1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * handle transition of Linux booting another kernel
4 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com>
5 */
6
7 #define pr_fmt(fmt) "kexec: " fmt
8
9 #include <linux/mm.h>
10 #include <linux/kexec.h>
11 #include <linux/string.h>
12 #include <linux/gfp.h>
13 #include <linux/reboot.h>
14 #include <linux/numa.h>
15 #include <linux/ftrace.h>
16 #include <linux/io.h>
17 #include <linux/suspend.h>
18 #include <linux/vmalloc.h>
19 #include <linux/efi.h>
20 #include <linux/cc_platform.h>
21
22 #include <asm/init.h>
23 #include <asm/tlbflush.h>
24 #include <asm/mmu_context.h>
25 #include <asm/io_apic.h>
26 #include <asm/debugreg.h>
27 #include <asm/kexec-bzimage64.h>
28 #include <asm/setup.h>
29 #include <asm/set_memory.h>
30 #include <asm/cpu.h>
31 #include <asm/efi.h>
32
33 #ifdef CONFIG_ACPI
34 /*
35 * Used while adding mapping for ACPI tables.
36 * Can be reused when other iomem regions need be mapped
37 */
38 struct init_pgtable_data {
39 struct x86_mapping_info *info;
40 pgd_t *level4p;
41 };
42
mem_region_callback(struct resource * res,void * arg)43 static int mem_region_callback(struct resource *res, void *arg)
44 {
45 struct init_pgtable_data *data = arg;
46 unsigned long mstart, mend;
47
48 mstart = res->start;
49 mend = mstart + resource_size(res) - 1;
50
51 return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
52 }
53
54 static int
map_acpi_tables(struct x86_mapping_info * info,pgd_t * level4p)55 map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
56 {
57 struct init_pgtable_data data;
58 unsigned long flags;
59 int ret;
60
61 data.info = info;
62 data.level4p = level4p;
63 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
64
65 ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
66 &data, mem_region_callback);
67 if (ret && ret != -EINVAL)
68 return ret;
69
70 /* ACPI tables could be located in ACPI Non-volatile Storage region */
71 ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
72 &data, mem_region_callback);
73 if (ret && ret != -EINVAL)
74 return ret;
75
76 return 0;
77 }
78 #else
map_acpi_tables(struct x86_mapping_info * info,pgd_t * level4p)79 static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
80 #endif
81
82 #ifdef CONFIG_KEXEC_FILE
83 const struct kexec_file_ops * const kexec_file_loaders[] = {
84 &kexec_bzImage64_ops,
85 NULL
86 };
87 #endif
88
89 static int
map_efi_systab(struct x86_mapping_info * info,pgd_t * level4p)90 map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
91 {
92 #ifdef CONFIG_EFI
93 unsigned long mstart, mend;
94 void *kaddr;
95 int ret;
96
97 if (!efi_enabled(EFI_BOOT))
98 return 0;
99
100 mstart = (boot_params.efi_info.efi_systab |
101 ((u64)boot_params.efi_info.efi_systab_hi<<32));
102
103 if (efi_enabled(EFI_64BIT))
104 mend = mstart + sizeof(efi_system_table_64_t);
105 else
106 mend = mstart + sizeof(efi_system_table_32_t);
107
108 if (!mstart)
109 return 0;
110
111 ret = kernel_ident_mapping_init(info, level4p, mstart, mend);
112 if (ret)
113 return ret;
114
115 kaddr = memremap(mstart, mend - mstart, MEMREMAP_WB);
116 if (!kaddr) {
117 pr_err("Could not map UEFI system table\n");
118 return -ENOMEM;
119 }
120
121 mstart = efi_config_table;
122
123 if (efi_enabled(EFI_64BIT)) {
124 efi_system_table_64_t *stbl = (efi_system_table_64_t *)kaddr;
125
126 mend = mstart + sizeof(efi_config_table_64_t) * stbl->nr_tables;
127 } else {
128 efi_system_table_32_t *stbl = (efi_system_table_32_t *)kaddr;
129
130 mend = mstart + sizeof(efi_config_table_32_t) * stbl->nr_tables;
131 }
132
133 memunmap(kaddr);
134
135 return kernel_ident_mapping_init(info, level4p, mstart, mend);
136 #endif
137 return 0;
138 }
139
free_transition_pgtable(struct kimage * image)140 static void free_transition_pgtable(struct kimage *image)
141 {
142 free_page((unsigned long)image->arch.p4d);
143 image->arch.p4d = NULL;
144 free_page((unsigned long)image->arch.pud);
145 image->arch.pud = NULL;
146 free_page((unsigned long)image->arch.pmd);
147 image->arch.pmd = NULL;
148 free_page((unsigned long)image->arch.pte);
149 image->arch.pte = NULL;
150 }
151
init_transition_pgtable(struct kimage * image,pgd_t * pgd)152 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
153 {
154 pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
155 unsigned long vaddr, paddr;
156 int result = -ENOMEM;
157 p4d_t *p4d;
158 pud_t *pud;
159 pmd_t *pmd;
160 pte_t *pte;
161
162 vaddr = (unsigned long)relocate_kernel;
163 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
164 pgd += pgd_index(vaddr);
165 if (!pgd_present(*pgd)) {
166 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
167 if (!p4d)
168 goto err;
169 image->arch.p4d = p4d;
170 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
171 }
172 p4d = p4d_offset(pgd, vaddr);
173 if (!p4d_present(*p4d)) {
174 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
175 if (!pud)
176 goto err;
177 image->arch.pud = pud;
178 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
179 }
180 pud = pud_offset(p4d, vaddr);
181 if (!pud_present(*pud)) {
182 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
183 if (!pmd)
184 goto err;
185 image->arch.pmd = pmd;
186 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
187 }
188 pmd = pmd_offset(pud, vaddr);
189 if (!pmd_present(*pmd)) {
190 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
191 if (!pte)
192 goto err;
193 image->arch.pte = pte;
194 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
195 }
196 pte = pte_offset_kernel(pmd, vaddr);
197
198 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
199 prot = PAGE_KERNEL_EXEC;
200
201 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
202 return 0;
203 err:
204 return result;
205 }
206
alloc_pgt_page(void * data)207 static void *alloc_pgt_page(void *data)
208 {
209 struct kimage *image = (struct kimage *)data;
210 struct page *page;
211 void *p = NULL;
212
213 page = kimage_alloc_control_pages(image, 0);
214 if (page) {
215 p = page_address(page);
216 clear_page(p);
217 }
218
219 return p;
220 }
221
init_pgtable(struct kimage * image,unsigned long start_pgtable)222 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
223 {
224 struct x86_mapping_info info = {
225 .alloc_pgt_page = alloc_pgt_page,
226 .context = image,
227 .page_flag = __PAGE_KERNEL_LARGE_EXEC,
228 .kernpg_flag = _KERNPG_TABLE_NOENC,
229 };
230 unsigned long mstart, mend;
231 pgd_t *level4p;
232 int result;
233 int i;
234
235 level4p = (pgd_t *)__va(start_pgtable);
236 clear_page(level4p);
237
238 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
239 info.page_flag |= _PAGE_ENC;
240 info.kernpg_flag |= _PAGE_ENC;
241 }
242
243 if (direct_gbpages)
244 info.direct_gbpages = true;
245
246 for (i = 0; i < nr_pfn_mapped; i++) {
247 mstart = pfn_mapped[i].start << PAGE_SHIFT;
248 mend = pfn_mapped[i].end << PAGE_SHIFT;
249
250 result = kernel_ident_mapping_init(&info,
251 level4p, mstart, mend);
252 if (result)
253 return result;
254 }
255
256 /*
257 * segments's mem ranges could be outside 0 ~ max_pfn,
258 * for example when jump back to original kernel from kexeced kernel.
259 * or first kernel is booted with user mem map, and second kernel
260 * could be loaded out of that range.
261 */
262 for (i = 0; i < image->nr_segments; i++) {
263 mstart = image->segment[i].mem;
264 mend = mstart + image->segment[i].memsz;
265
266 result = kernel_ident_mapping_init(&info,
267 level4p, mstart, mend);
268
269 if (result)
270 return result;
271 }
272
273 /*
274 * Prepare EFI systab and ACPI tables for kexec kernel since they are
275 * not covered by pfn_mapped.
276 */
277 result = map_efi_systab(&info, level4p);
278 if (result)
279 return result;
280
281 result = map_acpi_tables(&info, level4p);
282 if (result)
283 return result;
284
285 return init_transition_pgtable(image, level4p);
286 }
287
load_segments(void)288 static void load_segments(void)
289 {
290 __asm__ __volatile__ (
291 "\tmovl %0,%%ds\n"
292 "\tmovl %0,%%es\n"
293 "\tmovl %0,%%ss\n"
294 "\tmovl %0,%%fs\n"
295 "\tmovl %0,%%gs\n"
296 : : "a" (__KERNEL_DS) : "memory"
297 );
298 }
299
machine_kexec_prepare(struct kimage * image)300 int machine_kexec_prepare(struct kimage *image)
301 {
302 unsigned long start_pgtable;
303 int result;
304
305 /* Calculate the offsets */
306 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
307
308 /* Setup the identity mapped 64bit page table */
309 result = init_pgtable(image, start_pgtable);
310 if (result)
311 return result;
312
313 return 0;
314 }
315
machine_kexec_cleanup(struct kimage * image)316 void machine_kexec_cleanup(struct kimage *image)
317 {
318 free_transition_pgtable(image);
319 }
320
321 /*
322 * Do not allocate memory (or fail in any way) in machine_kexec().
323 * We are past the point of no return, committed to rebooting now.
324 */
machine_kexec(struct kimage * image)325 void machine_kexec(struct kimage *image)
326 {
327 unsigned long page_list[PAGES_NR];
328 unsigned int host_mem_enc_active;
329 int save_ftrace_enabled;
330 void *control_page;
331
332 /*
333 * This must be done before load_segments() since if call depth tracking
334 * is used then GS must be valid to make any function calls.
335 */
336 host_mem_enc_active = cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT);
337
338 #ifdef CONFIG_KEXEC_JUMP
339 if (image->preserve_context)
340 save_processor_state();
341 #endif
342
343 save_ftrace_enabled = __ftrace_enabled_save();
344
345 /* Interrupts aren't acceptable while we reboot */
346 local_irq_disable();
347 hw_breakpoint_disable();
348 cet_disable();
349
350 if (image->preserve_context) {
351 #ifdef CONFIG_X86_IO_APIC
352 /*
353 * We need to put APICs in legacy mode so that we can
354 * get timer interrupts in second kernel. kexec/kdump
355 * paths already have calls to restore_boot_irq_mode()
356 * in one form or other. kexec jump path also need one.
357 */
358 clear_IO_APIC();
359 restore_boot_irq_mode();
360 #endif
361 }
362
363 control_page = page_address(image->control_code_page) + PAGE_SIZE;
364 __memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
365
366 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
367 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
368 page_list[PA_TABLE_PAGE] =
369 (unsigned long)__pa(page_address(image->control_code_page));
370
371 if (image->type == KEXEC_TYPE_DEFAULT)
372 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
373 << PAGE_SHIFT);
374
375 /*
376 * The segment registers are funny things, they have both a
377 * visible and an invisible part. Whenever the visible part is
378 * set to a specific selector, the invisible part is loaded
379 * with from a table in memory. At no other time is the
380 * descriptor table in memory accessed.
381 *
382 * I take advantage of this here by force loading the
383 * segments, before I zap the gdt with an invalid value.
384 */
385 load_segments();
386 /*
387 * The gdt & idt are now invalid.
388 * If you want to load them you must set up your own idt & gdt.
389 */
390 native_idt_invalidate();
391 native_gdt_invalidate();
392
393 /* now call it */
394 image->start = relocate_kernel((unsigned long)image->head,
395 (unsigned long)page_list,
396 image->start,
397 image->preserve_context,
398 host_mem_enc_active);
399
400 #ifdef CONFIG_KEXEC_JUMP
401 if (image->preserve_context)
402 restore_processor_state();
403 #endif
404
405 __ftrace_enabled_restore(save_ftrace_enabled);
406 }
407
408 /* arch-dependent functionality related to kexec file-based syscall */
409
410 #ifdef CONFIG_KEXEC_FILE
411 /*
412 * Apply purgatory relocations.
413 *
414 * @pi: Purgatory to be relocated.
415 * @section: Section relocations applying to.
416 * @relsec: Section containing RELAs.
417 * @symtabsec: Corresponding symtab.
418 *
419 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
420 */
arch_kexec_apply_relocations_add(struct purgatory_info * pi,Elf_Shdr * section,const Elf_Shdr * relsec,const Elf_Shdr * symtabsec)421 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
422 Elf_Shdr *section, const Elf_Shdr *relsec,
423 const Elf_Shdr *symtabsec)
424 {
425 unsigned int i;
426 Elf64_Rela *rel;
427 Elf64_Sym *sym;
428 void *location;
429 unsigned long address, sec_base, value;
430 const char *strtab, *name, *shstrtab;
431 const Elf_Shdr *sechdrs;
432
433 /* String & section header string table */
434 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
435 strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
436 shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
437
438 rel = (void *)pi->ehdr + relsec->sh_offset;
439
440 pr_debug("Applying relocate section %s to %u\n",
441 shstrtab + relsec->sh_name, relsec->sh_info);
442
443 for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
444
445 /*
446 * rel[i].r_offset contains byte offset from beginning
447 * of section to the storage unit affected.
448 *
449 * This is location to update. This is temporary buffer
450 * where section is currently loaded. This will finally be
451 * loaded to a different address later, pointed to by
452 * ->sh_addr. kexec takes care of moving it
453 * (kexec_load_segment()).
454 */
455 location = pi->purgatory_buf;
456 location += section->sh_offset;
457 location += rel[i].r_offset;
458
459 /* Final address of the location */
460 address = section->sh_addr + rel[i].r_offset;
461
462 /*
463 * rel[i].r_info contains information about symbol table index
464 * w.r.t which relocation must be made and type of relocation
465 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
466 * these respectively.
467 */
468 sym = (void *)pi->ehdr + symtabsec->sh_offset;
469 sym += ELF64_R_SYM(rel[i].r_info);
470
471 if (sym->st_name)
472 name = strtab + sym->st_name;
473 else
474 name = shstrtab + sechdrs[sym->st_shndx].sh_name;
475
476 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
477 name, sym->st_info, sym->st_shndx, sym->st_value,
478 sym->st_size);
479
480 if (sym->st_shndx == SHN_UNDEF) {
481 pr_err("Undefined symbol: %s\n", name);
482 return -ENOEXEC;
483 }
484
485 if (sym->st_shndx == SHN_COMMON) {
486 pr_err("symbol '%s' in common section\n", name);
487 return -ENOEXEC;
488 }
489
490 if (sym->st_shndx == SHN_ABS)
491 sec_base = 0;
492 else if (sym->st_shndx >= pi->ehdr->e_shnum) {
493 pr_err("Invalid section %d for symbol %s\n",
494 sym->st_shndx, name);
495 return -ENOEXEC;
496 } else
497 sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
498
499 value = sym->st_value;
500 value += sec_base;
501 value += rel[i].r_addend;
502
503 switch (ELF64_R_TYPE(rel[i].r_info)) {
504 case R_X86_64_NONE:
505 break;
506 case R_X86_64_64:
507 *(u64 *)location = value;
508 break;
509 case R_X86_64_32:
510 *(u32 *)location = value;
511 if (value != *(u32 *)location)
512 goto overflow;
513 break;
514 case R_X86_64_32S:
515 *(s32 *)location = value;
516 if ((s64)value != *(s32 *)location)
517 goto overflow;
518 break;
519 case R_X86_64_PC32:
520 case R_X86_64_PLT32:
521 value -= (u64)address;
522 *(u32 *)location = value;
523 break;
524 default:
525 pr_err("Unknown rela relocation: %llu\n",
526 ELF64_R_TYPE(rel[i].r_info));
527 return -ENOEXEC;
528 }
529 }
530 return 0;
531
532 overflow:
533 pr_err("Overflow in relocation type %d value 0x%lx\n",
534 (int)ELF64_R_TYPE(rel[i].r_info), value);
535 return -ENOEXEC;
536 }
537
arch_kimage_file_post_load_cleanup(struct kimage * image)538 int arch_kimage_file_post_load_cleanup(struct kimage *image)
539 {
540 vfree(image->elf_headers);
541 image->elf_headers = NULL;
542 image->elf_headers_sz = 0;
543
544 return kexec_image_post_load_cleanup_default(image);
545 }
546 #endif /* CONFIG_KEXEC_FILE */
547
548 static int
kexec_mark_range(unsigned long start,unsigned long end,bool protect)549 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
550 {
551 struct page *page;
552 unsigned int nr_pages;
553
554 /*
555 * For physical range: [start, end]. We must skip the unassigned
556 * crashk resource with zero-valued "end" member.
557 */
558 if (!end || start > end)
559 return 0;
560
561 page = pfn_to_page(start >> PAGE_SHIFT);
562 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
563 if (protect)
564 return set_pages_ro(page, nr_pages);
565 else
566 return set_pages_rw(page, nr_pages);
567 }
568
kexec_mark_crashkres(bool protect)569 static void kexec_mark_crashkres(bool protect)
570 {
571 unsigned long control;
572
573 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
574
575 /* Don't touch the control code page used in crash_kexec().*/
576 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
577 /* Control code page is located in the 2nd page. */
578 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
579 control += KEXEC_CONTROL_PAGE_SIZE;
580 kexec_mark_range(control, crashk_res.end, protect);
581 }
582
arch_kexec_protect_crashkres(void)583 void arch_kexec_protect_crashkres(void)
584 {
585 kexec_mark_crashkres(true);
586 }
587
arch_kexec_unprotect_crashkres(void)588 void arch_kexec_unprotect_crashkres(void)
589 {
590 kexec_mark_crashkres(false);
591 }
592
593 /*
594 * During a traditional boot under SME, SME will encrypt the kernel,
595 * so the SME kexec kernel also needs to be un-encrypted in order to
596 * replicate a normal SME boot.
597 *
598 * During a traditional boot under SEV, the kernel has already been
599 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
600 * order to replicate a normal SEV boot.
601 */
arch_kexec_post_alloc_pages(void * vaddr,unsigned int pages,gfp_t gfp)602 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
603 {
604 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
605 return 0;
606
607 /*
608 * If host memory encryption is active we need to be sure that kexec
609 * pages are not encrypted because when we boot to the new kernel the
610 * pages won't be accessed encrypted (initially).
611 */
612 return set_memory_decrypted((unsigned long)vaddr, pages);
613 }
614
arch_kexec_pre_free_pages(void * vaddr,unsigned int pages)615 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
616 {
617 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
618 return;
619
620 /*
621 * If host memory encryption is active we need to reset the pages back
622 * to being an encrypted mapping before freeing them.
623 */
624 set_memory_encrypted((unsigned long)vaddr, pages);
625 }
626