1 /* SPDX-License-Identifier: MIT */
2 /*
3 * Copyright (C) 2017 Google, Inc.
4 * Copyright _ 2017-2019, Intel Corporation.
5 *
6 * Authors:
7 * Sean Paul <seanpaul@chromium.org>
8 * Ramalingam C <ramalingam.c@intel.com>
9 */
10
11 #include <linux/component.h>
12 #include <linux/i2c.h>
13 #include <linux/random.h>
14
15 #include <drm/display/drm_hdcp_helper.h>
16 #include <drm/i915_component.h>
17
18 #include "i915_drv.h"
19 #include "i915_reg.h"
20 #include "intel_connector.h"
21 #include "intel_de.h"
22 #include "intel_display_power.h"
23 #include "intel_display_power_well.h"
24 #include "intel_display_types.h"
25 #include "intel_hdcp.h"
26 #include "intel_hdcp_gsc.h"
27 #include "intel_hdcp_regs.h"
28 #include "intel_pcode.h"
29
30 #define KEY_LOAD_TRIES 5
31 #define HDCP2_LC_RETRY_CNT 3
32
intel_conn_to_vcpi(struct drm_atomic_state * state,struct intel_connector * connector)33 static int intel_conn_to_vcpi(struct drm_atomic_state *state,
34 struct intel_connector *connector)
35 {
36 struct drm_dp_mst_topology_mgr *mgr;
37 struct drm_dp_mst_atomic_payload *payload;
38 struct drm_dp_mst_topology_state *mst_state;
39 int vcpi = 0;
40
41 /* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
42 if (!connector->port)
43 return 0;
44 mgr = connector->port->mgr;
45
46 drm_modeset_lock(&mgr->base.lock, state->acquire_ctx);
47 mst_state = to_drm_dp_mst_topology_state(mgr->base.state);
48 payload = drm_atomic_get_mst_payload_state(mst_state, connector->port);
49 if (drm_WARN_ON(mgr->dev, !payload))
50 goto out;
51
52 vcpi = payload->vcpi;
53 if (drm_WARN_ON(mgr->dev, vcpi < 0)) {
54 vcpi = 0;
55 goto out;
56 }
57 out:
58 return vcpi;
59 }
60
61 /*
62 * intel_hdcp_required_content_stream selects the most highest common possible HDCP
63 * content_type for all streams in DP MST topology because security f/w doesn't
64 * have any provision to mark content_type for each stream separately, it marks
65 * all available streams with the content_type proivided at the time of port
66 * authentication. This may prohibit the userspace to use type1 content on
67 * HDCP 2.2 capable sink because of other sink are not capable of HDCP 2.2 in
68 * DP MST topology. Though it is not compulsory, security fw should change its
69 * policy to mark different content_types for different streams.
70 */
71 static void
intel_hdcp_required_content_stream(struct intel_digital_port * dig_port)72 intel_hdcp_required_content_stream(struct intel_digital_port *dig_port)
73 {
74 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
75 bool enforce_type0 = false;
76 int k;
77
78 if (dig_port->hdcp_auth_status)
79 return;
80
81 if (!dig_port->hdcp_mst_type1_capable)
82 enforce_type0 = true;
83
84 /*
85 * Apply common protection level across all streams in DP MST Topology.
86 * Use highest supported content type for all streams in DP MST Topology.
87 */
88 for (k = 0; k < data->k; k++)
89 data->streams[k].stream_type =
90 enforce_type0 ? DRM_MODE_HDCP_CONTENT_TYPE0 : DRM_MODE_HDCP_CONTENT_TYPE1;
91 }
92
intel_hdcp_prepare_streams(struct intel_connector * connector)93 static void intel_hdcp_prepare_streams(struct intel_connector *connector)
94 {
95 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
96 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
97 struct intel_hdcp *hdcp = &connector->hdcp;
98
99 if (!intel_encoder_is_mst(intel_attached_encoder(connector))) {
100 data->streams[0].stream_type = hdcp->content_type;
101 } else {
102 intel_hdcp_required_content_stream(dig_port);
103 }
104 }
105
106 static
intel_hdcp_is_ksv_valid(u8 * ksv)107 bool intel_hdcp_is_ksv_valid(u8 *ksv)
108 {
109 int i, ones = 0;
110 /* KSV has 20 1's and 20 0's */
111 for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
112 ones += hweight8(ksv[i]);
113 if (ones != 20)
114 return false;
115
116 return true;
117 }
118
119 static
intel_hdcp_read_valid_bksv(struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim,u8 * bksv)120 int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
121 const struct intel_hdcp_shim *shim, u8 *bksv)
122 {
123 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
124 int ret, i, tries = 2;
125
126 /* HDCP spec states that we must retry the bksv if it is invalid */
127 for (i = 0; i < tries; i++) {
128 ret = shim->read_bksv(dig_port, bksv);
129 if (ret)
130 return ret;
131 if (intel_hdcp_is_ksv_valid(bksv))
132 break;
133 }
134 if (i == tries) {
135 drm_dbg_kms(&i915->drm, "Bksv is invalid\n");
136 return -ENODEV;
137 }
138
139 return 0;
140 }
141
142 /* Is HDCP1.4 capable on Platform and Sink */
intel_hdcp_capable(struct intel_connector * connector)143 bool intel_hdcp_capable(struct intel_connector *connector)
144 {
145 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
146 const struct intel_hdcp_shim *shim = connector->hdcp.shim;
147 bool capable = false;
148 u8 bksv[5];
149
150 if (!shim)
151 return capable;
152
153 if (shim->hdcp_capable) {
154 shim->hdcp_capable(dig_port, &capable);
155 } else {
156 if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
157 capable = true;
158 }
159
160 return capable;
161 }
162
163 /* Is HDCP2.2 capable on Platform and Sink */
intel_hdcp2_capable(struct intel_connector * connector)164 bool intel_hdcp2_capable(struct intel_connector *connector)
165 {
166 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
167 struct drm_i915_private *i915 = to_i915(connector->base.dev);
168 struct intel_hdcp *hdcp = &connector->hdcp;
169 bool capable = false;
170
171 /* I915 support for HDCP2.2 */
172 if (!hdcp->hdcp2_supported)
173 return false;
174
175 /* If MTL+ make sure gsc is loaded and proxy is setup */
176 if (intel_hdcp_gsc_cs_required(i915)) {
177 struct intel_gt *gt = i915->media_gt;
178 struct intel_gsc_uc *gsc = gt ? >->uc.gsc : NULL;
179
180 if (!gsc || !intel_uc_fw_is_running(&gsc->fw)) {
181 drm_dbg_kms(&i915->drm,
182 "GSC components required for HDCP2.2 are not ready\n");
183 return false;
184 }
185 }
186
187 /* MEI/GSC interface is solid depending on which is used */
188 mutex_lock(&i915->display.hdcp.hdcp_mutex);
189 if (!i915->display.hdcp.comp_added || !i915->display.hdcp.arbiter) {
190 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
191 return false;
192 }
193 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
194
195 /* Sink's capability for HDCP2.2 */
196 hdcp->shim->hdcp_2_2_capable(dig_port, &capable);
197
198 return capable;
199 }
200
intel_hdcp_in_use(struct drm_i915_private * i915,enum transcoder cpu_transcoder,enum port port)201 static bool intel_hdcp_in_use(struct drm_i915_private *i915,
202 enum transcoder cpu_transcoder, enum port port)
203 {
204 return intel_de_read(i915,
205 HDCP_STATUS(i915, cpu_transcoder, port)) &
206 HDCP_STATUS_ENC;
207 }
208
intel_hdcp2_in_use(struct drm_i915_private * i915,enum transcoder cpu_transcoder,enum port port)209 static bool intel_hdcp2_in_use(struct drm_i915_private *i915,
210 enum transcoder cpu_transcoder, enum port port)
211 {
212 return intel_de_read(i915,
213 HDCP2_STATUS(i915, cpu_transcoder, port)) &
214 LINK_ENCRYPTION_STATUS;
215 }
216
intel_hdcp_poll_ksv_fifo(struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim)217 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
218 const struct intel_hdcp_shim *shim)
219 {
220 int ret, read_ret;
221 bool ksv_ready;
222
223 /* Poll for ksv list ready (spec says max time allowed is 5s) */
224 ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port,
225 &ksv_ready),
226 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
227 100 * 1000);
228 if (ret)
229 return ret;
230 if (read_ret)
231 return read_ret;
232 if (!ksv_ready)
233 return -ETIMEDOUT;
234
235 return 0;
236 }
237
hdcp_key_loadable(struct drm_i915_private * i915)238 static bool hdcp_key_loadable(struct drm_i915_private *i915)
239 {
240 enum i915_power_well_id id;
241 intel_wakeref_t wakeref;
242 bool enabled = false;
243
244 /*
245 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
246 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
247 */
248 if (IS_HASWELL(i915) || IS_BROADWELL(i915))
249 id = HSW_DISP_PW_GLOBAL;
250 else
251 id = SKL_DISP_PW_1;
252
253 /* PG1 (power well #1) needs to be enabled */
254 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
255 enabled = intel_display_power_well_is_enabled(i915, id);
256
257 /*
258 * Another req for hdcp key loadability is enabled state of pll for
259 * cdclk. Without active crtc we wont land here. So we are assuming that
260 * cdclk is already on.
261 */
262
263 return enabled;
264 }
265
intel_hdcp_clear_keys(struct drm_i915_private * i915)266 static void intel_hdcp_clear_keys(struct drm_i915_private *i915)
267 {
268 intel_de_write(i915, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
269 intel_de_write(i915, HDCP_KEY_STATUS,
270 HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
271 }
272
intel_hdcp_load_keys(struct drm_i915_private * i915)273 static int intel_hdcp_load_keys(struct drm_i915_private *i915)
274 {
275 int ret;
276 u32 val;
277
278 val = intel_de_read(i915, HDCP_KEY_STATUS);
279 if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
280 return 0;
281
282 /*
283 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
284 * out of reset. So if Key is not already loaded, its an error state.
285 */
286 if (IS_HASWELL(i915) || IS_BROADWELL(i915))
287 if (!(intel_de_read(i915, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
288 return -ENXIO;
289
290 /*
291 * Initiate loading the HDCP key from fuses.
292 *
293 * BXT+ platforms, HDCP key needs to be loaded by SW. Only display
294 * version 9 platforms (minus BXT) differ in the key load trigger
295 * process from other platforms. These platforms use the GT Driver
296 * Mailbox interface.
297 */
298 if (DISPLAY_VER(i915) == 9 && !IS_BROXTON(i915)) {
299 ret = snb_pcode_write(&i915->uncore, SKL_PCODE_LOAD_HDCP_KEYS, 1);
300 if (ret) {
301 drm_err(&i915->drm,
302 "Failed to initiate HDCP key load (%d)\n",
303 ret);
304 return ret;
305 }
306 } else {
307 intel_de_write(i915, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
308 }
309
310 /* Wait for the keys to load (500us) */
311 ret = __intel_wait_for_register(&i915->uncore, HDCP_KEY_STATUS,
312 HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
313 10, 1, &val);
314 if (ret)
315 return ret;
316 else if (!(val & HDCP_KEY_LOAD_STATUS))
317 return -ENXIO;
318
319 /* Send Aksv over to PCH display for use in authentication */
320 intel_de_write(i915, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
321
322 return 0;
323 }
324
325 /* Returns updated SHA-1 index */
intel_write_sha_text(struct drm_i915_private * i915,u32 sha_text)326 static int intel_write_sha_text(struct drm_i915_private *i915, u32 sha_text)
327 {
328 intel_de_write(i915, HDCP_SHA_TEXT, sha_text);
329 if (intel_de_wait_for_set(i915, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
330 drm_err(&i915->drm, "Timed out waiting for SHA1 ready\n");
331 return -ETIMEDOUT;
332 }
333 return 0;
334 }
335
336 static
intel_hdcp_get_repeater_ctl(struct drm_i915_private * i915,enum transcoder cpu_transcoder,enum port port)337 u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *i915,
338 enum transcoder cpu_transcoder, enum port port)
339 {
340 if (DISPLAY_VER(i915) >= 12) {
341 switch (cpu_transcoder) {
342 case TRANSCODER_A:
343 return HDCP_TRANSA_REP_PRESENT |
344 HDCP_TRANSA_SHA1_M0;
345 case TRANSCODER_B:
346 return HDCP_TRANSB_REP_PRESENT |
347 HDCP_TRANSB_SHA1_M0;
348 case TRANSCODER_C:
349 return HDCP_TRANSC_REP_PRESENT |
350 HDCP_TRANSC_SHA1_M0;
351 case TRANSCODER_D:
352 return HDCP_TRANSD_REP_PRESENT |
353 HDCP_TRANSD_SHA1_M0;
354 default:
355 drm_err(&i915->drm, "Unknown transcoder %d\n",
356 cpu_transcoder);
357 return -EINVAL;
358 }
359 }
360
361 switch (port) {
362 case PORT_A:
363 return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
364 case PORT_B:
365 return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
366 case PORT_C:
367 return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
368 case PORT_D:
369 return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
370 case PORT_E:
371 return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
372 default:
373 drm_err(&i915->drm, "Unknown port %d\n", port);
374 return -EINVAL;
375 }
376 }
377
378 static
intel_hdcp_validate_v_prime(struct intel_connector * connector,const struct intel_hdcp_shim * shim,u8 * ksv_fifo,u8 num_downstream,u8 * bstatus)379 int intel_hdcp_validate_v_prime(struct intel_connector *connector,
380 const struct intel_hdcp_shim *shim,
381 u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
382 {
383 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
384 struct drm_i915_private *i915 = to_i915(connector->base.dev);
385 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
386 enum port port = dig_port->base.port;
387 u32 vprime, sha_text, sha_leftovers, rep_ctl;
388 int ret, i, j, sha_idx;
389
390 /* Process V' values from the receiver */
391 for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
392 ret = shim->read_v_prime_part(dig_port, i, &vprime);
393 if (ret)
394 return ret;
395 intel_de_write(i915, HDCP_SHA_V_PRIME(i), vprime);
396 }
397
398 /*
399 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
400 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
401 * stream is written via the HDCP_SHA_TEXT register in 32-bit
402 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
403 * index will keep track of our progress through the 64 bytes as well as
404 * helping us work the 40-bit KSVs through our 32-bit register.
405 *
406 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
407 */
408 sha_idx = 0;
409 sha_text = 0;
410 sha_leftovers = 0;
411 rep_ctl = intel_hdcp_get_repeater_ctl(i915, cpu_transcoder, port);
412 intel_de_write(i915, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
413 for (i = 0; i < num_downstream; i++) {
414 unsigned int sha_empty;
415 u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
416
417 /* Fill up the empty slots in sha_text and write it out */
418 sha_empty = sizeof(sha_text) - sha_leftovers;
419 for (j = 0; j < sha_empty; j++) {
420 u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
421 sha_text |= ksv[j] << off;
422 }
423
424 ret = intel_write_sha_text(i915, sha_text);
425 if (ret < 0)
426 return ret;
427
428 /* Programming guide writes this every 64 bytes */
429 sha_idx += sizeof(sha_text);
430 if (!(sha_idx % 64))
431 intel_de_write(i915, HDCP_REP_CTL,
432 rep_ctl | HDCP_SHA1_TEXT_32);
433
434 /* Store the leftover bytes from the ksv in sha_text */
435 sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
436 sha_text = 0;
437 for (j = 0; j < sha_leftovers; j++)
438 sha_text |= ksv[sha_empty + j] <<
439 ((sizeof(sha_text) - j - 1) * 8);
440
441 /*
442 * If we still have room in sha_text for more data, continue.
443 * Otherwise, write it out immediately.
444 */
445 if (sizeof(sha_text) > sha_leftovers)
446 continue;
447
448 ret = intel_write_sha_text(i915, sha_text);
449 if (ret < 0)
450 return ret;
451 sha_leftovers = 0;
452 sha_text = 0;
453 sha_idx += sizeof(sha_text);
454 }
455
456 /*
457 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
458 * bytes are leftover from the last ksv, we might be able to fit them
459 * all in sha_text (first 2 cases), or we might need to split them up
460 * into 2 writes (last 2 cases).
461 */
462 if (sha_leftovers == 0) {
463 /* Write 16 bits of text, 16 bits of M0 */
464 intel_de_write(i915, HDCP_REP_CTL,
465 rep_ctl | HDCP_SHA1_TEXT_16);
466 ret = intel_write_sha_text(i915,
467 bstatus[0] << 8 | bstatus[1]);
468 if (ret < 0)
469 return ret;
470 sha_idx += sizeof(sha_text);
471
472 /* Write 32 bits of M0 */
473 intel_de_write(i915, HDCP_REP_CTL,
474 rep_ctl | HDCP_SHA1_TEXT_0);
475 ret = intel_write_sha_text(i915, 0);
476 if (ret < 0)
477 return ret;
478 sha_idx += sizeof(sha_text);
479
480 /* Write 16 bits of M0 */
481 intel_de_write(i915, HDCP_REP_CTL,
482 rep_ctl | HDCP_SHA1_TEXT_16);
483 ret = intel_write_sha_text(i915, 0);
484 if (ret < 0)
485 return ret;
486 sha_idx += sizeof(sha_text);
487
488 } else if (sha_leftovers == 1) {
489 /* Write 24 bits of text, 8 bits of M0 */
490 intel_de_write(i915, HDCP_REP_CTL,
491 rep_ctl | HDCP_SHA1_TEXT_24);
492 sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
493 /* Only 24-bits of data, must be in the LSB */
494 sha_text = (sha_text & 0xffffff00) >> 8;
495 ret = intel_write_sha_text(i915, sha_text);
496 if (ret < 0)
497 return ret;
498 sha_idx += sizeof(sha_text);
499
500 /* Write 32 bits of M0 */
501 intel_de_write(i915, HDCP_REP_CTL,
502 rep_ctl | HDCP_SHA1_TEXT_0);
503 ret = intel_write_sha_text(i915, 0);
504 if (ret < 0)
505 return ret;
506 sha_idx += sizeof(sha_text);
507
508 /* Write 24 bits of M0 */
509 intel_de_write(i915, HDCP_REP_CTL,
510 rep_ctl | HDCP_SHA1_TEXT_8);
511 ret = intel_write_sha_text(i915, 0);
512 if (ret < 0)
513 return ret;
514 sha_idx += sizeof(sha_text);
515
516 } else if (sha_leftovers == 2) {
517 /* Write 32 bits of text */
518 intel_de_write(i915, HDCP_REP_CTL,
519 rep_ctl | HDCP_SHA1_TEXT_32);
520 sha_text |= bstatus[0] << 8 | bstatus[1];
521 ret = intel_write_sha_text(i915, sha_text);
522 if (ret < 0)
523 return ret;
524 sha_idx += sizeof(sha_text);
525
526 /* Write 64 bits of M0 */
527 intel_de_write(i915, HDCP_REP_CTL,
528 rep_ctl | HDCP_SHA1_TEXT_0);
529 for (i = 0; i < 2; i++) {
530 ret = intel_write_sha_text(i915, 0);
531 if (ret < 0)
532 return ret;
533 sha_idx += sizeof(sha_text);
534 }
535
536 /*
537 * Terminate the SHA-1 stream by hand. For the other leftover
538 * cases this is appended by the hardware.
539 */
540 intel_de_write(i915, HDCP_REP_CTL,
541 rep_ctl | HDCP_SHA1_TEXT_32);
542 sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
543 ret = intel_write_sha_text(i915, sha_text);
544 if (ret < 0)
545 return ret;
546 sha_idx += sizeof(sha_text);
547 } else if (sha_leftovers == 3) {
548 /* Write 32 bits of text (filled from LSB) */
549 intel_de_write(i915, HDCP_REP_CTL,
550 rep_ctl | HDCP_SHA1_TEXT_32);
551 sha_text |= bstatus[0];
552 ret = intel_write_sha_text(i915, sha_text);
553 if (ret < 0)
554 return ret;
555 sha_idx += sizeof(sha_text);
556
557 /* Write 8 bits of text (filled from LSB), 24 bits of M0 */
558 intel_de_write(i915, HDCP_REP_CTL,
559 rep_ctl | HDCP_SHA1_TEXT_8);
560 ret = intel_write_sha_text(i915, bstatus[1]);
561 if (ret < 0)
562 return ret;
563 sha_idx += sizeof(sha_text);
564
565 /* Write 32 bits of M0 */
566 intel_de_write(i915, HDCP_REP_CTL,
567 rep_ctl | HDCP_SHA1_TEXT_0);
568 ret = intel_write_sha_text(i915, 0);
569 if (ret < 0)
570 return ret;
571 sha_idx += sizeof(sha_text);
572
573 /* Write 8 bits of M0 */
574 intel_de_write(i915, HDCP_REP_CTL,
575 rep_ctl | HDCP_SHA1_TEXT_24);
576 ret = intel_write_sha_text(i915, 0);
577 if (ret < 0)
578 return ret;
579 sha_idx += sizeof(sha_text);
580 } else {
581 drm_dbg_kms(&i915->drm, "Invalid number of leftovers %d\n",
582 sha_leftovers);
583 return -EINVAL;
584 }
585
586 intel_de_write(i915, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
587 /* Fill up to 64-4 bytes with zeros (leave the last write for length) */
588 while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
589 ret = intel_write_sha_text(i915, 0);
590 if (ret < 0)
591 return ret;
592 sha_idx += sizeof(sha_text);
593 }
594
595 /*
596 * Last write gets the length of the concatenation in bits. That is:
597 * - 5 bytes per device
598 * - 10 bytes for BINFO/BSTATUS(2), M0(8)
599 */
600 sha_text = (num_downstream * 5 + 10) * 8;
601 ret = intel_write_sha_text(i915, sha_text);
602 if (ret < 0)
603 return ret;
604
605 /* Tell the HW we're done with the hash and wait for it to ACK */
606 intel_de_write(i915, HDCP_REP_CTL,
607 rep_ctl | HDCP_SHA1_COMPLETE_HASH);
608 if (intel_de_wait_for_set(i915, HDCP_REP_CTL,
609 HDCP_SHA1_COMPLETE, 1)) {
610 drm_err(&i915->drm, "Timed out waiting for SHA1 complete\n");
611 return -ETIMEDOUT;
612 }
613 if (!(intel_de_read(i915, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
614 drm_dbg_kms(&i915->drm, "SHA-1 mismatch, HDCP failed\n");
615 return -ENXIO;
616 }
617
618 return 0;
619 }
620
621 /* Implements Part 2 of the HDCP authorization procedure */
622 static
intel_hdcp_auth_downstream(struct intel_connector * connector)623 int intel_hdcp_auth_downstream(struct intel_connector *connector)
624 {
625 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
626 struct drm_i915_private *i915 = to_i915(connector->base.dev);
627 const struct intel_hdcp_shim *shim = connector->hdcp.shim;
628 u8 bstatus[2], num_downstream, *ksv_fifo;
629 int ret, i, tries = 3;
630
631 ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
632 if (ret) {
633 drm_dbg_kms(&i915->drm,
634 "KSV list failed to become ready (%d)\n", ret);
635 return ret;
636 }
637
638 ret = shim->read_bstatus(dig_port, bstatus);
639 if (ret)
640 return ret;
641
642 if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
643 DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
644 drm_dbg_kms(&i915->drm, "Max Topology Limit Exceeded\n");
645 return -EPERM;
646 }
647
648 /*
649 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
650 * the HDCP encryption. That implies that repeater can't have its own
651 * display. As there is no consumption of encrypted content in the
652 * repeater with 0 downstream devices, we are failing the
653 * authentication.
654 */
655 num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
656 if (num_downstream == 0) {
657 drm_dbg_kms(&i915->drm,
658 "Repeater with zero downstream devices\n");
659 return -EINVAL;
660 }
661
662 ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
663 if (!ksv_fifo) {
664 drm_dbg_kms(&i915->drm, "Out of mem: ksv_fifo\n");
665 return -ENOMEM;
666 }
667
668 ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
669 if (ret)
670 goto err;
671
672 if (drm_hdcp_check_ksvs_revoked(&i915->drm, ksv_fifo,
673 num_downstream) > 0) {
674 drm_err(&i915->drm, "Revoked Ksv(s) in ksv_fifo\n");
675 ret = -EPERM;
676 goto err;
677 }
678
679 /*
680 * When V prime mismatches, DP Spec mandates re-read of
681 * V prime atleast twice.
682 */
683 for (i = 0; i < tries; i++) {
684 ret = intel_hdcp_validate_v_prime(connector, shim,
685 ksv_fifo, num_downstream,
686 bstatus);
687 if (!ret)
688 break;
689 }
690
691 if (i == tries) {
692 drm_dbg_kms(&i915->drm,
693 "V Prime validation failed.(%d)\n", ret);
694 goto err;
695 }
696
697 drm_dbg_kms(&i915->drm, "HDCP is enabled (%d downstream devices)\n",
698 num_downstream);
699 ret = 0;
700 err:
701 kfree(ksv_fifo);
702 return ret;
703 }
704
705 /* Implements Part 1 of the HDCP authorization procedure */
intel_hdcp_auth(struct intel_connector * connector)706 static int intel_hdcp_auth(struct intel_connector *connector)
707 {
708 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
709 struct drm_i915_private *i915 = to_i915(connector->base.dev);
710 struct intel_hdcp *hdcp = &connector->hdcp;
711 const struct intel_hdcp_shim *shim = hdcp->shim;
712 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
713 enum port port = dig_port->base.port;
714 unsigned long r0_prime_gen_start;
715 int ret, i, tries = 2;
716 union {
717 u32 reg[2];
718 u8 shim[DRM_HDCP_AN_LEN];
719 } an;
720 union {
721 u32 reg[2];
722 u8 shim[DRM_HDCP_KSV_LEN];
723 } bksv;
724 union {
725 u32 reg;
726 u8 shim[DRM_HDCP_RI_LEN];
727 } ri;
728 bool repeater_present, hdcp_capable;
729
730 /*
731 * Detects whether the display is HDCP capable. Although we check for
732 * valid Bksv below, the HDCP over DP spec requires that we check
733 * whether the display supports HDCP before we write An. For HDMI
734 * displays, this is not necessary.
735 */
736 if (shim->hdcp_capable) {
737 ret = shim->hdcp_capable(dig_port, &hdcp_capable);
738 if (ret)
739 return ret;
740 if (!hdcp_capable) {
741 drm_dbg_kms(&i915->drm,
742 "Panel is not HDCP capable\n");
743 return -EINVAL;
744 }
745 }
746
747 /* Initialize An with 2 random values and acquire it */
748 for (i = 0; i < 2; i++)
749 intel_de_write(i915,
750 HDCP_ANINIT(i915, cpu_transcoder, port),
751 get_random_u32());
752 intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port),
753 HDCP_CONF_CAPTURE_AN);
754
755 /* Wait for An to be acquired */
756 if (intel_de_wait_for_set(i915,
757 HDCP_STATUS(i915, cpu_transcoder, port),
758 HDCP_STATUS_AN_READY, 1)) {
759 drm_err(&i915->drm, "Timed out waiting for An\n");
760 return -ETIMEDOUT;
761 }
762
763 an.reg[0] = intel_de_read(i915,
764 HDCP_ANLO(i915, cpu_transcoder, port));
765 an.reg[1] = intel_de_read(i915,
766 HDCP_ANHI(i915, cpu_transcoder, port));
767 ret = shim->write_an_aksv(dig_port, an.shim);
768 if (ret)
769 return ret;
770
771 r0_prime_gen_start = jiffies;
772
773 memset(&bksv, 0, sizeof(bksv));
774
775 ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim);
776 if (ret < 0)
777 return ret;
778
779 if (drm_hdcp_check_ksvs_revoked(&i915->drm, bksv.shim, 1) > 0) {
780 drm_err(&i915->drm, "BKSV is revoked\n");
781 return -EPERM;
782 }
783
784 intel_de_write(i915, HDCP_BKSVLO(i915, cpu_transcoder, port),
785 bksv.reg[0]);
786 intel_de_write(i915, HDCP_BKSVHI(i915, cpu_transcoder, port),
787 bksv.reg[1]);
788
789 ret = shim->repeater_present(dig_port, &repeater_present);
790 if (ret)
791 return ret;
792 if (repeater_present)
793 intel_de_write(i915, HDCP_REP_CTL,
794 intel_hdcp_get_repeater_ctl(i915, cpu_transcoder, port));
795
796 ret = shim->toggle_signalling(dig_port, cpu_transcoder, true);
797 if (ret)
798 return ret;
799
800 intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port),
801 HDCP_CONF_AUTH_AND_ENC);
802
803 /* Wait for R0 ready */
804 if (wait_for(intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
805 (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
806 drm_err(&i915->drm, "Timed out waiting for R0 ready\n");
807 return -ETIMEDOUT;
808 }
809
810 /*
811 * Wait for R0' to become available. The spec says 100ms from Aksv, but
812 * some monitors can take longer than this. We'll set the timeout at
813 * 300ms just to be sure.
814 *
815 * On DP, there's an R0_READY bit available but no such bit
816 * exists on HDMI. Since the upper-bound is the same, we'll just do
817 * the stupid thing instead of polling on one and not the other.
818 */
819 wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
820
821 tries = 3;
822
823 /*
824 * DP HDCP Spec mandates the two more reattempt to read R0, incase
825 * of R0 mismatch.
826 */
827 for (i = 0; i < tries; i++) {
828 ri.reg = 0;
829 ret = shim->read_ri_prime(dig_port, ri.shim);
830 if (ret)
831 return ret;
832 intel_de_write(i915,
833 HDCP_RPRIME(i915, cpu_transcoder, port),
834 ri.reg);
835
836 /* Wait for Ri prime match */
837 if (!wait_for(intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
838 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
839 break;
840 }
841
842 if (i == tries) {
843 drm_dbg_kms(&i915->drm,
844 "Timed out waiting for Ri prime match (%x)\n",
845 intel_de_read(i915,
846 HDCP_STATUS(i915, cpu_transcoder, port)));
847 return -ETIMEDOUT;
848 }
849
850 /* Wait for encryption confirmation */
851 if (intel_de_wait_for_set(i915,
852 HDCP_STATUS(i915, cpu_transcoder, port),
853 HDCP_STATUS_ENC,
854 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
855 drm_err(&i915->drm, "Timed out waiting for encryption\n");
856 return -ETIMEDOUT;
857 }
858
859 /* DP MST Auth Part 1 Step 2.a and Step 2.b */
860 if (shim->stream_encryption) {
861 ret = shim->stream_encryption(connector, true);
862 if (ret) {
863 drm_err(&i915->drm, "[%s:%d] Failed to enable HDCP 1.4 stream enc\n",
864 connector->base.name, connector->base.base.id);
865 return ret;
866 }
867 drm_dbg_kms(&i915->drm, "HDCP 1.4 transcoder: %s stream encrypted\n",
868 transcoder_name(hdcp->stream_transcoder));
869 }
870
871 if (repeater_present)
872 return intel_hdcp_auth_downstream(connector);
873
874 drm_dbg_kms(&i915->drm, "HDCP is enabled (no repeater present)\n");
875 return 0;
876 }
877
_intel_hdcp_disable(struct intel_connector * connector)878 static int _intel_hdcp_disable(struct intel_connector *connector)
879 {
880 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
881 struct drm_i915_private *i915 = to_i915(connector->base.dev);
882 struct intel_hdcp *hdcp = &connector->hdcp;
883 enum port port = dig_port->base.port;
884 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
885 u32 repeater_ctl;
886 int ret;
887
888 drm_dbg_kms(&i915->drm, "[%s:%d] HDCP is being disabled...\n",
889 connector->base.name, connector->base.base.id);
890
891 if (hdcp->shim->stream_encryption) {
892 ret = hdcp->shim->stream_encryption(connector, false);
893 if (ret) {
894 drm_err(&i915->drm, "[%s:%d] Failed to disable HDCP 1.4 stream enc\n",
895 connector->base.name, connector->base.base.id);
896 return ret;
897 }
898 drm_dbg_kms(&i915->drm, "HDCP 1.4 transcoder: %s stream encryption disabled\n",
899 transcoder_name(hdcp->stream_transcoder));
900 /*
901 * If there are other connectors on this port using HDCP,
902 * don't disable it until it disabled HDCP encryption for
903 * all connectors in MST topology.
904 */
905 if (dig_port->num_hdcp_streams > 0)
906 return 0;
907 }
908
909 hdcp->hdcp_encrypted = false;
910 intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port), 0);
911 if (intel_de_wait_for_clear(i915,
912 HDCP_STATUS(i915, cpu_transcoder, port),
913 ~0, HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
914 drm_err(&i915->drm,
915 "Failed to disable HDCP, timeout clearing status\n");
916 return -ETIMEDOUT;
917 }
918
919 repeater_ctl = intel_hdcp_get_repeater_ctl(i915, cpu_transcoder,
920 port);
921 intel_de_rmw(i915, HDCP_REP_CTL, repeater_ctl, 0);
922
923 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false);
924 if (ret) {
925 drm_err(&i915->drm, "Failed to disable HDCP signalling\n");
926 return ret;
927 }
928
929 drm_dbg_kms(&i915->drm, "HDCP is disabled\n");
930 return 0;
931 }
932
_intel_hdcp_enable(struct intel_connector * connector)933 static int _intel_hdcp_enable(struct intel_connector *connector)
934 {
935 struct drm_i915_private *i915 = to_i915(connector->base.dev);
936 struct intel_hdcp *hdcp = &connector->hdcp;
937 int i, ret, tries = 3;
938
939 drm_dbg_kms(&i915->drm, "[%s:%d] HDCP is being enabled...\n",
940 connector->base.name, connector->base.base.id);
941
942 if (!hdcp_key_loadable(i915)) {
943 drm_err(&i915->drm, "HDCP key Load is not possible\n");
944 return -ENXIO;
945 }
946
947 for (i = 0; i < KEY_LOAD_TRIES; i++) {
948 ret = intel_hdcp_load_keys(i915);
949 if (!ret)
950 break;
951 intel_hdcp_clear_keys(i915);
952 }
953 if (ret) {
954 drm_err(&i915->drm, "Could not load HDCP keys, (%d)\n",
955 ret);
956 return ret;
957 }
958
959 /* Incase of authentication failures, HDCP spec expects reauth. */
960 for (i = 0; i < tries; i++) {
961 ret = intel_hdcp_auth(connector);
962 if (!ret) {
963 hdcp->hdcp_encrypted = true;
964 return 0;
965 }
966
967 drm_dbg_kms(&i915->drm, "HDCP Auth failure (%d)\n", ret);
968
969 /* Ensuring HDCP encryption and signalling are stopped. */
970 _intel_hdcp_disable(connector);
971 }
972
973 drm_dbg_kms(&i915->drm,
974 "HDCP authentication failed (%d tries/%d)\n", tries, ret);
975 return ret;
976 }
977
intel_hdcp_to_connector(struct intel_hdcp * hdcp)978 static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
979 {
980 return container_of(hdcp, struct intel_connector, hdcp);
981 }
982
intel_hdcp_update_value(struct intel_connector * connector,u64 value,bool update_property)983 static void intel_hdcp_update_value(struct intel_connector *connector,
984 u64 value, bool update_property)
985 {
986 struct drm_device *dev = connector->base.dev;
987 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
988 struct intel_hdcp *hdcp = &connector->hdcp;
989 struct drm_i915_private *i915 = to_i915(connector->base.dev);
990
991 drm_WARN_ON(connector->base.dev, !mutex_is_locked(&hdcp->mutex));
992
993 if (hdcp->value == value)
994 return;
995
996 drm_WARN_ON(dev, !mutex_is_locked(&dig_port->hdcp_mutex));
997
998 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
999 if (!drm_WARN_ON(dev, dig_port->num_hdcp_streams == 0))
1000 dig_port->num_hdcp_streams--;
1001 } else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1002 dig_port->num_hdcp_streams++;
1003 }
1004
1005 hdcp->value = value;
1006 if (update_property) {
1007 drm_connector_get(&connector->base);
1008 if (!queue_work(i915->unordered_wq, &hdcp->prop_work))
1009 drm_connector_put(&connector->base);
1010 }
1011 }
1012
1013 /* Implements Part 3 of the HDCP authorization procedure */
intel_hdcp_check_link(struct intel_connector * connector)1014 static int intel_hdcp_check_link(struct intel_connector *connector)
1015 {
1016 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1017 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1018 struct intel_hdcp *hdcp = &connector->hdcp;
1019 enum port port = dig_port->base.port;
1020 enum transcoder cpu_transcoder;
1021 int ret = 0;
1022
1023 mutex_lock(&hdcp->mutex);
1024 mutex_lock(&dig_port->hdcp_mutex);
1025
1026 cpu_transcoder = hdcp->cpu_transcoder;
1027
1028 /* Check_link valid only when HDCP1.4 is enabled */
1029 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1030 !hdcp->hdcp_encrypted) {
1031 ret = -EINVAL;
1032 goto out;
1033 }
1034
1035 if (drm_WARN_ON(&i915->drm,
1036 !intel_hdcp_in_use(i915, cpu_transcoder, port))) {
1037 drm_err(&i915->drm,
1038 "%s:%d HDCP link stopped encryption,%x\n",
1039 connector->base.name, connector->base.base.id,
1040 intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)));
1041 ret = -ENXIO;
1042 intel_hdcp_update_value(connector,
1043 DRM_MODE_CONTENT_PROTECTION_DESIRED,
1044 true);
1045 goto out;
1046 }
1047
1048 if (hdcp->shim->check_link(dig_port, connector)) {
1049 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1050 intel_hdcp_update_value(connector,
1051 DRM_MODE_CONTENT_PROTECTION_ENABLED, true);
1052 }
1053 goto out;
1054 }
1055
1056 drm_dbg_kms(&i915->drm,
1057 "[%s:%d] HDCP link failed, retrying authentication\n",
1058 connector->base.name, connector->base.base.id);
1059
1060 ret = _intel_hdcp_disable(connector);
1061 if (ret) {
1062 drm_err(&i915->drm, "Failed to disable hdcp (%d)\n", ret);
1063 intel_hdcp_update_value(connector,
1064 DRM_MODE_CONTENT_PROTECTION_DESIRED,
1065 true);
1066 goto out;
1067 }
1068
1069 ret = _intel_hdcp_enable(connector);
1070 if (ret) {
1071 drm_err(&i915->drm, "Failed to enable hdcp (%d)\n", ret);
1072 intel_hdcp_update_value(connector,
1073 DRM_MODE_CONTENT_PROTECTION_DESIRED,
1074 true);
1075 goto out;
1076 }
1077
1078 out:
1079 mutex_unlock(&dig_port->hdcp_mutex);
1080 mutex_unlock(&hdcp->mutex);
1081 return ret;
1082 }
1083
intel_hdcp_prop_work(struct work_struct * work)1084 static void intel_hdcp_prop_work(struct work_struct *work)
1085 {
1086 struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
1087 prop_work);
1088 struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1089 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1090
1091 drm_modeset_lock(&i915->drm.mode_config.connection_mutex, NULL);
1092 mutex_lock(&hdcp->mutex);
1093
1094 /*
1095 * This worker is only used to flip between ENABLED/DESIRED. Either of
1096 * those to UNDESIRED is handled by core. If value == UNDESIRED,
1097 * we're running just after hdcp has been disabled, so just exit
1098 */
1099 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1100 drm_hdcp_update_content_protection(&connector->base,
1101 hdcp->value);
1102
1103 mutex_unlock(&hdcp->mutex);
1104 drm_modeset_unlock(&i915->drm.mode_config.connection_mutex);
1105
1106 drm_connector_put(&connector->base);
1107 }
1108
is_hdcp_supported(struct drm_i915_private * i915,enum port port)1109 bool is_hdcp_supported(struct drm_i915_private *i915, enum port port)
1110 {
1111 return DISPLAY_RUNTIME_INFO(i915)->has_hdcp &&
1112 (DISPLAY_VER(i915) >= 12 || port < PORT_E);
1113 }
1114
1115 static int
hdcp2_prepare_ake_init(struct intel_connector * connector,struct hdcp2_ake_init * ake_data)1116 hdcp2_prepare_ake_init(struct intel_connector *connector,
1117 struct hdcp2_ake_init *ake_data)
1118 {
1119 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1120 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1121 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1122 struct i915_hdcp_arbiter *arbiter;
1123 int ret;
1124
1125 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1126 arbiter = i915->display.hdcp.arbiter;
1127
1128 if (!arbiter || !arbiter->ops) {
1129 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1130 return -EINVAL;
1131 }
1132
1133 ret = arbiter->ops->initiate_hdcp2_session(arbiter->hdcp_dev, data, ake_data);
1134 if (ret)
1135 drm_dbg_kms(&i915->drm, "Prepare_ake_init failed. %d\n",
1136 ret);
1137 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1138
1139 return ret;
1140 }
1141
1142 static int
hdcp2_verify_rx_cert_prepare_km(struct intel_connector * connector,struct hdcp2_ake_send_cert * rx_cert,bool * paired,struct hdcp2_ake_no_stored_km * ek_pub_km,size_t * msg_sz)1143 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
1144 struct hdcp2_ake_send_cert *rx_cert,
1145 bool *paired,
1146 struct hdcp2_ake_no_stored_km *ek_pub_km,
1147 size_t *msg_sz)
1148 {
1149 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1150 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1151 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1152 struct i915_hdcp_arbiter *arbiter;
1153 int ret;
1154
1155 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1156 arbiter = i915->display.hdcp.arbiter;
1157
1158 if (!arbiter || !arbiter->ops) {
1159 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1160 return -EINVAL;
1161 }
1162
1163 ret = arbiter->ops->verify_receiver_cert_prepare_km(arbiter->hdcp_dev, data,
1164 rx_cert, paired,
1165 ek_pub_km, msg_sz);
1166 if (ret < 0)
1167 drm_dbg_kms(&i915->drm, "Verify rx_cert failed. %d\n",
1168 ret);
1169 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1170
1171 return ret;
1172 }
1173
hdcp2_verify_hprime(struct intel_connector * connector,struct hdcp2_ake_send_hprime * rx_hprime)1174 static int hdcp2_verify_hprime(struct intel_connector *connector,
1175 struct hdcp2_ake_send_hprime *rx_hprime)
1176 {
1177 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1178 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1179 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1180 struct i915_hdcp_arbiter *arbiter;
1181 int ret;
1182
1183 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1184 arbiter = i915->display.hdcp.arbiter;
1185
1186 if (!arbiter || !arbiter->ops) {
1187 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1188 return -EINVAL;
1189 }
1190
1191 ret = arbiter->ops->verify_hprime(arbiter->hdcp_dev, data, rx_hprime);
1192 if (ret < 0)
1193 drm_dbg_kms(&i915->drm, "Verify hprime failed. %d\n", ret);
1194 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1195
1196 return ret;
1197 }
1198
1199 static int
hdcp2_store_pairing_info(struct intel_connector * connector,struct hdcp2_ake_send_pairing_info * pairing_info)1200 hdcp2_store_pairing_info(struct intel_connector *connector,
1201 struct hdcp2_ake_send_pairing_info *pairing_info)
1202 {
1203 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1204 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1205 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1206 struct i915_hdcp_arbiter *arbiter;
1207 int ret;
1208
1209 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1210 arbiter = i915->display.hdcp.arbiter;
1211
1212 if (!arbiter || !arbiter->ops) {
1213 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1214 return -EINVAL;
1215 }
1216
1217 ret = arbiter->ops->store_pairing_info(arbiter->hdcp_dev, data, pairing_info);
1218 if (ret < 0)
1219 drm_dbg_kms(&i915->drm, "Store pairing info failed. %d\n",
1220 ret);
1221 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1222
1223 return ret;
1224 }
1225
1226 static int
hdcp2_prepare_lc_init(struct intel_connector * connector,struct hdcp2_lc_init * lc_init)1227 hdcp2_prepare_lc_init(struct intel_connector *connector,
1228 struct hdcp2_lc_init *lc_init)
1229 {
1230 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1231 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1232 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1233 struct i915_hdcp_arbiter *arbiter;
1234 int ret;
1235
1236 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1237 arbiter = i915->display.hdcp.arbiter;
1238
1239 if (!arbiter || !arbiter->ops) {
1240 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1241 return -EINVAL;
1242 }
1243
1244 ret = arbiter->ops->initiate_locality_check(arbiter->hdcp_dev, data, lc_init);
1245 if (ret < 0)
1246 drm_dbg_kms(&i915->drm, "Prepare lc_init failed. %d\n",
1247 ret);
1248 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1249
1250 return ret;
1251 }
1252
1253 static int
hdcp2_verify_lprime(struct intel_connector * connector,struct hdcp2_lc_send_lprime * rx_lprime)1254 hdcp2_verify_lprime(struct intel_connector *connector,
1255 struct hdcp2_lc_send_lprime *rx_lprime)
1256 {
1257 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1258 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1259 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1260 struct i915_hdcp_arbiter *arbiter;
1261 int ret;
1262
1263 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1264 arbiter = i915->display.hdcp.arbiter;
1265
1266 if (!arbiter || !arbiter->ops) {
1267 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1268 return -EINVAL;
1269 }
1270
1271 ret = arbiter->ops->verify_lprime(arbiter->hdcp_dev, data, rx_lprime);
1272 if (ret < 0)
1273 drm_dbg_kms(&i915->drm, "Verify L_Prime failed. %d\n",
1274 ret);
1275 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1276
1277 return ret;
1278 }
1279
hdcp2_prepare_skey(struct intel_connector * connector,struct hdcp2_ske_send_eks * ske_data)1280 static int hdcp2_prepare_skey(struct intel_connector *connector,
1281 struct hdcp2_ske_send_eks *ske_data)
1282 {
1283 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1284 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1285 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1286 struct i915_hdcp_arbiter *arbiter;
1287 int ret;
1288
1289 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1290 arbiter = i915->display.hdcp.arbiter;
1291
1292 if (!arbiter || !arbiter->ops) {
1293 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1294 return -EINVAL;
1295 }
1296
1297 ret = arbiter->ops->get_session_key(arbiter->hdcp_dev, data, ske_data);
1298 if (ret < 0)
1299 drm_dbg_kms(&i915->drm, "Get session key failed. %d\n",
1300 ret);
1301 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1302
1303 return ret;
1304 }
1305
1306 static int
hdcp2_verify_rep_topology_prepare_ack(struct intel_connector * connector,struct hdcp2_rep_send_receiverid_list * rep_topology,struct hdcp2_rep_send_ack * rep_send_ack)1307 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1308 struct hdcp2_rep_send_receiverid_list
1309 *rep_topology,
1310 struct hdcp2_rep_send_ack *rep_send_ack)
1311 {
1312 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1313 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1314 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1315 struct i915_hdcp_arbiter *arbiter;
1316 int ret;
1317
1318 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1319 arbiter = i915->display.hdcp.arbiter;
1320
1321 if (!arbiter || !arbiter->ops) {
1322 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1323 return -EINVAL;
1324 }
1325
1326 ret = arbiter->ops->repeater_check_flow_prepare_ack(arbiter->hdcp_dev,
1327 data,
1328 rep_topology,
1329 rep_send_ack);
1330 if (ret < 0)
1331 drm_dbg_kms(&i915->drm,
1332 "Verify rep topology failed. %d\n", ret);
1333 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1334
1335 return ret;
1336 }
1337
1338 static int
hdcp2_verify_mprime(struct intel_connector * connector,struct hdcp2_rep_stream_ready * stream_ready)1339 hdcp2_verify_mprime(struct intel_connector *connector,
1340 struct hdcp2_rep_stream_ready *stream_ready)
1341 {
1342 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1343 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1344 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1345 struct i915_hdcp_arbiter *arbiter;
1346 int ret;
1347
1348 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1349 arbiter = i915->display.hdcp.arbiter;
1350
1351 if (!arbiter || !arbiter->ops) {
1352 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1353 return -EINVAL;
1354 }
1355
1356 ret = arbiter->ops->verify_mprime(arbiter->hdcp_dev, data, stream_ready);
1357 if (ret < 0)
1358 drm_dbg_kms(&i915->drm, "Verify mprime failed. %d\n", ret);
1359 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1360
1361 return ret;
1362 }
1363
hdcp2_authenticate_port(struct intel_connector * connector)1364 static int hdcp2_authenticate_port(struct intel_connector *connector)
1365 {
1366 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1367 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1368 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1369 struct i915_hdcp_arbiter *arbiter;
1370 int ret;
1371
1372 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1373 arbiter = i915->display.hdcp.arbiter;
1374
1375 if (!arbiter || !arbiter->ops) {
1376 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1377 return -EINVAL;
1378 }
1379
1380 ret = arbiter->ops->enable_hdcp_authentication(arbiter->hdcp_dev, data);
1381 if (ret < 0)
1382 drm_dbg_kms(&i915->drm, "Enable hdcp auth failed. %d\n",
1383 ret);
1384 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1385
1386 return ret;
1387 }
1388
hdcp2_close_session(struct intel_connector * connector)1389 static int hdcp2_close_session(struct intel_connector *connector)
1390 {
1391 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1392 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1393 struct i915_hdcp_arbiter *arbiter;
1394 int ret;
1395
1396 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1397 arbiter = i915->display.hdcp.arbiter;
1398
1399 if (!arbiter || !arbiter->ops) {
1400 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1401 return -EINVAL;
1402 }
1403
1404 ret = arbiter->ops->close_hdcp_session(arbiter->hdcp_dev,
1405 &dig_port->hdcp_port_data);
1406 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1407
1408 return ret;
1409 }
1410
hdcp2_deauthenticate_port(struct intel_connector * connector)1411 static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1412 {
1413 return hdcp2_close_session(connector);
1414 }
1415
1416 /* Authentication flow starts from here */
hdcp2_authentication_key_exchange(struct intel_connector * connector)1417 static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1418 {
1419 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1420 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1421 struct intel_hdcp *hdcp = &connector->hdcp;
1422 union {
1423 struct hdcp2_ake_init ake_init;
1424 struct hdcp2_ake_send_cert send_cert;
1425 struct hdcp2_ake_no_stored_km no_stored_km;
1426 struct hdcp2_ake_send_hprime send_hprime;
1427 struct hdcp2_ake_send_pairing_info pairing_info;
1428 } msgs;
1429 const struct intel_hdcp_shim *shim = hdcp->shim;
1430 size_t size;
1431 int ret;
1432
1433 /* Init for seq_num */
1434 hdcp->seq_num_v = 0;
1435 hdcp->seq_num_m = 0;
1436
1437 ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1438 if (ret < 0)
1439 return ret;
1440
1441 ret = shim->write_2_2_msg(dig_port, &msgs.ake_init,
1442 sizeof(msgs.ake_init));
1443 if (ret < 0)
1444 return ret;
1445
1446 ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_CERT,
1447 &msgs.send_cert, sizeof(msgs.send_cert));
1448 if (ret < 0)
1449 return ret;
1450
1451 if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1452 drm_dbg_kms(&i915->drm, "cert.rx_caps dont claim HDCP2.2\n");
1453 return -EINVAL;
1454 }
1455
1456 hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1457
1458 if (drm_hdcp_check_ksvs_revoked(&i915->drm,
1459 msgs.send_cert.cert_rx.receiver_id,
1460 1) > 0) {
1461 drm_err(&i915->drm, "Receiver ID is revoked\n");
1462 return -EPERM;
1463 }
1464
1465 /*
1466 * Here msgs.no_stored_km will hold msgs corresponding to the km
1467 * stored also.
1468 */
1469 ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1470 &hdcp->is_paired,
1471 &msgs.no_stored_km, &size);
1472 if (ret < 0)
1473 return ret;
1474
1475 ret = shim->write_2_2_msg(dig_port, &msgs.no_stored_km, size);
1476 if (ret < 0)
1477 return ret;
1478
1479 ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_HPRIME,
1480 &msgs.send_hprime, sizeof(msgs.send_hprime));
1481 if (ret < 0)
1482 return ret;
1483
1484 ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1485 if (ret < 0)
1486 return ret;
1487
1488 if (!hdcp->is_paired) {
1489 /* Pairing is required */
1490 ret = shim->read_2_2_msg(dig_port,
1491 HDCP_2_2_AKE_SEND_PAIRING_INFO,
1492 &msgs.pairing_info,
1493 sizeof(msgs.pairing_info));
1494 if (ret < 0)
1495 return ret;
1496
1497 ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1498 if (ret < 0)
1499 return ret;
1500 hdcp->is_paired = true;
1501 }
1502
1503 return 0;
1504 }
1505
hdcp2_locality_check(struct intel_connector * connector)1506 static int hdcp2_locality_check(struct intel_connector *connector)
1507 {
1508 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1509 struct intel_hdcp *hdcp = &connector->hdcp;
1510 union {
1511 struct hdcp2_lc_init lc_init;
1512 struct hdcp2_lc_send_lprime send_lprime;
1513 } msgs;
1514 const struct intel_hdcp_shim *shim = hdcp->shim;
1515 int tries = HDCP2_LC_RETRY_CNT, ret, i;
1516
1517 for (i = 0; i < tries; i++) {
1518 ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1519 if (ret < 0)
1520 continue;
1521
1522 ret = shim->write_2_2_msg(dig_port, &msgs.lc_init,
1523 sizeof(msgs.lc_init));
1524 if (ret < 0)
1525 continue;
1526
1527 ret = shim->read_2_2_msg(dig_port,
1528 HDCP_2_2_LC_SEND_LPRIME,
1529 &msgs.send_lprime,
1530 sizeof(msgs.send_lprime));
1531 if (ret < 0)
1532 continue;
1533
1534 ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1535 if (!ret)
1536 break;
1537 }
1538
1539 return ret;
1540 }
1541
hdcp2_session_key_exchange(struct intel_connector * connector)1542 static int hdcp2_session_key_exchange(struct intel_connector *connector)
1543 {
1544 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1545 struct intel_hdcp *hdcp = &connector->hdcp;
1546 struct hdcp2_ske_send_eks send_eks;
1547 int ret;
1548
1549 ret = hdcp2_prepare_skey(connector, &send_eks);
1550 if (ret < 0)
1551 return ret;
1552
1553 ret = hdcp->shim->write_2_2_msg(dig_port, &send_eks,
1554 sizeof(send_eks));
1555 if (ret < 0)
1556 return ret;
1557
1558 return 0;
1559 }
1560
1561 static
_hdcp2_propagate_stream_management_info(struct intel_connector * connector)1562 int _hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1563 {
1564 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1565 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1566 struct intel_hdcp *hdcp = &connector->hdcp;
1567 union {
1568 struct hdcp2_rep_stream_manage stream_manage;
1569 struct hdcp2_rep_stream_ready stream_ready;
1570 } msgs;
1571 const struct intel_hdcp_shim *shim = hdcp->shim;
1572 int ret, streams_size_delta, i;
1573
1574 if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX)
1575 return -ERANGE;
1576
1577 /* Prepare RepeaterAuth_Stream_Manage msg */
1578 msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1579 drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1580
1581 msgs.stream_manage.k = cpu_to_be16(data->k);
1582
1583 for (i = 0; i < data->k; i++) {
1584 msgs.stream_manage.streams[i].stream_id = data->streams[i].stream_id;
1585 msgs.stream_manage.streams[i].stream_type = data->streams[i].stream_type;
1586 }
1587
1588 streams_size_delta = (HDCP_2_2_MAX_CONTENT_STREAMS_CNT - data->k) *
1589 sizeof(struct hdcp2_streamid_type);
1590 /* Send it to Repeater */
1591 ret = shim->write_2_2_msg(dig_port, &msgs.stream_manage,
1592 sizeof(msgs.stream_manage) - streams_size_delta);
1593 if (ret < 0)
1594 goto out;
1595
1596 ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_STREAM_READY,
1597 &msgs.stream_ready, sizeof(msgs.stream_ready));
1598 if (ret < 0)
1599 goto out;
1600
1601 data->seq_num_m = hdcp->seq_num_m;
1602
1603 ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1604
1605 out:
1606 hdcp->seq_num_m++;
1607
1608 return ret;
1609 }
1610
1611 static
hdcp2_authenticate_repeater_topology(struct intel_connector * connector)1612 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1613 {
1614 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1615 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1616 struct intel_hdcp *hdcp = &connector->hdcp;
1617 union {
1618 struct hdcp2_rep_send_receiverid_list recvid_list;
1619 struct hdcp2_rep_send_ack rep_ack;
1620 } msgs;
1621 const struct intel_hdcp_shim *shim = hdcp->shim;
1622 u32 seq_num_v, device_cnt;
1623 u8 *rx_info;
1624 int ret;
1625
1626 ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_SEND_RECVID_LIST,
1627 &msgs.recvid_list, sizeof(msgs.recvid_list));
1628 if (ret < 0)
1629 return ret;
1630
1631 rx_info = msgs.recvid_list.rx_info;
1632
1633 if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1634 HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1635 drm_dbg_kms(&i915->drm, "Topology Max Size Exceeded\n");
1636 return -EINVAL;
1637 }
1638
1639 /*
1640 * MST topology is not Type 1 capable if it contains a downstream
1641 * device that is only HDCP 1.x or Legacy HDCP 2.0/2.1 compliant.
1642 */
1643 dig_port->hdcp_mst_type1_capable =
1644 !HDCP_2_2_HDCP1_DEVICE_CONNECTED(rx_info[1]) &&
1645 !HDCP_2_2_HDCP_2_0_REP_CONNECTED(rx_info[1]);
1646
1647 /* Converting and Storing the seq_num_v to local variable as DWORD */
1648 seq_num_v =
1649 drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1650
1651 if (!hdcp->hdcp2_encrypted && seq_num_v) {
1652 drm_dbg_kms(&i915->drm,
1653 "Non zero Seq_num_v at first RecvId_List msg\n");
1654 return -EINVAL;
1655 }
1656
1657 if (seq_num_v < hdcp->seq_num_v) {
1658 /* Roll over of the seq_num_v from repeater. Reauthenticate. */
1659 drm_dbg_kms(&i915->drm, "Seq_num_v roll over.\n");
1660 return -EINVAL;
1661 }
1662
1663 device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1664 HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1665 if (drm_hdcp_check_ksvs_revoked(&i915->drm,
1666 msgs.recvid_list.receiver_ids,
1667 device_cnt) > 0) {
1668 drm_err(&i915->drm, "Revoked receiver ID(s) is in list\n");
1669 return -EPERM;
1670 }
1671
1672 ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1673 &msgs.recvid_list,
1674 &msgs.rep_ack);
1675 if (ret < 0)
1676 return ret;
1677
1678 hdcp->seq_num_v = seq_num_v;
1679 ret = shim->write_2_2_msg(dig_port, &msgs.rep_ack,
1680 sizeof(msgs.rep_ack));
1681 if (ret < 0)
1682 return ret;
1683
1684 return 0;
1685 }
1686
hdcp2_authenticate_sink(struct intel_connector * connector)1687 static int hdcp2_authenticate_sink(struct intel_connector *connector)
1688 {
1689 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1690 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1691 struct intel_hdcp *hdcp = &connector->hdcp;
1692 const struct intel_hdcp_shim *shim = hdcp->shim;
1693 int ret;
1694
1695 ret = hdcp2_authentication_key_exchange(connector);
1696 if (ret < 0) {
1697 drm_dbg_kms(&i915->drm, "AKE Failed. Err : %d\n", ret);
1698 return ret;
1699 }
1700
1701 ret = hdcp2_locality_check(connector);
1702 if (ret < 0) {
1703 drm_dbg_kms(&i915->drm,
1704 "Locality Check failed. Err : %d\n", ret);
1705 return ret;
1706 }
1707
1708 ret = hdcp2_session_key_exchange(connector);
1709 if (ret < 0) {
1710 drm_dbg_kms(&i915->drm, "SKE Failed. Err : %d\n", ret);
1711 return ret;
1712 }
1713
1714 if (shim->config_stream_type) {
1715 ret = shim->config_stream_type(dig_port,
1716 hdcp->is_repeater,
1717 hdcp->content_type);
1718 if (ret < 0)
1719 return ret;
1720 }
1721
1722 if (hdcp->is_repeater) {
1723 ret = hdcp2_authenticate_repeater_topology(connector);
1724 if (ret < 0) {
1725 drm_dbg_kms(&i915->drm,
1726 "Repeater Auth Failed. Err: %d\n", ret);
1727 return ret;
1728 }
1729 }
1730
1731 return ret;
1732 }
1733
hdcp2_enable_stream_encryption(struct intel_connector * connector)1734 static int hdcp2_enable_stream_encryption(struct intel_connector *connector)
1735 {
1736 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1737 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1738 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1739 struct intel_hdcp *hdcp = &connector->hdcp;
1740 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1741 enum port port = dig_port->base.port;
1742 int ret = 0;
1743
1744 if (!(intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1745 LINK_ENCRYPTION_STATUS)) {
1746 drm_err(&i915->drm, "[%s:%d] HDCP 2.2 Link is not encrypted\n",
1747 connector->base.name, connector->base.base.id);
1748 ret = -EPERM;
1749 goto link_recover;
1750 }
1751
1752 if (hdcp->shim->stream_2_2_encryption) {
1753 ret = hdcp->shim->stream_2_2_encryption(connector, true);
1754 if (ret) {
1755 drm_err(&i915->drm, "[%s:%d] Failed to enable HDCP 2.2 stream enc\n",
1756 connector->base.name, connector->base.base.id);
1757 return ret;
1758 }
1759 drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encrypted\n",
1760 transcoder_name(hdcp->stream_transcoder));
1761 }
1762
1763 return 0;
1764
1765 link_recover:
1766 if (hdcp2_deauthenticate_port(connector) < 0)
1767 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1768
1769 dig_port->hdcp_auth_status = false;
1770 data->k = 0;
1771
1772 return ret;
1773 }
1774
hdcp2_enable_encryption(struct intel_connector * connector)1775 static int hdcp2_enable_encryption(struct intel_connector *connector)
1776 {
1777 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1778 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1779 struct intel_hdcp *hdcp = &connector->hdcp;
1780 enum port port = dig_port->base.port;
1781 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1782 int ret;
1783
1784 drm_WARN_ON(&i915->drm,
1785 intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1786 LINK_ENCRYPTION_STATUS);
1787 if (hdcp->shim->toggle_signalling) {
1788 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1789 true);
1790 if (ret) {
1791 drm_err(&i915->drm,
1792 "Failed to enable HDCP signalling. %d\n",
1793 ret);
1794 return ret;
1795 }
1796 }
1797
1798 if (intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1799 LINK_AUTH_STATUS)
1800 /* Link is Authenticated. Now set for Encryption */
1801 intel_de_rmw(i915, HDCP2_CTL(i915, cpu_transcoder, port),
1802 0, CTL_LINK_ENCRYPTION_REQ);
1803
1804 ret = intel_de_wait_for_set(i915,
1805 HDCP2_STATUS(i915, cpu_transcoder,
1806 port),
1807 LINK_ENCRYPTION_STATUS,
1808 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1809 dig_port->hdcp_auth_status = true;
1810
1811 return ret;
1812 }
1813
hdcp2_disable_encryption(struct intel_connector * connector)1814 static int hdcp2_disable_encryption(struct intel_connector *connector)
1815 {
1816 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1817 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1818 struct intel_hdcp *hdcp = &connector->hdcp;
1819 enum port port = dig_port->base.port;
1820 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1821 int ret;
1822
1823 drm_WARN_ON(&i915->drm, !(intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1824 LINK_ENCRYPTION_STATUS));
1825
1826 intel_de_rmw(i915, HDCP2_CTL(i915, cpu_transcoder, port),
1827 CTL_LINK_ENCRYPTION_REQ, 0);
1828
1829 ret = intel_de_wait_for_clear(i915,
1830 HDCP2_STATUS(i915, cpu_transcoder,
1831 port),
1832 LINK_ENCRYPTION_STATUS,
1833 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1834 if (ret == -ETIMEDOUT)
1835 drm_dbg_kms(&i915->drm, "Disable Encryption Timedout");
1836
1837 if (hdcp->shim->toggle_signalling) {
1838 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1839 false);
1840 if (ret) {
1841 drm_err(&i915->drm,
1842 "Failed to disable HDCP signalling. %d\n",
1843 ret);
1844 return ret;
1845 }
1846 }
1847
1848 return ret;
1849 }
1850
1851 static int
hdcp2_propagate_stream_management_info(struct intel_connector * connector)1852 hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1853 {
1854 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1855 int i, tries = 3, ret;
1856
1857 if (!connector->hdcp.is_repeater)
1858 return 0;
1859
1860 for (i = 0; i < tries; i++) {
1861 ret = _hdcp2_propagate_stream_management_info(connector);
1862 if (!ret)
1863 break;
1864
1865 /* Lets restart the auth incase of seq_num_m roll over */
1866 if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1867 drm_dbg_kms(&i915->drm,
1868 "seq_num_m roll over.(%d)\n", ret);
1869 break;
1870 }
1871
1872 drm_dbg_kms(&i915->drm,
1873 "HDCP2 stream management %d of %d Failed.(%d)\n",
1874 i + 1, tries, ret);
1875 }
1876
1877 return ret;
1878 }
1879
hdcp2_authenticate_and_encrypt(struct intel_connector * connector)1880 static int hdcp2_authenticate_and_encrypt(struct intel_connector *connector)
1881 {
1882 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1883 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1884 int ret = 0, i, tries = 3;
1885
1886 for (i = 0; i < tries && !dig_port->hdcp_auth_status; i++) {
1887 ret = hdcp2_authenticate_sink(connector);
1888 if (!ret) {
1889 intel_hdcp_prepare_streams(connector);
1890
1891 ret = hdcp2_propagate_stream_management_info(connector);
1892 if (ret) {
1893 drm_dbg_kms(&i915->drm,
1894 "Stream management failed.(%d)\n",
1895 ret);
1896 break;
1897 }
1898
1899 ret = hdcp2_authenticate_port(connector);
1900 if (!ret)
1901 break;
1902 drm_dbg_kms(&i915->drm, "HDCP2 port auth failed.(%d)\n",
1903 ret);
1904 }
1905
1906 /* Clearing the mei hdcp session */
1907 drm_dbg_kms(&i915->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
1908 i + 1, tries, ret);
1909 if (hdcp2_deauthenticate_port(connector) < 0)
1910 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1911 }
1912
1913 if (!ret && !dig_port->hdcp_auth_status) {
1914 /*
1915 * Ensuring the required 200mSec min time interval between
1916 * Session Key Exchange and encryption.
1917 */
1918 msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
1919 ret = hdcp2_enable_encryption(connector);
1920 if (ret < 0) {
1921 drm_dbg_kms(&i915->drm,
1922 "Encryption Enable Failed.(%d)\n", ret);
1923 if (hdcp2_deauthenticate_port(connector) < 0)
1924 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1925 }
1926 }
1927
1928 if (!ret)
1929 ret = hdcp2_enable_stream_encryption(connector);
1930
1931 return ret;
1932 }
1933
_intel_hdcp2_enable(struct intel_connector * connector)1934 static int _intel_hdcp2_enable(struct intel_connector *connector)
1935 {
1936 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1937 struct intel_hdcp *hdcp = &connector->hdcp;
1938 int ret;
1939
1940 drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being enabled. Type: %d\n",
1941 connector->base.name, connector->base.base.id,
1942 hdcp->content_type);
1943
1944 ret = hdcp2_authenticate_and_encrypt(connector);
1945 if (ret) {
1946 drm_dbg_kms(&i915->drm, "HDCP2 Type%d Enabling Failed. (%d)\n",
1947 hdcp->content_type, ret);
1948 return ret;
1949 }
1950
1951 drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is enabled. Type %d\n",
1952 connector->base.name, connector->base.base.id,
1953 hdcp->content_type);
1954
1955 hdcp->hdcp2_encrypted = true;
1956 return 0;
1957 }
1958
1959 static int
_intel_hdcp2_disable(struct intel_connector * connector,bool hdcp2_link_recovery)1960 _intel_hdcp2_disable(struct intel_connector *connector, bool hdcp2_link_recovery)
1961 {
1962 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1963 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1964 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1965 struct intel_hdcp *hdcp = &connector->hdcp;
1966 int ret;
1967
1968 drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being Disabled\n",
1969 connector->base.name, connector->base.base.id);
1970
1971 if (hdcp->shim->stream_2_2_encryption) {
1972 ret = hdcp->shim->stream_2_2_encryption(connector, false);
1973 if (ret) {
1974 drm_err(&i915->drm, "[%s:%d] Failed to disable HDCP 2.2 stream enc\n",
1975 connector->base.name, connector->base.base.id);
1976 return ret;
1977 }
1978 drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encryption disabled\n",
1979 transcoder_name(hdcp->stream_transcoder));
1980
1981 if (dig_port->num_hdcp_streams > 0 && !hdcp2_link_recovery)
1982 return 0;
1983 }
1984
1985 ret = hdcp2_disable_encryption(connector);
1986
1987 if (hdcp2_deauthenticate_port(connector) < 0)
1988 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1989
1990 connector->hdcp.hdcp2_encrypted = false;
1991 dig_port->hdcp_auth_status = false;
1992 data->k = 0;
1993
1994 return ret;
1995 }
1996
1997 /* Implements the Link Integrity Check for HDCP2.2 */
intel_hdcp2_check_link(struct intel_connector * connector)1998 static int intel_hdcp2_check_link(struct intel_connector *connector)
1999 {
2000 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2001 struct drm_i915_private *i915 = to_i915(connector->base.dev);
2002 struct intel_hdcp *hdcp = &connector->hdcp;
2003 enum port port = dig_port->base.port;
2004 enum transcoder cpu_transcoder;
2005 int ret = 0;
2006
2007 mutex_lock(&hdcp->mutex);
2008 mutex_lock(&dig_port->hdcp_mutex);
2009 cpu_transcoder = hdcp->cpu_transcoder;
2010
2011 /* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
2012 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
2013 !hdcp->hdcp2_encrypted) {
2014 ret = -EINVAL;
2015 goto out;
2016 }
2017
2018 if (drm_WARN_ON(&i915->drm,
2019 !intel_hdcp2_in_use(i915, cpu_transcoder, port))) {
2020 drm_err(&i915->drm,
2021 "HDCP2.2 link stopped the encryption, %x\n",
2022 intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)));
2023 ret = -ENXIO;
2024 _intel_hdcp2_disable(connector, true);
2025 intel_hdcp_update_value(connector,
2026 DRM_MODE_CONTENT_PROTECTION_DESIRED,
2027 true);
2028 goto out;
2029 }
2030
2031 ret = hdcp->shim->check_2_2_link(dig_port, connector);
2032 if (ret == HDCP_LINK_PROTECTED) {
2033 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2034 intel_hdcp_update_value(connector,
2035 DRM_MODE_CONTENT_PROTECTION_ENABLED,
2036 true);
2037 }
2038 goto out;
2039 }
2040
2041 if (ret == HDCP_TOPOLOGY_CHANGE) {
2042 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2043 goto out;
2044
2045 drm_dbg_kms(&i915->drm,
2046 "HDCP2.2 Downstream topology change\n");
2047 ret = hdcp2_authenticate_repeater_topology(connector);
2048 if (!ret) {
2049 intel_hdcp_update_value(connector,
2050 DRM_MODE_CONTENT_PROTECTION_ENABLED,
2051 true);
2052 goto out;
2053 }
2054 drm_dbg_kms(&i915->drm,
2055 "[%s:%d] Repeater topology auth failed.(%d)\n",
2056 connector->base.name, connector->base.base.id,
2057 ret);
2058 } else {
2059 drm_dbg_kms(&i915->drm,
2060 "[%s:%d] HDCP2.2 link failed, retrying auth\n",
2061 connector->base.name, connector->base.base.id);
2062 }
2063
2064 ret = _intel_hdcp2_disable(connector, true);
2065 if (ret) {
2066 drm_err(&i915->drm,
2067 "[%s:%d] Failed to disable hdcp2.2 (%d)\n",
2068 connector->base.name, connector->base.base.id, ret);
2069 intel_hdcp_update_value(connector,
2070 DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2071 goto out;
2072 }
2073
2074 ret = _intel_hdcp2_enable(connector);
2075 if (ret) {
2076 drm_dbg_kms(&i915->drm,
2077 "[%s:%d] Failed to enable hdcp2.2 (%d)\n",
2078 connector->base.name, connector->base.base.id,
2079 ret);
2080 intel_hdcp_update_value(connector,
2081 DRM_MODE_CONTENT_PROTECTION_DESIRED,
2082 true);
2083 goto out;
2084 }
2085
2086 out:
2087 mutex_unlock(&dig_port->hdcp_mutex);
2088 mutex_unlock(&hdcp->mutex);
2089 return ret;
2090 }
2091
intel_hdcp_check_work(struct work_struct * work)2092 static void intel_hdcp_check_work(struct work_struct *work)
2093 {
2094 struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
2095 struct intel_hdcp,
2096 check_work);
2097 struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
2098 struct drm_i915_private *i915 = to_i915(connector->base.dev);
2099
2100 if (drm_connector_is_unregistered(&connector->base))
2101 return;
2102
2103 if (!intel_hdcp2_check_link(connector))
2104 queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2105 DRM_HDCP2_CHECK_PERIOD_MS);
2106 else if (!intel_hdcp_check_link(connector))
2107 queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2108 DRM_HDCP_CHECK_PERIOD_MS);
2109 }
2110
i915_hdcp_component_bind(struct device * i915_kdev,struct device * mei_kdev,void * data)2111 static int i915_hdcp_component_bind(struct device *i915_kdev,
2112 struct device *mei_kdev, void *data)
2113 {
2114 struct drm_i915_private *i915 = kdev_to_i915(i915_kdev);
2115
2116 drm_dbg(&i915->drm, "I915 HDCP comp bind\n");
2117 mutex_lock(&i915->display.hdcp.hdcp_mutex);
2118 i915->display.hdcp.arbiter = (struct i915_hdcp_arbiter *)data;
2119 i915->display.hdcp.arbiter->hdcp_dev = mei_kdev;
2120 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2121
2122 return 0;
2123 }
2124
i915_hdcp_component_unbind(struct device * i915_kdev,struct device * mei_kdev,void * data)2125 static void i915_hdcp_component_unbind(struct device *i915_kdev,
2126 struct device *mei_kdev, void *data)
2127 {
2128 struct drm_i915_private *i915 = kdev_to_i915(i915_kdev);
2129
2130 drm_dbg(&i915->drm, "I915 HDCP comp unbind\n");
2131 mutex_lock(&i915->display.hdcp.hdcp_mutex);
2132 i915->display.hdcp.arbiter = NULL;
2133 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2134 }
2135
2136 static const struct component_ops i915_hdcp_ops = {
2137 .bind = i915_hdcp_component_bind,
2138 .unbind = i915_hdcp_component_unbind,
2139 };
2140
intel_get_hdcp_ddi_index(enum port port)2141 static enum hdcp_ddi intel_get_hdcp_ddi_index(enum port port)
2142 {
2143 switch (port) {
2144 case PORT_A:
2145 return HDCP_DDI_A;
2146 case PORT_B ... PORT_F:
2147 return (enum hdcp_ddi)port;
2148 default:
2149 return HDCP_DDI_INVALID_PORT;
2150 }
2151 }
2152
intel_get_hdcp_transcoder(enum transcoder cpu_transcoder)2153 static enum hdcp_transcoder intel_get_hdcp_transcoder(enum transcoder cpu_transcoder)
2154 {
2155 switch (cpu_transcoder) {
2156 case TRANSCODER_A ... TRANSCODER_D:
2157 return (enum hdcp_transcoder)(cpu_transcoder | 0x10);
2158 default: /* eDP, DSI TRANSCODERS are non HDCP capable */
2159 return HDCP_INVALID_TRANSCODER;
2160 }
2161 }
2162
initialize_hdcp_port_data(struct intel_connector * connector,struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim)2163 static int initialize_hdcp_port_data(struct intel_connector *connector,
2164 struct intel_digital_port *dig_port,
2165 const struct intel_hdcp_shim *shim)
2166 {
2167 struct drm_i915_private *i915 = to_i915(connector->base.dev);
2168 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2169 enum port port = dig_port->base.port;
2170
2171 if (DISPLAY_VER(i915) < 12)
2172 data->hdcp_ddi = intel_get_hdcp_ddi_index(port);
2173 else
2174 /*
2175 * As per ME FW API expectation, for GEN 12+, hdcp_ddi is filled
2176 * with zero(INVALID PORT index).
2177 */
2178 data->hdcp_ddi = HDCP_DDI_INVALID_PORT;
2179
2180 /*
2181 * As associated transcoder is set and modified at modeset, here hdcp_transcoder
2182 * is initialized to zero (invalid transcoder index). This will be
2183 * retained for <Gen12 forever.
2184 */
2185 data->hdcp_transcoder = HDCP_INVALID_TRANSCODER;
2186
2187 data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
2188 data->protocol = (u8)shim->protocol;
2189
2190 if (!data->streams)
2191 data->streams = kcalloc(INTEL_NUM_PIPES(i915),
2192 sizeof(struct hdcp2_streamid_type),
2193 GFP_KERNEL);
2194 if (!data->streams) {
2195 drm_err(&i915->drm, "Out of Memory\n");
2196 return -ENOMEM;
2197 }
2198
2199 return 0;
2200 }
2201
is_hdcp2_supported(struct drm_i915_private * i915)2202 static bool is_hdcp2_supported(struct drm_i915_private *i915)
2203 {
2204 if (intel_hdcp_gsc_cs_required(i915))
2205 return true;
2206
2207 if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
2208 return false;
2209
2210 return (DISPLAY_VER(i915) >= 10 ||
2211 IS_KABYLAKE(i915) ||
2212 IS_COFFEELAKE(i915) ||
2213 IS_COMETLAKE(i915));
2214 }
2215
intel_hdcp_component_init(struct drm_i915_private * i915)2216 void intel_hdcp_component_init(struct drm_i915_private *i915)
2217 {
2218 int ret;
2219
2220 if (!is_hdcp2_supported(i915))
2221 return;
2222
2223 mutex_lock(&i915->display.hdcp.hdcp_mutex);
2224 drm_WARN_ON(&i915->drm, i915->display.hdcp.comp_added);
2225
2226 i915->display.hdcp.comp_added = true;
2227 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2228 if (intel_hdcp_gsc_cs_required(i915))
2229 ret = intel_hdcp_gsc_init(i915);
2230 else
2231 ret = component_add_typed(i915->drm.dev, &i915_hdcp_ops,
2232 I915_COMPONENT_HDCP);
2233
2234 if (ret < 0) {
2235 drm_dbg_kms(&i915->drm, "Failed at fw component add(%d)\n",
2236 ret);
2237 mutex_lock(&i915->display.hdcp.hdcp_mutex);
2238 i915->display.hdcp.comp_added = false;
2239 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2240 return;
2241 }
2242 }
2243
intel_hdcp2_init(struct intel_connector * connector,struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim)2244 static void intel_hdcp2_init(struct intel_connector *connector,
2245 struct intel_digital_port *dig_port,
2246 const struct intel_hdcp_shim *shim)
2247 {
2248 struct drm_i915_private *i915 = to_i915(connector->base.dev);
2249 struct intel_hdcp *hdcp = &connector->hdcp;
2250 int ret;
2251
2252 ret = initialize_hdcp_port_data(connector, dig_port, shim);
2253 if (ret) {
2254 drm_dbg_kms(&i915->drm, "Mei hdcp data init failed\n");
2255 return;
2256 }
2257
2258 hdcp->hdcp2_supported = true;
2259 }
2260
intel_hdcp_init(struct intel_connector * connector,struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim)2261 int intel_hdcp_init(struct intel_connector *connector,
2262 struct intel_digital_port *dig_port,
2263 const struct intel_hdcp_shim *shim)
2264 {
2265 struct drm_i915_private *i915 = to_i915(connector->base.dev);
2266 struct intel_hdcp *hdcp = &connector->hdcp;
2267 int ret;
2268
2269 if (!shim)
2270 return -EINVAL;
2271
2272 if (is_hdcp2_supported(i915))
2273 intel_hdcp2_init(connector, dig_port, shim);
2274
2275 ret =
2276 drm_connector_attach_content_protection_property(&connector->base,
2277 hdcp->hdcp2_supported);
2278 if (ret) {
2279 hdcp->hdcp2_supported = false;
2280 kfree(dig_port->hdcp_port_data.streams);
2281 return ret;
2282 }
2283
2284 hdcp->shim = shim;
2285 mutex_init(&hdcp->mutex);
2286 INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
2287 INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
2288 init_waitqueue_head(&hdcp->cp_irq_queue);
2289
2290 return 0;
2291 }
2292
2293 static int
intel_hdcp_set_streams(struct intel_digital_port * dig_port,struct intel_atomic_state * state)2294 intel_hdcp_set_streams(struct intel_digital_port *dig_port,
2295 struct intel_atomic_state *state)
2296 {
2297 struct drm_connector_list_iter conn_iter;
2298 struct intel_digital_port *conn_dig_port;
2299 struct intel_connector *connector;
2300 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
2301 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2302
2303 if (!intel_encoder_is_mst(&dig_port->base)) {
2304 data->k = 1;
2305 data->streams[0].stream_id = 0;
2306 return 0;
2307 }
2308
2309 data->k = 0;
2310
2311 drm_connector_list_iter_begin(&i915->drm, &conn_iter);
2312 for_each_intel_connector_iter(connector, &conn_iter) {
2313 if (connector->base.status == connector_status_disconnected)
2314 continue;
2315
2316 if (!intel_encoder_is_mst(intel_attached_encoder(connector)))
2317 continue;
2318
2319 conn_dig_port = intel_attached_dig_port(connector);
2320 if (conn_dig_port != dig_port)
2321 continue;
2322
2323 data->streams[data->k].stream_id =
2324 intel_conn_to_vcpi(&state->base, connector);
2325 data->k++;
2326
2327 /* if there is only one active stream */
2328 if (dig_port->dp.active_mst_links <= 1)
2329 break;
2330 }
2331 drm_connector_list_iter_end(&conn_iter);
2332
2333 if (drm_WARN_ON(&i915->drm, data->k > INTEL_NUM_PIPES(i915) || data->k == 0))
2334 return -EINVAL;
2335
2336 return 0;
2337 }
2338
intel_hdcp_enable(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)2339 int intel_hdcp_enable(struct intel_atomic_state *state,
2340 struct intel_encoder *encoder,
2341 const struct intel_crtc_state *pipe_config,
2342 const struct drm_connector_state *conn_state)
2343 {
2344 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2345 struct intel_connector *connector =
2346 to_intel_connector(conn_state->connector);
2347 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2348 struct intel_hdcp *hdcp = &connector->hdcp;
2349 unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
2350 int ret = -EINVAL;
2351
2352 if (!hdcp->shim)
2353 return -ENOENT;
2354
2355 if (!connector->encoder) {
2356 drm_err(&i915->drm, "[%s:%d] encoder is not initialized\n",
2357 connector->base.name, connector->base.base.id);
2358 return -ENODEV;
2359 }
2360
2361 mutex_lock(&hdcp->mutex);
2362 mutex_lock(&dig_port->hdcp_mutex);
2363 drm_WARN_ON(&i915->drm,
2364 hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
2365 hdcp->content_type = (u8)conn_state->hdcp_content_type;
2366
2367 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) {
2368 hdcp->cpu_transcoder = pipe_config->mst_master_transcoder;
2369 hdcp->stream_transcoder = pipe_config->cpu_transcoder;
2370 } else {
2371 hdcp->cpu_transcoder = pipe_config->cpu_transcoder;
2372 hdcp->stream_transcoder = INVALID_TRANSCODER;
2373 }
2374
2375 if (DISPLAY_VER(i915) >= 12)
2376 dig_port->hdcp_port_data.hdcp_transcoder =
2377 intel_get_hdcp_transcoder(hdcp->cpu_transcoder);
2378
2379 /*
2380 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
2381 * is capable of HDCP2.2, it is preferred to use HDCP2.2.
2382 */
2383 if (intel_hdcp2_capable(connector)) {
2384 ret = intel_hdcp_set_streams(dig_port, state);
2385 if (!ret) {
2386 ret = _intel_hdcp2_enable(connector);
2387 if (!ret)
2388 check_link_interval =
2389 DRM_HDCP2_CHECK_PERIOD_MS;
2390 } else {
2391 drm_dbg_kms(&i915->drm,
2392 "Set content streams failed: (%d)\n",
2393 ret);
2394 }
2395 }
2396
2397 /*
2398 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
2399 * be attempted.
2400 */
2401 if (ret && intel_hdcp_capable(connector) &&
2402 hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
2403 ret = _intel_hdcp_enable(connector);
2404 }
2405
2406 if (!ret) {
2407 queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2408 check_link_interval);
2409 intel_hdcp_update_value(connector,
2410 DRM_MODE_CONTENT_PROTECTION_ENABLED,
2411 true);
2412 }
2413
2414 mutex_unlock(&dig_port->hdcp_mutex);
2415 mutex_unlock(&hdcp->mutex);
2416 return ret;
2417 }
2418
intel_hdcp_disable(struct intel_connector * connector)2419 int intel_hdcp_disable(struct intel_connector *connector)
2420 {
2421 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2422 struct intel_hdcp *hdcp = &connector->hdcp;
2423 int ret = 0;
2424
2425 if (!hdcp->shim)
2426 return -ENOENT;
2427
2428 mutex_lock(&hdcp->mutex);
2429 mutex_lock(&dig_port->hdcp_mutex);
2430
2431 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2432 goto out;
2433
2434 intel_hdcp_update_value(connector,
2435 DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false);
2436 if (hdcp->hdcp2_encrypted)
2437 ret = _intel_hdcp2_disable(connector, false);
2438 else if (hdcp->hdcp_encrypted)
2439 ret = _intel_hdcp_disable(connector);
2440
2441 out:
2442 mutex_unlock(&dig_port->hdcp_mutex);
2443 mutex_unlock(&hdcp->mutex);
2444 cancel_delayed_work_sync(&hdcp->check_work);
2445 return ret;
2446 }
2447
intel_hdcp_update_pipe(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2448 void intel_hdcp_update_pipe(struct intel_atomic_state *state,
2449 struct intel_encoder *encoder,
2450 const struct intel_crtc_state *crtc_state,
2451 const struct drm_connector_state *conn_state)
2452 {
2453 struct intel_connector *connector =
2454 to_intel_connector(conn_state->connector);
2455 struct intel_hdcp *hdcp = &connector->hdcp;
2456 bool content_protection_type_changed, desired_and_not_enabled = false;
2457 struct drm_i915_private *i915 = to_i915(connector->base.dev);
2458
2459 if (!connector->hdcp.shim)
2460 return;
2461
2462 content_protection_type_changed =
2463 (conn_state->hdcp_content_type != hdcp->content_type &&
2464 conn_state->content_protection !=
2465 DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
2466
2467 /*
2468 * During the HDCP encryption session if Type change is requested,
2469 * disable the HDCP and reenable it with new TYPE value.
2470 */
2471 if (conn_state->content_protection ==
2472 DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
2473 content_protection_type_changed)
2474 intel_hdcp_disable(connector);
2475
2476 /*
2477 * Mark the hdcp state as DESIRED after the hdcp disable of type
2478 * change procedure.
2479 */
2480 if (content_protection_type_changed) {
2481 mutex_lock(&hdcp->mutex);
2482 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
2483 drm_connector_get(&connector->base);
2484 if (!queue_work(i915->unordered_wq, &hdcp->prop_work))
2485 drm_connector_put(&connector->base);
2486 mutex_unlock(&hdcp->mutex);
2487 }
2488
2489 if (conn_state->content_protection ==
2490 DRM_MODE_CONTENT_PROTECTION_DESIRED) {
2491 mutex_lock(&hdcp->mutex);
2492 /* Avoid enabling hdcp, if it already ENABLED */
2493 desired_and_not_enabled =
2494 hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
2495 mutex_unlock(&hdcp->mutex);
2496 /*
2497 * If HDCP already ENABLED and CP property is DESIRED, schedule
2498 * prop_work to update correct CP property to user space.
2499 */
2500 if (!desired_and_not_enabled && !content_protection_type_changed) {
2501 drm_connector_get(&connector->base);
2502 if (!queue_work(i915->unordered_wq, &hdcp->prop_work))
2503 drm_connector_put(&connector->base);
2504
2505 }
2506 }
2507
2508 if (desired_and_not_enabled || content_protection_type_changed)
2509 intel_hdcp_enable(state, encoder, crtc_state, conn_state);
2510 }
2511
intel_hdcp_component_fini(struct drm_i915_private * i915)2512 void intel_hdcp_component_fini(struct drm_i915_private *i915)
2513 {
2514 mutex_lock(&i915->display.hdcp.hdcp_mutex);
2515 if (!i915->display.hdcp.comp_added) {
2516 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2517 return;
2518 }
2519
2520 i915->display.hdcp.comp_added = false;
2521 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2522
2523 if (intel_hdcp_gsc_cs_required(i915))
2524 intel_hdcp_gsc_fini(i915);
2525 else
2526 component_del(i915->drm.dev, &i915_hdcp_ops);
2527 }
2528
intel_hdcp_cleanup(struct intel_connector * connector)2529 void intel_hdcp_cleanup(struct intel_connector *connector)
2530 {
2531 struct intel_hdcp *hdcp = &connector->hdcp;
2532
2533 if (!hdcp->shim)
2534 return;
2535
2536 /*
2537 * If the connector is registered, it's possible userspace could kick
2538 * off another HDCP enable, which would re-spawn the workers.
2539 */
2540 drm_WARN_ON(connector->base.dev,
2541 connector->base.registration_state == DRM_CONNECTOR_REGISTERED);
2542
2543 /*
2544 * Now that the connector is not registered, check_work won't be run,
2545 * but cancel any outstanding instances of it
2546 */
2547 cancel_delayed_work_sync(&hdcp->check_work);
2548
2549 /*
2550 * We don't cancel prop_work in the same way as check_work since it
2551 * requires connection_mutex which could be held while calling this
2552 * function. Instead, we rely on the connector references grabbed before
2553 * scheduling prop_work to ensure the connector is alive when prop_work
2554 * is run. So if we're in the destroy path (which is where this
2555 * function should be called), we're "guaranteed" that prop_work is not
2556 * active (tl;dr This Should Never Happen).
2557 */
2558 drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work));
2559
2560 mutex_lock(&hdcp->mutex);
2561 hdcp->shim = NULL;
2562 mutex_unlock(&hdcp->mutex);
2563 }
2564
intel_hdcp_atomic_check(struct drm_connector * connector,struct drm_connector_state * old_state,struct drm_connector_state * new_state)2565 void intel_hdcp_atomic_check(struct drm_connector *connector,
2566 struct drm_connector_state *old_state,
2567 struct drm_connector_state *new_state)
2568 {
2569 u64 old_cp = old_state->content_protection;
2570 u64 new_cp = new_state->content_protection;
2571 struct drm_crtc_state *crtc_state;
2572
2573 if (!new_state->crtc) {
2574 /*
2575 * If the connector is being disabled with CP enabled, mark it
2576 * desired so it's re-enabled when the connector is brought back
2577 */
2578 if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2579 new_state->content_protection =
2580 DRM_MODE_CONTENT_PROTECTION_DESIRED;
2581 return;
2582 }
2583
2584 crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2585 new_state->crtc);
2586 /*
2587 * Fix the HDCP uapi content protection state in case of modeset.
2588 * FIXME: As per HDCP content protection property uapi doc, an uevent()
2589 * need to be sent if there is transition from ENABLED->DESIRED.
2590 */
2591 if (drm_atomic_crtc_needs_modeset(crtc_state) &&
2592 (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
2593 new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2594 new_state->content_protection =
2595 DRM_MODE_CONTENT_PROTECTION_DESIRED;
2596
2597 /*
2598 * Nothing to do if the state didn't change, or HDCP was activated since
2599 * the last commit. And also no change in hdcp content type.
2600 */
2601 if (old_cp == new_cp ||
2602 (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2603 new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2604 if (old_state->hdcp_content_type ==
2605 new_state->hdcp_content_type)
2606 return;
2607 }
2608
2609 crtc_state->mode_changed = true;
2610 }
2611
2612 /* Handles the CP_IRQ raised from the DP HDCP sink */
intel_hdcp_handle_cp_irq(struct intel_connector * connector)2613 void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2614 {
2615 struct intel_hdcp *hdcp = &connector->hdcp;
2616 struct drm_i915_private *i915 = to_i915(connector->base.dev);
2617
2618 if (!hdcp->shim)
2619 return;
2620
2621 atomic_inc(&connector->hdcp.cp_irq_count);
2622 wake_up_all(&connector->hdcp.cp_irq_queue);
2623
2624 queue_delayed_work(i915->unordered_wq, &hdcp->check_work, 0);
2625 }
2626