1 /*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2014-2016 Intel Corporation
5 */
6
7 #include <linux/pagevec.h>
8 #include <linux/shmem_fs.h>
9 #include <linux/swap.h>
10
11 #include <drm/drm_cache.h>
12
13 #include "gem/i915_gem_region.h"
14 #include "i915_drv.h"
15 #include "i915_gem_object.h"
16 #include "i915_gem_tiling.h"
17 #include "i915_gemfs.h"
18 #include "i915_scatterlist.h"
19 #include "i915_trace.h"
20
21 /*
22 * Move folios to appropriate lru and release the batch, decrementing the
23 * ref count of those folios.
24 */
check_release_folio_batch(struct folio_batch * fbatch)25 static void check_release_folio_batch(struct folio_batch *fbatch)
26 {
27 check_move_unevictable_folios(fbatch);
28 __folio_batch_release(fbatch);
29 cond_resched();
30 }
31
shmem_sg_free_table(struct sg_table * st,struct address_space * mapping,bool dirty,bool backup)32 void shmem_sg_free_table(struct sg_table *st, struct address_space *mapping,
33 bool dirty, bool backup)
34 {
35 struct sgt_iter sgt_iter;
36 struct folio_batch fbatch;
37 struct folio *last = NULL;
38 struct page *page;
39
40 mapping_clear_unevictable(mapping);
41
42 folio_batch_init(&fbatch);
43 for_each_sgt_page(page, sgt_iter, st) {
44 struct folio *folio = page_folio(page);
45
46 if (folio == last)
47 continue;
48 last = folio;
49 if (dirty)
50 folio_mark_dirty(folio);
51 if (backup)
52 folio_mark_accessed(folio);
53
54 if (!folio_batch_add(&fbatch, folio))
55 check_release_folio_batch(&fbatch);
56 }
57 if (fbatch.nr)
58 check_release_folio_batch(&fbatch);
59
60 sg_free_table(st);
61 }
62
shmem_sg_alloc_table(struct drm_i915_private * i915,struct sg_table * st,size_t size,struct intel_memory_region * mr,struct address_space * mapping,unsigned int max_segment)63 int shmem_sg_alloc_table(struct drm_i915_private *i915, struct sg_table *st,
64 size_t size, struct intel_memory_region *mr,
65 struct address_space *mapping,
66 unsigned int max_segment)
67 {
68 unsigned int page_count; /* restricted by sg_alloc_table */
69 unsigned long i;
70 struct scatterlist *sg;
71 unsigned long next_pfn = 0; /* suppress gcc warning */
72 gfp_t noreclaim;
73 int ret;
74
75 if (overflows_type(size / PAGE_SIZE, page_count))
76 return -E2BIG;
77
78 page_count = size / PAGE_SIZE;
79 /*
80 * If there's no chance of allocating enough pages for the whole
81 * object, bail early.
82 */
83 if (size > resource_size(&mr->region))
84 return -ENOMEM;
85
86 if (sg_alloc_table(st, page_count, GFP_KERNEL | __GFP_NOWARN))
87 return -ENOMEM;
88
89 /*
90 * Get the list of pages out of our struct file. They'll be pinned
91 * at this point until we release them.
92 *
93 * Fail silently without starting the shrinker
94 */
95 mapping_set_unevictable(mapping);
96 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
97 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
98
99 sg = st->sgl;
100 st->nents = 0;
101 for (i = 0; i < page_count; i++) {
102 struct folio *folio;
103 unsigned long nr_pages;
104 const unsigned int shrink[] = {
105 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND,
106 0,
107 }, *s = shrink;
108 gfp_t gfp = noreclaim;
109
110 do {
111 cond_resched();
112 folio = shmem_read_folio_gfp(mapping, i, gfp);
113 if (!IS_ERR(folio))
114 break;
115
116 if (!*s) {
117 ret = PTR_ERR(folio);
118 goto err_sg;
119 }
120
121 i915_gem_shrink(NULL, i915, 2 * page_count, NULL, *s++);
122
123 /*
124 * We've tried hard to allocate the memory by reaping
125 * our own buffer, now let the real VM do its job and
126 * go down in flames if truly OOM.
127 *
128 * However, since graphics tend to be disposable,
129 * defer the oom here by reporting the ENOMEM back
130 * to userspace.
131 */
132 if (!*s) {
133 /* reclaim and warn, but no oom */
134 gfp = mapping_gfp_mask(mapping);
135
136 /*
137 * Our bo are always dirty and so we require
138 * kswapd to reclaim our pages (direct reclaim
139 * does not effectively begin pageout of our
140 * buffers on its own). However, direct reclaim
141 * only waits for kswapd when under allocation
142 * congestion. So as a result __GFP_RECLAIM is
143 * unreliable and fails to actually reclaim our
144 * dirty pages -- unless you try over and over
145 * again with !__GFP_NORETRY. However, we still
146 * want to fail this allocation rather than
147 * trigger the out-of-memory killer and for
148 * this we want __GFP_RETRY_MAYFAIL.
149 */
150 gfp |= __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
151 }
152 } while (1);
153
154 nr_pages = min_t(unsigned long,
155 folio_nr_pages(folio), page_count - i);
156 if (!i ||
157 sg->length >= max_segment ||
158 folio_pfn(folio) != next_pfn) {
159 if (i)
160 sg = sg_next(sg);
161
162 st->nents++;
163 sg_set_folio(sg, folio, nr_pages * PAGE_SIZE, 0);
164 } else {
165 /* XXX: could overflow? */
166 sg->length += nr_pages * PAGE_SIZE;
167 }
168 next_pfn = folio_pfn(folio) + nr_pages;
169 i += nr_pages - 1;
170
171 /* Check that the i965g/gm workaround works. */
172 GEM_BUG_ON(gfp & __GFP_DMA32 && next_pfn >= 0x00100000UL);
173 }
174 if (sg) /* loop terminated early; short sg table */
175 sg_mark_end(sg);
176
177 /* Trim unused sg entries to avoid wasting memory. */
178 i915_sg_trim(st);
179
180 return 0;
181 err_sg:
182 sg_mark_end(sg);
183 if (sg != st->sgl) {
184 shmem_sg_free_table(st, mapping, false, false);
185 } else {
186 mapping_clear_unevictable(mapping);
187 sg_free_table(st);
188 }
189
190 /*
191 * shmemfs first checks if there is enough memory to allocate the page
192 * and reports ENOSPC should there be insufficient, along with the usual
193 * ENOMEM for a genuine allocation failure.
194 *
195 * We use ENOSPC in our driver to mean that we have run out of aperture
196 * space and so want to translate the error from shmemfs back to our
197 * usual understanding of ENOMEM.
198 */
199 if (ret == -ENOSPC)
200 ret = -ENOMEM;
201
202 return ret;
203 }
204
shmem_get_pages(struct drm_i915_gem_object * obj)205 static int shmem_get_pages(struct drm_i915_gem_object *obj)
206 {
207 struct drm_i915_private *i915 = to_i915(obj->base.dev);
208 struct intel_memory_region *mem = obj->mm.region;
209 struct address_space *mapping = obj->base.filp->f_mapping;
210 unsigned int max_segment = i915_sg_segment_size(i915->drm.dev);
211 struct sg_table *st;
212 struct sgt_iter sgt_iter;
213 struct page *page;
214 int ret;
215
216 /*
217 * Assert that the object is not currently in any GPU domain. As it
218 * wasn't in the GTT, there shouldn't be any way it could have been in
219 * a GPU cache
220 */
221 GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
222 GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
223
224 rebuild_st:
225 st = kmalloc(sizeof(*st), GFP_KERNEL | __GFP_NOWARN);
226 if (!st)
227 return -ENOMEM;
228
229 ret = shmem_sg_alloc_table(i915, st, obj->base.size, mem, mapping,
230 max_segment);
231 if (ret)
232 goto err_st;
233
234 ret = i915_gem_gtt_prepare_pages(obj, st);
235 if (ret) {
236 /*
237 * DMA remapping failed? One possible cause is that
238 * it could not reserve enough large entries, asking
239 * for PAGE_SIZE chunks instead may be helpful.
240 */
241 if (max_segment > PAGE_SIZE) {
242 for_each_sgt_page(page, sgt_iter, st)
243 put_page(page);
244 sg_free_table(st);
245 kfree(st);
246
247 max_segment = PAGE_SIZE;
248 goto rebuild_st;
249 } else {
250 dev_warn(i915->drm.dev,
251 "Failed to DMA remap %zu pages\n",
252 obj->base.size >> PAGE_SHIFT);
253 goto err_pages;
254 }
255 }
256
257 if (i915_gem_object_needs_bit17_swizzle(obj))
258 i915_gem_object_do_bit_17_swizzle(obj, st);
259
260 if (i915_gem_object_can_bypass_llc(obj))
261 obj->cache_dirty = true;
262
263 __i915_gem_object_set_pages(obj, st);
264
265 return 0;
266
267 err_pages:
268 shmem_sg_free_table(st, mapping, false, false);
269 /*
270 * shmemfs first checks if there is enough memory to allocate the page
271 * and reports ENOSPC should there be insufficient, along with the usual
272 * ENOMEM for a genuine allocation failure.
273 *
274 * We use ENOSPC in our driver to mean that we have run out of aperture
275 * space and so want to translate the error from shmemfs back to our
276 * usual understanding of ENOMEM.
277 */
278 err_st:
279 if (ret == -ENOSPC)
280 ret = -ENOMEM;
281
282 kfree(st);
283
284 return ret;
285 }
286
287 static int
shmem_truncate(struct drm_i915_gem_object * obj)288 shmem_truncate(struct drm_i915_gem_object *obj)
289 {
290 /*
291 * Our goal here is to return as much of the memory as
292 * is possible back to the system as we are called from OOM.
293 * To do this we must instruct the shmfs to drop all of its
294 * backing pages, *now*.
295 */
296 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
297 obj->mm.madv = __I915_MADV_PURGED;
298 obj->mm.pages = ERR_PTR(-EFAULT);
299
300 return 0;
301 }
302
__shmem_writeback(size_t size,struct address_space * mapping)303 void __shmem_writeback(size_t size, struct address_space *mapping)
304 {
305 struct writeback_control wbc = {
306 .sync_mode = WB_SYNC_NONE,
307 .nr_to_write = SWAP_CLUSTER_MAX,
308 .range_start = 0,
309 .range_end = LLONG_MAX,
310 .for_reclaim = 1,
311 };
312 unsigned long i;
313
314 /*
315 * Leave mmapings intact (GTT will have been revoked on unbinding,
316 * leaving only CPU mmapings around) and add those pages to the LRU
317 * instead of invoking writeback so they are aged and paged out
318 * as normal.
319 */
320
321 /* Begin writeback on each dirty page */
322 for (i = 0; i < size >> PAGE_SHIFT; i++) {
323 struct page *page;
324
325 page = find_lock_page(mapping, i);
326 if (!page)
327 continue;
328
329 if (!page_mapped(page) && clear_page_dirty_for_io(page)) {
330 int ret;
331
332 SetPageReclaim(page);
333 ret = mapping->a_ops->writepage(page, &wbc);
334 if (!PageWriteback(page))
335 ClearPageReclaim(page);
336 if (!ret)
337 goto put;
338 }
339 unlock_page(page);
340 put:
341 put_page(page);
342 }
343 }
344
345 static void
shmem_writeback(struct drm_i915_gem_object * obj)346 shmem_writeback(struct drm_i915_gem_object *obj)
347 {
348 __shmem_writeback(obj->base.size, obj->base.filp->f_mapping);
349 }
350
shmem_shrink(struct drm_i915_gem_object * obj,unsigned int flags)351 static int shmem_shrink(struct drm_i915_gem_object *obj, unsigned int flags)
352 {
353 switch (obj->mm.madv) {
354 case I915_MADV_DONTNEED:
355 return i915_gem_object_truncate(obj);
356 case __I915_MADV_PURGED:
357 return 0;
358 }
359
360 if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK)
361 shmem_writeback(obj);
362
363 return 0;
364 }
365
366 void
__i915_gem_object_release_shmem(struct drm_i915_gem_object * obj,struct sg_table * pages,bool needs_clflush)367 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
368 struct sg_table *pages,
369 bool needs_clflush)
370 {
371 struct drm_i915_private *i915 = to_i915(obj->base.dev);
372
373 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
374
375 if (obj->mm.madv == I915_MADV_DONTNEED)
376 obj->mm.dirty = false;
377
378 if (needs_clflush &&
379 (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
380 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
381 drm_clflush_sg(pages);
382
383 __start_cpu_write(obj);
384 /*
385 * On non-LLC igfx platforms, force the flush-on-acquire if this is ever
386 * swapped-in. Our async flush path is not trust worthy enough yet(and
387 * happens in the wrong order), and with some tricks it's conceivable
388 * for userspace to change the cache-level to I915_CACHE_NONE after the
389 * pages are swapped-in, and since execbuf binds the object before doing
390 * the async flush, we have a race window.
391 */
392 if (!HAS_LLC(i915) && !IS_DGFX(i915))
393 obj->cache_dirty = true;
394 }
395
i915_gem_object_put_pages_shmem(struct drm_i915_gem_object * obj,struct sg_table * pages)396 void i915_gem_object_put_pages_shmem(struct drm_i915_gem_object *obj, struct sg_table *pages)
397 {
398 __i915_gem_object_release_shmem(obj, pages, true);
399
400 i915_gem_gtt_finish_pages(obj, pages);
401
402 if (i915_gem_object_needs_bit17_swizzle(obj))
403 i915_gem_object_save_bit_17_swizzle(obj, pages);
404
405 shmem_sg_free_table(pages, file_inode(obj->base.filp)->i_mapping,
406 obj->mm.dirty, obj->mm.madv == I915_MADV_WILLNEED);
407 kfree(pages);
408 obj->mm.dirty = false;
409 }
410
411 static void
shmem_put_pages(struct drm_i915_gem_object * obj,struct sg_table * pages)412 shmem_put_pages(struct drm_i915_gem_object *obj, struct sg_table *pages)
413 {
414 if (likely(i915_gem_object_has_struct_page(obj)))
415 i915_gem_object_put_pages_shmem(obj, pages);
416 else
417 i915_gem_object_put_pages_phys(obj, pages);
418 }
419
420 static int
shmem_pwrite(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pwrite * arg)421 shmem_pwrite(struct drm_i915_gem_object *obj,
422 const struct drm_i915_gem_pwrite *arg)
423 {
424 struct address_space *mapping = obj->base.filp->f_mapping;
425 const struct address_space_operations *aops = mapping->a_ops;
426 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
427 u64 remain, offset;
428 unsigned int pg;
429
430 /* Caller already validated user args */
431 GEM_BUG_ON(!access_ok(user_data, arg->size));
432
433 if (!i915_gem_object_has_struct_page(obj))
434 return i915_gem_object_pwrite_phys(obj, arg);
435
436 /*
437 * Before we instantiate/pin the backing store for our use, we
438 * can prepopulate the shmemfs filp efficiently using a write into
439 * the pagecache. We avoid the penalty of instantiating all the
440 * pages, important if the user is just writing to a few and never
441 * uses the object on the GPU, and using a direct write into shmemfs
442 * allows it to avoid the cost of retrieving a page (either swapin
443 * or clearing-before-use) before it is overwritten.
444 */
445 if (i915_gem_object_has_pages(obj))
446 return -ENODEV;
447
448 if (obj->mm.madv != I915_MADV_WILLNEED)
449 return -EFAULT;
450
451 /*
452 * Before the pages are instantiated the object is treated as being
453 * in the CPU domain. The pages will be clflushed as required before
454 * use, and we can freely write into the pages directly. If userspace
455 * races pwrite with any other operation; corruption will ensue -
456 * that is userspace's prerogative!
457 */
458
459 remain = arg->size;
460 offset = arg->offset;
461 pg = offset_in_page(offset);
462
463 do {
464 unsigned int len, unwritten;
465 struct page *page;
466 void *data, *vaddr;
467 int err;
468 char __maybe_unused c;
469
470 len = PAGE_SIZE - pg;
471 if (len > remain)
472 len = remain;
473
474 /* Prefault the user page to reduce potential recursion */
475 err = __get_user(c, user_data);
476 if (err)
477 return err;
478
479 err = __get_user(c, user_data + len - 1);
480 if (err)
481 return err;
482
483 err = aops->write_begin(obj->base.filp, mapping, offset, len,
484 &page, &data);
485 if (err < 0)
486 return err;
487
488 vaddr = kmap_atomic(page);
489 unwritten = __copy_from_user_inatomic(vaddr + pg,
490 user_data,
491 len);
492 kunmap_atomic(vaddr);
493
494 err = aops->write_end(obj->base.filp, mapping, offset, len,
495 len - unwritten, page, data);
496 if (err < 0)
497 return err;
498
499 /* We don't handle -EFAULT, leave it to the caller to check */
500 if (unwritten)
501 return -ENODEV;
502
503 remain -= len;
504 user_data += len;
505 offset += len;
506 pg = 0;
507 } while (remain);
508
509 return 0;
510 }
511
512 static int
shmem_pread(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pread * arg)513 shmem_pread(struct drm_i915_gem_object *obj,
514 const struct drm_i915_gem_pread *arg)
515 {
516 if (!i915_gem_object_has_struct_page(obj))
517 return i915_gem_object_pread_phys(obj, arg);
518
519 return -ENODEV;
520 }
521
shmem_release(struct drm_i915_gem_object * obj)522 static void shmem_release(struct drm_i915_gem_object *obj)
523 {
524 if (i915_gem_object_has_struct_page(obj))
525 i915_gem_object_release_memory_region(obj);
526
527 fput(obj->base.filp);
528 }
529
530 const struct drm_i915_gem_object_ops i915_gem_shmem_ops = {
531 .name = "i915_gem_object_shmem",
532 .flags = I915_GEM_OBJECT_IS_SHRINKABLE,
533
534 .get_pages = shmem_get_pages,
535 .put_pages = shmem_put_pages,
536 .truncate = shmem_truncate,
537 .shrink = shmem_shrink,
538
539 .pwrite = shmem_pwrite,
540 .pread = shmem_pread,
541
542 .release = shmem_release,
543 };
544
__create_shmem(struct drm_i915_private * i915,struct drm_gem_object * obj,resource_size_t size)545 static int __create_shmem(struct drm_i915_private *i915,
546 struct drm_gem_object *obj,
547 resource_size_t size)
548 {
549 unsigned long flags = VM_NORESERVE;
550 struct file *filp;
551
552 drm_gem_private_object_init(&i915->drm, obj, size);
553
554 /* XXX: The __shmem_file_setup() function returns -EINVAL if size is
555 * greater than MAX_LFS_FILESIZE.
556 * To handle the same error as other code that returns -E2BIG when
557 * the size is too large, we add a code that returns -E2BIG when the
558 * size is larger than the size that can be handled.
559 * If BITS_PER_LONG is 32, size > MAX_LFS_FILESIZE is always false,
560 * so we only needs to check when BITS_PER_LONG is 64.
561 * If BITS_PER_LONG is 32, E2BIG checks are processed when
562 * i915_gem_object_size_2big() is called before init_object() callback
563 * is called.
564 */
565 if (BITS_PER_LONG == 64 && size > MAX_LFS_FILESIZE)
566 return -E2BIG;
567
568 if (i915->mm.gemfs)
569 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
570 flags);
571 else
572 filp = shmem_file_setup("i915", size, flags);
573 if (IS_ERR(filp))
574 return PTR_ERR(filp);
575
576 obj->filp = filp;
577 return 0;
578 }
579
shmem_object_init(struct intel_memory_region * mem,struct drm_i915_gem_object * obj,resource_size_t offset,resource_size_t size,resource_size_t page_size,unsigned int flags)580 static int shmem_object_init(struct intel_memory_region *mem,
581 struct drm_i915_gem_object *obj,
582 resource_size_t offset,
583 resource_size_t size,
584 resource_size_t page_size,
585 unsigned int flags)
586 {
587 static struct lock_class_key lock_class;
588 struct drm_i915_private *i915 = mem->i915;
589 struct address_space *mapping;
590 unsigned int cache_level;
591 gfp_t mask;
592 int ret;
593
594 ret = __create_shmem(i915, &obj->base, size);
595 if (ret)
596 return ret;
597
598 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
599 if (IS_I965GM(i915) || IS_I965G(i915)) {
600 /* 965gm cannot relocate objects above 4GiB. */
601 mask &= ~__GFP_HIGHMEM;
602 mask |= __GFP_DMA32;
603 }
604
605 mapping = obj->base.filp->f_mapping;
606 mapping_set_gfp_mask(mapping, mask);
607 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
608
609 i915_gem_object_init(obj, &i915_gem_shmem_ops, &lock_class, flags);
610 obj->mem_flags |= I915_BO_FLAG_STRUCT_PAGE;
611 obj->write_domain = I915_GEM_DOMAIN_CPU;
612 obj->read_domains = I915_GEM_DOMAIN_CPU;
613
614 /*
615 * MTL doesn't snoop CPU cache by default for GPU access (namely
616 * 1-way coherency). However some UMD's are currently depending on
617 * that. Make 1-way coherent the default setting for MTL. A follow
618 * up patch will extend the GEM_CREATE uAPI to allow UMD's specify
619 * caching mode at BO creation time
620 */
621 if (HAS_LLC(i915) || (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)))
622 /* On some devices, we can have the GPU use the LLC (the CPU
623 * cache) for about a 10% performance improvement
624 * compared to uncached. Graphics requests other than
625 * display scanout are coherent with the CPU in
626 * accessing this cache. This means in this mode we
627 * don't need to clflush on the CPU side, and on the
628 * GPU side we only need to flush internal caches to
629 * get data visible to the CPU.
630 *
631 * However, we maintain the display planes as UC, and so
632 * need to rebind when first used as such.
633 */
634 cache_level = I915_CACHE_LLC;
635 else
636 cache_level = I915_CACHE_NONE;
637
638 i915_gem_object_set_cache_coherency(obj, cache_level);
639
640 i915_gem_object_init_memory_region(obj, mem);
641
642 return 0;
643 }
644
645 struct drm_i915_gem_object *
i915_gem_object_create_shmem(struct drm_i915_private * i915,resource_size_t size)646 i915_gem_object_create_shmem(struct drm_i915_private *i915,
647 resource_size_t size)
648 {
649 return i915_gem_object_create_region(i915->mm.regions[INTEL_REGION_SMEM],
650 size, 0, 0);
651 }
652
653 /* Allocate a new GEM object and fill it with the supplied data */
654 struct drm_i915_gem_object *
i915_gem_object_create_shmem_from_data(struct drm_i915_private * dev_priv,const void * data,resource_size_t size)655 i915_gem_object_create_shmem_from_data(struct drm_i915_private *dev_priv,
656 const void *data, resource_size_t size)
657 {
658 struct drm_i915_gem_object *obj;
659 struct file *file;
660 const struct address_space_operations *aops;
661 resource_size_t offset;
662 int err;
663
664 GEM_WARN_ON(IS_DGFX(dev_priv));
665 obj = i915_gem_object_create_shmem(dev_priv, round_up(size, PAGE_SIZE));
666 if (IS_ERR(obj))
667 return obj;
668
669 GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
670
671 file = obj->base.filp;
672 aops = file->f_mapping->a_ops;
673 offset = 0;
674 do {
675 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
676 struct page *page;
677 void *pgdata, *vaddr;
678
679 err = aops->write_begin(file, file->f_mapping, offset, len,
680 &page, &pgdata);
681 if (err < 0)
682 goto fail;
683
684 vaddr = kmap(page);
685 memcpy(vaddr, data, len);
686 kunmap(page);
687
688 err = aops->write_end(file, file->f_mapping, offset, len, len,
689 page, pgdata);
690 if (err < 0)
691 goto fail;
692
693 size -= len;
694 data += len;
695 offset += len;
696 } while (size);
697
698 return obj;
699
700 fail:
701 i915_gem_object_put(obj);
702 return ERR_PTR(err);
703 }
704
init_shmem(struct intel_memory_region * mem)705 static int init_shmem(struct intel_memory_region *mem)
706 {
707 i915_gemfs_init(mem->i915);
708 intel_memory_region_set_name(mem, "system");
709
710 return 0; /* We have fallback to the kernel mnt if gemfs init failed. */
711 }
712
release_shmem(struct intel_memory_region * mem)713 static int release_shmem(struct intel_memory_region *mem)
714 {
715 i915_gemfs_fini(mem->i915);
716 return 0;
717 }
718
719 static const struct intel_memory_region_ops shmem_region_ops = {
720 .init = init_shmem,
721 .release = release_shmem,
722 .init_object = shmem_object_init,
723 };
724
i915_gem_shmem_setup(struct drm_i915_private * i915,u16 type,u16 instance)725 struct intel_memory_region *i915_gem_shmem_setup(struct drm_i915_private *i915,
726 u16 type, u16 instance)
727 {
728 return intel_memory_region_create(i915, 0,
729 totalram_pages() << PAGE_SHIFT,
730 PAGE_SIZE, 0, 0,
731 type, instance,
732 &shmem_region_ops);
733 }
734
i915_gem_object_is_shmem(const struct drm_i915_gem_object * obj)735 bool i915_gem_object_is_shmem(const struct drm_i915_gem_object *obj)
736 {
737 return obj->ops == &i915_gem_shmem_ops;
738 }
739