1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32 #include <linux/sched/mm.h>
33 
34 #include "gem/i915_gem_context.h"
35 #include "gt/intel_breadcrumbs.h"
36 #include "gt/intel_context.h"
37 #include "gt/intel_engine.h"
38 #include "gt/intel_engine_heartbeat.h"
39 #include "gt/intel_engine_regs.h"
40 #include "gt/intel_gpu_commands.h"
41 #include "gt/intel_reset.h"
42 #include "gt/intel_ring.h"
43 #include "gt/intel_rps.h"
44 
45 #include "i915_active.h"
46 #include "i915_config.h"
47 #include "i915_deps.h"
48 #include "i915_driver.h"
49 #include "i915_drv.h"
50 #include "i915_trace.h"
51 
52 struct execute_cb {
53 	struct irq_work work;
54 	struct i915_sw_fence *fence;
55 	struct i915_request *signal;
56 };
57 
58 static struct kmem_cache *slab_requests;
59 static struct kmem_cache *slab_execute_cbs;
60 
i915_fence_get_driver_name(struct dma_fence * fence)61 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
62 {
63 	return dev_name(to_request(fence)->i915->drm.dev);
64 }
65 
i915_fence_get_timeline_name(struct dma_fence * fence)66 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
67 {
68 	const struct i915_gem_context *ctx;
69 
70 	/*
71 	 * The timeline struct (as part of the ppgtt underneath a context)
72 	 * may be freed when the request is no longer in use by the GPU.
73 	 * We could extend the life of a context to beyond that of all
74 	 * fences, possibly keeping the hw resource around indefinitely,
75 	 * or we just give them a false name. Since
76 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
77 	 * lie seems justifiable.
78 	 */
79 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
80 		return "signaled";
81 
82 	ctx = i915_request_gem_context(to_request(fence));
83 	if (!ctx)
84 		return "[" DRIVER_NAME "]";
85 
86 	return ctx->name;
87 }
88 
i915_fence_signaled(struct dma_fence * fence)89 static bool i915_fence_signaled(struct dma_fence *fence)
90 {
91 	return i915_request_completed(to_request(fence));
92 }
93 
i915_fence_enable_signaling(struct dma_fence * fence)94 static bool i915_fence_enable_signaling(struct dma_fence *fence)
95 {
96 	return i915_request_enable_breadcrumb(to_request(fence));
97 }
98 
i915_fence_wait(struct dma_fence * fence,bool interruptible,signed long timeout)99 static signed long i915_fence_wait(struct dma_fence *fence,
100 				   bool interruptible,
101 				   signed long timeout)
102 {
103 	return i915_request_wait_timeout(to_request(fence),
104 					 interruptible | I915_WAIT_PRIORITY,
105 					 timeout);
106 }
107 
i915_request_slab_cache(void)108 struct kmem_cache *i915_request_slab_cache(void)
109 {
110 	return slab_requests;
111 }
112 
i915_fence_release(struct dma_fence * fence)113 static void i915_fence_release(struct dma_fence *fence)
114 {
115 	struct i915_request *rq = to_request(fence);
116 
117 	GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT &&
118 		   rq->guc_prio != GUC_PRIO_FINI);
119 
120 	i915_request_free_capture_list(fetch_and_zero(&rq->capture_list));
121 	if (rq->batch_res) {
122 		i915_vma_resource_put(rq->batch_res);
123 		rq->batch_res = NULL;
124 	}
125 
126 	/*
127 	 * The request is put onto a RCU freelist (i.e. the address
128 	 * is immediately reused), mark the fences as being freed now.
129 	 * Otherwise the debugobjects for the fences are only marked as
130 	 * freed when the slab cache itself is freed, and so we would get
131 	 * caught trying to reuse dead objects.
132 	 */
133 	i915_sw_fence_fini(&rq->submit);
134 	i915_sw_fence_fini(&rq->semaphore);
135 
136 	/*
137 	 * Keep one request on each engine for reserved use under mempressure.
138 	 *
139 	 * We do not hold a reference to the engine here and so have to be
140 	 * very careful in what rq->engine we poke. The virtual engine is
141 	 * referenced via the rq->context and we released that ref during
142 	 * i915_request_retire(), ergo we must not dereference a virtual
143 	 * engine here. Not that we would want to, as the only consumer of
144 	 * the reserved engine->request_pool is the power management parking,
145 	 * which must-not-fail, and that is only run on the physical engines.
146 	 *
147 	 * Since the request must have been executed to be have completed,
148 	 * we know that it will have been processed by the HW and will
149 	 * not be unsubmitted again, so rq->engine and rq->execution_mask
150 	 * at this point is stable. rq->execution_mask will be a single
151 	 * bit if the last and _only_ engine it could execution on was a
152 	 * physical engine, if it's multiple bits then it started on and
153 	 * could still be on a virtual engine. Thus if the mask is not a
154 	 * power-of-two we assume that rq->engine may still be a virtual
155 	 * engine and so a dangling invalid pointer that we cannot dereference
156 	 *
157 	 * For example, consider the flow of a bonded request through a virtual
158 	 * engine. The request is created with a wide engine mask (all engines
159 	 * that we might execute on). On processing the bond, the request mask
160 	 * is reduced to one or more engines. If the request is subsequently
161 	 * bound to a single engine, it will then be constrained to only
162 	 * execute on that engine and never returned to the virtual engine
163 	 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
164 	 * know that if the rq->execution_mask is a single bit, rq->engine
165 	 * can be a physical engine with the exact corresponding mask.
166 	 */
167 	if (is_power_of_2(rq->execution_mask) &&
168 	    !cmpxchg(&rq->engine->request_pool, NULL, rq))
169 		return;
170 
171 	kmem_cache_free(slab_requests, rq);
172 }
173 
174 const struct dma_fence_ops i915_fence_ops = {
175 	.get_driver_name = i915_fence_get_driver_name,
176 	.get_timeline_name = i915_fence_get_timeline_name,
177 	.enable_signaling = i915_fence_enable_signaling,
178 	.signaled = i915_fence_signaled,
179 	.wait = i915_fence_wait,
180 	.release = i915_fence_release,
181 };
182 
irq_execute_cb(struct irq_work * wrk)183 static void irq_execute_cb(struct irq_work *wrk)
184 {
185 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
186 
187 	i915_sw_fence_complete(cb->fence);
188 	kmem_cache_free(slab_execute_cbs, cb);
189 }
190 
191 static __always_inline void
__notify_execute_cb(struct i915_request * rq,bool (* fn)(struct irq_work * wrk))192 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
193 {
194 	struct execute_cb *cb, *cn;
195 
196 	if (llist_empty(&rq->execute_cb))
197 		return;
198 
199 	llist_for_each_entry_safe(cb, cn,
200 				  llist_del_all(&rq->execute_cb),
201 				  work.node.llist)
202 		fn(&cb->work);
203 }
204 
__notify_execute_cb_irq(struct i915_request * rq)205 static void __notify_execute_cb_irq(struct i915_request *rq)
206 {
207 	__notify_execute_cb(rq, irq_work_queue);
208 }
209 
irq_work_imm(struct irq_work * wrk)210 static bool irq_work_imm(struct irq_work *wrk)
211 {
212 	wrk->func(wrk);
213 	return false;
214 }
215 
i915_request_notify_execute_cb_imm(struct i915_request * rq)216 void i915_request_notify_execute_cb_imm(struct i915_request *rq)
217 {
218 	__notify_execute_cb(rq, irq_work_imm);
219 }
220 
__i915_request_fill(struct i915_request * rq,u8 val)221 static void __i915_request_fill(struct i915_request *rq, u8 val)
222 {
223 	void *vaddr = rq->ring->vaddr;
224 	u32 head;
225 
226 	head = rq->infix;
227 	if (rq->postfix < head) {
228 		memset(vaddr + head, val, rq->ring->size - head);
229 		head = 0;
230 	}
231 	memset(vaddr + head, val, rq->postfix - head);
232 }
233 
234 /**
235  * i915_request_active_engine
236  * @rq: request to inspect
237  * @active: pointer in which to return the active engine
238  *
239  * Fills the currently active engine to the @active pointer if the request
240  * is active and still not completed.
241  *
242  * Returns true if request was active or false otherwise.
243  */
244 bool
i915_request_active_engine(struct i915_request * rq,struct intel_engine_cs ** active)245 i915_request_active_engine(struct i915_request *rq,
246 			   struct intel_engine_cs **active)
247 {
248 	struct intel_engine_cs *engine, *locked;
249 	bool ret = false;
250 
251 	/*
252 	 * Serialise with __i915_request_submit() so that it sees
253 	 * is-banned?, or we know the request is already inflight.
254 	 *
255 	 * Note that rq->engine is unstable, and so we double
256 	 * check that we have acquired the lock on the final engine.
257 	 */
258 	locked = READ_ONCE(rq->engine);
259 	spin_lock_irq(&locked->sched_engine->lock);
260 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
261 		spin_unlock(&locked->sched_engine->lock);
262 		locked = engine;
263 		spin_lock(&locked->sched_engine->lock);
264 	}
265 
266 	if (i915_request_is_active(rq)) {
267 		if (!__i915_request_is_complete(rq))
268 			*active = locked;
269 		ret = true;
270 	}
271 
272 	spin_unlock_irq(&locked->sched_engine->lock);
273 
274 	return ret;
275 }
276 
__rq_init_watchdog(struct i915_request * rq)277 static void __rq_init_watchdog(struct i915_request *rq)
278 {
279 	rq->watchdog.timer.function = NULL;
280 }
281 
__rq_watchdog_expired(struct hrtimer * hrtimer)282 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer)
283 {
284 	struct i915_request *rq =
285 		container_of(hrtimer, struct i915_request, watchdog.timer);
286 	struct intel_gt *gt = rq->engine->gt;
287 
288 	if (!i915_request_completed(rq)) {
289 		if (llist_add(&rq->watchdog.link, &gt->watchdog.list))
290 			queue_work(gt->i915->unordered_wq, &gt->watchdog.work);
291 	} else {
292 		i915_request_put(rq);
293 	}
294 
295 	return HRTIMER_NORESTART;
296 }
297 
__rq_arm_watchdog(struct i915_request * rq)298 static void __rq_arm_watchdog(struct i915_request *rq)
299 {
300 	struct i915_request_watchdog *wdg = &rq->watchdog;
301 	struct intel_context *ce = rq->context;
302 
303 	if (!ce->watchdog.timeout_us)
304 		return;
305 
306 	i915_request_get(rq);
307 
308 	hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
309 	wdg->timer.function = __rq_watchdog_expired;
310 	hrtimer_start_range_ns(&wdg->timer,
311 			       ns_to_ktime(ce->watchdog.timeout_us *
312 					   NSEC_PER_USEC),
313 			       NSEC_PER_MSEC,
314 			       HRTIMER_MODE_REL);
315 }
316 
__rq_cancel_watchdog(struct i915_request * rq)317 static void __rq_cancel_watchdog(struct i915_request *rq)
318 {
319 	struct i915_request_watchdog *wdg = &rq->watchdog;
320 
321 	if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0)
322 		i915_request_put(rq);
323 }
324 
325 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
326 
327 /**
328  * i915_request_free_capture_list - Free a capture list
329  * @capture: Pointer to the first list item or NULL
330  *
331  */
i915_request_free_capture_list(struct i915_capture_list * capture)332 void i915_request_free_capture_list(struct i915_capture_list *capture)
333 {
334 	while (capture) {
335 		struct i915_capture_list *next = capture->next;
336 
337 		i915_vma_resource_put(capture->vma_res);
338 		kfree(capture);
339 		capture = next;
340 	}
341 }
342 
343 #define assert_capture_list_is_null(_rq) GEM_BUG_ON((_rq)->capture_list)
344 
345 #define clear_capture_list(_rq) ((_rq)->capture_list = NULL)
346 
347 #else
348 
349 #define i915_request_free_capture_list(_a) do {} while (0)
350 
351 #define assert_capture_list_is_null(_a) do {} while (0)
352 
353 #define clear_capture_list(_rq) do {} while (0)
354 
355 #endif
356 
i915_request_retire(struct i915_request * rq)357 bool i915_request_retire(struct i915_request *rq)
358 {
359 	if (!__i915_request_is_complete(rq))
360 		return false;
361 
362 	RQ_TRACE(rq, "\n");
363 
364 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
365 	trace_i915_request_retire(rq);
366 	i915_request_mark_complete(rq);
367 
368 	__rq_cancel_watchdog(rq);
369 
370 	/*
371 	 * We know the GPU must have read the request to have
372 	 * sent us the seqno + interrupt, so use the position
373 	 * of tail of the request to update the last known position
374 	 * of the GPU head.
375 	 *
376 	 * Note this requires that we are always called in request
377 	 * completion order.
378 	 */
379 	GEM_BUG_ON(!list_is_first(&rq->link,
380 				  &i915_request_timeline(rq)->requests));
381 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
382 		/* Poison before we release our space in the ring */
383 		__i915_request_fill(rq, POISON_FREE);
384 	rq->ring->head = rq->postfix;
385 
386 	if (!i915_request_signaled(rq)) {
387 		spin_lock_irq(&rq->lock);
388 		dma_fence_signal_locked(&rq->fence);
389 		spin_unlock_irq(&rq->lock);
390 	}
391 
392 	if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
393 		intel_rps_dec_waiters(&rq->engine->gt->rps);
394 
395 	/*
396 	 * We only loosely track inflight requests across preemption,
397 	 * and so we may find ourselves attempting to retire a _completed_
398 	 * request that we have removed from the HW and put back on a run
399 	 * queue.
400 	 *
401 	 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
402 	 * after removing the breadcrumb and signaling it, so that we do not
403 	 * inadvertently attach the breadcrumb to a completed request.
404 	 */
405 	rq->engine->remove_active_request(rq);
406 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
407 
408 	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
409 
410 	intel_context_exit(rq->context);
411 	intel_context_unpin(rq->context);
412 
413 	i915_sched_node_fini(&rq->sched);
414 	i915_request_put(rq);
415 
416 	return true;
417 }
418 
i915_request_retire_upto(struct i915_request * rq)419 void i915_request_retire_upto(struct i915_request *rq)
420 {
421 	struct intel_timeline * const tl = i915_request_timeline(rq);
422 	struct i915_request *tmp;
423 
424 	RQ_TRACE(rq, "\n");
425 	GEM_BUG_ON(!__i915_request_is_complete(rq));
426 
427 	do {
428 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
429 		GEM_BUG_ON(!i915_request_completed(tmp));
430 	} while (i915_request_retire(tmp) && tmp != rq);
431 }
432 
433 static struct i915_request * const *
__engine_active(struct intel_engine_cs * engine)434 __engine_active(struct intel_engine_cs *engine)
435 {
436 	return READ_ONCE(engine->execlists.active);
437 }
438 
__request_in_flight(const struct i915_request * signal)439 static bool __request_in_flight(const struct i915_request *signal)
440 {
441 	struct i915_request * const *port, *rq;
442 	bool inflight = false;
443 
444 	if (!i915_request_is_ready(signal))
445 		return false;
446 
447 	/*
448 	 * Even if we have unwound the request, it may still be on
449 	 * the GPU (preempt-to-busy). If that request is inside an
450 	 * unpreemptible critical section, it will not be removed. Some
451 	 * GPU functions may even be stuck waiting for the paired request
452 	 * (__await_execution) to be submitted and cannot be preempted
453 	 * until the bond is executing.
454 	 *
455 	 * As we know that there are always preemption points between
456 	 * requests, we know that only the currently executing request
457 	 * may be still active even though we have cleared the flag.
458 	 * However, we can't rely on our tracking of ELSP[0] to know
459 	 * which request is currently active and so maybe stuck, as
460 	 * the tracking maybe an event behind. Instead assume that
461 	 * if the context is still inflight, then it is still active
462 	 * even if the active flag has been cleared.
463 	 *
464 	 * To further complicate matters, if there a pending promotion, the HW
465 	 * may either perform a context switch to the second inflight execlists,
466 	 * or it may switch to the pending set of execlists. In the case of the
467 	 * latter, it may send the ACK and we process the event copying the
468 	 * pending[] over top of inflight[], _overwriting_ our *active. Since
469 	 * this implies the HW is arbitrating and not struck in *active, we do
470 	 * not worry about complete accuracy, but we do require no read/write
471 	 * tearing of the pointer [the read of the pointer must be valid, even
472 	 * as the array is being overwritten, for which we require the writes
473 	 * to avoid tearing.]
474 	 *
475 	 * Note that the read of *execlists->active may race with the promotion
476 	 * of execlists->pending[] to execlists->inflight[], overwritting
477 	 * the value at *execlists->active. This is fine. The promotion implies
478 	 * that we received an ACK from the HW, and so the context is not
479 	 * stuck -- if we do not see ourselves in *active, the inflight status
480 	 * is valid. If instead we see ourselves being copied into *active,
481 	 * we are inflight and may signal the callback.
482 	 */
483 	if (!intel_context_inflight(signal->context))
484 		return false;
485 
486 	rcu_read_lock();
487 	for (port = __engine_active(signal->engine);
488 	     (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
489 	     port++) {
490 		if (rq->context == signal->context) {
491 			inflight = i915_seqno_passed(rq->fence.seqno,
492 						     signal->fence.seqno);
493 			break;
494 		}
495 	}
496 	rcu_read_unlock();
497 
498 	return inflight;
499 }
500 
501 static int
__await_execution(struct i915_request * rq,struct i915_request * signal,gfp_t gfp)502 __await_execution(struct i915_request *rq,
503 		  struct i915_request *signal,
504 		  gfp_t gfp)
505 {
506 	struct execute_cb *cb;
507 
508 	if (i915_request_is_active(signal))
509 		return 0;
510 
511 	cb = kmem_cache_alloc(slab_execute_cbs, gfp);
512 	if (!cb)
513 		return -ENOMEM;
514 
515 	cb->fence = &rq->submit;
516 	i915_sw_fence_await(cb->fence);
517 	init_irq_work(&cb->work, irq_execute_cb);
518 
519 	/*
520 	 * Register the callback first, then see if the signaler is already
521 	 * active. This ensures that if we race with the
522 	 * __notify_execute_cb from i915_request_submit() and we are not
523 	 * included in that list, we get a second bite of the cherry and
524 	 * execute it ourselves. After this point, a future
525 	 * i915_request_submit() will notify us.
526 	 *
527 	 * In i915_request_retire() we set the ACTIVE bit on a completed
528 	 * request (then flush the execute_cb). So by registering the
529 	 * callback first, then checking the ACTIVE bit, we serialise with
530 	 * the completed/retired request.
531 	 */
532 	if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
533 		if (i915_request_is_active(signal) ||
534 		    __request_in_flight(signal))
535 			i915_request_notify_execute_cb_imm(signal);
536 	}
537 
538 	return 0;
539 }
540 
fatal_error(int error)541 static bool fatal_error(int error)
542 {
543 	switch (error) {
544 	case 0: /* not an error! */
545 	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
546 	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
547 		return false;
548 	default:
549 		return true;
550 	}
551 }
552 
__i915_request_skip(struct i915_request * rq)553 void __i915_request_skip(struct i915_request *rq)
554 {
555 	GEM_BUG_ON(!fatal_error(rq->fence.error));
556 
557 	if (rq->infix == rq->postfix)
558 		return;
559 
560 	RQ_TRACE(rq, "error: %d\n", rq->fence.error);
561 
562 	/*
563 	 * As this request likely depends on state from the lost
564 	 * context, clear out all the user operations leaving the
565 	 * breadcrumb at the end (so we get the fence notifications).
566 	 */
567 	__i915_request_fill(rq, 0);
568 	rq->infix = rq->postfix;
569 }
570 
i915_request_set_error_once(struct i915_request * rq,int error)571 bool i915_request_set_error_once(struct i915_request *rq, int error)
572 {
573 	int old;
574 
575 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
576 
577 	if (i915_request_signaled(rq))
578 		return false;
579 
580 	old = READ_ONCE(rq->fence.error);
581 	do {
582 		if (fatal_error(old))
583 			return false;
584 	} while (!try_cmpxchg(&rq->fence.error, &old, error));
585 
586 	return true;
587 }
588 
i915_request_mark_eio(struct i915_request * rq)589 struct i915_request *i915_request_mark_eio(struct i915_request *rq)
590 {
591 	if (__i915_request_is_complete(rq))
592 		return NULL;
593 
594 	GEM_BUG_ON(i915_request_signaled(rq));
595 
596 	/* As soon as the request is completed, it may be retired */
597 	rq = i915_request_get(rq);
598 
599 	i915_request_set_error_once(rq, -EIO);
600 	i915_request_mark_complete(rq);
601 
602 	return rq;
603 }
604 
__i915_request_submit(struct i915_request * request)605 bool __i915_request_submit(struct i915_request *request)
606 {
607 	struct intel_engine_cs *engine = request->engine;
608 	bool result = false;
609 
610 	RQ_TRACE(request, "\n");
611 
612 	GEM_BUG_ON(!irqs_disabled());
613 	lockdep_assert_held(&engine->sched_engine->lock);
614 
615 	/*
616 	 * With the advent of preempt-to-busy, we frequently encounter
617 	 * requests that we have unsubmitted from HW, but left running
618 	 * until the next ack and so have completed in the meantime. On
619 	 * resubmission of that completed request, we can skip
620 	 * updating the payload, and execlists can even skip submitting
621 	 * the request.
622 	 *
623 	 * We must remove the request from the caller's priority queue,
624 	 * and the caller must only call us when the request is in their
625 	 * priority queue, under the sched_engine->lock. This ensures that the
626 	 * request has *not* yet been retired and we can safely move
627 	 * the request into the engine->active.list where it will be
628 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
629 	 * request, this would be a horrible use-after-free.)
630 	 */
631 	if (__i915_request_is_complete(request)) {
632 		list_del_init(&request->sched.link);
633 		goto active;
634 	}
635 
636 	if (unlikely(!intel_context_is_schedulable(request->context)))
637 		i915_request_set_error_once(request, -EIO);
638 
639 	if (unlikely(fatal_error(request->fence.error)))
640 		__i915_request_skip(request);
641 
642 	/*
643 	 * Are we using semaphores when the gpu is already saturated?
644 	 *
645 	 * Using semaphores incurs a cost in having the GPU poll a
646 	 * memory location, busywaiting for it to change. The continual
647 	 * memory reads can have a noticeable impact on the rest of the
648 	 * system with the extra bus traffic, stalling the cpu as it too
649 	 * tries to access memory across the bus (perf stat -e bus-cycles).
650 	 *
651 	 * If we installed a semaphore on this request and we only submit
652 	 * the request after the signaler completed, that indicates the
653 	 * system is overloaded and using semaphores at this time only
654 	 * increases the amount of work we are doing. If so, we disable
655 	 * further use of semaphores until we are idle again, whence we
656 	 * optimistically try again.
657 	 */
658 	if (request->sched.semaphores &&
659 	    i915_sw_fence_signaled(&request->semaphore))
660 		engine->saturated |= request->sched.semaphores;
661 
662 	engine->emit_fini_breadcrumb(request,
663 				     request->ring->vaddr + request->postfix);
664 
665 	trace_i915_request_execute(request);
666 	if (engine->bump_serial)
667 		engine->bump_serial(engine);
668 	else
669 		engine->serial++;
670 
671 	result = true;
672 
673 	GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
674 	engine->add_active_request(request);
675 active:
676 	clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
677 	set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
678 
679 	/*
680 	 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
681 	 *
682 	 * In the future, perhaps when we have an active time-slicing scheduler,
683 	 * it will be interesting to unsubmit parallel execution and remove
684 	 * busywaits from the GPU until their master is restarted. This is
685 	 * quite hairy, we have to carefully rollback the fence and do a
686 	 * preempt-to-idle cycle on the target engine, all the while the
687 	 * master execute_cb may refire.
688 	 */
689 	__notify_execute_cb_irq(request);
690 
691 	/* We may be recursing from the signal callback of another i915 fence */
692 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
693 		i915_request_enable_breadcrumb(request);
694 
695 	return result;
696 }
697 
i915_request_submit(struct i915_request * request)698 void i915_request_submit(struct i915_request *request)
699 {
700 	struct intel_engine_cs *engine = request->engine;
701 	unsigned long flags;
702 
703 	/* Will be called from irq-context when using foreign fences. */
704 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
705 
706 	__i915_request_submit(request);
707 
708 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
709 }
710 
__i915_request_unsubmit(struct i915_request * request)711 void __i915_request_unsubmit(struct i915_request *request)
712 {
713 	struct intel_engine_cs *engine = request->engine;
714 
715 	/*
716 	 * Only unwind in reverse order, required so that the per-context list
717 	 * is kept in seqno/ring order.
718 	 */
719 	RQ_TRACE(request, "\n");
720 
721 	GEM_BUG_ON(!irqs_disabled());
722 	lockdep_assert_held(&engine->sched_engine->lock);
723 
724 	/*
725 	 * Before we remove this breadcrumb from the signal list, we have
726 	 * to ensure that a concurrent dma_fence_enable_signaling() does not
727 	 * attach itself. We first mark the request as no longer active and
728 	 * make sure that is visible to other cores, and then remove the
729 	 * breadcrumb if attached.
730 	 */
731 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
732 	clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
733 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
734 		i915_request_cancel_breadcrumb(request);
735 
736 	/* We've already spun, don't charge on resubmitting. */
737 	if (request->sched.semaphores && __i915_request_has_started(request))
738 		request->sched.semaphores = 0;
739 
740 	/*
741 	 * We don't need to wake_up any waiters on request->execute, they
742 	 * will get woken by any other event or us re-adding this request
743 	 * to the engine timeline (__i915_request_submit()). The waiters
744 	 * should be quite adapt at finding that the request now has a new
745 	 * global_seqno to the one they went to sleep on.
746 	 */
747 }
748 
i915_request_unsubmit(struct i915_request * request)749 void i915_request_unsubmit(struct i915_request *request)
750 {
751 	struct intel_engine_cs *engine = request->engine;
752 	unsigned long flags;
753 
754 	/* Will be called from irq-context when using foreign fences. */
755 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
756 
757 	__i915_request_unsubmit(request);
758 
759 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
760 }
761 
i915_request_cancel(struct i915_request * rq,int error)762 void i915_request_cancel(struct i915_request *rq, int error)
763 {
764 	if (!i915_request_set_error_once(rq, error))
765 		return;
766 
767 	set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags);
768 
769 	intel_context_cancel_request(rq->context, rq);
770 }
771 
772 static int
submit_notify(struct i915_sw_fence * fence,enum i915_sw_fence_notify state)773 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
774 {
775 	struct i915_request *request =
776 		container_of(fence, typeof(*request), submit);
777 
778 	switch (state) {
779 	case FENCE_COMPLETE:
780 		trace_i915_request_submit(request);
781 
782 		if (unlikely(fence->error))
783 			i915_request_set_error_once(request, fence->error);
784 		else
785 			__rq_arm_watchdog(request);
786 
787 		/*
788 		 * We need to serialize use of the submit_request() callback
789 		 * with its hotplugging performed during an emergency
790 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
791 		 * critical section in order to force i915_gem_set_wedged() to
792 		 * wait until the submit_request() is completed before
793 		 * proceeding.
794 		 */
795 		rcu_read_lock();
796 		request->engine->submit_request(request);
797 		rcu_read_unlock();
798 		break;
799 
800 	case FENCE_FREE:
801 		i915_request_put(request);
802 		break;
803 	}
804 
805 	return NOTIFY_DONE;
806 }
807 
808 static int
semaphore_notify(struct i915_sw_fence * fence,enum i915_sw_fence_notify state)809 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
810 {
811 	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
812 
813 	switch (state) {
814 	case FENCE_COMPLETE:
815 		break;
816 
817 	case FENCE_FREE:
818 		i915_request_put(rq);
819 		break;
820 	}
821 
822 	return NOTIFY_DONE;
823 }
824 
retire_requests(struct intel_timeline * tl)825 static void retire_requests(struct intel_timeline *tl)
826 {
827 	struct i915_request *rq, *rn;
828 
829 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
830 		if (!i915_request_retire(rq))
831 			break;
832 }
833 
834 static noinline struct i915_request *
request_alloc_slow(struct intel_timeline * tl,struct i915_request ** rsvd,gfp_t gfp)835 request_alloc_slow(struct intel_timeline *tl,
836 		   struct i915_request **rsvd,
837 		   gfp_t gfp)
838 {
839 	struct i915_request *rq;
840 
841 	/* If we cannot wait, dip into our reserves */
842 	if (!gfpflags_allow_blocking(gfp)) {
843 		rq = xchg(rsvd, NULL);
844 		if (!rq) /* Use the normal failure path for one final WARN */
845 			goto out;
846 
847 		return rq;
848 	}
849 
850 	if (list_empty(&tl->requests))
851 		goto out;
852 
853 	/* Move our oldest request to the slab-cache (if not in use!) */
854 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
855 	i915_request_retire(rq);
856 
857 	rq = kmem_cache_alloc(slab_requests,
858 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
859 	if (rq)
860 		return rq;
861 
862 	/* Ratelimit ourselves to prevent oom from malicious clients */
863 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
864 	cond_synchronize_rcu(rq->rcustate);
865 
866 	/* Retire our old requests in the hope that we free some */
867 	retire_requests(tl);
868 
869 out:
870 	return kmem_cache_alloc(slab_requests, gfp);
871 }
872 
__i915_request_ctor(void * arg)873 static void __i915_request_ctor(void *arg)
874 {
875 	struct i915_request *rq = arg;
876 
877 	spin_lock_init(&rq->lock);
878 	i915_sched_node_init(&rq->sched);
879 	i915_sw_fence_init(&rq->submit, submit_notify);
880 	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
881 
882 	clear_capture_list(rq);
883 	rq->batch_res = NULL;
884 
885 	init_llist_head(&rq->execute_cb);
886 }
887 
888 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
889 #define clear_batch_ptr(_rq) ((_rq)->batch = NULL)
890 #else
891 #define clear_batch_ptr(_a) do {} while (0)
892 #endif
893 
894 struct i915_request *
__i915_request_create(struct intel_context * ce,gfp_t gfp)895 __i915_request_create(struct intel_context *ce, gfp_t gfp)
896 {
897 	struct intel_timeline *tl = ce->timeline;
898 	struct i915_request *rq;
899 	u32 seqno;
900 	int ret;
901 
902 	might_alloc(gfp);
903 
904 	/* Check that the caller provided an already pinned context */
905 	__intel_context_pin(ce);
906 
907 	/*
908 	 * Beware: Dragons be flying overhead.
909 	 *
910 	 * We use RCU to look up requests in flight. The lookups may
911 	 * race with the request being allocated from the slab freelist.
912 	 * That is the request we are writing to here, may be in the process
913 	 * of being read by __i915_active_request_get_rcu(). As such,
914 	 * we have to be very careful when overwriting the contents. During
915 	 * the RCU lookup, we change chase the request->engine pointer,
916 	 * read the request->global_seqno and increment the reference count.
917 	 *
918 	 * The reference count is incremented atomically. If it is zero,
919 	 * the lookup knows the request is unallocated and complete. Otherwise,
920 	 * it is either still in use, or has been reallocated and reset
921 	 * with dma_fence_init(). This increment is safe for release as we
922 	 * check that the request we have a reference to and matches the active
923 	 * request.
924 	 *
925 	 * Before we increment the refcount, we chase the request->engine
926 	 * pointer. We must not call kmem_cache_zalloc() or else we set
927 	 * that pointer to NULL and cause a crash during the lookup. If
928 	 * we see the request is completed (based on the value of the
929 	 * old engine and seqno), the lookup is complete and reports NULL.
930 	 * If we decide the request is not completed (new engine or seqno),
931 	 * then we grab a reference and double check that it is still the
932 	 * active request - which it won't be and restart the lookup.
933 	 *
934 	 * Do not use kmem_cache_zalloc() here!
935 	 */
936 	rq = kmem_cache_alloc(slab_requests,
937 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
938 	if (unlikely(!rq)) {
939 		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
940 		if (!rq) {
941 			ret = -ENOMEM;
942 			goto err_unreserve;
943 		}
944 	}
945 
946 	rq->context = ce;
947 	rq->engine = ce->engine;
948 	rq->ring = ce->ring;
949 	rq->execution_mask = ce->engine->mask;
950 	rq->i915 = ce->engine->i915;
951 
952 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
953 	if (ret)
954 		goto err_free;
955 
956 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
957 		       tl->fence_context, seqno);
958 
959 	RCU_INIT_POINTER(rq->timeline, tl);
960 	rq->hwsp_seqno = tl->hwsp_seqno;
961 	GEM_BUG_ON(__i915_request_is_complete(rq));
962 
963 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
964 
965 	rq->guc_prio = GUC_PRIO_INIT;
966 
967 	/* We bump the ref for the fence chain */
968 	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
969 	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
970 
971 	i915_sched_node_reinit(&rq->sched);
972 
973 	/* No zalloc, everything must be cleared after use */
974 	clear_batch_ptr(rq);
975 	__rq_init_watchdog(rq);
976 	assert_capture_list_is_null(rq);
977 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
978 	GEM_BUG_ON(rq->batch_res);
979 
980 	/*
981 	 * Reserve space in the ring buffer for all the commands required to
982 	 * eventually emit this request. This is to guarantee that the
983 	 * i915_request_add() call can't fail. Note that the reserve may need
984 	 * to be redone if the request is not actually submitted straight
985 	 * away, e.g. because a GPU scheduler has deferred it.
986 	 *
987 	 * Note that due to how we add reserved_space to intel_ring_begin()
988 	 * we need to double our request to ensure that if we need to wrap
989 	 * around inside i915_request_add() there is sufficient space at
990 	 * the beginning of the ring as well.
991 	 */
992 	rq->reserved_space =
993 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
994 
995 	/*
996 	 * Record the position of the start of the request so that
997 	 * should we detect the updated seqno part-way through the
998 	 * GPU processing the request, we never over-estimate the
999 	 * position of the head.
1000 	 */
1001 	rq->head = rq->ring->emit;
1002 
1003 	ret = rq->engine->request_alloc(rq);
1004 	if (ret)
1005 		goto err_unwind;
1006 
1007 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
1008 
1009 	intel_context_mark_active(ce);
1010 	list_add_tail_rcu(&rq->link, &tl->requests);
1011 
1012 	return rq;
1013 
1014 err_unwind:
1015 	ce->ring->emit = rq->head;
1016 
1017 	/* Make sure we didn't add ourselves to external state before freeing */
1018 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
1019 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
1020 
1021 err_free:
1022 	kmem_cache_free(slab_requests, rq);
1023 err_unreserve:
1024 	intel_context_unpin(ce);
1025 	return ERR_PTR(ret);
1026 }
1027 
1028 struct i915_request *
i915_request_create(struct intel_context * ce)1029 i915_request_create(struct intel_context *ce)
1030 {
1031 	struct i915_request *rq;
1032 	struct intel_timeline *tl;
1033 
1034 	tl = intel_context_timeline_lock(ce);
1035 	if (IS_ERR(tl))
1036 		return ERR_CAST(tl);
1037 
1038 	/* Move our oldest request to the slab-cache (if not in use!) */
1039 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
1040 	if (!list_is_last(&rq->link, &tl->requests))
1041 		i915_request_retire(rq);
1042 
1043 	intel_context_enter(ce);
1044 	rq = __i915_request_create(ce, GFP_KERNEL);
1045 	intel_context_exit(ce); /* active reference transferred to request */
1046 	if (IS_ERR(rq))
1047 		goto err_unlock;
1048 
1049 	/* Check that we do not interrupt ourselves with a new request */
1050 	rq->cookie = lockdep_pin_lock(&tl->mutex);
1051 
1052 	return rq;
1053 
1054 err_unlock:
1055 	intel_context_timeline_unlock(tl);
1056 	return rq;
1057 }
1058 
1059 static int
i915_request_await_start(struct i915_request * rq,struct i915_request * signal)1060 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
1061 {
1062 	struct dma_fence *fence;
1063 	int err;
1064 
1065 	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
1066 		return 0;
1067 
1068 	if (i915_request_started(signal))
1069 		return 0;
1070 
1071 	/*
1072 	 * The caller holds a reference on @signal, but we do not serialise
1073 	 * against it being retired and removed from the lists.
1074 	 *
1075 	 * We do not hold a reference to the request before @signal, and
1076 	 * so must be very careful to ensure that it is not _recycled_ as
1077 	 * we follow the link backwards.
1078 	 */
1079 	fence = NULL;
1080 	rcu_read_lock();
1081 	do {
1082 		struct list_head *pos = READ_ONCE(signal->link.prev);
1083 		struct i915_request *prev;
1084 
1085 		/* Confirm signal has not been retired, the link is valid */
1086 		if (unlikely(__i915_request_has_started(signal)))
1087 			break;
1088 
1089 		/* Is signal the earliest request on its timeline? */
1090 		if (pos == &rcu_dereference(signal->timeline)->requests)
1091 			break;
1092 
1093 		/*
1094 		 * Peek at the request before us in the timeline. That
1095 		 * request will only be valid before it is retired, so
1096 		 * after acquiring a reference to it, confirm that it is
1097 		 * still part of the signaler's timeline.
1098 		 */
1099 		prev = list_entry(pos, typeof(*prev), link);
1100 		if (!i915_request_get_rcu(prev))
1101 			break;
1102 
1103 		/* After the strong barrier, confirm prev is still attached */
1104 		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
1105 			i915_request_put(prev);
1106 			break;
1107 		}
1108 
1109 		fence = &prev->fence;
1110 	} while (0);
1111 	rcu_read_unlock();
1112 	if (!fence)
1113 		return 0;
1114 
1115 	err = 0;
1116 	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1117 		err = i915_sw_fence_await_dma_fence(&rq->submit,
1118 						    fence, 0,
1119 						    I915_FENCE_GFP);
1120 	dma_fence_put(fence);
1121 
1122 	return err;
1123 }
1124 
1125 static intel_engine_mask_t
already_busywaiting(struct i915_request * rq)1126 already_busywaiting(struct i915_request *rq)
1127 {
1128 	/*
1129 	 * Polling a semaphore causes bus traffic, delaying other users of
1130 	 * both the GPU and CPU. We want to limit the impact on others,
1131 	 * while taking advantage of early submission to reduce GPU
1132 	 * latency. Therefore we restrict ourselves to not using more
1133 	 * than one semaphore from each source, and not using a semaphore
1134 	 * if we have detected the engine is saturated (i.e. would not be
1135 	 * submitted early and cause bus traffic reading an already passed
1136 	 * semaphore).
1137 	 *
1138 	 * See the are-we-too-late? check in __i915_request_submit().
1139 	 */
1140 	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1141 }
1142 
1143 static int
__emit_semaphore_wait(struct i915_request * to,struct i915_request * from,u32 seqno)1144 __emit_semaphore_wait(struct i915_request *to,
1145 		      struct i915_request *from,
1146 		      u32 seqno)
1147 {
1148 	const int has_token = GRAPHICS_VER(to->engine->i915) >= 12;
1149 	u32 hwsp_offset;
1150 	int len, err;
1151 	u32 *cs;
1152 
1153 	GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8);
1154 	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1155 
1156 	/* We need to pin the signaler's HWSP until we are finished reading. */
1157 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1158 	if (err)
1159 		return err;
1160 
1161 	len = 4;
1162 	if (has_token)
1163 		len += 2;
1164 
1165 	cs = intel_ring_begin(to, len);
1166 	if (IS_ERR(cs))
1167 		return PTR_ERR(cs);
1168 
1169 	/*
1170 	 * Using greater-than-or-equal here means we have to worry
1171 	 * about seqno wraparound. To side step that issue, we swap
1172 	 * the timeline HWSP upon wrapping, so that everyone listening
1173 	 * for the old (pre-wrap) values do not see the much smaller
1174 	 * (post-wrap) values than they were expecting (and so wait
1175 	 * forever).
1176 	 */
1177 	*cs++ = (MI_SEMAPHORE_WAIT |
1178 		 MI_SEMAPHORE_GLOBAL_GTT |
1179 		 MI_SEMAPHORE_POLL |
1180 		 MI_SEMAPHORE_SAD_GTE_SDD) +
1181 		has_token;
1182 	*cs++ = seqno;
1183 	*cs++ = hwsp_offset;
1184 	*cs++ = 0;
1185 	if (has_token) {
1186 		*cs++ = 0;
1187 		*cs++ = MI_NOOP;
1188 	}
1189 
1190 	intel_ring_advance(to, cs);
1191 	return 0;
1192 }
1193 
1194 static bool
can_use_semaphore_wait(struct i915_request * to,struct i915_request * from)1195 can_use_semaphore_wait(struct i915_request *to, struct i915_request *from)
1196 {
1197 	return to->engine->gt->ggtt == from->engine->gt->ggtt;
1198 }
1199 
1200 static int
emit_semaphore_wait(struct i915_request * to,struct i915_request * from,gfp_t gfp)1201 emit_semaphore_wait(struct i915_request *to,
1202 		    struct i915_request *from,
1203 		    gfp_t gfp)
1204 {
1205 	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1206 	struct i915_sw_fence *wait = &to->submit;
1207 
1208 	if (!can_use_semaphore_wait(to, from))
1209 		goto await_fence;
1210 
1211 	if (!intel_context_use_semaphores(to->context))
1212 		goto await_fence;
1213 
1214 	if (i915_request_has_initial_breadcrumb(to))
1215 		goto await_fence;
1216 
1217 	/*
1218 	 * If this or its dependents are waiting on an external fence
1219 	 * that may fail catastrophically, then we want to avoid using
1220 	 * semaphores as they bypass the fence signaling metadata, and we
1221 	 * lose the fence->error propagation.
1222 	 */
1223 	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1224 		goto await_fence;
1225 
1226 	/* Just emit the first semaphore we see as request space is limited. */
1227 	if (already_busywaiting(to) & mask)
1228 		goto await_fence;
1229 
1230 	if (i915_request_await_start(to, from) < 0)
1231 		goto await_fence;
1232 
1233 	/* Only submit our spinner after the signaler is running! */
1234 	if (__await_execution(to, from, gfp))
1235 		goto await_fence;
1236 
1237 	if (__emit_semaphore_wait(to, from, from->fence.seqno))
1238 		goto await_fence;
1239 
1240 	to->sched.semaphores |= mask;
1241 	wait = &to->semaphore;
1242 
1243 await_fence:
1244 	return i915_sw_fence_await_dma_fence(wait,
1245 					     &from->fence, 0,
1246 					     I915_FENCE_GFP);
1247 }
1248 
intel_timeline_sync_has_start(struct intel_timeline * tl,struct dma_fence * fence)1249 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1250 					  struct dma_fence *fence)
1251 {
1252 	return __intel_timeline_sync_is_later(tl,
1253 					      fence->context,
1254 					      fence->seqno - 1);
1255 }
1256 
intel_timeline_sync_set_start(struct intel_timeline * tl,const struct dma_fence * fence)1257 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1258 					 const struct dma_fence *fence)
1259 {
1260 	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1261 }
1262 
1263 static int
__i915_request_await_execution(struct i915_request * to,struct i915_request * from)1264 __i915_request_await_execution(struct i915_request *to,
1265 			       struct i915_request *from)
1266 {
1267 	int err;
1268 
1269 	GEM_BUG_ON(intel_context_is_barrier(from->context));
1270 
1271 	/* Submit both requests at the same time */
1272 	err = __await_execution(to, from, I915_FENCE_GFP);
1273 	if (err)
1274 		return err;
1275 
1276 	/* Squash repeated depenendices to the same timelines */
1277 	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1278 					  &from->fence))
1279 		return 0;
1280 
1281 	/*
1282 	 * Wait until the start of this request.
1283 	 *
1284 	 * The execution cb fires when we submit the request to HW. But in
1285 	 * many cases this may be long before the request itself is ready to
1286 	 * run (consider that we submit 2 requests for the same context, where
1287 	 * the request of interest is behind an indefinite spinner). So we hook
1288 	 * up to both to reduce our queues and keep the execution lag minimised
1289 	 * in the worst case, though we hope that the await_start is elided.
1290 	 */
1291 	err = i915_request_await_start(to, from);
1292 	if (err < 0)
1293 		return err;
1294 
1295 	/*
1296 	 * Ensure both start together [after all semaphores in signal]
1297 	 *
1298 	 * Now that we are queued to the HW at roughly the same time (thanks
1299 	 * to the execute cb) and are ready to run at roughly the same time
1300 	 * (thanks to the await start), our signaler may still be indefinitely
1301 	 * delayed by waiting on a semaphore from a remote engine. If our
1302 	 * signaler depends on a semaphore, so indirectly do we, and we do not
1303 	 * want to start our payload until our signaler also starts theirs.
1304 	 * So we wait.
1305 	 *
1306 	 * However, there is also a second condition for which we need to wait
1307 	 * for the precise start of the signaler. Consider that the signaler
1308 	 * was submitted in a chain of requests following another context
1309 	 * (with just an ordinary intra-engine fence dependency between the
1310 	 * two). In this case the signaler is queued to HW, but not for
1311 	 * immediate execution, and so we must wait until it reaches the
1312 	 * active slot.
1313 	 */
1314 	if (can_use_semaphore_wait(to, from) &&
1315 	    intel_engine_has_semaphores(to->engine) &&
1316 	    !i915_request_has_initial_breadcrumb(to)) {
1317 		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1318 		if (err < 0)
1319 			return err;
1320 	}
1321 
1322 	/* Couple the dependency tree for PI on this exposed to->fence */
1323 	if (to->engine->sched_engine->schedule) {
1324 		err = i915_sched_node_add_dependency(&to->sched,
1325 						     &from->sched,
1326 						     I915_DEPENDENCY_WEAK);
1327 		if (err < 0)
1328 			return err;
1329 	}
1330 
1331 	return intel_timeline_sync_set_start(i915_request_timeline(to),
1332 					     &from->fence);
1333 }
1334 
mark_external(struct i915_request * rq)1335 static void mark_external(struct i915_request *rq)
1336 {
1337 	/*
1338 	 * The downside of using semaphores is that we lose metadata passing
1339 	 * along the signaling chain. This is particularly nasty when we
1340 	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1341 	 * fatal errors we want to scrub the request before it is executed,
1342 	 * which means that we cannot preload the request onto HW and have
1343 	 * it wait upon a semaphore.
1344 	 */
1345 	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1346 }
1347 
1348 static int
__i915_request_await_external(struct i915_request * rq,struct dma_fence * fence)1349 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1350 {
1351 	mark_external(rq);
1352 	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1353 					     i915_fence_context_timeout(rq->i915,
1354 									fence->context),
1355 					     I915_FENCE_GFP);
1356 }
1357 
1358 static int
i915_request_await_external(struct i915_request * rq,struct dma_fence * fence)1359 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1360 {
1361 	struct dma_fence *iter;
1362 	int err = 0;
1363 
1364 	if (!to_dma_fence_chain(fence))
1365 		return __i915_request_await_external(rq, fence);
1366 
1367 	dma_fence_chain_for_each(iter, fence) {
1368 		struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1369 
1370 		if (!dma_fence_is_i915(chain->fence)) {
1371 			err = __i915_request_await_external(rq, iter);
1372 			break;
1373 		}
1374 
1375 		err = i915_request_await_dma_fence(rq, chain->fence);
1376 		if (err < 0)
1377 			break;
1378 	}
1379 
1380 	dma_fence_put(iter);
1381 	return err;
1382 }
1383 
is_parallel_rq(struct i915_request * rq)1384 static inline bool is_parallel_rq(struct i915_request *rq)
1385 {
1386 	return intel_context_is_parallel(rq->context);
1387 }
1388 
request_to_parent(struct i915_request * rq)1389 static inline struct intel_context *request_to_parent(struct i915_request *rq)
1390 {
1391 	return intel_context_to_parent(rq->context);
1392 }
1393 
is_same_parallel_context(struct i915_request * to,struct i915_request * from)1394 static bool is_same_parallel_context(struct i915_request *to,
1395 				     struct i915_request *from)
1396 {
1397 	if (is_parallel_rq(to))
1398 		return request_to_parent(to) == request_to_parent(from);
1399 
1400 	return false;
1401 }
1402 
1403 int
i915_request_await_execution(struct i915_request * rq,struct dma_fence * fence)1404 i915_request_await_execution(struct i915_request *rq,
1405 			     struct dma_fence *fence)
1406 {
1407 	struct dma_fence **child = &fence;
1408 	unsigned int nchild = 1;
1409 	int ret;
1410 
1411 	if (dma_fence_is_array(fence)) {
1412 		struct dma_fence_array *array = to_dma_fence_array(fence);
1413 
1414 		/* XXX Error for signal-on-any fence arrays */
1415 
1416 		child = array->fences;
1417 		nchild = array->num_fences;
1418 		GEM_BUG_ON(!nchild);
1419 	}
1420 
1421 	do {
1422 		fence = *child++;
1423 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1424 			continue;
1425 
1426 		if (fence->context == rq->fence.context)
1427 			continue;
1428 
1429 		/*
1430 		 * We don't squash repeated fence dependencies here as we
1431 		 * want to run our callback in all cases.
1432 		 */
1433 
1434 		if (dma_fence_is_i915(fence)) {
1435 			if (is_same_parallel_context(rq, to_request(fence)))
1436 				continue;
1437 			ret = __i915_request_await_execution(rq,
1438 							     to_request(fence));
1439 		} else {
1440 			ret = i915_request_await_external(rq, fence);
1441 		}
1442 		if (ret < 0)
1443 			return ret;
1444 	} while (--nchild);
1445 
1446 	return 0;
1447 }
1448 
1449 static int
await_request_submit(struct i915_request * to,struct i915_request * from)1450 await_request_submit(struct i915_request *to, struct i915_request *from)
1451 {
1452 	/*
1453 	 * If we are waiting on a virtual engine, then it may be
1454 	 * constrained to execute on a single engine *prior* to submission.
1455 	 * When it is submitted, it will be first submitted to the virtual
1456 	 * engine and then passed to the physical engine. We cannot allow
1457 	 * the waiter to be submitted immediately to the physical engine
1458 	 * as it may then bypass the virtual request.
1459 	 */
1460 	if (to->engine == READ_ONCE(from->engine))
1461 		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1462 							&from->submit,
1463 							I915_FENCE_GFP);
1464 	else
1465 		return __i915_request_await_execution(to, from);
1466 }
1467 
1468 static int
i915_request_await_request(struct i915_request * to,struct i915_request * from)1469 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1470 {
1471 	int ret;
1472 
1473 	GEM_BUG_ON(to == from);
1474 	GEM_BUG_ON(to->timeline == from->timeline);
1475 
1476 	if (i915_request_completed(from)) {
1477 		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1478 		return 0;
1479 	}
1480 
1481 	if (to->engine->sched_engine->schedule) {
1482 		ret = i915_sched_node_add_dependency(&to->sched,
1483 						     &from->sched,
1484 						     I915_DEPENDENCY_EXTERNAL);
1485 		if (ret < 0)
1486 			return ret;
1487 	}
1488 
1489 	if (!intel_engine_uses_guc(to->engine) &&
1490 	    is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1491 		ret = await_request_submit(to, from);
1492 	else
1493 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1494 	if (ret < 0)
1495 		return ret;
1496 
1497 	return 0;
1498 }
1499 
1500 int
i915_request_await_dma_fence(struct i915_request * rq,struct dma_fence * fence)1501 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1502 {
1503 	struct dma_fence **child = &fence;
1504 	unsigned int nchild = 1;
1505 	int ret;
1506 
1507 	/*
1508 	 * Note that if the fence-array was created in signal-on-any mode,
1509 	 * we should *not* decompose it into its individual fences. However,
1510 	 * we don't currently store which mode the fence-array is operating
1511 	 * in. Fortunately, the only user of signal-on-any is private to
1512 	 * amdgpu and we should not see any incoming fence-array from
1513 	 * sync-file being in signal-on-any mode.
1514 	 */
1515 	if (dma_fence_is_array(fence)) {
1516 		struct dma_fence_array *array = to_dma_fence_array(fence);
1517 
1518 		child = array->fences;
1519 		nchild = array->num_fences;
1520 		GEM_BUG_ON(!nchild);
1521 	}
1522 
1523 	do {
1524 		fence = *child++;
1525 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1526 			continue;
1527 
1528 		/*
1529 		 * Requests on the same timeline are explicitly ordered, along
1530 		 * with their dependencies, by i915_request_add() which ensures
1531 		 * that requests are submitted in-order through each ring.
1532 		 */
1533 		if (fence->context == rq->fence.context)
1534 			continue;
1535 
1536 		/* Squash repeated waits to the same timelines */
1537 		if (fence->context &&
1538 		    intel_timeline_sync_is_later(i915_request_timeline(rq),
1539 						 fence))
1540 			continue;
1541 
1542 		if (dma_fence_is_i915(fence)) {
1543 			if (is_same_parallel_context(rq, to_request(fence)))
1544 				continue;
1545 			ret = i915_request_await_request(rq, to_request(fence));
1546 		} else {
1547 			ret = i915_request_await_external(rq, fence);
1548 		}
1549 		if (ret < 0)
1550 			return ret;
1551 
1552 		/* Record the latest fence used against each timeline */
1553 		if (fence->context)
1554 			intel_timeline_sync_set(i915_request_timeline(rq),
1555 						fence);
1556 	} while (--nchild);
1557 
1558 	return 0;
1559 }
1560 
1561 /**
1562  * i915_request_await_deps - set this request to (async) wait upon a struct
1563  * i915_deps dma_fence collection
1564  * @rq: request we are wishing to use
1565  * @deps: The struct i915_deps containing the dependencies.
1566  *
1567  * Returns 0 if successful, negative error code on error.
1568  */
i915_request_await_deps(struct i915_request * rq,const struct i915_deps * deps)1569 int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps)
1570 {
1571 	int i, err;
1572 
1573 	for (i = 0; i < deps->num_deps; ++i) {
1574 		err = i915_request_await_dma_fence(rq, deps->fences[i]);
1575 		if (err)
1576 			return err;
1577 	}
1578 
1579 	return 0;
1580 }
1581 
1582 /**
1583  * i915_request_await_object - set this request to (async) wait upon a bo
1584  * @to: request we are wishing to use
1585  * @obj: object which may be in use on another ring.
1586  * @write: whether the wait is on behalf of a writer
1587  *
1588  * This code is meant to abstract object synchronization with the GPU.
1589  * Conceptually we serialise writes between engines inside the GPU.
1590  * We only allow one engine to write into a buffer at any time, but
1591  * multiple readers. To ensure each has a coherent view of memory, we must:
1592  *
1593  * - If there is an outstanding write request to the object, the new
1594  *   request must wait for it to complete (either CPU or in hw, requests
1595  *   on the same ring will be naturally ordered).
1596  *
1597  * - If we are a write request (pending_write_domain is set), the new
1598  *   request must wait for outstanding read requests to complete.
1599  *
1600  * Returns 0 if successful, else propagates up the lower layer error.
1601  */
1602 int
i915_request_await_object(struct i915_request * to,struct drm_i915_gem_object * obj,bool write)1603 i915_request_await_object(struct i915_request *to,
1604 			  struct drm_i915_gem_object *obj,
1605 			  bool write)
1606 {
1607 	struct dma_resv_iter cursor;
1608 	struct dma_fence *fence;
1609 	int ret = 0;
1610 
1611 	dma_resv_for_each_fence(&cursor, obj->base.resv,
1612 				dma_resv_usage_rw(write), fence) {
1613 		ret = i915_request_await_dma_fence(to, fence);
1614 		if (ret)
1615 			break;
1616 	}
1617 
1618 	return ret;
1619 }
1620 
i915_request_await_huc(struct i915_request * rq)1621 static void i915_request_await_huc(struct i915_request *rq)
1622 {
1623 	struct intel_huc *huc = &rq->context->engine->gt->uc.huc;
1624 
1625 	/* don't stall kernel submissions! */
1626 	if (!rcu_access_pointer(rq->context->gem_context))
1627 		return;
1628 
1629 	if (intel_huc_wait_required(huc))
1630 		i915_sw_fence_await_sw_fence(&rq->submit,
1631 					     &huc->delayed_load.fence,
1632 					     &rq->hucq);
1633 }
1634 
1635 static struct i915_request *
__i915_request_ensure_parallel_ordering(struct i915_request * rq,struct intel_timeline * timeline)1636 __i915_request_ensure_parallel_ordering(struct i915_request *rq,
1637 					struct intel_timeline *timeline)
1638 {
1639 	struct i915_request *prev;
1640 
1641 	GEM_BUG_ON(!is_parallel_rq(rq));
1642 
1643 	prev = request_to_parent(rq)->parallel.last_rq;
1644 	if (prev) {
1645 		if (!__i915_request_is_complete(prev)) {
1646 			i915_sw_fence_await_sw_fence(&rq->submit,
1647 						     &prev->submit,
1648 						     &rq->submitq);
1649 
1650 			if (rq->engine->sched_engine->schedule)
1651 				__i915_sched_node_add_dependency(&rq->sched,
1652 								 &prev->sched,
1653 								 &rq->dep,
1654 								 0);
1655 		}
1656 		i915_request_put(prev);
1657 	}
1658 
1659 	request_to_parent(rq)->parallel.last_rq = i915_request_get(rq);
1660 
1661 	/*
1662 	 * Users have to put a reference potentially got by
1663 	 * __i915_active_fence_set() to the returned request
1664 	 * when no longer needed
1665 	 */
1666 	return to_request(__i915_active_fence_set(&timeline->last_request,
1667 						  &rq->fence));
1668 }
1669 
1670 static struct i915_request *
__i915_request_ensure_ordering(struct i915_request * rq,struct intel_timeline * timeline)1671 __i915_request_ensure_ordering(struct i915_request *rq,
1672 			       struct intel_timeline *timeline)
1673 {
1674 	struct i915_request *prev;
1675 
1676 	GEM_BUG_ON(is_parallel_rq(rq));
1677 
1678 	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1679 						  &rq->fence));
1680 
1681 	if (prev && !__i915_request_is_complete(prev)) {
1682 		bool uses_guc = intel_engine_uses_guc(rq->engine);
1683 		bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask |
1684 					  rq->engine->mask);
1685 		bool same_context = prev->context == rq->context;
1686 
1687 		/*
1688 		 * The requests are supposed to be kept in order. However,
1689 		 * we need to be wary in case the timeline->last_request
1690 		 * is used as a barrier for external modification to this
1691 		 * context.
1692 		 */
1693 		GEM_BUG_ON(same_context &&
1694 			   i915_seqno_passed(prev->fence.seqno,
1695 					     rq->fence.seqno));
1696 
1697 		if ((same_context && uses_guc) || (!uses_guc && pow2))
1698 			i915_sw_fence_await_sw_fence(&rq->submit,
1699 						     &prev->submit,
1700 						     &rq->submitq);
1701 		else
1702 			__i915_sw_fence_await_dma_fence(&rq->submit,
1703 							&prev->fence,
1704 							&rq->dmaq);
1705 		if (rq->engine->sched_engine->schedule)
1706 			__i915_sched_node_add_dependency(&rq->sched,
1707 							 &prev->sched,
1708 							 &rq->dep,
1709 							 0);
1710 	}
1711 
1712 	/*
1713 	 * Users have to put the reference to prev potentially got
1714 	 * by __i915_active_fence_set() when no longer needed
1715 	 */
1716 	return prev;
1717 }
1718 
1719 static struct i915_request *
__i915_request_add_to_timeline(struct i915_request * rq)1720 __i915_request_add_to_timeline(struct i915_request *rq)
1721 {
1722 	struct intel_timeline *timeline = i915_request_timeline(rq);
1723 	struct i915_request *prev;
1724 
1725 	/*
1726 	 * Media workloads may require HuC, so stall them until HuC loading is
1727 	 * complete. Note that HuC not being loaded when a user submission
1728 	 * arrives can only happen when HuC is loaded via GSC and in that case
1729 	 * we still expect the window between us starting to accept submissions
1730 	 * and HuC loading completion to be small (a few hundred ms).
1731 	 */
1732 	if (rq->engine->class == VIDEO_DECODE_CLASS)
1733 		i915_request_await_huc(rq);
1734 
1735 	/*
1736 	 * Dependency tracking and request ordering along the timeline
1737 	 * is special cased so that we can eliminate redundant ordering
1738 	 * operations while building the request (we know that the timeline
1739 	 * itself is ordered, and here we guarantee it).
1740 	 *
1741 	 * As we know we will need to emit tracking along the timeline,
1742 	 * we embed the hooks into our request struct -- at the cost of
1743 	 * having to have specialised no-allocation interfaces (which will
1744 	 * be beneficial elsewhere).
1745 	 *
1746 	 * A second benefit to open-coding i915_request_await_request is
1747 	 * that we can apply a slight variant of the rules specialised
1748 	 * for timelines that jump between engines (such as virtual engines).
1749 	 * If we consider the case of virtual engine, we must emit a dma-fence
1750 	 * to prevent scheduling of the second request until the first is
1751 	 * complete (to maximise our greedy late load balancing) and this
1752 	 * precludes optimising to use semaphores serialisation of a single
1753 	 * timeline across engines.
1754 	 *
1755 	 * We do not order parallel submission requests on the timeline as each
1756 	 * parallel submission context has its own timeline and the ordering
1757 	 * rules for parallel requests are that they must be submitted in the
1758 	 * order received from the execbuf IOCTL. So rather than using the
1759 	 * timeline we store a pointer to last request submitted in the
1760 	 * relationship in the gem context and insert a submission fence
1761 	 * between that request and request passed into this function or
1762 	 * alternatively we use completion fence if gem context has a single
1763 	 * timeline and this is the first submission of an execbuf IOCTL.
1764 	 */
1765 	if (likely(!is_parallel_rq(rq)))
1766 		prev = __i915_request_ensure_ordering(rq, timeline);
1767 	else
1768 		prev = __i915_request_ensure_parallel_ordering(rq, timeline);
1769 	if (prev)
1770 		i915_request_put(prev);
1771 
1772 	/*
1773 	 * Make sure that no request gazumped us - if it was allocated after
1774 	 * our i915_request_alloc() and called __i915_request_add() before
1775 	 * us, the timeline will hold its seqno which is later than ours.
1776 	 */
1777 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1778 
1779 	return prev;
1780 }
1781 
1782 /*
1783  * NB: This function is not allowed to fail. Doing so would mean the the
1784  * request is not being tracked for completion but the work itself is
1785  * going to happen on the hardware. This would be a Bad Thing(tm).
1786  */
__i915_request_commit(struct i915_request * rq)1787 struct i915_request *__i915_request_commit(struct i915_request *rq)
1788 {
1789 	struct intel_engine_cs *engine = rq->engine;
1790 	struct intel_ring *ring = rq->ring;
1791 	u32 *cs;
1792 
1793 	RQ_TRACE(rq, "\n");
1794 
1795 	/*
1796 	 * To ensure that this call will not fail, space for its emissions
1797 	 * should already have been reserved in the ring buffer. Let the ring
1798 	 * know that it is time to use that space up.
1799 	 */
1800 	GEM_BUG_ON(rq->reserved_space > ring->space);
1801 	rq->reserved_space = 0;
1802 	rq->emitted_jiffies = jiffies;
1803 
1804 	/*
1805 	 * Record the position of the start of the breadcrumb so that
1806 	 * should we detect the updated seqno part-way through the
1807 	 * GPU processing the request, we never over-estimate the
1808 	 * position of the ring's HEAD.
1809 	 */
1810 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1811 	GEM_BUG_ON(IS_ERR(cs));
1812 	rq->postfix = intel_ring_offset(rq, cs);
1813 
1814 	return __i915_request_add_to_timeline(rq);
1815 }
1816 
__i915_request_queue_bh(struct i915_request * rq)1817 void __i915_request_queue_bh(struct i915_request *rq)
1818 {
1819 	i915_sw_fence_commit(&rq->semaphore);
1820 	i915_sw_fence_commit(&rq->submit);
1821 }
1822 
__i915_request_queue(struct i915_request * rq,const struct i915_sched_attr * attr)1823 void __i915_request_queue(struct i915_request *rq,
1824 			  const struct i915_sched_attr *attr)
1825 {
1826 	/*
1827 	 * Let the backend know a new request has arrived that may need
1828 	 * to adjust the existing execution schedule due to a high priority
1829 	 * request - i.e. we may want to preempt the current request in order
1830 	 * to run a high priority dependency chain *before* we can execute this
1831 	 * request.
1832 	 *
1833 	 * This is called before the request is ready to run so that we can
1834 	 * decide whether to preempt the entire chain so that it is ready to
1835 	 * run at the earliest possible convenience.
1836 	 */
1837 	if (attr && rq->engine->sched_engine->schedule)
1838 		rq->engine->sched_engine->schedule(rq, attr);
1839 
1840 	local_bh_disable();
1841 	__i915_request_queue_bh(rq);
1842 	local_bh_enable(); /* kick tasklets */
1843 }
1844 
i915_request_add(struct i915_request * rq)1845 void i915_request_add(struct i915_request *rq)
1846 {
1847 	struct intel_timeline * const tl = i915_request_timeline(rq);
1848 	struct i915_sched_attr attr = {};
1849 	struct i915_gem_context *ctx;
1850 
1851 	lockdep_assert_held(&tl->mutex);
1852 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1853 
1854 	trace_i915_request_add(rq);
1855 	__i915_request_commit(rq);
1856 
1857 	/* XXX placeholder for selftests */
1858 	rcu_read_lock();
1859 	ctx = rcu_dereference(rq->context->gem_context);
1860 	if (ctx)
1861 		attr = ctx->sched;
1862 	rcu_read_unlock();
1863 
1864 	__i915_request_queue(rq, &attr);
1865 
1866 	mutex_unlock(&tl->mutex);
1867 }
1868 
local_clock_ns(unsigned int * cpu)1869 static unsigned long local_clock_ns(unsigned int *cpu)
1870 {
1871 	unsigned long t;
1872 
1873 	/*
1874 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1875 	 * The result and subsequent calculations are also defined in the same
1876 	 * approximate microseconds units. The principal source of timing
1877 	 * error here is from the simple truncation.
1878 	 *
1879 	 * Note that local_clock() is only defined wrt to the current CPU;
1880 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1881 	 * blocking preemption for the entire busywait, we can detect the CPU
1882 	 * switch and use that as indicator of system load and a reason to
1883 	 * stop busywaiting, see busywait_stop().
1884 	 */
1885 	*cpu = get_cpu();
1886 	t = local_clock();
1887 	put_cpu();
1888 
1889 	return t;
1890 }
1891 
busywait_stop(unsigned long timeout,unsigned int cpu)1892 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1893 {
1894 	unsigned int this_cpu;
1895 
1896 	if (time_after(local_clock_ns(&this_cpu), timeout))
1897 		return true;
1898 
1899 	return this_cpu != cpu;
1900 }
1901 
__i915_spin_request(struct i915_request * const rq,int state)1902 static bool __i915_spin_request(struct i915_request * const rq, int state)
1903 {
1904 	unsigned long timeout_ns;
1905 	unsigned int cpu;
1906 
1907 	/*
1908 	 * Only wait for the request if we know it is likely to complete.
1909 	 *
1910 	 * We don't track the timestamps around requests, nor the average
1911 	 * request length, so we do not have a good indicator that this
1912 	 * request will complete within the timeout. What we do know is the
1913 	 * order in which requests are executed by the context and so we can
1914 	 * tell if the request has been started. If the request is not even
1915 	 * running yet, it is a fair assumption that it will not complete
1916 	 * within our relatively short timeout.
1917 	 */
1918 	if (!i915_request_is_running(rq))
1919 		return false;
1920 
1921 	/*
1922 	 * When waiting for high frequency requests, e.g. during synchronous
1923 	 * rendering split between the CPU and GPU, the finite amount of time
1924 	 * required to set up the irq and wait upon it limits the response
1925 	 * rate. By busywaiting on the request completion for a short while we
1926 	 * can service the high frequency waits as quick as possible. However,
1927 	 * if it is a slow request, we want to sleep as quickly as possible.
1928 	 * The tradeoff between waiting and sleeping is roughly the time it
1929 	 * takes to sleep on a request, on the order of a microsecond.
1930 	 */
1931 
1932 	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1933 	timeout_ns += local_clock_ns(&cpu);
1934 	do {
1935 		if (dma_fence_is_signaled(&rq->fence))
1936 			return true;
1937 
1938 		if (signal_pending_state(state, current))
1939 			break;
1940 
1941 		if (busywait_stop(timeout_ns, cpu))
1942 			break;
1943 
1944 		cpu_relax();
1945 	} while (!need_resched());
1946 
1947 	return false;
1948 }
1949 
1950 struct request_wait {
1951 	struct dma_fence_cb cb;
1952 	struct task_struct *tsk;
1953 };
1954 
request_wait_wake(struct dma_fence * fence,struct dma_fence_cb * cb)1955 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1956 {
1957 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1958 
1959 	wake_up_process(fetch_and_zero(&wait->tsk));
1960 }
1961 
1962 /**
1963  * i915_request_wait_timeout - wait until execution of request has finished
1964  * @rq: the request to wait upon
1965  * @flags: how to wait
1966  * @timeout: how long to wait in jiffies
1967  *
1968  * i915_request_wait_timeout() waits for the request to be completed, for a
1969  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1970  * unbounded wait).
1971  *
1972  * Returns the remaining time (in jiffies) if the request completed, which may
1973  * be zero if the request is unfinished after the timeout expires.
1974  * If the timeout is 0, it will return 1 if the fence is signaled.
1975  *
1976  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1977  * pending before the request completes.
1978  *
1979  * NOTE: This function has the same wait semantics as dma-fence.
1980  */
i915_request_wait_timeout(struct i915_request * rq,unsigned int flags,long timeout)1981 long i915_request_wait_timeout(struct i915_request *rq,
1982 			       unsigned int flags,
1983 			       long timeout)
1984 {
1985 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1986 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1987 	struct request_wait wait;
1988 
1989 	might_sleep();
1990 	GEM_BUG_ON(timeout < 0);
1991 
1992 	if (dma_fence_is_signaled(&rq->fence))
1993 		return timeout ?: 1;
1994 
1995 	if (!timeout)
1996 		return -ETIME;
1997 
1998 	trace_i915_request_wait_begin(rq, flags);
1999 
2000 	/*
2001 	 * We must never wait on the GPU while holding a lock as we
2002 	 * may need to perform a GPU reset. So while we don't need to
2003 	 * serialise wait/reset with an explicit lock, we do want
2004 	 * lockdep to detect potential dependency cycles.
2005 	 */
2006 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
2007 
2008 	/*
2009 	 * Optimistic spin before touching IRQs.
2010 	 *
2011 	 * We may use a rather large value here to offset the penalty of
2012 	 * switching away from the active task. Frequently, the client will
2013 	 * wait upon an old swapbuffer to throttle itself to remain within a
2014 	 * frame of the gpu. If the client is running in lockstep with the gpu,
2015 	 * then it should not be waiting long at all, and a sleep now will incur
2016 	 * extra scheduler latency in producing the next frame. To try to
2017 	 * avoid adding the cost of enabling/disabling the interrupt to the
2018 	 * short wait, we first spin to see if the request would have completed
2019 	 * in the time taken to setup the interrupt.
2020 	 *
2021 	 * We need upto 5us to enable the irq, and upto 20us to hide the
2022 	 * scheduler latency of a context switch, ignoring the secondary
2023 	 * impacts from a context switch such as cache eviction.
2024 	 *
2025 	 * The scheme used for low-latency IO is called "hybrid interrupt
2026 	 * polling". The suggestion there is to sleep until just before you
2027 	 * expect to be woken by the device interrupt and then poll for its
2028 	 * completion. That requires having a good predictor for the request
2029 	 * duration, which we currently lack.
2030 	 */
2031 	if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT &&
2032 	    __i915_spin_request(rq, state))
2033 		goto out;
2034 
2035 	/*
2036 	 * This client is about to stall waiting for the GPU. In many cases
2037 	 * this is undesirable and limits the throughput of the system, as
2038 	 * many clients cannot continue processing user input/output whilst
2039 	 * blocked. RPS autotuning may take tens of milliseconds to respond
2040 	 * to the GPU load and thus incurs additional latency for the client.
2041 	 * We can circumvent that by promoting the GPU frequency to maximum
2042 	 * before we sleep. This makes the GPU throttle up much more quickly
2043 	 * (good for benchmarks and user experience, e.g. window animations),
2044 	 * but at a cost of spending more power processing the workload
2045 	 * (bad for battery).
2046 	 */
2047 	if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
2048 		intel_rps_boost(rq);
2049 
2050 	wait.tsk = current;
2051 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
2052 		goto out;
2053 
2054 	/*
2055 	 * Flush the submission tasklet, but only if it may help this request.
2056 	 *
2057 	 * We sometimes experience some latency between the HW interrupts and
2058 	 * tasklet execution (mostly due to ksoftirqd latency, but it can also
2059 	 * be due to lazy CS events), so lets run the tasklet manually if there
2060 	 * is a chance it may submit this request. If the request is not ready
2061 	 * to run, as it is waiting for other fences to be signaled, flushing
2062 	 * the tasklet is busy work without any advantage for this client.
2063 	 *
2064 	 * If the HW is being lazy, this is the last chance before we go to
2065 	 * sleep to catch any pending events. We will check periodically in
2066 	 * the heartbeat to flush the submission tasklets as a last resort
2067 	 * for unhappy HW.
2068 	 */
2069 	if (i915_request_is_ready(rq))
2070 		__intel_engine_flush_submission(rq->engine, false);
2071 
2072 	for (;;) {
2073 		set_current_state(state);
2074 
2075 		if (dma_fence_is_signaled(&rq->fence))
2076 			break;
2077 
2078 		if (signal_pending_state(state, current)) {
2079 			timeout = -ERESTARTSYS;
2080 			break;
2081 		}
2082 
2083 		if (!timeout) {
2084 			timeout = -ETIME;
2085 			break;
2086 		}
2087 
2088 		timeout = io_schedule_timeout(timeout);
2089 	}
2090 	__set_current_state(TASK_RUNNING);
2091 
2092 	if (READ_ONCE(wait.tsk))
2093 		dma_fence_remove_callback(&rq->fence, &wait.cb);
2094 	GEM_BUG_ON(!list_empty(&wait.cb.node));
2095 
2096 out:
2097 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
2098 	trace_i915_request_wait_end(rq);
2099 	return timeout;
2100 }
2101 
2102 /**
2103  * i915_request_wait - wait until execution of request has finished
2104  * @rq: the request to wait upon
2105  * @flags: how to wait
2106  * @timeout: how long to wait in jiffies
2107  *
2108  * i915_request_wait() waits for the request to be completed, for a
2109  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
2110  * unbounded wait).
2111  *
2112  * Returns the remaining time (in jiffies) if the request completed, which may
2113  * be zero or -ETIME if the request is unfinished after the timeout expires.
2114  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
2115  * pending before the request completes.
2116  *
2117  * NOTE: This function behaves differently from dma-fence wait semantics for
2118  * timeout = 0. It returns 0 on success, and -ETIME if not signaled.
2119  */
i915_request_wait(struct i915_request * rq,unsigned int flags,long timeout)2120 long i915_request_wait(struct i915_request *rq,
2121 		       unsigned int flags,
2122 		       long timeout)
2123 {
2124 	long ret = i915_request_wait_timeout(rq, flags, timeout);
2125 
2126 	if (!ret)
2127 		return -ETIME;
2128 
2129 	if (ret > 0 && !timeout)
2130 		return 0;
2131 
2132 	return ret;
2133 }
2134 
print_sched_attr(const struct i915_sched_attr * attr,char * buf,int x,int len)2135 static int print_sched_attr(const struct i915_sched_attr *attr,
2136 			    char *buf, int x, int len)
2137 {
2138 	if (attr->priority == I915_PRIORITY_INVALID)
2139 		return x;
2140 
2141 	x += snprintf(buf + x, len - x,
2142 		      " prio=%d", attr->priority);
2143 
2144 	return x;
2145 }
2146 
queue_status(const struct i915_request * rq)2147 static char queue_status(const struct i915_request *rq)
2148 {
2149 	if (i915_request_is_active(rq))
2150 		return 'E';
2151 
2152 	if (i915_request_is_ready(rq))
2153 		return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';
2154 
2155 	return 'U';
2156 }
2157 
run_status(const struct i915_request * rq)2158 static const char *run_status(const struct i915_request *rq)
2159 {
2160 	if (__i915_request_is_complete(rq))
2161 		return "!";
2162 
2163 	if (__i915_request_has_started(rq))
2164 		return "*";
2165 
2166 	if (!i915_sw_fence_signaled(&rq->semaphore))
2167 		return "&";
2168 
2169 	return "";
2170 }
2171 
fence_status(const struct i915_request * rq)2172 static const char *fence_status(const struct i915_request *rq)
2173 {
2174 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
2175 		return "+";
2176 
2177 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
2178 		return "-";
2179 
2180 	return "";
2181 }
2182 
i915_request_show(struct drm_printer * m,const struct i915_request * rq,const char * prefix,int indent)2183 void i915_request_show(struct drm_printer *m,
2184 		       const struct i915_request *rq,
2185 		       const char *prefix,
2186 		       int indent)
2187 {
2188 	const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
2189 	char buf[80] = "";
2190 	int x = 0;
2191 
2192 	/*
2193 	 * The prefix is used to show the queue status, for which we use
2194 	 * the following flags:
2195 	 *
2196 	 *  U [Unready]
2197 	 *    - initial status upon being submitted by the user
2198 	 *
2199 	 *    - the request is not ready for execution as it is waiting
2200 	 *      for external fences
2201 	 *
2202 	 *  R [Ready]
2203 	 *    - all fences the request was waiting on have been signaled,
2204 	 *      and the request is now ready for execution and will be
2205 	 *      in a backend queue
2206 	 *
2207 	 *    - a ready request may still need to wait on semaphores
2208 	 *      [internal fences]
2209 	 *
2210 	 *  V [Ready/virtual]
2211 	 *    - same as ready, but queued over multiple backends
2212 	 *
2213 	 *  E [Executing]
2214 	 *    - the request has been transferred from the backend queue and
2215 	 *      submitted for execution on HW
2216 	 *
2217 	 *    - a completed request may still be regarded as executing, its
2218 	 *      status may not be updated until it is retired and removed
2219 	 *      from the lists
2220 	 */
2221 
2222 	x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
2223 
2224 	drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
2225 		   prefix, indent, "                ",
2226 		   queue_status(rq),
2227 		   rq->fence.context, rq->fence.seqno,
2228 		   run_status(rq),
2229 		   fence_status(rq),
2230 		   buf,
2231 		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
2232 		   name);
2233 }
2234 
engine_match_ring(struct intel_engine_cs * engine,struct i915_request * rq)2235 static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq)
2236 {
2237 	u32 ring = ENGINE_READ(engine, RING_START);
2238 
2239 	return ring == i915_ggtt_offset(rq->ring->vma);
2240 }
2241 
match_ring(struct i915_request * rq)2242 static bool match_ring(struct i915_request *rq)
2243 {
2244 	struct intel_engine_cs *engine;
2245 	bool found;
2246 	int i;
2247 
2248 	if (!intel_engine_is_virtual(rq->engine))
2249 		return engine_match_ring(rq->engine, rq);
2250 
2251 	found = false;
2252 	i = 0;
2253 	while ((engine = intel_engine_get_sibling(rq->engine, i++))) {
2254 		found = engine_match_ring(engine, rq);
2255 		if (found)
2256 			break;
2257 	}
2258 
2259 	return found;
2260 }
2261 
i915_test_request_state(struct i915_request * rq)2262 enum i915_request_state i915_test_request_state(struct i915_request *rq)
2263 {
2264 	if (i915_request_completed(rq))
2265 		return I915_REQUEST_COMPLETE;
2266 
2267 	if (!i915_request_started(rq))
2268 		return I915_REQUEST_PENDING;
2269 
2270 	if (match_ring(rq))
2271 		return I915_REQUEST_ACTIVE;
2272 
2273 	return I915_REQUEST_QUEUED;
2274 }
2275 
2276 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2277 #include "selftests/mock_request.c"
2278 #include "selftests/i915_request.c"
2279 #endif
2280 
i915_request_module_exit(void)2281 void i915_request_module_exit(void)
2282 {
2283 	kmem_cache_destroy(slab_execute_cbs);
2284 	kmem_cache_destroy(slab_requests);
2285 }
2286 
i915_request_module_init(void)2287 int __init i915_request_module_init(void)
2288 {
2289 	slab_requests =
2290 		kmem_cache_create("i915_request",
2291 				  sizeof(struct i915_request),
2292 				  __alignof__(struct i915_request),
2293 				  SLAB_HWCACHE_ALIGN |
2294 				  SLAB_RECLAIM_ACCOUNT |
2295 				  SLAB_TYPESAFE_BY_RCU,
2296 				  __i915_request_ctor);
2297 	if (!slab_requests)
2298 		return -ENOMEM;
2299 
2300 	slab_execute_cbs = KMEM_CACHE(execute_cb,
2301 					     SLAB_HWCACHE_ALIGN |
2302 					     SLAB_RECLAIM_ACCOUNT |
2303 					     SLAB_TYPESAFE_BY_RCU);
2304 	if (!slab_execute_cbs)
2305 		goto err_requests;
2306 
2307 	return 0;
2308 
2309 err_requests:
2310 	kmem_cache_destroy(slab_requests);
2311 	return -ENOMEM;
2312 }
2313