1 /*
2 * ARM Generic Interrupt Controller v3 (emulation)
3 *
4 * Copyright (c) 2016 Linaro Limited
5 * Written by Peter Maydell
6 *
7 * This code is licensed under the GPL, version 2 or (at your option)
8 * any later version.
9 */
10
11 /* This file contains the code for the system register interface
12 * portions of the GICv3.
13 */
14
15 #include "qemu/osdep.h"
16 #include "qemu/bitops.h"
17 #include "qemu/log.h"
18 #include "qemu/main-loop.h"
19 #include "trace.h"
20 #include "gicv3_internal.h"
21 #include "hw/irq.h"
22 #include "cpu.h"
23 #include "target/arm/cpregs.h"
24 #include "target/arm/cpu-features.h"
25 #include "target/arm/internals.h"
26 #include "system/tcg.h"
27 #include "system/qtest.h"
28
29 /*
30 * Special case return value from hppvi_index(); must be larger than
31 * the architecturally maximum possible list register index (which is 15)
32 */
33 #define HPPVI_INDEX_VLPI 16
34
icc_cs_from_env(CPUARMState * env)35 static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
36 {
37 return env->gicv3state;
38 }
39
gicv3_use_ns_bank(CPUARMState * env)40 static bool gicv3_use_ns_bank(CPUARMState *env)
41 {
42 /* Return true if we should use the NonSecure bank for a banked GIC
43 * CPU interface register. Note that this differs from the
44 * access_secure_reg() function because GICv3 banked registers are
45 * banked even for AArch64, unlike the other CPU system registers.
46 */
47 return !arm_is_secure_below_el3(env);
48 }
49
50 /* The minimum BPR for the virtual interface is a configurable property */
icv_min_vbpr(GICv3CPUState * cs)51 static inline int icv_min_vbpr(GICv3CPUState *cs)
52 {
53 return 7 - cs->vprebits;
54 }
55
ich_num_aprs(GICv3CPUState * cs)56 static inline int ich_num_aprs(GICv3CPUState *cs)
57 {
58 /* Return the number of virtual APR registers (1, 2, or 4) */
59 int aprmax = 1 << (cs->vprebits - 5);
60 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
61 return aprmax;
62 }
63
64 /* Simple accessor functions for LR fields */
ich_lr_vintid(uint64_t lr)65 static uint32_t ich_lr_vintid(uint64_t lr)
66 {
67 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
68 }
69
ich_lr_pintid(uint64_t lr)70 static uint32_t ich_lr_pintid(uint64_t lr)
71 {
72 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
73 }
74
ich_lr_prio(uint64_t lr)75 static uint32_t ich_lr_prio(uint64_t lr)
76 {
77 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
78 }
79
ich_lr_state(uint64_t lr)80 static int ich_lr_state(uint64_t lr)
81 {
82 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
83 }
84
icv_access(CPUARMState * env,int hcr_flags)85 static bool icv_access(CPUARMState *env, int hcr_flags)
86 {
87 /* Return true if this ICC_ register access should really be
88 * directed to an ICV_ access. hcr_flags is a mask of
89 * HCR_EL2 bits to check: we treat this as an ICV_ access
90 * if we are in NS EL1 and at least one of the specified
91 * HCR_EL2 bits is set.
92 *
93 * ICV registers fall into four categories:
94 * * access if NS EL1 and HCR_EL2.FMO == 1:
95 * all ICV regs with '0' in their name
96 * * access if NS EL1 and HCR_EL2.IMO == 1:
97 * all ICV regs with '1' in their name
98 * * access if NS EL1 and either IMO or FMO == 1:
99 * CTLR, DIR, PMR, RPR
100 */
101 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
102 bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO);
103
104 return flagmatch && arm_current_el(env) == 1
105 && !arm_is_secure_below_el3(env);
106 }
107
read_vbpr(GICv3CPUState * cs,int grp)108 static int read_vbpr(GICv3CPUState *cs, int grp)
109 {
110 /* Read VBPR value out of the VMCR field (caller must handle
111 * VCBPR effects if required)
112 */
113 if (grp == GICV3_G0) {
114 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
115 ICH_VMCR_EL2_VBPR0_LENGTH);
116 } else {
117 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
118 ICH_VMCR_EL2_VBPR1_LENGTH);
119 }
120 }
121
write_vbpr(GICv3CPUState * cs,int grp,int value)122 static void write_vbpr(GICv3CPUState *cs, int grp, int value)
123 {
124 /* Write new VBPR1 value, handling the "writing a value less than
125 * the minimum sets it to the minimum" semantics.
126 */
127 int min = icv_min_vbpr(cs);
128
129 if (grp != GICV3_G0) {
130 min++;
131 }
132
133 value = MAX(value, min);
134
135 if (grp == GICV3_G0) {
136 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
137 ICH_VMCR_EL2_VBPR0_LENGTH, value);
138 } else {
139 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
140 ICH_VMCR_EL2_VBPR1_LENGTH, value);
141 }
142 }
143
icv_fullprio_mask(GICv3CPUState * cs)144 static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
145 {
146 /* Return a mask word which clears the unimplemented priority bits
147 * from a priority value for a virtual interrupt. (Not to be confused
148 * with the group priority, whose mask depends on the value of VBPR
149 * for the interrupt group.)
150 */
151 return (~0U << (8 - cs->vpribits)) & 0xff;
152 }
153
ich_highest_active_virt_prio(GICv3CPUState * cs)154 static int ich_highest_active_virt_prio(GICv3CPUState *cs)
155 {
156 /* Calculate the current running priority based on the set bits
157 * in the ICH Active Priority Registers.
158 */
159 int i;
160 int aprmax = ich_num_aprs(cs);
161
162 if (cs->ich_apr[GICV3_G1NS][0] & ICV_AP1R_EL1_NMI) {
163 return 0x0;
164 }
165
166 for (i = 0; i < aprmax; i++) {
167 uint32_t apr = cs->ich_apr[GICV3_G0][i] |
168 cs->ich_apr[GICV3_G1NS][i];
169
170 if (!apr) {
171 continue;
172 }
173 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
174 }
175 /* No current active interrupts: return idle priority */
176 return 0xff;
177 }
178
hppvi_index(GICv3CPUState * cs)179 static int hppvi_index(GICv3CPUState *cs)
180 {
181 /*
182 * Return the list register index of the highest priority pending
183 * virtual interrupt, as per the HighestPriorityVirtualInterrupt
184 * pseudocode. If no pending virtual interrupts, return -1.
185 * If the highest priority pending virtual interrupt is a vLPI,
186 * return HPPVI_INDEX_VLPI.
187 * (The pseudocode handles checking whether the vLPI is higher
188 * priority than the highest priority list register at every
189 * callsite of HighestPriorityVirtualInterrupt; we check it here.)
190 */
191 ARMCPU *cpu = ARM_CPU(cs->cpu);
192 CPUARMState *env = &cpu->env;
193 int idx = -1;
194 int i;
195 /* Note that a list register entry with a priority of 0xff will
196 * never be reported by this function; this is the architecturally
197 * correct behaviour.
198 */
199 int prio = 0xff;
200 bool nmi = false;
201
202 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
203 /* Both groups disabled, definitely nothing to do */
204 return idx;
205 }
206
207 for (i = 0; i < cs->num_list_regs; i++) {
208 uint64_t lr = cs->ich_lr_el2[i];
209 bool thisnmi;
210 int thisprio;
211
212 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
213 /* Not Pending */
214 continue;
215 }
216
217 /* Ignore interrupts if relevant group enable not set */
218 if (lr & ICH_LR_EL2_GROUP) {
219 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
220 continue;
221 }
222 } else {
223 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
224 continue;
225 }
226 }
227
228 thisnmi = lr & ICH_LR_EL2_NMI;
229 thisprio = ich_lr_prio(lr);
230
231 if ((thisprio < prio) || ((thisprio == prio) && (thisnmi & (!nmi)))) {
232 prio = thisprio;
233 nmi = thisnmi;
234 idx = i;
235 }
236 }
237
238 /*
239 * "no pending vLPI" is indicated with prio = 0xff, which always
240 * fails the priority check here. vLPIs are only considered
241 * when we are in Non-Secure state.
242 */
243 if (cs->hppvlpi.prio < prio && !arm_is_secure(env)) {
244 if (cs->hppvlpi.grp == GICV3_G0) {
245 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0) {
246 return HPPVI_INDEX_VLPI;
247 }
248 } else {
249 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1) {
250 return HPPVI_INDEX_VLPI;
251 }
252 }
253 }
254
255 return idx;
256 }
257
icv_gprio_mask(GICv3CPUState * cs,int group)258 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
259 {
260 /* Return a mask word which clears the subpriority bits from
261 * a priority value for a virtual interrupt in the specified group.
262 * This depends on the VBPR value.
263 * If using VBPR0 then:
264 * a BPR of 0 means the group priority bits are [7:1];
265 * a BPR of 1 means they are [7:2], and so on down to
266 * a BPR of 7 meaning no group priority bits at all.
267 * If using VBPR1 then:
268 * a BPR of 0 is impossible (the minimum value is 1)
269 * a BPR of 1 means the group priority bits are [7:1];
270 * a BPR of 2 means they are [7:2], and so on down to
271 * a BPR of 7 meaning the group priority is [7].
272 *
273 * Which BPR to use depends on the group of the interrupt and
274 * the current ICH_VMCR_EL2.VCBPR settings.
275 *
276 * This corresponds to the VGroupBits() pseudocode.
277 */
278 int bpr;
279
280 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
281 group = GICV3_G0;
282 }
283
284 bpr = read_vbpr(cs, group);
285 if (group == GICV3_G1NS) {
286 assert(bpr > 0);
287 bpr--;
288 }
289
290 return ~0U << (bpr + 1);
291 }
292
icv_hppi_can_preempt(GICv3CPUState * cs,uint64_t lr)293 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
294 {
295 /* Return true if we can signal this virtual interrupt defined by
296 * the given list register value; see the pseudocode functions
297 * CanSignalVirtualInterrupt and CanSignalVirtualInt.
298 * Compare also icc_hppi_can_preempt() which is the non-virtual
299 * equivalent of these checks.
300 */
301 int grp;
302 bool is_nmi;
303 uint32_t mask, prio, rprio, vpmr;
304
305 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
306 /* Virtual interface disabled */
307 return false;
308 }
309
310 /* We don't need to check that this LR is in Pending state because
311 * that has already been done in hppvi_index().
312 */
313
314 prio = ich_lr_prio(lr);
315 is_nmi = lr & ICH_LR_EL2_NMI;
316 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
317 ICH_VMCR_EL2_VPMR_LENGTH);
318
319 if (!is_nmi && prio >= vpmr) {
320 /* Priority mask masks this interrupt */
321 return false;
322 }
323
324 rprio = ich_highest_active_virt_prio(cs);
325 if (rprio == 0xff) {
326 /* No running interrupt so we can preempt */
327 return true;
328 }
329
330 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
331
332 mask = icv_gprio_mask(cs, grp);
333
334 /* We only preempt a running interrupt if the pending interrupt's
335 * group priority is sufficient (the subpriorities are not considered).
336 */
337 if ((prio & mask) < (rprio & mask)) {
338 return true;
339 }
340
341 if ((prio & mask) == (rprio & mask) && is_nmi &&
342 !(cs->ich_apr[GICV3_G1NS][0] & ICV_AP1R_EL1_NMI)) {
343 return true;
344 }
345
346 return false;
347 }
348
icv_hppvlpi_can_preempt(GICv3CPUState * cs)349 static bool icv_hppvlpi_can_preempt(GICv3CPUState *cs)
350 {
351 /*
352 * Return true if we can signal the highest priority pending vLPI.
353 * We can assume we're Non-secure because hppvi_index() already
354 * tested for that.
355 */
356 uint32_t mask, rprio, vpmr;
357
358 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
359 /* Virtual interface disabled */
360 return false;
361 }
362
363 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
364 ICH_VMCR_EL2_VPMR_LENGTH);
365
366 if (cs->hppvlpi.prio >= vpmr) {
367 /* Priority mask masks this interrupt */
368 return false;
369 }
370
371 rprio = ich_highest_active_virt_prio(cs);
372 if (rprio == 0xff) {
373 /* No running interrupt so we can preempt */
374 return true;
375 }
376
377 mask = icv_gprio_mask(cs, cs->hppvlpi.grp);
378
379 /*
380 * We only preempt a running interrupt if the pending interrupt's
381 * group priority is sufficient (the subpriorities are not considered).
382 */
383 if ((cs->hppvlpi.prio & mask) < (rprio & mask)) {
384 return true;
385 }
386
387 return false;
388 }
389
eoi_maintenance_interrupt_state(GICv3CPUState * cs,uint32_t * misr)390 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
391 uint32_t *misr)
392 {
393 /* Return a set of bits indicating the EOI maintenance interrupt status
394 * for each list register. The EOI maintenance interrupt status is
395 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
396 * (see the GICv3 spec for the ICH_EISR_EL2 register).
397 * If misr is not NULL then we should also collect the information
398 * about the MISR.EOI, MISR.NP and MISR.U bits.
399 */
400 uint32_t value = 0;
401 int validcount = 0;
402 bool seenpending = false;
403 int i;
404
405 for (i = 0; i < cs->num_list_regs; i++) {
406 uint64_t lr = cs->ich_lr_el2[i];
407
408 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
409 == ICH_LR_EL2_EOI) {
410 value |= (1 << i);
411 }
412 if ((lr & ICH_LR_EL2_STATE_MASK)) {
413 validcount++;
414 }
415 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
416 seenpending = true;
417 }
418 }
419
420 if (misr) {
421 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
422 *misr |= ICH_MISR_EL2_U;
423 }
424 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
425 *misr |= ICH_MISR_EL2_NP;
426 }
427 if (value) {
428 *misr |= ICH_MISR_EL2_EOI;
429 }
430 }
431 return value;
432 }
433
maintenance_interrupt_state(GICv3CPUState * cs)434 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
435 {
436 /* Return a set of bits indicating the maintenance interrupt status
437 * (as seen in the ICH_MISR_EL2 register).
438 */
439 uint32_t value = 0;
440
441 /* Scan list registers and fill in the U, NP and EOI bits */
442 eoi_maintenance_interrupt_state(cs, &value);
443
444 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_LRENPIE) &&
445 (cs->ich_hcr_el2 & ICH_HCR_EL2_EOICOUNT_MASK)) {
446 value |= ICH_MISR_EL2_LRENP;
447 }
448
449 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
450 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
451 value |= ICH_MISR_EL2_VGRP0E;
452 }
453
454 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
455 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
456 value |= ICH_MISR_EL2_VGRP0D;
457 }
458 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
459 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
460 value |= ICH_MISR_EL2_VGRP1E;
461 }
462
463 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
464 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
465 value |= ICH_MISR_EL2_VGRP1D;
466 }
467
468 return value;
469 }
470
gicv3_cpuif_virt_irq_fiq_update(GICv3CPUState * cs)471 void gicv3_cpuif_virt_irq_fiq_update(GICv3CPUState *cs)
472 {
473 /*
474 * Tell the CPU about any pending virtual interrupts.
475 * This should only be called for changes that affect the
476 * vIRQ and vFIQ status and do not change the maintenance
477 * interrupt status. This means that unlike gicv3_cpuif_virt_update()
478 * this function won't recursively call back into the GIC code.
479 * The main use of this is when the redistributor has changed the
480 * highest priority pending virtual LPI.
481 */
482 int idx;
483 int irqlevel = 0;
484 int fiqlevel = 0;
485 int nmilevel = 0;
486
487 idx = hppvi_index(cs);
488 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx,
489 cs->hppvlpi.irq, cs->hppvlpi.grp,
490 cs->hppvlpi.prio);
491 if (idx == HPPVI_INDEX_VLPI) {
492 if (icv_hppvlpi_can_preempt(cs)) {
493 if (cs->hppvlpi.grp == GICV3_G0) {
494 fiqlevel = 1;
495 } else {
496 irqlevel = 1;
497 }
498 }
499 } else if (idx >= 0) {
500 uint64_t lr = cs->ich_lr_el2[idx];
501
502 if (icv_hppi_can_preempt(cs, lr)) {
503 /*
504 * Virtual interrupts are simple: G0 are always FIQ, and G1 are
505 * IRQ or NMI which depends on the ICH_LR<n>_EL2.NMI to have
506 * non-maskable property.
507 */
508 if (lr & ICH_LR_EL2_GROUP) {
509 if (lr & ICH_LR_EL2_NMI) {
510 nmilevel = 1;
511 } else {
512 irqlevel = 1;
513 }
514 } else {
515 fiqlevel = 1;
516 }
517 }
518 }
519
520 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
521 qemu_set_irq(cs->parent_vfiq, fiqlevel);
522 qemu_set_irq(cs->parent_virq, irqlevel);
523 qemu_set_irq(cs->parent_vnmi, nmilevel);
524 }
525
gicv3_cpuif_virt_update(GICv3CPUState * cs)526 static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
527 {
528 /*
529 * Tell the CPU about any pending virtual interrupts or
530 * maintenance interrupts, following a change to the state
531 * of the CPU interface relevant to virtual interrupts.
532 *
533 * CAUTION: this function will call qemu_set_irq() on the
534 * CPU maintenance IRQ line, which is typically wired up
535 * to the GIC as a per-CPU interrupt. This means that it
536 * will recursively call back into the GIC code via
537 * gicv3_redist_set_irq() and thus into the CPU interface code's
538 * gicv3_cpuif_update(). It is therefore important that this
539 * function is only called as the final action of a CPU interface
540 * register write implementation, after all the GIC state
541 * fields have been updated. gicv3_cpuif_update() also must
542 * not cause this function to be called, but that happens
543 * naturally as a result of there being no architectural
544 * linkage between the physical and virtual GIC logic.
545 */
546 ARMCPU *cpu = ARM_CPU(cs->cpu);
547 int maintlevel = 0;
548
549 gicv3_cpuif_virt_irq_fiq_update(cs);
550
551 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_EN) &&
552 maintenance_interrupt_state(cs) != 0) {
553 maintlevel = 1;
554 }
555
556 trace_gicv3_cpuif_virt_set_maint_irq(gicv3_redist_affid(cs), maintlevel);
557 qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel);
558 }
559
icv_ap_read(CPUARMState * env,const ARMCPRegInfo * ri)560 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
561 {
562 GICv3CPUState *cs = icc_cs_from_env(env);
563 int regno = ri->opc2 & 3;
564 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
565 uint64_t value = cs->ich_apr[grp][regno];
566
567 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
568 return value;
569 }
570
icv_ap_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)571 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
572 uint64_t value)
573 {
574 GICv3CPUState *cs = icc_cs_from_env(env);
575 int regno = ri->opc2 & 3;
576 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
577
578 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
579
580 if (cs->nmi_support) {
581 cs->ich_apr[grp][regno] = value & (0xFFFFFFFFU | ICV_AP1R_EL1_NMI);
582 } else {
583 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
584 }
585
586 gicv3_cpuif_virt_irq_fiq_update(cs);
587 return;
588 }
589
icv_bpr_read(CPUARMState * env,const ARMCPRegInfo * ri)590 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
591 {
592 GICv3CPUState *cs = icc_cs_from_env(env);
593 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
594 uint64_t bpr;
595 bool satinc = false;
596
597 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
598 /* reads return bpr0 + 1 saturated to 7, writes ignored */
599 grp = GICV3_G0;
600 satinc = true;
601 }
602
603 bpr = read_vbpr(cs, grp);
604
605 if (satinc) {
606 bpr++;
607 bpr = MIN(bpr, 7);
608 }
609
610 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
611
612 return bpr;
613 }
614
icv_bpr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)615 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
616 uint64_t value)
617 {
618 GICv3CPUState *cs = icc_cs_from_env(env);
619 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
620
621 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
622 gicv3_redist_affid(cs), value);
623
624 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
625 /* reads return bpr0 + 1 saturated to 7, writes ignored */
626 return;
627 }
628
629 write_vbpr(cs, grp, value);
630
631 gicv3_cpuif_virt_irq_fiq_update(cs);
632 }
633
icv_pmr_read(CPUARMState * env,const ARMCPRegInfo * ri)634 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
635 {
636 GICv3CPUState *cs = icc_cs_from_env(env);
637 uint64_t value;
638
639 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
640 ICH_VMCR_EL2_VPMR_LENGTH);
641
642 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
643 return value;
644 }
645
icv_pmr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)646 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
647 uint64_t value)
648 {
649 GICv3CPUState *cs = icc_cs_from_env(env);
650
651 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
652
653 value &= icv_fullprio_mask(cs);
654
655 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
656 ICH_VMCR_EL2_VPMR_LENGTH, value);
657
658 gicv3_cpuif_virt_irq_fiq_update(cs);
659 }
660
icv_igrpen_read(CPUARMState * env,const ARMCPRegInfo * ri)661 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
662 {
663 GICv3CPUState *cs = icc_cs_from_env(env);
664 int enbit;
665 uint64_t value;
666
667 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
668 value = extract64(cs->ich_vmcr_el2, enbit, 1);
669
670 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
671 gicv3_redist_affid(cs), value);
672 return value;
673 }
674
icv_igrpen_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)675 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
676 uint64_t value)
677 {
678 GICv3CPUState *cs = icc_cs_from_env(env);
679 int enbit;
680
681 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
682 gicv3_redist_affid(cs), value);
683
684 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
685
686 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
687 gicv3_cpuif_virt_update(cs);
688 }
689
icv_ctlr_read(CPUARMState * env,const ARMCPRegInfo * ri)690 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
691 {
692 GICv3CPUState *cs = icc_cs_from_env(env);
693 uint64_t value;
694
695 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
696 * should match the ones reported in ich_vtr_read().
697 */
698 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
699 ((cs->vpribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT);
700
701 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
702 value |= ICC_CTLR_EL1_EOIMODE;
703 }
704
705 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
706 value |= ICC_CTLR_EL1_CBPR;
707 }
708
709 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
710 return value;
711 }
712
icv_ctlr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)713 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
714 uint64_t value)
715 {
716 GICv3CPUState *cs = icc_cs_from_env(env);
717
718 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
719
720 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
721 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
722 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
723 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
724
725 gicv3_cpuif_virt_irq_fiq_update(cs);
726 }
727
icv_rpr_read(CPUARMState * env,const ARMCPRegInfo * ri)728 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
729 {
730 GICv3CPUState *cs = icc_cs_from_env(env);
731 uint64_t prio = ich_highest_active_virt_prio(cs);
732
733 if (cs->ich_apr[GICV3_G1NS][0] & ICV_AP1R_EL1_NMI) {
734 prio |= ICV_RPR_EL1_NMI;
735 }
736
737 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
738 return prio;
739 }
740
icv_hppir_read(CPUARMState * env,const ARMCPRegInfo * ri)741 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
742 {
743 GICv3CPUState *cs = icc_cs_from_env(env);
744 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
745 int idx = hppvi_index(cs);
746 uint64_t value = INTID_SPURIOUS;
747
748 if (idx == HPPVI_INDEX_VLPI) {
749 if (cs->hppvlpi.grp == grp) {
750 value = cs->hppvlpi.irq;
751 }
752 } else if (idx >= 0) {
753 uint64_t lr = cs->ich_lr_el2[idx];
754 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
755
756 if (grp == thisgrp) {
757 value = ich_lr_vintid(lr);
758 }
759 }
760
761 trace_gicv3_icv_hppir_read(ri->crm == 8 ? 0 : 1,
762 gicv3_redist_affid(cs), value);
763 return value;
764 }
765
icv_activate_irq(GICv3CPUState * cs,int idx,int grp)766 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
767 {
768 /* Activate the interrupt in the specified list register
769 * by moving it from Pending to Active state, and update the
770 * Active Priority Registers.
771 */
772 uint32_t mask = icv_gprio_mask(cs, grp);
773 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
774 bool nmi = cs->ich_lr_el2[idx] & ICH_LR_EL2_NMI;
775 int aprbit = prio >> (8 - cs->vprebits);
776 int regno = aprbit / 32;
777 int regbit = aprbit % 32;
778
779 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
780 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
781
782 if (nmi) {
783 cs->ich_apr[grp][regno] |= ICV_AP1R_EL1_NMI;
784 } else {
785 cs->ich_apr[grp][regno] |= (1U << regbit);
786 }
787 }
788
icv_activate_vlpi(GICv3CPUState * cs)789 static void icv_activate_vlpi(GICv3CPUState *cs)
790 {
791 uint32_t mask = icv_gprio_mask(cs, cs->hppvlpi.grp);
792 int prio = cs->hppvlpi.prio & mask;
793 int aprbit = prio >> (8 - cs->vprebits);
794 int regno = aprbit / 32;
795 int regbit = aprbit % 32;
796
797 cs->ich_apr[cs->hppvlpi.grp][regno] |= (1U << regbit);
798 gicv3_redist_vlpi_pending(cs, cs->hppvlpi.irq, 0);
799 }
800
icv_iar_read(CPUARMState * env,const ARMCPRegInfo * ri)801 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
802 {
803 GICv3CPUState *cs = icc_cs_from_env(env);
804 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
805 int idx = hppvi_index(cs);
806 uint64_t intid = INTID_SPURIOUS;
807 int el = arm_current_el(env);
808
809 if (idx == HPPVI_INDEX_VLPI) {
810 if (cs->hppvlpi.grp == grp && icv_hppvlpi_can_preempt(cs)) {
811 intid = cs->hppvlpi.irq;
812 icv_activate_vlpi(cs);
813 }
814 } else if (idx >= 0) {
815 uint64_t lr = cs->ich_lr_el2[idx];
816 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
817 bool nmi = env->cp15.sctlr_el[el] & SCTLR_NMI && lr & ICH_LR_EL2_NMI;
818
819 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
820 intid = ich_lr_vintid(lr);
821 if (!gicv3_intid_is_special(intid)) {
822 if (!nmi) {
823 icv_activate_irq(cs, idx, grp);
824 } else {
825 intid = INTID_NMI;
826 }
827 } else {
828 /* Interrupt goes from Pending to Invalid */
829 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
830 /* We will now return the (bogus) ID from the list register,
831 * as per the pseudocode.
832 */
833 }
834 }
835 }
836
837 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
838 gicv3_redist_affid(cs), intid);
839
840 gicv3_cpuif_virt_update(cs);
841
842 return intid;
843 }
844
icv_nmiar1_read(CPUARMState * env,const ARMCPRegInfo * ri)845 static uint64_t icv_nmiar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
846 {
847 GICv3CPUState *cs = icc_cs_from_env(env);
848 int idx = hppvi_index(cs);
849 uint64_t intid = INTID_SPURIOUS;
850
851 if (idx >= 0 && idx != HPPVI_INDEX_VLPI) {
852 uint64_t lr = cs->ich_lr_el2[idx];
853 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
854
855 if ((thisgrp == GICV3_G1NS) && icv_hppi_can_preempt(cs, lr)) {
856 intid = ich_lr_vintid(lr);
857 if (!gicv3_intid_is_special(intid)) {
858 if (lr & ICH_LR_EL2_NMI) {
859 icv_activate_irq(cs, idx, GICV3_G1NS);
860 } else {
861 intid = INTID_SPURIOUS;
862 }
863 } else {
864 /* Interrupt goes from Pending to Invalid */
865 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
866 /*
867 * We will now return the (bogus) ID from the list register,
868 * as per the pseudocode.
869 */
870 }
871 }
872 }
873
874 trace_gicv3_icv_nmiar1_read(gicv3_redist_affid(cs), intid);
875
876 gicv3_cpuif_virt_update(cs);
877
878 return intid;
879 }
880
icc_fullprio_mask(GICv3CPUState * cs)881 static uint32_t icc_fullprio_mask(GICv3CPUState *cs)
882 {
883 /*
884 * Return a mask word which clears the unimplemented priority bits
885 * from a priority value for a physical interrupt. (Not to be confused
886 * with the group priority, whose mask depends on the value of BPR
887 * for the interrupt group.)
888 */
889 return (~0U << (8 - cs->pribits)) & 0xff;
890 }
891
icc_min_bpr(GICv3CPUState * cs)892 static inline int icc_min_bpr(GICv3CPUState *cs)
893 {
894 /* The minimum BPR for the physical interface. */
895 return 7 - cs->prebits;
896 }
897
icc_min_bpr_ns(GICv3CPUState * cs)898 static inline int icc_min_bpr_ns(GICv3CPUState *cs)
899 {
900 return icc_min_bpr(cs) + 1;
901 }
902
icc_num_aprs(GICv3CPUState * cs)903 static inline int icc_num_aprs(GICv3CPUState *cs)
904 {
905 /* Return the number of APR registers (1, 2, or 4) */
906 int aprmax = 1 << MAX(cs->prebits - 5, 0);
907 assert(aprmax <= ARRAY_SIZE(cs->icc_apr[0]));
908 return aprmax;
909 }
910
icc_highest_active_prio(GICv3CPUState * cs)911 static int icc_highest_active_prio(GICv3CPUState *cs)
912 {
913 /* Calculate the current running priority based on the set bits
914 * in the Active Priority Registers.
915 */
916 int i;
917
918 if (cs->nmi_support) {
919 /*
920 * If an NMI is active this takes precedence over anything else
921 * for priority purposes; the NMI bit is only in the AP1R0 bit.
922 * We return here the effective priority of the NMI, which is
923 * either 0x0 or 0x80. Callers will need to check NMI again for
924 * purposes of either setting the RPR register bits or for
925 * prioritization of NMI vs non-NMI.
926 */
927 if (cs->icc_apr[GICV3_G1][0] & ICC_AP1R_EL1_NMI) {
928 return 0;
929 }
930 if (cs->icc_apr[GICV3_G1NS][0] & ICC_AP1R_EL1_NMI) {
931 return (cs->gic->gicd_ctlr & GICD_CTLR_DS) ? 0 : 0x80;
932 }
933 }
934
935 for (i = 0; i < icc_num_aprs(cs); i++) {
936 uint32_t apr = cs->icc_apr[GICV3_G0][i] |
937 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
938
939 if (!apr) {
940 continue;
941 }
942 return (i * 32 + ctz32(apr)) << (icc_min_bpr(cs) + 1);
943 }
944 /* No current active interrupts: return idle priority */
945 return 0xff;
946 }
947
icc_gprio_mask(GICv3CPUState * cs,int group)948 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
949 {
950 /* Return a mask word which clears the subpriority bits from
951 * a priority value for an interrupt in the specified group.
952 * This depends on the BPR value. For CBPR0 (S or NS):
953 * a BPR of 0 means the group priority bits are [7:1];
954 * a BPR of 1 means they are [7:2], and so on down to
955 * a BPR of 7 meaning no group priority bits at all.
956 * For CBPR1 NS:
957 * a BPR of 0 is impossible (the minimum value is 1)
958 * a BPR of 1 means the group priority bits are [7:1];
959 * a BPR of 2 means they are [7:2], and so on down to
960 * a BPR of 7 meaning the group priority is [7].
961 *
962 * Which BPR to use depends on the group of the interrupt and
963 * the current ICC_CTLR.CBPR settings.
964 *
965 * This corresponds to the GroupBits() pseudocode.
966 */
967 int bpr;
968
969 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
970 (group == GICV3_G1NS &&
971 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
972 group = GICV3_G0;
973 }
974
975 bpr = cs->icc_bpr[group] & 7;
976
977 if (group == GICV3_G1NS) {
978 assert(bpr > 0);
979 bpr--;
980 }
981
982 return ~0U << (bpr + 1);
983 }
984
icc_no_enabled_hppi(GICv3CPUState * cs)985 static bool icc_no_enabled_hppi(GICv3CPUState *cs)
986 {
987 /* Return true if there is no pending interrupt, or the
988 * highest priority pending interrupt is in a group which has been
989 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
990 */
991 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
992 }
993
icc_hppi_can_preempt(GICv3CPUState * cs)994 static bool icc_hppi_can_preempt(GICv3CPUState *cs)
995 {
996 /* Return true if we have a pending interrupt of sufficient
997 * priority to preempt.
998 */
999 int rprio;
1000 uint32_t mask;
1001 ARMCPU *cpu = ARM_CPU(cs->cpu);
1002 CPUARMState *env = &cpu->env;
1003
1004 if (icc_no_enabled_hppi(cs)) {
1005 return false;
1006 }
1007
1008 if (cs->hppi.nmi) {
1009 if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
1010 cs->hppi.grp == GICV3_G1NS) {
1011 if (cs->icc_pmr_el1 < 0x80) {
1012 return false;
1013 }
1014 if (arm_is_secure(env) && cs->icc_pmr_el1 == 0x80) {
1015 return false;
1016 }
1017 }
1018 } else if (cs->hppi.prio >= cs->icc_pmr_el1) {
1019 /* Priority mask masks this interrupt */
1020 return false;
1021 }
1022
1023 rprio = icc_highest_active_prio(cs);
1024 if (rprio == 0xff) {
1025 /* No currently running interrupt so we can preempt */
1026 return true;
1027 }
1028
1029 mask = icc_gprio_mask(cs, cs->hppi.grp);
1030
1031 /* We only preempt a running interrupt if the pending interrupt's
1032 * group priority is sufficient (the subpriorities are not considered).
1033 */
1034 if ((cs->hppi.prio & mask) < (rprio & mask)) {
1035 return true;
1036 }
1037
1038 if (cs->hppi.nmi && (cs->hppi.prio & mask) == (rprio & mask)) {
1039 if (!(cs->icc_apr[cs->hppi.grp][0] & ICC_AP1R_EL1_NMI)) {
1040 return true;
1041 }
1042 }
1043
1044 return false;
1045 }
1046
gicv3_cpuif_update(GICv3CPUState * cs)1047 void gicv3_cpuif_update(GICv3CPUState *cs)
1048 {
1049 /* Tell the CPU about its highest priority pending interrupt */
1050 int irqlevel = 0;
1051 int fiqlevel = 0;
1052 int nmilevel = 0;
1053 ARMCPU *cpu = ARM_CPU(cs->cpu);
1054 CPUARMState *env = &cpu->env;
1055
1056 g_assert(bql_locked());
1057
1058 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
1059 cs->hppi.grp, cs->hppi.prio);
1060
1061 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
1062 /* If a Security-enabled GIC sends a G1S interrupt to a
1063 * Security-disabled CPU, we must treat it as if it were G0.
1064 */
1065 cs->hppi.grp = GICV3_G0;
1066 }
1067
1068 if (icc_hppi_can_preempt(cs)) {
1069 /* We have an interrupt: should we signal it as IRQ or FIQ?
1070 * This is described in the GICv3 spec section 4.6.2.
1071 */
1072 bool isfiq;
1073
1074 switch (cs->hppi.grp) {
1075 case GICV3_G0:
1076 isfiq = true;
1077 break;
1078 case GICV3_G1:
1079 isfiq = (!arm_is_secure(env) ||
1080 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
1081 break;
1082 case GICV3_G1NS:
1083 isfiq = arm_is_secure(env);
1084 break;
1085 default:
1086 g_assert_not_reached();
1087 }
1088
1089 if (isfiq) {
1090 fiqlevel = 1;
1091 } else if (cs->hppi.nmi) {
1092 nmilevel = 1;
1093 } else {
1094 irqlevel = 1;
1095 }
1096 }
1097
1098 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
1099
1100 qemu_set_irq(cs->parent_fiq, fiqlevel);
1101 qemu_set_irq(cs->parent_irq, irqlevel);
1102 qemu_set_irq(cs->parent_nmi, nmilevel);
1103 }
1104
icc_pmr_read(CPUARMState * env,const ARMCPRegInfo * ri)1105 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1106 {
1107 GICv3CPUState *cs = icc_cs_from_env(env);
1108 uint32_t value = cs->icc_pmr_el1;
1109
1110 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1111 return icv_pmr_read(env, ri);
1112 }
1113
1114 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
1115 (env->cp15.scr_el3 & SCR_FIQ)) {
1116 /* NS access and Group 0 is inaccessible to NS: return the
1117 * NS view of the current priority
1118 */
1119 if ((value & 0x80) == 0) {
1120 /* Secure priorities not visible to NS */
1121 value = 0;
1122 } else if (value != 0xff) {
1123 value = (value << 1) & 0xff;
1124 }
1125 }
1126
1127 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
1128
1129 return value;
1130 }
1131
icc_pmr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1132 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1133 uint64_t value)
1134 {
1135 GICv3CPUState *cs = icc_cs_from_env(env);
1136
1137 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1138 return icv_pmr_write(env, ri, value);
1139 }
1140
1141 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
1142
1143 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
1144 (env->cp15.scr_el3 & SCR_FIQ)) {
1145 /* NS access and Group 0 is inaccessible to NS: return the
1146 * NS view of the current priority
1147 */
1148 if (!(cs->icc_pmr_el1 & 0x80)) {
1149 /* Current PMR in the secure range, don't allow NS to change it */
1150 return;
1151 }
1152 value = (value >> 1) | 0x80;
1153 }
1154 value &= icc_fullprio_mask(cs);
1155 cs->icc_pmr_el1 = value;
1156 gicv3_cpuif_update(cs);
1157 }
1158
icc_activate_irq(GICv3CPUState * cs,int irq)1159 static void icc_activate_irq(GICv3CPUState *cs, int irq)
1160 {
1161 /* Move the interrupt from the Pending state to Active, and update
1162 * the Active Priority Registers
1163 */
1164 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
1165 int prio = cs->hppi.prio & mask;
1166 int aprbit = prio >> (8 - cs->prebits);
1167 int regno = aprbit / 32;
1168 int regbit = aprbit % 32;
1169 bool nmi = cs->hppi.nmi;
1170
1171 if (nmi) {
1172 cs->icc_apr[cs->hppi.grp][regno] |= ICC_AP1R_EL1_NMI;
1173 } else {
1174 cs->icc_apr[cs->hppi.grp][regno] |= (1U << regbit);
1175 }
1176
1177 if (irq < GIC_INTERNAL) {
1178 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
1179 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
1180 gicv3_redist_update(cs);
1181 } else if (irq < GICV3_LPI_INTID_START) {
1182 gicv3_gicd_active_set(cs->gic, irq);
1183 gicv3_gicd_pending_clear(cs->gic, irq);
1184 gicv3_update(cs->gic, irq, 1);
1185 } else {
1186 gicv3_redist_lpi_pending(cs, irq, 0);
1187 }
1188 }
1189
icc_hppir0_value(GICv3CPUState * cs,CPUARMState * env)1190 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
1191 {
1192 /* Return the highest priority pending interrupt register value
1193 * for group 0.
1194 */
1195 bool irq_is_secure;
1196
1197 if (icc_no_enabled_hppi(cs)) {
1198 return INTID_SPURIOUS;
1199 }
1200
1201 /* Check whether we can return the interrupt or if we should return
1202 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
1203 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
1204 * is always zero.)
1205 */
1206 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
1207 (cs->hppi.grp != GICV3_G1NS));
1208
1209 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
1210 return INTID_SPURIOUS;
1211 }
1212 if (irq_is_secure && !arm_is_secure(env)) {
1213 /* Secure interrupts not visible to Nonsecure */
1214 return INTID_SPURIOUS;
1215 }
1216
1217 if (cs->hppi.grp != GICV3_G0) {
1218 /* Indicate to EL3 that there's a Group 1 interrupt for the other
1219 * state pending.
1220 */
1221 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
1222 }
1223
1224 return cs->hppi.irq;
1225 }
1226
icc_hppir1_value(GICv3CPUState * cs,CPUARMState * env)1227 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
1228 {
1229 /* Return the highest priority pending interrupt register value
1230 * for group 1.
1231 */
1232 bool irq_is_secure;
1233
1234 if (icc_no_enabled_hppi(cs)) {
1235 return INTID_SPURIOUS;
1236 }
1237
1238 /* Check whether we can return the interrupt or if we should return
1239 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
1240 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
1241 * is always zero.)
1242 */
1243 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
1244 (cs->hppi.grp != GICV3_G1NS));
1245
1246 if (cs->hppi.grp == GICV3_G0) {
1247 /* Group 0 interrupts not visible via HPPIR1 */
1248 return INTID_SPURIOUS;
1249 }
1250 if (irq_is_secure) {
1251 if (!arm_is_secure(env)) {
1252 /* Secure interrupts not visible in Non-secure */
1253 return INTID_SPURIOUS;
1254 }
1255 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
1256 /* Group 1 non-secure interrupts not visible in Secure EL1 */
1257 return INTID_SPURIOUS;
1258 }
1259
1260 return cs->hppi.irq;
1261 }
1262
icc_iar0_read(CPUARMState * env,const ARMCPRegInfo * ri)1263 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1264 {
1265 GICv3CPUState *cs = icc_cs_from_env(env);
1266 uint64_t intid;
1267
1268 if (icv_access(env, HCR_FMO)) {
1269 return icv_iar_read(env, ri);
1270 }
1271
1272 if (!icc_hppi_can_preempt(cs)) {
1273 intid = INTID_SPURIOUS;
1274 } else {
1275 intid = icc_hppir0_value(cs, env);
1276 }
1277
1278 if (!gicv3_intid_is_special(intid)) {
1279 icc_activate_irq(cs, intid);
1280 }
1281
1282 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
1283 return intid;
1284 }
1285
icc_iar1_read(CPUARMState * env,const ARMCPRegInfo * ri)1286 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1287 {
1288 GICv3CPUState *cs = icc_cs_from_env(env);
1289 int el = arm_current_el(env);
1290 uint64_t intid;
1291
1292 if (icv_access(env, HCR_IMO)) {
1293 return icv_iar_read(env, ri);
1294 }
1295
1296 if (!icc_hppi_can_preempt(cs)) {
1297 intid = INTID_SPURIOUS;
1298 } else {
1299 intid = icc_hppir1_value(cs, env);
1300 }
1301
1302 if (!gicv3_intid_is_special(intid)) {
1303 if (cs->hppi.nmi && env->cp15.sctlr_el[el] & SCTLR_NMI) {
1304 intid = INTID_NMI;
1305 } else {
1306 icc_activate_irq(cs, intid);
1307 }
1308 }
1309
1310 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
1311 return intid;
1312 }
1313
icc_nmiar1_read(CPUARMState * env,const ARMCPRegInfo * ri)1314 static uint64_t icc_nmiar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1315 {
1316 GICv3CPUState *cs = icc_cs_from_env(env);
1317 uint64_t intid;
1318
1319 if (icv_access(env, HCR_IMO)) {
1320 return icv_nmiar1_read(env, ri);
1321 }
1322
1323 if (!icc_hppi_can_preempt(cs)) {
1324 intid = INTID_SPURIOUS;
1325 } else {
1326 intid = icc_hppir1_value(cs, env);
1327 }
1328
1329 if (!gicv3_intid_is_special(intid)) {
1330 if (!cs->hppi.nmi) {
1331 intid = INTID_SPURIOUS;
1332 } else {
1333 icc_activate_irq(cs, intid);
1334 }
1335 }
1336
1337 trace_gicv3_icc_nmiar1_read(gicv3_redist_affid(cs), intid);
1338 return intid;
1339 }
1340
icc_drop_prio(GICv3CPUState * cs,int grp)1341 static void icc_drop_prio(GICv3CPUState *cs, int grp)
1342 {
1343 /* Drop the priority of the currently active interrupt in
1344 * the specified group.
1345 *
1346 * Note that we can guarantee (because of the requirement to nest
1347 * ICC_IAR reads [which activate an interrupt and raise priority]
1348 * with ICC_EOIR writes [which drop the priority for the interrupt])
1349 * that the interrupt we're being called for is the highest priority
1350 * active interrupt, meaning that it has the lowest set bit in the
1351 * APR registers.
1352 *
1353 * If the guest does not honour the ordering constraints then the
1354 * behaviour of the GIC is UNPREDICTABLE, which for us means that
1355 * the values of the APR registers might become incorrect and the
1356 * running priority will be wrong, so interrupts that should preempt
1357 * might not do so, and interrupts that should not preempt might do so.
1358 */
1359 int i;
1360
1361 for (i = 0; i < icc_num_aprs(cs); i++) {
1362 uint64_t *papr = &cs->icc_apr[grp][i];
1363
1364 if (!*papr) {
1365 continue;
1366 }
1367
1368 if (i == 0 && cs->nmi_support && (*papr & ICC_AP1R_EL1_NMI)) {
1369 *papr &= (~ICC_AP1R_EL1_NMI);
1370 break;
1371 }
1372
1373 /* Clear the lowest set bit */
1374 *papr &= *papr - 1;
1375 break;
1376 }
1377
1378 /* running priority change means we need an update for this cpu i/f */
1379 gicv3_cpuif_update(cs);
1380 }
1381
icc_eoi_split(CPUARMState * env,GICv3CPUState * cs)1382 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1383 {
1384 /* Return true if we should split priority drop and interrupt
1385 * deactivation, ie whether the relevant EOIMode bit is set.
1386 */
1387 if (arm_is_el3_or_mon(env)) {
1388 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
1389 }
1390 if (arm_is_secure_below_el3(env)) {
1391 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
1392 } else {
1393 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
1394 }
1395 }
1396
icc_highest_active_group(GICv3CPUState * cs)1397 static int icc_highest_active_group(GICv3CPUState *cs)
1398 {
1399 /* Return the group with the highest priority active interrupt.
1400 * We can do this by just comparing the APRs to see which one
1401 * has the lowest set bit.
1402 * (If more than one group is active at the same priority then
1403 * we're in UNPREDICTABLE territory.)
1404 */
1405 int i;
1406
1407 if (cs->nmi_support) {
1408 if (cs->icc_apr[GICV3_G1][0] & ICC_AP1R_EL1_NMI) {
1409 return GICV3_G1;
1410 }
1411 if (cs->icc_apr[GICV3_G1NS][0] & ICC_AP1R_EL1_NMI) {
1412 return GICV3_G1NS;
1413 }
1414 }
1415
1416 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
1417 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
1418 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
1419 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
1420
1421 if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
1422 return GICV3_G1NS;
1423 }
1424 if (g1ctz < g0ctz) {
1425 return GICV3_G1;
1426 }
1427 if (g0ctz < 32) {
1428 return GICV3_G0;
1429 }
1430 }
1431 /* No set active bits? UNPREDICTABLE; return -1 so the caller
1432 * ignores the spurious EOI attempt.
1433 */
1434 return -1;
1435 }
1436
icc_deactivate_irq(GICv3CPUState * cs,int irq)1437 static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
1438 {
1439 if (irq < GIC_INTERNAL) {
1440 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
1441 gicv3_redist_update(cs);
1442 } else {
1443 gicv3_gicd_active_clear(cs->gic, irq);
1444 gicv3_update(cs->gic, irq, 1);
1445 }
1446 }
1447
icv_eoi_split(CPUARMState * env,GICv3CPUState * cs)1448 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1449 {
1450 /* Return true if we should split priority drop and interrupt
1451 * deactivation, ie whether the virtual EOIMode bit is set.
1452 */
1453 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
1454 }
1455
icv_find_active(GICv3CPUState * cs,int irq)1456 static int icv_find_active(GICv3CPUState *cs, int irq)
1457 {
1458 /* Given an interrupt number for an active interrupt, return the index
1459 * of the corresponding list register, or -1 if there is no match.
1460 * Corresponds to FindActiveVirtualInterrupt pseudocode.
1461 */
1462 int i;
1463
1464 for (i = 0; i < cs->num_list_regs; i++) {
1465 uint64_t lr = cs->ich_lr_el2[i];
1466
1467 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
1468 return i;
1469 }
1470 }
1471
1472 return -1;
1473 }
1474
icv_deactivate_irq(GICv3CPUState * cs,int idx)1475 static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
1476 {
1477 /* Deactivate the interrupt in the specified list register index */
1478 uint64_t lr = cs->ich_lr_el2[idx];
1479
1480 if (lr & ICH_LR_EL2_HW) {
1481 /* Deactivate the associated physical interrupt */
1482 int pirq = ich_lr_pintid(lr);
1483
1484 if (pirq < INTID_SECURE) {
1485 icc_deactivate_irq(cs, pirq);
1486 }
1487 }
1488
1489 /* Clear the 'active' part of the state, so ActivePending->Pending
1490 * and Active->Invalid.
1491 */
1492 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
1493 cs->ich_lr_el2[idx] = lr;
1494 }
1495
icv_increment_eoicount(GICv3CPUState * cs)1496 static void icv_increment_eoicount(GICv3CPUState *cs)
1497 {
1498 /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1499 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1500 ICH_HCR_EL2_EOICOUNT_LENGTH);
1501
1502 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1503 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
1504 }
1505
icv_drop_prio(GICv3CPUState * cs,bool * nmi)1506 static int icv_drop_prio(GICv3CPUState *cs, bool *nmi)
1507 {
1508 /* Drop the priority of the currently active virtual interrupt
1509 * (favouring group 0 if there is a set active bit at
1510 * the same priority for both group 0 and group 1).
1511 * Return the priority value for the bit we just cleared,
1512 * or 0xff if no bits were set in the AP registers at all.
1513 * Note that though the ich_apr[] are uint64_t only the low
1514 * 32 bits are actually relevant.
1515 */
1516 int i;
1517 int aprmax = ich_num_aprs(cs);
1518
1519 for (i = 0; i < aprmax; i++) {
1520 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
1521 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
1522 int apr0count, apr1count;
1523
1524 if (!*papr0 && !*papr1) {
1525 continue;
1526 }
1527
1528 if (i == 0 && cs->nmi_support && (*papr1 & ICV_AP1R_EL1_NMI)) {
1529 *papr1 &= (~ICV_AP1R_EL1_NMI);
1530 *nmi = true;
1531 return 0xff;
1532 }
1533
1534 /* We can't just use the bit-twiddling hack icc_drop_prio() does
1535 * because we need to return the bit number we cleared so
1536 * it can be compared against the list register's priority field.
1537 */
1538 apr0count = ctz32(*papr0);
1539 apr1count = ctz32(*papr1);
1540
1541 if (apr0count <= apr1count) {
1542 *papr0 &= *papr0 - 1;
1543 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
1544 } else {
1545 *papr1 &= *papr1 - 1;
1546 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
1547 }
1548 }
1549 return 0xff;
1550 }
1551
icv_dir_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1552 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1553 uint64_t value)
1554 {
1555 /* Deactivate interrupt */
1556 GICv3CPUState *cs = icc_cs_from_env(env);
1557 int idx;
1558 int irq = value & 0xffffff;
1559
1560 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
1561
1562 if (irq >= GICV3_MAXIRQ) {
1563 /* Also catches special interrupt numbers and LPIs */
1564 return;
1565 }
1566
1567 if (!icv_eoi_split(env, cs)) {
1568 return;
1569 }
1570
1571 idx = icv_find_active(cs, irq);
1572
1573 if (idx < 0) {
1574 /* No list register matching this, so increment the EOI count
1575 * (might trigger a maintenance interrupt)
1576 */
1577 icv_increment_eoicount(cs);
1578 } else {
1579 icv_deactivate_irq(cs, idx);
1580 }
1581
1582 gicv3_cpuif_virt_update(cs);
1583 }
1584
icv_eoir_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1585 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1586 uint64_t value)
1587 {
1588 /* End of Interrupt */
1589 GICv3CPUState *cs = icc_cs_from_env(env);
1590 int irq = value & 0xffffff;
1591 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
1592 int idx, dropprio;
1593 bool nmi = false;
1594
1595 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
1596 gicv3_redist_affid(cs), value);
1597
1598 if (gicv3_intid_is_special(irq)) {
1599 return;
1600 }
1601
1602 /* We implement the IMPDEF choice of "drop priority before doing
1603 * error checks" (because that lets us avoid scanning the AP
1604 * registers twice).
1605 */
1606 dropprio = icv_drop_prio(cs, &nmi);
1607 if (dropprio == 0xff && !nmi) {
1608 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1609 * whether the list registers are checked in this
1610 * situation; we choose not to.
1611 */
1612 return;
1613 }
1614
1615 idx = icv_find_active(cs, irq);
1616
1617 if (idx < 0) {
1618 /*
1619 * No valid list register corresponding to EOI ID; if this is a vLPI
1620 * not in the list regs then do nothing; otherwise increment EOI count
1621 */
1622 if (irq < GICV3_LPI_INTID_START) {
1623 icv_increment_eoicount(cs);
1624 }
1625 } else {
1626 uint64_t lr = cs->ich_lr_el2[idx];
1627 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
1628 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
1629 bool thisnmi = lr & ICH_LR_EL2_NMI;
1630
1631 if (thisgrp == grp && (lr_gprio == dropprio || (thisnmi & nmi))) {
1632 if (!icv_eoi_split(env, cs) || irq >= GICV3_LPI_INTID_START) {
1633 /*
1634 * Priority drop and deactivate not split: deactivate irq now.
1635 * LPIs always get their active state cleared immediately
1636 * because no separate deactivate is expected.
1637 */
1638 icv_deactivate_irq(cs, idx);
1639 }
1640 }
1641 }
1642
1643 gicv3_cpuif_virt_update(cs);
1644 }
1645
icc_eoir_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1646 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1647 uint64_t value)
1648 {
1649 /* End of Interrupt */
1650 GICv3CPUState *cs = icc_cs_from_env(env);
1651 int irq = value & 0xffffff;
1652 int grp;
1653 bool is_eoir0 = ri->crm == 8;
1654
1655 if (icv_access(env, is_eoir0 ? HCR_FMO : HCR_IMO)) {
1656 icv_eoir_write(env, ri, value);
1657 return;
1658 }
1659
1660 trace_gicv3_icc_eoir_write(is_eoir0 ? 0 : 1,
1661 gicv3_redist_affid(cs), value);
1662
1663 if ((irq >= cs->gic->num_irq) &&
1664 !(cs->gic->lpi_enable && (irq >= GICV3_LPI_INTID_START))) {
1665 /* This handles two cases:
1666 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1667 * to the GICC_EOIR, the GIC ignores that write.
1668 * 2. If software writes the number of a non-existent interrupt
1669 * this must be a subcase of "value written does not match the last
1670 * valid interrupt value read from the Interrupt Acknowledge
1671 * register" and so this is UNPREDICTABLE. We choose to ignore it.
1672 */
1673 return;
1674 }
1675
1676 grp = icc_highest_active_group(cs);
1677 switch (grp) {
1678 case GICV3_G0:
1679 if (!is_eoir0) {
1680 return;
1681 }
1682 if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS)
1683 && arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) {
1684 return;
1685 }
1686 break;
1687 case GICV3_G1:
1688 if (is_eoir0) {
1689 return;
1690 }
1691 if (!arm_is_secure(env)) {
1692 return;
1693 }
1694 break;
1695 case GICV3_G1NS:
1696 if (is_eoir0) {
1697 return;
1698 }
1699 if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
1700 return;
1701 }
1702 break;
1703 default:
1704 qemu_log_mask(LOG_GUEST_ERROR,
1705 "%s: IRQ %d isn't active\n", __func__, irq);
1706 return;
1707 }
1708
1709 icc_drop_prio(cs, grp);
1710
1711 if (!icc_eoi_split(env, cs)) {
1712 /* Priority drop and deactivate not split: deactivate irq now */
1713 icc_deactivate_irq(cs, irq);
1714 }
1715 }
1716
icc_hppir0_read(CPUARMState * env,const ARMCPRegInfo * ri)1717 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1718 {
1719 GICv3CPUState *cs = icc_cs_from_env(env);
1720 uint64_t value;
1721
1722 if (icv_access(env, HCR_FMO)) {
1723 return icv_hppir_read(env, ri);
1724 }
1725
1726 value = icc_hppir0_value(cs, env);
1727 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
1728 return value;
1729 }
1730
icc_hppir1_read(CPUARMState * env,const ARMCPRegInfo * ri)1731 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1732 {
1733 GICv3CPUState *cs = icc_cs_from_env(env);
1734 uint64_t value;
1735
1736 if (icv_access(env, HCR_IMO)) {
1737 return icv_hppir_read(env, ri);
1738 }
1739
1740 value = icc_hppir1_value(cs, env);
1741 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
1742 return value;
1743 }
1744
icc_bpr_read(CPUARMState * env,const ARMCPRegInfo * ri)1745 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1746 {
1747 GICv3CPUState *cs = icc_cs_from_env(env);
1748 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1749 bool satinc = false;
1750 uint64_t bpr;
1751
1752 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1753 return icv_bpr_read(env, ri);
1754 }
1755
1756 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1757 grp = GICV3_G1NS;
1758 }
1759
1760 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1761 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1762 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1763 * modify BPR0
1764 */
1765 grp = GICV3_G0;
1766 }
1767
1768 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1769 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1770 /* reads return bpr0 + 1 sat to 7, writes ignored */
1771 grp = GICV3_G0;
1772 satinc = true;
1773 }
1774
1775 bpr = cs->icc_bpr[grp];
1776 if (satinc) {
1777 bpr++;
1778 bpr = MIN(bpr, 7);
1779 }
1780
1781 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
1782
1783 return bpr;
1784 }
1785
icc_bpr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1786 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1787 uint64_t value)
1788 {
1789 GICv3CPUState *cs = icc_cs_from_env(env);
1790 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1791 uint64_t minval;
1792
1793 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1794 icv_bpr_write(env, ri, value);
1795 return;
1796 }
1797
1798 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
1799 gicv3_redist_affid(cs), value);
1800
1801 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1802 grp = GICV3_G1NS;
1803 }
1804
1805 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1806 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1807 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1808 * modify BPR0
1809 */
1810 grp = GICV3_G0;
1811 }
1812
1813 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1814 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1815 /* reads return bpr0 + 1 sat to 7, writes ignored */
1816 return;
1817 }
1818
1819 minval = (grp == GICV3_G1NS) ? icc_min_bpr_ns(cs) : icc_min_bpr(cs);
1820 if (value < minval) {
1821 value = minval;
1822 }
1823
1824 cs->icc_bpr[grp] = value & 7;
1825 gicv3_cpuif_update(cs);
1826 }
1827
icc_ap_read(CPUARMState * env,const ARMCPRegInfo * ri)1828 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1829 {
1830 GICv3CPUState *cs = icc_cs_from_env(env);
1831 uint64_t value;
1832
1833 int regno = ri->opc2 & 3;
1834 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1835
1836 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1837 return icv_ap_read(env, ri);
1838 }
1839
1840 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1841 grp = GICV3_G1NS;
1842 }
1843
1844 value = cs->icc_apr[grp][regno];
1845
1846 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1847 return value;
1848 }
1849
icc_ap_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1850 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1851 uint64_t value)
1852 {
1853 GICv3CPUState *cs = icc_cs_from_env(env);
1854
1855 int regno = ri->opc2 & 3;
1856 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1857
1858 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1859 icv_ap_write(env, ri, value);
1860 return;
1861 }
1862
1863 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1864
1865 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1866 grp = GICV3_G1NS;
1867 }
1868
1869 /* It's not possible to claim that a Non-secure interrupt is active
1870 * at a priority outside the Non-secure range (128..255), since this
1871 * would otherwise allow malicious NS code to block delivery of S interrupts
1872 * by writing a bad value to these registers.
1873 */
1874 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
1875 return;
1876 }
1877
1878 if (cs->nmi_support) {
1879 cs->icc_apr[grp][regno] = value & (0xFFFFFFFFU | ICC_AP1R_EL1_NMI);
1880 } else {
1881 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
1882 }
1883 gicv3_cpuif_update(cs);
1884 }
1885
icc_dir_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1886 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1887 uint64_t value)
1888 {
1889 /* Deactivate interrupt */
1890 GICv3CPUState *cs = icc_cs_from_env(env);
1891 int irq = value & 0xffffff;
1892 bool irq_is_secure, single_sec_state, irq_is_grp0;
1893 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
1894
1895 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1896 icv_dir_write(env, ri, value);
1897 return;
1898 }
1899
1900 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
1901
1902 if (irq >= cs->gic->num_irq) {
1903 /* Also catches special interrupt numbers and LPIs */
1904 return;
1905 }
1906
1907 if (!icc_eoi_split(env, cs)) {
1908 return;
1909 }
1910
1911 int grp = gicv3_irq_group(cs->gic, cs, irq);
1912
1913 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
1914 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
1915 irq_is_grp0 = grp == GICV3_G0;
1916
1917 /* Check whether we're allowed to deactivate this interrupt based
1918 * on its group and the current CPU state.
1919 * These checks are laid out to correspond to the spec's pseudocode.
1920 */
1921 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
1922 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
1923 /* No need to include !IsSecure in route_*_to_el2 as it's only
1924 * tested in cases where we know !IsSecure is true.
1925 */
1926 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1927 route_fiq_to_el2 = hcr_el2 & HCR_FMO;
1928 route_irq_to_el2 = hcr_el2 & HCR_IMO;
1929
1930 switch (arm_current_el(env)) {
1931 case 3:
1932 break;
1933 case 2:
1934 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
1935 break;
1936 }
1937 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
1938 break;
1939 }
1940 return;
1941 case 1:
1942 if (!arm_is_secure_below_el3(env)) {
1943 if (single_sec_state && irq_is_grp0 &&
1944 !route_fiq_to_el3 && !route_fiq_to_el2) {
1945 break;
1946 }
1947 if (!irq_is_secure && !irq_is_grp0 &&
1948 !route_irq_to_el3 && !route_irq_to_el2) {
1949 break;
1950 }
1951 } else {
1952 if (irq_is_grp0 && !route_fiq_to_el3) {
1953 break;
1954 }
1955 if (!irq_is_grp0 &&
1956 (!irq_is_secure || !single_sec_state) &&
1957 !route_irq_to_el3) {
1958 break;
1959 }
1960 }
1961 return;
1962 default:
1963 g_assert_not_reached();
1964 }
1965
1966 icc_deactivate_irq(cs, irq);
1967 }
1968
icc_rpr_read(CPUARMState * env,const ARMCPRegInfo * ri)1969 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1970 {
1971 GICv3CPUState *cs = icc_cs_from_env(env);
1972 uint64_t prio;
1973
1974 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1975 return icv_rpr_read(env, ri);
1976 }
1977
1978 prio = icc_highest_active_prio(cs);
1979
1980 if (arm_feature(env, ARM_FEATURE_EL3) &&
1981 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
1982 /* NS GIC access and Group 0 is inaccessible to NS */
1983 if ((prio & 0x80) == 0) {
1984 /* NS mustn't see priorities in the Secure half of the range */
1985 prio = 0;
1986 } else if (prio != 0xff) {
1987 /* Non-idle priority: show the Non-secure view of it */
1988 prio = (prio << 1) & 0xff;
1989 }
1990 }
1991
1992 if (cs->nmi_support) {
1993 /* NMI info is reported in the high bits of RPR */
1994 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) {
1995 if (cs->icc_apr[GICV3_G1NS][0] & ICC_AP1R_EL1_NMI) {
1996 prio |= ICC_RPR_EL1_NMI;
1997 }
1998 } else {
1999 if (cs->icc_apr[GICV3_G1NS][0] & ICC_AP1R_EL1_NMI) {
2000 prio |= ICC_RPR_EL1_NSNMI;
2001 }
2002 if (cs->icc_apr[GICV3_G1][0] & ICC_AP1R_EL1_NMI) {
2003 prio |= ICC_RPR_EL1_NMI;
2004 }
2005 }
2006 }
2007
2008 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
2009 return prio;
2010 }
2011
icc_generate_sgi(CPUARMState * env,GICv3CPUState * cs,uint64_t value,int grp,bool ns)2012 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
2013 uint64_t value, int grp, bool ns)
2014 {
2015 GICv3State *s = cs->gic;
2016
2017 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
2018 uint64_t aff = extract64(value, 48, 8) << 16 |
2019 extract64(value, 32, 8) << 8 |
2020 extract64(value, 16, 8);
2021 uint32_t targetlist = extract64(value, 0, 16);
2022 uint32_t irq = extract64(value, 24, 4);
2023 bool irm = extract64(value, 40, 1);
2024 int i;
2025
2026 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
2027 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
2028 * interrupts as Group 0 interrupts and must send Secure Group 0
2029 * interrupts to the target CPUs.
2030 */
2031 grp = GICV3_G0;
2032 }
2033
2034 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
2035 aff, targetlist);
2036
2037 for (i = 0; i < s->num_cpu; i++) {
2038 GICv3CPUState *ocs = &s->cpu[i];
2039
2040 if (irm) {
2041 /* IRM == 1 : route to all CPUs except self */
2042 if (cs == ocs) {
2043 continue;
2044 }
2045 } else {
2046 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
2047 * where the corresponding bit is set in targetlist
2048 */
2049 int aff0;
2050
2051 if (ocs->gicr_typer >> 40 != aff) {
2052 continue;
2053 }
2054 aff0 = extract64(ocs->gicr_typer, 32, 8);
2055 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
2056 continue;
2057 }
2058 }
2059
2060 /* The redistributor will check against its own GICR_NSACR as needed */
2061 gicv3_redist_send_sgi(ocs, grp, irq, ns);
2062 }
2063 }
2064
icc_sgi0r_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2065 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
2066 uint64_t value)
2067 {
2068 /* Generate Secure Group 0 SGI. */
2069 GICv3CPUState *cs = icc_cs_from_env(env);
2070 bool ns = !arm_is_secure(env);
2071
2072 icc_generate_sgi(env, cs, value, GICV3_G0, ns);
2073 }
2074
icc_sgi1r_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2075 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
2076 uint64_t value)
2077 {
2078 /* Generate Group 1 SGI for the current Security state */
2079 GICv3CPUState *cs = icc_cs_from_env(env);
2080 int grp;
2081 bool ns = !arm_is_secure(env);
2082
2083 grp = ns ? GICV3_G1NS : GICV3_G1;
2084 icc_generate_sgi(env, cs, value, grp, ns);
2085 }
2086
icc_asgi1r_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2087 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
2088 uint64_t value)
2089 {
2090 /* Generate Group 1 SGI for the Security state that is not
2091 * the current state
2092 */
2093 GICv3CPUState *cs = icc_cs_from_env(env);
2094 int grp;
2095 bool ns = !arm_is_secure(env);
2096
2097 grp = ns ? GICV3_G1 : GICV3_G1NS;
2098 icc_generate_sgi(env, cs, value, grp, ns);
2099 }
2100
icc_igrpen_read(CPUARMState * env,const ARMCPRegInfo * ri)2101 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
2102 {
2103 GICv3CPUState *cs = icc_cs_from_env(env);
2104 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
2105 uint64_t value;
2106
2107 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
2108 return icv_igrpen_read(env, ri);
2109 }
2110
2111 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
2112 grp = GICV3_G1NS;
2113 }
2114
2115 value = cs->icc_igrpen[grp];
2116 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
2117 gicv3_redist_affid(cs), value);
2118 return value;
2119 }
2120
icc_igrpen_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2121 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
2122 uint64_t value)
2123 {
2124 GICv3CPUState *cs = icc_cs_from_env(env);
2125 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
2126
2127 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
2128 icv_igrpen_write(env, ri, value);
2129 return;
2130 }
2131
2132 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
2133 gicv3_redist_affid(cs), value);
2134
2135 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
2136 grp = GICV3_G1NS;
2137 }
2138
2139 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
2140 gicv3_cpuif_update(cs);
2141 }
2142
icc_igrpen1_el3_read(CPUARMState * env,const ARMCPRegInfo * ri)2143 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
2144 {
2145 GICv3CPUState *cs = icc_cs_from_env(env);
2146 uint64_t value;
2147
2148 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
2149 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
2150 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
2151 return value;
2152 }
2153
icc_igrpen1_el3_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2154 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2155 uint64_t value)
2156 {
2157 GICv3CPUState *cs = icc_cs_from_env(env);
2158
2159 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
2160
2161 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
2162 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
2163 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
2164 gicv3_cpuif_update(cs);
2165 }
2166
icc_ctlr_el1_read(CPUARMState * env,const ARMCPRegInfo * ri)2167 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
2168 {
2169 GICv3CPUState *cs = icc_cs_from_env(env);
2170 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
2171 uint64_t value;
2172
2173 if (icv_access(env, HCR_FMO | HCR_IMO)) {
2174 return icv_ctlr_read(env, ri);
2175 }
2176
2177 value = cs->icc_ctlr_el1[bank];
2178 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
2179 return value;
2180 }
2181
icc_ctlr_el1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2182 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2183 uint64_t value)
2184 {
2185 GICv3CPUState *cs = icc_cs_from_env(env);
2186 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
2187 uint64_t mask;
2188
2189 if (icv_access(env, HCR_FMO | HCR_IMO)) {
2190 icv_ctlr_write(env, ri, value);
2191 return;
2192 }
2193
2194 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
2195
2196 /* Only CBPR and EOIMODE can be RW;
2197 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
2198 * the asseciated priority-based routing of them);
2199 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
2200 */
2201 if (arm_feature(env, ARM_FEATURE_EL3) &&
2202 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
2203 mask = ICC_CTLR_EL1_EOIMODE;
2204 } else {
2205 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
2206 }
2207
2208 cs->icc_ctlr_el1[bank] &= ~mask;
2209 cs->icc_ctlr_el1[bank] |= (value & mask);
2210 gicv3_cpuif_update(cs);
2211 }
2212
2213
icc_ctlr_el3_read(CPUARMState * env,const ARMCPRegInfo * ri)2214 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
2215 {
2216 GICv3CPUState *cs = icc_cs_from_env(env);
2217 uint64_t value;
2218
2219 value = cs->icc_ctlr_el3;
2220 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
2221 value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
2222 }
2223 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
2224 value |= ICC_CTLR_EL3_CBPR_EL1NS;
2225 }
2226 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
2227 value |= ICC_CTLR_EL3_EOIMODE_EL1S;
2228 }
2229 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
2230 value |= ICC_CTLR_EL3_CBPR_EL1S;
2231 }
2232
2233 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
2234 return value;
2235 }
2236
icc_ctlr_el3_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2237 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2238 uint64_t value)
2239 {
2240 GICv3CPUState *cs = icc_cs_from_env(env);
2241 uint64_t mask;
2242
2243 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
2244
2245 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
2246 cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
2247 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
2248 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
2249 }
2250 if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
2251 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
2252 }
2253
2254 cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
2255 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
2256 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
2257 }
2258 if (value & ICC_CTLR_EL3_CBPR_EL1S) {
2259 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
2260 }
2261
2262 /* The only bit stored in icc_ctlr_el3 which is writable is EOIMODE_EL3: */
2263 mask = ICC_CTLR_EL3_EOIMODE_EL3;
2264
2265 cs->icc_ctlr_el3 &= ~mask;
2266 cs->icc_ctlr_el3 |= (value & mask);
2267 gicv3_cpuif_update(cs);
2268 }
2269
gicv3_irqfiq_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2270 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
2271 const ARMCPRegInfo *ri, bool isread)
2272 {
2273 CPAccessResult r = CP_ACCESS_OK;
2274 GICv3CPUState *cs = icc_cs_from_env(env);
2275 int el = arm_current_el(env);
2276
2277 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
2278 el == 1 && !arm_is_secure_below_el3(env)) {
2279 /* Takes priority over a possible EL3 trap */
2280 return CP_ACCESS_TRAP_EL2;
2281 }
2282
2283 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
2284 switch (el) {
2285 case 1:
2286 /* Note that arm_hcr_el2_eff takes secure state into account. */
2287 if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) {
2288 r = CP_ACCESS_TRAP_EL3;
2289 }
2290 break;
2291 case 2:
2292 r = CP_ACCESS_TRAP_EL3;
2293 break;
2294 case 3:
2295 if (!arm_is_el3_or_mon(env)) {
2296 r = CP_ACCESS_TRAP_EL3;
2297 }
2298 break;
2299 default:
2300 g_assert_not_reached();
2301 }
2302 }
2303
2304 return r;
2305 }
2306
gicv3_dir_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2307 static CPAccessResult gicv3_dir_access(CPUARMState *env,
2308 const ARMCPRegInfo *ri, bool isread)
2309 {
2310 GICv3CPUState *cs = icc_cs_from_env(env);
2311
2312 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
2313 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
2314 /* Takes priority over a possible EL3 trap */
2315 return CP_ACCESS_TRAP_EL2;
2316 }
2317
2318 return gicv3_irqfiq_access(env, ri, isread);
2319 }
2320
gicv3_sgi_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2321 static CPAccessResult gicv3_sgi_access(CPUARMState *env,
2322 const ARMCPRegInfo *ri, bool isread)
2323 {
2324 if (arm_current_el(env) == 1 &&
2325 (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) {
2326 /* Takes priority over a possible EL3 trap */
2327 return CP_ACCESS_TRAP_EL2;
2328 }
2329
2330 return gicv3_irqfiq_access(env, ri, isread);
2331 }
2332
gicv3_fiq_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2333 static CPAccessResult gicv3_fiq_access(CPUARMState *env,
2334 const ARMCPRegInfo *ri, bool isread)
2335 {
2336 CPAccessResult r = CP_ACCESS_OK;
2337 GICv3CPUState *cs = icc_cs_from_env(env);
2338 int el = arm_current_el(env);
2339
2340 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
2341 el == 1 && !arm_is_secure_below_el3(env)) {
2342 /* Takes priority over a possible EL3 trap */
2343 return CP_ACCESS_TRAP_EL2;
2344 }
2345
2346 if (env->cp15.scr_el3 & SCR_FIQ) {
2347 switch (el) {
2348 case 1:
2349 if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) {
2350 r = CP_ACCESS_TRAP_EL3;
2351 }
2352 break;
2353 case 2:
2354 r = CP_ACCESS_TRAP_EL3;
2355 break;
2356 case 3:
2357 if (!arm_is_el3_or_mon(env)) {
2358 r = CP_ACCESS_TRAP_EL3;
2359 }
2360 break;
2361 default:
2362 g_assert_not_reached();
2363 }
2364 }
2365
2366 return r;
2367 }
2368
gicv3_irq_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2369 static CPAccessResult gicv3_irq_access(CPUARMState *env,
2370 const ARMCPRegInfo *ri, bool isread)
2371 {
2372 CPAccessResult r = CP_ACCESS_OK;
2373 GICv3CPUState *cs = icc_cs_from_env(env);
2374 int el = arm_current_el(env);
2375
2376 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
2377 el == 1 && !arm_is_secure_below_el3(env)) {
2378 /* Takes priority over a possible EL3 trap */
2379 return CP_ACCESS_TRAP_EL2;
2380 }
2381
2382 if (env->cp15.scr_el3 & SCR_IRQ) {
2383 switch (el) {
2384 case 1:
2385 if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) {
2386 r = CP_ACCESS_TRAP_EL3;
2387 }
2388 break;
2389 case 2:
2390 r = CP_ACCESS_TRAP_EL3;
2391 break;
2392 case 3:
2393 if (!arm_is_el3_or_mon(env)) {
2394 r = CP_ACCESS_TRAP_EL3;
2395 }
2396 break;
2397 default:
2398 g_assert_not_reached();
2399 }
2400 }
2401
2402 return r;
2403 }
2404
icc_reset(CPUARMState * env,const ARMCPRegInfo * ri)2405 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2406 {
2407 GICv3CPUState *cs = icc_cs_from_env(env);
2408
2409 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
2410 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2411 ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT);
2412 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
2413 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2414 ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT);
2415 cs->icc_pmr_el1 = 0;
2416 cs->icc_bpr[GICV3_G0] = icc_min_bpr(cs);
2417 cs->icc_bpr[GICV3_G1] = icc_min_bpr(cs);
2418 cs->icc_bpr[GICV3_G1NS] = icc_min_bpr_ns(cs);
2419 memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
2420 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
2421 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
2422 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
2423 ((cs->pribits - 1) << ICC_CTLR_EL3_PRIBITS_SHIFT);
2424
2425 memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
2426 cs->ich_hcr_el2 = 0;
2427 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
2428 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
2429 ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) |
2430 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
2431 }
2432
2433 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
2434 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
2435 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
2436 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2437 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2438 .readfn = icc_pmr_read,
2439 .writefn = icc_pmr_write,
2440 /* We hang the whole cpu interface reset routine off here
2441 * rather than parcelling it out into one little function
2442 * per register
2443 */
2444 .resetfn = icc_reset,
2445 },
2446 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
2447 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
2448 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2449 .access = PL1_R, .accessfn = gicv3_fiq_access,
2450 .readfn = icc_iar0_read,
2451 },
2452 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
2453 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
2454 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2455 .access = PL1_W, .accessfn = gicv3_fiq_access,
2456 .writefn = icc_eoir_write,
2457 },
2458 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
2459 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
2460 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2461 .access = PL1_R, .accessfn = gicv3_fiq_access,
2462 .readfn = icc_hppir0_read,
2463 },
2464 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
2465 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
2466 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2467 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2468 .readfn = icc_bpr_read,
2469 .writefn = icc_bpr_write,
2470 },
2471 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
2472 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
2473 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2474 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2475 .readfn = icc_ap_read,
2476 .writefn = icc_ap_write,
2477 },
2478 /* All the ICC_AP1R*_EL1 registers are banked */
2479 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
2480 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
2481 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2482 .access = PL1_RW, .accessfn = gicv3_irq_access,
2483 .readfn = icc_ap_read,
2484 .writefn = icc_ap_write,
2485 },
2486 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
2487 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
2488 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2489 .access = PL1_W, .accessfn = gicv3_dir_access,
2490 .writefn = icc_dir_write,
2491 },
2492 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
2493 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
2494 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2495 .access = PL1_R, .accessfn = gicv3_irqfiq_access,
2496 .readfn = icc_rpr_read,
2497 },
2498 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
2499 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
2500 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2501 .access = PL1_W, .accessfn = gicv3_sgi_access,
2502 .writefn = icc_sgi1r_write,
2503 },
2504 { .name = "ICC_SGI1R",
2505 .cp = 15, .opc1 = 0, .crm = 12,
2506 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2507 .access = PL1_W, .accessfn = gicv3_sgi_access,
2508 .writefn = icc_sgi1r_write,
2509 },
2510 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
2511 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
2512 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2513 .access = PL1_W, .accessfn = gicv3_sgi_access,
2514 .writefn = icc_asgi1r_write,
2515 },
2516 { .name = "ICC_ASGI1R",
2517 .cp = 15, .opc1 = 1, .crm = 12,
2518 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2519 .access = PL1_W, .accessfn = gicv3_sgi_access,
2520 .writefn = icc_asgi1r_write,
2521 },
2522 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
2523 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
2524 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2525 .access = PL1_W, .accessfn = gicv3_sgi_access,
2526 .writefn = icc_sgi0r_write,
2527 },
2528 { .name = "ICC_SGI0R",
2529 .cp = 15, .opc1 = 2, .crm = 12,
2530 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2531 .access = PL1_W, .accessfn = gicv3_sgi_access,
2532 .writefn = icc_sgi0r_write,
2533 },
2534 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
2535 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
2536 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2537 .access = PL1_R, .accessfn = gicv3_irq_access,
2538 .readfn = icc_iar1_read,
2539 },
2540 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
2541 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
2542 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2543 .access = PL1_W, .accessfn = gicv3_irq_access,
2544 .writefn = icc_eoir_write,
2545 },
2546 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
2547 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
2548 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2549 .access = PL1_R, .accessfn = gicv3_irq_access,
2550 .readfn = icc_hppir1_read,
2551 },
2552 /* This register is banked */
2553 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
2554 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
2555 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2556 .access = PL1_RW, .accessfn = gicv3_irq_access,
2557 .readfn = icc_bpr_read,
2558 .writefn = icc_bpr_write,
2559 },
2560 /* This register is banked */
2561 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
2562 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
2563 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2564 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2565 .readfn = icc_ctlr_el1_read,
2566 .writefn = icc_ctlr_el1_write,
2567 },
2568 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
2569 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
2570 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2571 .access = PL1_RW,
2572 /* We don't support IRQ/FIQ bypass and system registers are
2573 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2574 * This register is banked but since it's constant we don't
2575 * need to do anything special.
2576 */
2577 .resetvalue = 0x7,
2578 },
2579 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
2580 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
2581 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2582 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2583 .fgt = FGT_ICC_IGRPENN_EL1,
2584 .readfn = icc_igrpen_read,
2585 .writefn = icc_igrpen_write,
2586 },
2587 /* This register is banked */
2588 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
2589 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
2590 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2591 .access = PL1_RW, .accessfn = gicv3_irq_access,
2592 .fgt = FGT_ICC_IGRPENN_EL1,
2593 .readfn = icc_igrpen_read,
2594 .writefn = icc_igrpen_write,
2595 },
2596 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
2597 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
2598 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2599 .access = PL2_RW,
2600 /* We don't support IRQ/FIQ bypass and system registers are
2601 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2602 */
2603 .resetvalue = 0xf,
2604 },
2605 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
2606 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
2607 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2608 .access = PL3_RW,
2609 .readfn = icc_ctlr_el3_read,
2610 .writefn = icc_ctlr_el3_write,
2611 },
2612 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
2613 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
2614 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2615 .access = PL3_RW,
2616 /* We don't support IRQ/FIQ bypass and system registers are
2617 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2618 */
2619 .resetvalue = 0xf,
2620 },
2621 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
2622 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
2623 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2624 .access = PL3_RW,
2625 .readfn = icc_igrpen1_el3_read,
2626 .writefn = icc_igrpen1_el3_write,
2627 },
2628 };
2629
2630 static const ARMCPRegInfo gicv3_cpuif_icc_apxr1_reginfo[] = {
2631 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
2632 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
2633 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2634 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2635 .readfn = icc_ap_read,
2636 .writefn = icc_ap_write,
2637 },
2638 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
2639 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
2640 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2641 .access = PL1_RW, .accessfn = gicv3_irq_access,
2642 .readfn = icc_ap_read,
2643 .writefn = icc_ap_write,
2644 },
2645 };
2646
2647 static const ARMCPRegInfo gicv3_cpuif_icc_apxr23_reginfo[] = {
2648 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
2649 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
2650 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2651 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2652 .readfn = icc_ap_read,
2653 .writefn = icc_ap_write,
2654 },
2655 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
2656 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
2657 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2658 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2659 .readfn = icc_ap_read,
2660 .writefn = icc_ap_write,
2661 },
2662 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
2663 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
2664 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2665 .access = PL1_RW, .accessfn = gicv3_irq_access,
2666 .readfn = icc_ap_read,
2667 .writefn = icc_ap_write,
2668 },
2669 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
2670 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
2671 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2672 .access = PL1_RW, .accessfn = gicv3_irq_access,
2673 .readfn = icc_ap_read,
2674 .writefn = icc_ap_write,
2675 },
2676 };
2677
2678 static const ARMCPRegInfo gicv3_cpuif_gicv3_nmi_reginfo[] = {
2679 { .name = "ICC_NMIAR1_EL1", .state = ARM_CP_STATE_BOTH,
2680 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 5,
2681 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2682 .access = PL1_R, .accessfn = gicv3_irq_access,
2683 .readfn = icc_nmiar1_read,
2684 },
2685 };
2686
ich_ap_read(CPUARMState * env,const ARMCPRegInfo * ri)2687 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2688 {
2689 GICv3CPUState *cs = icc_cs_from_env(env);
2690 int regno = ri->opc2 & 3;
2691 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2692 uint64_t value;
2693
2694 value = cs->ich_apr[grp][regno];
2695 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2696 return value;
2697 }
2698
ich_ap_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2699 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2700 uint64_t value)
2701 {
2702 GICv3CPUState *cs = icc_cs_from_env(env);
2703 int regno = ri->opc2 & 3;
2704 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2705
2706 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2707
2708 if (cs->nmi_support) {
2709 cs->ich_apr[grp][regno] = value & (0xFFFFFFFFU | ICV_AP1R_EL1_NMI);
2710 } else {
2711 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
2712 }
2713 gicv3_cpuif_virt_irq_fiq_update(cs);
2714 }
2715
ich_hcr_read(CPUARMState * env,const ARMCPRegInfo * ri)2716 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2717 {
2718 GICv3CPUState *cs = icc_cs_from_env(env);
2719 uint64_t value = cs->ich_hcr_el2;
2720
2721 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
2722 return value;
2723 }
2724
ich_hcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2725 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2726 uint64_t value)
2727 {
2728 GICv3CPUState *cs = icc_cs_from_env(env);
2729
2730 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
2731
2732 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
2733 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
2734 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
2735 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
2736 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
2737
2738 cs->ich_hcr_el2 = value;
2739 gicv3_cpuif_virt_update(cs);
2740 }
2741
ich_vmcr_read(CPUARMState * env,const ARMCPRegInfo * ri)2742 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2743 {
2744 GICv3CPUState *cs = icc_cs_from_env(env);
2745 uint64_t value = cs->ich_vmcr_el2;
2746
2747 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
2748 return value;
2749 }
2750
ich_vmcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2751 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2752 uint64_t value)
2753 {
2754 GICv3CPUState *cs = icc_cs_from_env(env);
2755
2756 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
2757
2758 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
2759 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
2760 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
2761 value |= ICH_VMCR_EL2_VFIQEN;
2762
2763 cs->ich_vmcr_el2 = value;
2764 /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2765 * by reading and writing back the fields.
2766 */
2767 write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0));
2768 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
2769
2770 gicv3_cpuif_virt_update(cs);
2771 }
2772
ich_lr_read(CPUARMState * env,const ARMCPRegInfo * ri)2773 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2774 {
2775 GICv3CPUState *cs = icc_cs_from_env(env);
2776 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2777 uint64_t value;
2778
2779 /* This read function handles all of:
2780 * 64-bit reads of the whole LR
2781 * 32-bit reads of the low half of the LR
2782 * 32-bit reads of the high half of the LR
2783 */
2784 if (ri->state == ARM_CP_STATE_AA32) {
2785 if (ri->crm >= 14) {
2786 value = extract64(cs->ich_lr_el2[regno], 32, 32);
2787 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
2788 } else {
2789 value = extract64(cs->ich_lr_el2[regno], 0, 32);
2790 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
2791 }
2792 } else {
2793 value = cs->ich_lr_el2[regno];
2794 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
2795 }
2796
2797 return value;
2798 }
2799
ich_lr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2800 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2801 uint64_t value)
2802 {
2803 GICv3CPUState *cs = icc_cs_from_env(env);
2804 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2805
2806 /* This write function handles all of:
2807 * 64-bit writes to the whole LR
2808 * 32-bit writes to the low half of the LR
2809 * 32-bit writes to the high half of the LR
2810 */
2811 if (ri->state == ARM_CP_STATE_AA32) {
2812 if (ri->crm >= 14) {
2813 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
2814 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
2815 } else {
2816 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
2817 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
2818 }
2819 } else {
2820 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
2821 }
2822
2823 /* Enforce RES0 bits in priority field */
2824 if (cs->vpribits < 8) {
2825 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
2826 8 - cs->vpribits, 0);
2827 }
2828
2829 /* Enforce RES0 bit in NMI field when FEAT_GICv3_NMI is not implemented */
2830 if (!cs->nmi_support) {
2831 value &= ~ICH_LR_EL2_NMI;
2832 }
2833
2834 cs->ich_lr_el2[regno] = value;
2835 gicv3_cpuif_virt_update(cs);
2836 }
2837
ich_vtr_read(CPUARMState * env,const ARMCPRegInfo * ri)2838 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2839 {
2840 GICv3CPUState *cs = icc_cs_from_env(env);
2841 uint64_t value;
2842
2843 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
2844 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_A3V
2845 | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
2846 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
2847 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
2848
2849 if (cs->gic->revision < 4) {
2850 value |= ICH_VTR_EL2_NV4;
2851 }
2852
2853 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
2854 return value;
2855 }
2856
ich_misr_read(CPUARMState * env,const ARMCPRegInfo * ri)2857 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2858 {
2859 GICv3CPUState *cs = icc_cs_from_env(env);
2860 uint64_t value = maintenance_interrupt_state(cs);
2861
2862 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
2863 return value;
2864 }
2865
ich_eisr_read(CPUARMState * env,const ARMCPRegInfo * ri)2866 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2867 {
2868 GICv3CPUState *cs = icc_cs_from_env(env);
2869 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
2870
2871 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
2872 return value;
2873 }
2874
ich_elrsr_read(CPUARMState * env,const ARMCPRegInfo * ri)2875 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2876 {
2877 GICv3CPUState *cs = icc_cs_from_env(env);
2878 uint64_t value = 0;
2879 int i;
2880
2881 for (i = 0; i < cs->num_list_regs; i++) {
2882 uint64_t lr = cs->ich_lr_el2[i];
2883
2884 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
2885 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) {
2886 value |= (1 << i);
2887 }
2888 }
2889
2890 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
2891 return value;
2892 }
2893
2894 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
2895 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
2896 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
2897 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2898 .nv2_redirect_offset = 0x480,
2899 .access = PL2_RW,
2900 .readfn = ich_ap_read,
2901 .writefn = ich_ap_write,
2902 },
2903 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
2904 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
2905 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2906 .nv2_redirect_offset = 0x4a0,
2907 .access = PL2_RW,
2908 .readfn = ich_ap_read,
2909 .writefn = ich_ap_write,
2910 },
2911 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
2912 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
2913 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2914 .nv2_redirect_offset = 0x4c0,
2915 .access = PL2_RW,
2916 .readfn = ich_hcr_read,
2917 .writefn = ich_hcr_write,
2918 },
2919 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
2920 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
2921 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2922 .access = PL2_R,
2923 .readfn = ich_vtr_read,
2924 },
2925 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
2926 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
2927 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2928 .access = PL2_R,
2929 .readfn = ich_misr_read,
2930 },
2931 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
2932 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
2933 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2934 .access = PL2_R,
2935 .readfn = ich_eisr_read,
2936 },
2937 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
2938 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
2939 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2940 .access = PL2_R,
2941 .readfn = ich_elrsr_read,
2942 },
2943 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
2944 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
2945 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2946 .nv2_redirect_offset = 0x4c8,
2947 .access = PL2_RW,
2948 .readfn = ich_vmcr_read,
2949 .writefn = ich_vmcr_write,
2950 },
2951 };
2952
2953 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
2954 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
2955 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
2956 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2957 .nv2_redirect_offset = 0x488,
2958 .access = PL2_RW,
2959 .readfn = ich_ap_read,
2960 .writefn = ich_ap_write,
2961 },
2962 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
2963 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
2964 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2965 .nv2_redirect_offset = 0x4a8,
2966 .access = PL2_RW,
2967 .readfn = ich_ap_read,
2968 .writefn = ich_ap_write,
2969 },
2970 };
2971
2972 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
2973 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
2974 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
2975 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2976 .nv2_redirect_offset = 0x490,
2977 .access = PL2_RW,
2978 .readfn = ich_ap_read,
2979 .writefn = ich_ap_write,
2980 },
2981 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
2982 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
2983 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2984 .nv2_redirect_offset = 0x498,
2985 .access = PL2_RW,
2986 .readfn = ich_ap_read,
2987 .writefn = ich_ap_write,
2988 },
2989 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
2990 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
2991 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2992 .nv2_redirect_offset = 0x4b0,
2993 .access = PL2_RW,
2994 .readfn = ich_ap_read,
2995 .writefn = ich_ap_write,
2996 },
2997 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
2998 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
2999 .type = ARM_CP_IO | ARM_CP_NO_RAW,
3000 .nv2_redirect_offset = 0x4b8,
3001 .access = PL2_RW,
3002 .readfn = ich_ap_read,
3003 .writefn = ich_ap_write,
3004 },
3005 };
3006
gicv3_cpuif_el_change_hook(ARMCPU * cpu,void * opaque)3007 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
3008 {
3009 GICv3CPUState *cs = opaque;
3010
3011 gicv3_cpuif_update(cs);
3012 /*
3013 * Because vLPIs are only pending in NonSecure state,
3014 * an EL change can change the VIRQ/VFIQ status (but
3015 * cannot affect the maintenance interrupt state)
3016 */
3017 gicv3_cpuif_virt_irq_fiq_update(cs);
3018 }
3019
gicv3_init_cpuif(GICv3State * s)3020 void gicv3_init_cpuif(GICv3State *s)
3021 {
3022 /* Called from the GICv3 realize function; register our system
3023 * registers with the CPU
3024 */
3025 int i;
3026
3027 for (i = 0; i < s->num_cpu; i++) {
3028 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
3029 GICv3CPUState *cs = &s->cpu[i];
3030
3031 /*
3032 * If the CPU doesn't define a GICv3 configuration, probably because
3033 * in real hardware it doesn't have one, then we use default values
3034 * matching the one used by most Arm CPUs. This applies to:
3035 * cpu->gic_num_lrs
3036 * cpu->gic_vpribits
3037 * cpu->gic_vprebits
3038 * cpu->gic_pribits
3039 */
3040
3041 /* Note that we can't just use the GICv3CPUState as an opaque pointer
3042 * in define_arm_cp_regs_with_opaque(), because when we're called back
3043 * it might be with code translated by CPU 0 but run by CPU 1, in
3044 * which case we'd get the wrong value.
3045 * So instead we define the regs with no ri->opaque info, and
3046 * get back to the GICv3CPUState from the CPUARMState.
3047 *
3048 * These CP regs callbacks can be called from either TCG or HVF code.
3049 */
3050 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
3051
3052 /*
3053 * If the CPU implements FEAT_NMI and FEAT_GICv3 it must also
3054 * implement FEAT_GICv3_NMI, which is the CPU interface part
3055 * of NMI support. This is distinct from whether the GIC proper
3056 * (redistributors and distributor) have NMI support. In QEMU
3057 * that is a property of the GIC device in s->nmi_support;
3058 * cs->nmi_support indicates the CPU interface's support.
3059 */
3060 if (cpu_isar_feature(aa64_nmi, cpu)) {
3061 cs->nmi_support = true;
3062 define_arm_cp_regs(cpu, gicv3_cpuif_gicv3_nmi_reginfo);
3063 }
3064
3065 /*
3066 * The CPU implementation specifies the number of supported
3067 * bits of physical priority. For backwards compatibility
3068 * of migration, we have a compat property that forces use
3069 * of 8 priority bits regardless of what the CPU really has.
3070 */
3071 if (s->force_8bit_prio) {
3072 cs->pribits = 8;
3073 } else {
3074 cs->pribits = cpu->gic_pribits ?: 5;
3075 }
3076
3077 /*
3078 * The GICv3 has separate ID register fields for virtual priority
3079 * and preemption bit values, but only a single ID register field
3080 * for the physical priority bits. The preemption bit count is
3081 * always the same as the priority bit count, except that 8 bits
3082 * of priority means 7 preemption bits. We precalculate the
3083 * preemption bits because it simplifies the code and makes the
3084 * parallels between the virtual and physical bits of the GIC
3085 * a bit clearer.
3086 */
3087 cs->prebits = cs->pribits;
3088 if (cs->prebits == 8) {
3089 cs->prebits--;
3090 }
3091 /*
3092 * Check that CPU code defining pribits didn't violate
3093 * architectural constraints our implementation relies on.
3094 */
3095 g_assert(cs->pribits >= 4 && cs->pribits <= 8);
3096
3097 /*
3098 * gicv3_cpuif_reginfo[] defines ICC_AP*R0_EL1; add definitions
3099 * for ICC_AP*R{1,2,3}_EL1 if the prebits value requires them.
3100 */
3101 if (cs->prebits >= 6) {
3102 define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr1_reginfo);
3103 }
3104 if (cs->prebits == 7) {
3105 define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr23_reginfo);
3106 }
3107
3108 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
3109 int j;
3110
3111 cs->num_list_regs = cpu->gic_num_lrs ?: 4;
3112 cs->vpribits = cpu->gic_vpribits ?: 5;
3113 cs->vprebits = cpu->gic_vprebits ?: 5;
3114
3115 /* Check against architectural constraints: getting these
3116 * wrong would be a bug in the CPU code defining these,
3117 * and the implementation relies on them holding.
3118 */
3119 g_assert(cs->vprebits <= cs->vpribits);
3120 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
3121 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
3122
3123 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
3124
3125 for (j = 0; j < cs->num_list_regs; j++) {
3126 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
3127 * are split into two cp15 regs, LR (the low part, with the
3128 * same encoding as the AArch64 LR) and LRC (the high part).
3129 */
3130 ARMCPRegInfo lr_regset[] = {
3131 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
3132 .opc0 = 3, .opc1 = 4, .crn = 12,
3133 .crm = 12 + (j >> 3), .opc2 = j & 7,
3134 .type = ARM_CP_IO | ARM_CP_NO_RAW,
3135 .nv2_redirect_offset = 0x400 + 8 * j,
3136 .access = PL2_RW,
3137 .readfn = ich_lr_read,
3138 .writefn = ich_lr_write,
3139 },
3140 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
3141 .cp = 15, .opc1 = 4, .crn = 12,
3142 .crm = 14 + (j >> 3), .opc2 = j & 7,
3143 .type = ARM_CP_IO | ARM_CP_NO_RAW,
3144 .access = PL2_RW,
3145 .readfn = ich_lr_read,
3146 .writefn = ich_lr_write,
3147 },
3148 };
3149 define_arm_cp_regs(cpu, lr_regset);
3150 }
3151 if (cs->vprebits >= 6) {
3152 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
3153 }
3154 if (cs->vprebits == 7) {
3155 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
3156 }
3157 }
3158 if (tcg_enabled() || qtest_enabled()) {
3159 /*
3160 * We can only trap EL changes with TCG. However the GIC interrupt
3161 * state only changes on EL changes involving EL2 or EL3, so for
3162 * the non-TCG case this is OK, as EL2 and EL3 can't exist.
3163 */
3164 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);
3165 } else {
3166 assert(!arm_feature(&cpu->env, ARM_FEATURE_EL2));
3167 assert(!arm_feature(&cpu->env, ARM_FEATURE_EL3));
3168 }
3169 }
3170 }
3171