1 /*
2 * HPPA memory access helper routines
3 *
4 * Copyright (c) 2017 Helge Deller
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/page-protection.h"
25 #include "exec/helper-proto.h"
26 #include "hw/core/cpu.h"
27 #include "trace.h"
28
hppa_abs_to_phys_pa2_w1(vaddr addr)29 hwaddr hppa_abs_to_phys_pa2_w1(vaddr addr)
30 {
31 /*
32 * Figure H-8 "62-bit Absolute Accesses when PSW W-bit is 1" describes
33 * an algorithm in which a 62-bit absolute address is transformed to
34 * a 64-bit physical address. This must then be combined with that
35 * pictured in Figure H-11 "Physical Address Space Mapping", in which
36 * the full physical address is truncated to the N-bit physical address
37 * supported by the implementation.
38 *
39 * Since the supported physical address space is below 54 bits, the
40 * H-8 algorithm is moot and all that is left is to truncate.
41 */
42 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 54);
43 return sextract64(addr, 0, TARGET_PHYS_ADDR_SPACE_BITS);
44 }
45
hppa_abs_to_phys_pa2_w0(vaddr addr)46 hwaddr hppa_abs_to_phys_pa2_w0(vaddr addr)
47 {
48 /*
49 * See Figure H-10, "Absolute Accesses when PSW W-bit is 0",
50 * combined with Figure H-11, as above.
51 */
52 if (likely(extract32(addr, 28, 4) != 0xf)) {
53 /* Memory address space */
54 addr = (uint32_t)addr;
55 } else if (extract32(addr, 24, 4) != 0) {
56 /* I/O address space */
57 addr = (int32_t)addr;
58 } else {
59 /*
60 * PDC address space:
61 * Figures H-10 and H-11 of the parisc2.0 spec do not specify
62 * where to map into the 64-bit PDC address space.
63 * We map with an offset which equals the 32-bit address, which
64 * is what can be seen on physical machines too.
65 */
66 addr = (uint32_t)addr;
67 addr |= -1ull << (TARGET_PHYS_ADDR_SPACE_BITS - 4);
68 }
69 return addr;
70 }
71
hppa_find_tlb(CPUHPPAState * env,vaddr addr)72 static HPPATLBEntry *hppa_find_tlb(CPUHPPAState *env, vaddr addr)
73 {
74 IntervalTreeNode *i = interval_tree_iter_first(&env->tlb_root, addr, addr);
75
76 if (i) {
77 HPPATLBEntry *ent = container_of(i, HPPATLBEntry, itree);
78 trace_hppa_tlb_find_entry(env, ent, ent->entry_valid,
79 ent->itree.start, ent->itree.last, ent->pa);
80 return ent;
81 }
82 trace_hppa_tlb_find_entry_not_found(env, addr);
83 return NULL;
84 }
85
hppa_flush_tlb_ent(CPUHPPAState * env,HPPATLBEntry * ent,bool force_flush_btlb)86 static void hppa_flush_tlb_ent(CPUHPPAState *env, HPPATLBEntry *ent,
87 bool force_flush_btlb)
88 {
89 CPUState *cs = env_cpu(env);
90 bool is_btlb;
91
92 if (!ent->entry_valid) {
93 return;
94 }
95
96 trace_hppa_tlb_flush_ent(env, ent, ent->itree.start,
97 ent->itree.last, ent->pa);
98
99 tlb_flush_range_by_mmuidx(cs, ent->itree.start,
100 ent->itree.last - ent->itree.start + 1,
101 HPPA_MMU_FLUSH_MASK, TARGET_LONG_BITS);
102
103 /* Never clear BTLBs, unless forced to do so. */
104 is_btlb = ent < &env->tlb[HPPA_BTLB_ENTRIES(env)];
105 if (is_btlb && !force_flush_btlb) {
106 return;
107 }
108
109 interval_tree_remove(&ent->itree, &env->tlb_root);
110 memset(ent, 0, sizeof(*ent));
111
112 if (!is_btlb) {
113 ent->unused_next = env->tlb_unused;
114 env->tlb_unused = ent;
115 }
116 }
117
hppa_flush_tlb_range(CPUHPPAState * env,vaddr va_b,vaddr va_e)118 static void hppa_flush_tlb_range(CPUHPPAState *env, vaddr va_b, vaddr va_e)
119 {
120 IntervalTreeNode *i, *n;
121
122 i = interval_tree_iter_first(&env->tlb_root, va_b, va_e);
123 for (; i ; i = n) {
124 HPPATLBEntry *ent = container_of(i, HPPATLBEntry, itree);
125
126 /*
127 * Find the next entry now: In the normal case the current entry
128 * will be removed, but in the BTLB case it will remain.
129 */
130 n = interval_tree_iter_next(i, va_b, va_e);
131 hppa_flush_tlb_ent(env, ent, false);
132 }
133 }
134
hppa_alloc_tlb_ent(CPUHPPAState * env)135 static HPPATLBEntry *hppa_alloc_tlb_ent(CPUHPPAState *env)
136 {
137 HPPATLBEntry *ent = env->tlb_unused;
138
139 if (ent == NULL) {
140 uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env);
141 uint32_t i = env->tlb_last;
142
143 if (i < btlb_entries || i >= ARRAY_SIZE(env->tlb)) {
144 i = btlb_entries;
145 }
146 env->tlb_last = i + 1;
147
148 ent = &env->tlb[i];
149 hppa_flush_tlb_ent(env, ent, false);
150 }
151
152 env->tlb_unused = ent->unused_next;
153 return ent;
154 }
155
156 #define ACCESS_ID_MASK 0xffff
157
158 /* Return the set of protections allowed by a PID match. */
match_prot_id_1(uint32_t access_id,uint32_t prot_id)159 static int match_prot_id_1(uint32_t access_id, uint32_t prot_id)
160 {
161 if (((access_id ^ (prot_id >> 1)) & ACCESS_ID_MASK) == 0) {
162 return (prot_id & 1
163 ? PAGE_EXEC | PAGE_READ
164 : PAGE_EXEC | PAGE_READ | PAGE_WRITE);
165 }
166 return 0;
167 }
168
match_prot_id32(CPUHPPAState * env,uint32_t access_id)169 static int match_prot_id32(CPUHPPAState *env, uint32_t access_id)
170 {
171 int r, i;
172
173 for (i = CR_PID1; i <= CR_PID4; ++i) {
174 r = match_prot_id_1(access_id, env->cr[i]);
175 if (r) {
176 return r;
177 }
178 }
179 return 0;
180 }
181
match_prot_id64(CPUHPPAState * env,uint32_t access_id)182 static int match_prot_id64(CPUHPPAState *env, uint32_t access_id)
183 {
184 int r, i;
185
186 for (i = CR_PID1; i <= CR_PID4; ++i) {
187 r = match_prot_id_1(access_id, env->cr[i]);
188 if (r) {
189 return r;
190 }
191 r = match_prot_id_1(access_id, env->cr[i] >> 32);
192 if (r) {
193 return r;
194 }
195 }
196 return 0;
197 }
198
hppa_get_physical_address(CPUHPPAState * env,vaddr addr,int mmu_idx,int type,MemOp mop,hwaddr * pphys,int * pprot)199 int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx,
200 int type, MemOp mop, hwaddr *pphys, int *pprot)
201 {
202 hwaddr phys;
203 int prot, r_prot, w_prot, x_prot, priv;
204 HPPATLBEntry *ent;
205 int ret = -1;
206
207 /* Virtual translation disabled. Map absolute to physical. */
208 if (MMU_IDX_MMU_DISABLED(mmu_idx)) {
209 switch (mmu_idx) {
210 case MMU_ABS_W_IDX:
211 phys = hppa_abs_to_phys_pa2_w1(addr);
212 break;
213 case MMU_ABS_IDX:
214 if (hppa_is_pa20(env)) {
215 phys = hppa_abs_to_phys_pa2_w0(addr);
216 } else {
217 phys = (uint32_t)addr;
218 }
219 break;
220 default:
221 g_assert_not_reached();
222 }
223 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
224 goto egress_align;
225 }
226
227 /* Find a valid tlb entry that matches the virtual address. */
228 ent = hppa_find_tlb(env, addr);
229 if (ent == NULL) {
230 phys = 0;
231 prot = 0;
232 ret = (type == PAGE_EXEC) ? EXCP_ITLB_MISS : EXCP_DTLB_MISS;
233 goto egress;
234 }
235
236 /* We now know the physical address. */
237 phys = ent->pa + (addr - ent->itree.start);
238
239 /* Map TLB access_rights field to QEMU protection. */
240 priv = MMU_IDX_TO_PRIV(mmu_idx);
241 r_prot = (priv <= ent->ar_pl1) * PAGE_READ;
242 w_prot = (priv <= ent->ar_pl2) * PAGE_WRITE;
243 x_prot = (ent->ar_pl2 <= priv && priv <= ent->ar_pl1) * PAGE_EXEC;
244 switch (ent->ar_type) {
245 case 0: /* read-only: data page */
246 prot = r_prot;
247 break;
248 case 1: /* read/write: dynamic data page */
249 prot = r_prot | w_prot;
250 break;
251 case 2: /* read/execute: normal code page */
252 prot = r_prot | x_prot;
253 break;
254 case 3: /* read/write/execute: dynamic code page */
255 prot = r_prot | w_prot | x_prot;
256 break;
257 default: /* execute: promote to privilege level type & 3 */
258 prot = x_prot;
259 break;
260 }
261
262 /*
263 * No guest access type indicates a non-architectural access from
264 * within QEMU. Bypass checks for access, D, B, P and T bits.
265 */
266 if (type == 0) {
267 goto egress;
268 }
269
270 if (unlikely(!(prot & type))) {
271 /* Not allowed -- Inst/Data Memory Access Rights Fault. */
272 ret = (type & PAGE_EXEC) ? EXCP_IMP : EXCP_DMAR;
273 goto egress;
274 }
275
276 /* access_id == 0 means public page and no check is performed */
277 if (ent->access_id && MMU_IDX_TO_P(mmu_idx)) {
278 int access_prot = (hppa_is_pa20(env)
279 ? match_prot_id64(env, ent->access_id)
280 : match_prot_id32(env, ent->access_id));
281 if (unlikely(!(type & access_prot))) {
282 /* Not allowed -- Inst/Data Memory Protection Id Fault. */
283 ret = type & PAGE_EXEC ? EXCP_IMP : EXCP_DMPI;
284 goto egress;
285 }
286 /* Otherwise exclude permissions not allowed (i.e WD). */
287 prot &= access_prot;
288 }
289
290 /*
291 * In reverse priority order, check for conditions which raise faults.
292 * Remove PROT bits that cover the condition we want to check,
293 * so that the resulting PROT will force a re-check of the
294 * architectural TLB entry for the next access.
295 */
296 if (unlikely(ent->t)) {
297 prot &= PAGE_EXEC;
298 if (!(type & PAGE_EXEC)) {
299 /* The T bit is set -- Page Reference Fault. */
300 ret = EXCP_PAGE_REF;
301 }
302 }
303 if (unlikely(!ent->d)) {
304 prot &= PAGE_READ | PAGE_EXEC;
305 if (type & PAGE_WRITE) {
306 /* The D bit is not set -- TLB Dirty Bit Fault. */
307 ret = EXCP_TLB_DIRTY;
308 }
309 }
310 if (unlikely(ent->b)) {
311 prot &= PAGE_READ | PAGE_EXEC;
312 if (type & PAGE_WRITE) {
313 /*
314 * The B bit is set -- Data Memory Break Fault.
315 * Except when PSW_X is set, allow this single access to succeed.
316 * The write bit will be invalidated for subsequent accesses.
317 */
318 if (env->psw_xb & PSW_X) {
319 prot |= PAGE_WRITE_INV;
320 } else {
321 ret = EXCP_DMB;
322 }
323 }
324 }
325
326 egress_align:
327 if (addr & ((1u << memop_alignment_bits(mop)) - 1)) {
328 ret = EXCP_UNALIGN;
329 }
330
331 egress:
332 *pphys = phys;
333 *pprot = prot;
334 trace_hppa_tlb_get_physical_address(env, ret, prot, addr, phys);
335 return ret;
336 }
337
hppa_cpu_get_phys_page_debug(CPUState * cs,vaddr addr)338 hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
339 {
340 HPPACPU *cpu = HPPA_CPU(cs);
341 hwaddr phys;
342 int prot, excp, mmu_idx;
343
344 /* If the (data) mmu is disabled, bypass translation. */
345 /* ??? We really ought to know if the code mmu is disabled too,
346 in order to get the correct debugging dumps. */
347 mmu_idx = (cpu->env.psw & PSW_D ? MMU_KERNEL_IDX :
348 cpu->env.psw & PSW_W ? MMU_ABS_W_IDX : MMU_ABS_IDX);
349
350 excp = hppa_get_physical_address(&cpu->env, addr, mmu_idx, 0, 0,
351 &phys, &prot);
352
353 /* Since we're translating for debugging, the only error that is a
354 hard error is no translation at all. Otherwise, while a real cpu
355 access might not have permission, the debugger does. */
356 return excp == EXCP_DTLB_MISS ? -1 : phys;
357 }
358
hppa_set_ior_and_isr(CPUHPPAState * env,vaddr addr,bool mmu_disabled)359 void hppa_set_ior_and_isr(CPUHPPAState *env, vaddr addr, bool mmu_disabled)
360 {
361 if (env->psw & PSW_Q) {
362 /*
363 * For pa1.x, the offset and space never overlap, and so we
364 * simply extract the high and low part of the virtual address.
365 *
366 * For pa2.0, the formation of these are described in section
367 * "Interruption Parameter Registers", page 2-15.
368 */
369 env->cr[CR_IOR] = (uint32_t)addr;
370 env->cr[CR_ISR] = addr >> 32;
371
372 if (hppa_is_pa20(env)) {
373 if (mmu_disabled) {
374 /*
375 * If data translation was disabled, the ISR contains
376 * the upper portion of the abs address, zero-extended.
377 */
378 env->cr[CR_ISR] &= 0x3fffffff;
379 } else {
380 /*
381 * If data translation was enabled, the upper two bits
382 * of the IOR (the b field) are equal to the two space
383 * bits from the base register used to form the gva.
384 */
385 uint64_t b;
386
387 b = env->unwind_breg ? env->gr[env->unwind_breg] : 0;
388 b >>= (env->psw & PSW_W ? 62 : 30);
389 env->cr[CR_IOR] |= b << 62;
390 }
391 }
392 }
393 }
394
395 G_NORETURN static void
raise_exception_with_ior(CPUHPPAState * env,int excp,uintptr_t retaddr,vaddr addr,bool mmu_disabled)396 raise_exception_with_ior(CPUHPPAState *env, int excp, uintptr_t retaddr,
397 vaddr addr, bool mmu_disabled)
398 {
399 CPUState *cs = env_cpu(env);
400
401 cs->exception_index = excp;
402 cpu_restore_state(cs, retaddr);
403 hppa_set_ior_and_isr(env, addr, mmu_disabled);
404
405 cpu_loop_exit(cs);
406 }
407
hppa_cpu_do_transaction_failed(CPUState * cs,hwaddr physaddr,vaddr addr,unsigned size,MMUAccessType access_type,int mmu_idx,MemTxAttrs attrs,MemTxResult response,uintptr_t retaddr)408 void hppa_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
409 vaddr addr, unsigned size,
410 MMUAccessType access_type,
411 int mmu_idx, MemTxAttrs attrs,
412 MemTxResult response, uintptr_t retaddr)
413 {
414 CPUHPPAState *env = cpu_env(cs);
415
416 qemu_log_mask(LOG_GUEST_ERROR, "HPMC at " TARGET_FMT_lx ":" TARGET_FMT_lx
417 " while accessing I/O at %#08" HWADDR_PRIx "\n",
418 env->iasq_f, env->iaoq_f, physaddr);
419
420 /* FIXME: Enable HPMC exceptions when firmware has clean device probing */
421 if (0) {
422 raise_exception_with_ior(env, EXCP_HPMC, retaddr, addr,
423 MMU_IDX_MMU_DISABLED(mmu_idx));
424 }
425 }
426
hppa_cpu_tlb_fill_align(CPUState * cs,CPUTLBEntryFull * out,vaddr addr,MMUAccessType type,int mmu_idx,MemOp memop,int size,bool probe,uintptr_t ra)427 bool hppa_cpu_tlb_fill_align(CPUState *cs, CPUTLBEntryFull *out, vaddr addr,
428 MMUAccessType type, int mmu_idx,
429 MemOp memop, int size, bool probe, uintptr_t ra)
430 {
431 CPUHPPAState *env = cpu_env(cs);
432 int prot, excp, a_prot;
433 hwaddr phys;
434
435 switch (type) {
436 case MMU_INST_FETCH:
437 a_prot = PAGE_EXEC;
438 break;
439 case MMU_DATA_STORE:
440 a_prot = PAGE_WRITE;
441 break;
442 default:
443 a_prot = PAGE_READ;
444 break;
445 }
446
447 excp = hppa_get_physical_address(env, addr, mmu_idx, a_prot, memop,
448 &phys, &prot);
449 if (unlikely(excp >= 0)) {
450 if (probe) {
451 return false;
452 }
453 trace_hppa_tlb_fill_excp(env, addr, size, type, mmu_idx);
454
455 /* Failure. Raise the indicated exception. */
456 raise_exception_with_ior(env, excp, ra, addr,
457 MMU_IDX_MMU_DISABLED(mmu_idx));
458 }
459
460 trace_hppa_tlb_fill_success(env, addr & TARGET_PAGE_MASK,
461 phys & TARGET_PAGE_MASK, size, type, mmu_idx);
462
463 /*
464 * Success! Store the translation into the QEMU TLB.
465 * Note that we always install a single-page entry, because that
466 * is what works best with softmmu -- anything else will trigger
467 * the large page protection mask. We do not require this,
468 * because we record the large page here in the hppa tlb.
469 */
470 memset(out, 0, sizeof(*out));
471 out->phys_addr = phys;
472 out->prot = prot;
473 out->attrs = MEMTXATTRS_UNSPECIFIED;
474 out->lg_page_size = TARGET_PAGE_BITS;
475
476 return true;
477 }
478
479 /* Insert (Insn/Data) TLB Address. Note this is PA 1.1 only. */
HELPER(itlba_pa11)480 void HELPER(itlba_pa11)(CPUHPPAState *env, target_ulong addr, target_ulong reg)
481 {
482 HPPATLBEntry *ent;
483
484 /* Zap any old entries covering ADDR. */
485 addr &= TARGET_PAGE_MASK;
486 hppa_flush_tlb_range(env, addr, addr + TARGET_PAGE_SIZE - 1);
487
488 ent = env->tlb_partial;
489 if (ent == NULL) {
490 ent = hppa_alloc_tlb_ent(env);
491 env->tlb_partial = ent;
492 }
493
494 /* Note that ent->entry_valid == 0 already. */
495 ent->itree.start = addr;
496 ent->itree.last = addr + TARGET_PAGE_SIZE - 1;
497 ent->pa = extract32(reg, 5, 20) << TARGET_PAGE_BITS;
498 trace_hppa_tlb_itlba(env, ent, ent->itree.start, ent->itree.last, ent->pa);
499 }
500
set_access_bits_pa11(CPUHPPAState * env,HPPATLBEntry * ent,target_ulong reg)501 static void set_access_bits_pa11(CPUHPPAState *env, HPPATLBEntry *ent,
502 target_ulong reg)
503 {
504 ent->access_id = extract32(reg, 1, 18);
505 ent->u = extract32(reg, 19, 1);
506 ent->ar_pl2 = extract32(reg, 20, 2);
507 ent->ar_pl1 = extract32(reg, 22, 2);
508 ent->ar_type = extract32(reg, 24, 3);
509 ent->b = extract32(reg, 27, 1);
510 ent->d = extract32(reg, 28, 1);
511 ent->t = extract32(reg, 29, 1);
512 ent->entry_valid = 1;
513
514 interval_tree_insert(&ent->itree, &env->tlb_root);
515 trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u, ent->ar_pl2,
516 ent->ar_pl1, ent->ar_type, ent->b, ent->d, ent->t);
517 }
518
519 /* Insert (Insn/Data) TLB Protection. Note this is PA 1.1 only. */
HELPER(itlbp_pa11)520 void HELPER(itlbp_pa11)(CPUHPPAState *env, target_ulong addr, target_ulong reg)
521 {
522 HPPATLBEntry *ent = env->tlb_partial;
523
524 if (ent) {
525 env->tlb_partial = NULL;
526 if (ent->itree.start <= addr && addr <= ent->itree.last) {
527 set_access_bits_pa11(env, ent, reg);
528 return;
529 }
530 }
531 qemu_log_mask(LOG_GUEST_ERROR, "ITLBP not following ITLBA\n");
532 }
533
itlbt_pa20(CPUHPPAState * env,target_ulong r1,target_ulong r2,vaddr va_b)534 static void itlbt_pa20(CPUHPPAState *env, target_ulong r1,
535 target_ulong r2, vaddr va_b)
536 {
537 HPPATLBEntry *ent;
538 vaddr va_e;
539 uint64_t va_size;
540 int mask_shift;
541
542 mask_shift = 2 * (r1 & 0xf);
543 va_size = (uint64_t)TARGET_PAGE_SIZE << mask_shift;
544 va_b &= -va_size;
545 va_e = va_b + va_size - 1;
546
547 hppa_flush_tlb_range(env, va_b, va_e);
548 ent = hppa_alloc_tlb_ent(env);
549
550 ent->itree.start = va_b;
551 ent->itree.last = va_e;
552
553 /* Extract all 52 bits present in the page table entry. */
554 ent->pa = r1 << (TARGET_PAGE_BITS - 5);
555 /* Align per the page size. */
556 ent->pa &= TARGET_PAGE_MASK << mask_shift;
557 /* Ignore the bits beyond physical address space. */
558 ent->pa = sextract64(ent->pa, 0, TARGET_PHYS_ADDR_SPACE_BITS);
559
560 ent->t = extract64(r2, 61, 1);
561 ent->d = extract64(r2, 60, 1);
562 ent->b = extract64(r2, 59, 1);
563 ent->ar_type = extract64(r2, 56, 3);
564 ent->ar_pl1 = extract64(r2, 54, 2);
565 ent->ar_pl2 = extract64(r2, 52, 2);
566 ent->u = extract64(r2, 51, 1);
567 /* o = bit 50 */
568 /* p = bit 49 */
569 ent->access_id = extract64(r2, 1, 31);
570 ent->entry_valid = 1;
571
572 interval_tree_insert(&ent->itree, &env->tlb_root);
573 trace_hppa_tlb_itlba(env, ent, ent->itree.start, ent->itree.last, ent->pa);
574 trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u,
575 ent->ar_pl2, ent->ar_pl1, ent->ar_type,
576 ent->b, ent->d, ent->t);
577 }
578
HELPER(idtlbt_pa20)579 void HELPER(idtlbt_pa20)(CPUHPPAState *env, target_ulong r1, target_ulong r2)
580 {
581 vaddr va_b = deposit64(env->cr[CR_IOR], 32, 32, env->cr[CR_ISR]);
582 itlbt_pa20(env, r1, r2, va_b);
583 }
584
HELPER(iitlbt_pa20)585 void HELPER(iitlbt_pa20)(CPUHPPAState *env, target_ulong r1, target_ulong r2)
586 {
587 vaddr va_b = deposit64(env->cr[CR_IIAOQ], 32, 32, env->cr[CR_IIASQ]);
588 itlbt_pa20(env, r1, r2, va_b);
589 }
590
591 /* Purge (Insn/Data) TLB. */
ptlb_work(CPUState * cpu,run_on_cpu_data data)592 static void ptlb_work(CPUState *cpu, run_on_cpu_data data)
593 {
594 vaddr start = data.target_ptr;
595 vaddr end;
596
597 /*
598 * PA2.0 allows a range of pages encoded into GR[b], which we have
599 * copied into the bottom bits of the otherwise page-aligned address.
600 * PA1.x will always provide zero here, for a single page flush.
601 */
602 end = start & 0xf;
603 start &= TARGET_PAGE_MASK;
604 end = (vaddr)TARGET_PAGE_SIZE << (2 * end);
605 end = start + end - 1;
606
607 hppa_flush_tlb_range(cpu_env(cpu), start, end);
608 }
609
610 /* This is local to the current cpu. */
HELPER(ptlb_l)611 void HELPER(ptlb_l)(CPUHPPAState *env, target_ulong addr)
612 {
613 trace_hppa_tlb_ptlb_local(env);
614 ptlb_work(env_cpu(env), RUN_ON_CPU_TARGET_PTR(addr));
615 }
616
617 /* This is synchronous across all processors. */
HELPER(ptlb)618 void HELPER(ptlb)(CPUHPPAState *env, target_ulong addr)
619 {
620 CPUState *src = env_cpu(env);
621 CPUState *cpu;
622 bool wait = false;
623
624 trace_hppa_tlb_ptlb(env);
625 run_on_cpu_data data = RUN_ON_CPU_TARGET_PTR(addr);
626
627 CPU_FOREACH(cpu) {
628 if (cpu != src) {
629 async_run_on_cpu(cpu, ptlb_work, data);
630 wait = true;
631 }
632 }
633 if (wait) {
634 async_safe_run_on_cpu(src, ptlb_work, data);
635 } else {
636 ptlb_work(src, data);
637 }
638 }
639
hppa_ptlbe(CPUHPPAState * env)640 void hppa_ptlbe(CPUHPPAState *env)
641 {
642 uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env);
643 uint32_t i;
644
645 /* Zap the (non-btlb) tlb entries themselves. */
646 memset(&env->tlb[btlb_entries], 0,
647 sizeof(env->tlb) - btlb_entries * sizeof(env->tlb[0]));
648 env->tlb_last = btlb_entries;
649 env->tlb_partial = NULL;
650
651 /* Put them all onto the unused list. */
652 env->tlb_unused = &env->tlb[btlb_entries];
653 for (i = btlb_entries; i < ARRAY_SIZE(env->tlb) - 1; ++i) {
654 env->tlb[i].unused_next = &env->tlb[i + 1];
655 }
656
657 /* Re-initialize the interval tree with only the btlb entries. */
658 memset(&env->tlb_root, 0, sizeof(env->tlb_root));
659 for (i = 0; i < btlb_entries; ++i) {
660 if (env->tlb[i].entry_valid) {
661 interval_tree_insert(&env->tlb[i].itree, &env->tlb_root);
662 }
663 }
664
665 tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_MASK);
666 }
667
668 /* Purge (Insn/Data) TLB entry. This affects an implementation-defined
669 number of pages/entries (we choose all), and is local to the cpu. */
HELPER(ptlbe)670 void HELPER(ptlbe)(CPUHPPAState *env)
671 {
672 trace_hppa_tlb_ptlbe(env);
673 qemu_log_mask(CPU_LOG_MMU, "FLUSH ALL TLB ENTRIES\n");
674 hppa_ptlbe(env);
675 }
676
cpu_hppa_change_prot_id(CPUHPPAState * env)677 void cpu_hppa_change_prot_id(CPUHPPAState *env)
678 {
679 tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_P_MASK);
680 }
681
HELPER(change_prot_id)682 void HELPER(change_prot_id)(CPUHPPAState *env)
683 {
684 cpu_hppa_change_prot_id(env);
685 }
686
HELPER(lpa)687 target_ulong HELPER(lpa)(CPUHPPAState *env, target_ulong addr)
688 {
689 hwaddr phys;
690 int prot, excp;
691
692 excp = hppa_get_physical_address(env, addr, MMU_KERNEL_IDX, 0, 0,
693 &phys, &prot);
694 if (excp >= 0) {
695 if (excp == EXCP_DTLB_MISS) {
696 excp = EXCP_NA_DTLB_MISS;
697 }
698 trace_hppa_tlb_lpa_failed(env, addr);
699 raise_exception_with_ior(env, excp, GETPC(), addr, false);
700 }
701 trace_hppa_tlb_lpa_success(env, addr, phys);
702 return phys;
703 }
704
705 /*
706 * diag_btlb() emulates the PDC PDC_BLOCK_TLB firmware call to
707 * allow operating systems to modify the Block TLB (BTLB) entries.
708 * For implementation details see page 1-13 in
709 * https://parisc.wiki.kernel.org/images-parisc/e/ef/Pdc11-v0.96-Ch1-procs.pdf
710 */
HELPER(diag_btlb)711 void HELPER(diag_btlb)(CPUHPPAState *env)
712 {
713 unsigned int phys_page, len, slot;
714 int mmu_idx = cpu_mmu_index(env_cpu(env), 0);
715 uintptr_t ra = GETPC();
716 HPPATLBEntry *btlb;
717 uint64_t virt_page;
718 uint32_t *vaddr;
719 uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env);
720
721 /* BTLBs are not supported on 64-bit CPUs */
722 if (btlb_entries == 0) {
723 env->gr[28] = -1; /* nonexistent procedure */
724 return;
725 }
726
727 env->gr[28] = 0; /* PDC_OK */
728
729 switch (env->gr[25]) {
730 case 0:
731 /* return BTLB parameters */
732 qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INFO\n");
733 vaddr = probe_access(env, env->gr[24], 4 * sizeof(uint32_t),
734 MMU_DATA_STORE, mmu_idx, ra);
735 if (vaddr == NULL) {
736 env->gr[28] = -10; /* invalid argument */
737 } else {
738 vaddr[0] = cpu_to_be32(1);
739 vaddr[1] = cpu_to_be32(16 * 1024);
740 vaddr[2] = cpu_to_be32(PA10_BTLB_FIXED);
741 vaddr[3] = cpu_to_be32(PA10_BTLB_VARIABLE);
742 }
743 break;
744 case 1:
745 /* insert BTLB entry */
746 virt_page = env->gr[24]; /* upper 32 bits */
747 virt_page <<= 32;
748 virt_page |= env->gr[23]; /* lower 32 bits */
749 phys_page = env->gr[22];
750 len = env->gr[21];
751 slot = env->gr[19];
752 qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INSERT "
753 "0x%08llx-0x%08llx: vpage 0x%llx for phys page 0x%04x len %d "
754 "into slot %d\n",
755 (long long) virt_page << TARGET_PAGE_BITS,
756 (long long) (virt_page + len) << TARGET_PAGE_BITS,
757 (long long) virt_page, phys_page, len, slot);
758 if (slot < btlb_entries) {
759 btlb = &env->tlb[slot];
760
761 /* Force flush of possibly existing BTLB entry. */
762 hppa_flush_tlb_ent(env, btlb, true);
763
764 /* Create new BTLB entry */
765 btlb->itree.start = virt_page << TARGET_PAGE_BITS;
766 btlb->itree.last = btlb->itree.start + len * TARGET_PAGE_SIZE - 1;
767 btlb->pa = phys_page << TARGET_PAGE_BITS;
768 set_access_bits_pa11(env, btlb, env->gr[20]);
769 btlb->t = 0;
770 btlb->d = 1;
771 } else {
772 env->gr[28] = -10; /* invalid argument */
773 }
774 break;
775 case 2:
776 /* Purge BTLB entry */
777 slot = env->gr[22];
778 qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE slot %d\n",
779 slot);
780 if (slot < btlb_entries) {
781 btlb = &env->tlb[slot];
782 hppa_flush_tlb_ent(env, btlb, true);
783 } else {
784 env->gr[28] = -10; /* invalid argument */
785 }
786 break;
787 case 3:
788 /* Purge all BTLB entries */
789 qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE_ALL\n");
790 for (slot = 0; slot < btlb_entries; slot++) {
791 btlb = &env->tlb[slot];
792 hppa_flush_tlb_ent(env, btlb, true);
793 }
794 break;
795 default:
796 env->gr[28] = -2; /* nonexistent option */
797 break;
798 }
799 }
800
HELPER(b_gate_priv)801 uint64_t HELPER(b_gate_priv)(CPUHPPAState *env, uint64_t iaoq_f)
802 {
803 uint64_t gva = hppa_form_gva(env, env->iasq_f, iaoq_f);
804 HPPATLBEntry *ent = hppa_find_tlb(env, gva);
805
806 if (ent == NULL) {
807 raise_exception_with_ior(env, EXCP_ITLB_MISS, GETPC(), gva, false);
808 }
809
810 /*
811 * There should be no need to check page permissions, as that will
812 * already have been done by tb_lookup via get_page_addr_code.
813 * All we need at this point is to check the ar_type.
814 *
815 * No change for non-gateway pages or for priv decrease.
816 */
817 if (ent->ar_type & 4) {
818 int old_priv = iaoq_f & 3;
819 int new_priv = ent->ar_type & 3;
820
821 if (new_priv < old_priv) {
822 iaoq_f = (iaoq_f & -4) | new_priv;
823 }
824 }
825 return iaoq_f;
826 }
827