrupt. If allocation fails we
725 * return -ENOMEM.
726 */
ice_vsi_alloc_q_vectors(struct ice_vsi * vsi)727 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
728 {
729 struct device *dev = ice_pf_to_dev(vsi->back);
730 u16 v_idx;
731 int err;
732
733 if (vsi->q_vectors[0]) {
734 dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
735 return -EEXIST;
736 }
737
738 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
739 err = ice_vsi_alloc_q_vector(vsi, v_idx);
740 if (err)
741 goto err_out;
742 }
743
744 return 0;
745
746 err_out:
747 while (v_idx--)
748 ice_free_q_vector(vsi, v_idx);
749
750 dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
751 vsi->num_q_vectors, vsi->vsi_num, err);
752 vsi->num_q_vectors = 0;
753 return err;
754 }
755
756 /**
757 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
758 * @vsi: the VSI being configured
759 *
760 * This function maps descriptor rings to the queue-specific vectors allotted
761 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
762 * and Rx rings to the vector as "efficiently" as possible.
763 */
ice_vsi_map_rings_to_vectors(struct ice_vsi * vsi)764 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
765 {
766 int q_vectors = vsi->num_q_vectors;
767 u16 tx_rings_rem, rx_rings_rem;
768 int v_id;
769
770 /* initially assigning remaining rings count to VSIs num queue value */
771 tx_rings_rem = vsi->num_txq;
772 rx_rings_rem = vsi->num_rxq;
773
774 for (v_id = 0; v_id < q_vectors; v_id++) {
775 struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
776 u8 tx_rings_per_v, rx_rings_per_v;
777 u16 q_id, q_base;
778
779 /* Tx rings mapping to vector */
780 tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
781 q_vectors - v_id);
782 q_vector->num_ring_tx = tx_rings_per_v;
783 q_vector->tx.tx_ring = NULL;
784 q_vector->tx.itr_idx = ICE_TX_ITR;
785 q_base = vsi->num_txq - tx_rings_rem;
786
787 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
788 struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id];
789
790 tx_ring->q_vector = q_vector;
791 tx_ring->next = q_vector->tx.tx_ring;
792 q_vector->tx.tx_ring = tx_ring;
793 }
794 tx_rings_rem -= tx_rings_per_v;
795
796 /* Rx rings mapping to vector */
797 rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
798 q_vectors - v_id);
799 q_vector->num_ring_rx = rx_rings_per_v;
800 q_vector->rx.rx_ring = NULL;
801 q_vector->rx.itr_idx = ICE_RX_ITR;
802 q_base = vsi->num_rxq - rx_rings_rem;
803
804 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
805 struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id];
806
807 rx_ring->q_vector = q_vector;
808 rx_ring->next = q_vector->rx.rx_ring;
809 q_vector->rx.rx_ring = rx_ring;
810 }
811 rx_rings_rem -= rx_rings_per_v;
812 }
813 }
814
815 /**
816 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
817 * @vsi: the VSI having memory freed
818 */
ice_vsi_free_q_vectors(struct ice_vsi * vsi)819 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
820 {
821 int v_idx;
822
823 ice_for_each_q_vector(vsi, v_idx)
824 ice_free_q_vector(vsi, v_idx);
825
826 vsi->num_q_vectors = 0;
827 }
828
829 /**
830 * ice_vsi_cfg_txq - Configure single Tx queue
831 * @vsi: the VSI that queue belongs to
832 * @ring: Tx ring to be configured
833 * @qg_buf: queue group buffer
834 */
835 int
ice_vsi_cfg_txq(struct ice_vsi * vsi,struct ice_tx_ring * ring,struct ice_aqc_add_tx_qgrp * qg_buf)836 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring,
837 struct ice_aqc_add_tx_qgrp *qg_buf)
838 {
839 u8 buf_len = struct_size(qg_buf, txqs, 1);
840 struct ice_tlan_ctx tlan_ctx = { 0 };
841 struct ice_aqc_add_txqs_perq *txq;
842 struct ice_channel *ch = ring->ch;
843 struct ice_pf *pf = vsi->back;
844 struct ice_hw *hw = &pf->hw;
845 int status;
846 u16 pf_q;
847 u8 tc;
848
849 /* Configure XPS */
850 ice_cfg_xps_tx_ring(ring);
851
852 pf_q = ring->reg_idx;
853 ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
854 /* copy context contents into the qg_buf */
855 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
856 ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
857 ice_tlan_ctx_info);
858
859 /* init queue specific tail reg. It is referred as
860 * transmit comm scheduler queue doorbell.
861 */
862 ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
863
864 if (IS_ENABLED(CONFIG_DCB))
865 tc = ring->dcb_tc;
866 else
867 tc = 0;
868
869 /* Add unique software queue handle of the Tx queue per
870 * TC into the VSI Tx ring
871 */
872 if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
873 ring->q_handle = ice_eswitch_calc_txq_handle(ring);
874
875 if (ring->q_handle == ICE_INVAL_Q_INDEX)
876 return -ENODEV;
877 } else {
878 ring->q_handle = ice_calc_txq_handle(vsi, ring, tc);
879 }
880
881 if (ch)
882 status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0,
883 ring->q_handle, 1, qg_buf, buf_len,
884 NULL);
885 else
886 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
887 ring->q_handle, 1, qg_buf, buf_len,
888 NULL);
889 if (status) {
890 dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n",
891 status);
892 return status;
893 }
894
895 /* Add Tx Queue TEID into the VSI Tx ring from the
896 * response. This will complete configuring and
897 * enabling the queue.
898 */
899 txq = &qg_buf->txqs[0];
900 if (pf_q == le16_to_cpu(txq->txq_id))
901 ring->txq_teid = le32_to_cpu(txq->q_teid);
902
903 return 0;
904 }
905
906 /**
907 * ice_cfg_itr - configure the initial interrupt throttle values
908 * @hw: pointer to the HW structure
909 * @q_vector: interrupt vector that's being configured
910 *
911 * Configure interrupt throttling values for the ring containers that are
912 * associated with the interrupt vector passed in.
913 */
ice_cfg_itr(struct ice_hw * hw,struct ice_q_vector * q_vector)914 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
915 {
916 ice_cfg_itr_gran(hw);
917
918 if (q_vector->num_ring_rx)
919 ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
920
921 if (q_vector->num_ring_tx)
922 ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
923
924 ice_write_intrl(q_vector, q_vector->intrl);
925 }
926
927 /**
928 * ice_cfg_txq_interrupt - configure interrupt on Tx queue
929 * @vsi: the VSI being configured
930 * @txq: Tx queue being mapped to MSI-X vector
931 * @msix_idx: MSI-X vector index within the function
932 * @itr_idx: ITR index of the interrupt cause
933 *
934 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
935 * within the function space.
936 */
937 void
ice_cfg_txq_interrupt(struct ice_vsi * vsi,u16 txq,u16 msix_idx,u16 itr_idx)938 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
939 {
940 struct ice_pf *pf = vsi->back;
941 struct ice_hw *hw = &pf->hw;
942 u32 val;
943
944 itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
945
946 val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
947 ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
948
949 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
950 if (ice_is_xdp_ena_vsi(vsi)) {
951 u32 xdp_txq = txq + vsi->num_xdp_txq;
952
953 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
954 val);
955 }
956 ice_flush(hw);
957 }
958
959 /**
960 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
961 * @vsi: the VSI being configured
962 * @rxq: Rx queue being mapped to MSI-X vector
963 * @msix_idx: MSI-X vector index within the function
964 * @itr_idx: ITR index of the interrupt cause
965 *
966 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
967 * within the function space.
968 */
969 void
ice_cfg_rxq_interrupt(struct ice_vsi * vsi,u16 rxq,u16 msix_idx,u16 itr_idx)970 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
971 {
972 struct ice_pf *pf = vsi->back;
973 struct ice_hw *hw = &pf->hw;
974 u32 val;
975
976 itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
977
978 val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
979 ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
980
981 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
982
983 ice_flush(hw);
984 }
985
986 /**
987 * ice_trigger_sw_intr - trigger a software interrupt
988 * @hw: pointer to the HW structure
989 * @q_vector: interrupt vector to trigger the software interrupt for
990 */
ice_trigger_sw_intr(struct ice_hw * hw,struct ice_q_vector * q_vector)991 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
992 {
993 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
994 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
995 GLINT_DYN_CTL_SWINT_TRIG_M |
996 GLINT_DYN_CTL_INTENA_M);
997 }
998
999 /**
1000 * ice_vsi_stop_tx_ring - Disable single Tx ring
1001 * @vsi: the VSI being configured
1002 * @rst_src: reset source
1003 * @rel_vmvf_num: Relative ID of VF/VM
1004 * @ring: Tx ring to be stopped
1005 * @txq_meta: Meta data of Tx ring to be stopped
1006 */
1007 int
ice_vsi_stop_tx_ring(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num,struct ice_tx_ring * ring,struct ice_txq_meta * txq_meta)1008 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1009 u16 rel_vmvf_num, struct ice_tx_ring *ring,
1010 struct ice_txq_meta *txq_meta)
1011 {
1012 struct ice_pf *pf = vsi->back;
1013 struct ice_q_vector *q_vector;
1014 struct ice_hw *hw = &pf->hw;
1015 int status;
1016 u32 val;
1017
1018 /* clear cause_ena bit for disabled queues */
1019 val = rd32(hw, QINT_TQCTL(ring->reg_idx));
1020 val &= ~QINT_TQCTL_CAUSE_ENA_M;
1021 wr32(hw, QINT_TQCTL(ring->reg_idx), val);
1022
1023 /* software is expected to wait for 100 ns */
1024 ndelay(100);
1025
1026 /* trigger a software interrupt for the vector
1027 * associated to the queue to schedule NAPI handler
1028 */
1029 q_vector = ring->q_vector;
1030 if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf)))
1031 ice_trigger_sw_intr(hw, q_vector);
1032
1033 status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
1034 txq_meta->tc, 1, &txq_meta->q_handle,
1035 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
1036 rel_vmvf_num, NULL);
1037
1038 /* if the disable queue command was exercised during an
1039 * active reset flow, -EBUSY is returned.
1040 * This is not an error as the reset operation disables
1041 * queues at the hardware level anyway.
1042 */
1043 if (status == -EBUSY) {
1044 dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
1045 } else if (status == -ENOENT) {
1046 dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
1047 } else if (status) {
1048 dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n",
1049 status);
1050 return status;
1051 }
1052
1053 return 0;
1054 }
1055
1056 /**
1057 * ice_fill_txq_meta - Prepare the Tx queue's meta data
1058 * @vsi: VSI that ring belongs to
1059 * @ring: ring that txq_meta will be based on
1060 * @txq_meta: a helper struct that wraps Tx queue's information
1061 *
1062 * Set up a helper struct that will contain all the necessary fields that
1063 * are needed for stopping Tx queue
1064 */
1065 void
ice_fill_txq_meta(struct ice_vsi * vsi,struct ice_tx_ring * ring,struct ice_txq_meta * txq_meta)1066 ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_tx_ring *ring,
1067 struct ice_txq_meta *txq_meta)
1068 {
1069 struct ice_channel *ch = ring->ch;
1070 u8 tc;
1071
1072 if (IS_ENABLED(CONFIG_DCB))
1073 tc = ring->dcb_tc;
1074 else
1075 tc = 0;
1076
1077 txq_meta->q_id = ring->reg_idx;
1078 txq_meta->q_teid = ring->txq_teid;
1079 txq_meta->q_handle = ring->q_handle;
1080 if (ch) {
1081 txq_meta->vsi_idx = ch->ch_vsi->idx;
1082 txq_meta->tc = 0;
1083 } else {
1084 txq_meta->vsi_idx = vsi->idx;
1085 txq_meta->tc = tc;
1086 }
1087 }
1088