xref: /openbmc/linux/arch/ia64/mm/init.c (revision 87639783)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Initialize MMU support.
4  *
5  * Copyright (C) 1998-2003 Hewlett-Packard Co
6  *	David Mosberger-Tang <davidm@hpl.hp.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 
11 #include <linux/dma-map-ops.h>
12 #include <linux/dmar.h>
13 #include <linux/efi.h>
14 #include <linux/elf.h>
15 #include <linux/memblock.h>
16 #include <linux/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/mmzone.h>
19 #include <linux/module.h>
20 #include <linux/personality.h>
21 #include <linux/reboot.h>
22 #include <linux/slab.h>
23 #include <linux/swap.h>
24 #include <linux/proc_fs.h>
25 #include <linux/bitops.h>
26 #include <linux/kexec.h>
27 #include <linux/swiotlb.h>
28 
29 #include <asm/dma.h>
30 #include <asm/efi.h>
31 #include <asm/io.h>
32 #include <asm/numa.h>
33 #include <asm/patch.h>
34 #include <asm/pgalloc.h>
35 #include <asm/sal.h>
36 #include <asm/sections.h>
37 #include <asm/tlb.h>
38 #include <linux/uaccess.h>
39 #include <asm/unistd.h>
40 #include <asm/mca.h>
41 
42 extern void ia64_tlb_init (void);
43 
44 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
45 
46 struct page *zero_page_memmap_ptr;	/* map entry for zero page */
47 EXPORT_SYMBOL(zero_page_memmap_ptr);
48 
49 void
__ia64_sync_icache_dcache(pte_t pte)50 __ia64_sync_icache_dcache (pte_t pte)
51 {
52 	unsigned long addr;
53 	struct folio *folio;
54 
55 	folio = page_folio(pte_page(pte));
56 	addr = (unsigned long)folio_address(folio);
57 
58 	if (test_bit(PG_arch_1, &folio->flags))
59 		return;				/* i-cache is already coherent with d-cache */
60 
61 	flush_icache_range(addr, addr + folio_size(folio));
62 	set_bit(PG_arch_1, &folio->flags);	/* mark page as clean */
63 }
64 
65 /*
66  * Since DMA is i-cache coherent, any (complete) folios that were written via
67  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
68  * flush them when they get mapped into an executable vm-area.
69  */
arch_dma_mark_clean(phys_addr_t paddr,size_t size)70 void arch_dma_mark_clean(phys_addr_t paddr, size_t size)
71 {
72 	unsigned long pfn = PHYS_PFN(paddr);
73 	struct folio *folio = page_folio(pfn_to_page(pfn));
74 	ssize_t left = size;
75 	size_t offset = offset_in_folio(folio, paddr);
76 
77 	if (offset) {
78 		left -= folio_size(folio) - offset;
79 		if (left <= 0)
80 			return;
81 		folio = folio_next(folio);
82 	}
83 
84 	while (left >= (ssize_t)folio_size(folio)) {
85 		left -= folio_size(folio);
86 		set_bit(PG_arch_1, &pfn_to_page(pfn)->flags);
87 		if (!left)
88 			break;
89 		folio = folio_next(folio);
90 	}
91 }
92 
93 inline void
ia64_set_rbs_bot(void)94 ia64_set_rbs_bot (void)
95 {
96 	unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
97 
98 	if (stack_size > MAX_USER_STACK_SIZE)
99 		stack_size = MAX_USER_STACK_SIZE;
100 	current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
101 }
102 
103 /*
104  * This performs some platform-dependent address space initialization.
105  * On IA-64, we want to setup the VM area for the register backing
106  * store (which grows upwards) and install the gateway page which is
107  * used for signal trampolines, etc.
108  */
109 void
ia64_init_addr_space(void)110 ia64_init_addr_space (void)
111 {
112 	struct vm_area_struct *vma;
113 
114 	ia64_set_rbs_bot();
115 
116 	/*
117 	 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
118 	 * the problem.  When the process attempts to write to the register backing store
119 	 * for the first time, it will get a SEGFAULT in this case.
120 	 */
121 	vma = vm_area_alloc(current->mm);
122 	if (vma) {
123 		vma_set_anonymous(vma);
124 		vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
125 		vma->vm_end = vma->vm_start + PAGE_SIZE;
126 		vm_flags_init(vma, VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT);
127 		vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
128 		mmap_write_lock(current->mm);
129 		if (insert_vm_struct(current->mm, vma)) {
130 			mmap_write_unlock(current->mm);
131 			vm_area_free(vma);
132 			return;
133 		}
134 		mmap_write_unlock(current->mm);
135 	}
136 
137 	/* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
138 	if (!(current->personality & MMAP_PAGE_ZERO)) {
139 		vma = vm_area_alloc(current->mm);
140 		if (vma) {
141 			vma_set_anonymous(vma);
142 			vma->vm_end = PAGE_SIZE;
143 			vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
144 			vm_flags_init(vma, VM_READ | VM_MAYREAD | VM_IO |
145 				      VM_DONTEXPAND | VM_DONTDUMP);
146 			mmap_write_lock(current->mm);
147 			if (insert_vm_struct(current->mm, vma)) {
148 				mmap_write_unlock(current->mm);
149 				vm_area_free(vma);
150 				return;
151 			}
152 			mmap_write_unlock(current->mm);
153 		}
154 	}
155 }
156 
157 void
free_initmem(void)158 free_initmem (void)
159 {
160 	free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
161 			   -1, "unused kernel");
162 }
163 
164 void __init
free_initrd_mem(unsigned long start,unsigned long end)165 free_initrd_mem (unsigned long start, unsigned long end)
166 {
167 	/*
168 	 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
169 	 * Thus EFI and the kernel may have different page sizes. It is
170 	 * therefore possible to have the initrd share the same page as
171 	 * the end of the kernel (given current setup).
172 	 *
173 	 * To avoid freeing/using the wrong page (kernel sized) we:
174 	 *	- align up the beginning of initrd
175 	 *	- align down the end of initrd
176 	 *
177 	 *  |             |
178 	 *  |=============| a000
179 	 *  |             |
180 	 *  |             |
181 	 *  |             | 9000
182 	 *  |/////////////|
183 	 *  |/////////////|
184 	 *  |=============| 8000
185 	 *  |///INITRD////|
186 	 *  |/////////////|
187 	 *  |/////////////| 7000
188 	 *  |             |
189 	 *  |KKKKKKKKKKKKK|
190 	 *  |=============| 6000
191 	 *  |KKKKKKKKKKKKK|
192 	 *  |KKKKKKKKKKKKK|
193 	 *  K=kernel using 8KB pages
194 	 *
195 	 * In this example, we must free page 8000 ONLY. So we must align up
196 	 * initrd_start and keep initrd_end as is.
197 	 */
198 	start = PAGE_ALIGN(start);
199 	end = end & PAGE_MASK;
200 
201 	if (start < end)
202 		printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
203 
204 	for (; start < end; start += PAGE_SIZE) {
205 		if (!virt_addr_valid(start))
206 			continue;
207 		free_reserved_page(virt_to_page(start));
208 	}
209 }
210 
211 /*
212  * This installs a clean page in the kernel's page table.
213  */
214 static struct page * __init
put_kernel_page(struct page * page,unsigned long address,pgprot_t pgprot)215 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
216 {
217 	pgd_t *pgd;
218 	p4d_t *p4d;
219 	pud_t *pud;
220 	pmd_t *pmd;
221 	pte_t *pte;
222 
223 	pgd = pgd_offset_k(address);		/* note: this is NOT pgd_offset()! */
224 
225 	{
226 		p4d = p4d_alloc(&init_mm, pgd, address);
227 		if (!p4d)
228 			goto out;
229 		pud = pud_alloc(&init_mm, p4d, address);
230 		if (!pud)
231 			goto out;
232 		pmd = pmd_alloc(&init_mm, pud, address);
233 		if (!pmd)
234 			goto out;
235 		pte = pte_alloc_kernel(pmd, address);
236 		if (!pte)
237 			goto out;
238 		if (!pte_none(*pte))
239 			goto out;
240 		set_pte(pte, mk_pte(page, pgprot));
241 	}
242   out:
243 	/* no need for flush_tlb */
244 	return page;
245 }
246 
247 static void __init
setup_gate(void)248 setup_gate (void)
249 {
250 	struct page *page;
251 
252 	/*
253 	 * Map the gate page twice: once read-only to export the ELF
254 	 * headers etc. and once execute-only page to enable
255 	 * privilege-promotion via "epc":
256 	 */
257 	page = virt_to_page(ia64_imva(__start_gate_section));
258 	put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
259 #ifdef HAVE_BUGGY_SEGREL
260 	page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
261 	put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
262 #else
263 	put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
264 	/* Fill in the holes (if any) with read-only zero pages: */
265 	{
266 		unsigned long addr;
267 
268 		for (addr = GATE_ADDR + PAGE_SIZE;
269 		     addr < GATE_ADDR + PERCPU_PAGE_SIZE;
270 		     addr += PAGE_SIZE)
271 		{
272 			put_kernel_page(ZERO_PAGE(0), addr,
273 					PAGE_READONLY);
274 			put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
275 					PAGE_READONLY);
276 		}
277 	}
278 #endif
279 	ia64_patch_gate();
280 }
281 
282 static struct vm_area_struct gate_vma;
283 
gate_vma_init(void)284 static int __init gate_vma_init(void)
285 {
286 	vma_init(&gate_vma, NULL);
287 	gate_vma.vm_start = FIXADDR_USER_START;
288 	gate_vma.vm_end = FIXADDR_USER_END;
289 	vm_flags_init(&gate_vma, VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC);
290 	gate_vma.vm_page_prot = __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX);
291 
292 	return 0;
293 }
294 __initcall(gate_vma_init);
295 
get_gate_vma(struct mm_struct * mm)296 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
297 {
298 	return &gate_vma;
299 }
300 
in_gate_area_no_mm(unsigned long addr)301 int in_gate_area_no_mm(unsigned long addr)
302 {
303 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
304 		return 1;
305 	return 0;
306 }
307 
in_gate_area(struct mm_struct * mm,unsigned long addr)308 int in_gate_area(struct mm_struct *mm, unsigned long addr)
309 {
310 	return in_gate_area_no_mm(addr);
311 }
312 
ia64_mmu_init(void * my_cpu_data)313 void ia64_mmu_init(void *my_cpu_data)
314 {
315 	unsigned long pta, impl_va_bits;
316 	extern void tlb_init(void);
317 
318 #ifdef CONFIG_DISABLE_VHPT
319 #	define VHPT_ENABLE_BIT	0
320 #else
321 #	define VHPT_ENABLE_BIT	1
322 #endif
323 
324 	/*
325 	 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
326 	 * address space.  The IA-64 architecture guarantees that at least 50 bits of
327 	 * virtual address space are implemented but if we pick a large enough page size
328 	 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
329 	 * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
330 	 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
331 	 * problem in practice.  Alternatively, we could truncate the top of the mapped
332 	 * address space to not permit mappings that would overlap with the VMLPT.
333 	 * --davidm 00/12/06
334 	 */
335 #	define pte_bits			3
336 #	define mapped_space_bits	(3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
337 	/*
338 	 * The virtual page table has to cover the entire implemented address space within
339 	 * a region even though not all of this space may be mappable.  The reason for
340 	 * this is that the Access bit and Dirty bit fault handlers perform
341 	 * non-speculative accesses to the virtual page table, so the address range of the
342 	 * virtual page table itself needs to be covered by virtual page table.
343 	 */
344 #	define vmlpt_bits		(impl_va_bits - PAGE_SHIFT + pte_bits)
345 #	define POW2(n)			(1ULL << (n))
346 
347 	impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
348 
349 	if (impl_va_bits < 51 || impl_va_bits > 61)
350 		panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
351 	/*
352 	 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
353 	 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
354 	 * the test makes sure that our mapped space doesn't overlap the
355 	 * unimplemented hole in the middle of the region.
356 	 */
357 	if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
358 	    (mapped_space_bits > impl_va_bits - 1))
359 		panic("Cannot build a big enough virtual-linear page table"
360 		      " to cover mapped address space.\n"
361 		      " Try using a smaller page size.\n");
362 
363 
364 	/* place the VMLPT at the end of each page-table mapped region: */
365 	pta = POW2(61) - POW2(vmlpt_bits);
366 
367 	/*
368 	 * Set the (virtually mapped linear) page table address.  Bit
369 	 * 8 selects between the short and long format, bits 2-7 the
370 	 * size of the table, and bit 0 whether the VHPT walker is
371 	 * enabled.
372 	 */
373 	ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
374 
375 	ia64_tlb_init();
376 
377 #ifdef	CONFIG_HUGETLB_PAGE
378 	ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
379 	ia64_srlz_d();
380 #endif
381 }
382 
register_active_ranges(u64 start,u64 len,int nid)383 int __init register_active_ranges(u64 start, u64 len, int nid)
384 {
385 	u64 end = start + len;
386 
387 #ifdef CONFIG_KEXEC
388 	if (start > crashk_res.start && start < crashk_res.end)
389 		start = crashk_res.end;
390 	if (end > crashk_res.start && end < crashk_res.end)
391 		end = crashk_res.start;
392 #endif
393 
394 	if (start < end)
395 		memblock_add_node(__pa(start), end - start, nid, MEMBLOCK_NONE);
396 	return 0;
397 }
398 
399 int
find_max_min_low_pfn(u64 start,u64 end,void * arg)400 find_max_min_low_pfn (u64 start, u64 end, void *arg)
401 {
402 	unsigned long pfn_start, pfn_end;
403 #ifdef CONFIG_FLATMEM
404 	pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
405 	pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
406 #else
407 	pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
408 	pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
409 #endif
410 	min_low_pfn = min(min_low_pfn, pfn_start);
411 	max_low_pfn = max(max_low_pfn, pfn_end);
412 	return 0;
413 }
414 
415 /*
416  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
417  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
418  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
419  * useful for performance testing, but conceivably could also come in handy for debugging
420  * purposes.
421  */
422 
423 static int nolwsys __initdata;
424 
425 static int __init
nolwsys_setup(char * s)426 nolwsys_setup (char *s)
427 {
428 	nolwsys = 1;
429 	return 1;
430 }
431 
432 __setup("nolwsys", nolwsys_setup);
433 
434 void __init
mem_init(void)435 mem_init (void)
436 {
437 	int i;
438 
439 	BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
440 	BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
441 	BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
442 
443 	/*
444 	 * This needs to be called _after_ the command line has been parsed but
445 	 * _before_ any drivers that may need the PCI DMA interface are
446 	 * initialized or bootmem has been freed.
447 	 */
448 	do {
449 #ifdef CONFIG_INTEL_IOMMU
450 		detect_intel_iommu();
451 		if (iommu_detected)
452 			break;
453 #endif
454 		swiotlb_init(true, SWIOTLB_VERBOSE);
455 	} while (0);
456 
457 #ifdef CONFIG_FLATMEM
458 	BUG_ON(!mem_map);
459 #endif
460 
461 	set_max_mapnr(max_low_pfn);
462 	high_memory = __va(max_low_pfn * PAGE_SIZE);
463 	memblock_free_all();
464 
465 	/*
466 	 * For fsyscall entrypoints with no light-weight handler, use the ordinary
467 	 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
468 	 * code can tell them apart.
469 	 */
470 	for (i = 0; i < NR_syscalls; ++i) {
471 		extern unsigned long fsyscall_table[NR_syscalls];
472 		extern unsigned long sys_call_table[NR_syscalls];
473 
474 		if (!fsyscall_table[i] || nolwsys)
475 			fsyscall_table[i] = sys_call_table[i] | 1;
476 	}
477 	setup_gate();
478 }
479 
480 #ifdef CONFIG_MEMORY_HOTPLUG
arch_add_memory(int nid,u64 start,u64 size,struct mhp_params * params)481 int arch_add_memory(int nid, u64 start, u64 size,
482 		    struct mhp_params *params)
483 {
484 	unsigned long start_pfn = start >> PAGE_SHIFT;
485 	unsigned long nr_pages = size >> PAGE_SHIFT;
486 	int ret;
487 
488 	if (WARN_ON_ONCE(params->pgprot.pgprot != PAGE_KERNEL.pgprot))
489 		return -EINVAL;
490 
491 	ret = __add_pages(nid, start_pfn, nr_pages, params);
492 	if (ret)
493 		printk("%s: Problem encountered in __add_pages() as ret=%d\n",
494 		       __func__,  ret);
495 
496 	return ret;
497 }
498 
arch_remove_memory(u64 start,u64 size,struct vmem_altmap * altmap)499 void arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
500 {
501 	unsigned long start_pfn = start >> PAGE_SHIFT;
502 	unsigned long nr_pages = size >> PAGE_SHIFT;
503 
504 	__remove_pages(start_pfn, nr_pages, altmap);
505 }
506 #endif
507 
508 static const pgprot_t protection_map[16] = {
509 	[VM_NONE]					= PAGE_NONE,
510 	[VM_READ]					= PAGE_READONLY,
511 	[VM_WRITE]					= PAGE_READONLY,
512 	[VM_WRITE | VM_READ]				= PAGE_READONLY,
513 	[VM_EXEC]					= __pgprot(__ACCESS_BITS | _PAGE_PL_3 |
514 								   _PAGE_AR_X_RX),
515 	[VM_EXEC | VM_READ]				= __pgprot(__ACCESS_BITS | _PAGE_PL_3 |
516 								   _PAGE_AR_RX),
517 	[VM_EXEC | VM_WRITE]				= PAGE_COPY_EXEC,
518 	[VM_EXEC | VM_WRITE | VM_READ]			= PAGE_COPY_EXEC,
519 	[VM_SHARED]					= PAGE_NONE,
520 	[VM_SHARED | VM_READ]				= PAGE_READONLY,
521 	[VM_SHARED | VM_WRITE]				= PAGE_SHARED,
522 	[VM_SHARED | VM_WRITE | VM_READ]		= PAGE_SHARED,
523 	[VM_SHARED | VM_EXEC]				= __pgprot(__ACCESS_BITS | _PAGE_PL_3 |
524 								   _PAGE_AR_X_RX),
525 	[VM_SHARED | VM_EXEC | VM_READ]			= __pgprot(__ACCESS_BITS | _PAGE_PL_3 |
526 								   _PAGE_AR_RX),
527 	[VM_SHARED | VM_EXEC | VM_WRITE]		= __pgprot(__ACCESS_BITS | _PAGE_PL_3 |
528 								   _PAGE_AR_RWX),
529 	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= __pgprot(__ACCESS_BITS | _PAGE_PL_3 |
530 								   _PAGE_AR_RWX)
531 };
532 DECLARE_VM_GET_PAGE_PROT
533