xref: /openbmc/linux/drivers/clocksource/hyperv_timer.c (revision a6923798e471570ac1b24086be0a9679f51c3171)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Clocksource driver for the synthetic counter and timers
5  * provided by the Hyper-V hypervisor to guest VMs, as described
6  * in the Hyper-V Top Level Functional Spec (TLFS). This driver
7  * is instruction set architecture independent.
8  *
9  * Copyright (C) 2019, Microsoft, Inc.
10  *
11  * Author:  Michael Kelley <mikelley@microsoft.com>
12  */
13 
14 #include <linux/percpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/clockchips.h>
17 #include <linux/clocksource.h>
18 #include <linux/sched_clock.h>
19 #include <linux/mm.h>
20 #include <linux/cpuhotplug.h>
21 #include <linux/interrupt.h>
22 #include <linux/irq.h>
23 #include <linux/acpi.h>
24 #include <linux/hyperv.h>
25 #include <clocksource/hyperv_timer.h>
26 #include <asm/hyperv-tlfs.h>
27 #include <asm/mshyperv.h>
28 
29 static struct clock_event_device __percpu *hv_clock_event;
30 /* Note: offset can hold negative values after hibernation. */
31 static u64 hv_sched_clock_offset __read_mostly;
32 
33 /*
34  * If false, we're using the old mechanism for stimer0 interrupts
35  * where it sends a VMbus message when it expires. The old
36  * mechanism is used when running on older versions of Hyper-V
37  * that don't support Direct Mode. While Hyper-V provides
38  * four stimer's per CPU, Linux uses only stimer0.
39  *
40  * Because Direct Mode does not require processing a VMbus
41  * message, stimer interrupts can be enabled earlier in the
42  * process of booting a CPU, and consistent with when timer
43  * interrupts are enabled for other clocksource drivers.
44  * However, for legacy versions of Hyper-V when Direct Mode
45  * is not enabled, setting up stimer interrupts must be
46  * delayed until VMbus is initialized and can process the
47  * interrupt message.
48  */
49 static bool direct_mode_enabled;
50 
51 static int stimer0_irq = -1;
52 static int stimer0_message_sint;
53 static __maybe_unused DEFINE_PER_CPU(long, stimer0_evt);
54 
55 /*
56  * Common code for stimer0 interrupts coming via Direct Mode or
57  * as a VMbus message.
58  */
hv_stimer0_isr(void)59 void hv_stimer0_isr(void)
60 {
61 	struct clock_event_device *ce;
62 
63 	ce = this_cpu_ptr(hv_clock_event);
64 	ce->event_handler(ce);
65 }
66 EXPORT_SYMBOL_GPL(hv_stimer0_isr);
67 
68 /*
69  * stimer0 interrupt handler for architectures that support
70  * per-cpu interrupts, which also implies Direct Mode.
71  */
hv_stimer0_percpu_isr(int irq,void * dev_id)72 static irqreturn_t __maybe_unused hv_stimer0_percpu_isr(int irq, void *dev_id)
73 {
74 	hv_stimer0_isr();
75 	return IRQ_HANDLED;
76 }
77 
hv_ce_set_next_event(unsigned long delta,struct clock_event_device * evt)78 static int hv_ce_set_next_event(unsigned long delta,
79 				struct clock_event_device *evt)
80 {
81 	u64 current_tick;
82 
83 	current_tick = hv_read_reference_counter();
84 	current_tick += delta;
85 	hv_set_register(HV_REGISTER_STIMER0_COUNT, current_tick);
86 	return 0;
87 }
88 
hv_ce_shutdown(struct clock_event_device * evt)89 static int hv_ce_shutdown(struct clock_event_device *evt)
90 {
91 	hv_set_register(HV_REGISTER_STIMER0_COUNT, 0);
92 	hv_set_register(HV_REGISTER_STIMER0_CONFIG, 0);
93 	if (direct_mode_enabled && stimer0_irq >= 0)
94 		disable_percpu_irq(stimer0_irq);
95 
96 	return 0;
97 }
98 
hv_ce_set_oneshot(struct clock_event_device * evt)99 static int hv_ce_set_oneshot(struct clock_event_device *evt)
100 {
101 	union hv_stimer_config timer_cfg;
102 
103 	timer_cfg.as_uint64 = 0;
104 	timer_cfg.enable = 1;
105 	timer_cfg.auto_enable = 1;
106 	if (direct_mode_enabled) {
107 		/*
108 		 * When it expires, the timer will directly interrupt
109 		 * on the specified hardware vector/IRQ.
110 		 */
111 		timer_cfg.direct_mode = 1;
112 		timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR;
113 		if (stimer0_irq >= 0)
114 			enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE);
115 	} else {
116 		/*
117 		 * When it expires, the timer will generate a VMbus message,
118 		 * to be handled by the normal VMbus interrupt handler.
119 		 */
120 		timer_cfg.direct_mode = 0;
121 		timer_cfg.sintx = stimer0_message_sint;
122 	}
123 	hv_set_register(HV_REGISTER_STIMER0_CONFIG, timer_cfg.as_uint64);
124 	return 0;
125 }
126 
127 /*
128  * hv_stimer_init - Per-cpu initialization of the clockevent
129  */
hv_stimer_init(unsigned int cpu)130 static int hv_stimer_init(unsigned int cpu)
131 {
132 	struct clock_event_device *ce;
133 
134 	if (!hv_clock_event)
135 		return 0;
136 
137 	ce = per_cpu_ptr(hv_clock_event, cpu);
138 	ce->name = "Hyper-V clockevent";
139 	ce->features = CLOCK_EVT_FEAT_ONESHOT;
140 	ce->cpumask = cpumask_of(cpu);
141 	ce->rating = 1000;
142 	ce->set_state_shutdown = hv_ce_shutdown;
143 	ce->set_state_oneshot = hv_ce_set_oneshot;
144 	ce->set_next_event = hv_ce_set_next_event;
145 
146 	clockevents_config_and_register(ce,
147 					HV_CLOCK_HZ,
148 					HV_MIN_DELTA_TICKS,
149 					HV_MAX_MAX_DELTA_TICKS);
150 	return 0;
151 }
152 
153 /*
154  * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
155  */
hv_stimer_cleanup(unsigned int cpu)156 int hv_stimer_cleanup(unsigned int cpu)
157 {
158 	struct clock_event_device *ce;
159 
160 	if (!hv_clock_event)
161 		return 0;
162 
163 	/*
164 	 * In the legacy case where Direct Mode is not enabled
165 	 * (which can only be on x86/64), stimer cleanup happens
166 	 * relatively early in the CPU offlining process. We
167 	 * must unbind the stimer-based clockevent device so
168 	 * that the LAPIC timer can take over until clockevents
169 	 * are no longer needed in the offlining process. Note
170 	 * that clockevents_unbind_device() eventually calls
171 	 * hv_ce_shutdown().
172 	 *
173 	 * The unbind should not be done when Direct Mode is
174 	 * enabled because we may be on an architecture where
175 	 * there are no other clockevent devices to fallback to.
176 	 */
177 	ce = per_cpu_ptr(hv_clock_event, cpu);
178 	if (direct_mode_enabled)
179 		hv_ce_shutdown(ce);
180 	else
181 		clockevents_unbind_device(ce, cpu);
182 
183 	return 0;
184 }
185 EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
186 
187 /*
188  * These placeholders are overridden by arch specific code on
189  * architectures that need special setup of the stimer0 IRQ because
190  * they don't support per-cpu IRQs (such as x86/x64).
191  */
hv_setup_stimer0_handler(void (* handler)(void))192 void __weak hv_setup_stimer0_handler(void (*handler)(void))
193 {
194 };
195 
hv_remove_stimer0_handler(void)196 void __weak hv_remove_stimer0_handler(void)
197 {
198 };
199 
200 #ifdef CONFIG_ACPI
201 /* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */
hv_setup_stimer0_irq(void)202 static int hv_setup_stimer0_irq(void)
203 {
204 	int ret;
205 
206 	ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR,
207 			ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH);
208 	if (ret < 0) {
209 		pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret);
210 		return ret;
211 	}
212 	stimer0_irq = ret;
213 
214 	ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr,
215 		"Hyper-V stimer0", &stimer0_evt);
216 	if (ret) {
217 		pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d",
218 			stimer0_irq, ret);
219 		acpi_unregister_gsi(stimer0_irq);
220 		stimer0_irq = -1;
221 	}
222 	return ret;
223 }
224 
hv_remove_stimer0_irq(void)225 static void hv_remove_stimer0_irq(void)
226 {
227 	if (stimer0_irq == -1) {
228 		hv_remove_stimer0_handler();
229 	} else {
230 		free_percpu_irq(stimer0_irq, &stimer0_evt);
231 		acpi_unregister_gsi(stimer0_irq);
232 		stimer0_irq = -1;
233 	}
234 }
235 #else
hv_setup_stimer0_irq(void)236 static int hv_setup_stimer0_irq(void)
237 {
238 	return 0;
239 }
240 
hv_remove_stimer0_irq(void)241 static void hv_remove_stimer0_irq(void)
242 {
243 }
244 #endif
245 
246 /* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
hv_stimer_alloc(bool have_percpu_irqs)247 int hv_stimer_alloc(bool have_percpu_irqs)
248 {
249 	int ret;
250 
251 	/*
252 	 * Synthetic timers are always available except on old versions of
253 	 * Hyper-V on x86.  In that case, return as error as Linux will use a
254 	 * clockevent based on emulated LAPIC timer hardware.
255 	 */
256 	if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
257 		return -EINVAL;
258 
259 	hv_clock_event = alloc_percpu(struct clock_event_device);
260 	if (!hv_clock_event)
261 		return -ENOMEM;
262 
263 	direct_mode_enabled = ms_hyperv.misc_features &
264 			HV_STIMER_DIRECT_MODE_AVAILABLE;
265 
266 	/*
267 	 * If Direct Mode isn't enabled, the remainder of the initialization
268 	 * is done later by hv_stimer_legacy_init()
269 	 */
270 	if (!direct_mode_enabled)
271 		return 0;
272 
273 	if (have_percpu_irqs) {
274 		ret = hv_setup_stimer0_irq();
275 		if (ret)
276 			goto free_clock_event;
277 	} else {
278 		hv_setup_stimer0_handler(hv_stimer0_isr);
279 	}
280 
281 	/*
282 	 * Since we are in Direct Mode, stimer initialization
283 	 * can be done now with a CPUHP value in the same range
284 	 * as other clockevent devices.
285 	 */
286 	ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
287 			"clockevents/hyperv/stimer:starting",
288 			hv_stimer_init, hv_stimer_cleanup);
289 	if (ret < 0) {
290 		hv_remove_stimer0_irq();
291 		goto free_clock_event;
292 	}
293 	return ret;
294 
295 free_clock_event:
296 	free_percpu(hv_clock_event);
297 	hv_clock_event = NULL;
298 	return ret;
299 }
300 EXPORT_SYMBOL_GPL(hv_stimer_alloc);
301 
302 /*
303  * hv_stimer_legacy_init -- Called from the VMbus driver to handle
304  * the case when Direct Mode is not enabled, and the stimer
305  * must be initialized late in the CPU onlining process.
306  *
307  */
hv_stimer_legacy_init(unsigned int cpu,int sint)308 void hv_stimer_legacy_init(unsigned int cpu, int sint)
309 {
310 	if (direct_mode_enabled)
311 		return;
312 
313 	/*
314 	 * This function gets called by each vCPU, so setting the
315 	 * global stimer_message_sint value each time is conceptually
316 	 * not ideal, but the value passed in is always the same and
317 	 * it avoids introducing yet another interface into this
318 	 * clocksource driver just to set the sint in the legacy case.
319 	 */
320 	stimer0_message_sint = sint;
321 	(void)hv_stimer_init(cpu);
322 }
323 EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
324 
325 /*
326  * hv_stimer_legacy_cleanup -- Called from the VMbus driver to
327  * handle the case when Direct Mode is not enabled, and the
328  * stimer must be cleaned up early in the CPU offlining
329  * process.
330  */
hv_stimer_legacy_cleanup(unsigned int cpu)331 void hv_stimer_legacy_cleanup(unsigned int cpu)
332 {
333 	if (direct_mode_enabled)
334 		return;
335 	(void)hv_stimer_cleanup(cpu);
336 }
337 EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
338 
339 /*
340  * Do a global cleanup of clockevents for the cases of kexec and
341  * vmbus exit
342  */
hv_stimer_global_cleanup(void)343 void hv_stimer_global_cleanup(void)
344 {
345 	int	cpu;
346 
347 	/*
348 	 * hv_stime_legacy_cleanup() will stop the stimer if Direct
349 	 * Mode is not enabled, and fallback to the LAPIC timer.
350 	 */
351 	for_each_present_cpu(cpu) {
352 		hv_stimer_legacy_cleanup(cpu);
353 	}
354 
355 	if (!hv_clock_event)
356 		return;
357 
358 	if (direct_mode_enabled) {
359 		cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
360 		hv_remove_stimer0_irq();
361 		stimer0_irq = -1;
362 	}
363 	free_percpu(hv_clock_event);
364 	hv_clock_event = NULL;
365 
366 }
367 EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
368 
read_hv_clock_msr(void)369 static __always_inline u64 read_hv_clock_msr(void)
370 {
371 	/*
372 	 * Read the partition counter to get the current tick count. This count
373 	 * is set to 0 when the partition is created and is incremented in 100
374 	 * nanosecond units.
375 	 *
376 	 * Use hv_raw_get_register() because this function is used from
377 	 * noinstr. Notable; while HV_REGISTER_TIME_REF_COUNT is a synthetic
378 	 * register it doesn't need the GHCB path.
379 	 */
380 	return hv_raw_get_register(HV_REGISTER_TIME_REF_COUNT);
381 }
382 
383 /*
384  * Code and definitions for the Hyper-V clocksources.  Two
385  * clocksources are defined: one that reads the Hyper-V defined MSR, and
386  * the other that uses the TSC reference page feature as defined in the
387  * TLFS.  The MSR version is for compatibility with old versions of
388  * Hyper-V and 32-bit x86.  The TSC reference page version is preferred.
389  */
390 
391 static union {
392 	struct ms_hyperv_tsc_page page;
393 	u8 reserved[PAGE_SIZE];
394 } tsc_pg __bss_decrypted __aligned(PAGE_SIZE);
395 
396 static struct ms_hyperv_tsc_page *tsc_page = &tsc_pg.page;
397 static unsigned long tsc_pfn;
398 
hv_get_tsc_pfn(void)399 unsigned long hv_get_tsc_pfn(void)
400 {
401 	return tsc_pfn;
402 }
403 EXPORT_SYMBOL_GPL(hv_get_tsc_pfn);
404 
hv_get_tsc_page(void)405 struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
406 {
407 	return tsc_page;
408 }
409 EXPORT_SYMBOL_GPL(hv_get_tsc_page);
410 
read_hv_clock_tsc(void)411 static __always_inline u64 read_hv_clock_tsc(void)
412 {
413 	u64 cur_tsc, time;
414 
415 	/*
416 	 * The Hyper-V Top-Level Function Spec (TLFS), section Timers,
417 	 * subsection Refererence Counter, guarantees that the TSC and MSR
418 	 * times are in sync and monotonic. Therefore we can fall back
419 	 * to the MSR in case the TSC page indicates unavailability.
420 	 */
421 	if (!hv_read_tsc_page_tsc(tsc_page, &cur_tsc, &time))
422 		time = read_hv_clock_msr();
423 
424 	return time;
425 }
426 
read_hv_clock_tsc_cs(struct clocksource * arg)427 static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
428 {
429 	return read_hv_clock_tsc();
430 }
431 
read_hv_sched_clock_tsc(void)432 static u64 noinstr read_hv_sched_clock_tsc(void)
433 {
434 	return (read_hv_clock_tsc() - hv_sched_clock_offset) *
435 		(NSEC_PER_SEC / HV_CLOCK_HZ);
436 }
437 
suspend_hv_clock_tsc(struct clocksource * arg)438 static void suspend_hv_clock_tsc(struct clocksource *arg)
439 {
440 	union hv_reference_tsc_msr tsc_msr;
441 
442 	/* Disable the TSC page */
443 	tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC);
444 	tsc_msr.enable = 0;
445 	hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64);
446 }
447 
448 
resume_hv_clock_tsc(struct clocksource * arg)449 static void resume_hv_clock_tsc(struct clocksource *arg)
450 {
451 	union hv_reference_tsc_msr tsc_msr;
452 
453 	/* Re-enable the TSC page */
454 	tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC);
455 	tsc_msr.enable = 1;
456 	tsc_msr.pfn = tsc_pfn;
457 	hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64);
458 }
459 
460 /*
461  * Called during resume from hibernation, from overridden
462  * x86_platform.restore_sched_clock_state routine. This is to adjust offsets
463  * used to calculate time for hv tsc page based sched_clock, to account for
464  * time spent before hibernation.
465  */
hv_adj_sched_clock_offset(u64 offset)466 void hv_adj_sched_clock_offset(u64 offset)
467 {
468 	hv_sched_clock_offset -= offset;
469 }
470 
471 #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
hv_cs_enable(struct clocksource * cs)472 static int hv_cs_enable(struct clocksource *cs)
473 {
474 	vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK);
475 	return 0;
476 }
477 #endif
478 
479 static struct clocksource hyperv_cs_tsc = {
480 	.name	= "hyperv_clocksource_tsc_page",
481 	.rating	= 500,
482 	.read	= read_hv_clock_tsc_cs,
483 	.mask	= CLOCKSOURCE_MASK(64),
484 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
485 	.suspend= suspend_hv_clock_tsc,
486 	.resume	= resume_hv_clock_tsc,
487 #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
488 	.enable = hv_cs_enable,
489 	.vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK,
490 #else
491 	.vdso_clock_mode = VDSO_CLOCKMODE_NONE,
492 #endif
493 };
494 
read_hv_clock_msr_cs(struct clocksource * arg)495 static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
496 {
497 	return read_hv_clock_msr();
498 }
499 
500 static struct clocksource hyperv_cs_msr = {
501 	.name	= "hyperv_clocksource_msr",
502 	.rating	= 495,
503 	.read	= read_hv_clock_msr_cs,
504 	.mask	= CLOCKSOURCE_MASK(64),
505 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
506 };
507 
508 /*
509  * Reference to pv_ops must be inline so objtool
510  * detection of noinstr violations can work correctly.
511  */
512 #ifdef CONFIG_GENERIC_SCHED_CLOCK
hv_setup_sched_clock(void * sched_clock)513 static __always_inline void hv_setup_sched_clock(void *sched_clock)
514 {
515 	/*
516 	 * We're on an architecture with generic sched clock (not x86/x64).
517 	 * The Hyper-V sched clock read function returns nanoseconds, not
518 	 * the normal 100ns units of the Hyper-V synthetic clock.
519 	 */
520 	sched_clock_register(sched_clock, 64, NSEC_PER_SEC);
521 }
522 #elif defined CONFIG_PARAVIRT
hv_setup_sched_clock(void * sched_clock)523 static __always_inline void hv_setup_sched_clock(void *sched_clock)
524 {
525 	/* We're on x86/x64 *and* using PV ops */
526 	paravirt_set_sched_clock(sched_clock);
527 }
528 #else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */
hv_setup_sched_clock(void * sched_clock)529 static __always_inline void hv_setup_sched_clock(void *sched_clock) {}
530 #endif /* CONFIG_GENERIC_SCHED_CLOCK */
531 
hv_init_tsc_clocksource(void)532 static void __init hv_init_tsc_clocksource(void)
533 {
534 	union hv_reference_tsc_msr tsc_msr;
535 
536 	/*
537 	 * If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly
538 	 * handles frequency and offset changes due to live migration,
539 	 * pause/resume, and other VM management operations.  So lower the
540 	 * Hyper-V Reference TSC rating, causing the generic TSC to be used.
541 	 * TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference
542 	 * TSC will be preferred over the virtualized ARM64 arch counter.
543 	 */
544 	if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) {
545 		hyperv_cs_tsc.rating = 250;
546 		hyperv_cs_msr.rating = 245;
547 	}
548 
549 	if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
550 		return;
551 
552 	hv_read_reference_counter = read_hv_clock_tsc;
553 
554 	/*
555 	 * TSC page mapping works differently in root compared to guest.
556 	 * - In guest partition the guest PFN has to be passed to the
557 	 *   hypervisor.
558 	 * - In root partition it's other way around: it has to map the PFN
559 	 *   provided by the hypervisor.
560 	 *   But it can't be mapped right here as it's too early and MMU isn't
561 	 *   ready yet. So, we only set the enable bit here and will remap the
562 	 *   page later in hv_remap_tsc_clocksource().
563 	 *
564 	 * It worth mentioning, that TSC clocksource read function
565 	 * (read_hv_clock_tsc) has a MSR-based fallback mechanism, used when
566 	 * TSC page is zeroed (which is the case until the PFN is remapped) and
567 	 * thus TSC clocksource will work even without the real TSC page
568 	 * mapped.
569 	 */
570 	tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC);
571 	if (hv_root_partition)
572 		tsc_pfn = tsc_msr.pfn;
573 	else
574 		tsc_pfn = HVPFN_DOWN(virt_to_phys(tsc_page));
575 	tsc_msr.enable = 1;
576 	tsc_msr.pfn = tsc_pfn;
577 	hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64);
578 
579 	clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
580 
581 	/*
582 	 * If TSC is invariant, then let it stay as the sched clock since it
583 	 * will be faster than reading the TSC page. But if not invariant, use
584 	 * the TSC page so that live migrations across hosts with different
585 	 * frequencies is handled correctly.
586 	 */
587 	if (!(ms_hyperv.features & HV_ACCESS_TSC_INVARIANT)) {
588 		hv_sched_clock_offset = hv_read_reference_counter();
589 		hv_setup_sched_clock(read_hv_sched_clock_tsc);
590 	}
591 }
592 
hv_init_clocksource(void)593 void __init hv_init_clocksource(void)
594 {
595 	/*
596 	 * Try to set up the TSC page clocksource, then the MSR clocksource.
597 	 * At least one of these will always be available except on very old
598 	 * versions of Hyper-V on x86.  In that case we won't have a Hyper-V
599 	 * clocksource, but Linux will still run with a clocksource based
600 	 * on the emulated PIT or LAPIC timer.
601 	 *
602 	 * Never use the MSR clocksource as sched clock.  It's too slow.
603 	 * Better to use the native sched clock as the fallback.
604 	 */
605 	hv_init_tsc_clocksource();
606 
607 	if (ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE)
608 		clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
609 }
610 
hv_remap_tsc_clocksource(void)611 void __init hv_remap_tsc_clocksource(void)
612 {
613 	if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
614 		return;
615 
616 	if (!hv_root_partition) {
617 		WARN(1, "%s: attempt to remap TSC page in guest partition\n",
618 		     __func__);
619 		return;
620 	}
621 
622 	tsc_page = memremap(tsc_pfn << HV_HYP_PAGE_SHIFT, sizeof(tsc_pg),
623 			    MEMREMAP_WB);
624 	if (!tsc_page)
625 		pr_err("Failed to remap Hyper-V TSC page.\n");
626 }
627