1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include <linux/bitfield.h>
5 #include <linux/prefetch.h>
6
7 #include "iavf.h"
8 #include "iavf_trace.h"
9 #include "iavf_prototype.h"
10
build_ctob(u32 td_cmd,u32 td_offset,unsigned int size,u32 td_tag)11 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
12 u32 td_tag)
13 {
14 return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA |
15 ((u64)td_cmd << IAVF_TXD_QW1_CMD_SHIFT) |
16 ((u64)td_offset << IAVF_TXD_QW1_OFFSET_SHIFT) |
17 ((u64)size << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
18 ((u64)td_tag << IAVF_TXD_QW1_L2TAG1_SHIFT));
19 }
20
21 #define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS)
22
23 /**
24 * iavf_unmap_and_free_tx_resource - Release a Tx buffer
25 * @ring: the ring that owns the buffer
26 * @tx_buffer: the buffer to free
27 **/
iavf_unmap_and_free_tx_resource(struct iavf_ring * ring,struct iavf_tx_buffer * tx_buffer)28 static void iavf_unmap_and_free_tx_resource(struct iavf_ring *ring,
29 struct iavf_tx_buffer *tx_buffer)
30 {
31 if (tx_buffer->skb) {
32 if (tx_buffer->tx_flags & IAVF_TX_FLAGS_FD_SB)
33 kfree(tx_buffer->raw_buf);
34 else
35 dev_kfree_skb_any(tx_buffer->skb);
36 if (dma_unmap_len(tx_buffer, len))
37 dma_unmap_single(ring->dev,
38 dma_unmap_addr(tx_buffer, dma),
39 dma_unmap_len(tx_buffer, len),
40 DMA_TO_DEVICE);
41 } else if (dma_unmap_len(tx_buffer, len)) {
42 dma_unmap_page(ring->dev,
43 dma_unmap_addr(tx_buffer, dma),
44 dma_unmap_len(tx_buffer, len),
45 DMA_TO_DEVICE);
46 }
47
48 tx_buffer->next_to_watch = NULL;
49 tx_buffer->skb = NULL;
50 dma_unmap_len_set(tx_buffer, len, 0);
51 /* tx_buffer must be completely set up in the transmit path */
52 }
53
54 /**
55 * iavf_clean_tx_ring - Free any empty Tx buffers
56 * @tx_ring: ring to be cleaned
57 **/
iavf_clean_tx_ring(struct iavf_ring * tx_ring)58 static void iavf_clean_tx_ring(struct iavf_ring *tx_ring)
59 {
60 unsigned long bi_size;
61 u16 i;
62
63 /* ring already cleared, nothing to do */
64 if (!tx_ring->tx_bi)
65 return;
66
67 /* Free all the Tx ring sk_buffs */
68 for (i = 0; i < tx_ring->count; i++)
69 iavf_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
70
71 bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
72 memset(tx_ring->tx_bi, 0, bi_size);
73
74 /* Zero out the descriptor ring */
75 memset(tx_ring->desc, 0, tx_ring->size);
76
77 tx_ring->next_to_use = 0;
78 tx_ring->next_to_clean = 0;
79
80 if (!tx_ring->netdev)
81 return;
82
83 /* cleanup Tx queue statistics */
84 netdev_tx_reset_queue(txring_txq(tx_ring));
85 }
86
87 /**
88 * iavf_free_tx_resources - Free Tx resources per queue
89 * @tx_ring: Tx descriptor ring for a specific queue
90 *
91 * Free all transmit software resources
92 **/
iavf_free_tx_resources(struct iavf_ring * tx_ring)93 void iavf_free_tx_resources(struct iavf_ring *tx_ring)
94 {
95 iavf_clean_tx_ring(tx_ring);
96 kfree(tx_ring->tx_bi);
97 tx_ring->tx_bi = NULL;
98
99 if (tx_ring->desc) {
100 dma_free_coherent(tx_ring->dev, tx_ring->size,
101 tx_ring->desc, tx_ring->dma);
102 tx_ring->desc = NULL;
103 }
104 }
105
106 /**
107 * iavf_get_tx_pending - how many Tx descriptors not processed
108 * @ring: the ring of descriptors
109 * @in_sw: is tx_pending being checked in SW or HW
110 *
111 * Since there is no access to the ring head register
112 * in XL710, we need to use our local copies
113 **/
iavf_get_tx_pending(struct iavf_ring * ring,bool in_sw)114 static u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw)
115 {
116 u32 head, tail;
117
118 /* underlying hardware might not allow access and/or always return
119 * 0 for the head/tail registers so just use the cached values
120 */
121 head = ring->next_to_clean;
122 tail = ring->next_to_use;
123
124 if (head != tail)
125 return (head < tail) ?
126 tail - head : (tail + ring->count - head);
127
128 return 0;
129 }
130
131 /**
132 * iavf_force_wb - Issue SW Interrupt so HW does a wb
133 * @vsi: the VSI we care about
134 * @q_vector: the vector on which to force writeback
135 **/
iavf_force_wb(struct iavf_vsi * vsi,struct iavf_q_vector * q_vector)136 static void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector)
137 {
138 u32 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
139 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
140 IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
141 IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
142 /* allow 00 to be written to the index */;
143
144 wr32(&vsi->back->hw,
145 IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx),
146 val);
147 }
148
149 /**
150 * iavf_detect_recover_hung - Function to detect and recover hung_queues
151 * @vsi: pointer to vsi struct with tx queues
152 *
153 * VSI has netdev and netdev has TX queues. This function is to check each of
154 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
155 **/
iavf_detect_recover_hung(struct iavf_vsi * vsi)156 void iavf_detect_recover_hung(struct iavf_vsi *vsi)
157 {
158 struct iavf_ring *tx_ring = NULL;
159 struct net_device *netdev;
160 unsigned int i;
161 int packets;
162
163 if (!vsi)
164 return;
165
166 if (test_bit(__IAVF_VSI_DOWN, vsi->state))
167 return;
168
169 netdev = vsi->netdev;
170 if (!netdev)
171 return;
172
173 if (!netif_carrier_ok(netdev))
174 return;
175
176 for (i = 0; i < vsi->back->num_active_queues; i++) {
177 tx_ring = &vsi->back->tx_rings[i];
178 if (tx_ring && tx_ring->desc) {
179 /* If packet counter has not changed the queue is
180 * likely stalled, so force an interrupt for this
181 * queue.
182 *
183 * prev_pkt_ctr would be negative if there was no
184 * pending work.
185 */
186 packets = tx_ring->stats.packets & INT_MAX;
187 if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
188 iavf_force_wb(vsi, tx_ring->q_vector);
189 continue;
190 }
191
192 /* Memory barrier between read of packet count and call
193 * to iavf_get_tx_pending()
194 */
195 smp_rmb();
196 tx_ring->tx_stats.prev_pkt_ctr =
197 iavf_get_tx_pending(tx_ring, true) ? packets : -1;
198 }
199 }
200 }
201
202 #define WB_STRIDE 4
203
204 /**
205 * iavf_clean_tx_irq - Reclaim resources after transmit completes
206 * @vsi: the VSI we care about
207 * @tx_ring: Tx ring to clean
208 * @napi_budget: Used to determine if we are in netpoll
209 *
210 * Returns true if there's any budget left (e.g. the clean is finished)
211 **/
iavf_clean_tx_irq(struct iavf_vsi * vsi,struct iavf_ring * tx_ring,int napi_budget)212 static bool iavf_clean_tx_irq(struct iavf_vsi *vsi,
213 struct iavf_ring *tx_ring, int napi_budget)
214 {
215 int i = tx_ring->next_to_clean;
216 struct iavf_tx_buffer *tx_buf;
217 struct iavf_tx_desc *tx_desc;
218 unsigned int total_bytes = 0, total_packets = 0;
219 unsigned int budget = IAVF_DEFAULT_IRQ_WORK;
220
221 tx_buf = &tx_ring->tx_bi[i];
222 tx_desc = IAVF_TX_DESC(tx_ring, i);
223 i -= tx_ring->count;
224
225 do {
226 struct iavf_tx_desc *eop_desc = tx_buf->next_to_watch;
227
228 /* if next_to_watch is not set then there is no work pending */
229 if (!eop_desc)
230 break;
231
232 /* prevent any other reads prior to eop_desc */
233 smp_rmb();
234
235 iavf_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
236 /* if the descriptor isn't done, no work yet to do */
237 if (!(eop_desc->cmd_type_offset_bsz &
238 cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE)))
239 break;
240
241 /* clear next_to_watch to prevent false hangs */
242 tx_buf->next_to_watch = NULL;
243
244 /* update the statistics for this packet */
245 total_bytes += tx_buf->bytecount;
246 total_packets += tx_buf->gso_segs;
247
248 /* free the skb */
249 napi_consume_skb(tx_buf->skb, napi_budget);
250
251 /* unmap skb header data */
252 dma_unmap_single(tx_ring->dev,
253 dma_unmap_addr(tx_buf, dma),
254 dma_unmap_len(tx_buf, len),
255 DMA_TO_DEVICE);
256
257 /* clear tx_buffer data */
258 tx_buf->skb = NULL;
259 dma_unmap_len_set(tx_buf, len, 0);
260
261 /* unmap remaining buffers */
262 while (tx_desc != eop_desc) {
263 iavf_trace(clean_tx_irq_unmap,
264 tx_ring, tx_desc, tx_buf);
265
266 tx_buf++;
267 tx_desc++;
268 i++;
269 if (unlikely(!i)) {
270 i -= tx_ring->count;
271 tx_buf = tx_ring->tx_bi;
272 tx_desc = IAVF_TX_DESC(tx_ring, 0);
273 }
274
275 /* unmap any remaining paged data */
276 if (dma_unmap_len(tx_buf, len)) {
277 dma_unmap_page(tx_ring->dev,
278 dma_unmap_addr(tx_buf, dma),
279 dma_unmap_len(tx_buf, len),
280 DMA_TO_DEVICE);
281 dma_unmap_len_set(tx_buf, len, 0);
282 }
283 }
284
285 /* move us one more past the eop_desc for start of next pkt */
286 tx_buf++;
287 tx_desc++;
288 i++;
289 if (unlikely(!i)) {
290 i -= tx_ring->count;
291 tx_buf = tx_ring->tx_bi;
292 tx_desc = IAVF_TX_DESC(tx_ring, 0);
293 }
294
295 prefetch(tx_desc);
296
297 /* update budget accounting */
298 budget--;
299 } while (likely(budget));
300
301 i += tx_ring->count;
302 tx_ring->next_to_clean = i;
303 u64_stats_update_begin(&tx_ring->syncp);
304 tx_ring->stats.bytes += total_bytes;
305 tx_ring->stats.packets += total_packets;
306 u64_stats_update_end(&tx_ring->syncp);
307 tx_ring->q_vector->tx.total_bytes += total_bytes;
308 tx_ring->q_vector->tx.total_packets += total_packets;
309
310 if (tx_ring->flags & IAVF_TXR_FLAGS_WB_ON_ITR) {
311 /* check to see if there are < 4 descriptors
312 * waiting to be written back, then kick the hardware to force
313 * them to be written back in case we stay in NAPI.
314 * In this mode on X722 we do not enable Interrupt.
315 */
316 unsigned int j = iavf_get_tx_pending(tx_ring, false);
317
318 if (budget &&
319 ((j / WB_STRIDE) == 0) && (j > 0) &&
320 !test_bit(__IAVF_VSI_DOWN, vsi->state) &&
321 (IAVF_DESC_UNUSED(tx_ring) != tx_ring->count))
322 tx_ring->arm_wb = true;
323 }
324
325 /* notify netdev of completed buffers */
326 netdev_tx_completed_queue(txring_txq(tx_ring),
327 total_packets, total_bytes);
328
329 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
330 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
331 (IAVF_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
332 /* Make sure that anybody stopping the queue after this
333 * sees the new next_to_clean.
334 */
335 smp_mb();
336 if (__netif_subqueue_stopped(tx_ring->netdev,
337 tx_ring->queue_index) &&
338 !test_bit(__IAVF_VSI_DOWN, vsi->state)) {
339 netif_wake_subqueue(tx_ring->netdev,
340 tx_ring->queue_index);
341 ++tx_ring->tx_stats.restart_queue;
342 }
343 }
344
345 return !!budget;
346 }
347
348 /**
349 * iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
350 * @vsi: the VSI we care about
351 * @q_vector: the vector on which to enable writeback
352 *
353 **/
iavf_enable_wb_on_itr(struct iavf_vsi * vsi,struct iavf_q_vector * q_vector)354 static void iavf_enable_wb_on_itr(struct iavf_vsi *vsi,
355 struct iavf_q_vector *q_vector)
356 {
357 u16 flags = q_vector->tx.ring[0].flags;
358 u32 val;
359
360 if (!(flags & IAVF_TXR_FLAGS_WB_ON_ITR))
361 return;
362
363 if (q_vector->arm_wb_state)
364 return;
365
366 val = IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
367 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
368
369 wr32(&vsi->back->hw,
370 IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), val);
371 q_vector->arm_wb_state = true;
372 }
373
iavf_container_is_rx(struct iavf_q_vector * q_vector,struct iavf_ring_container * rc)374 static inline bool iavf_container_is_rx(struct iavf_q_vector *q_vector,
375 struct iavf_ring_container *rc)
376 {
377 return &q_vector->rx == rc;
378 }
379
380 #define IAVF_AIM_MULTIPLIER_100G 2560
381 #define IAVF_AIM_MULTIPLIER_50G 1280
382 #define IAVF_AIM_MULTIPLIER_40G 1024
383 #define IAVF_AIM_MULTIPLIER_20G 512
384 #define IAVF_AIM_MULTIPLIER_10G 256
385 #define IAVF_AIM_MULTIPLIER_1G 32
386
iavf_mbps_itr_multiplier(u32 speed_mbps)387 static unsigned int iavf_mbps_itr_multiplier(u32 speed_mbps)
388 {
389 switch (speed_mbps) {
390 case SPEED_100000:
391 return IAVF_AIM_MULTIPLIER_100G;
392 case SPEED_50000:
393 return IAVF_AIM_MULTIPLIER_50G;
394 case SPEED_40000:
395 return IAVF_AIM_MULTIPLIER_40G;
396 case SPEED_25000:
397 case SPEED_20000:
398 return IAVF_AIM_MULTIPLIER_20G;
399 case SPEED_10000:
400 default:
401 return IAVF_AIM_MULTIPLIER_10G;
402 case SPEED_1000:
403 case SPEED_100:
404 return IAVF_AIM_MULTIPLIER_1G;
405 }
406 }
407
408 static unsigned int
iavf_virtchnl_itr_multiplier(enum virtchnl_link_speed speed_virtchnl)409 iavf_virtchnl_itr_multiplier(enum virtchnl_link_speed speed_virtchnl)
410 {
411 switch (speed_virtchnl) {
412 case VIRTCHNL_LINK_SPEED_40GB:
413 return IAVF_AIM_MULTIPLIER_40G;
414 case VIRTCHNL_LINK_SPEED_25GB:
415 case VIRTCHNL_LINK_SPEED_20GB:
416 return IAVF_AIM_MULTIPLIER_20G;
417 case VIRTCHNL_LINK_SPEED_10GB:
418 default:
419 return IAVF_AIM_MULTIPLIER_10G;
420 case VIRTCHNL_LINK_SPEED_1GB:
421 case VIRTCHNL_LINK_SPEED_100MB:
422 return IAVF_AIM_MULTIPLIER_1G;
423 }
424 }
425
iavf_itr_divisor(struct iavf_adapter * adapter)426 static unsigned int iavf_itr_divisor(struct iavf_adapter *adapter)
427 {
428 if (ADV_LINK_SUPPORT(adapter))
429 return IAVF_ITR_ADAPTIVE_MIN_INC *
430 iavf_mbps_itr_multiplier(adapter->link_speed_mbps);
431 else
432 return IAVF_ITR_ADAPTIVE_MIN_INC *
433 iavf_virtchnl_itr_multiplier(adapter->link_speed);
434 }
435
436 /**
437 * iavf_update_itr - update the dynamic ITR value based on statistics
438 * @q_vector: structure containing interrupt and ring information
439 * @rc: structure containing ring performance data
440 *
441 * Stores a new ITR value based on packets and byte
442 * counts during the last interrupt. The advantage of per interrupt
443 * computation is faster updates and more accurate ITR for the current
444 * traffic pattern. Constants in this function were computed
445 * based on theoretical maximum wire speed and thresholds were set based
446 * on testing data as well as attempting to minimize response time
447 * while increasing bulk throughput.
448 **/
iavf_update_itr(struct iavf_q_vector * q_vector,struct iavf_ring_container * rc)449 static void iavf_update_itr(struct iavf_q_vector *q_vector,
450 struct iavf_ring_container *rc)
451 {
452 unsigned int avg_wire_size, packets, bytes, itr;
453 unsigned long next_update = jiffies;
454
455 /* If we don't have any rings just leave ourselves set for maximum
456 * possible latency so we take ourselves out of the equation.
457 */
458 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
459 return;
460
461 /* For Rx we want to push the delay up and default to low latency.
462 * for Tx we want to pull the delay down and default to high latency.
463 */
464 itr = iavf_container_is_rx(q_vector, rc) ?
465 IAVF_ITR_ADAPTIVE_MIN_USECS | IAVF_ITR_ADAPTIVE_LATENCY :
466 IAVF_ITR_ADAPTIVE_MAX_USECS | IAVF_ITR_ADAPTIVE_LATENCY;
467
468 /* If we didn't update within up to 1 - 2 jiffies we can assume
469 * that either packets are coming in so slow there hasn't been
470 * any work, or that there is so much work that NAPI is dealing
471 * with interrupt moderation and we don't need to do anything.
472 */
473 if (time_after(next_update, rc->next_update))
474 goto clear_counts;
475
476 /* If itr_countdown is set it means we programmed an ITR within
477 * the last 4 interrupt cycles. This has a side effect of us
478 * potentially firing an early interrupt. In order to work around
479 * this we need to throw out any data received for a few
480 * interrupts following the update.
481 */
482 if (q_vector->itr_countdown) {
483 itr = rc->target_itr;
484 goto clear_counts;
485 }
486
487 packets = rc->total_packets;
488 bytes = rc->total_bytes;
489
490 if (iavf_container_is_rx(q_vector, rc)) {
491 /* If Rx there are 1 to 4 packets and bytes are less than
492 * 9000 assume insufficient data to use bulk rate limiting
493 * approach unless Tx is already in bulk rate limiting. We
494 * are likely latency driven.
495 */
496 if (packets && packets < 4 && bytes < 9000 &&
497 (q_vector->tx.target_itr & IAVF_ITR_ADAPTIVE_LATENCY)) {
498 itr = IAVF_ITR_ADAPTIVE_LATENCY;
499 goto adjust_by_size;
500 }
501 } else if (packets < 4) {
502 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
503 * bulk mode and we are receiving 4 or fewer packets just
504 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
505 * that the Rx can relax.
506 */
507 if (rc->target_itr == IAVF_ITR_ADAPTIVE_MAX_USECS &&
508 (q_vector->rx.target_itr & IAVF_ITR_MASK) ==
509 IAVF_ITR_ADAPTIVE_MAX_USECS)
510 goto clear_counts;
511 } else if (packets > 32) {
512 /* If we have processed over 32 packets in a single interrupt
513 * for Tx assume we need to switch over to "bulk" mode.
514 */
515 rc->target_itr &= ~IAVF_ITR_ADAPTIVE_LATENCY;
516 }
517
518 /* We have no packets to actually measure against. This means
519 * either one of the other queues on this vector is active or
520 * we are a Tx queue doing TSO with too high of an interrupt rate.
521 *
522 * Between 4 and 56 we can assume that our current interrupt delay
523 * is only slightly too low. As such we should increase it by a small
524 * fixed amount.
525 */
526 if (packets < 56) {
527 itr = rc->target_itr + IAVF_ITR_ADAPTIVE_MIN_INC;
528 if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
529 itr &= IAVF_ITR_ADAPTIVE_LATENCY;
530 itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
531 }
532 goto clear_counts;
533 }
534
535 if (packets <= 256) {
536 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
537 itr &= IAVF_ITR_MASK;
538
539 /* Between 56 and 112 is our "goldilocks" zone where we are
540 * working out "just right". Just report that our current
541 * ITR is good for us.
542 */
543 if (packets <= 112)
544 goto clear_counts;
545
546 /* If packet count is 128 or greater we are likely looking
547 * at a slight overrun of the delay we want. Try halving
548 * our delay to see if that will cut the number of packets
549 * in half per interrupt.
550 */
551 itr /= 2;
552 itr &= IAVF_ITR_MASK;
553 if (itr < IAVF_ITR_ADAPTIVE_MIN_USECS)
554 itr = IAVF_ITR_ADAPTIVE_MIN_USECS;
555
556 goto clear_counts;
557 }
558
559 /* The paths below assume we are dealing with a bulk ITR since
560 * number of packets is greater than 256. We are just going to have
561 * to compute a value and try to bring the count under control,
562 * though for smaller packet sizes there isn't much we can do as
563 * NAPI polling will likely be kicking in sooner rather than later.
564 */
565 itr = IAVF_ITR_ADAPTIVE_BULK;
566
567 adjust_by_size:
568 /* If packet counts are 256 or greater we can assume we have a gross
569 * overestimation of what the rate should be. Instead of trying to fine
570 * tune it just use the formula below to try and dial in an exact value
571 * give the current packet size of the frame.
572 */
573 avg_wire_size = bytes / packets;
574
575 /* The following is a crude approximation of:
576 * wmem_default / (size + overhead) = desired_pkts_per_int
577 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
578 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
579 *
580 * Assuming wmem_default is 212992 and overhead is 640 bytes per
581 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
582 * formula down to
583 *
584 * (170 * (size + 24)) / (size + 640) = ITR
585 *
586 * We first do some math on the packet size and then finally bitshift
587 * by 8 after rounding up. We also have to account for PCIe link speed
588 * difference as ITR scales based on this.
589 */
590 if (avg_wire_size <= 60) {
591 /* Start at 250k ints/sec */
592 avg_wire_size = 4096;
593 } else if (avg_wire_size <= 380) {
594 /* 250K ints/sec to 60K ints/sec */
595 avg_wire_size *= 40;
596 avg_wire_size += 1696;
597 } else if (avg_wire_size <= 1084) {
598 /* 60K ints/sec to 36K ints/sec */
599 avg_wire_size *= 15;
600 avg_wire_size += 11452;
601 } else if (avg_wire_size <= 1980) {
602 /* 36K ints/sec to 30K ints/sec */
603 avg_wire_size *= 5;
604 avg_wire_size += 22420;
605 } else {
606 /* plateau at a limit of 30K ints/sec */
607 avg_wire_size = 32256;
608 }
609
610 /* If we are in low latency mode halve our delay which doubles the
611 * rate to somewhere between 100K to 16K ints/sec
612 */
613 if (itr & IAVF_ITR_ADAPTIVE_LATENCY)
614 avg_wire_size /= 2;
615
616 /* Resultant value is 256 times larger than it needs to be. This
617 * gives us room to adjust the value as needed to either increase
618 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
619 *
620 * Use addition as we have already recorded the new latency flag
621 * for the ITR value.
622 */
623 itr += DIV_ROUND_UP(avg_wire_size,
624 iavf_itr_divisor(q_vector->adapter)) *
625 IAVF_ITR_ADAPTIVE_MIN_INC;
626
627 if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
628 itr &= IAVF_ITR_ADAPTIVE_LATENCY;
629 itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
630 }
631
632 clear_counts:
633 /* write back value */
634 rc->target_itr = itr;
635
636 /* next update should occur within next jiffy */
637 rc->next_update = next_update + 1;
638
639 rc->total_bytes = 0;
640 rc->total_packets = 0;
641 }
642
643 /**
644 * iavf_setup_tx_descriptors - Allocate the Tx descriptors
645 * @tx_ring: the tx ring to set up
646 *
647 * Return 0 on success, negative on error
648 **/
iavf_setup_tx_descriptors(struct iavf_ring * tx_ring)649 int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring)
650 {
651 struct device *dev = tx_ring->dev;
652 int bi_size;
653
654 if (!dev)
655 return -ENOMEM;
656
657 /* warn if we are about to overwrite the pointer */
658 WARN_ON(tx_ring->tx_bi);
659 bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
660 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
661 if (!tx_ring->tx_bi)
662 goto err;
663
664 /* round up to nearest 4K */
665 tx_ring->size = tx_ring->count * sizeof(struct iavf_tx_desc);
666 tx_ring->size = ALIGN(tx_ring->size, 4096);
667 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
668 &tx_ring->dma, GFP_KERNEL);
669 if (!tx_ring->desc) {
670 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
671 tx_ring->size);
672 goto err;
673 }
674
675 tx_ring->next_to_use = 0;
676 tx_ring->next_to_clean = 0;
677 tx_ring->tx_stats.prev_pkt_ctr = -1;
678 return 0;
679
680 err:
681 kfree(tx_ring->tx_bi);
682 tx_ring->tx_bi = NULL;
683 return -ENOMEM;
684 }
685
686 /**
687 * iavf_clean_rx_ring - Free Rx buffers
688 * @rx_ring: ring to be cleaned
689 **/
iavf_clean_rx_ring(struct iavf_ring * rx_ring)690 static void iavf_clean_rx_ring(struct iavf_ring *rx_ring)
691 {
692 unsigned long bi_size;
693 u16 i;
694
695 /* ring already cleared, nothing to do */
696 if (!rx_ring->rx_bi)
697 return;
698
699 if (rx_ring->skb) {
700 dev_kfree_skb(rx_ring->skb);
701 rx_ring->skb = NULL;
702 }
703
704 /* Free all the Rx ring sk_buffs */
705 for (i = 0; i < rx_ring->count; i++) {
706 struct iavf_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
707
708 if (!rx_bi->page)
709 continue;
710
711 /* Invalidate cache lines that may have been written to by
712 * device so that we avoid corrupting memory.
713 */
714 dma_sync_single_range_for_cpu(rx_ring->dev,
715 rx_bi->dma,
716 rx_bi->page_offset,
717 rx_ring->rx_buf_len,
718 DMA_FROM_DEVICE);
719
720 /* free resources associated with mapping */
721 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
722 iavf_rx_pg_size(rx_ring),
723 DMA_FROM_DEVICE,
724 IAVF_RX_DMA_ATTR);
725
726 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
727
728 rx_bi->page = NULL;
729 rx_bi->page_offset = 0;
730 }
731
732 bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
733 memset(rx_ring->rx_bi, 0, bi_size);
734
735 /* Zero out the descriptor ring */
736 memset(rx_ring->desc, 0, rx_ring->size);
737
738 rx_ring->next_to_alloc = 0;
739 rx_ring->next_to_clean = 0;
740 rx_ring->next_to_use = 0;
741 }
742
743 /**
744 * iavf_free_rx_resources - Free Rx resources
745 * @rx_ring: ring to clean the resources from
746 *
747 * Free all receive software resources
748 **/
iavf_free_rx_resources(struct iavf_ring * rx_ring)749 void iavf_free_rx_resources(struct iavf_ring *rx_ring)
750 {
751 iavf_clean_rx_ring(rx_ring);
752 kfree(rx_ring->rx_bi);
753 rx_ring->rx_bi = NULL;
754
755 if (rx_ring->desc) {
756 dma_free_coherent(rx_ring->dev, rx_ring->size,
757 rx_ring->desc, rx_ring->dma);
758 rx_ring->desc = NULL;
759 }
760 }
761
762 /**
763 * iavf_setup_rx_descriptors - Allocate Rx descriptors
764 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
765 *
766 * Returns 0 on success, negative on failure
767 **/
iavf_setup_rx_descriptors(struct iavf_ring * rx_ring)768 int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring)
769 {
770 struct device *dev = rx_ring->dev;
771 int bi_size;
772
773 /* warn if we are about to overwrite the pointer */
774 WARN_ON(rx_ring->rx_bi);
775 bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
776 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
777 if (!rx_ring->rx_bi)
778 goto err;
779
780 u64_stats_init(&rx_ring->syncp);
781
782 /* Round up to nearest 4K */
783 rx_ring->size = rx_ring->count * sizeof(union iavf_32byte_rx_desc);
784 rx_ring->size = ALIGN(rx_ring->size, 4096);
785 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
786 &rx_ring->dma, GFP_KERNEL);
787
788 if (!rx_ring->desc) {
789 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
790 rx_ring->size);
791 goto err;
792 }
793
794 rx_ring->next_to_alloc = 0;
795 rx_ring->next_to_clean = 0;
796 rx_ring->next_to_use = 0;
797
798 return 0;
799 err:
800 kfree(rx_ring->rx_bi);
801 rx_ring->rx_bi = NULL;
802 return -ENOMEM;
803 }
804
805 /**
806 * iavf_release_rx_desc - Store the new tail and head values
807 * @rx_ring: ring to bump
808 * @val: new head index
809 **/
iavf_release_rx_desc(struct iavf_ring * rx_ring,u32 val)810 static inline void iavf_release_rx_desc(struct iavf_ring *rx_ring, u32 val)
811 {
812 rx_ring->next_to_use = val;
813
814 /* update next to alloc since we have filled the ring */
815 rx_ring->next_to_alloc = val;
816
817 /* Force memory writes to complete before letting h/w
818 * know there are new descriptors to fetch. (Only
819 * applicable for weak-ordered memory model archs,
820 * such as IA-64).
821 */
822 wmb();
823 writel(val, rx_ring->tail);
824 }
825
826 /**
827 * iavf_rx_offset - Return expected offset into page to access data
828 * @rx_ring: Ring we are requesting offset of
829 *
830 * Returns the offset value for ring into the data buffer.
831 */
iavf_rx_offset(struct iavf_ring * rx_ring)832 static inline unsigned int iavf_rx_offset(struct iavf_ring *rx_ring)
833 {
834 return ring_uses_build_skb(rx_ring) ? IAVF_SKB_PAD : 0;
835 }
836
837 /**
838 * iavf_alloc_mapped_page - recycle or make a new page
839 * @rx_ring: ring to use
840 * @bi: rx_buffer struct to modify
841 *
842 * Returns true if the page was successfully allocated or
843 * reused.
844 **/
iavf_alloc_mapped_page(struct iavf_ring * rx_ring,struct iavf_rx_buffer * bi)845 static bool iavf_alloc_mapped_page(struct iavf_ring *rx_ring,
846 struct iavf_rx_buffer *bi)
847 {
848 struct page *page = bi->page;
849 dma_addr_t dma;
850
851 /* since we are recycling buffers we should seldom need to alloc */
852 if (likely(page)) {
853 rx_ring->rx_stats.page_reuse_count++;
854 return true;
855 }
856
857 /* alloc new page for storage */
858 page = dev_alloc_pages(iavf_rx_pg_order(rx_ring));
859 if (unlikely(!page)) {
860 rx_ring->rx_stats.alloc_page_failed++;
861 return false;
862 }
863
864 /* map page for use */
865 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
866 iavf_rx_pg_size(rx_ring),
867 DMA_FROM_DEVICE,
868 IAVF_RX_DMA_ATTR);
869
870 /* if mapping failed free memory back to system since
871 * there isn't much point in holding memory we can't use
872 */
873 if (dma_mapping_error(rx_ring->dev, dma)) {
874 __free_pages(page, iavf_rx_pg_order(rx_ring));
875 rx_ring->rx_stats.alloc_page_failed++;
876 return false;
877 }
878
879 bi->dma = dma;
880 bi->page = page;
881 bi->page_offset = iavf_rx_offset(rx_ring);
882
883 /* initialize pagecnt_bias to 1 representing we fully own page */
884 bi->pagecnt_bias = 1;
885
886 return true;
887 }
888
889 /**
890 * iavf_receive_skb - Send a completed packet up the stack
891 * @rx_ring: rx ring in play
892 * @skb: packet to send up
893 * @vlan_tag: vlan tag for packet
894 **/
iavf_receive_skb(struct iavf_ring * rx_ring,struct sk_buff * skb,u16 vlan_tag)895 static void iavf_receive_skb(struct iavf_ring *rx_ring,
896 struct sk_buff *skb, u16 vlan_tag)
897 {
898 struct iavf_q_vector *q_vector = rx_ring->q_vector;
899
900 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
901 (vlan_tag & VLAN_VID_MASK))
902 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
903 else if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_STAG_RX) &&
904 vlan_tag & VLAN_VID_MASK)
905 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD), vlan_tag);
906
907 napi_gro_receive(&q_vector->napi, skb);
908 }
909
910 /**
911 * iavf_alloc_rx_buffers - Replace used receive buffers
912 * @rx_ring: ring to place buffers on
913 * @cleaned_count: number of buffers to replace
914 *
915 * Returns false if all allocations were successful, true if any fail
916 **/
iavf_alloc_rx_buffers(struct iavf_ring * rx_ring,u16 cleaned_count)917 bool iavf_alloc_rx_buffers(struct iavf_ring *rx_ring, u16 cleaned_count)
918 {
919 u16 ntu = rx_ring->next_to_use;
920 union iavf_rx_desc *rx_desc;
921 struct iavf_rx_buffer *bi;
922
923 /* do nothing if no valid netdev defined */
924 if (!rx_ring->netdev || !cleaned_count)
925 return false;
926
927 rx_desc = IAVF_RX_DESC(rx_ring, ntu);
928 bi = &rx_ring->rx_bi[ntu];
929
930 do {
931 if (!iavf_alloc_mapped_page(rx_ring, bi))
932 goto no_buffers;
933
934 /* sync the buffer for use by the device */
935 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
936 bi->page_offset,
937 rx_ring->rx_buf_len,
938 DMA_FROM_DEVICE);
939
940 /* Refresh the desc even if buffer_addrs didn't change
941 * because each write-back erases this info.
942 */
943 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
944
945 rx_desc++;
946 bi++;
947 ntu++;
948 if (unlikely(ntu == rx_ring->count)) {
949 rx_desc = IAVF_RX_DESC(rx_ring, 0);
950 bi = rx_ring->rx_bi;
951 ntu = 0;
952 }
953
954 /* clear the status bits for the next_to_use descriptor */
955 rx_desc->wb.qword1.status_error_len = 0;
956
957 cleaned_count--;
958 } while (cleaned_count);
959
960 if (rx_ring->next_to_use != ntu)
961 iavf_release_rx_desc(rx_ring, ntu);
962
963 return false;
964
965 no_buffers:
966 if (rx_ring->next_to_use != ntu)
967 iavf_release_rx_desc(rx_ring, ntu);
968
969 /* make sure to come back via polling to try again after
970 * allocation failure
971 */
972 return true;
973 }
974
975 /**
976 * iavf_rx_checksum - Indicate in skb if hw indicated a good cksum
977 * @vsi: the VSI we care about
978 * @skb: skb currently being received and modified
979 * @rx_desc: the receive descriptor
980 **/
iavf_rx_checksum(struct iavf_vsi * vsi,struct sk_buff * skb,union iavf_rx_desc * rx_desc)981 static inline void iavf_rx_checksum(struct iavf_vsi *vsi,
982 struct sk_buff *skb,
983 union iavf_rx_desc *rx_desc)
984 {
985 struct iavf_rx_ptype_decoded decoded;
986 u32 rx_error, rx_status;
987 bool ipv4, ipv6;
988 u8 ptype;
989 u64 qword;
990
991 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
992 ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT;
993 rx_error = (qword & IAVF_RXD_QW1_ERROR_MASK) >>
994 IAVF_RXD_QW1_ERROR_SHIFT;
995 rx_status = (qword & IAVF_RXD_QW1_STATUS_MASK) >>
996 IAVF_RXD_QW1_STATUS_SHIFT;
997 decoded = decode_rx_desc_ptype(ptype);
998
999 skb->ip_summed = CHECKSUM_NONE;
1000
1001 skb_checksum_none_assert(skb);
1002
1003 /* Rx csum enabled and ip headers found? */
1004 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1005 return;
1006
1007 /* did the hardware decode the packet and checksum? */
1008 if (!(rx_status & BIT(IAVF_RX_DESC_STATUS_L3L4P_SHIFT)))
1009 return;
1010
1011 /* both known and outer_ip must be set for the below code to work */
1012 if (!(decoded.known && decoded.outer_ip))
1013 return;
1014
1015 ipv4 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
1016 (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV4);
1017 ipv6 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
1018 (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV6);
1019
1020 if (ipv4 &&
1021 (rx_error & (BIT(IAVF_RX_DESC_ERROR_IPE_SHIFT) |
1022 BIT(IAVF_RX_DESC_ERROR_EIPE_SHIFT))))
1023 goto checksum_fail;
1024
1025 /* likely incorrect csum if alternate IP extension headers found */
1026 if (ipv6 &&
1027 rx_status & BIT(IAVF_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1028 /* don't increment checksum err here, non-fatal err */
1029 return;
1030
1031 /* there was some L4 error, count error and punt packet to the stack */
1032 if (rx_error & BIT(IAVF_RX_DESC_ERROR_L4E_SHIFT))
1033 goto checksum_fail;
1034
1035 /* handle packets that were not able to be checksummed due
1036 * to arrival speed, in this case the stack can compute
1037 * the csum.
1038 */
1039 if (rx_error & BIT(IAVF_RX_DESC_ERROR_PPRS_SHIFT))
1040 return;
1041
1042 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1043 switch (decoded.inner_prot) {
1044 case IAVF_RX_PTYPE_INNER_PROT_TCP:
1045 case IAVF_RX_PTYPE_INNER_PROT_UDP:
1046 case IAVF_RX_PTYPE_INNER_PROT_SCTP:
1047 skb->ip_summed = CHECKSUM_UNNECESSARY;
1048 fallthrough;
1049 default:
1050 break;
1051 }
1052
1053 return;
1054
1055 checksum_fail:
1056 vsi->back->hw_csum_rx_error++;
1057 }
1058
1059 /**
1060 * iavf_ptype_to_htype - get a hash type
1061 * @ptype: the ptype value from the descriptor
1062 *
1063 * Returns a hash type to be used by skb_set_hash
1064 **/
iavf_ptype_to_htype(u8 ptype)1065 static inline int iavf_ptype_to_htype(u8 ptype)
1066 {
1067 struct iavf_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1068
1069 if (!decoded.known)
1070 return PKT_HASH_TYPE_NONE;
1071
1072 if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1073 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1074 return PKT_HASH_TYPE_L4;
1075 else if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1076 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1077 return PKT_HASH_TYPE_L3;
1078 else
1079 return PKT_HASH_TYPE_L2;
1080 }
1081
1082 /**
1083 * iavf_rx_hash - set the hash value in the skb
1084 * @ring: descriptor ring
1085 * @rx_desc: specific descriptor
1086 * @skb: skb currently being received and modified
1087 * @rx_ptype: Rx packet type
1088 **/
iavf_rx_hash(struct iavf_ring * ring,union iavf_rx_desc * rx_desc,struct sk_buff * skb,u8 rx_ptype)1089 static inline void iavf_rx_hash(struct iavf_ring *ring,
1090 union iavf_rx_desc *rx_desc,
1091 struct sk_buff *skb,
1092 u8 rx_ptype)
1093 {
1094 u32 hash;
1095 const __le64 rss_mask =
1096 cpu_to_le64((u64)IAVF_RX_DESC_FLTSTAT_RSS_HASH <<
1097 IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT);
1098
1099 if (!(ring->netdev->features & NETIF_F_RXHASH))
1100 return;
1101
1102 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1103 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1104 skb_set_hash(skb, hash, iavf_ptype_to_htype(rx_ptype));
1105 }
1106 }
1107
1108 /**
1109 * iavf_process_skb_fields - Populate skb header fields from Rx descriptor
1110 * @rx_ring: rx descriptor ring packet is being transacted on
1111 * @rx_desc: pointer to the EOP Rx descriptor
1112 * @skb: pointer to current skb being populated
1113 * @rx_ptype: the packet type decoded by hardware
1114 *
1115 * This function checks the ring, descriptor, and packet information in
1116 * order to populate the hash, checksum, VLAN, protocol, and
1117 * other fields within the skb.
1118 **/
1119 static inline
iavf_process_skb_fields(struct iavf_ring * rx_ring,union iavf_rx_desc * rx_desc,struct sk_buff * skb,u8 rx_ptype)1120 void iavf_process_skb_fields(struct iavf_ring *rx_ring,
1121 union iavf_rx_desc *rx_desc, struct sk_buff *skb,
1122 u8 rx_ptype)
1123 {
1124 iavf_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1125
1126 iavf_rx_checksum(rx_ring->vsi, skb, rx_desc);
1127
1128 skb_record_rx_queue(skb, rx_ring->queue_index);
1129
1130 /* modifies the skb - consumes the enet header */
1131 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1132 }
1133
1134 /**
1135 * iavf_cleanup_headers - Correct empty headers
1136 * @rx_ring: rx descriptor ring packet is being transacted on
1137 * @skb: pointer to current skb being fixed
1138 *
1139 * Also address the case where we are pulling data in on pages only
1140 * and as such no data is present in the skb header.
1141 *
1142 * In addition if skb is not at least 60 bytes we need to pad it so that
1143 * it is large enough to qualify as a valid Ethernet frame.
1144 *
1145 * Returns true if an error was encountered and skb was freed.
1146 **/
iavf_cleanup_headers(struct iavf_ring * rx_ring,struct sk_buff * skb)1147 static bool iavf_cleanup_headers(struct iavf_ring *rx_ring, struct sk_buff *skb)
1148 {
1149 /* if eth_skb_pad returns an error the skb was freed */
1150 if (eth_skb_pad(skb))
1151 return true;
1152
1153 return false;
1154 }
1155
1156 /**
1157 * iavf_reuse_rx_page - page flip buffer and store it back on the ring
1158 * @rx_ring: rx descriptor ring to store buffers on
1159 * @old_buff: donor buffer to have page reused
1160 *
1161 * Synchronizes page for reuse by the adapter
1162 **/
iavf_reuse_rx_page(struct iavf_ring * rx_ring,struct iavf_rx_buffer * old_buff)1163 static void iavf_reuse_rx_page(struct iavf_ring *rx_ring,
1164 struct iavf_rx_buffer *old_buff)
1165 {
1166 struct iavf_rx_buffer *new_buff;
1167 u16 nta = rx_ring->next_to_alloc;
1168
1169 new_buff = &rx_ring->rx_bi[nta];
1170
1171 /* update, and store next to alloc */
1172 nta++;
1173 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1174
1175 /* transfer page from old buffer to new buffer */
1176 new_buff->dma = old_buff->dma;
1177 new_buff->page = old_buff->page;
1178 new_buff->page_offset = old_buff->page_offset;
1179 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1180 }
1181
1182 /**
1183 * iavf_can_reuse_rx_page - Determine if this page can be reused by
1184 * the adapter for another receive
1185 *
1186 * @rx_buffer: buffer containing the page
1187 *
1188 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1189 * an unused region in the page.
1190 *
1191 * For small pages, @truesize will be a constant value, half the size
1192 * of the memory at page. We'll attempt to alternate between high and
1193 * low halves of the page, with one half ready for use by the hardware
1194 * and the other half being consumed by the stack. We use the page
1195 * ref count to determine whether the stack has finished consuming the
1196 * portion of this page that was passed up with a previous packet. If
1197 * the page ref count is >1, we'll assume the "other" half page is
1198 * still busy, and this page cannot be reused.
1199 *
1200 * For larger pages, @truesize will be the actual space used by the
1201 * received packet (adjusted upward to an even multiple of the cache
1202 * line size). This will advance through the page by the amount
1203 * actually consumed by the received packets while there is still
1204 * space for a buffer. Each region of larger pages will be used at
1205 * most once, after which the page will not be reused.
1206 *
1207 * In either case, if the page is reusable its refcount is increased.
1208 **/
iavf_can_reuse_rx_page(struct iavf_rx_buffer * rx_buffer)1209 static bool iavf_can_reuse_rx_page(struct iavf_rx_buffer *rx_buffer)
1210 {
1211 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1212 struct page *page = rx_buffer->page;
1213
1214 /* Is any reuse possible? */
1215 if (!dev_page_is_reusable(page))
1216 return false;
1217
1218 #if (PAGE_SIZE < 8192)
1219 /* if we are only owner of page we can reuse it */
1220 if (unlikely((page_count(page) - pagecnt_bias) > 1))
1221 return false;
1222 #else
1223 #define IAVF_LAST_OFFSET \
1224 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IAVF_RXBUFFER_2048)
1225 if (rx_buffer->page_offset > IAVF_LAST_OFFSET)
1226 return false;
1227 #endif
1228
1229 /* If we have drained the page fragment pool we need to update
1230 * the pagecnt_bias and page count so that we fully restock the
1231 * number of references the driver holds.
1232 */
1233 if (unlikely(!pagecnt_bias)) {
1234 page_ref_add(page, USHRT_MAX);
1235 rx_buffer->pagecnt_bias = USHRT_MAX;
1236 }
1237
1238 return true;
1239 }
1240
1241 /**
1242 * iavf_add_rx_frag - Add contents of Rx buffer to sk_buff
1243 * @rx_ring: rx descriptor ring to transact packets on
1244 * @rx_buffer: buffer containing page to add
1245 * @skb: sk_buff to place the data into
1246 * @size: packet length from rx_desc
1247 *
1248 * This function will add the data contained in rx_buffer->page to the skb.
1249 * It will just attach the page as a frag to the skb.
1250 *
1251 * The function will then update the page offset.
1252 **/
iavf_add_rx_frag(struct iavf_ring * rx_ring,struct iavf_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1253 static void iavf_add_rx_frag(struct iavf_ring *rx_ring,
1254 struct iavf_rx_buffer *rx_buffer,
1255 struct sk_buff *skb,
1256 unsigned int size)
1257 {
1258 #if (PAGE_SIZE < 8192)
1259 unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1260 #else
1261 unsigned int truesize = SKB_DATA_ALIGN(size + iavf_rx_offset(rx_ring));
1262 #endif
1263
1264 if (!size)
1265 return;
1266
1267 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1268 rx_buffer->page_offset, size, truesize);
1269
1270 /* page is being used so we must update the page offset */
1271 #if (PAGE_SIZE < 8192)
1272 rx_buffer->page_offset ^= truesize;
1273 #else
1274 rx_buffer->page_offset += truesize;
1275 #endif
1276 }
1277
1278 /**
1279 * iavf_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1280 * @rx_ring: rx descriptor ring to transact packets on
1281 * @size: size of buffer to add to skb
1282 *
1283 * This function will pull an Rx buffer from the ring and synchronize it
1284 * for use by the CPU.
1285 */
iavf_get_rx_buffer(struct iavf_ring * rx_ring,const unsigned int size)1286 static struct iavf_rx_buffer *iavf_get_rx_buffer(struct iavf_ring *rx_ring,
1287 const unsigned int size)
1288 {
1289 struct iavf_rx_buffer *rx_buffer;
1290
1291 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1292 prefetchw(rx_buffer->page);
1293 if (!size)
1294 return rx_buffer;
1295
1296 /* we are reusing so sync this buffer for CPU use */
1297 dma_sync_single_range_for_cpu(rx_ring->dev,
1298 rx_buffer->dma,
1299 rx_buffer->page_offset,
1300 size,
1301 DMA_FROM_DEVICE);
1302
1303 /* We have pulled a buffer for use, so decrement pagecnt_bias */
1304 rx_buffer->pagecnt_bias--;
1305
1306 return rx_buffer;
1307 }
1308
1309 /**
1310 * iavf_construct_skb - Allocate skb and populate it
1311 * @rx_ring: rx descriptor ring to transact packets on
1312 * @rx_buffer: rx buffer to pull data from
1313 * @size: size of buffer to add to skb
1314 *
1315 * This function allocates an skb. It then populates it with the page
1316 * data from the current receive descriptor, taking care to set up the
1317 * skb correctly.
1318 */
iavf_construct_skb(struct iavf_ring * rx_ring,struct iavf_rx_buffer * rx_buffer,unsigned int size)1319 static struct sk_buff *iavf_construct_skb(struct iavf_ring *rx_ring,
1320 struct iavf_rx_buffer *rx_buffer,
1321 unsigned int size)
1322 {
1323 void *va;
1324 #if (PAGE_SIZE < 8192)
1325 unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1326 #else
1327 unsigned int truesize = SKB_DATA_ALIGN(size);
1328 #endif
1329 unsigned int headlen;
1330 struct sk_buff *skb;
1331
1332 if (!rx_buffer)
1333 return NULL;
1334 /* prefetch first cache line of first page */
1335 va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1336 net_prefetch(va);
1337
1338 /* allocate a skb to store the frags */
1339 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1340 IAVF_RX_HDR_SIZE,
1341 GFP_ATOMIC | __GFP_NOWARN);
1342 if (unlikely(!skb))
1343 return NULL;
1344
1345 /* Determine available headroom for copy */
1346 headlen = size;
1347 if (headlen > IAVF_RX_HDR_SIZE)
1348 headlen = eth_get_headlen(skb->dev, va, IAVF_RX_HDR_SIZE);
1349
1350 /* align pull length to size of long to optimize memcpy performance */
1351 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1352
1353 /* update all of the pointers */
1354 size -= headlen;
1355 if (size) {
1356 skb_add_rx_frag(skb, 0, rx_buffer->page,
1357 rx_buffer->page_offset + headlen,
1358 size, truesize);
1359
1360 /* buffer is used by skb, update page_offset */
1361 #if (PAGE_SIZE < 8192)
1362 rx_buffer->page_offset ^= truesize;
1363 #else
1364 rx_buffer->page_offset += truesize;
1365 #endif
1366 } else {
1367 /* buffer is unused, reset bias back to rx_buffer */
1368 rx_buffer->pagecnt_bias++;
1369 }
1370
1371 return skb;
1372 }
1373
1374 /**
1375 * iavf_build_skb - Build skb around an existing buffer
1376 * @rx_ring: Rx descriptor ring to transact packets on
1377 * @rx_buffer: Rx buffer to pull data from
1378 * @size: size of buffer to add to skb
1379 *
1380 * This function builds an skb around an existing Rx buffer, taking care
1381 * to set up the skb correctly and avoid any memcpy overhead.
1382 */
iavf_build_skb(struct iavf_ring * rx_ring,struct iavf_rx_buffer * rx_buffer,unsigned int size)1383 static struct sk_buff *iavf_build_skb(struct iavf_ring *rx_ring,
1384 struct iavf_rx_buffer *rx_buffer,
1385 unsigned int size)
1386 {
1387 void *va;
1388 #if (PAGE_SIZE < 8192)
1389 unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1390 #else
1391 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1392 SKB_DATA_ALIGN(IAVF_SKB_PAD + size);
1393 #endif
1394 struct sk_buff *skb;
1395
1396 if (!rx_buffer || !size)
1397 return NULL;
1398 /* prefetch first cache line of first page */
1399 va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1400 net_prefetch(va);
1401
1402 /* build an skb around the page buffer */
1403 skb = napi_build_skb(va - IAVF_SKB_PAD, truesize);
1404 if (unlikely(!skb))
1405 return NULL;
1406
1407 /* update pointers within the skb to store the data */
1408 skb_reserve(skb, IAVF_SKB_PAD);
1409 __skb_put(skb, size);
1410
1411 /* buffer is used by skb, update page_offset */
1412 #if (PAGE_SIZE < 8192)
1413 rx_buffer->page_offset ^= truesize;
1414 #else
1415 rx_buffer->page_offset += truesize;
1416 #endif
1417
1418 return skb;
1419 }
1420
1421 /**
1422 * iavf_put_rx_buffer - Clean up used buffer and either recycle or free
1423 * @rx_ring: rx descriptor ring to transact packets on
1424 * @rx_buffer: rx buffer to pull data from
1425 *
1426 * This function will clean up the contents of the rx_buffer. It will
1427 * either recycle the buffer or unmap it and free the associated resources.
1428 */
iavf_put_rx_buffer(struct iavf_ring * rx_ring,struct iavf_rx_buffer * rx_buffer)1429 static void iavf_put_rx_buffer(struct iavf_ring *rx_ring,
1430 struct iavf_rx_buffer *rx_buffer)
1431 {
1432 if (!rx_buffer)
1433 return;
1434
1435 if (iavf_can_reuse_rx_page(rx_buffer)) {
1436 /* hand second half of page back to the ring */
1437 iavf_reuse_rx_page(rx_ring, rx_buffer);
1438 rx_ring->rx_stats.page_reuse_count++;
1439 } else {
1440 /* we are not reusing the buffer so unmap it */
1441 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1442 iavf_rx_pg_size(rx_ring),
1443 DMA_FROM_DEVICE, IAVF_RX_DMA_ATTR);
1444 __page_frag_cache_drain(rx_buffer->page,
1445 rx_buffer->pagecnt_bias);
1446 }
1447
1448 /* clear contents of buffer_info */
1449 rx_buffer->page = NULL;
1450 }
1451
1452 /**
1453 * iavf_is_non_eop - process handling of non-EOP buffers
1454 * @rx_ring: Rx ring being processed
1455 * @rx_desc: Rx descriptor for current buffer
1456 * @skb: Current socket buffer containing buffer in progress
1457 *
1458 * This function updates next to clean. If the buffer is an EOP buffer
1459 * this function exits returning false, otherwise it will place the
1460 * sk_buff in the next buffer to be chained and return true indicating
1461 * that this is in fact a non-EOP buffer.
1462 **/
iavf_is_non_eop(struct iavf_ring * rx_ring,union iavf_rx_desc * rx_desc,struct sk_buff * skb)1463 static bool iavf_is_non_eop(struct iavf_ring *rx_ring,
1464 union iavf_rx_desc *rx_desc,
1465 struct sk_buff *skb)
1466 {
1467 u32 ntc = rx_ring->next_to_clean + 1;
1468
1469 /* fetch, update, and store next to clean */
1470 ntc = (ntc < rx_ring->count) ? ntc : 0;
1471 rx_ring->next_to_clean = ntc;
1472
1473 prefetch(IAVF_RX_DESC(rx_ring, ntc));
1474
1475 /* if we are the last buffer then there is nothing else to do */
1476 #define IAVF_RXD_EOF BIT(IAVF_RX_DESC_STATUS_EOF_SHIFT)
1477 if (likely(iavf_test_staterr(rx_desc, IAVF_RXD_EOF)))
1478 return false;
1479
1480 rx_ring->rx_stats.non_eop_descs++;
1481
1482 return true;
1483 }
1484
1485 /**
1486 * iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1487 * @rx_ring: rx descriptor ring to transact packets on
1488 * @budget: Total limit on number of packets to process
1489 *
1490 * This function provides a "bounce buffer" approach to Rx interrupt
1491 * processing. The advantage to this is that on systems that have
1492 * expensive overhead for IOMMU access this provides a means of avoiding
1493 * it by maintaining the mapping of the page to the system.
1494 *
1495 * Returns amount of work completed
1496 **/
iavf_clean_rx_irq(struct iavf_ring * rx_ring,int budget)1497 static int iavf_clean_rx_irq(struct iavf_ring *rx_ring, int budget)
1498 {
1499 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1500 struct sk_buff *skb = rx_ring->skb;
1501 u16 cleaned_count = IAVF_DESC_UNUSED(rx_ring);
1502 bool failure = false;
1503
1504 while (likely(total_rx_packets < (unsigned int)budget)) {
1505 struct iavf_rx_buffer *rx_buffer;
1506 union iavf_rx_desc *rx_desc;
1507 unsigned int size;
1508 u16 vlan_tag = 0;
1509 u8 rx_ptype;
1510 u64 qword;
1511
1512 /* return some buffers to hardware, one at a time is too slow */
1513 if (cleaned_count >= IAVF_RX_BUFFER_WRITE) {
1514 failure = failure ||
1515 iavf_alloc_rx_buffers(rx_ring, cleaned_count);
1516 cleaned_count = 0;
1517 }
1518
1519 rx_desc = IAVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1520
1521 /* status_error_len will always be zero for unused descriptors
1522 * because it's cleared in cleanup, and overlaps with hdr_addr
1523 * which is always zero because packet split isn't used, if the
1524 * hardware wrote DD then the length will be non-zero
1525 */
1526 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1527
1528 /* This memory barrier is needed to keep us from reading
1529 * any other fields out of the rx_desc until we have
1530 * verified the descriptor has been written back.
1531 */
1532 dma_rmb();
1533 #define IAVF_RXD_DD BIT(IAVF_RX_DESC_STATUS_DD_SHIFT)
1534 if (!iavf_test_staterr(rx_desc, IAVF_RXD_DD))
1535 break;
1536
1537 size = (qword & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1538 IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
1539
1540 iavf_trace(clean_rx_irq, rx_ring, rx_desc, skb);
1541 rx_buffer = iavf_get_rx_buffer(rx_ring, size);
1542
1543 /* retrieve a buffer from the ring */
1544 if (skb)
1545 iavf_add_rx_frag(rx_ring, rx_buffer, skb, size);
1546 else if (ring_uses_build_skb(rx_ring))
1547 skb = iavf_build_skb(rx_ring, rx_buffer, size);
1548 else
1549 skb = iavf_construct_skb(rx_ring, rx_buffer, size);
1550
1551 /* exit if we failed to retrieve a buffer */
1552 if (!skb) {
1553 rx_ring->rx_stats.alloc_buff_failed++;
1554 if (rx_buffer && size)
1555 rx_buffer->pagecnt_bias++;
1556 break;
1557 }
1558
1559 iavf_put_rx_buffer(rx_ring, rx_buffer);
1560 cleaned_count++;
1561
1562 if (iavf_is_non_eop(rx_ring, rx_desc, skb))
1563 continue;
1564
1565 /* ERR_MASK will only have valid bits if EOP set, and
1566 * what we are doing here is actually checking
1567 * IAVF_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1568 * the error field
1569 */
1570 if (unlikely(iavf_test_staterr(rx_desc, BIT(IAVF_RXD_QW1_ERROR_SHIFT)))) {
1571 dev_kfree_skb_any(skb);
1572 skb = NULL;
1573 continue;
1574 }
1575
1576 if (iavf_cleanup_headers(rx_ring, skb)) {
1577 skb = NULL;
1578 continue;
1579 }
1580
1581 /* probably a little skewed due to removing CRC */
1582 total_rx_bytes += skb->len;
1583
1584 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1585 rx_ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >>
1586 IAVF_RXD_QW1_PTYPE_SHIFT;
1587
1588 /* populate checksum, VLAN, and protocol */
1589 iavf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1590
1591 if (qword & BIT(IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT) &&
1592 rx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1)
1593 vlan_tag = le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1);
1594 if (rx_desc->wb.qword2.ext_status &
1595 cpu_to_le16(BIT(IAVF_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) &&
1596 rx_ring->flags & IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2)
1597 vlan_tag = le16_to_cpu(rx_desc->wb.qword2.l2tag2_2);
1598
1599 iavf_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
1600 iavf_receive_skb(rx_ring, skb, vlan_tag);
1601 skb = NULL;
1602
1603 /* update budget accounting */
1604 total_rx_packets++;
1605 }
1606
1607 rx_ring->skb = skb;
1608
1609 u64_stats_update_begin(&rx_ring->syncp);
1610 rx_ring->stats.packets += total_rx_packets;
1611 rx_ring->stats.bytes += total_rx_bytes;
1612 u64_stats_update_end(&rx_ring->syncp);
1613 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1614 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1615
1616 /* guarantee a trip back through this routine if there was a failure */
1617 return failure ? budget : (int)total_rx_packets;
1618 }
1619
iavf_buildreg_itr(const int type,u16 itr)1620 static inline u32 iavf_buildreg_itr(const int type, u16 itr)
1621 {
1622 u32 val;
1623
1624 /* We don't bother with setting the CLEARPBA bit as the data sheet
1625 * points out doing so is "meaningless since it was already
1626 * auto-cleared". The auto-clearing happens when the interrupt is
1627 * asserted.
1628 *
1629 * Hardware errata 28 for also indicates that writing to a
1630 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
1631 * an event in the PBA anyway so we need to rely on the automask
1632 * to hold pending events for us until the interrupt is re-enabled
1633 *
1634 * The itr value is reported in microseconds, and the register
1635 * value is recorded in 2 microsecond units. For this reason we
1636 * only need to shift by the interval shift - 1 instead of the
1637 * full value.
1638 */
1639 itr &= IAVF_ITR_MASK;
1640
1641 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1642 (type << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1643 (itr << (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1));
1644
1645 return val;
1646 }
1647
1648 /* a small macro to shorten up some long lines */
1649 #define INTREG IAVF_VFINT_DYN_CTLN1
1650
1651 /* The act of updating the ITR will cause it to immediately trigger. In order
1652 * to prevent this from throwing off adaptive update statistics we defer the
1653 * update so that it can only happen so often. So after either Tx or Rx are
1654 * updated we make the adaptive scheme wait until either the ITR completely
1655 * expires via the next_update expiration or we have been through at least
1656 * 3 interrupts.
1657 */
1658 #define ITR_COUNTDOWN_START 3
1659
1660 /**
1661 * iavf_update_enable_itr - Update itr and re-enable MSIX interrupt
1662 * @vsi: the VSI we care about
1663 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1664 *
1665 **/
iavf_update_enable_itr(struct iavf_vsi * vsi,struct iavf_q_vector * q_vector)1666 static inline void iavf_update_enable_itr(struct iavf_vsi *vsi,
1667 struct iavf_q_vector *q_vector)
1668 {
1669 struct iavf_hw *hw = &vsi->back->hw;
1670 u32 intval;
1671
1672 /* These will do nothing if dynamic updates are not enabled */
1673 iavf_update_itr(q_vector, &q_vector->tx);
1674 iavf_update_itr(q_vector, &q_vector->rx);
1675
1676 /* This block of logic allows us to get away with only updating
1677 * one ITR value with each interrupt. The idea is to perform a
1678 * pseudo-lazy update with the following criteria.
1679 *
1680 * 1. Rx is given higher priority than Tx if both are in same state
1681 * 2. If we must reduce an ITR that is given highest priority.
1682 * 3. We then give priority to increasing ITR based on amount.
1683 */
1684 if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
1685 /* Rx ITR needs to be reduced, this is highest priority */
1686 intval = iavf_buildreg_itr(IAVF_RX_ITR,
1687 q_vector->rx.target_itr);
1688 q_vector->rx.current_itr = q_vector->rx.target_itr;
1689 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1690 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
1691 ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
1692 (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
1693 /* Tx ITR needs to be reduced, this is second priority
1694 * Tx ITR needs to be increased more than Rx, fourth priority
1695 */
1696 intval = iavf_buildreg_itr(IAVF_TX_ITR,
1697 q_vector->tx.target_itr);
1698 q_vector->tx.current_itr = q_vector->tx.target_itr;
1699 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1700 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
1701 /* Rx ITR needs to be increased, third priority */
1702 intval = iavf_buildreg_itr(IAVF_RX_ITR,
1703 q_vector->rx.target_itr);
1704 q_vector->rx.current_itr = q_vector->rx.target_itr;
1705 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1706 } else {
1707 /* No ITR update, lowest priority */
1708 intval = iavf_buildreg_itr(IAVF_ITR_NONE, 0);
1709 if (q_vector->itr_countdown)
1710 q_vector->itr_countdown--;
1711 }
1712
1713 if (!test_bit(__IAVF_VSI_DOWN, vsi->state))
1714 wr32(hw, INTREG(q_vector->reg_idx), intval);
1715 }
1716
1717 /**
1718 * iavf_napi_poll - NAPI polling Rx/Tx cleanup routine
1719 * @napi: napi struct with our devices info in it
1720 * @budget: amount of work driver is allowed to do this pass, in packets
1721 *
1722 * This function will clean all queues associated with a q_vector.
1723 *
1724 * Returns the amount of work done
1725 **/
iavf_napi_poll(struct napi_struct * napi,int budget)1726 int iavf_napi_poll(struct napi_struct *napi, int budget)
1727 {
1728 struct iavf_q_vector *q_vector =
1729 container_of(napi, struct iavf_q_vector, napi);
1730 struct iavf_vsi *vsi = q_vector->vsi;
1731 struct iavf_ring *ring;
1732 bool clean_complete = true;
1733 bool arm_wb = false;
1734 int budget_per_ring;
1735 int work_done = 0;
1736
1737 if (test_bit(__IAVF_VSI_DOWN, vsi->state)) {
1738 napi_complete(napi);
1739 return 0;
1740 }
1741
1742 /* Since the actual Tx work is minimal, we can give the Tx a larger
1743 * budget and be more aggressive about cleaning up the Tx descriptors.
1744 */
1745 iavf_for_each_ring(ring, q_vector->tx) {
1746 if (!iavf_clean_tx_irq(vsi, ring, budget)) {
1747 clean_complete = false;
1748 continue;
1749 }
1750 arm_wb |= ring->arm_wb;
1751 ring->arm_wb = false;
1752 }
1753
1754 /* Handle case where we are called by netpoll with a budget of 0 */
1755 if (budget <= 0)
1756 goto tx_only;
1757
1758 /* We attempt to distribute budget to each Rx queue fairly, but don't
1759 * allow the budget to go below 1 because that would exit polling early.
1760 */
1761 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1762
1763 iavf_for_each_ring(ring, q_vector->rx) {
1764 int cleaned = iavf_clean_rx_irq(ring, budget_per_ring);
1765
1766 work_done += cleaned;
1767 /* if we clean as many as budgeted, we must not be done */
1768 if (cleaned >= budget_per_ring)
1769 clean_complete = false;
1770 }
1771
1772 /* If work not completed, return budget and polling will return */
1773 if (!clean_complete) {
1774 int cpu_id = smp_processor_id();
1775
1776 /* It is possible that the interrupt affinity has changed but,
1777 * if the cpu is pegged at 100%, polling will never exit while
1778 * traffic continues and the interrupt will be stuck on this
1779 * cpu. We check to make sure affinity is correct before we
1780 * continue to poll, otherwise we must stop polling so the
1781 * interrupt can move to the correct cpu.
1782 */
1783 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
1784 /* Tell napi that we are done polling */
1785 napi_complete_done(napi, work_done);
1786
1787 /* Force an interrupt */
1788 iavf_force_wb(vsi, q_vector);
1789
1790 /* Return budget-1 so that polling stops */
1791 return budget - 1;
1792 }
1793 tx_only:
1794 if (arm_wb) {
1795 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1796 iavf_enable_wb_on_itr(vsi, q_vector);
1797 }
1798 return budget;
1799 }
1800
1801 if (vsi->back->flags & IAVF_TXR_FLAGS_WB_ON_ITR)
1802 q_vector->arm_wb_state = false;
1803
1804 /* Exit the polling mode, but don't re-enable interrupts if stack might
1805 * poll us due to busy-polling
1806 */
1807 if (likely(napi_complete_done(napi, work_done)))
1808 iavf_update_enable_itr(vsi, q_vector);
1809
1810 return min_t(int, work_done, budget - 1);
1811 }
1812
1813 /**
1814 * iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1815 * @skb: send buffer
1816 * @tx_ring: ring to send buffer on
1817 * @flags: the tx flags to be set
1818 *
1819 * Checks the skb and set up correspondingly several generic transmit flags
1820 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1821 *
1822 * Returns error code indicate the frame should be dropped upon error and the
1823 * otherwise returns 0 to indicate the flags has been set properly.
1824 **/
iavf_tx_prepare_vlan_flags(struct sk_buff * skb,struct iavf_ring * tx_ring,u32 * flags)1825 static void iavf_tx_prepare_vlan_flags(struct sk_buff *skb,
1826 struct iavf_ring *tx_ring, u32 *flags)
1827 {
1828 u32 tx_flags = 0;
1829
1830
1831 /* stack will only request hardware VLAN insertion offload for protocols
1832 * that the driver supports and has enabled
1833 */
1834 if (!skb_vlan_tag_present(skb))
1835 return;
1836
1837 tx_flags |= skb_vlan_tag_get(skb) << IAVF_TX_FLAGS_VLAN_SHIFT;
1838 if (tx_ring->flags & IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2) {
1839 tx_flags |= IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN;
1840 } else if (tx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1) {
1841 tx_flags |= IAVF_TX_FLAGS_HW_VLAN;
1842 } else {
1843 dev_dbg(tx_ring->dev, "Unsupported Tx VLAN tag location requested\n");
1844 return;
1845 }
1846
1847 *flags = tx_flags;
1848 }
1849
1850 /**
1851 * iavf_tso - set up the tso context descriptor
1852 * @first: pointer to first Tx buffer for xmit
1853 * @hdr_len: ptr to the size of the packet header
1854 * @cd_type_cmd_tso_mss: Quad Word 1
1855 *
1856 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1857 **/
iavf_tso(struct iavf_tx_buffer * first,u8 * hdr_len,u64 * cd_type_cmd_tso_mss)1858 static int iavf_tso(struct iavf_tx_buffer *first, u8 *hdr_len,
1859 u64 *cd_type_cmd_tso_mss)
1860 {
1861 struct sk_buff *skb = first->skb;
1862 u64 cd_cmd, cd_tso_len, cd_mss;
1863 union {
1864 struct iphdr *v4;
1865 struct ipv6hdr *v6;
1866 unsigned char *hdr;
1867 } ip;
1868 union {
1869 struct tcphdr *tcp;
1870 struct udphdr *udp;
1871 unsigned char *hdr;
1872 } l4;
1873 u32 paylen, l4_offset;
1874 u16 gso_segs, gso_size;
1875 int err;
1876
1877 if (skb->ip_summed != CHECKSUM_PARTIAL)
1878 return 0;
1879
1880 if (!skb_is_gso(skb))
1881 return 0;
1882
1883 err = skb_cow_head(skb, 0);
1884 if (err < 0)
1885 return err;
1886
1887 ip.hdr = skb_network_header(skb);
1888 l4.hdr = skb_transport_header(skb);
1889
1890 /* initialize outer IP header fields */
1891 if (ip.v4->version == 4) {
1892 ip.v4->tot_len = 0;
1893 ip.v4->check = 0;
1894 } else {
1895 ip.v6->payload_len = 0;
1896 }
1897
1898 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1899 SKB_GSO_GRE_CSUM |
1900 SKB_GSO_IPXIP4 |
1901 SKB_GSO_IPXIP6 |
1902 SKB_GSO_UDP_TUNNEL |
1903 SKB_GSO_UDP_TUNNEL_CSUM)) {
1904 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1905 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1906 l4.udp->len = 0;
1907
1908 /* determine offset of outer transport header */
1909 l4_offset = l4.hdr - skb->data;
1910
1911 /* remove payload length from outer checksum */
1912 paylen = skb->len - l4_offset;
1913 csum_replace_by_diff(&l4.udp->check,
1914 (__force __wsum)htonl(paylen));
1915 }
1916
1917 /* reset pointers to inner headers */
1918 ip.hdr = skb_inner_network_header(skb);
1919 l4.hdr = skb_inner_transport_header(skb);
1920
1921 /* initialize inner IP header fields */
1922 if (ip.v4->version == 4) {
1923 ip.v4->tot_len = 0;
1924 ip.v4->check = 0;
1925 } else {
1926 ip.v6->payload_len = 0;
1927 }
1928 }
1929
1930 /* determine offset of inner transport header */
1931 l4_offset = l4.hdr - skb->data;
1932 /* remove payload length from inner checksum */
1933 paylen = skb->len - l4_offset;
1934
1935 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1936 csum_replace_by_diff(&l4.udp->check,
1937 (__force __wsum)htonl(paylen));
1938 /* compute length of UDP segmentation header */
1939 *hdr_len = (u8)sizeof(l4.udp) + l4_offset;
1940 } else {
1941 csum_replace_by_diff(&l4.tcp->check,
1942 (__force __wsum)htonl(paylen));
1943 /* compute length of TCP segmentation header */
1944 *hdr_len = (u8)((l4.tcp->doff * 4) + l4_offset);
1945 }
1946
1947 /* pull values out of skb_shinfo */
1948 gso_size = skb_shinfo(skb)->gso_size;
1949 gso_segs = skb_shinfo(skb)->gso_segs;
1950
1951 /* update GSO size and bytecount with header size */
1952 first->gso_segs = gso_segs;
1953 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1954
1955 /* find the field values */
1956 cd_cmd = IAVF_TX_CTX_DESC_TSO;
1957 cd_tso_len = skb->len - *hdr_len;
1958 cd_mss = gso_size;
1959 *cd_type_cmd_tso_mss |= (cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
1960 (cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1961 (cd_mss << IAVF_TXD_CTX_QW1_MSS_SHIFT);
1962 return 1;
1963 }
1964
1965 /**
1966 * iavf_tx_enable_csum - Enable Tx checksum offloads
1967 * @skb: send buffer
1968 * @tx_flags: pointer to Tx flags currently set
1969 * @td_cmd: Tx descriptor command bits to set
1970 * @td_offset: Tx descriptor header offsets to set
1971 * @tx_ring: Tx descriptor ring
1972 * @cd_tunneling: ptr to context desc bits
1973 **/
iavf_tx_enable_csum(struct sk_buff * skb,u32 * tx_flags,u32 * td_cmd,u32 * td_offset,struct iavf_ring * tx_ring,u32 * cd_tunneling)1974 static int iavf_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1975 u32 *td_cmd, u32 *td_offset,
1976 struct iavf_ring *tx_ring,
1977 u32 *cd_tunneling)
1978 {
1979 union {
1980 struct iphdr *v4;
1981 struct ipv6hdr *v6;
1982 unsigned char *hdr;
1983 } ip;
1984 union {
1985 struct tcphdr *tcp;
1986 struct udphdr *udp;
1987 unsigned char *hdr;
1988 } l4;
1989 unsigned char *exthdr;
1990 u32 offset, cmd = 0;
1991 __be16 frag_off;
1992 u8 l4_proto = 0;
1993
1994 if (skb->ip_summed != CHECKSUM_PARTIAL)
1995 return 0;
1996
1997 ip.hdr = skb_network_header(skb);
1998 l4.hdr = skb_transport_header(skb);
1999
2000 /* compute outer L2 header size */
2001 offset = ((ip.hdr - skb->data) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
2002
2003 if (skb->encapsulation) {
2004 u32 tunnel = 0;
2005 /* define outer network header type */
2006 if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
2007 tunnel |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
2008 IAVF_TX_CTX_EXT_IP_IPV4 :
2009 IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2010
2011 l4_proto = ip.v4->protocol;
2012 } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
2013 tunnel |= IAVF_TX_CTX_EXT_IP_IPV6;
2014
2015 exthdr = ip.hdr + sizeof(*ip.v6);
2016 l4_proto = ip.v6->nexthdr;
2017 if (l4.hdr != exthdr)
2018 ipv6_skip_exthdr(skb, exthdr - skb->data,
2019 &l4_proto, &frag_off);
2020 }
2021
2022 /* define outer transport */
2023 switch (l4_proto) {
2024 case IPPROTO_UDP:
2025 tunnel |= IAVF_TXD_CTX_UDP_TUNNELING;
2026 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2027 break;
2028 case IPPROTO_GRE:
2029 tunnel |= IAVF_TXD_CTX_GRE_TUNNELING;
2030 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2031 break;
2032 case IPPROTO_IPIP:
2033 case IPPROTO_IPV6:
2034 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2035 l4.hdr = skb_inner_network_header(skb);
2036 break;
2037 default:
2038 if (*tx_flags & IAVF_TX_FLAGS_TSO)
2039 return -1;
2040
2041 skb_checksum_help(skb);
2042 return 0;
2043 }
2044
2045 /* compute outer L3 header size */
2046 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2047 IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2048
2049 /* switch IP header pointer from outer to inner header */
2050 ip.hdr = skb_inner_network_header(skb);
2051
2052 /* compute tunnel header size */
2053 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2054 IAVF_TXD_CTX_QW0_NATLEN_SHIFT;
2055
2056 /* indicate if we need to offload outer UDP header */
2057 if ((*tx_flags & IAVF_TX_FLAGS_TSO) &&
2058 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2059 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2060 tunnel |= IAVF_TXD_CTX_QW0_L4T_CS_MASK;
2061
2062 /* record tunnel offload values */
2063 *cd_tunneling |= tunnel;
2064
2065 /* switch L4 header pointer from outer to inner */
2066 l4.hdr = skb_inner_transport_header(skb);
2067 l4_proto = 0;
2068
2069 /* reset type as we transition from outer to inner headers */
2070 *tx_flags &= ~(IAVF_TX_FLAGS_IPV4 | IAVF_TX_FLAGS_IPV6);
2071 if (ip.v4->version == 4)
2072 *tx_flags |= IAVF_TX_FLAGS_IPV4;
2073 if (ip.v6->version == 6)
2074 *tx_flags |= IAVF_TX_FLAGS_IPV6;
2075 }
2076
2077 /* Enable IP checksum offloads */
2078 if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
2079 l4_proto = ip.v4->protocol;
2080 /* the stack computes the IP header already, the only time we
2081 * need the hardware to recompute it is in the case of TSO.
2082 */
2083 cmd |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
2084 IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM :
2085 IAVF_TX_DESC_CMD_IIPT_IPV4;
2086 } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
2087 cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
2088
2089 exthdr = ip.hdr + sizeof(*ip.v6);
2090 l4_proto = ip.v6->nexthdr;
2091 if (l4.hdr != exthdr)
2092 ipv6_skip_exthdr(skb, exthdr - skb->data,
2093 &l4_proto, &frag_off);
2094 }
2095
2096 /* compute inner L3 header size */
2097 offset |= ((l4.hdr - ip.hdr) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2098
2099 /* Enable L4 checksum offloads */
2100 switch (l4_proto) {
2101 case IPPROTO_TCP:
2102 /* enable checksum offloads */
2103 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2104 offset |= l4.tcp->doff << IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2105 break;
2106 case IPPROTO_SCTP:
2107 /* enable SCTP checksum offload */
2108 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
2109 offset |= (sizeof(struct sctphdr) >> 2) <<
2110 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2111 break;
2112 case IPPROTO_UDP:
2113 /* enable UDP checksum offload */
2114 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
2115 offset |= (sizeof(struct udphdr) >> 2) <<
2116 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2117 break;
2118 default:
2119 if (*tx_flags & IAVF_TX_FLAGS_TSO)
2120 return -1;
2121 skb_checksum_help(skb);
2122 return 0;
2123 }
2124
2125 *td_cmd |= cmd;
2126 *td_offset |= offset;
2127
2128 return 1;
2129 }
2130
2131 /**
2132 * iavf_create_tx_ctx - Build the Tx context descriptor
2133 * @tx_ring: ring to create the descriptor on
2134 * @cd_type_cmd_tso_mss: Quad Word 1
2135 * @cd_tunneling: Quad Word 0 - bits 0-31
2136 * @cd_l2tag2: Quad Word 0 - bits 32-63
2137 **/
iavf_create_tx_ctx(struct iavf_ring * tx_ring,const u64 cd_type_cmd_tso_mss,const u32 cd_tunneling,const u32 cd_l2tag2)2138 static void iavf_create_tx_ctx(struct iavf_ring *tx_ring,
2139 const u64 cd_type_cmd_tso_mss,
2140 const u32 cd_tunneling, const u32 cd_l2tag2)
2141 {
2142 struct iavf_tx_context_desc *context_desc;
2143 int i = tx_ring->next_to_use;
2144
2145 if ((cd_type_cmd_tso_mss == IAVF_TX_DESC_DTYPE_CONTEXT) &&
2146 !cd_tunneling && !cd_l2tag2)
2147 return;
2148
2149 /* grab the next descriptor */
2150 context_desc = IAVF_TX_CTXTDESC(tx_ring, i);
2151
2152 i++;
2153 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2154
2155 /* cpu_to_le32 and assign to struct fields */
2156 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2157 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2158 context_desc->rsvd = cpu_to_le16(0);
2159 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2160 }
2161
2162 /**
2163 * __iavf_chk_linearize - Check if there are more than 8 buffers per packet
2164 * @skb: send buffer
2165 *
2166 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2167 * and so we need to figure out the cases where we need to linearize the skb.
2168 *
2169 * For TSO we need to count the TSO header and segment payload separately.
2170 * As such we need to check cases where we have 7 fragments or more as we
2171 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2172 * the segment payload in the first descriptor, and another 7 for the
2173 * fragments.
2174 **/
__iavf_chk_linearize(struct sk_buff * skb)2175 bool __iavf_chk_linearize(struct sk_buff *skb)
2176 {
2177 const skb_frag_t *frag, *stale;
2178 int nr_frags, sum;
2179
2180 /* no need to check if number of frags is less than 7 */
2181 nr_frags = skb_shinfo(skb)->nr_frags;
2182 if (nr_frags < (IAVF_MAX_BUFFER_TXD - 1))
2183 return false;
2184
2185 /* We need to walk through the list and validate that each group
2186 * of 6 fragments totals at least gso_size.
2187 */
2188 nr_frags -= IAVF_MAX_BUFFER_TXD - 2;
2189 frag = &skb_shinfo(skb)->frags[0];
2190
2191 /* Initialize size to the negative value of gso_size minus 1. We
2192 * use this as the worst case scenerio in which the frag ahead
2193 * of us only provides one byte which is why we are limited to 6
2194 * descriptors for a single transmit as the header and previous
2195 * fragment are already consuming 2 descriptors.
2196 */
2197 sum = 1 - skb_shinfo(skb)->gso_size;
2198
2199 /* Add size of frags 0 through 4 to create our initial sum */
2200 sum += skb_frag_size(frag++);
2201 sum += skb_frag_size(frag++);
2202 sum += skb_frag_size(frag++);
2203 sum += skb_frag_size(frag++);
2204 sum += skb_frag_size(frag++);
2205
2206 /* Walk through fragments adding latest fragment, testing it, and
2207 * then removing stale fragments from the sum.
2208 */
2209 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2210 int stale_size = skb_frag_size(stale);
2211
2212 sum += skb_frag_size(frag++);
2213
2214 /* The stale fragment may present us with a smaller
2215 * descriptor than the actual fragment size. To account
2216 * for that we need to remove all the data on the front and
2217 * figure out what the remainder would be in the last
2218 * descriptor associated with the fragment.
2219 */
2220 if (stale_size > IAVF_MAX_DATA_PER_TXD) {
2221 int align_pad = -(skb_frag_off(stale)) &
2222 (IAVF_MAX_READ_REQ_SIZE - 1);
2223
2224 sum -= align_pad;
2225 stale_size -= align_pad;
2226
2227 do {
2228 sum -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2229 stale_size -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2230 } while (stale_size > IAVF_MAX_DATA_PER_TXD);
2231 }
2232
2233 /* if sum is negative we failed to make sufficient progress */
2234 if (sum < 0)
2235 return true;
2236
2237 if (!nr_frags--)
2238 break;
2239
2240 sum -= stale_size;
2241 }
2242
2243 return false;
2244 }
2245
2246 /**
2247 * __iavf_maybe_stop_tx - 2nd level check for tx stop conditions
2248 * @tx_ring: the ring to be checked
2249 * @size: the size buffer we want to assure is available
2250 *
2251 * Returns -EBUSY if a stop is needed, else 0
2252 **/
__iavf_maybe_stop_tx(struct iavf_ring * tx_ring,int size)2253 int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size)
2254 {
2255 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2256 /* Memory barrier before checking head and tail */
2257 smp_mb();
2258
2259 /* Check again in a case another CPU has just made room available. */
2260 if (likely(IAVF_DESC_UNUSED(tx_ring) < size))
2261 return -EBUSY;
2262
2263 /* A reprieve! - use start_queue because it doesn't call schedule */
2264 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2265 ++tx_ring->tx_stats.restart_queue;
2266 return 0;
2267 }
2268
2269 /**
2270 * iavf_tx_map - Build the Tx descriptor
2271 * @tx_ring: ring to send buffer on
2272 * @skb: send buffer
2273 * @first: first buffer info buffer to use
2274 * @tx_flags: collected send information
2275 * @hdr_len: size of the packet header
2276 * @td_cmd: the command field in the descriptor
2277 * @td_offset: offset for checksum or crc
2278 **/
iavf_tx_map(struct iavf_ring * tx_ring,struct sk_buff * skb,struct iavf_tx_buffer * first,u32 tx_flags,const u8 hdr_len,u32 td_cmd,u32 td_offset)2279 static inline void iavf_tx_map(struct iavf_ring *tx_ring, struct sk_buff *skb,
2280 struct iavf_tx_buffer *first, u32 tx_flags,
2281 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2282 {
2283 unsigned int data_len = skb->data_len;
2284 unsigned int size = skb_headlen(skb);
2285 skb_frag_t *frag;
2286 struct iavf_tx_buffer *tx_bi;
2287 struct iavf_tx_desc *tx_desc;
2288 u16 i = tx_ring->next_to_use;
2289 u32 td_tag = 0;
2290 dma_addr_t dma;
2291
2292 if (tx_flags & IAVF_TX_FLAGS_HW_VLAN) {
2293 td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
2294 td_tag = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >>
2295 IAVF_TX_FLAGS_VLAN_SHIFT;
2296 }
2297
2298 first->tx_flags = tx_flags;
2299
2300 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2301
2302 tx_desc = IAVF_TX_DESC(tx_ring, i);
2303 tx_bi = first;
2304
2305 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2306 unsigned int max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2307
2308 if (dma_mapping_error(tx_ring->dev, dma))
2309 goto dma_error;
2310
2311 /* record length, and DMA address */
2312 dma_unmap_len_set(tx_bi, len, size);
2313 dma_unmap_addr_set(tx_bi, dma, dma);
2314
2315 /* align size to end of page */
2316 max_data += -dma & (IAVF_MAX_READ_REQ_SIZE - 1);
2317 tx_desc->buffer_addr = cpu_to_le64(dma);
2318
2319 while (unlikely(size > IAVF_MAX_DATA_PER_TXD)) {
2320 tx_desc->cmd_type_offset_bsz =
2321 build_ctob(td_cmd, td_offset,
2322 max_data, td_tag);
2323
2324 tx_desc++;
2325 i++;
2326
2327 if (i == tx_ring->count) {
2328 tx_desc = IAVF_TX_DESC(tx_ring, 0);
2329 i = 0;
2330 }
2331
2332 dma += max_data;
2333 size -= max_data;
2334
2335 max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2336 tx_desc->buffer_addr = cpu_to_le64(dma);
2337 }
2338
2339 if (likely(!data_len))
2340 break;
2341
2342 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2343 size, td_tag);
2344
2345 tx_desc++;
2346 i++;
2347
2348 if (i == tx_ring->count) {
2349 tx_desc = IAVF_TX_DESC(tx_ring, 0);
2350 i = 0;
2351 }
2352
2353 size = skb_frag_size(frag);
2354 data_len -= size;
2355
2356 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2357 DMA_TO_DEVICE);
2358
2359 tx_bi = &tx_ring->tx_bi[i];
2360 }
2361
2362 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2363
2364 i++;
2365 if (i == tx_ring->count)
2366 i = 0;
2367
2368 tx_ring->next_to_use = i;
2369
2370 iavf_maybe_stop_tx(tx_ring, DESC_NEEDED);
2371
2372 /* write last descriptor with RS and EOP bits */
2373 td_cmd |= IAVF_TXD_CMD;
2374 tx_desc->cmd_type_offset_bsz =
2375 build_ctob(td_cmd, td_offset, size, td_tag);
2376
2377 skb_tx_timestamp(skb);
2378
2379 /* Force memory writes to complete before letting h/w know there
2380 * are new descriptors to fetch.
2381 *
2382 * We also use this memory barrier to make certain all of the
2383 * status bits have been updated before next_to_watch is written.
2384 */
2385 wmb();
2386
2387 /* set next_to_watch value indicating a packet is present */
2388 first->next_to_watch = tx_desc;
2389
2390 /* notify HW of packet */
2391 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
2392 writel(i, tx_ring->tail);
2393 }
2394
2395 return;
2396
2397 dma_error:
2398 dev_info(tx_ring->dev, "TX DMA map failed\n");
2399
2400 /* clear dma mappings for failed tx_bi map */
2401 for (;;) {
2402 tx_bi = &tx_ring->tx_bi[i];
2403 iavf_unmap_and_free_tx_resource(tx_ring, tx_bi);
2404 if (tx_bi == first)
2405 break;
2406 if (i == 0)
2407 i = tx_ring->count;
2408 i--;
2409 }
2410
2411 tx_ring->next_to_use = i;
2412 }
2413
2414 /**
2415 * iavf_xmit_frame_ring - Sends buffer on Tx ring
2416 * @skb: send buffer
2417 * @tx_ring: ring to send buffer on
2418 *
2419 * Returns NETDEV_TX_OK if sent, else an error code
2420 **/
iavf_xmit_frame_ring(struct sk_buff * skb,struct iavf_ring * tx_ring)2421 static netdev_tx_t iavf_xmit_frame_ring(struct sk_buff *skb,
2422 struct iavf_ring *tx_ring)
2423 {
2424 u64 cd_type_cmd_tso_mss = IAVF_TX_DESC_DTYPE_CONTEXT;
2425 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2426 struct iavf_tx_buffer *first;
2427 u32 td_offset = 0;
2428 u32 tx_flags = 0;
2429 __be16 protocol;
2430 u32 td_cmd = 0;
2431 u8 hdr_len = 0;
2432 int tso, count;
2433
2434 /* prefetch the data, we'll need it later */
2435 prefetch(skb->data);
2436
2437 iavf_trace(xmit_frame_ring, skb, tx_ring);
2438
2439 count = iavf_xmit_descriptor_count(skb);
2440 if (iavf_chk_linearize(skb, count)) {
2441 if (__skb_linearize(skb)) {
2442 dev_kfree_skb_any(skb);
2443 return NETDEV_TX_OK;
2444 }
2445 count = iavf_txd_use_count(skb->len);
2446 tx_ring->tx_stats.tx_linearize++;
2447 }
2448
2449 /* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD,
2450 * + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD,
2451 * + 4 desc gap to avoid the cache line where head is,
2452 * + 1 desc for context descriptor,
2453 * otherwise try next time
2454 */
2455 if (iavf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2456 tx_ring->tx_stats.tx_busy++;
2457 return NETDEV_TX_BUSY;
2458 }
2459
2460 /* record the location of the first descriptor for this packet */
2461 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2462 first->skb = skb;
2463 first->bytecount = skb->len;
2464 first->gso_segs = 1;
2465
2466 /* prepare the xmit flags */
2467 iavf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags);
2468 if (tx_flags & IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN) {
2469 cd_type_cmd_tso_mss |= IAVF_TX_CTX_DESC_IL2TAG2 <<
2470 IAVF_TXD_CTX_QW1_CMD_SHIFT;
2471 cd_l2tag2 = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >>
2472 IAVF_TX_FLAGS_VLAN_SHIFT;
2473 }
2474
2475 /* obtain protocol of skb */
2476 protocol = vlan_get_protocol(skb);
2477
2478 /* setup IPv4/IPv6 offloads */
2479 if (protocol == htons(ETH_P_IP))
2480 tx_flags |= IAVF_TX_FLAGS_IPV4;
2481 else if (protocol == htons(ETH_P_IPV6))
2482 tx_flags |= IAVF_TX_FLAGS_IPV6;
2483
2484 tso = iavf_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2485
2486 if (tso < 0)
2487 goto out_drop;
2488 else if (tso)
2489 tx_flags |= IAVF_TX_FLAGS_TSO;
2490
2491 /* Always offload the checksum, since it's in the data descriptor */
2492 tso = iavf_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2493 tx_ring, &cd_tunneling);
2494 if (tso < 0)
2495 goto out_drop;
2496
2497 /* always enable CRC insertion offload */
2498 td_cmd |= IAVF_TX_DESC_CMD_ICRC;
2499
2500 iavf_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2501 cd_tunneling, cd_l2tag2);
2502
2503 iavf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2504 td_cmd, td_offset);
2505
2506 return NETDEV_TX_OK;
2507
2508 out_drop:
2509 iavf_trace(xmit_frame_ring_drop, first->skb, tx_ring);
2510 dev_kfree_skb_any(first->skb);
2511 first->skb = NULL;
2512 return NETDEV_TX_OK;
2513 }
2514
2515 /**
2516 * iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2517 * @skb: send buffer
2518 * @netdev: network interface device structure
2519 *
2520 * Returns NETDEV_TX_OK if sent, else an error code
2521 **/
iavf_xmit_frame(struct sk_buff * skb,struct net_device * netdev)2522 netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2523 {
2524 struct iavf_adapter *adapter = netdev_priv(netdev);
2525 struct iavf_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2526
2527 /* hardware can't handle really short frames, hardware padding works
2528 * beyond this point
2529 */
2530 if (unlikely(skb->len < IAVF_MIN_TX_LEN)) {
2531 if (skb_pad(skb, IAVF_MIN_TX_LEN - skb->len))
2532 return NETDEV_TX_OK;
2533 skb->len = IAVF_MIN_TX_LEN;
2534 skb_set_tail_pointer(skb, IAVF_MIN_TX_LEN);
2535 }
2536
2537 return iavf_xmit_frame_ring(skb, tx_ring);
2538 }
2539