1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_irqfd.h>
21 #include <linux/irqbypass.h>
22 #include <linux/sched/stat.h>
23 #include <linux/psci.h>
24 #include <trace/events/kvm.h>
25
26 #define CREATE_TRACE_POINTS
27 #include "trace_arm.h"
28
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
31 #include <asm/mman.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
35 #include <asm/virt.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/kvm_nested.h>
40 #include <asm/kvm_pkvm.h>
41 #include <asm/kvm_emulate.h>
42 #include <asm/sections.h>
43
44 #include <kvm/arm_hypercalls.h>
45 #include <kvm/arm_pmu.h>
46 #include <kvm/arm_psci.h>
47
48 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
49
50 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
51
52 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
54
55 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
56
57 static bool vgic_present, kvm_arm_initialised;
58
59 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
60 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
61
is_kvm_arm_initialised(void)62 bool is_kvm_arm_initialised(void)
63 {
64 return kvm_arm_initialised;
65 }
66
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)67 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
68 {
69 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
70 }
71
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)72 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
73 struct kvm_enable_cap *cap)
74 {
75 int r;
76 u64 new_cap;
77
78 if (cap->flags)
79 return -EINVAL;
80
81 switch (cap->cap) {
82 case KVM_CAP_ARM_NISV_TO_USER:
83 r = 0;
84 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
85 &kvm->arch.flags);
86 break;
87 case KVM_CAP_ARM_MTE:
88 mutex_lock(&kvm->lock);
89 if (!system_supports_mte() || kvm->created_vcpus) {
90 r = -EINVAL;
91 } else {
92 r = 0;
93 set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
94 }
95 mutex_unlock(&kvm->lock);
96 break;
97 case KVM_CAP_ARM_SYSTEM_SUSPEND:
98 r = 0;
99 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
100 break;
101 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
102 new_cap = cap->args[0];
103
104 mutex_lock(&kvm->slots_lock);
105 /*
106 * To keep things simple, allow changing the chunk
107 * size only when no memory slots have been created.
108 */
109 if (!kvm_are_all_memslots_empty(kvm)) {
110 r = -EINVAL;
111 } else if (new_cap && !kvm_is_block_size_supported(new_cap)) {
112 r = -EINVAL;
113 } else {
114 r = 0;
115 kvm->arch.mmu.split_page_chunk_size = new_cap;
116 }
117 mutex_unlock(&kvm->slots_lock);
118 break;
119 default:
120 r = -EINVAL;
121 break;
122 }
123
124 return r;
125 }
126
kvm_arm_default_max_vcpus(void)127 static int kvm_arm_default_max_vcpus(void)
128 {
129 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
130 }
131
132 /**
133 * kvm_arch_init_vm - initializes a VM data structure
134 * @kvm: pointer to the KVM struct
135 */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)136 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
137 {
138 int ret;
139
140 mutex_init(&kvm->arch.config_lock);
141
142 #ifdef CONFIG_LOCKDEP
143 /* Clue in lockdep that the config_lock must be taken inside kvm->lock */
144 mutex_lock(&kvm->lock);
145 mutex_lock(&kvm->arch.config_lock);
146 mutex_unlock(&kvm->arch.config_lock);
147 mutex_unlock(&kvm->lock);
148 #endif
149
150 ret = kvm_share_hyp(kvm, kvm + 1);
151 if (ret)
152 return ret;
153
154 ret = pkvm_init_host_vm(kvm);
155 if (ret)
156 goto err_unshare_kvm;
157
158 if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
159 ret = -ENOMEM;
160 goto err_unshare_kvm;
161 }
162 cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
163
164 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
165 if (ret)
166 goto err_free_cpumask;
167
168 kvm_vgic_early_init(kvm);
169
170 kvm_timer_init_vm(kvm);
171
172 /* The maximum number of VCPUs is limited by the host's GIC model */
173 kvm->max_vcpus = kvm_arm_default_max_vcpus();
174
175 kvm_arm_init_hypercalls(kvm);
176
177 bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
178
179 return 0;
180
181 err_free_cpumask:
182 free_cpumask_var(kvm->arch.supported_cpus);
183 err_unshare_kvm:
184 kvm_unshare_hyp(kvm, kvm + 1);
185 return ret;
186 }
187
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)188 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
189 {
190 return VM_FAULT_SIGBUS;
191 }
192
193
194 /**
195 * kvm_arch_destroy_vm - destroy the VM data structure
196 * @kvm: pointer to the KVM struct
197 */
kvm_arch_destroy_vm(struct kvm * kvm)198 void kvm_arch_destroy_vm(struct kvm *kvm)
199 {
200 bitmap_free(kvm->arch.pmu_filter);
201 free_cpumask_var(kvm->arch.supported_cpus);
202
203 kvm_vgic_destroy(kvm);
204
205 if (is_protected_kvm_enabled())
206 pkvm_destroy_hyp_vm(kvm);
207
208 kvm_destroy_vcpus(kvm);
209
210 kvm_unshare_hyp(kvm, kvm + 1);
211
212 kvm_arm_teardown_hypercalls(kvm);
213 }
214
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)215 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
216 {
217 int r;
218 switch (ext) {
219 case KVM_CAP_IRQCHIP:
220 r = vgic_present;
221 break;
222 case KVM_CAP_IOEVENTFD:
223 case KVM_CAP_DEVICE_CTRL:
224 case KVM_CAP_USER_MEMORY:
225 case KVM_CAP_SYNC_MMU:
226 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
227 case KVM_CAP_ONE_REG:
228 case KVM_CAP_ARM_PSCI:
229 case KVM_CAP_ARM_PSCI_0_2:
230 case KVM_CAP_READONLY_MEM:
231 case KVM_CAP_MP_STATE:
232 case KVM_CAP_IMMEDIATE_EXIT:
233 case KVM_CAP_VCPU_EVENTS:
234 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
235 case KVM_CAP_ARM_NISV_TO_USER:
236 case KVM_CAP_ARM_INJECT_EXT_DABT:
237 case KVM_CAP_SET_GUEST_DEBUG:
238 case KVM_CAP_VCPU_ATTRIBUTES:
239 case KVM_CAP_PTP_KVM:
240 case KVM_CAP_ARM_SYSTEM_SUSPEND:
241 case KVM_CAP_IRQFD_RESAMPLE:
242 case KVM_CAP_COUNTER_OFFSET:
243 r = 1;
244 break;
245 case KVM_CAP_SET_GUEST_DEBUG2:
246 return KVM_GUESTDBG_VALID_MASK;
247 case KVM_CAP_ARM_SET_DEVICE_ADDR:
248 r = 1;
249 break;
250 case KVM_CAP_NR_VCPUS:
251 /*
252 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
253 * architectures, as it does not always bound it to
254 * KVM_CAP_MAX_VCPUS. It should not matter much because
255 * this is just an advisory value.
256 */
257 r = min_t(unsigned int, num_online_cpus(),
258 kvm_arm_default_max_vcpus());
259 break;
260 case KVM_CAP_MAX_VCPUS:
261 case KVM_CAP_MAX_VCPU_ID:
262 if (kvm)
263 r = kvm->max_vcpus;
264 else
265 r = kvm_arm_default_max_vcpus();
266 break;
267 case KVM_CAP_MSI_DEVID:
268 if (!kvm)
269 r = -EINVAL;
270 else
271 r = kvm->arch.vgic.msis_require_devid;
272 break;
273 case KVM_CAP_ARM_USER_IRQ:
274 /*
275 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
276 * (bump this number if adding more devices)
277 */
278 r = 1;
279 break;
280 case KVM_CAP_ARM_MTE:
281 r = system_supports_mte();
282 break;
283 case KVM_CAP_STEAL_TIME:
284 r = kvm_arm_pvtime_supported();
285 break;
286 case KVM_CAP_ARM_EL1_32BIT:
287 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
288 break;
289 case KVM_CAP_GUEST_DEBUG_HW_BPS:
290 r = get_num_brps();
291 break;
292 case KVM_CAP_GUEST_DEBUG_HW_WPS:
293 r = get_num_wrps();
294 break;
295 case KVM_CAP_ARM_PMU_V3:
296 r = kvm_arm_support_pmu_v3();
297 break;
298 case KVM_CAP_ARM_INJECT_SERROR_ESR:
299 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
300 break;
301 case KVM_CAP_ARM_VM_IPA_SIZE:
302 r = get_kvm_ipa_limit();
303 break;
304 case KVM_CAP_ARM_SVE:
305 r = system_supports_sve();
306 break;
307 case KVM_CAP_ARM_PTRAUTH_ADDRESS:
308 case KVM_CAP_ARM_PTRAUTH_GENERIC:
309 r = system_has_full_ptr_auth();
310 break;
311 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
312 if (kvm)
313 r = kvm->arch.mmu.split_page_chunk_size;
314 else
315 r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
316 break;
317 case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
318 r = kvm_supported_block_sizes();
319 break;
320 default:
321 r = 0;
322 }
323
324 return r;
325 }
326
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)327 long kvm_arch_dev_ioctl(struct file *filp,
328 unsigned int ioctl, unsigned long arg)
329 {
330 return -EINVAL;
331 }
332
kvm_arch_alloc_vm(void)333 struct kvm *kvm_arch_alloc_vm(void)
334 {
335 size_t sz = sizeof(struct kvm);
336
337 if (!has_vhe())
338 return kzalloc(sz, GFP_KERNEL_ACCOUNT);
339
340 return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
341 }
342
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)343 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
344 {
345 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
346 return -EBUSY;
347
348 if (id >= kvm->max_vcpus)
349 return -EINVAL;
350
351 return 0;
352 }
353
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)354 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
355 {
356 int err;
357
358 spin_lock_init(&vcpu->arch.mp_state_lock);
359
360 #ifdef CONFIG_LOCKDEP
361 /* Inform lockdep that the config_lock is acquired after vcpu->mutex */
362 mutex_lock(&vcpu->mutex);
363 mutex_lock(&vcpu->kvm->arch.config_lock);
364 mutex_unlock(&vcpu->kvm->arch.config_lock);
365 mutex_unlock(&vcpu->mutex);
366 #endif
367
368 /* Force users to call KVM_ARM_VCPU_INIT */
369 vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
370 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
371
372 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
373
374 /*
375 * Default value for the FP state, will be overloaded at load
376 * time if we support FP (pretty likely)
377 */
378 vcpu->arch.fp_state = FP_STATE_FREE;
379
380 /* Set up the timer */
381 kvm_timer_vcpu_init(vcpu);
382
383 kvm_pmu_vcpu_init(vcpu);
384
385 kvm_arm_reset_debug_ptr(vcpu);
386
387 kvm_arm_pvtime_vcpu_init(&vcpu->arch);
388
389 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
390
391 err = kvm_vgic_vcpu_init(vcpu);
392 if (err)
393 return err;
394
395 return kvm_share_hyp(vcpu, vcpu + 1);
396 }
397
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)398 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
399 {
400 }
401
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)402 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
403 {
404 if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
405 static_branch_dec(&userspace_irqchip_in_use);
406
407 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
408 kvm_timer_vcpu_terminate(vcpu);
409 kvm_pmu_vcpu_destroy(vcpu);
410 kvm_vgic_vcpu_destroy(vcpu);
411 kvm_arm_vcpu_destroy(vcpu);
412 }
413
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)414 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
415 {
416
417 }
418
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)419 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
420 {
421
422 }
423
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)424 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
425 {
426 struct kvm_s2_mmu *mmu;
427 int *last_ran;
428
429 mmu = vcpu->arch.hw_mmu;
430 last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
431
432 /*
433 * We guarantee that both TLBs and I-cache are private to each
434 * vcpu. If detecting that a vcpu from the same VM has
435 * previously run on the same physical CPU, call into the
436 * hypervisor code to nuke the relevant contexts.
437 *
438 * We might get preempted before the vCPU actually runs, but
439 * over-invalidation doesn't affect correctness.
440 */
441 if (*last_ran != vcpu->vcpu_id) {
442 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
443 *last_ran = vcpu->vcpu_id;
444 }
445
446 vcpu->cpu = cpu;
447
448 kvm_vgic_load(vcpu);
449 kvm_timer_vcpu_load(vcpu);
450 if (has_vhe())
451 kvm_vcpu_load_sysregs_vhe(vcpu);
452 kvm_arch_vcpu_load_fp(vcpu);
453 kvm_vcpu_pmu_restore_guest(vcpu);
454 if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
455 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
456
457 if (single_task_running())
458 vcpu_clear_wfx_traps(vcpu);
459 else
460 vcpu_set_wfx_traps(vcpu);
461
462 if (vcpu_has_ptrauth(vcpu))
463 vcpu_ptrauth_disable(vcpu);
464 kvm_arch_vcpu_load_debug_state_flags(vcpu);
465
466 if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
467 vcpu_set_on_unsupported_cpu(vcpu);
468 }
469
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)470 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
471 {
472 kvm_arch_vcpu_put_debug_state_flags(vcpu);
473 kvm_arch_vcpu_put_fp(vcpu);
474 if (has_vhe())
475 kvm_vcpu_put_sysregs_vhe(vcpu);
476 kvm_timer_vcpu_put(vcpu);
477 kvm_vgic_put(vcpu);
478 kvm_vcpu_pmu_restore_host(vcpu);
479 kvm_arm_vmid_clear_active();
480
481 vcpu_clear_on_unsupported_cpu(vcpu);
482 vcpu->cpu = -1;
483 }
484
__kvm_arm_vcpu_power_off(struct kvm_vcpu * vcpu)485 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
486 {
487 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
488 kvm_make_request(KVM_REQ_SLEEP, vcpu);
489 kvm_vcpu_kick(vcpu);
490 }
491
kvm_arm_vcpu_power_off(struct kvm_vcpu * vcpu)492 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
493 {
494 spin_lock(&vcpu->arch.mp_state_lock);
495 __kvm_arm_vcpu_power_off(vcpu);
496 spin_unlock(&vcpu->arch.mp_state_lock);
497 }
498
kvm_arm_vcpu_stopped(struct kvm_vcpu * vcpu)499 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
500 {
501 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
502 }
503
kvm_arm_vcpu_suspend(struct kvm_vcpu * vcpu)504 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
505 {
506 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
507 kvm_make_request(KVM_REQ_SUSPEND, vcpu);
508 kvm_vcpu_kick(vcpu);
509 }
510
kvm_arm_vcpu_suspended(struct kvm_vcpu * vcpu)511 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
512 {
513 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
514 }
515
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)516 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
517 struct kvm_mp_state *mp_state)
518 {
519 *mp_state = READ_ONCE(vcpu->arch.mp_state);
520
521 return 0;
522 }
523
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)524 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
525 struct kvm_mp_state *mp_state)
526 {
527 int ret = 0;
528
529 spin_lock(&vcpu->arch.mp_state_lock);
530
531 switch (mp_state->mp_state) {
532 case KVM_MP_STATE_RUNNABLE:
533 WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
534 break;
535 case KVM_MP_STATE_STOPPED:
536 __kvm_arm_vcpu_power_off(vcpu);
537 break;
538 case KVM_MP_STATE_SUSPENDED:
539 kvm_arm_vcpu_suspend(vcpu);
540 break;
541 default:
542 ret = -EINVAL;
543 }
544
545 spin_unlock(&vcpu->arch.mp_state_lock);
546
547 return ret;
548 }
549
550 /**
551 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
552 * @v: The VCPU pointer
553 *
554 * If the guest CPU is not waiting for interrupts or an interrupt line is
555 * asserted, the CPU is by definition runnable.
556 */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)557 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
558 {
559 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
560 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
561 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
562 }
563
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)564 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
565 {
566 return vcpu_mode_priv(vcpu);
567 }
568
569 #ifdef CONFIG_GUEST_PERF_EVENTS
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)570 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
571 {
572 return *vcpu_pc(vcpu);
573 }
574 #endif
575
kvm_vcpu_initialized(struct kvm_vcpu * vcpu)576 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
577 {
578 return vcpu_get_flag(vcpu, VCPU_INITIALIZED);
579 }
580
581 /*
582 * Handle both the initialisation that is being done when the vcpu is
583 * run for the first time, as well as the updates that must be
584 * performed each time we get a new thread dealing with this vcpu.
585 */
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)586 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
587 {
588 struct kvm *kvm = vcpu->kvm;
589 int ret;
590
591 if (!kvm_vcpu_initialized(vcpu))
592 return -ENOEXEC;
593
594 if (!kvm_arm_vcpu_is_finalized(vcpu))
595 return -EPERM;
596
597 ret = kvm_arch_vcpu_run_map_fp(vcpu);
598 if (ret)
599 return ret;
600
601 if (likely(vcpu_has_run_once(vcpu)))
602 return 0;
603
604 kvm_arm_vcpu_init_debug(vcpu);
605
606 if (likely(irqchip_in_kernel(kvm))) {
607 /*
608 * Map the VGIC hardware resources before running a vcpu the
609 * first time on this VM.
610 */
611 ret = kvm_vgic_map_resources(kvm);
612 if (ret)
613 return ret;
614 }
615
616 ret = kvm_timer_enable(vcpu);
617 if (ret)
618 return ret;
619
620 ret = kvm_arm_pmu_v3_enable(vcpu);
621 if (ret)
622 return ret;
623
624 if (is_protected_kvm_enabled()) {
625 ret = pkvm_create_hyp_vm(kvm);
626 if (ret)
627 return ret;
628 }
629
630 if (!irqchip_in_kernel(kvm)) {
631 /*
632 * Tell the rest of the code that there are userspace irqchip
633 * VMs in the wild.
634 */
635 static_branch_inc(&userspace_irqchip_in_use);
636 }
637
638 /*
639 * Initialize traps for protected VMs.
640 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
641 * the code is in place for first run initialization at EL2.
642 */
643 if (kvm_vm_is_protected(kvm))
644 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
645
646 mutex_lock(&kvm->arch.config_lock);
647 set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
648 mutex_unlock(&kvm->arch.config_lock);
649
650 return ret;
651 }
652
kvm_arch_intc_initialized(struct kvm * kvm)653 bool kvm_arch_intc_initialized(struct kvm *kvm)
654 {
655 return vgic_initialized(kvm);
656 }
657
kvm_arm_halt_guest(struct kvm * kvm)658 void kvm_arm_halt_guest(struct kvm *kvm)
659 {
660 unsigned long i;
661 struct kvm_vcpu *vcpu;
662
663 kvm_for_each_vcpu(i, vcpu, kvm)
664 vcpu->arch.pause = true;
665 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
666 }
667
kvm_arm_resume_guest(struct kvm * kvm)668 void kvm_arm_resume_guest(struct kvm *kvm)
669 {
670 unsigned long i;
671 struct kvm_vcpu *vcpu;
672
673 kvm_for_each_vcpu(i, vcpu, kvm) {
674 vcpu->arch.pause = false;
675 __kvm_vcpu_wake_up(vcpu);
676 }
677 }
678
kvm_vcpu_sleep(struct kvm_vcpu * vcpu)679 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
680 {
681 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
682
683 rcuwait_wait_event(wait,
684 (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
685 TASK_INTERRUPTIBLE);
686
687 if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
688 /* Awaken to handle a signal, request we sleep again later. */
689 kvm_make_request(KVM_REQ_SLEEP, vcpu);
690 }
691
692 /*
693 * Make sure we will observe a potential reset request if we've
694 * observed a change to the power state. Pairs with the smp_wmb() in
695 * kvm_psci_vcpu_on().
696 */
697 smp_rmb();
698 }
699
700 /**
701 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
702 * @vcpu: The VCPU pointer
703 *
704 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
705 * the vCPU is runnable. The vCPU may or may not be scheduled out, depending
706 * on when a wake event arrives, e.g. there may already be a pending wake event.
707 */
kvm_vcpu_wfi(struct kvm_vcpu * vcpu)708 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
709 {
710 /*
711 * Sync back the state of the GIC CPU interface so that we have
712 * the latest PMR and group enables. This ensures that
713 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
714 * we have pending interrupts, e.g. when determining if the
715 * vCPU should block.
716 *
717 * For the same reason, we want to tell GICv4 that we need
718 * doorbells to be signalled, should an interrupt become pending.
719 */
720 preempt_disable();
721 kvm_vgic_vmcr_sync(vcpu);
722 vcpu_set_flag(vcpu, IN_WFI);
723 vgic_v4_put(vcpu);
724 preempt_enable();
725
726 kvm_vcpu_halt(vcpu);
727 vcpu_clear_flag(vcpu, IN_WFIT);
728
729 preempt_disable();
730 vcpu_clear_flag(vcpu, IN_WFI);
731 vgic_v4_load(vcpu);
732 preempt_enable();
733 }
734
kvm_vcpu_suspend(struct kvm_vcpu * vcpu)735 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
736 {
737 if (!kvm_arm_vcpu_suspended(vcpu))
738 return 1;
739
740 kvm_vcpu_wfi(vcpu);
741
742 /*
743 * The suspend state is sticky; we do not leave it until userspace
744 * explicitly marks the vCPU as runnable. Request that we suspend again
745 * later.
746 */
747 kvm_make_request(KVM_REQ_SUSPEND, vcpu);
748
749 /*
750 * Check to make sure the vCPU is actually runnable. If so, exit to
751 * userspace informing it of the wakeup condition.
752 */
753 if (kvm_arch_vcpu_runnable(vcpu)) {
754 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
755 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
756 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
757 return 0;
758 }
759
760 /*
761 * Otherwise, we were unblocked to process a different event, such as a
762 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
763 * process the event.
764 */
765 return 1;
766 }
767
768 /**
769 * check_vcpu_requests - check and handle pending vCPU requests
770 * @vcpu: the VCPU pointer
771 *
772 * Return: 1 if we should enter the guest
773 * 0 if we should exit to userspace
774 * < 0 if we should exit to userspace, where the return value indicates
775 * an error
776 */
check_vcpu_requests(struct kvm_vcpu * vcpu)777 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
778 {
779 if (kvm_request_pending(vcpu)) {
780 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu))
781 return -EIO;
782
783 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
784 kvm_vcpu_sleep(vcpu);
785
786 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
787 kvm_reset_vcpu(vcpu);
788
789 /*
790 * Clear IRQ_PENDING requests that were made to guarantee
791 * that a VCPU sees new virtual interrupts.
792 */
793 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
794
795 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
796 kvm_update_stolen_time(vcpu);
797
798 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
799 /* The distributor enable bits were changed */
800 preempt_disable();
801 vgic_v4_put(vcpu);
802 vgic_v4_load(vcpu);
803 preempt_enable();
804 }
805
806 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
807 kvm_pmu_handle_pmcr(vcpu,
808 __vcpu_sys_reg(vcpu, PMCR_EL0));
809
810 if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
811 kvm_vcpu_pmu_restore_guest(vcpu);
812
813 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
814 return kvm_vcpu_suspend(vcpu);
815
816 if (kvm_dirty_ring_check_request(vcpu))
817 return 0;
818 }
819
820 return 1;
821 }
822
vcpu_mode_is_bad_32bit(struct kvm_vcpu * vcpu)823 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
824 {
825 if (likely(!vcpu_mode_is_32bit(vcpu)))
826 return false;
827
828 if (vcpu_has_nv(vcpu))
829 return true;
830
831 return !kvm_supports_32bit_el0();
832 }
833
834 /**
835 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
836 * @vcpu: The VCPU pointer
837 * @ret: Pointer to write optional return code
838 *
839 * Returns: true if the VCPU needs to return to a preemptible + interruptible
840 * and skip guest entry.
841 *
842 * This function disambiguates between two different types of exits: exits to a
843 * preemptible + interruptible kernel context and exits to userspace. For an
844 * exit to userspace, this function will write the return code to ret and return
845 * true. For an exit to preemptible + interruptible kernel context (i.e. check
846 * for pending work and re-enter), return true without writing to ret.
847 */
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu,int * ret)848 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
849 {
850 struct kvm_run *run = vcpu->run;
851
852 /*
853 * If we're using a userspace irqchip, then check if we need
854 * to tell a userspace irqchip about timer or PMU level
855 * changes and if so, exit to userspace (the actual level
856 * state gets updated in kvm_timer_update_run and
857 * kvm_pmu_update_run below).
858 */
859 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
860 if (kvm_timer_should_notify_user(vcpu) ||
861 kvm_pmu_should_notify_user(vcpu)) {
862 *ret = -EINTR;
863 run->exit_reason = KVM_EXIT_INTR;
864 return true;
865 }
866 }
867
868 if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
869 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
870 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
871 run->fail_entry.cpu = smp_processor_id();
872 *ret = 0;
873 return true;
874 }
875
876 return kvm_request_pending(vcpu) ||
877 xfer_to_guest_mode_work_pending();
878 }
879
880 /*
881 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
882 * the vCPU is running.
883 *
884 * This must be noinstr as instrumentation may make use of RCU, and this is not
885 * safe during the EQS.
886 */
kvm_arm_vcpu_enter_exit(struct kvm_vcpu * vcpu)887 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
888 {
889 int ret;
890
891 guest_state_enter_irqoff();
892 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
893 guest_state_exit_irqoff();
894
895 return ret;
896 }
897
898 /**
899 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
900 * @vcpu: The VCPU pointer
901 *
902 * This function is called through the VCPU_RUN ioctl called from user space. It
903 * will execute VM code in a loop until the time slice for the process is used
904 * or some emulation is needed from user space in which case the function will
905 * return with return value 0 and with the kvm_run structure filled in with the
906 * required data for the requested emulation.
907 */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)908 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
909 {
910 struct kvm_run *run = vcpu->run;
911 int ret;
912
913 if (run->exit_reason == KVM_EXIT_MMIO) {
914 ret = kvm_handle_mmio_return(vcpu);
915 if (ret)
916 return ret;
917 }
918
919 vcpu_load(vcpu);
920
921 if (run->immediate_exit) {
922 ret = -EINTR;
923 goto out;
924 }
925
926 kvm_sigset_activate(vcpu);
927
928 ret = 1;
929 run->exit_reason = KVM_EXIT_UNKNOWN;
930 run->flags = 0;
931 while (ret > 0) {
932 /*
933 * Check conditions before entering the guest
934 */
935 ret = xfer_to_guest_mode_handle_work(vcpu);
936 if (!ret)
937 ret = 1;
938
939 if (ret > 0)
940 ret = check_vcpu_requests(vcpu);
941
942 /*
943 * Preparing the interrupts to be injected also
944 * involves poking the GIC, which must be done in a
945 * non-preemptible context.
946 */
947 preempt_disable();
948
949 /*
950 * The VMID allocator only tracks active VMIDs per
951 * physical CPU, and therefore the VMID allocated may not be
952 * preserved on VMID roll-over if the task was preempted,
953 * making a thread's VMID inactive. So we need to call
954 * kvm_arm_vmid_update() in non-premptible context.
955 */
956 kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid);
957
958 kvm_pmu_flush_hwstate(vcpu);
959
960 local_irq_disable();
961
962 kvm_vgic_flush_hwstate(vcpu);
963
964 kvm_pmu_update_vcpu_events(vcpu);
965
966 /*
967 * Ensure we set mode to IN_GUEST_MODE after we disable
968 * interrupts and before the final VCPU requests check.
969 * See the comment in kvm_vcpu_exiting_guest_mode() and
970 * Documentation/virt/kvm/vcpu-requests.rst
971 */
972 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
973
974 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
975 vcpu->mode = OUTSIDE_GUEST_MODE;
976 isb(); /* Ensure work in x_flush_hwstate is committed */
977 kvm_pmu_sync_hwstate(vcpu);
978 if (static_branch_unlikely(&userspace_irqchip_in_use))
979 kvm_timer_sync_user(vcpu);
980 kvm_vgic_sync_hwstate(vcpu);
981 local_irq_enable();
982 preempt_enable();
983 continue;
984 }
985
986 kvm_arm_setup_debug(vcpu);
987 kvm_arch_vcpu_ctxflush_fp(vcpu);
988
989 /**************************************************************
990 * Enter the guest
991 */
992 trace_kvm_entry(*vcpu_pc(vcpu));
993 guest_timing_enter_irqoff();
994
995 ret = kvm_arm_vcpu_enter_exit(vcpu);
996
997 vcpu->mode = OUTSIDE_GUEST_MODE;
998 vcpu->stat.exits++;
999 /*
1000 * Back from guest
1001 *************************************************************/
1002
1003 kvm_arm_clear_debug(vcpu);
1004
1005 /*
1006 * We must sync the PMU state before the vgic state so
1007 * that the vgic can properly sample the updated state of the
1008 * interrupt line.
1009 */
1010 kvm_pmu_sync_hwstate(vcpu);
1011
1012 /*
1013 * Sync the vgic state before syncing the timer state because
1014 * the timer code needs to know if the virtual timer
1015 * interrupts are active.
1016 */
1017 kvm_vgic_sync_hwstate(vcpu);
1018
1019 /*
1020 * Sync the timer hardware state before enabling interrupts as
1021 * we don't want vtimer interrupts to race with syncing the
1022 * timer virtual interrupt state.
1023 */
1024 if (static_branch_unlikely(&userspace_irqchip_in_use))
1025 kvm_timer_sync_user(vcpu);
1026
1027 kvm_arch_vcpu_ctxsync_fp(vcpu);
1028
1029 /*
1030 * We must ensure that any pending interrupts are taken before
1031 * we exit guest timing so that timer ticks are accounted as
1032 * guest time. Transiently unmask interrupts so that any
1033 * pending interrupts are taken.
1034 *
1035 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1036 * context synchronization event) is necessary to ensure that
1037 * pending interrupts are taken.
1038 */
1039 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1040 local_irq_enable();
1041 isb();
1042 local_irq_disable();
1043 }
1044
1045 guest_timing_exit_irqoff();
1046
1047 local_irq_enable();
1048
1049 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1050
1051 /* Exit types that need handling before we can be preempted */
1052 handle_exit_early(vcpu, ret);
1053
1054 preempt_enable();
1055
1056 /*
1057 * The ARMv8 architecture doesn't give the hypervisor
1058 * a mechanism to prevent a guest from dropping to AArch32 EL0
1059 * if implemented by the CPU. If we spot the guest in such
1060 * state and that we decided it wasn't supposed to do so (like
1061 * with the asymmetric AArch32 case), return to userspace with
1062 * a fatal error.
1063 */
1064 if (vcpu_mode_is_bad_32bit(vcpu)) {
1065 /*
1066 * As we have caught the guest red-handed, decide that
1067 * it isn't fit for purpose anymore by making the vcpu
1068 * invalid. The VMM can try and fix it by issuing a
1069 * KVM_ARM_VCPU_INIT if it really wants to.
1070 */
1071 vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
1072 ret = ARM_EXCEPTION_IL;
1073 }
1074
1075 ret = handle_exit(vcpu, ret);
1076 }
1077
1078 /* Tell userspace about in-kernel device output levels */
1079 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1080 kvm_timer_update_run(vcpu);
1081 kvm_pmu_update_run(vcpu);
1082 }
1083
1084 kvm_sigset_deactivate(vcpu);
1085
1086 out:
1087 /*
1088 * In the unlikely event that we are returning to userspace
1089 * with pending exceptions or PC adjustment, commit these
1090 * adjustments in order to give userspace a consistent view of
1091 * the vcpu state. Note that this relies on __kvm_adjust_pc()
1092 * being preempt-safe on VHE.
1093 */
1094 if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1095 vcpu_get_flag(vcpu, INCREMENT_PC)))
1096 kvm_call_hyp(__kvm_adjust_pc, vcpu);
1097
1098 vcpu_put(vcpu);
1099 return ret;
1100 }
1101
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)1102 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1103 {
1104 int bit_index;
1105 bool set;
1106 unsigned long *hcr;
1107
1108 if (number == KVM_ARM_IRQ_CPU_IRQ)
1109 bit_index = __ffs(HCR_VI);
1110 else /* KVM_ARM_IRQ_CPU_FIQ */
1111 bit_index = __ffs(HCR_VF);
1112
1113 hcr = vcpu_hcr(vcpu);
1114 if (level)
1115 set = test_and_set_bit(bit_index, hcr);
1116 else
1117 set = test_and_clear_bit(bit_index, hcr);
1118
1119 /*
1120 * If we didn't change anything, no need to wake up or kick other CPUs
1121 */
1122 if (set == level)
1123 return 0;
1124
1125 /*
1126 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1127 * trigger a world-switch round on the running physical CPU to set the
1128 * virtual IRQ/FIQ fields in the HCR appropriately.
1129 */
1130 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1131 kvm_vcpu_kick(vcpu);
1132
1133 return 0;
1134 }
1135
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)1136 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1137 bool line_status)
1138 {
1139 u32 irq = irq_level->irq;
1140 unsigned int irq_type, vcpu_idx, irq_num;
1141 int nrcpus = atomic_read(&kvm->online_vcpus);
1142 struct kvm_vcpu *vcpu = NULL;
1143 bool level = irq_level->level;
1144
1145 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1146 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1147 vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1148 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1149
1150 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
1151
1152 switch (irq_type) {
1153 case KVM_ARM_IRQ_TYPE_CPU:
1154 if (irqchip_in_kernel(kvm))
1155 return -ENXIO;
1156
1157 if (vcpu_idx >= nrcpus)
1158 return -EINVAL;
1159
1160 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1161 if (!vcpu)
1162 return -EINVAL;
1163
1164 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1165 return -EINVAL;
1166
1167 return vcpu_interrupt_line(vcpu, irq_num, level);
1168 case KVM_ARM_IRQ_TYPE_PPI:
1169 if (!irqchip_in_kernel(kvm))
1170 return -ENXIO;
1171
1172 if (vcpu_idx >= nrcpus)
1173 return -EINVAL;
1174
1175 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1176 if (!vcpu)
1177 return -EINVAL;
1178
1179 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1180 return -EINVAL;
1181
1182 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1183 case KVM_ARM_IRQ_TYPE_SPI:
1184 if (!irqchip_in_kernel(kvm))
1185 return -ENXIO;
1186
1187 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1188 return -EINVAL;
1189
1190 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1191 }
1192
1193 return -EINVAL;
1194 }
1195
kvm_vcpu_init_check_features(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1196 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1197 const struct kvm_vcpu_init *init)
1198 {
1199 unsigned long features = init->features[0];
1200 int i;
1201
1202 if (features & ~KVM_VCPU_VALID_FEATURES)
1203 return -ENOENT;
1204
1205 for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1206 if (init->features[i])
1207 return -ENOENT;
1208 }
1209
1210 if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1211 return 0;
1212
1213 if (!cpus_have_const_cap(ARM64_HAS_32BIT_EL1))
1214 return -EINVAL;
1215
1216 /* MTE is incompatible with AArch32 */
1217 if (kvm_has_mte(vcpu->kvm))
1218 return -EINVAL;
1219
1220 /* NV is incompatible with AArch32 */
1221 if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1222 return -EINVAL;
1223
1224 return 0;
1225 }
1226
kvm_vcpu_init_changed(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1227 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1228 const struct kvm_vcpu_init *init)
1229 {
1230 unsigned long features = init->features[0];
1231
1232 return !bitmap_equal(vcpu->arch.features, &features, KVM_VCPU_MAX_FEATURES);
1233 }
1234
__kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1235 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1236 const struct kvm_vcpu_init *init)
1237 {
1238 unsigned long features = init->features[0];
1239 struct kvm *kvm = vcpu->kvm;
1240 int ret = -EINVAL;
1241
1242 mutex_lock(&kvm->arch.config_lock);
1243
1244 if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1245 !bitmap_equal(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES))
1246 goto out_unlock;
1247
1248 bitmap_copy(vcpu->arch.features, &features, KVM_VCPU_MAX_FEATURES);
1249
1250 /* Now we know what it is, we can reset it. */
1251 ret = kvm_reset_vcpu(vcpu);
1252 if (ret) {
1253 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1254 goto out_unlock;
1255 }
1256
1257 bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1258 set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1259 vcpu_set_flag(vcpu, VCPU_INITIALIZED);
1260 out_unlock:
1261 mutex_unlock(&kvm->arch.config_lock);
1262 return ret;
1263 }
1264
kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1265 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1266 const struct kvm_vcpu_init *init)
1267 {
1268 int ret;
1269
1270 if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
1271 init->target != kvm_target_cpu())
1272 return -EINVAL;
1273
1274 ret = kvm_vcpu_init_check_features(vcpu, init);
1275 if (ret)
1276 return ret;
1277
1278 if (!kvm_vcpu_initialized(vcpu))
1279 return __kvm_vcpu_set_target(vcpu, init);
1280
1281 if (kvm_vcpu_init_changed(vcpu, init))
1282 return -EINVAL;
1283
1284 return kvm_reset_vcpu(vcpu);
1285 }
1286
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)1287 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1288 struct kvm_vcpu_init *init)
1289 {
1290 bool power_off = false;
1291 int ret;
1292
1293 /*
1294 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1295 * reflecting it in the finalized feature set, thus limiting its scope
1296 * to a single KVM_ARM_VCPU_INIT call.
1297 */
1298 if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1299 init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1300 power_off = true;
1301 }
1302
1303 ret = kvm_vcpu_set_target(vcpu, init);
1304 if (ret)
1305 return ret;
1306
1307 /*
1308 * Ensure a rebooted VM will fault in RAM pages and detect if the
1309 * guest MMU is turned off and flush the caches as needed.
1310 *
1311 * S2FWB enforces all memory accesses to RAM being cacheable,
1312 * ensuring that the data side is always coherent. We still
1313 * need to invalidate the I-cache though, as FWB does *not*
1314 * imply CTR_EL0.DIC.
1315 */
1316 if (vcpu_has_run_once(vcpu)) {
1317 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1318 stage2_unmap_vm(vcpu->kvm);
1319 else
1320 icache_inval_all_pou();
1321 }
1322
1323 vcpu_reset_hcr(vcpu);
1324 vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu);
1325
1326 /*
1327 * Handle the "start in power-off" case.
1328 */
1329 spin_lock(&vcpu->arch.mp_state_lock);
1330
1331 if (power_off)
1332 __kvm_arm_vcpu_power_off(vcpu);
1333 else
1334 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1335
1336 spin_unlock(&vcpu->arch.mp_state_lock);
1337
1338 return 0;
1339 }
1340
kvm_arm_vcpu_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1341 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1342 struct kvm_device_attr *attr)
1343 {
1344 int ret = -ENXIO;
1345
1346 switch (attr->group) {
1347 default:
1348 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1349 break;
1350 }
1351
1352 return ret;
1353 }
1354
kvm_arm_vcpu_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1355 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1356 struct kvm_device_attr *attr)
1357 {
1358 int ret = -ENXIO;
1359
1360 switch (attr->group) {
1361 default:
1362 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1363 break;
1364 }
1365
1366 return ret;
1367 }
1368
kvm_arm_vcpu_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1369 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1370 struct kvm_device_attr *attr)
1371 {
1372 int ret = -ENXIO;
1373
1374 switch (attr->group) {
1375 default:
1376 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1377 break;
1378 }
1379
1380 return ret;
1381 }
1382
kvm_arm_vcpu_get_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1383 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1384 struct kvm_vcpu_events *events)
1385 {
1386 memset(events, 0, sizeof(*events));
1387
1388 return __kvm_arm_vcpu_get_events(vcpu, events);
1389 }
1390
kvm_arm_vcpu_set_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1391 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1392 struct kvm_vcpu_events *events)
1393 {
1394 int i;
1395
1396 /* check whether the reserved field is zero */
1397 for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1398 if (events->reserved[i])
1399 return -EINVAL;
1400
1401 /* check whether the pad field is zero */
1402 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1403 if (events->exception.pad[i])
1404 return -EINVAL;
1405
1406 return __kvm_arm_vcpu_set_events(vcpu, events);
1407 }
1408
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1409 long kvm_arch_vcpu_ioctl(struct file *filp,
1410 unsigned int ioctl, unsigned long arg)
1411 {
1412 struct kvm_vcpu *vcpu = filp->private_data;
1413 void __user *argp = (void __user *)arg;
1414 struct kvm_device_attr attr;
1415 long r;
1416
1417 switch (ioctl) {
1418 case KVM_ARM_VCPU_INIT: {
1419 struct kvm_vcpu_init init;
1420
1421 r = -EFAULT;
1422 if (copy_from_user(&init, argp, sizeof(init)))
1423 break;
1424
1425 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1426 break;
1427 }
1428 case KVM_SET_ONE_REG:
1429 case KVM_GET_ONE_REG: {
1430 struct kvm_one_reg reg;
1431
1432 r = -ENOEXEC;
1433 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1434 break;
1435
1436 r = -EFAULT;
1437 if (copy_from_user(®, argp, sizeof(reg)))
1438 break;
1439
1440 /*
1441 * We could owe a reset due to PSCI. Handle the pending reset
1442 * here to ensure userspace register accesses are ordered after
1443 * the reset.
1444 */
1445 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1446 kvm_reset_vcpu(vcpu);
1447
1448 if (ioctl == KVM_SET_ONE_REG)
1449 r = kvm_arm_set_reg(vcpu, ®);
1450 else
1451 r = kvm_arm_get_reg(vcpu, ®);
1452 break;
1453 }
1454 case KVM_GET_REG_LIST: {
1455 struct kvm_reg_list __user *user_list = argp;
1456 struct kvm_reg_list reg_list;
1457 unsigned n;
1458
1459 r = -ENOEXEC;
1460 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1461 break;
1462
1463 r = -EPERM;
1464 if (!kvm_arm_vcpu_is_finalized(vcpu))
1465 break;
1466
1467 r = -EFAULT;
1468 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
1469 break;
1470 n = reg_list.n;
1471 reg_list.n = kvm_arm_num_regs(vcpu);
1472 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
1473 break;
1474 r = -E2BIG;
1475 if (n < reg_list.n)
1476 break;
1477 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1478 break;
1479 }
1480 case KVM_SET_DEVICE_ATTR: {
1481 r = -EFAULT;
1482 if (copy_from_user(&attr, argp, sizeof(attr)))
1483 break;
1484 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1485 break;
1486 }
1487 case KVM_GET_DEVICE_ATTR: {
1488 r = -EFAULT;
1489 if (copy_from_user(&attr, argp, sizeof(attr)))
1490 break;
1491 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1492 break;
1493 }
1494 case KVM_HAS_DEVICE_ATTR: {
1495 r = -EFAULT;
1496 if (copy_from_user(&attr, argp, sizeof(attr)))
1497 break;
1498 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1499 break;
1500 }
1501 case KVM_GET_VCPU_EVENTS: {
1502 struct kvm_vcpu_events events;
1503
1504 if (kvm_arm_vcpu_get_events(vcpu, &events))
1505 return -EINVAL;
1506
1507 if (copy_to_user(argp, &events, sizeof(events)))
1508 return -EFAULT;
1509
1510 return 0;
1511 }
1512 case KVM_SET_VCPU_EVENTS: {
1513 struct kvm_vcpu_events events;
1514
1515 if (copy_from_user(&events, argp, sizeof(events)))
1516 return -EFAULT;
1517
1518 return kvm_arm_vcpu_set_events(vcpu, &events);
1519 }
1520 case KVM_ARM_VCPU_FINALIZE: {
1521 int what;
1522
1523 if (!kvm_vcpu_initialized(vcpu))
1524 return -ENOEXEC;
1525
1526 if (get_user(what, (const int __user *)argp))
1527 return -EFAULT;
1528
1529 return kvm_arm_vcpu_finalize(vcpu, what);
1530 }
1531 default:
1532 r = -EINVAL;
1533 }
1534
1535 return r;
1536 }
1537
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)1538 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1539 {
1540
1541 }
1542
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)1543 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1544 struct kvm_arm_device_addr *dev_addr)
1545 {
1546 switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1547 case KVM_ARM_DEVICE_VGIC_V2:
1548 if (!vgic_present)
1549 return -ENXIO;
1550 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1551 default:
1552 return -ENODEV;
1553 }
1554 }
1555
kvm_vm_has_attr(struct kvm * kvm,struct kvm_device_attr * attr)1556 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1557 {
1558 switch (attr->group) {
1559 case KVM_ARM_VM_SMCCC_CTRL:
1560 return kvm_vm_smccc_has_attr(kvm, attr);
1561 default:
1562 return -ENXIO;
1563 }
1564 }
1565
kvm_vm_set_attr(struct kvm * kvm,struct kvm_device_attr * attr)1566 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1567 {
1568 switch (attr->group) {
1569 case KVM_ARM_VM_SMCCC_CTRL:
1570 return kvm_vm_smccc_set_attr(kvm, attr);
1571 default:
1572 return -ENXIO;
1573 }
1574 }
1575
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1576 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1577 {
1578 struct kvm *kvm = filp->private_data;
1579 void __user *argp = (void __user *)arg;
1580 struct kvm_device_attr attr;
1581
1582 switch (ioctl) {
1583 case KVM_CREATE_IRQCHIP: {
1584 int ret;
1585 if (!vgic_present)
1586 return -ENXIO;
1587 mutex_lock(&kvm->lock);
1588 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1589 mutex_unlock(&kvm->lock);
1590 return ret;
1591 }
1592 case KVM_ARM_SET_DEVICE_ADDR: {
1593 struct kvm_arm_device_addr dev_addr;
1594
1595 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1596 return -EFAULT;
1597 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1598 }
1599 case KVM_ARM_PREFERRED_TARGET: {
1600 struct kvm_vcpu_init init = {
1601 .target = KVM_ARM_TARGET_GENERIC_V8,
1602 };
1603
1604 if (copy_to_user(argp, &init, sizeof(init)))
1605 return -EFAULT;
1606
1607 return 0;
1608 }
1609 case KVM_ARM_MTE_COPY_TAGS: {
1610 struct kvm_arm_copy_mte_tags copy_tags;
1611
1612 if (copy_from_user(©_tags, argp, sizeof(copy_tags)))
1613 return -EFAULT;
1614 return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags);
1615 }
1616 case KVM_ARM_SET_COUNTER_OFFSET: {
1617 struct kvm_arm_counter_offset offset;
1618
1619 if (copy_from_user(&offset, argp, sizeof(offset)))
1620 return -EFAULT;
1621 return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1622 }
1623 case KVM_HAS_DEVICE_ATTR: {
1624 if (copy_from_user(&attr, argp, sizeof(attr)))
1625 return -EFAULT;
1626
1627 return kvm_vm_has_attr(kvm, &attr);
1628 }
1629 case KVM_SET_DEVICE_ATTR: {
1630 if (copy_from_user(&attr, argp, sizeof(attr)))
1631 return -EFAULT;
1632
1633 return kvm_vm_set_attr(kvm, &attr);
1634 }
1635 default:
1636 return -EINVAL;
1637 }
1638 }
1639
1640 /* unlocks vcpus from @vcpu_lock_idx and smaller */
unlock_vcpus(struct kvm * kvm,int vcpu_lock_idx)1641 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
1642 {
1643 struct kvm_vcpu *tmp_vcpu;
1644
1645 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1646 tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1647 mutex_unlock(&tmp_vcpu->mutex);
1648 }
1649 }
1650
unlock_all_vcpus(struct kvm * kvm)1651 void unlock_all_vcpus(struct kvm *kvm)
1652 {
1653 lockdep_assert_held(&kvm->lock);
1654
1655 unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
1656 }
1657
1658 /* Returns true if all vcpus were locked, false otherwise */
lock_all_vcpus(struct kvm * kvm)1659 bool lock_all_vcpus(struct kvm *kvm)
1660 {
1661 struct kvm_vcpu *tmp_vcpu;
1662 unsigned long c;
1663
1664 lockdep_assert_held(&kvm->lock);
1665
1666 /*
1667 * Any time a vcpu is in an ioctl (including running), the
1668 * core KVM code tries to grab the vcpu->mutex.
1669 *
1670 * By grabbing the vcpu->mutex of all VCPUs we ensure that no
1671 * other VCPUs can fiddle with the state while we access it.
1672 */
1673 kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
1674 if (!mutex_trylock(&tmp_vcpu->mutex)) {
1675 unlock_vcpus(kvm, c - 1);
1676 return false;
1677 }
1678 }
1679
1680 return true;
1681 }
1682
nvhe_percpu_size(void)1683 static unsigned long nvhe_percpu_size(void)
1684 {
1685 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1686 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1687 }
1688
nvhe_percpu_order(void)1689 static unsigned long nvhe_percpu_order(void)
1690 {
1691 unsigned long size = nvhe_percpu_size();
1692
1693 return size ? get_order(size) : 0;
1694 }
1695
1696 /* A lookup table holding the hypervisor VA for each vector slot */
1697 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1698
kvm_init_vector_slot(void * base,enum arm64_hyp_spectre_vector slot)1699 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1700 {
1701 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1702 }
1703
kvm_init_vector_slots(void)1704 static int kvm_init_vector_slots(void)
1705 {
1706 int err;
1707 void *base;
1708
1709 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1710 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1711
1712 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1713 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1714
1715 if (kvm_system_needs_idmapped_vectors() &&
1716 !is_protected_kvm_enabled()) {
1717 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1718 __BP_HARDEN_HYP_VECS_SZ, &base);
1719 if (err)
1720 return err;
1721 }
1722
1723 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1724 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1725 return 0;
1726 }
1727
cpu_prepare_hyp_mode(int cpu,u32 hyp_va_bits)1728 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
1729 {
1730 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1731 unsigned long tcr;
1732
1733 /*
1734 * Calculate the raw per-cpu offset without a translation from the
1735 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1736 * so that we can use adr_l to access per-cpu variables in EL2.
1737 * Also drop the KASAN tag which gets in the way...
1738 */
1739 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1740 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1741
1742 params->mair_el2 = read_sysreg(mair_el1);
1743
1744 tcr = read_sysreg(tcr_el1);
1745 if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
1746 tcr |= TCR_EPD1_MASK;
1747 } else {
1748 tcr &= TCR_EL2_MASK;
1749 tcr |= TCR_EL2_RES1;
1750 }
1751 tcr &= ~TCR_T0SZ_MASK;
1752 tcr |= TCR_T0SZ(hyp_va_bits);
1753 params->tcr_el2 = tcr;
1754
1755 params->pgd_pa = kvm_mmu_get_httbr();
1756 if (is_protected_kvm_enabled())
1757 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1758 else
1759 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1760 if (cpus_have_final_cap(ARM64_KVM_HVHE))
1761 params->hcr_el2 |= HCR_E2H;
1762 params->vttbr = params->vtcr = 0;
1763
1764 /*
1765 * Flush the init params from the data cache because the struct will
1766 * be read while the MMU is off.
1767 */
1768 kvm_flush_dcache_to_poc(params, sizeof(*params));
1769 }
1770
hyp_install_host_vector(void)1771 static void hyp_install_host_vector(void)
1772 {
1773 struct kvm_nvhe_init_params *params;
1774 struct arm_smccc_res res;
1775
1776 /* Switch from the HYP stub to our own HYP init vector */
1777 __hyp_set_vectors(kvm_get_idmap_vector());
1778
1779 /*
1780 * Call initialization code, and switch to the full blown HYP code.
1781 * If the cpucaps haven't been finalized yet, something has gone very
1782 * wrong, and hyp will crash and burn when it uses any
1783 * cpus_have_const_cap() wrapper.
1784 */
1785 BUG_ON(!system_capabilities_finalized());
1786 params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1787 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1788 WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1789 }
1790
cpu_init_hyp_mode(void)1791 static void cpu_init_hyp_mode(void)
1792 {
1793 hyp_install_host_vector();
1794
1795 /*
1796 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1797 * at EL2.
1798 */
1799 if (this_cpu_has_cap(ARM64_SSBS) &&
1800 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1801 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1802 }
1803 }
1804
cpu_hyp_reset(void)1805 static void cpu_hyp_reset(void)
1806 {
1807 if (!is_kernel_in_hyp_mode())
1808 __hyp_reset_vectors();
1809 }
1810
1811 /*
1812 * EL2 vectors can be mapped and rerouted in a number of ways,
1813 * depending on the kernel configuration and CPU present:
1814 *
1815 * - If the CPU is affected by Spectre-v2, the hardening sequence is
1816 * placed in one of the vector slots, which is executed before jumping
1817 * to the real vectors.
1818 *
1819 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1820 * containing the hardening sequence is mapped next to the idmap page,
1821 * and executed before jumping to the real vectors.
1822 *
1823 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1824 * empty slot is selected, mapped next to the idmap page, and
1825 * executed before jumping to the real vectors.
1826 *
1827 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1828 * VHE, as we don't have hypervisor-specific mappings. If the system
1829 * is VHE and yet selects this capability, it will be ignored.
1830 */
cpu_set_hyp_vector(void)1831 static void cpu_set_hyp_vector(void)
1832 {
1833 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1834 void *vector = hyp_spectre_vector_selector[data->slot];
1835
1836 if (!is_protected_kvm_enabled())
1837 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1838 else
1839 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1840 }
1841
cpu_hyp_init_context(void)1842 static void cpu_hyp_init_context(void)
1843 {
1844 kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1845
1846 if (!is_kernel_in_hyp_mode())
1847 cpu_init_hyp_mode();
1848 }
1849
cpu_hyp_init_features(void)1850 static void cpu_hyp_init_features(void)
1851 {
1852 cpu_set_hyp_vector();
1853 kvm_arm_init_debug();
1854
1855 if (is_kernel_in_hyp_mode())
1856 kvm_timer_init_vhe();
1857
1858 if (vgic_present)
1859 kvm_vgic_init_cpu_hardware();
1860 }
1861
cpu_hyp_reinit(void)1862 static void cpu_hyp_reinit(void)
1863 {
1864 cpu_hyp_reset();
1865 cpu_hyp_init_context();
1866 cpu_hyp_init_features();
1867 }
1868
cpu_hyp_init(void * discard)1869 static void cpu_hyp_init(void *discard)
1870 {
1871 if (!__this_cpu_read(kvm_hyp_initialized)) {
1872 cpu_hyp_reinit();
1873 __this_cpu_write(kvm_hyp_initialized, 1);
1874 }
1875 }
1876
cpu_hyp_uninit(void * discard)1877 static void cpu_hyp_uninit(void *discard)
1878 {
1879 if (__this_cpu_read(kvm_hyp_initialized)) {
1880 cpu_hyp_reset();
1881 __this_cpu_write(kvm_hyp_initialized, 0);
1882 }
1883 }
1884
kvm_arch_hardware_enable(void)1885 int kvm_arch_hardware_enable(void)
1886 {
1887 /*
1888 * Most calls to this function are made with migration
1889 * disabled, but not with preemption disabled. The former is
1890 * enough to ensure correctness, but most of the helpers
1891 * expect the later and will throw a tantrum otherwise.
1892 */
1893 preempt_disable();
1894
1895 cpu_hyp_init(NULL);
1896
1897 kvm_vgic_cpu_up();
1898 kvm_timer_cpu_up();
1899
1900 preempt_enable();
1901
1902 return 0;
1903 }
1904
kvm_arch_hardware_disable(void)1905 void kvm_arch_hardware_disable(void)
1906 {
1907 kvm_timer_cpu_down();
1908 kvm_vgic_cpu_down();
1909
1910 if (!is_protected_kvm_enabled())
1911 cpu_hyp_uninit(NULL);
1912 }
1913
1914 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1915 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1916 unsigned long cmd,
1917 void *v)
1918 {
1919 /*
1920 * kvm_hyp_initialized is left with its old value over
1921 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1922 * re-enable hyp.
1923 */
1924 switch (cmd) {
1925 case CPU_PM_ENTER:
1926 if (__this_cpu_read(kvm_hyp_initialized))
1927 /*
1928 * don't update kvm_hyp_initialized here
1929 * so that the hyp will be re-enabled
1930 * when we resume. See below.
1931 */
1932 cpu_hyp_reset();
1933
1934 return NOTIFY_OK;
1935 case CPU_PM_ENTER_FAILED:
1936 case CPU_PM_EXIT:
1937 if (__this_cpu_read(kvm_hyp_initialized))
1938 /* The hyp was enabled before suspend. */
1939 cpu_hyp_reinit();
1940
1941 return NOTIFY_OK;
1942
1943 default:
1944 return NOTIFY_DONE;
1945 }
1946 }
1947
1948 static struct notifier_block hyp_init_cpu_pm_nb = {
1949 .notifier_call = hyp_init_cpu_pm_notifier,
1950 };
1951
hyp_cpu_pm_init(void)1952 static void __init hyp_cpu_pm_init(void)
1953 {
1954 if (!is_protected_kvm_enabled())
1955 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1956 }
hyp_cpu_pm_exit(void)1957 static void __init hyp_cpu_pm_exit(void)
1958 {
1959 if (!is_protected_kvm_enabled())
1960 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1961 }
1962 #else
hyp_cpu_pm_init(void)1963 static inline void __init hyp_cpu_pm_init(void)
1964 {
1965 }
hyp_cpu_pm_exit(void)1966 static inline void __init hyp_cpu_pm_exit(void)
1967 {
1968 }
1969 #endif
1970
init_cpu_logical_map(void)1971 static void __init init_cpu_logical_map(void)
1972 {
1973 unsigned int cpu;
1974
1975 /*
1976 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1977 * Only copy the set of online CPUs whose features have been checked
1978 * against the finalized system capabilities. The hypervisor will not
1979 * allow any other CPUs from the `possible` set to boot.
1980 */
1981 for_each_online_cpu(cpu)
1982 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1983 }
1984
1985 #define init_psci_0_1_impl_state(config, what) \
1986 config.psci_0_1_ ## what ## _implemented = psci_ops.what
1987
init_psci_relay(void)1988 static bool __init init_psci_relay(void)
1989 {
1990 /*
1991 * If PSCI has not been initialized, protected KVM cannot install
1992 * itself on newly booted CPUs.
1993 */
1994 if (!psci_ops.get_version) {
1995 kvm_err("Cannot initialize protected mode without PSCI\n");
1996 return false;
1997 }
1998
1999 kvm_host_psci_config.version = psci_ops.get_version();
2000 kvm_host_psci_config.smccc_version = arm_smccc_get_version();
2001
2002 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
2003 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
2004 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
2005 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
2006 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
2007 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
2008 }
2009 return true;
2010 }
2011
init_subsystems(void)2012 static int __init init_subsystems(void)
2013 {
2014 int err = 0;
2015
2016 /*
2017 * Enable hardware so that subsystem initialisation can access EL2.
2018 */
2019 on_each_cpu(cpu_hyp_init, NULL, 1);
2020
2021 /*
2022 * Register CPU lower-power notifier
2023 */
2024 hyp_cpu_pm_init();
2025
2026 /*
2027 * Init HYP view of VGIC
2028 */
2029 err = kvm_vgic_hyp_init();
2030 switch (err) {
2031 case 0:
2032 vgic_present = true;
2033 break;
2034 case -ENODEV:
2035 case -ENXIO:
2036 vgic_present = false;
2037 err = 0;
2038 break;
2039 default:
2040 goto out;
2041 }
2042
2043 /*
2044 * Init HYP architected timer support
2045 */
2046 err = kvm_timer_hyp_init(vgic_present);
2047 if (err)
2048 goto out;
2049
2050 kvm_register_perf_callbacks(NULL);
2051
2052 out:
2053 if (err)
2054 hyp_cpu_pm_exit();
2055
2056 if (err || !is_protected_kvm_enabled())
2057 on_each_cpu(cpu_hyp_uninit, NULL, 1);
2058
2059 return err;
2060 }
2061
teardown_subsystems(void)2062 static void __init teardown_subsystems(void)
2063 {
2064 kvm_unregister_perf_callbacks();
2065 hyp_cpu_pm_exit();
2066 }
2067
teardown_hyp_mode(void)2068 static void __init teardown_hyp_mode(void)
2069 {
2070 int cpu;
2071
2072 free_hyp_pgds();
2073 for_each_possible_cpu(cpu) {
2074 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
2075 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2076 }
2077 }
2078
do_pkvm_init(u32 hyp_va_bits)2079 static int __init do_pkvm_init(u32 hyp_va_bits)
2080 {
2081 void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2082 int ret;
2083
2084 preempt_disable();
2085 cpu_hyp_init_context();
2086 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2087 num_possible_cpus(), kern_hyp_va(per_cpu_base),
2088 hyp_va_bits);
2089 cpu_hyp_init_features();
2090
2091 /*
2092 * The stub hypercalls are now disabled, so set our local flag to
2093 * prevent a later re-init attempt in kvm_arch_hardware_enable().
2094 */
2095 __this_cpu_write(kvm_hyp_initialized, 1);
2096 preempt_enable();
2097
2098 return ret;
2099 }
2100
get_hyp_id_aa64pfr0_el1(void)2101 static u64 get_hyp_id_aa64pfr0_el1(void)
2102 {
2103 /*
2104 * Track whether the system isn't affected by spectre/meltdown in the
2105 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2106 * Although this is per-CPU, we make it global for simplicity, e.g., not
2107 * to have to worry about vcpu migration.
2108 *
2109 * Unlike for non-protected VMs, userspace cannot override this for
2110 * protected VMs.
2111 */
2112 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2113
2114 val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
2115 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
2116
2117 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
2118 arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2119 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
2120 arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2121
2122 return val;
2123 }
2124
kvm_hyp_init_symbols(void)2125 static void kvm_hyp_init_symbols(void)
2126 {
2127 kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2128 kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2129 kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2130 kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2131 kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2132 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2133 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2134 kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2135 kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2136 kvm_nvhe_sym(__icache_flags) = __icache_flags;
2137 kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2138 }
2139
kvm_hyp_init_protection(u32 hyp_va_bits)2140 static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2141 {
2142 void *addr = phys_to_virt(hyp_mem_base);
2143 int ret;
2144
2145 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2146 if (ret)
2147 return ret;
2148
2149 ret = do_pkvm_init(hyp_va_bits);
2150 if (ret)
2151 return ret;
2152
2153 free_hyp_pgds();
2154
2155 return 0;
2156 }
2157
pkvm_hyp_init_ptrauth(void)2158 static void pkvm_hyp_init_ptrauth(void)
2159 {
2160 struct kvm_cpu_context *hyp_ctxt;
2161 int cpu;
2162
2163 for_each_possible_cpu(cpu) {
2164 hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2165 hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2166 hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2167 hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2168 hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2169 hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2170 hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2171 hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2172 hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2173 hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2174 hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2175 }
2176 }
2177
2178 /* Inits Hyp-mode on all online CPUs */
init_hyp_mode(void)2179 static int __init init_hyp_mode(void)
2180 {
2181 u32 hyp_va_bits;
2182 int cpu;
2183 int err = -ENOMEM;
2184
2185 /*
2186 * The protected Hyp-mode cannot be initialized if the memory pool
2187 * allocation has failed.
2188 */
2189 if (is_protected_kvm_enabled() && !hyp_mem_base)
2190 goto out_err;
2191
2192 /*
2193 * Allocate Hyp PGD and setup Hyp identity mapping
2194 */
2195 err = kvm_mmu_init(&hyp_va_bits);
2196 if (err)
2197 goto out_err;
2198
2199 /*
2200 * Allocate stack pages for Hypervisor-mode
2201 */
2202 for_each_possible_cpu(cpu) {
2203 unsigned long stack_page;
2204
2205 stack_page = __get_free_page(GFP_KERNEL);
2206 if (!stack_page) {
2207 err = -ENOMEM;
2208 goto out_err;
2209 }
2210
2211 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
2212 }
2213
2214 /*
2215 * Allocate and initialize pages for Hypervisor-mode percpu regions.
2216 */
2217 for_each_possible_cpu(cpu) {
2218 struct page *page;
2219 void *page_addr;
2220
2221 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2222 if (!page) {
2223 err = -ENOMEM;
2224 goto out_err;
2225 }
2226
2227 page_addr = page_address(page);
2228 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2229 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2230 }
2231
2232 /*
2233 * Map the Hyp-code called directly from the host
2234 */
2235 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2236 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2237 if (err) {
2238 kvm_err("Cannot map world-switch code\n");
2239 goto out_err;
2240 }
2241
2242 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2243 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2244 if (err) {
2245 kvm_err("Cannot map .hyp.rodata section\n");
2246 goto out_err;
2247 }
2248
2249 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2250 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2251 if (err) {
2252 kvm_err("Cannot map rodata section\n");
2253 goto out_err;
2254 }
2255
2256 /*
2257 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2258 * section thanks to an assertion in the linker script. Map it RW and
2259 * the rest of .bss RO.
2260 */
2261 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2262 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2263 if (err) {
2264 kvm_err("Cannot map hyp bss section: %d\n", err);
2265 goto out_err;
2266 }
2267
2268 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2269 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2270 if (err) {
2271 kvm_err("Cannot map bss section\n");
2272 goto out_err;
2273 }
2274
2275 /*
2276 * Map the Hyp stack pages
2277 */
2278 for_each_possible_cpu(cpu) {
2279 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2280 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2281
2282 err = create_hyp_stack(__pa(stack_page), ¶ms->stack_hyp_va);
2283 if (err) {
2284 kvm_err("Cannot map hyp stack\n");
2285 goto out_err;
2286 }
2287
2288 /*
2289 * Save the stack PA in nvhe_init_params. This will be needed
2290 * to recreate the stack mapping in protected nVHE mode.
2291 * __hyp_pa() won't do the right thing there, since the stack
2292 * has been mapped in the flexible private VA space.
2293 */
2294 params->stack_pa = __pa(stack_page);
2295 }
2296
2297 for_each_possible_cpu(cpu) {
2298 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2299 char *percpu_end = percpu_begin + nvhe_percpu_size();
2300
2301 /* Map Hyp percpu pages */
2302 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2303 if (err) {
2304 kvm_err("Cannot map hyp percpu region\n");
2305 goto out_err;
2306 }
2307
2308 /* Prepare the CPU initialization parameters */
2309 cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2310 }
2311
2312 kvm_hyp_init_symbols();
2313
2314 if (is_protected_kvm_enabled()) {
2315 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2316 cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH))
2317 pkvm_hyp_init_ptrauth();
2318
2319 init_cpu_logical_map();
2320
2321 if (!init_psci_relay()) {
2322 err = -ENODEV;
2323 goto out_err;
2324 }
2325
2326 err = kvm_hyp_init_protection(hyp_va_bits);
2327 if (err) {
2328 kvm_err("Failed to init hyp memory protection\n");
2329 goto out_err;
2330 }
2331 }
2332
2333 return 0;
2334
2335 out_err:
2336 teardown_hyp_mode();
2337 kvm_err("error initializing Hyp mode: %d\n", err);
2338 return err;
2339 }
2340
kvm_mpidr_to_vcpu(struct kvm * kvm,unsigned long mpidr)2341 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2342 {
2343 struct kvm_vcpu *vcpu;
2344 unsigned long i;
2345
2346 mpidr &= MPIDR_HWID_BITMASK;
2347 kvm_for_each_vcpu(i, vcpu, kvm) {
2348 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2349 return vcpu;
2350 }
2351 return NULL;
2352 }
2353
kvm_arch_irqchip_in_kernel(struct kvm * kvm)2354 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2355 {
2356 return irqchip_in_kernel(kvm);
2357 }
2358
kvm_arch_has_irq_bypass(void)2359 bool kvm_arch_has_irq_bypass(void)
2360 {
2361 return true;
2362 }
2363
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2364 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2365 struct irq_bypass_producer *prod)
2366 {
2367 struct kvm_kernel_irqfd *irqfd =
2368 container_of(cons, struct kvm_kernel_irqfd, consumer);
2369
2370 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2371 &irqfd->irq_entry);
2372 }
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2373 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2374 struct irq_bypass_producer *prod)
2375 {
2376 struct kvm_kernel_irqfd *irqfd =
2377 container_of(cons, struct kvm_kernel_irqfd, consumer);
2378
2379 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2380 &irqfd->irq_entry);
2381 }
2382
kvm_arch_irq_bypass_stop(struct irq_bypass_consumer * cons)2383 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2384 {
2385 struct kvm_kernel_irqfd *irqfd =
2386 container_of(cons, struct kvm_kernel_irqfd, consumer);
2387
2388 kvm_arm_halt_guest(irqfd->kvm);
2389 }
2390
kvm_arch_irq_bypass_start(struct irq_bypass_consumer * cons)2391 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2392 {
2393 struct kvm_kernel_irqfd *irqfd =
2394 container_of(cons, struct kvm_kernel_irqfd, consumer);
2395
2396 kvm_arm_resume_guest(irqfd->kvm);
2397 }
2398
2399 /* Initialize Hyp-mode and memory mappings on all CPUs */
kvm_arm_init(void)2400 static __init int kvm_arm_init(void)
2401 {
2402 int err;
2403 bool in_hyp_mode;
2404
2405 if (!is_hyp_mode_available()) {
2406 kvm_info("HYP mode not available\n");
2407 return -ENODEV;
2408 }
2409
2410 if (kvm_get_mode() == KVM_MODE_NONE) {
2411 kvm_info("KVM disabled from command line\n");
2412 return -ENODEV;
2413 }
2414
2415 err = kvm_sys_reg_table_init();
2416 if (err) {
2417 kvm_info("Error initializing system register tables");
2418 return err;
2419 }
2420
2421 in_hyp_mode = is_kernel_in_hyp_mode();
2422
2423 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2424 cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2425 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2426 "Only trusted guests should be used on this system.\n");
2427
2428 err = kvm_set_ipa_limit();
2429 if (err)
2430 return err;
2431
2432 err = kvm_arm_init_sve();
2433 if (err)
2434 return err;
2435
2436 err = kvm_arm_vmid_alloc_init();
2437 if (err) {
2438 kvm_err("Failed to initialize VMID allocator.\n");
2439 return err;
2440 }
2441
2442 if (!in_hyp_mode) {
2443 err = init_hyp_mode();
2444 if (err)
2445 goto out_err;
2446 }
2447
2448 err = kvm_init_vector_slots();
2449 if (err) {
2450 kvm_err("Cannot initialise vector slots\n");
2451 goto out_hyp;
2452 }
2453
2454 err = init_subsystems();
2455 if (err)
2456 goto out_hyp;
2457
2458 if (is_protected_kvm_enabled()) {
2459 kvm_info("Protected nVHE mode initialized successfully\n");
2460 } else if (in_hyp_mode) {
2461 kvm_info("VHE mode initialized successfully\n");
2462 } else {
2463 kvm_info("Hyp mode initialized successfully\n");
2464 }
2465
2466 /*
2467 * FIXME: Do something reasonable if kvm_init() fails after pKVM
2468 * hypervisor protection is finalized.
2469 */
2470 err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2471 if (err)
2472 goto out_subs;
2473
2474 kvm_arm_initialised = true;
2475
2476 return 0;
2477
2478 out_subs:
2479 teardown_subsystems();
2480 out_hyp:
2481 if (!in_hyp_mode)
2482 teardown_hyp_mode();
2483 out_err:
2484 kvm_arm_vmid_alloc_free();
2485 return err;
2486 }
2487
early_kvm_mode_cfg(char * arg)2488 static int __init early_kvm_mode_cfg(char *arg)
2489 {
2490 if (!arg)
2491 return -EINVAL;
2492
2493 if (strcmp(arg, "none") == 0) {
2494 kvm_mode = KVM_MODE_NONE;
2495 return 0;
2496 }
2497
2498 if (!is_hyp_mode_available()) {
2499 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2500 return 0;
2501 }
2502
2503 if (strcmp(arg, "protected") == 0) {
2504 if (!is_kernel_in_hyp_mode())
2505 kvm_mode = KVM_MODE_PROTECTED;
2506 else
2507 pr_warn_once("Protected KVM not available with VHE\n");
2508
2509 return 0;
2510 }
2511
2512 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2513 kvm_mode = KVM_MODE_DEFAULT;
2514 return 0;
2515 }
2516
2517 if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2518 kvm_mode = KVM_MODE_NV;
2519 return 0;
2520 }
2521
2522 return -EINVAL;
2523 }
2524 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2525
kvm_get_mode(void)2526 enum kvm_mode kvm_get_mode(void)
2527 {
2528 return kvm_mode;
2529 }
2530
2531 module_init(kvm_arm_init);
2532