xref: /openbmc/linux/tools/perf/util/hist.c (revision 776ebdee)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "callchain.h"
3 #include "debug.h"
4 #include "dso.h"
5 #include "build-id.h"
6 #include "hist.h"
7 #include "kvm-stat.h"
8 #include "map.h"
9 #include "map_symbol.h"
10 #include "branch.h"
11 #include "mem-events.h"
12 #include "session.h"
13 #include "namespaces.h"
14 #include "cgroup.h"
15 #include "sort.h"
16 #include "units.h"
17 #include "evlist.h"
18 #include "evsel.h"
19 #include "annotate.h"
20 #include "srcline.h"
21 #include "symbol.h"
22 #include "thread.h"
23 #include "block-info.h"
24 #include "ui/progress.h"
25 #include <errno.h>
26 #include <math.h>
27 #include <inttypes.h>
28 #include <sys/param.h>
29 #include <linux/rbtree.h>
30 #include <linux/string.h>
31 #include <linux/time64.h>
32 #include <linux/zalloc.h>
33 
34 static bool hists__filter_entry_by_dso(struct hists *hists,
35 				       struct hist_entry *he);
36 static bool hists__filter_entry_by_thread(struct hists *hists,
37 					  struct hist_entry *he);
38 static bool hists__filter_entry_by_symbol(struct hists *hists,
39 					  struct hist_entry *he);
40 static bool hists__filter_entry_by_socket(struct hists *hists,
41 					  struct hist_entry *he);
42 
hists__col_len(struct hists * hists,enum hist_column col)43 u16 hists__col_len(struct hists *hists, enum hist_column col)
44 {
45 	return hists->col_len[col];
46 }
47 
hists__set_col_len(struct hists * hists,enum hist_column col,u16 len)48 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
49 {
50 	hists->col_len[col] = len;
51 }
52 
hists__new_col_len(struct hists * hists,enum hist_column col,u16 len)53 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
54 {
55 	if (len > hists__col_len(hists, col)) {
56 		hists__set_col_len(hists, col, len);
57 		return true;
58 	}
59 	return false;
60 }
61 
hists__reset_col_len(struct hists * hists)62 void hists__reset_col_len(struct hists *hists)
63 {
64 	enum hist_column col;
65 
66 	for (col = 0; col < HISTC_NR_COLS; ++col)
67 		hists__set_col_len(hists, col, 0);
68 }
69 
hists__set_unres_dso_col_len(struct hists * hists,int dso)70 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
71 {
72 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
73 
74 	if (hists__col_len(hists, dso) < unresolved_col_width &&
75 	    !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
76 	    !symbol_conf.dso_list)
77 		hists__set_col_len(hists, dso, unresolved_col_width);
78 }
79 
hists__calc_col_len(struct hists * hists,struct hist_entry * h)80 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
81 {
82 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
83 	int symlen;
84 	u16 len;
85 
86 	if (h->block_info)
87 		return;
88 	/*
89 	 * +4 accounts for '[x] ' priv level info
90 	 * +2 accounts for 0x prefix on raw addresses
91 	 * +3 accounts for ' y ' symtab origin info
92 	 */
93 	if (h->ms.sym) {
94 		symlen = h->ms.sym->namelen + 4;
95 		if (verbose > 0)
96 			symlen += BITS_PER_LONG / 4 + 2 + 3;
97 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
98 	} else {
99 		symlen = unresolved_col_width + 4 + 2;
100 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
101 		hists__set_unres_dso_col_len(hists, HISTC_DSO);
102 	}
103 
104 	len = thread__comm_len(h->thread);
105 	if (hists__new_col_len(hists, HISTC_COMM, len))
106 		hists__set_col_len(hists, HISTC_THREAD, len + 8);
107 
108 	if (h->ms.map) {
109 		len = dso__name_len(map__dso(h->ms.map));
110 		hists__new_col_len(hists, HISTC_DSO, len);
111 	}
112 
113 	if (h->parent)
114 		hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
115 
116 	if (h->branch_info) {
117 		if (h->branch_info->from.ms.sym) {
118 			symlen = (int)h->branch_info->from.ms.sym->namelen + 4;
119 			if (verbose > 0)
120 				symlen += BITS_PER_LONG / 4 + 2 + 3;
121 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
122 
123 			symlen = dso__name_len(map__dso(h->branch_info->from.ms.map));
124 			hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
125 		} else {
126 			symlen = unresolved_col_width + 4 + 2;
127 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
128 			hists__new_col_len(hists, HISTC_ADDR_FROM, symlen);
129 			hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
130 		}
131 
132 		if (h->branch_info->to.ms.sym) {
133 			symlen = (int)h->branch_info->to.ms.sym->namelen + 4;
134 			if (verbose > 0)
135 				symlen += BITS_PER_LONG / 4 + 2 + 3;
136 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
137 
138 			symlen = dso__name_len(map__dso(h->branch_info->to.ms.map));
139 			hists__new_col_len(hists, HISTC_DSO_TO, symlen);
140 		} else {
141 			symlen = unresolved_col_width + 4 + 2;
142 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
143 			hists__new_col_len(hists, HISTC_ADDR_TO, symlen);
144 			hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
145 		}
146 
147 		if (h->branch_info->srcline_from)
148 			hists__new_col_len(hists, HISTC_SRCLINE_FROM,
149 					strlen(h->branch_info->srcline_from));
150 		if (h->branch_info->srcline_to)
151 			hists__new_col_len(hists, HISTC_SRCLINE_TO,
152 					strlen(h->branch_info->srcline_to));
153 	}
154 
155 	if (h->mem_info) {
156 		if (h->mem_info->daddr.ms.sym) {
157 			symlen = (int)h->mem_info->daddr.ms.sym->namelen + 4
158 			       + unresolved_col_width + 2;
159 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
160 					   symlen);
161 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
162 					   symlen + 1);
163 		} else {
164 			symlen = unresolved_col_width + 4 + 2;
165 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
166 					   symlen);
167 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
168 					   symlen);
169 		}
170 
171 		if (h->mem_info->iaddr.ms.sym) {
172 			symlen = (int)h->mem_info->iaddr.ms.sym->namelen + 4
173 			       + unresolved_col_width + 2;
174 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
175 					   symlen);
176 		} else {
177 			symlen = unresolved_col_width + 4 + 2;
178 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
179 					   symlen);
180 		}
181 
182 		if (h->mem_info->daddr.ms.map) {
183 			symlen = dso__name_len(map__dso(h->mem_info->daddr.ms.map));
184 			hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
185 					   symlen);
186 		} else {
187 			symlen = unresolved_col_width + 4 + 2;
188 			hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
189 		}
190 
191 		hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
192 				   unresolved_col_width + 4 + 2);
193 
194 		hists__new_col_len(hists, HISTC_MEM_DATA_PAGE_SIZE,
195 				   unresolved_col_width + 4 + 2);
196 
197 	} else {
198 		symlen = unresolved_col_width + 4 + 2;
199 		hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
200 		hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
201 		hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
202 	}
203 
204 	hists__new_col_len(hists, HISTC_CGROUP, 6);
205 	hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
206 	hists__new_col_len(hists, HISTC_CPU, 3);
207 	hists__new_col_len(hists, HISTC_SOCKET, 6);
208 	hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
209 	hists__new_col_len(hists, HISTC_MEM_TLB, 22);
210 	hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
211 	hists__new_col_len(hists, HISTC_MEM_LVL, 36 + 3);
212 	hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
213 	hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
214 	hists__new_col_len(hists, HISTC_MEM_BLOCKED, 10);
215 	hists__new_col_len(hists, HISTC_LOCAL_INS_LAT, 13);
216 	hists__new_col_len(hists, HISTC_GLOBAL_INS_LAT, 13);
217 	hists__new_col_len(hists, HISTC_LOCAL_P_STAGE_CYC, 13);
218 	hists__new_col_len(hists, HISTC_GLOBAL_P_STAGE_CYC, 13);
219 	hists__new_col_len(hists, HISTC_ADDR, BITS_PER_LONG / 4 + 2);
220 
221 	if (symbol_conf.nanosecs)
222 		hists__new_col_len(hists, HISTC_TIME, 16);
223 	else
224 		hists__new_col_len(hists, HISTC_TIME, 12);
225 	hists__new_col_len(hists, HISTC_CODE_PAGE_SIZE, 6);
226 
227 	if (h->srcline) {
228 		len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
229 		hists__new_col_len(hists, HISTC_SRCLINE, len);
230 	}
231 
232 	if (h->srcfile)
233 		hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
234 
235 	if (h->transaction)
236 		hists__new_col_len(hists, HISTC_TRANSACTION,
237 				   hist_entry__transaction_len());
238 
239 	if (h->trace_output)
240 		hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
241 
242 	if (h->cgroup) {
243 		const char *cgrp_name = "unknown";
244 		struct cgroup *cgrp = cgroup__find(maps__machine(h->ms.maps)->env,
245 						   h->cgroup);
246 		if (cgrp != NULL)
247 			cgrp_name = cgrp->name;
248 
249 		hists__new_col_len(hists, HISTC_CGROUP, strlen(cgrp_name));
250 	}
251 }
252 
hists__output_recalc_col_len(struct hists * hists,int max_rows)253 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
254 {
255 	struct rb_node *next = rb_first_cached(&hists->entries);
256 	struct hist_entry *n;
257 	int row = 0;
258 
259 	hists__reset_col_len(hists);
260 
261 	while (next && row++ < max_rows) {
262 		n = rb_entry(next, struct hist_entry, rb_node);
263 		if (!n->filtered)
264 			hists__calc_col_len(hists, n);
265 		next = rb_next(&n->rb_node);
266 	}
267 }
268 
he_stat__add_cpumode_period(struct he_stat * he_stat,unsigned int cpumode,u64 period)269 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
270 					unsigned int cpumode, u64 period)
271 {
272 	switch (cpumode) {
273 	case PERF_RECORD_MISC_KERNEL:
274 		he_stat->period_sys += period;
275 		break;
276 	case PERF_RECORD_MISC_USER:
277 		he_stat->period_us += period;
278 		break;
279 	case PERF_RECORD_MISC_GUEST_KERNEL:
280 		he_stat->period_guest_sys += period;
281 		break;
282 	case PERF_RECORD_MISC_GUEST_USER:
283 		he_stat->period_guest_us += period;
284 		break;
285 	default:
286 		break;
287 	}
288 }
289 
hist_time(unsigned long htime)290 static long hist_time(unsigned long htime)
291 {
292 	unsigned long time_quantum = symbol_conf.time_quantum;
293 	if (time_quantum)
294 		return (htime / time_quantum) * time_quantum;
295 	return htime;
296 }
297 
he_stat__add_period(struct he_stat * he_stat,u64 period)298 static void he_stat__add_period(struct he_stat *he_stat, u64 period)
299 {
300 	he_stat->period		+= period;
301 	he_stat->nr_events	+= 1;
302 }
303 
he_stat__add_stat(struct he_stat * dest,struct he_stat * src)304 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
305 {
306 	dest->period		+= src->period;
307 	dest->period_sys	+= src->period_sys;
308 	dest->period_us		+= src->period_us;
309 	dest->period_guest_sys	+= src->period_guest_sys;
310 	dest->period_guest_us	+= src->period_guest_us;
311 	dest->nr_events		+= src->nr_events;
312 }
313 
he_stat__decay(struct he_stat * he_stat)314 static void he_stat__decay(struct he_stat *he_stat)
315 {
316 	he_stat->period = (he_stat->period * 7) / 8;
317 	he_stat->nr_events = (he_stat->nr_events * 7) / 8;
318 	/* XXX need decay for weight too? */
319 }
320 
321 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
322 
hists__decay_entry(struct hists * hists,struct hist_entry * he)323 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
324 {
325 	u64 prev_period = he->stat.period;
326 	u64 diff;
327 
328 	if (prev_period == 0)
329 		return true;
330 
331 	he_stat__decay(&he->stat);
332 	if (symbol_conf.cumulate_callchain)
333 		he_stat__decay(he->stat_acc);
334 	decay_callchain(he->callchain);
335 
336 	diff = prev_period - he->stat.period;
337 
338 	if (!he->depth) {
339 		hists->stats.total_period -= diff;
340 		if (!he->filtered)
341 			hists->stats.total_non_filtered_period -= diff;
342 	}
343 
344 	if (!he->leaf) {
345 		struct hist_entry *child;
346 		struct rb_node *node = rb_first_cached(&he->hroot_out);
347 		while (node) {
348 			child = rb_entry(node, struct hist_entry, rb_node);
349 			node = rb_next(node);
350 
351 			if (hists__decay_entry(hists, child))
352 				hists__delete_entry(hists, child);
353 		}
354 	}
355 
356 	return he->stat.period == 0;
357 }
358 
hists__delete_entry(struct hists * hists,struct hist_entry * he)359 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
360 {
361 	struct rb_root_cached *root_in;
362 	struct rb_root_cached *root_out;
363 
364 	if (he->parent_he) {
365 		root_in  = &he->parent_he->hroot_in;
366 		root_out = &he->parent_he->hroot_out;
367 	} else {
368 		if (hists__has(hists, need_collapse))
369 			root_in = &hists->entries_collapsed;
370 		else
371 			root_in = hists->entries_in;
372 		root_out = &hists->entries;
373 	}
374 
375 	rb_erase_cached(&he->rb_node_in, root_in);
376 	rb_erase_cached(&he->rb_node, root_out);
377 
378 	--hists->nr_entries;
379 	if (!he->filtered)
380 		--hists->nr_non_filtered_entries;
381 
382 	hist_entry__delete(he);
383 }
384 
hists__decay_entries(struct hists * hists,bool zap_user,bool zap_kernel)385 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
386 {
387 	struct rb_node *next = rb_first_cached(&hists->entries);
388 	struct hist_entry *n;
389 
390 	while (next) {
391 		n = rb_entry(next, struct hist_entry, rb_node);
392 		next = rb_next(&n->rb_node);
393 		if (((zap_user && n->level == '.') ||
394 		     (zap_kernel && n->level != '.') ||
395 		     hists__decay_entry(hists, n))) {
396 			hists__delete_entry(hists, n);
397 		}
398 	}
399 }
400 
hists__delete_entries(struct hists * hists)401 void hists__delete_entries(struct hists *hists)
402 {
403 	struct rb_node *next = rb_first_cached(&hists->entries);
404 	struct hist_entry *n;
405 
406 	while (next) {
407 		n = rb_entry(next, struct hist_entry, rb_node);
408 		next = rb_next(&n->rb_node);
409 
410 		hists__delete_entry(hists, n);
411 	}
412 }
413 
hists__get_entry(struct hists * hists,int idx)414 struct hist_entry *hists__get_entry(struct hists *hists, int idx)
415 {
416 	struct rb_node *next = rb_first_cached(&hists->entries);
417 	struct hist_entry *n;
418 	int i = 0;
419 
420 	while (next) {
421 		n = rb_entry(next, struct hist_entry, rb_node);
422 		if (i == idx)
423 			return n;
424 
425 		next = rb_next(&n->rb_node);
426 		i++;
427 	}
428 
429 	return NULL;
430 }
431 
432 /*
433  * histogram, sorted on item, collects periods
434  */
435 
hist_entry__init(struct hist_entry * he,struct hist_entry * template,bool sample_self,size_t callchain_size)436 static int hist_entry__init(struct hist_entry *he,
437 			    struct hist_entry *template,
438 			    bool sample_self,
439 			    size_t callchain_size)
440 {
441 	*he = *template;
442 	he->callchain_size = callchain_size;
443 
444 	if (symbol_conf.cumulate_callchain) {
445 		he->stat_acc = malloc(sizeof(he->stat));
446 		if (he->stat_acc == NULL)
447 			return -ENOMEM;
448 		memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
449 		if (!sample_self)
450 			memset(&he->stat, 0, sizeof(he->stat));
451 	}
452 
453 	he->ms.maps = maps__get(he->ms.maps);
454 	he->ms.map = map__get(he->ms.map);
455 
456 	if (he->branch_info) {
457 		/*
458 		 * This branch info is (a part of) allocated from
459 		 * sample__resolve_bstack() and will be freed after
460 		 * adding new entries.  So we need to save a copy.
461 		 */
462 		he->branch_info = malloc(sizeof(*he->branch_info));
463 		if (he->branch_info == NULL)
464 			goto err;
465 
466 		memcpy(he->branch_info, template->branch_info,
467 		       sizeof(*he->branch_info));
468 
469 		he->branch_info->from.ms.map = map__get(he->branch_info->from.ms.map);
470 		he->branch_info->to.ms.map = map__get(he->branch_info->to.ms.map);
471 	}
472 
473 	if (he->mem_info) {
474 		he->mem_info->iaddr.ms.map = map__get(he->mem_info->iaddr.ms.map);
475 		he->mem_info->daddr.ms.map = map__get(he->mem_info->daddr.ms.map);
476 	}
477 
478 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
479 		callchain_init(he->callchain);
480 
481 	if (he->raw_data) {
482 		he->raw_data = memdup(he->raw_data, he->raw_size);
483 		if (he->raw_data == NULL)
484 			goto err_infos;
485 	}
486 
487 	if (he->srcline && he->srcline != SRCLINE_UNKNOWN) {
488 		he->srcline = strdup(he->srcline);
489 		if (he->srcline == NULL)
490 			goto err_rawdata;
491 	}
492 
493 	if (symbol_conf.res_sample) {
494 		he->res_samples = calloc(sizeof(struct res_sample),
495 					symbol_conf.res_sample);
496 		if (!he->res_samples)
497 			goto err_srcline;
498 	}
499 
500 	INIT_LIST_HEAD(&he->pairs.node);
501 	he->thread = thread__get(he->thread);
502 	he->hroot_in  = RB_ROOT_CACHED;
503 	he->hroot_out = RB_ROOT_CACHED;
504 
505 	if (!symbol_conf.report_hierarchy)
506 		he->leaf = true;
507 
508 	return 0;
509 
510 err_srcline:
511 	zfree(&he->srcline);
512 
513 err_rawdata:
514 	zfree(&he->raw_data);
515 
516 err_infos:
517 	if (he->branch_info) {
518 		map__put(he->branch_info->from.ms.map);
519 		map__put(he->branch_info->to.ms.map);
520 		zfree(&he->branch_info);
521 	}
522 	if (he->mem_info) {
523 		map__put(he->mem_info->iaddr.ms.map);
524 		map__put(he->mem_info->daddr.ms.map);
525 	}
526 err:
527 	maps__zput(he->ms.maps);
528 	map__zput(he->ms.map);
529 	zfree(&he->stat_acc);
530 	return -ENOMEM;
531 }
532 
hist_entry__zalloc(size_t size)533 static void *hist_entry__zalloc(size_t size)
534 {
535 	return zalloc(size + sizeof(struct hist_entry));
536 }
537 
hist_entry__free(void * ptr)538 static void hist_entry__free(void *ptr)
539 {
540 	free(ptr);
541 }
542 
543 static struct hist_entry_ops default_ops = {
544 	.new	= hist_entry__zalloc,
545 	.free	= hist_entry__free,
546 };
547 
hist_entry__new(struct hist_entry * template,bool sample_self)548 static struct hist_entry *hist_entry__new(struct hist_entry *template,
549 					  bool sample_self)
550 {
551 	struct hist_entry_ops *ops = template->ops;
552 	size_t callchain_size = 0;
553 	struct hist_entry *he;
554 	int err = 0;
555 
556 	if (!ops)
557 		ops = template->ops = &default_ops;
558 
559 	if (symbol_conf.use_callchain)
560 		callchain_size = sizeof(struct callchain_root);
561 
562 	he = ops->new(callchain_size);
563 	if (he) {
564 		err = hist_entry__init(he, template, sample_self, callchain_size);
565 		if (err) {
566 			ops->free(he);
567 			he = NULL;
568 		}
569 	}
570 
571 	return he;
572 }
573 
symbol__parent_filter(const struct symbol * parent)574 static u8 symbol__parent_filter(const struct symbol *parent)
575 {
576 	if (symbol_conf.exclude_other && parent == NULL)
577 		return 1 << HIST_FILTER__PARENT;
578 	return 0;
579 }
580 
hist_entry__add_callchain_period(struct hist_entry * he,u64 period)581 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
582 {
583 	if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain)
584 		return;
585 
586 	he->hists->callchain_period += period;
587 	if (!he->filtered)
588 		he->hists->callchain_non_filtered_period += period;
589 }
590 
hists__findnew_entry(struct hists * hists,struct hist_entry * entry,const struct addr_location * al,bool sample_self)591 static struct hist_entry *hists__findnew_entry(struct hists *hists,
592 					       struct hist_entry *entry,
593 					       const struct addr_location *al,
594 					       bool sample_self)
595 {
596 	struct rb_node **p;
597 	struct rb_node *parent = NULL;
598 	struct hist_entry *he;
599 	int64_t cmp;
600 	u64 period = entry->stat.period;
601 	bool leftmost = true;
602 
603 	p = &hists->entries_in->rb_root.rb_node;
604 
605 	while (*p != NULL) {
606 		parent = *p;
607 		he = rb_entry(parent, struct hist_entry, rb_node_in);
608 
609 		/*
610 		 * Make sure that it receives arguments in a same order as
611 		 * hist_entry__collapse() so that we can use an appropriate
612 		 * function when searching an entry regardless which sort
613 		 * keys were used.
614 		 */
615 		cmp = hist_entry__cmp(he, entry);
616 		if (!cmp) {
617 			if (sample_self) {
618 				he_stat__add_period(&he->stat, period);
619 				hist_entry__add_callchain_period(he, period);
620 			}
621 			if (symbol_conf.cumulate_callchain)
622 				he_stat__add_period(he->stat_acc, period);
623 
624 			/*
625 			 * This mem info was allocated from sample__resolve_mem
626 			 * and will not be used anymore.
627 			 */
628 			mem_info__zput(entry->mem_info);
629 
630 			block_info__zput(entry->block_info);
631 
632 			kvm_info__zput(entry->kvm_info);
633 
634 			/* If the map of an existing hist_entry has
635 			 * become out-of-date due to an exec() or
636 			 * similar, update it.  Otherwise we will
637 			 * mis-adjust symbol addresses when computing
638 			 * the history counter to increment.
639 			 */
640 			if (hists__has(hists, sym) && he->ms.map != entry->ms.map) {
641 				if (he->ms.sym) {
642 					u64 addr = he->ms.sym->start;
643 					he->ms.sym = map__find_symbol(entry->ms.map, addr);
644 				}
645 
646 				map__put(he->ms.map);
647 				he->ms.map = map__get(entry->ms.map);
648 			}
649 			goto out;
650 		}
651 
652 		if (cmp < 0)
653 			p = &(*p)->rb_left;
654 		else {
655 			p = &(*p)->rb_right;
656 			leftmost = false;
657 		}
658 	}
659 
660 	he = hist_entry__new(entry, sample_self);
661 	if (!he)
662 		return NULL;
663 
664 	if (sample_self)
665 		hist_entry__add_callchain_period(he, period);
666 	hists->nr_entries++;
667 
668 	rb_link_node(&he->rb_node_in, parent, p);
669 	rb_insert_color_cached(&he->rb_node_in, hists->entries_in, leftmost);
670 out:
671 	if (sample_self)
672 		he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
673 	if (symbol_conf.cumulate_callchain)
674 		he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
675 	return he;
676 }
677 
random_max(unsigned high)678 static unsigned random_max(unsigned high)
679 {
680 	unsigned thresh = -high % high;
681 	for (;;) {
682 		unsigned r = random();
683 		if (r >= thresh)
684 			return r % high;
685 	}
686 }
687 
hists__res_sample(struct hist_entry * he,struct perf_sample * sample)688 static void hists__res_sample(struct hist_entry *he, struct perf_sample *sample)
689 {
690 	struct res_sample *r;
691 	int j;
692 
693 	if (he->num_res < symbol_conf.res_sample) {
694 		j = he->num_res++;
695 	} else {
696 		j = random_max(symbol_conf.res_sample);
697 	}
698 	r = &he->res_samples[j];
699 	r->time = sample->time;
700 	r->cpu = sample->cpu;
701 	r->tid = sample->tid;
702 }
703 
704 static struct hist_entry*
__hists__add_entry(struct hists * hists,struct addr_location * al,struct symbol * sym_parent,struct branch_info * bi,struct mem_info * mi,struct kvm_info * ki,struct block_info * block_info,struct perf_sample * sample,bool sample_self,struct hist_entry_ops * ops)705 __hists__add_entry(struct hists *hists,
706 		   struct addr_location *al,
707 		   struct symbol *sym_parent,
708 		   struct branch_info *bi,
709 		   struct mem_info *mi,
710 		   struct kvm_info *ki,
711 		   struct block_info *block_info,
712 		   struct perf_sample *sample,
713 		   bool sample_self,
714 		   struct hist_entry_ops *ops)
715 {
716 	struct namespaces *ns = thread__namespaces(al->thread);
717 	struct hist_entry entry = {
718 		.thread	= al->thread,
719 		.comm = thread__comm(al->thread),
720 		.cgroup_id = {
721 			.dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
722 			.ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
723 		},
724 		.cgroup = sample->cgroup,
725 		.ms = {
726 			.maps	= al->maps,
727 			.map	= al->map,
728 			.sym	= al->sym,
729 		},
730 		.srcline = (char *) al->srcline,
731 		.socket	 = al->socket,
732 		.cpu	 = al->cpu,
733 		.cpumode = al->cpumode,
734 		.ip	 = al->addr,
735 		.level	 = al->level,
736 		.code_page_size = sample->code_page_size,
737 		.stat = {
738 			.nr_events = 1,
739 			.period	= sample->period,
740 		},
741 		.parent = sym_parent,
742 		.filtered = symbol__parent_filter(sym_parent) | al->filtered,
743 		.hists	= hists,
744 		.branch_info = bi,
745 		.mem_info = mi,
746 		.kvm_info = ki,
747 		.block_info = block_info,
748 		.transaction = sample->transaction,
749 		.raw_data = sample->raw_data,
750 		.raw_size = sample->raw_size,
751 		.ops = ops,
752 		.time = hist_time(sample->time),
753 		.weight = sample->weight,
754 		.ins_lat = sample->ins_lat,
755 		.p_stage_cyc = sample->p_stage_cyc,
756 		.simd_flags = sample->simd_flags,
757 	}, *he = hists__findnew_entry(hists, &entry, al, sample_self);
758 
759 	if (!hists->has_callchains && he && he->callchain_size != 0)
760 		hists->has_callchains = true;
761 	if (he && symbol_conf.res_sample)
762 		hists__res_sample(he, sample);
763 	return he;
764 }
765 
hists__add_entry(struct hists * hists,struct addr_location * al,struct symbol * sym_parent,struct branch_info * bi,struct mem_info * mi,struct kvm_info * ki,struct perf_sample * sample,bool sample_self)766 struct hist_entry *hists__add_entry(struct hists *hists,
767 				    struct addr_location *al,
768 				    struct symbol *sym_parent,
769 				    struct branch_info *bi,
770 				    struct mem_info *mi,
771 				    struct kvm_info *ki,
772 				    struct perf_sample *sample,
773 				    bool sample_self)
774 {
775 	return __hists__add_entry(hists, al, sym_parent, bi, mi, ki, NULL,
776 				  sample, sample_self, NULL);
777 }
778 
hists__add_entry_ops(struct hists * hists,struct hist_entry_ops * ops,struct addr_location * al,struct symbol * sym_parent,struct branch_info * bi,struct mem_info * mi,struct kvm_info * ki,struct perf_sample * sample,bool sample_self)779 struct hist_entry *hists__add_entry_ops(struct hists *hists,
780 					struct hist_entry_ops *ops,
781 					struct addr_location *al,
782 					struct symbol *sym_parent,
783 					struct branch_info *bi,
784 					struct mem_info *mi,
785 					struct kvm_info *ki,
786 					struct perf_sample *sample,
787 					bool sample_self)
788 {
789 	return __hists__add_entry(hists, al, sym_parent, bi, mi, ki, NULL,
790 				  sample, sample_self, ops);
791 }
792 
hists__add_entry_block(struct hists * hists,struct addr_location * al,struct block_info * block_info)793 struct hist_entry *hists__add_entry_block(struct hists *hists,
794 					  struct addr_location *al,
795 					  struct block_info *block_info)
796 {
797 	struct hist_entry entry = {
798 		.block_info = block_info,
799 		.hists = hists,
800 		.ms = {
801 			.maps = al->maps,
802 			.map = al->map,
803 			.sym = al->sym,
804 		},
805 	}, *he = hists__findnew_entry(hists, &entry, al, false);
806 
807 	return he;
808 }
809 
810 static int
iter_next_nop_entry(struct hist_entry_iter * iter __maybe_unused,struct addr_location * al __maybe_unused)811 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
812 		    struct addr_location *al __maybe_unused)
813 {
814 	return 0;
815 }
816 
817 static int
iter_add_next_nop_entry(struct hist_entry_iter * iter __maybe_unused,struct addr_location * al __maybe_unused)818 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
819 			struct addr_location *al __maybe_unused)
820 {
821 	return 0;
822 }
823 
824 static int
iter_prepare_mem_entry(struct hist_entry_iter * iter,struct addr_location * al)825 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
826 {
827 	struct perf_sample *sample = iter->sample;
828 	struct mem_info *mi;
829 
830 	mi = sample__resolve_mem(sample, al);
831 	if (mi == NULL)
832 		return -ENOMEM;
833 
834 	iter->priv = mi;
835 	return 0;
836 }
837 
838 static int
iter_add_single_mem_entry(struct hist_entry_iter * iter,struct addr_location * al)839 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
840 {
841 	u64 cost;
842 	struct mem_info *mi = iter->priv;
843 	struct hists *hists = evsel__hists(iter->evsel);
844 	struct perf_sample *sample = iter->sample;
845 	struct hist_entry *he;
846 
847 	if (mi == NULL)
848 		return -EINVAL;
849 
850 	cost = sample->weight;
851 	if (!cost)
852 		cost = 1;
853 
854 	/*
855 	 * must pass period=weight in order to get the correct
856 	 * sorting from hists__collapse_resort() which is solely
857 	 * based on periods. We want sorting be done on nr_events * weight
858 	 * and this is indirectly achieved by passing period=weight here
859 	 * and the he_stat__add_period() function.
860 	 */
861 	sample->period = cost;
862 
863 	he = hists__add_entry(hists, al, iter->parent, NULL, mi, NULL,
864 			      sample, true);
865 	if (!he)
866 		return -ENOMEM;
867 
868 	iter->he = he;
869 	return 0;
870 }
871 
872 static int
iter_finish_mem_entry(struct hist_entry_iter * iter,struct addr_location * al __maybe_unused)873 iter_finish_mem_entry(struct hist_entry_iter *iter,
874 		      struct addr_location *al __maybe_unused)
875 {
876 	struct evsel *evsel = iter->evsel;
877 	struct hists *hists = evsel__hists(evsel);
878 	struct hist_entry *he = iter->he;
879 	int err = -EINVAL;
880 
881 	if (he == NULL)
882 		goto out;
883 
884 	hists__inc_nr_samples(hists, he->filtered);
885 
886 	err = hist_entry__append_callchain(he, iter->sample);
887 
888 out:
889 	/*
890 	 * We don't need to free iter->priv (mem_info) here since the mem info
891 	 * was either already freed in hists__findnew_entry() or passed to a
892 	 * new hist entry by hist_entry__new().
893 	 */
894 	iter->priv = NULL;
895 
896 	iter->he = NULL;
897 	return err;
898 }
899 
900 static int
iter_prepare_branch_entry(struct hist_entry_iter * iter,struct addr_location * al)901 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
902 {
903 	struct branch_info *bi;
904 	struct perf_sample *sample = iter->sample;
905 
906 	bi = sample__resolve_bstack(sample, al);
907 	if (!bi)
908 		return -ENOMEM;
909 
910 	iter->curr = 0;
911 	iter->total = sample->branch_stack->nr;
912 
913 	iter->priv = bi;
914 	return 0;
915 }
916 
917 static int
iter_add_single_branch_entry(struct hist_entry_iter * iter __maybe_unused,struct addr_location * al __maybe_unused)918 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
919 			     struct addr_location *al __maybe_unused)
920 {
921 	return 0;
922 }
923 
924 static int
iter_next_branch_entry(struct hist_entry_iter * iter,struct addr_location * al)925 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
926 {
927 	struct branch_info *bi = iter->priv;
928 	int i = iter->curr;
929 
930 	if (bi == NULL)
931 		return 0;
932 
933 	if (iter->curr >= iter->total)
934 		return 0;
935 
936 	maps__put(al->maps);
937 	al->maps = maps__get(bi[i].to.ms.maps);
938 	map__put(al->map);
939 	al->map = map__get(bi[i].to.ms.map);
940 	al->sym = bi[i].to.ms.sym;
941 	al->addr = bi[i].to.addr;
942 	return 1;
943 }
944 
945 static int
iter_add_next_branch_entry(struct hist_entry_iter * iter,struct addr_location * al)946 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
947 {
948 	struct branch_info *bi;
949 	struct evsel *evsel = iter->evsel;
950 	struct hists *hists = evsel__hists(evsel);
951 	struct perf_sample *sample = iter->sample;
952 	struct hist_entry *he = NULL;
953 	int i = iter->curr;
954 	int err = 0;
955 
956 	bi = iter->priv;
957 
958 	if (iter->hide_unresolved && !(bi[i].from.ms.sym && bi[i].to.ms.sym))
959 		goto out;
960 
961 	/*
962 	 * The report shows the percentage of total branches captured
963 	 * and not events sampled. Thus we use a pseudo period of 1.
964 	 */
965 	sample->period = 1;
966 	sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
967 
968 	he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL, NULL,
969 			      sample, true);
970 	if (he == NULL)
971 		return -ENOMEM;
972 
973 	hists__inc_nr_samples(hists, he->filtered);
974 
975 out:
976 	iter->he = he;
977 	iter->curr++;
978 	return err;
979 }
980 
981 static int
iter_finish_branch_entry(struct hist_entry_iter * iter,struct addr_location * al __maybe_unused)982 iter_finish_branch_entry(struct hist_entry_iter *iter,
983 			 struct addr_location *al __maybe_unused)
984 {
985 	zfree(&iter->priv);
986 	iter->he = NULL;
987 
988 	return iter->curr >= iter->total ? 0 : -1;
989 }
990 
991 static int
iter_prepare_normal_entry(struct hist_entry_iter * iter __maybe_unused,struct addr_location * al __maybe_unused)992 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
993 			  struct addr_location *al __maybe_unused)
994 {
995 	return 0;
996 }
997 
998 static int
iter_add_single_normal_entry(struct hist_entry_iter * iter,struct addr_location * al)999 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
1000 {
1001 	struct evsel *evsel = iter->evsel;
1002 	struct perf_sample *sample = iter->sample;
1003 	struct hist_entry *he;
1004 
1005 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
1006 			      NULL, sample, true);
1007 	if (he == NULL)
1008 		return -ENOMEM;
1009 
1010 	iter->he = he;
1011 	return 0;
1012 }
1013 
1014 static int
iter_finish_normal_entry(struct hist_entry_iter * iter,struct addr_location * al __maybe_unused)1015 iter_finish_normal_entry(struct hist_entry_iter *iter,
1016 			 struct addr_location *al __maybe_unused)
1017 {
1018 	struct hist_entry *he = iter->he;
1019 	struct evsel *evsel = iter->evsel;
1020 	struct perf_sample *sample = iter->sample;
1021 
1022 	if (he == NULL)
1023 		return 0;
1024 
1025 	iter->he = NULL;
1026 
1027 	hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
1028 
1029 	return hist_entry__append_callchain(he, sample);
1030 }
1031 
1032 static int
iter_prepare_cumulative_entry(struct hist_entry_iter * iter,struct addr_location * al __maybe_unused)1033 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
1034 			      struct addr_location *al __maybe_unused)
1035 {
1036 	struct hist_entry **he_cache;
1037 	struct callchain_cursor *cursor = get_tls_callchain_cursor();
1038 
1039 	if (cursor == NULL)
1040 		return -ENOMEM;
1041 
1042 	callchain_cursor_commit(cursor);
1043 
1044 	/*
1045 	 * This is for detecting cycles or recursions so that they're
1046 	 * cumulated only one time to prevent entries more than 100%
1047 	 * overhead.
1048 	 */
1049 	he_cache = malloc(sizeof(*he_cache) * (cursor->nr + 1));
1050 	if (he_cache == NULL)
1051 		return -ENOMEM;
1052 
1053 	iter->priv = he_cache;
1054 	iter->curr = 0;
1055 
1056 	return 0;
1057 }
1058 
1059 static int
iter_add_single_cumulative_entry(struct hist_entry_iter * iter,struct addr_location * al)1060 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
1061 				 struct addr_location *al)
1062 {
1063 	struct evsel *evsel = iter->evsel;
1064 	struct hists *hists = evsel__hists(evsel);
1065 	struct perf_sample *sample = iter->sample;
1066 	struct hist_entry **he_cache = iter->priv;
1067 	struct hist_entry *he;
1068 	int err = 0;
1069 
1070 	he = hists__add_entry(hists, al, iter->parent, NULL, NULL, NULL,
1071 			      sample, true);
1072 	if (he == NULL)
1073 		return -ENOMEM;
1074 
1075 	iter->he = he;
1076 	he_cache[iter->curr++] = he;
1077 
1078 	hist_entry__append_callchain(he, sample);
1079 
1080 	/*
1081 	 * We need to re-initialize the cursor since callchain_append()
1082 	 * advanced the cursor to the end.
1083 	 */
1084 	callchain_cursor_commit(get_tls_callchain_cursor());
1085 
1086 	hists__inc_nr_samples(hists, he->filtered);
1087 
1088 	return err;
1089 }
1090 
1091 static int
iter_next_cumulative_entry(struct hist_entry_iter * iter,struct addr_location * al)1092 iter_next_cumulative_entry(struct hist_entry_iter *iter,
1093 			   struct addr_location *al)
1094 {
1095 	struct callchain_cursor_node *node;
1096 
1097 	node = callchain_cursor_current(get_tls_callchain_cursor());
1098 	if (node == NULL)
1099 		return 0;
1100 
1101 	return fill_callchain_info(al, node, iter->hide_unresolved);
1102 }
1103 
1104 static bool
hist_entry__fast__sym_diff(struct hist_entry * left,struct hist_entry * right)1105 hist_entry__fast__sym_diff(struct hist_entry *left,
1106 			   struct hist_entry *right)
1107 {
1108 	struct symbol *sym_l = left->ms.sym;
1109 	struct symbol *sym_r = right->ms.sym;
1110 
1111 	if (!sym_l && !sym_r)
1112 		return left->ip != right->ip;
1113 
1114 	return !!_sort__sym_cmp(sym_l, sym_r);
1115 }
1116 
1117 
1118 static int
iter_add_next_cumulative_entry(struct hist_entry_iter * iter,struct addr_location * al)1119 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
1120 			       struct addr_location *al)
1121 {
1122 	struct evsel *evsel = iter->evsel;
1123 	struct perf_sample *sample = iter->sample;
1124 	struct hist_entry **he_cache = iter->priv;
1125 	struct hist_entry *he;
1126 	struct hist_entry he_tmp = {
1127 		.hists = evsel__hists(evsel),
1128 		.cpu = al->cpu,
1129 		.thread = al->thread,
1130 		.comm = thread__comm(al->thread),
1131 		.ip = al->addr,
1132 		.ms = {
1133 			.maps = al->maps,
1134 			.map = al->map,
1135 			.sym = al->sym,
1136 		},
1137 		.srcline = (char *) al->srcline,
1138 		.parent = iter->parent,
1139 		.raw_data = sample->raw_data,
1140 		.raw_size = sample->raw_size,
1141 	};
1142 	int i;
1143 	struct callchain_cursor cursor, *tls_cursor = get_tls_callchain_cursor();
1144 	bool fast = hists__has(he_tmp.hists, sym);
1145 
1146 	if (tls_cursor == NULL)
1147 		return -ENOMEM;
1148 
1149 	callchain_cursor_snapshot(&cursor, tls_cursor);
1150 
1151 	callchain_cursor_advance(tls_cursor);
1152 
1153 	/*
1154 	 * Check if there's duplicate entries in the callchain.
1155 	 * It's possible that it has cycles or recursive calls.
1156 	 */
1157 	for (i = 0; i < iter->curr; i++) {
1158 		/*
1159 		 * For most cases, there are no duplicate entries in callchain.
1160 		 * The symbols are usually different. Do a quick check for
1161 		 * symbols first.
1162 		 */
1163 		if (fast && hist_entry__fast__sym_diff(he_cache[i], &he_tmp))
1164 			continue;
1165 
1166 		if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
1167 			/* to avoid calling callback function */
1168 			iter->he = NULL;
1169 			return 0;
1170 		}
1171 	}
1172 
1173 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
1174 			      NULL, sample, false);
1175 	if (he == NULL)
1176 		return -ENOMEM;
1177 
1178 	iter->he = he;
1179 	he_cache[iter->curr++] = he;
1180 
1181 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
1182 		callchain_append(he->callchain, &cursor, sample->period);
1183 	return 0;
1184 }
1185 
1186 static int
iter_finish_cumulative_entry(struct hist_entry_iter * iter,struct addr_location * al __maybe_unused)1187 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
1188 			     struct addr_location *al __maybe_unused)
1189 {
1190 	zfree(&iter->priv);
1191 	iter->he = NULL;
1192 
1193 	return 0;
1194 }
1195 
1196 const struct hist_iter_ops hist_iter_mem = {
1197 	.prepare_entry 		= iter_prepare_mem_entry,
1198 	.add_single_entry 	= iter_add_single_mem_entry,
1199 	.next_entry 		= iter_next_nop_entry,
1200 	.add_next_entry 	= iter_add_next_nop_entry,
1201 	.finish_entry 		= iter_finish_mem_entry,
1202 };
1203 
1204 const struct hist_iter_ops hist_iter_branch = {
1205 	.prepare_entry 		= iter_prepare_branch_entry,
1206 	.add_single_entry 	= iter_add_single_branch_entry,
1207 	.next_entry 		= iter_next_branch_entry,
1208 	.add_next_entry 	= iter_add_next_branch_entry,
1209 	.finish_entry 		= iter_finish_branch_entry,
1210 };
1211 
1212 const struct hist_iter_ops hist_iter_normal = {
1213 	.prepare_entry 		= iter_prepare_normal_entry,
1214 	.add_single_entry 	= iter_add_single_normal_entry,
1215 	.next_entry 		= iter_next_nop_entry,
1216 	.add_next_entry 	= iter_add_next_nop_entry,
1217 	.finish_entry 		= iter_finish_normal_entry,
1218 };
1219 
1220 const struct hist_iter_ops hist_iter_cumulative = {
1221 	.prepare_entry 		= iter_prepare_cumulative_entry,
1222 	.add_single_entry 	= iter_add_single_cumulative_entry,
1223 	.next_entry 		= iter_next_cumulative_entry,
1224 	.add_next_entry 	= iter_add_next_cumulative_entry,
1225 	.finish_entry 		= iter_finish_cumulative_entry,
1226 };
1227 
hist_entry_iter__add(struct hist_entry_iter * iter,struct addr_location * al,int max_stack_depth,void * arg)1228 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1229 			 int max_stack_depth, void *arg)
1230 {
1231 	int err, err2;
1232 	struct map *alm = NULL;
1233 
1234 	if (al)
1235 		alm = map__get(al->map);
1236 
1237 	err = sample__resolve_callchain(iter->sample, get_tls_callchain_cursor(), &iter->parent,
1238 					iter->evsel, al, max_stack_depth);
1239 	if (err) {
1240 		map__put(alm);
1241 		return err;
1242 	}
1243 
1244 	err = iter->ops->prepare_entry(iter, al);
1245 	if (err)
1246 		goto out;
1247 
1248 	err = iter->ops->add_single_entry(iter, al);
1249 	if (err)
1250 		goto out;
1251 
1252 	if (iter->he && iter->add_entry_cb) {
1253 		err = iter->add_entry_cb(iter, al, true, arg);
1254 		if (err)
1255 			goto out;
1256 	}
1257 
1258 	while (iter->ops->next_entry(iter, al)) {
1259 		err = iter->ops->add_next_entry(iter, al);
1260 		if (err)
1261 			break;
1262 
1263 		if (iter->he && iter->add_entry_cb) {
1264 			err = iter->add_entry_cb(iter, al, false, arg);
1265 			if (err)
1266 				goto out;
1267 		}
1268 	}
1269 
1270 out:
1271 	err2 = iter->ops->finish_entry(iter, al);
1272 	if (!err)
1273 		err = err2;
1274 
1275 	map__put(alm);
1276 
1277 	return err;
1278 }
1279 
1280 int64_t
hist_entry__cmp(struct hist_entry * left,struct hist_entry * right)1281 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1282 {
1283 	struct hists *hists = left->hists;
1284 	struct perf_hpp_fmt *fmt;
1285 	int64_t cmp = 0;
1286 
1287 	hists__for_each_sort_list(hists, fmt) {
1288 		if (perf_hpp__is_dynamic_entry(fmt) &&
1289 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1290 			continue;
1291 
1292 		cmp = fmt->cmp(fmt, left, right);
1293 		if (cmp)
1294 			break;
1295 	}
1296 
1297 	return cmp;
1298 }
1299 
1300 int64_t
hist_entry__collapse(struct hist_entry * left,struct hist_entry * right)1301 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1302 {
1303 	struct hists *hists = left->hists;
1304 	struct perf_hpp_fmt *fmt;
1305 	int64_t cmp = 0;
1306 
1307 	hists__for_each_sort_list(hists, fmt) {
1308 		if (perf_hpp__is_dynamic_entry(fmt) &&
1309 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1310 			continue;
1311 
1312 		cmp = fmt->collapse(fmt, left, right);
1313 		if (cmp)
1314 			break;
1315 	}
1316 
1317 	return cmp;
1318 }
1319 
hist_entry__delete(struct hist_entry * he)1320 void hist_entry__delete(struct hist_entry *he)
1321 {
1322 	struct hist_entry_ops *ops = he->ops;
1323 
1324 	thread__zput(he->thread);
1325 	maps__zput(he->ms.maps);
1326 	map__zput(he->ms.map);
1327 
1328 	if (he->branch_info) {
1329 		map__zput(he->branch_info->from.ms.map);
1330 		map__zput(he->branch_info->to.ms.map);
1331 		zfree_srcline(&he->branch_info->srcline_from);
1332 		zfree_srcline(&he->branch_info->srcline_to);
1333 		zfree(&he->branch_info);
1334 	}
1335 
1336 	if (he->mem_info) {
1337 		map__zput(he->mem_info->iaddr.ms.map);
1338 		map__zput(he->mem_info->daddr.ms.map);
1339 		mem_info__zput(he->mem_info);
1340 	}
1341 
1342 	if (he->block_info)
1343 		block_info__zput(he->block_info);
1344 
1345 	if (he->kvm_info)
1346 		kvm_info__zput(he->kvm_info);
1347 
1348 	zfree(&he->res_samples);
1349 	zfree(&he->stat_acc);
1350 	zfree_srcline(&he->srcline);
1351 	if (he->srcfile && he->srcfile[0])
1352 		zfree(&he->srcfile);
1353 	free_callchain(he->callchain);
1354 	zfree(&he->trace_output);
1355 	zfree(&he->raw_data);
1356 	ops->free(he);
1357 }
1358 
1359 /*
1360  * If this is not the last column, then we need to pad it according to the
1361  * pre-calculated max length for this column, otherwise don't bother adding
1362  * spaces because that would break viewing this with, for instance, 'less',
1363  * that would show tons of trailing spaces when a long C++ demangled method
1364  * names is sampled.
1365 */
hist_entry__snprintf_alignment(struct hist_entry * he,struct perf_hpp * hpp,struct perf_hpp_fmt * fmt,int printed)1366 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1367 				   struct perf_hpp_fmt *fmt, int printed)
1368 {
1369 	if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1370 		const int width = fmt->width(fmt, hpp, he->hists);
1371 		if (printed < width) {
1372 			advance_hpp(hpp, printed);
1373 			printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1374 		}
1375 	}
1376 
1377 	return printed;
1378 }
1379 
1380 /*
1381  * collapse the histogram
1382  */
1383 
1384 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1385 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1386 				       enum hist_filter type);
1387 
1388 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1389 
check_thread_entry(struct perf_hpp_fmt * fmt)1390 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1391 {
1392 	return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1393 }
1394 
hist_entry__check_and_remove_filter(struct hist_entry * he,enum hist_filter type,fmt_chk_fn check)1395 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1396 						enum hist_filter type,
1397 						fmt_chk_fn check)
1398 {
1399 	struct perf_hpp_fmt *fmt;
1400 	bool type_match = false;
1401 	struct hist_entry *parent = he->parent_he;
1402 
1403 	switch (type) {
1404 	case HIST_FILTER__THREAD:
1405 		if (symbol_conf.comm_list == NULL &&
1406 		    symbol_conf.pid_list == NULL &&
1407 		    symbol_conf.tid_list == NULL)
1408 			return;
1409 		break;
1410 	case HIST_FILTER__DSO:
1411 		if (symbol_conf.dso_list == NULL)
1412 			return;
1413 		break;
1414 	case HIST_FILTER__SYMBOL:
1415 		if (symbol_conf.sym_list == NULL)
1416 			return;
1417 		break;
1418 	case HIST_FILTER__PARENT:
1419 	case HIST_FILTER__GUEST:
1420 	case HIST_FILTER__HOST:
1421 	case HIST_FILTER__SOCKET:
1422 	case HIST_FILTER__C2C:
1423 	default:
1424 		return;
1425 	}
1426 
1427 	/* if it's filtered by own fmt, it has to have filter bits */
1428 	perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1429 		if (check(fmt)) {
1430 			type_match = true;
1431 			break;
1432 		}
1433 	}
1434 
1435 	if (type_match) {
1436 		/*
1437 		 * If the filter is for current level entry, propagate
1438 		 * filter marker to parents.  The marker bit was
1439 		 * already set by default so it only needs to clear
1440 		 * non-filtered entries.
1441 		 */
1442 		if (!(he->filtered & (1 << type))) {
1443 			while (parent) {
1444 				parent->filtered &= ~(1 << type);
1445 				parent = parent->parent_he;
1446 			}
1447 		}
1448 	} else {
1449 		/*
1450 		 * If current entry doesn't have matching formats, set
1451 		 * filter marker for upper level entries.  it will be
1452 		 * cleared if its lower level entries is not filtered.
1453 		 *
1454 		 * For lower-level entries, it inherits parent's
1455 		 * filter bit so that lower level entries of a
1456 		 * non-filtered entry won't set the filter marker.
1457 		 */
1458 		if (parent == NULL)
1459 			he->filtered |= (1 << type);
1460 		else
1461 			he->filtered |= (parent->filtered & (1 << type));
1462 	}
1463 }
1464 
hist_entry__apply_hierarchy_filters(struct hist_entry * he)1465 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1466 {
1467 	hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1468 					    check_thread_entry);
1469 
1470 	hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1471 					    perf_hpp__is_dso_entry);
1472 
1473 	hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1474 					    perf_hpp__is_sym_entry);
1475 
1476 	hists__apply_filters(he->hists, he);
1477 }
1478 
hierarchy_insert_entry(struct hists * hists,struct rb_root_cached * root,struct hist_entry * he,struct hist_entry * parent_he,struct perf_hpp_list * hpp_list)1479 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1480 						 struct rb_root_cached *root,
1481 						 struct hist_entry *he,
1482 						 struct hist_entry *parent_he,
1483 						 struct perf_hpp_list *hpp_list)
1484 {
1485 	struct rb_node **p = &root->rb_root.rb_node;
1486 	struct rb_node *parent = NULL;
1487 	struct hist_entry *iter, *new;
1488 	struct perf_hpp_fmt *fmt;
1489 	int64_t cmp;
1490 	bool leftmost = true;
1491 
1492 	while (*p != NULL) {
1493 		parent = *p;
1494 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1495 
1496 		cmp = 0;
1497 		perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1498 			cmp = fmt->collapse(fmt, iter, he);
1499 			if (cmp)
1500 				break;
1501 		}
1502 
1503 		if (!cmp) {
1504 			he_stat__add_stat(&iter->stat, &he->stat);
1505 			return iter;
1506 		}
1507 
1508 		if (cmp < 0)
1509 			p = &parent->rb_left;
1510 		else {
1511 			p = &parent->rb_right;
1512 			leftmost = false;
1513 		}
1514 	}
1515 
1516 	new = hist_entry__new(he, true);
1517 	if (new == NULL)
1518 		return NULL;
1519 
1520 	hists->nr_entries++;
1521 
1522 	/* save related format list for output */
1523 	new->hpp_list = hpp_list;
1524 	new->parent_he = parent_he;
1525 
1526 	hist_entry__apply_hierarchy_filters(new);
1527 
1528 	/* some fields are now passed to 'new' */
1529 	perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1530 		if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1531 			he->trace_output = NULL;
1532 		else
1533 			new->trace_output = NULL;
1534 
1535 		if (perf_hpp__is_srcline_entry(fmt))
1536 			he->srcline = NULL;
1537 		else
1538 			new->srcline = NULL;
1539 
1540 		if (perf_hpp__is_srcfile_entry(fmt))
1541 			he->srcfile = NULL;
1542 		else
1543 			new->srcfile = NULL;
1544 	}
1545 
1546 	rb_link_node(&new->rb_node_in, parent, p);
1547 	rb_insert_color_cached(&new->rb_node_in, root, leftmost);
1548 	return new;
1549 }
1550 
hists__hierarchy_insert_entry(struct hists * hists,struct rb_root_cached * root,struct hist_entry * he)1551 static int hists__hierarchy_insert_entry(struct hists *hists,
1552 					 struct rb_root_cached *root,
1553 					 struct hist_entry *he)
1554 {
1555 	struct perf_hpp_list_node *node;
1556 	struct hist_entry *new_he = NULL;
1557 	struct hist_entry *parent = NULL;
1558 	int depth = 0;
1559 	int ret = 0;
1560 
1561 	list_for_each_entry(node, &hists->hpp_formats, list) {
1562 		/* skip period (overhead) and elided columns */
1563 		if (node->level == 0 || node->skip)
1564 			continue;
1565 
1566 		/* insert copy of 'he' for each fmt into the hierarchy */
1567 		new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1568 		if (new_he == NULL) {
1569 			ret = -1;
1570 			break;
1571 		}
1572 
1573 		root = &new_he->hroot_in;
1574 		new_he->depth = depth++;
1575 		parent = new_he;
1576 	}
1577 
1578 	if (new_he) {
1579 		new_he->leaf = true;
1580 
1581 		if (hist_entry__has_callchains(new_he) &&
1582 		    symbol_conf.use_callchain) {
1583 			struct callchain_cursor *cursor = get_tls_callchain_cursor();
1584 
1585 			if (cursor == NULL)
1586 				return -1;
1587 
1588 			callchain_cursor_reset(cursor);
1589 			if (callchain_merge(cursor,
1590 					    new_he->callchain,
1591 					    he->callchain) < 0)
1592 				ret = -1;
1593 		}
1594 	}
1595 
1596 	/* 'he' is no longer used */
1597 	hist_entry__delete(he);
1598 
1599 	/* return 0 (or -1) since it already applied filters */
1600 	return ret;
1601 }
1602 
hists__collapse_insert_entry(struct hists * hists,struct rb_root_cached * root,struct hist_entry * he)1603 static int hists__collapse_insert_entry(struct hists *hists,
1604 					struct rb_root_cached *root,
1605 					struct hist_entry *he)
1606 {
1607 	struct rb_node **p = &root->rb_root.rb_node;
1608 	struct rb_node *parent = NULL;
1609 	struct hist_entry *iter;
1610 	int64_t cmp;
1611 	bool leftmost = true;
1612 
1613 	if (symbol_conf.report_hierarchy)
1614 		return hists__hierarchy_insert_entry(hists, root, he);
1615 
1616 	while (*p != NULL) {
1617 		parent = *p;
1618 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1619 
1620 		cmp = hist_entry__collapse(iter, he);
1621 
1622 		if (!cmp) {
1623 			int ret = 0;
1624 
1625 			he_stat__add_stat(&iter->stat, &he->stat);
1626 			if (symbol_conf.cumulate_callchain)
1627 				he_stat__add_stat(iter->stat_acc, he->stat_acc);
1628 
1629 			if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) {
1630 				struct callchain_cursor *cursor = get_tls_callchain_cursor();
1631 
1632 				if (cursor != NULL) {
1633 					callchain_cursor_reset(cursor);
1634 					if (callchain_merge(cursor, iter->callchain, he->callchain) < 0)
1635 						ret = -1;
1636 				} else {
1637 					ret = 0;
1638 				}
1639 			}
1640 			hist_entry__delete(he);
1641 			return ret;
1642 		}
1643 
1644 		if (cmp < 0)
1645 			p = &(*p)->rb_left;
1646 		else {
1647 			p = &(*p)->rb_right;
1648 			leftmost = false;
1649 		}
1650 	}
1651 	hists->nr_entries++;
1652 
1653 	rb_link_node(&he->rb_node_in, parent, p);
1654 	rb_insert_color_cached(&he->rb_node_in, root, leftmost);
1655 	return 1;
1656 }
1657 
hists__get_rotate_entries_in(struct hists * hists)1658 struct rb_root_cached *hists__get_rotate_entries_in(struct hists *hists)
1659 {
1660 	struct rb_root_cached *root;
1661 
1662 	mutex_lock(&hists->lock);
1663 
1664 	root = hists->entries_in;
1665 	if (++hists->entries_in > &hists->entries_in_array[1])
1666 		hists->entries_in = &hists->entries_in_array[0];
1667 
1668 	mutex_unlock(&hists->lock);
1669 
1670 	return root;
1671 }
1672 
hists__apply_filters(struct hists * hists,struct hist_entry * he)1673 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1674 {
1675 	hists__filter_entry_by_dso(hists, he);
1676 	hists__filter_entry_by_thread(hists, he);
1677 	hists__filter_entry_by_symbol(hists, he);
1678 	hists__filter_entry_by_socket(hists, he);
1679 }
1680 
hists__collapse_resort(struct hists * hists,struct ui_progress * prog)1681 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1682 {
1683 	struct rb_root_cached *root;
1684 	struct rb_node *next;
1685 	struct hist_entry *n;
1686 	int ret;
1687 
1688 	if (!hists__has(hists, need_collapse))
1689 		return 0;
1690 
1691 	hists->nr_entries = 0;
1692 
1693 	root = hists__get_rotate_entries_in(hists);
1694 
1695 	next = rb_first_cached(root);
1696 
1697 	while (next) {
1698 		if (session_done())
1699 			break;
1700 		n = rb_entry(next, struct hist_entry, rb_node_in);
1701 		next = rb_next(&n->rb_node_in);
1702 
1703 		rb_erase_cached(&n->rb_node_in, root);
1704 		ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1705 		if (ret < 0)
1706 			return -1;
1707 
1708 		if (ret) {
1709 			/*
1710 			 * If it wasn't combined with one of the entries already
1711 			 * collapsed, we need to apply the filters that may have
1712 			 * been set by, say, the hist_browser.
1713 			 */
1714 			hists__apply_filters(hists, n);
1715 		}
1716 		if (prog)
1717 			ui_progress__update(prog, 1);
1718 	}
1719 	return 0;
1720 }
1721 
hist_entry__sort(struct hist_entry * a,struct hist_entry * b)1722 static int64_t hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1723 {
1724 	struct hists *hists = a->hists;
1725 	struct perf_hpp_fmt *fmt;
1726 	int64_t cmp = 0;
1727 
1728 	hists__for_each_sort_list(hists, fmt) {
1729 		if (perf_hpp__should_skip(fmt, a->hists))
1730 			continue;
1731 
1732 		cmp = fmt->sort(fmt, a, b);
1733 		if (cmp)
1734 			break;
1735 	}
1736 
1737 	return cmp;
1738 }
1739 
hists__reset_filter_stats(struct hists * hists)1740 static void hists__reset_filter_stats(struct hists *hists)
1741 {
1742 	hists->nr_non_filtered_entries = 0;
1743 	hists->stats.total_non_filtered_period = 0;
1744 }
1745 
hists__reset_stats(struct hists * hists)1746 void hists__reset_stats(struct hists *hists)
1747 {
1748 	hists->nr_entries = 0;
1749 	hists->stats.total_period = 0;
1750 
1751 	hists__reset_filter_stats(hists);
1752 }
1753 
hists__inc_filter_stats(struct hists * hists,struct hist_entry * h)1754 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1755 {
1756 	hists->nr_non_filtered_entries++;
1757 	hists->stats.total_non_filtered_period += h->stat.period;
1758 }
1759 
hists__inc_stats(struct hists * hists,struct hist_entry * h)1760 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1761 {
1762 	if (!h->filtered)
1763 		hists__inc_filter_stats(hists, h);
1764 
1765 	hists->nr_entries++;
1766 	hists->stats.total_period += h->stat.period;
1767 }
1768 
hierarchy_recalc_total_periods(struct hists * hists)1769 static void hierarchy_recalc_total_periods(struct hists *hists)
1770 {
1771 	struct rb_node *node;
1772 	struct hist_entry *he;
1773 
1774 	node = rb_first_cached(&hists->entries);
1775 
1776 	hists->stats.total_period = 0;
1777 	hists->stats.total_non_filtered_period = 0;
1778 
1779 	/*
1780 	 * recalculate total period using top-level entries only
1781 	 * since lower level entries only see non-filtered entries
1782 	 * but upper level entries have sum of both entries.
1783 	 */
1784 	while (node) {
1785 		he = rb_entry(node, struct hist_entry, rb_node);
1786 		node = rb_next(node);
1787 
1788 		hists->stats.total_period += he->stat.period;
1789 		if (!he->filtered)
1790 			hists->stats.total_non_filtered_period += he->stat.period;
1791 	}
1792 }
1793 
hierarchy_insert_output_entry(struct rb_root_cached * root,struct hist_entry * he)1794 static void hierarchy_insert_output_entry(struct rb_root_cached *root,
1795 					  struct hist_entry *he)
1796 {
1797 	struct rb_node **p = &root->rb_root.rb_node;
1798 	struct rb_node *parent = NULL;
1799 	struct hist_entry *iter;
1800 	struct perf_hpp_fmt *fmt;
1801 	bool leftmost = true;
1802 
1803 	while (*p != NULL) {
1804 		parent = *p;
1805 		iter = rb_entry(parent, struct hist_entry, rb_node);
1806 
1807 		if (hist_entry__sort(he, iter) > 0)
1808 			p = &parent->rb_left;
1809 		else {
1810 			p = &parent->rb_right;
1811 			leftmost = false;
1812 		}
1813 	}
1814 
1815 	rb_link_node(&he->rb_node, parent, p);
1816 	rb_insert_color_cached(&he->rb_node, root, leftmost);
1817 
1818 	/* update column width of dynamic entry */
1819 	perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1820 		if (fmt->init)
1821 			fmt->init(fmt, he);
1822 	}
1823 }
1824 
hists__hierarchy_output_resort(struct hists * hists,struct ui_progress * prog,struct rb_root_cached * root_in,struct rb_root_cached * root_out,u64 min_callchain_hits,bool use_callchain)1825 static void hists__hierarchy_output_resort(struct hists *hists,
1826 					   struct ui_progress *prog,
1827 					   struct rb_root_cached *root_in,
1828 					   struct rb_root_cached *root_out,
1829 					   u64 min_callchain_hits,
1830 					   bool use_callchain)
1831 {
1832 	struct rb_node *node;
1833 	struct hist_entry *he;
1834 
1835 	*root_out = RB_ROOT_CACHED;
1836 	node = rb_first_cached(root_in);
1837 
1838 	while (node) {
1839 		he = rb_entry(node, struct hist_entry, rb_node_in);
1840 		node = rb_next(node);
1841 
1842 		hierarchy_insert_output_entry(root_out, he);
1843 
1844 		if (prog)
1845 			ui_progress__update(prog, 1);
1846 
1847 		hists->nr_entries++;
1848 		if (!he->filtered) {
1849 			hists->nr_non_filtered_entries++;
1850 			hists__calc_col_len(hists, he);
1851 		}
1852 
1853 		if (!he->leaf) {
1854 			hists__hierarchy_output_resort(hists, prog,
1855 						       &he->hroot_in,
1856 						       &he->hroot_out,
1857 						       min_callchain_hits,
1858 						       use_callchain);
1859 			continue;
1860 		}
1861 
1862 		if (!use_callchain)
1863 			continue;
1864 
1865 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1866 			u64 total = he->stat.period;
1867 
1868 			if (symbol_conf.cumulate_callchain)
1869 				total = he->stat_acc->period;
1870 
1871 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1872 		}
1873 
1874 		callchain_param.sort(&he->sorted_chain, he->callchain,
1875 				     min_callchain_hits, &callchain_param);
1876 	}
1877 }
1878 
__hists__insert_output_entry(struct rb_root_cached * entries,struct hist_entry * he,u64 min_callchain_hits,bool use_callchain)1879 static void __hists__insert_output_entry(struct rb_root_cached *entries,
1880 					 struct hist_entry *he,
1881 					 u64 min_callchain_hits,
1882 					 bool use_callchain)
1883 {
1884 	struct rb_node **p = &entries->rb_root.rb_node;
1885 	struct rb_node *parent = NULL;
1886 	struct hist_entry *iter;
1887 	struct perf_hpp_fmt *fmt;
1888 	bool leftmost = true;
1889 
1890 	if (use_callchain) {
1891 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1892 			u64 total = he->stat.period;
1893 
1894 			if (symbol_conf.cumulate_callchain)
1895 				total = he->stat_acc->period;
1896 
1897 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1898 		}
1899 		callchain_param.sort(&he->sorted_chain, he->callchain,
1900 				      min_callchain_hits, &callchain_param);
1901 	}
1902 
1903 	while (*p != NULL) {
1904 		parent = *p;
1905 		iter = rb_entry(parent, struct hist_entry, rb_node);
1906 
1907 		if (hist_entry__sort(he, iter) > 0)
1908 			p = &(*p)->rb_left;
1909 		else {
1910 			p = &(*p)->rb_right;
1911 			leftmost = false;
1912 		}
1913 	}
1914 
1915 	rb_link_node(&he->rb_node, parent, p);
1916 	rb_insert_color_cached(&he->rb_node, entries, leftmost);
1917 
1918 	/* update column width of dynamic entries */
1919 	perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1920 		if (fmt->init)
1921 			fmt->init(fmt, he);
1922 	}
1923 }
1924 
output_resort(struct hists * hists,struct ui_progress * prog,bool use_callchain,hists__resort_cb_t cb,void * cb_arg)1925 static void output_resort(struct hists *hists, struct ui_progress *prog,
1926 			  bool use_callchain, hists__resort_cb_t cb,
1927 			  void *cb_arg)
1928 {
1929 	struct rb_root_cached *root;
1930 	struct rb_node *next;
1931 	struct hist_entry *n;
1932 	u64 callchain_total;
1933 	u64 min_callchain_hits;
1934 
1935 	callchain_total = hists->callchain_period;
1936 	if (symbol_conf.filter_relative)
1937 		callchain_total = hists->callchain_non_filtered_period;
1938 
1939 	min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1940 
1941 	hists__reset_stats(hists);
1942 	hists__reset_col_len(hists);
1943 
1944 	if (symbol_conf.report_hierarchy) {
1945 		hists__hierarchy_output_resort(hists, prog,
1946 					       &hists->entries_collapsed,
1947 					       &hists->entries,
1948 					       min_callchain_hits,
1949 					       use_callchain);
1950 		hierarchy_recalc_total_periods(hists);
1951 		return;
1952 	}
1953 
1954 	if (hists__has(hists, need_collapse))
1955 		root = &hists->entries_collapsed;
1956 	else
1957 		root = hists->entries_in;
1958 
1959 	next = rb_first_cached(root);
1960 	hists->entries = RB_ROOT_CACHED;
1961 
1962 	while (next) {
1963 		n = rb_entry(next, struct hist_entry, rb_node_in);
1964 		next = rb_next(&n->rb_node_in);
1965 
1966 		if (cb && cb(n, cb_arg))
1967 			continue;
1968 
1969 		__hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1970 		hists__inc_stats(hists, n);
1971 
1972 		if (!n->filtered)
1973 			hists__calc_col_len(hists, n);
1974 
1975 		if (prog)
1976 			ui_progress__update(prog, 1);
1977 	}
1978 }
1979 
evsel__output_resort_cb(struct evsel * evsel,struct ui_progress * prog,hists__resort_cb_t cb,void * cb_arg)1980 void evsel__output_resort_cb(struct evsel *evsel, struct ui_progress *prog,
1981 			     hists__resort_cb_t cb, void *cb_arg)
1982 {
1983 	bool use_callchain;
1984 
1985 	if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1986 		use_callchain = evsel__has_callchain(evsel);
1987 	else
1988 		use_callchain = symbol_conf.use_callchain;
1989 
1990 	use_callchain |= symbol_conf.show_branchflag_count;
1991 
1992 	output_resort(evsel__hists(evsel), prog, use_callchain, cb, cb_arg);
1993 }
1994 
evsel__output_resort(struct evsel * evsel,struct ui_progress * prog)1995 void evsel__output_resort(struct evsel *evsel, struct ui_progress *prog)
1996 {
1997 	return evsel__output_resort_cb(evsel, prog, NULL, NULL);
1998 }
1999 
hists__output_resort(struct hists * hists,struct ui_progress * prog)2000 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
2001 {
2002 	output_resort(hists, prog, symbol_conf.use_callchain, NULL, NULL);
2003 }
2004 
hists__output_resort_cb(struct hists * hists,struct ui_progress * prog,hists__resort_cb_t cb)2005 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
2006 			     hists__resort_cb_t cb)
2007 {
2008 	output_resort(hists, prog, symbol_conf.use_callchain, cb, NULL);
2009 }
2010 
can_goto_child(struct hist_entry * he,enum hierarchy_move_dir hmd)2011 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
2012 {
2013 	if (he->leaf || hmd == HMD_FORCE_SIBLING)
2014 		return false;
2015 
2016 	if (he->unfolded || hmd == HMD_FORCE_CHILD)
2017 		return true;
2018 
2019 	return false;
2020 }
2021 
rb_hierarchy_last(struct rb_node * node)2022 struct rb_node *rb_hierarchy_last(struct rb_node *node)
2023 {
2024 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
2025 
2026 	while (can_goto_child(he, HMD_NORMAL)) {
2027 		node = rb_last(&he->hroot_out.rb_root);
2028 		he = rb_entry(node, struct hist_entry, rb_node);
2029 	}
2030 	return node;
2031 }
2032 
__rb_hierarchy_next(struct rb_node * node,enum hierarchy_move_dir hmd)2033 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
2034 {
2035 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
2036 
2037 	if (can_goto_child(he, hmd))
2038 		node = rb_first_cached(&he->hroot_out);
2039 	else
2040 		node = rb_next(node);
2041 
2042 	while (node == NULL) {
2043 		he = he->parent_he;
2044 		if (he == NULL)
2045 			break;
2046 
2047 		node = rb_next(&he->rb_node);
2048 	}
2049 	return node;
2050 }
2051 
rb_hierarchy_prev(struct rb_node * node)2052 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
2053 {
2054 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
2055 
2056 	node = rb_prev(node);
2057 	if (node)
2058 		return rb_hierarchy_last(node);
2059 
2060 	he = he->parent_he;
2061 	if (he == NULL)
2062 		return NULL;
2063 
2064 	return &he->rb_node;
2065 }
2066 
hist_entry__has_hierarchy_children(struct hist_entry * he,float limit)2067 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
2068 {
2069 	struct rb_node *node;
2070 	struct hist_entry *child;
2071 	float percent;
2072 
2073 	if (he->leaf)
2074 		return false;
2075 
2076 	node = rb_first_cached(&he->hroot_out);
2077 	child = rb_entry(node, struct hist_entry, rb_node);
2078 
2079 	while (node && child->filtered) {
2080 		node = rb_next(node);
2081 		child = rb_entry(node, struct hist_entry, rb_node);
2082 	}
2083 
2084 	if (node)
2085 		percent = hist_entry__get_percent_limit(child);
2086 	else
2087 		percent = 0;
2088 
2089 	return node && percent >= limit;
2090 }
2091 
hists__remove_entry_filter(struct hists * hists,struct hist_entry * h,enum hist_filter filter)2092 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
2093 				       enum hist_filter filter)
2094 {
2095 	h->filtered &= ~(1 << filter);
2096 
2097 	if (symbol_conf.report_hierarchy) {
2098 		struct hist_entry *parent = h->parent_he;
2099 
2100 		while (parent) {
2101 			he_stat__add_stat(&parent->stat, &h->stat);
2102 
2103 			parent->filtered &= ~(1 << filter);
2104 
2105 			if (parent->filtered)
2106 				goto next;
2107 
2108 			/* force fold unfiltered entry for simplicity */
2109 			parent->unfolded = false;
2110 			parent->has_no_entry = false;
2111 			parent->row_offset = 0;
2112 			parent->nr_rows = 0;
2113 next:
2114 			parent = parent->parent_he;
2115 		}
2116 	}
2117 
2118 	if (h->filtered)
2119 		return;
2120 
2121 	/* force fold unfiltered entry for simplicity */
2122 	h->unfolded = false;
2123 	h->has_no_entry = false;
2124 	h->row_offset = 0;
2125 	h->nr_rows = 0;
2126 
2127 	hists->stats.nr_non_filtered_samples += h->stat.nr_events;
2128 
2129 	hists__inc_filter_stats(hists, h);
2130 	hists__calc_col_len(hists, h);
2131 }
2132 
2133 
hists__filter_entry_by_dso(struct hists * hists,struct hist_entry * he)2134 static bool hists__filter_entry_by_dso(struct hists *hists,
2135 				       struct hist_entry *he)
2136 {
2137 	if (hists->dso_filter != NULL &&
2138 	    (he->ms.map == NULL || map__dso(he->ms.map) != hists->dso_filter)) {
2139 		he->filtered |= (1 << HIST_FILTER__DSO);
2140 		return true;
2141 	}
2142 
2143 	return false;
2144 }
2145 
hists__filter_entry_by_thread(struct hists * hists,struct hist_entry * he)2146 static bool hists__filter_entry_by_thread(struct hists *hists,
2147 					  struct hist_entry *he)
2148 {
2149 	if (hists->thread_filter != NULL &&
2150 	    RC_CHK_ACCESS(he->thread) != RC_CHK_ACCESS(hists->thread_filter)) {
2151 		he->filtered |= (1 << HIST_FILTER__THREAD);
2152 		return true;
2153 	}
2154 
2155 	return false;
2156 }
2157 
hists__filter_entry_by_symbol(struct hists * hists,struct hist_entry * he)2158 static bool hists__filter_entry_by_symbol(struct hists *hists,
2159 					  struct hist_entry *he)
2160 {
2161 	if (hists->symbol_filter_str != NULL &&
2162 	    (!he->ms.sym || strstr(he->ms.sym->name,
2163 				   hists->symbol_filter_str) == NULL)) {
2164 		he->filtered |= (1 << HIST_FILTER__SYMBOL);
2165 		return true;
2166 	}
2167 
2168 	return false;
2169 }
2170 
hists__filter_entry_by_socket(struct hists * hists,struct hist_entry * he)2171 static bool hists__filter_entry_by_socket(struct hists *hists,
2172 					  struct hist_entry *he)
2173 {
2174 	if ((hists->socket_filter > -1) &&
2175 	    (he->socket != hists->socket_filter)) {
2176 		he->filtered |= (1 << HIST_FILTER__SOCKET);
2177 		return true;
2178 	}
2179 
2180 	return false;
2181 }
2182 
2183 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
2184 
hists__filter_by_type(struct hists * hists,int type,filter_fn_t filter)2185 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
2186 {
2187 	struct rb_node *nd;
2188 
2189 	hists->stats.nr_non_filtered_samples = 0;
2190 
2191 	hists__reset_filter_stats(hists);
2192 	hists__reset_col_len(hists);
2193 
2194 	for (nd = rb_first_cached(&hists->entries); nd; nd = rb_next(nd)) {
2195 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2196 
2197 		if (filter(hists, h))
2198 			continue;
2199 
2200 		hists__remove_entry_filter(hists, h, type);
2201 	}
2202 }
2203 
resort_filtered_entry(struct rb_root_cached * root,struct hist_entry * he)2204 static void resort_filtered_entry(struct rb_root_cached *root,
2205 				  struct hist_entry *he)
2206 {
2207 	struct rb_node **p = &root->rb_root.rb_node;
2208 	struct rb_node *parent = NULL;
2209 	struct hist_entry *iter;
2210 	struct rb_root_cached new_root = RB_ROOT_CACHED;
2211 	struct rb_node *nd;
2212 	bool leftmost = true;
2213 
2214 	while (*p != NULL) {
2215 		parent = *p;
2216 		iter = rb_entry(parent, struct hist_entry, rb_node);
2217 
2218 		if (hist_entry__sort(he, iter) > 0)
2219 			p = &(*p)->rb_left;
2220 		else {
2221 			p = &(*p)->rb_right;
2222 			leftmost = false;
2223 		}
2224 	}
2225 
2226 	rb_link_node(&he->rb_node, parent, p);
2227 	rb_insert_color_cached(&he->rb_node, root, leftmost);
2228 
2229 	if (he->leaf || he->filtered)
2230 		return;
2231 
2232 	nd = rb_first_cached(&he->hroot_out);
2233 	while (nd) {
2234 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2235 
2236 		nd = rb_next(nd);
2237 		rb_erase_cached(&h->rb_node, &he->hroot_out);
2238 
2239 		resort_filtered_entry(&new_root, h);
2240 	}
2241 
2242 	he->hroot_out = new_root;
2243 }
2244 
hists__filter_hierarchy(struct hists * hists,int type,const void * arg)2245 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2246 {
2247 	struct rb_node *nd;
2248 	struct rb_root_cached new_root = RB_ROOT_CACHED;
2249 
2250 	hists->stats.nr_non_filtered_samples = 0;
2251 
2252 	hists__reset_filter_stats(hists);
2253 	hists__reset_col_len(hists);
2254 
2255 	nd = rb_first_cached(&hists->entries);
2256 	while (nd) {
2257 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2258 		int ret;
2259 
2260 		ret = hist_entry__filter(h, type, arg);
2261 
2262 		/*
2263 		 * case 1. non-matching type
2264 		 * zero out the period, set filter marker and move to child
2265 		 */
2266 		if (ret < 0) {
2267 			memset(&h->stat, 0, sizeof(h->stat));
2268 			h->filtered |= (1 << type);
2269 
2270 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2271 		}
2272 		/*
2273 		 * case 2. matched type (filter out)
2274 		 * set filter marker and move to next
2275 		 */
2276 		else if (ret == 1) {
2277 			h->filtered |= (1 << type);
2278 
2279 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2280 		}
2281 		/*
2282 		 * case 3. ok (not filtered)
2283 		 * add period to hists and parents, erase the filter marker
2284 		 * and move to next sibling
2285 		 */
2286 		else {
2287 			hists__remove_entry_filter(hists, h, type);
2288 
2289 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2290 		}
2291 	}
2292 
2293 	hierarchy_recalc_total_periods(hists);
2294 
2295 	/*
2296 	 * resort output after applying a new filter since filter in a lower
2297 	 * hierarchy can change periods in a upper hierarchy.
2298 	 */
2299 	nd = rb_first_cached(&hists->entries);
2300 	while (nd) {
2301 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2302 
2303 		nd = rb_next(nd);
2304 		rb_erase_cached(&h->rb_node, &hists->entries);
2305 
2306 		resort_filtered_entry(&new_root, h);
2307 	}
2308 
2309 	hists->entries = new_root;
2310 }
2311 
hists__filter_by_thread(struct hists * hists)2312 void hists__filter_by_thread(struct hists *hists)
2313 {
2314 	if (symbol_conf.report_hierarchy)
2315 		hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2316 					hists->thread_filter);
2317 	else
2318 		hists__filter_by_type(hists, HIST_FILTER__THREAD,
2319 				      hists__filter_entry_by_thread);
2320 }
2321 
hists__filter_by_dso(struct hists * hists)2322 void hists__filter_by_dso(struct hists *hists)
2323 {
2324 	if (symbol_conf.report_hierarchy)
2325 		hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2326 					hists->dso_filter);
2327 	else
2328 		hists__filter_by_type(hists, HIST_FILTER__DSO,
2329 				      hists__filter_entry_by_dso);
2330 }
2331 
hists__filter_by_symbol(struct hists * hists)2332 void hists__filter_by_symbol(struct hists *hists)
2333 {
2334 	if (symbol_conf.report_hierarchy)
2335 		hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2336 					hists->symbol_filter_str);
2337 	else
2338 		hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2339 				      hists__filter_entry_by_symbol);
2340 }
2341 
hists__filter_by_socket(struct hists * hists)2342 void hists__filter_by_socket(struct hists *hists)
2343 {
2344 	if (symbol_conf.report_hierarchy)
2345 		hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2346 					&hists->socket_filter);
2347 	else
2348 		hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2349 				      hists__filter_entry_by_socket);
2350 }
2351 
events_stats__inc(struct events_stats * stats,u32 type)2352 void events_stats__inc(struct events_stats *stats, u32 type)
2353 {
2354 	++stats->nr_events[0];
2355 	++stats->nr_events[type];
2356 }
2357 
hists_stats__inc(struct hists_stats * stats)2358 static void hists_stats__inc(struct hists_stats *stats)
2359 {
2360 	++stats->nr_samples;
2361 }
2362 
hists__inc_nr_events(struct hists * hists)2363 void hists__inc_nr_events(struct hists *hists)
2364 {
2365 	hists_stats__inc(&hists->stats);
2366 }
2367 
hists__inc_nr_samples(struct hists * hists,bool filtered)2368 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2369 {
2370 	hists_stats__inc(&hists->stats);
2371 	if (!filtered)
2372 		hists->stats.nr_non_filtered_samples++;
2373 }
2374 
hists__inc_nr_lost_samples(struct hists * hists,u32 lost)2375 void hists__inc_nr_lost_samples(struct hists *hists, u32 lost)
2376 {
2377 	hists->stats.nr_lost_samples += lost;
2378 }
2379 
hists__add_dummy_entry(struct hists * hists,struct hist_entry * pair)2380 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2381 						 struct hist_entry *pair)
2382 {
2383 	struct rb_root_cached *root;
2384 	struct rb_node **p;
2385 	struct rb_node *parent = NULL;
2386 	struct hist_entry *he;
2387 	int64_t cmp;
2388 	bool leftmost = true;
2389 
2390 	if (hists__has(hists, need_collapse))
2391 		root = &hists->entries_collapsed;
2392 	else
2393 		root = hists->entries_in;
2394 
2395 	p = &root->rb_root.rb_node;
2396 
2397 	while (*p != NULL) {
2398 		parent = *p;
2399 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2400 
2401 		cmp = hist_entry__collapse(he, pair);
2402 
2403 		if (!cmp)
2404 			goto out;
2405 
2406 		if (cmp < 0)
2407 			p = &(*p)->rb_left;
2408 		else {
2409 			p = &(*p)->rb_right;
2410 			leftmost = false;
2411 		}
2412 	}
2413 
2414 	he = hist_entry__new(pair, true);
2415 	if (he) {
2416 		memset(&he->stat, 0, sizeof(he->stat));
2417 		he->hists = hists;
2418 		if (symbol_conf.cumulate_callchain)
2419 			memset(he->stat_acc, 0, sizeof(he->stat));
2420 		rb_link_node(&he->rb_node_in, parent, p);
2421 		rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2422 		hists__inc_stats(hists, he);
2423 		he->dummy = true;
2424 	}
2425 out:
2426 	return he;
2427 }
2428 
add_dummy_hierarchy_entry(struct hists * hists,struct rb_root_cached * root,struct hist_entry * pair)2429 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2430 						    struct rb_root_cached *root,
2431 						    struct hist_entry *pair)
2432 {
2433 	struct rb_node **p;
2434 	struct rb_node *parent = NULL;
2435 	struct hist_entry *he;
2436 	struct perf_hpp_fmt *fmt;
2437 	bool leftmost = true;
2438 
2439 	p = &root->rb_root.rb_node;
2440 	while (*p != NULL) {
2441 		int64_t cmp = 0;
2442 
2443 		parent = *p;
2444 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2445 
2446 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2447 			cmp = fmt->collapse(fmt, he, pair);
2448 			if (cmp)
2449 				break;
2450 		}
2451 		if (!cmp)
2452 			goto out;
2453 
2454 		if (cmp < 0)
2455 			p = &parent->rb_left;
2456 		else {
2457 			p = &parent->rb_right;
2458 			leftmost = false;
2459 		}
2460 	}
2461 
2462 	he = hist_entry__new(pair, true);
2463 	if (he) {
2464 		rb_link_node(&he->rb_node_in, parent, p);
2465 		rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2466 
2467 		he->dummy = true;
2468 		he->hists = hists;
2469 		memset(&he->stat, 0, sizeof(he->stat));
2470 		hists__inc_stats(hists, he);
2471 	}
2472 out:
2473 	return he;
2474 }
2475 
hists__find_entry(struct hists * hists,struct hist_entry * he)2476 static struct hist_entry *hists__find_entry(struct hists *hists,
2477 					    struct hist_entry *he)
2478 {
2479 	struct rb_node *n;
2480 
2481 	if (hists__has(hists, need_collapse))
2482 		n = hists->entries_collapsed.rb_root.rb_node;
2483 	else
2484 		n = hists->entries_in->rb_root.rb_node;
2485 
2486 	while (n) {
2487 		struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2488 		int64_t cmp = hist_entry__collapse(iter, he);
2489 
2490 		if (cmp < 0)
2491 			n = n->rb_left;
2492 		else if (cmp > 0)
2493 			n = n->rb_right;
2494 		else
2495 			return iter;
2496 	}
2497 
2498 	return NULL;
2499 }
2500 
hists__find_hierarchy_entry(struct rb_root_cached * root,struct hist_entry * he)2501 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root_cached *root,
2502 						      struct hist_entry *he)
2503 {
2504 	struct rb_node *n = root->rb_root.rb_node;
2505 
2506 	while (n) {
2507 		struct hist_entry *iter;
2508 		struct perf_hpp_fmt *fmt;
2509 		int64_t cmp = 0;
2510 
2511 		iter = rb_entry(n, struct hist_entry, rb_node_in);
2512 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2513 			cmp = fmt->collapse(fmt, iter, he);
2514 			if (cmp)
2515 				break;
2516 		}
2517 
2518 		if (cmp < 0)
2519 			n = n->rb_left;
2520 		else if (cmp > 0)
2521 			n = n->rb_right;
2522 		else
2523 			return iter;
2524 	}
2525 
2526 	return NULL;
2527 }
2528 
hists__match_hierarchy(struct rb_root_cached * leader_root,struct rb_root_cached * other_root)2529 static void hists__match_hierarchy(struct rb_root_cached *leader_root,
2530 				   struct rb_root_cached *other_root)
2531 {
2532 	struct rb_node *nd;
2533 	struct hist_entry *pos, *pair;
2534 
2535 	for (nd = rb_first_cached(leader_root); nd; nd = rb_next(nd)) {
2536 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2537 		pair = hists__find_hierarchy_entry(other_root, pos);
2538 
2539 		if (pair) {
2540 			hist_entry__add_pair(pair, pos);
2541 			hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2542 		}
2543 	}
2544 }
2545 
2546 /*
2547  * Look for pairs to link to the leader buckets (hist_entries):
2548  */
hists__match(struct hists * leader,struct hists * other)2549 void hists__match(struct hists *leader, struct hists *other)
2550 {
2551 	struct rb_root_cached *root;
2552 	struct rb_node *nd;
2553 	struct hist_entry *pos, *pair;
2554 
2555 	if (symbol_conf.report_hierarchy) {
2556 		/* hierarchy report always collapses entries */
2557 		return hists__match_hierarchy(&leader->entries_collapsed,
2558 					      &other->entries_collapsed);
2559 	}
2560 
2561 	if (hists__has(leader, need_collapse))
2562 		root = &leader->entries_collapsed;
2563 	else
2564 		root = leader->entries_in;
2565 
2566 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2567 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2568 		pair = hists__find_entry(other, pos);
2569 
2570 		if (pair)
2571 			hist_entry__add_pair(pair, pos);
2572 	}
2573 }
2574 
hists__link_hierarchy(struct hists * leader_hists,struct hist_entry * parent,struct rb_root_cached * leader_root,struct rb_root_cached * other_root)2575 static int hists__link_hierarchy(struct hists *leader_hists,
2576 				 struct hist_entry *parent,
2577 				 struct rb_root_cached *leader_root,
2578 				 struct rb_root_cached *other_root)
2579 {
2580 	struct rb_node *nd;
2581 	struct hist_entry *pos, *leader;
2582 
2583 	for (nd = rb_first_cached(other_root); nd; nd = rb_next(nd)) {
2584 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2585 
2586 		if (hist_entry__has_pairs(pos)) {
2587 			bool found = false;
2588 
2589 			list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2590 				if (leader->hists == leader_hists) {
2591 					found = true;
2592 					break;
2593 				}
2594 			}
2595 			if (!found)
2596 				return -1;
2597 		} else {
2598 			leader = add_dummy_hierarchy_entry(leader_hists,
2599 							   leader_root, pos);
2600 			if (leader == NULL)
2601 				return -1;
2602 
2603 			/* do not point parent in the pos */
2604 			leader->parent_he = parent;
2605 
2606 			hist_entry__add_pair(pos, leader);
2607 		}
2608 
2609 		if (!pos->leaf) {
2610 			if (hists__link_hierarchy(leader_hists, leader,
2611 						  &leader->hroot_in,
2612 						  &pos->hroot_in) < 0)
2613 				return -1;
2614 		}
2615 	}
2616 	return 0;
2617 }
2618 
2619 /*
2620  * Look for entries in the other hists that are not present in the leader, if
2621  * we find them, just add a dummy entry on the leader hists, with period=0,
2622  * nr_events=0, to serve as the list header.
2623  */
hists__link(struct hists * leader,struct hists * other)2624 int hists__link(struct hists *leader, struct hists *other)
2625 {
2626 	struct rb_root_cached *root;
2627 	struct rb_node *nd;
2628 	struct hist_entry *pos, *pair;
2629 
2630 	if (symbol_conf.report_hierarchy) {
2631 		/* hierarchy report always collapses entries */
2632 		return hists__link_hierarchy(leader, NULL,
2633 					     &leader->entries_collapsed,
2634 					     &other->entries_collapsed);
2635 	}
2636 
2637 	if (hists__has(other, need_collapse))
2638 		root = &other->entries_collapsed;
2639 	else
2640 		root = other->entries_in;
2641 
2642 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2643 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2644 
2645 		if (!hist_entry__has_pairs(pos)) {
2646 			pair = hists__add_dummy_entry(leader, pos);
2647 			if (pair == NULL)
2648 				return -1;
2649 			hist_entry__add_pair(pos, pair);
2650 		}
2651 	}
2652 
2653 	return 0;
2654 }
2655 
hists__unlink(struct hists * hists)2656 int hists__unlink(struct hists *hists)
2657 {
2658 	struct rb_root_cached *root;
2659 	struct rb_node *nd;
2660 	struct hist_entry *pos;
2661 
2662 	if (hists__has(hists, need_collapse))
2663 		root = &hists->entries_collapsed;
2664 	else
2665 		root = hists->entries_in;
2666 
2667 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2668 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2669 		list_del_init(&pos->pairs.node);
2670 	}
2671 
2672 	return 0;
2673 }
2674 
hist__account_cycles(struct branch_stack * bs,struct addr_location * al,struct perf_sample * sample,bool nonany_branch_mode,u64 * total_cycles)2675 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2676 			  struct perf_sample *sample, bool nonany_branch_mode,
2677 			  u64 *total_cycles)
2678 {
2679 	struct branch_info *bi;
2680 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2681 
2682 	/* If we have branch cycles always annotate them. */
2683 	if (bs && bs->nr && entries[0].flags.cycles) {
2684 		bi = sample__resolve_bstack(sample, al);
2685 		if (bi) {
2686 			struct addr_map_symbol *prev = NULL;
2687 
2688 			/*
2689 			 * Ignore errors, still want to process the
2690 			 * other entries.
2691 			 *
2692 			 * For non standard branch modes always
2693 			 * force no IPC (prev == NULL)
2694 			 *
2695 			 * Note that perf stores branches reversed from
2696 			 * program order!
2697 			 */
2698 			for (int i = bs->nr - 1; i >= 0; i--) {
2699 				addr_map_symbol__account_cycles(&bi[i].from,
2700 					nonany_branch_mode ? NULL : prev,
2701 					bi[i].flags.cycles);
2702 				prev = &bi[i].to;
2703 
2704 				if (total_cycles)
2705 					*total_cycles += bi[i].flags.cycles;
2706 			}
2707 			for (unsigned int i = 0; i < bs->nr; i++) {
2708 				map__put(bi[i].to.ms.map);
2709 				maps__put(bi[i].to.ms.maps);
2710 				map__put(bi[i].from.ms.map);
2711 				maps__put(bi[i].from.ms.maps);
2712 			}
2713 			free(bi);
2714 		}
2715 	}
2716 }
2717 
evlist__fprintf_nr_events(struct evlist * evlist,FILE * fp,bool skip_empty)2718 size_t evlist__fprintf_nr_events(struct evlist *evlist, FILE *fp,
2719 				 bool skip_empty)
2720 {
2721 	struct evsel *pos;
2722 	size_t ret = 0;
2723 
2724 	evlist__for_each_entry(evlist, pos) {
2725 		struct hists *hists = evsel__hists(pos);
2726 
2727 		if (skip_empty && !hists->stats.nr_samples && !hists->stats.nr_lost_samples)
2728 			continue;
2729 
2730 		ret += fprintf(fp, "%s stats:\n", evsel__name(pos));
2731 		if (hists->stats.nr_samples)
2732 			ret += fprintf(fp, "%16s events: %10d\n",
2733 				       "SAMPLE", hists->stats.nr_samples);
2734 		if (hists->stats.nr_lost_samples)
2735 			ret += fprintf(fp, "%16s events: %10d\n",
2736 				       "LOST_SAMPLES", hists->stats.nr_lost_samples);
2737 	}
2738 
2739 	return ret;
2740 }
2741 
2742 
hists__total_period(struct hists * hists)2743 u64 hists__total_period(struct hists *hists)
2744 {
2745 	return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2746 		hists->stats.total_period;
2747 }
2748 
__hists__scnprintf_title(struct hists * hists,char * bf,size_t size,bool show_freq)2749 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq)
2750 {
2751 	char unit;
2752 	int printed;
2753 	const struct dso *dso = hists->dso_filter;
2754 	struct thread *thread = hists->thread_filter;
2755 	int socket_id = hists->socket_filter;
2756 	unsigned long nr_samples = hists->stats.nr_samples;
2757 	u64 nr_events = hists->stats.total_period;
2758 	struct evsel *evsel = hists_to_evsel(hists);
2759 	const char *ev_name = evsel__name(evsel);
2760 	char buf[512], sample_freq_str[64] = "";
2761 	size_t buflen = sizeof(buf);
2762 	char ref[30] = " show reference callgraph, ";
2763 	bool enable_ref = false;
2764 
2765 	if (symbol_conf.filter_relative) {
2766 		nr_samples = hists->stats.nr_non_filtered_samples;
2767 		nr_events = hists->stats.total_non_filtered_period;
2768 	}
2769 
2770 	if (evsel__is_group_event(evsel)) {
2771 		struct evsel *pos;
2772 
2773 		evsel__group_desc(evsel, buf, buflen);
2774 		ev_name = buf;
2775 
2776 		for_each_group_member(pos, evsel) {
2777 			struct hists *pos_hists = evsel__hists(pos);
2778 
2779 			if (symbol_conf.filter_relative) {
2780 				nr_samples += pos_hists->stats.nr_non_filtered_samples;
2781 				nr_events += pos_hists->stats.total_non_filtered_period;
2782 			} else {
2783 				nr_samples += pos_hists->stats.nr_samples;
2784 				nr_events += pos_hists->stats.total_period;
2785 			}
2786 		}
2787 	}
2788 
2789 	if (symbol_conf.show_ref_callgraph &&
2790 	    strstr(ev_name, "call-graph=no"))
2791 		enable_ref = true;
2792 
2793 	if (show_freq)
2794 		scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->core.attr.sample_freq);
2795 
2796 	nr_samples = convert_unit(nr_samples, &unit);
2797 	printed = scnprintf(bf, size,
2798 			   "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64,
2799 			   nr_samples, unit, evsel->core.nr_members > 1 ? "s" : "",
2800 			   ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events);
2801 
2802 
2803 	if (hists->uid_filter_str)
2804 		printed += snprintf(bf + printed, size - printed,
2805 				    ", UID: %s", hists->uid_filter_str);
2806 	if (thread) {
2807 		if (hists__has(hists, thread)) {
2808 			printed += scnprintf(bf + printed, size - printed,
2809 				    ", Thread: %s(%d)",
2810 				    (thread__comm_set(thread) ? thread__comm_str(thread) : ""),
2811 					thread__tid(thread));
2812 		} else {
2813 			printed += scnprintf(bf + printed, size - printed,
2814 				    ", Thread: %s",
2815 				    (thread__comm_set(thread) ? thread__comm_str(thread) : ""));
2816 		}
2817 	}
2818 	if (dso)
2819 		printed += scnprintf(bf + printed, size - printed,
2820 				    ", DSO: %s", dso->short_name);
2821 	if (socket_id > -1)
2822 		printed += scnprintf(bf + printed, size - printed,
2823 				    ", Processor Socket: %d", socket_id);
2824 
2825 	return printed;
2826 }
2827 
parse_filter_percentage(const struct option * opt __maybe_unused,const char * arg,int unset __maybe_unused)2828 int parse_filter_percentage(const struct option *opt __maybe_unused,
2829 			    const char *arg, int unset __maybe_unused)
2830 {
2831 	if (!strcmp(arg, "relative"))
2832 		symbol_conf.filter_relative = true;
2833 	else if (!strcmp(arg, "absolute"))
2834 		symbol_conf.filter_relative = false;
2835 	else {
2836 		pr_debug("Invalid percentage: %s\n", arg);
2837 		return -1;
2838 	}
2839 
2840 	return 0;
2841 }
2842 
perf_hist_config(const char * var,const char * value)2843 int perf_hist_config(const char *var, const char *value)
2844 {
2845 	if (!strcmp(var, "hist.percentage"))
2846 		return parse_filter_percentage(NULL, value, 0);
2847 
2848 	return 0;
2849 }
2850 
__hists__init(struct hists * hists,struct perf_hpp_list * hpp_list)2851 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2852 {
2853 	memset(hists, 0, sizeof(*hists));
2854 	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT_CACHED;
2855 	hists->entries_in = &hists->entries_in_array[0];
2856 	hists->entries_collapsed = RB_ROOT_CACHED;
2857 	hists->entries = RB_ROOT_CACHED;
2858 	mutex_init(&hists->lock);
2859 	hists->socket_filter = -1;
2860 	hists->hpp_list = hpp_list;
2861 	INIT_LIST_HEAD(&hists->hpp_formats);
2862 	return 0;
2863 }
2864 
hists__delete_remaining_entries(struct rb_root_cached * root)2865 static void hists__delete_remaining_entries(struct rb_root_cached *root)
2866 {
2867 	struct rb_node *node;
2868 	struct hist_entry *he;
2869 
2870 	while (!RB_EMPTY_ROOT(&root->rb_root)) {
2871 		node = rb_first_cached(root);
2872 		rb_erase_cached(node, root);
2873 
2874 		he = rb_entry(node, struct hist_entry, rb_node_in);
2875 		hist_entry__delete(he);
2876 	}
2877 }
2878 
hists__delete_all_entries(struct hists * hists)2879 static void hists__delete_all_entries(struct hists *hists)
2880 {
2881 	hists__delete_entries(hists);
2882 	hists__delete_remaining_entries(&hists->entries_in_array[0]);
2883 	hists__delete_remaining_entries(&hists->entries_in_array[1]);
2884 	hists__delete_remaining_entries(&hists->entries_collapsed);
2885 }
2886 
hists_evsel__exit(struct evsel * evsel)2887 static void hists_evsel__exit(struct evsel *evsel)
2888 {
2889 	struct hists *hists = evsel__hists(evsel);
2890 	struct perf_hpp_fmt *fmt, *pos;
2891 	struct perf_hpp_list_node *node, *tmp;
2892 
2893 	hists__delete_all_entries(hists);
2894 
2895 	list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2896 		perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2897 			list_del_init(&fmt->list);
2898 			free(fmt);
2899 		}
2900 		list_del_init(&node->list);
2901 		free(node);
2902 	}
2903 }
2904 
hists_evsel__init(struct evsel * evsel)2905 static int hists_evsel__init(struct evsel *evsel)
2906 {
2907 	struct hists *hists = evsel__hists(evsel);
2908 
2909 	__hists__init(hists, &perf_hpp_list);
2910 	return 0;
2911 }
2912 
2913 /*
2914  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2915  * stored in the rbtree...
2916  */
2917 
hists__init(void)2918 int hists__init(void)
2919 {
2920 	int err = evsel__object_config(sizeof(struct hists_evsel),
2921 				       hists_evsel__init, hists_evsel__exit);
2922 	if (err)
2923 		fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2924 
2925 	return err;
2926 }
2927 
perf_hpp_list__init(struct perf_hpp_list * list)2928 void perf_hpp_list__init(struct perf_hpp_list *list)
2929 {
2930 	INIT_LIST_HEAD(&list->fields);
2931 	INIT_LIST_HEAD(&list->sorts);
2932 }
2933