1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * Clocksource driver for the synthetic counter and timers
5 * provided by the Hyper-V hypervisor to guest VMs, as described
6 * in the Hyper-V Top Level Functional Spec (TLFS). This driver
7 * is instruction set architecture independent.
8 *
9 * Copyright (C) 2019, Microsoft, Inc.
10 *
11 * Author: Michael Kelley <mikelley@microsoft.com>
12 */
13
14 #include <linux/percpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/clockchips.h>
17 #include <linux/clocksource.h>
18 #include <linux/sched_clock.h>
19 #include <linux/mm.h>
20 #include <linux/cpuhotplug.h>
21 #include <linux/interrupt.h>
22 #include <linux/irq.h>
23 #include <linux/acpi.h>
24 #include <linux/hyperv.h>
25 #include <clocksource/hyperv_timer.h>
26 #include <asm/hyperv-tlfs.h>
27 #include <asm/mshyperv.h>
28
29 static struct clock_event_device __percpu *hv_clock_event;
30 /* Note: offset can hold negative values after hibernation. */
31 static u64 hv_sched_clock_offset __read_mostly;
32
33 /*
34 * If false, we're using the old mechanism for stimer0 interrupts
35 * where it sends a VMbus message when it expires. The old
36 * mechanism is used when running on older versions of Hyper-V
37 * that don't support Direct Mode. While Hyper-V provides
38 * four stimer's per CPU, Linux uses only stimer0.
39 *
40 * Because Direct Mode does not require processing a VMbus
41 * message, stimer interrupts can be enabled earlier in the
42 * process of booting a CPU, and consistent with when timer
43 * interrupts are enabled for other clocksource drivers.
44 * However, for legacy versions of Hyper-V when Direct Mode
45 * is not enabled, setting up stimer interrupts must be
46 * delayed until VMbus is initialized and can process the
47 * interrupt message.
48 */
49 static bool direct_mode_enabled;
50
51 static int stimer0_irq = -1;
52 static int stimer0_message_sint;
53 static __maybe_unused DEFINE_PER_CPU(long, stimer0_evt);
54
55 /*
56 * Common code for stimer0 interrupts coming via Direct Mode or
57 * as a VMbus message.
58 */
hv_stimer0_isr(void)59 void hv_stimer0_isr(void)
60 {
61 struct clock_event_device *ce;
62
63 ce = this_cpu_ptr(hv_clock_event);
64 ce->event_handler(ce);
65 }
66 EXPORT_SYMBOL_GPL(hv_stimer0_isr);
67
68 /*
69 * stimer0 interrupt handler for architectures that support
70 * per-cpu interrupts, which also implies Direct Mode.
71 */
hv_stimer0_percpu_isr(int irq,void * dev_id)72 static irqreturn_t __maybe_unused hv_stimer0_percpu_isr(int irq, void *dev_id)
73 {
74 hv_stimer0_isr();
75 return IRQ_HANDLED;
76 }
77
hv_ce_set_next_event(unsigned long delta,struct clock_event_device * evt)78 static int hv_ce_set_next_event(unsigned long delta,
79 struct clock_event_device *evt)
80 {
81 u64 current_tick;
82
83 current_tick = hv_read_reference_counter();
84 current_tick += delta;
85 hv_set_register(HV_REGISTER_STIMER0_COUNT, current_tick);
86 return 0;
87 }
88
hv_ce_shutdown(struct clock_event_device * evt)89 static int hv_ce_shutdown(struct clock_event_device *evt)
90 {
91 hv_set_register(HV_REGISTER_STIMER0_COUNT, 0);
92 hv_set_register(HV_REGISTER_STIMER0_CONFIG, 0);
93 if (direct_mode_enabled && stimer0_irq >= 0)
94 disable_percpu_irq(stimer0_irq);
95
96 return 0;
97 }
98
hv_ce_set_oneshot(struct clock_event_device * evt)99 static int hv_ce_set_oneshot(struct clock_event_device *evt)
100 {
101 union hv_stimer_config timer_cfg;
102
103 timer_cfg.as_uint64 = 0;
104 timer_cfg.enable = 1;
105 timer_cfg.auto_enable = 1;
106 if (direct_mode_enabled) {
107 /*
108 * When it expires, the timer will directly interrupt
109 * on the specified hardware vector/IRQ.
110 */
111 timer_cfg.direct_mode = 1;
112 timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR;
113 if (stimer0_irq >= 0)
114 enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE);
115 } else {
116 /*
117 * When it expires, the timer will generate a VMbus message,
118 * to be handled by the normal VMbus interrupt handler.
119 */
120 timer_cfg.direct_mode = 0;
121 timer_cfg.sintx = stimer0_message_sint;
122 }
123 hv_set_register(HV_REGISTER_STIMER0_CONFIG, timer_cfg.as_uint64);
124 return 0;
125 }
126
127 /*
128 * hv_stimer_init - Per-cpu initialization of the clockevent
129 */
hv_stimer_init(unsigned int cpu)130 static int hv_stimer_init(unsigned int cpu)
131 {
132 struct clock_event_device *ce;
133
134 if (!hv_clock_event)
135 return 0;
136
137 ce = per_cpu_ptr(hv_clock_event, cpu);
138 ce->name = "Hyper-V clockevent";
139 ce->features = CLOCK_EVT_FEAT_ONESHOT;
140 ce->cpumask = cpumask_of(cpu);
141 ce->rating = 1000;
142 ce->set_state_shutdown = hv_ce_shutdown;
143 ce->set_state_oneshot = hv_ce_set_oneshot;
144 ce->set_next_event = hv_ce_set_next_event;
145
146 clockevents_config_and_register(ce,
147 HV_CLOCK_HZ,
148 HV_MIN_DELTA_TICKS,
149 HV_MAX_MAX_DELTA_TICKS);
150 return 0;
151 }
152
153 /*
154 * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
155 */
hv_stimer_cleanup(unsigned int cpu)156 int hv_stimer_cleanup(unsigned int cpu)
157 {
158 struct clock_event_device *ce;
159
160 if (!hv_clock_event)
161 return 0;
162
163 /*
164 * In the legacy case where Direct Mode is not enabled
165 * (which can only be on x86/64), stimer cleanup happens
166 * relatively early in the CPU offlining process. We
167 * must unbind the stimer-based clockevent device so
168 * that the LAPIC timer can take over until clockevents
169 * are no longer needed in the offlining process. Note
170 * that clockevents_unbind_device() eventually calls
171 * hv_ce_shutdown().
172 *
173 * The unbind should not be done when Direct Mode is
174 * enabled because we may be on an architecture where
175 * there are no other clockevent devices to fallback to.
176 */
177 ce = per_cpu_ptr(hv_clock_event, cpu);
178 if (direct_mode_enabled)
179 hv_ce_shutdown(ce);
180 else
181 clockevents_unbind_device(ce, cpu);
182
183 return 0;
184 }
185 EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
186
187 /*
188 * These placeholders are overridden by arch specific code on
189 * architectures that need special setup of the stimer0 IRQ because
190 * they don't support per-cpu IRQs (such as x86/x64).
191 */
hv_setup_stimer0_handler(void (* handler)(void))192 void __weak hv_setup_stimer0_handler(void (*handler)(void))
193 {
194 };
195
hv_remove_stimer0_handler(void)196 void __weak hv_remove_stimer0_handler(void)
197 {
198 };
199
200 #ifdef CONFIG_ACPI
201 /* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */
hv_setup_stimer0_irq(void)202 static int hv_setup_stimer0_irq(void)
203 {
204 int ret;
205
206 ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR,
207 ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH);
208 if (ret < 0) {
209 pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret);
210 return ret;
211 }
212 stimer0_irq = ret;
213
214 ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr,
215 "Hyper-V stimer0", &stimer0_evt);
216 if (ret) {
217 pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d",
218 stimer0_irq, ret);
219 acpi_unregister_gsi(stimer0_irq);
220 stimer0_irq = -1;
221 }
222 return ret;
223 }
224
hv_remove_stimer0_irq(void)225 static void hv_remove_stimer0_irq(void)
226 {
227 if (stimer0_irq == -1) {
228 hv_remove_stimer0_handler();
229 } else {
230 free_percpu_irq(stimer0_irq, &stimer0_evt);
231 acpi_unregister_gsi(stimer0_irq);
232 stimer0_irq = -1;
233 }
234 }
235 #else
hv_setup_stimer0_irq(void)236 static int hv_setup_stimer0_irq(void)
237 {
238 return 0;
239 }
240
hv_remove_stimer0_irq(void)241 static void hv_remove_stimer0_irq(void)
242 {
243 }
244 #endif
245
246 /* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
hv_stimer_alloc(bool have_percpu_irqs)247 int hv_stimer_alloc(bool have_percpu_irqs)
248 {
249 int ret;
250
251 /*
252 * Synthetic timers are always available except on old versions of
253 * Hyper-V on x86. In that case, return as error as Linux will use a
254 * clockevent based on emulated LAPIC timer hardware.
255 */
256 if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
257 return -EINVAL;
258
259 hv_clock_event = alloc_percpu(struct clock_event_device);
260 if (!hv_clock_event)
261 return -ENOMEM;
262
263 direct_mode_enabled = ms_hyperv.misc_features &
264 HV_STIMER_DIRECT_MODE_AVAILABLE;
265
266 /*
267 * If Direct Mode isn't enabled, the remainder of the initialization
268 * is done later by hv_stimer_legacy_init()
269 */
270 if (!direct_mode_enabled)
271 return 0;
272
273 if (have_percpu_irqs) {
274 ret = hv_setup_stimer0_irq();
275 if (ret)
276 goto free_clock_event;
277 } else {
278 hv_setup_stimer0_handler(hv_stimer0_isr);
279 }
280
281 /*
282 * Since we are in Direct Mode, stimer initialization
283 * can be done now with a CPUHP value in the same range
284 * as other clockevent devices.
285 */
286 ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
287 "clockevents/hyperv/stimer:starting",
288 hv_stimer_init, hv_stimer_cleanup);
289 if (ret < 0) {
290 hv_remove_stimer0_irq();
291 goto free_clock_event;
292 }
293 return ret;
294
295 free_clock_event:
296 free_percpu(hv_clock_event);
297 hv_clock_event = NULL;
298 return ret;
299 }
300 EXPORT_SYMBOL_GPL(hv_stimer_alloc);
301
302 /*
303 * hv_stimer_legacy_init -- Called from the VMbus driver to handle
304 * the case when Direct Mode is not enabled, and the stimer
305 * must be initialized late in the CPU onlining process.
306 *
307 */
hv_stimer_legacy_init(unsigned int cpu,int sint)308 void hv_stimer_legacy_init(unsigned int cpu, int sint)
309 {
310 if (direct_mode_enabled)
311 return;
312
313 /*
314 * This function gets called by each vCPU, so setting the
315 * global stimer_message_sint value each time is conceptually
316 * not ideal, but the value passed in is always the same and
317 * it avoids introducing yet another interface into this
318 * clocksource driver just to set the sint in the legacy case.
319 */
320 stimer0_message_sint = sint;
321 (void)hv_stimer_init(cpu);
322 }
323 EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
324
325 /*
326 * hv_stimer_legacy_cleanup -- Called from the VMbus driver to
327 * handle the case when Direct Mode is not enabled, and the
328 * stimer must be cleaned up early in the CPU offlining
329 * process.
330 */
hv_stimer_legacy_cleanup(unsigned int cpu)331 void hv_stimer_legacy_cleanup(unsigned int cpu)
332 {
333 if (direct_mode_enabled)
334 return;
335 (void)hv_stimer_cleanup(cpu);
336 }
337 EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
338
339 /*
340 * Do a global cleanup of clockevents for the cases of kexec and
341 * vmbus exit
342 */
hv_stimer_global_cleanup(void)343 void hv_stimer_global_cleanup(void)
344 {
345 int cpu;
346
347 /*
348 * hv_stime_legacy_cleanup() will stop the stimer if Direct
349 * Mode is not enabled, and fallback to the LAPIC timer.
350 */
351 for_each_present_cpu(cpu) {
352 hv_stimer_legacy_cleanup(cpu);
353 }
354
355 if (!hv_clock_event)
356 return;
357
358 if (direct_mode_enabled) {
359 cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
360 hv_remove_stimer0_irq();
361 stimer0_irq = -1;
362 }
363 free_percpu(hv_clock_event);
364 hv_clock_event = NULL;
365
366 }
367 EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
368
read_hv_clock_msr(void)369 static __always_inline u64 read_hv_clock_msr(void)
370 {
371 /*
372 * Read the partition counter to get the current tick count. This count
373 * is set to 0 when the partition is created and is incremented in 100
374 * nanosecond units.
375 *
376 * Use hv_raw_get_register() because this function is used from
377 * noinstr. Notable; while HV_REGISTER_TIME_REF_COUNT is a synthetic
378 * register it doesn't need the GHCB path.
379 */
380 return hv_raw_get_register(HV_REGISTER_TIME_REF_COUNT);
381 }
382
383 /*
384 * Code and definitions for the Hyper-V clocksources. Two
385 * clocksources are defined: one that reads the Hyper-V defined MSR, and
386 * the other that uses the TSC reference page feature as defined in the
387 * TLFS. The MSR version is for compatibility with old versions of
388 * Hyper-V and 32-bit x86. The TSC reference page version is preferred.
389 */
390
391 static union {
392 struct ms_hyperv_tsc_page page;
393 u8 reserved[PAGE_SIZE];
394 } tsc_pg __bss_decrypted __aligned(PAGE_SIZE);
395
396 static struct ms_hyperv_tsc_page *tsc_page = &tsc_pg.page;
397 static unsigned long tsc_pfn;
398
hv_get_tsc_pfn(void)399 unsigned long hv_get_tsc_pfn(void)
400 {
401 return tsc_pfn;
402 }
403 EXPORT_SYMBOL_GPL(hv_get_tsc_pfn);
404
hv_get_tsc_page(void)405 struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
406 {
407 return tsc_page;
408 }
409 EXPORT_SYMBOL_GPL(hv_get_tsc_page);
410
read_hv_clock_tsc(void)411 static __always_inline u64 read_hv_clock_tsc(void)
412 {
413 u64 cur_tsc, time;
414
415 /*
416 * The Hyper-V Top-Level Function Spec (TLFS), section Timers,
417 * subsection Refererence Counter, guarantees that the TSC and MSR
418 * times are in sync and monotonic. Therefore we can fall back
419 * to the MSR in case the TSC page indicates unavailability.
420 */
421 if (!hv_read_tsc_page_tsc(tsc_page, &cur_tsc, &time))
422 time = read_hv_clock_msr();
423
424 return time;
425 }
426
read_hv_clock_tsc_cs(struct clocksource * arg)427 static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
428 {
429 return read_hv_clock_tsc();
430 }
431
read_hv_sched_clock_tsc(void)432 static u64 noinstr read_hv_sched_clock_tsc(void)
433 {
434 return (read_hv_clock_tsc() - hv_sched_clock_offset) *
435 (NSEC_PER_SEC / HV_CLOCK_HZ);
436 }
437
suspend_hv_clock_tsc(struct clocksource * arg)438 static void suspend_hv_clock_tsc(struct clocksource *arg)
439 {
440 union hv_reference_tsc_msr tsc_msr;
441
442 /* Disable the TSC page */
443 tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC);
444 tsc_msr.enable = 0;
445 hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64);
446 }
447
448
resume_hv_clock_tsc(struct clocksource * arg)449 static void resume_hv_clock_tsc(struct clocksource *arg)
450 {
451 union hv_reference_tsc_msr tsc_msr;
452
453 /* Re-enable the TSC page */
454 tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC);
455 tsc_msr.enable = 1;
456 tsc_msr.pfn = tsc_pfn;
457 hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64);
458 }
459
460 /*
461 * Called during resume from hibernation, from overridden
462 * x86_platform.restore_sched_clock_state routine. This is to adjust offsets
463 * used to calculate time for hv tsc page based sched_clock, to account for
464 * time spent before hibernation.
465 */
hv_adj_sched_clock_offset(u64 offset)466 void hv_adj_sched_clock_offset(u64 offset)
467 {
468 hv_sched_clock_offset -= offset;
469 }
470
471 #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
hv_cs_enable(struct clocksource * cs)472 static int hv_cs_enable(struct clocksource *cs)
473 {
474 vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK);
475 return 0;
476 }
477 #endif
478
479 static struct clocksource hyperv_cs_tsc = {
480 .name = "hyperv_clocksource_tsc_page",
481 .rating = 500,
482 .read = read_hv_clock_tsc_cs,
483 .mask = CLOCKSOURCE_MASK(64),
484 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
485 .suspend= suspend_hv_clock_tsc,
486 .resume = resume_hv_clock_tsc,
487 #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
488 .enable = hv_cs_enable,
489 .vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK,
490 #else
491 .vdso_clock_mode = VDSO_CLOCKMODE_NONE,
492 #endif
493 };
494
read_hv_clock_msr_cs(struct clocksource * arg)495 static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
496 {
497 return read_hv_clock_msr();
498 }
499
500 static struct clocksource hyperv_cs_msr = {
501 .name = "hyperv_clocksource_msr",
502 .rating = 495,
503 .read = read_hv_clock_msr_cs,
504 .mask = CLOCKSOURCE_MASK(64),
505 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
506 };
507
508 /*
509 * Reference to pv_ops must be inline so objtool
510 * detection of noinstr violations can work correctly.
511 */
512 #ifdef CONFIG_GENERIC_SCHED_CLOCK
hv_setup_sched_clock(void * sched_clock)513 static __always_inline void hv_setup_sched_clock(void *sched_clock)
514 {
515 /*
516 * We're on an architecture with generic sched clock (not x86/x64).
517 * The Hyper-V sched clock read function returns nanoseconds, not
518 * the normal 100ns units of the Hyper-V synthetic clock.
519 */
520 sched_clock_register(sched_clock, 64, NSEC_PER_SEC);
521 }
522 #elif defined CONFIG_PARAVIRT
hv_setup_sched_clock(void * sched_clock)523 static __always_inline void hv_setup_sched_clock(void *sched_clock)
524 {
525 /* We're on x86/x64 *and* using PV ops */
526 paravirt_set_sched_clock(sched_clock);
527 }
528 #else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */
hv_setup_sched_clock(void * sched_clock)529 static __always_inline void hv_setup_sched_clock(void *sched_clock) {}
530 #endif /* CONFIG_GENERIC_SCHED_CLOCK */
531
hv_init_tsc_clocksource(void)532 static void __init hv_init_tsc_clocksource(void)
533 {
534 union hv_reference_tsc_msr tsc_msr;
535
536 /*
537 * If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly
538 * handles frequency and offset changes due to live migration,
539 * pause/resume, and other VM management operations. So lower the
540 * Hyper-V Reference TSC rating, causing the generic TSC to be used.
541 * TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference
542 * TSC will be preferred over the virtualized ARM64 arch counter.
543 */
544 if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) {
545 hyperv_cs_tsc.rating = 250;
546 hyperv_cs_msr.rating = 245;
547 }
548
549 if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
550 return;
551
552 hv_read_reference_counter = read_hv_clock_tsc;
553
554 /*
555 * TSC page mapping works differently in root compared to guest.
556 * - In guest partition the guest PFN has to be passed to the
557 * hypervisor.
558 * - In root partition it's other way around: it has to map the PFN
559 * provided by the hypervisor.
560 * But it can't be mapped right here as it's too early and MMU isn't
561 * ready yet. So, we only set the enable bit here and will remap the
562 * page later in hv_remap_tsc_clocksource().
563 *
564 * It worth mentioning, that TSC clocksource read function
565 * (read_hv_clock_tsc) has a MSR-based fallback mechanism, used when
566 * TSC page is zeroed (which is the case until the PFN is remapped) and
567 * thus TSC clocksource will work even without the real TSC page
568 * mapped.
569 */
570 tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC);
571 if (hv_root_partition)
572 tsc_pfn = tsc_msr.pfn;
573 else
574 tsc_pfn = HVPFN_DOWN(virt_to_phys(tsc_page));
575 tsc_msr.enable = 1;
576 tsc_msr.pfn = tsc_pfn;
577 hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64);
578
579 clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
580
581 /*
582 * If TSC is invariant, then let it stay as the sched clock since it
583 * will be faster than reading the TSC page. But if not invariant, use
584 * the TSC page so that live migrations across hosts with different
585 * frequencies is handled correctly.
586 */
587 if (!(ms_hyperv.features & HV_ACCESS_TSC_INVARIANT)) {
588 hv_sched_clock_offset = hv_read_reference_counter();
589 hv_setup_sched_clock(read_hv_sched_clock_tsc);
590 }
591 }
592
hv_init_clocksource(void)593 void __init hv_init_clocksource(void)
594 {
595 /*
596 * Try to set up the TSC page clocksource, then the MSR clocksource.
597 * At least one of these will always be available except on very old
598 * versions of Hyper-V on x86. In that case we won't have a Hyper-V
599 * clocksource, but Linux will still run with a clocksource based
600 * on the emulated PIT or LAPIC timer.
601 *
602 * Never use the MSR clocksource as sched clock. It's too slow.
603 * Better to use the native sched clock as the fallback.
604 */
605 hv_init_tsc_clocksource();
606
607 if (ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE)
608 clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
609 }
610
hv_remap_tsc_clocksource(void)611 void __init hv_remap_tsc_clocksource(void)
612 {
613 if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
614 return;
615
616 if (!hv_root_partition) {
617 WARN(1, "%s: attempt to remap TSC page in guest partition\n",
618 __func__);
619 return;
620 }
621
622 tsc_page = memremap(tsc_pfn << HV_HYP_PAGE_SHIFT, sizeof(tsc_pg),
623 MEMREMAP_WB);
624 if (!tsc_page)
625 pr_err("Failed to remap Hyper-V TSC page.\n");
626 }
627