1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple CPU accounting cgroup controller
4 */
5
6 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
7 #include <asm/cputime.h>
8 #endif
9
10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
11
12 /*
13 * There are no locks covering percpu hardirq/softirq time.
14 * They are only modified in vtime_account, on corresponding CPU
15 * with interrupts disabled. So, writes are safe.
16 * They are read and saved off onto struct rq in update_rq_clock().
17 * This may result in other CPU reading this CPU's irq time and can
18 * race with irq/vtime_account on this CPU. We would either get old
19 * or new value with a side effect of accounting a slice of irq time to wrong
20 * task when irq is in progress while we read rq->clock. That is a worthy
21 * compromise in place of having locks on each irq in account_system_time.
22 */
23 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
24
25 static int sched_clock_irqtime;
26
enable_sched_clock_irqtime(void)27 void enable_sched_clock_irqtime(void)
28 {
29 sched_clock_irqtime = 1;
30 }
31
disable_sched_clock_irqtime(void)32 void disable_sched_clock_irqtime(void)
33 {
34 sched_clock_irqtime = 0;
35 }
36
irqtime_account_delta(struct irqtime * irqtime,u64 delta,enum cpu_usage_stat idx)37 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
38 enum cpu_usage_stat idx)
39 {
40 u64 *cpustat = kcpustat_this_cpu->cpustat;
41
42 u64_stats_update_begin(&irqtime->sync);
43 cpustat[idx] += delta;
44 irqtime->total += delta;
45 irqtime->tick_delta += delta;
46 u64_stats_update_end(&irqtime->sync);
47 }
48
49 /*
50 * Called after incrementing preempt_count on {soft,}irq_enter
51 * and before decrementing preempt_count on {soft,}irq_exit.
52 */
irqtime_account_irq(struct task_struct * curr,unsigned int offset)53 void irqtime_account_irq(struct task_struct *curr, unsigned int offset)
54 {
55 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
56 unsigned int pc;
57 s64 delta;
58 int cpu;
59
60 if (!sched_clock_irqtime)
61 return;
62
63 cpu = smp_processor_id();
64 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
65 irqtime->irq_start_time += delta;
66 pc = irq_count() - offset;
67
68 /*
69 * We do not account for softirq time from ksoftirqd here.
70 * We want to continue accounting softirq time to ksoftirqd thread
71 * in that case, so as not to confuse scheduler with a special task
72 * that do not consume any time, but still wants to run.
73 */
74 if (pc & HARDIRQ_MASK)
75 irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
76 else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd())
77 irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
78 }
79
irqtime_tick_accounted(u64 maxtime)80 static u64 irqtime_tick_accounted(u64 maxtime)
81 {
82 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
83 u64 delta;
84
85 delta = min(irqtime->tick_delta, maxtime);
86 irqtime->tick_delta -= delta;
87
88 return delta;
89 }
90
91 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
92
93 #define sched_clock_irqtime (0)
94
irqtime_tick_accounted(u64 dummy)95 static u64 irqtime_tick_accounted(u64 dummy)
96 {
97 return 0;
98 }
99
100 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
101
task_group_account_field(struct task_struct * p,int index,u64 tmp)102 static inline void task_group_account_field(struct task_struct *p, int index,
103 u64 tmp)
104 {
105 /*
106 * Since all updates are sure to touch the root cgroup, we
107 * get ourselves ahead and touch it first. If the root cgroup
108 * is the only cgroup, then nothing else should be necessary.
109 *
110 */
111 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
112
113 cgroup_account_cputime_field(p, index, tmp);
114 }
115
116 /*
117 * Account user CPU time to a process.
118 * @p: the process that the CPU time gets accounted to
119 * @cputime: the CPU time spent in user space since the last update
120 */
account_user_time(struct task_struct * p,u64 cputime)121 void account_user_time(struct task_struct *p, u64 cputime)
122 {
123 int index;
124
125 /* Add user time to process. */
126 p->utime += cputime;
127 account_group_user_time(p, cputime);
128
129 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
130
131 /* Add user time to cpustat. */
132 task_group_account_field(p, index, cputime);
133
134 /* Account for user time used */
135 acct_account_cputime(p);
136 }
137
138 /*
139 * Account guest CPU time to a process.
140 * @p: the process that the CPU time gets accounted to
141 * @cputime: the CPU time spent in virtual machine since the last update
142 */
account_guest_time(struct task_struct * p,u64 cputime)143 void account_guest_time(struct task_struct *p, u64 cputime)
144 {
145 u64 *cpustat = kcpustat_this_cpu->cpustat;
146
147 /* Add guest time to process. */
148 p->utime += cputime;
149 account_group_user_time(p, cputime);
150 p->gtime += cputime;
151
152 /* Add guest time to cpustat. */
153 if (task_nice(p) > 0) {
154 task_group_account_field(p, CPUTIME_NICE, cputime);
155 cpustat[CPUTIME_GUEST_NICE] += cputime;
156 } else {
157 task_group_account_field(p, CPUTIME_USER, cputime);
158 cpustat[CPUTIME_GUEST] += cputime;
159 }
160 }
161
162 /*
163 * Account system CPU time to a process and desired cpustat field
164 * @p: the process that the CPU time gets accounted to
165 * @cputime: the CPU time spent in kernel space since the last update
166 * @index: pointer to cpustat field that has to be updated
167 */
account_system_index_time(struct task_struct * p,u64 cputime,enum cpu_usage_stat index)168 void account_system_index_time(struct task_struct *p,
169 u64 cputime, enum cpu_usage_stat index)
170 {
171 /* Add system time to process. */
172 p->stime += cputime;
173 account_group_system_time(p, cputime);
174
175 /* Add system time to cpustat. */
176 task_group_account_field(p, index, cputime);
177
178 /* Account for system time used */
179 acct_account_cputime(p);
180 }
181
182 /*
183 * Account system CPU time to a process.
184 * @p: the process that the CPU time gets accounted to
185 * @hardirq_offset: the offset to subtract from hardirq_count()
186 * @cputime: the CPU time spent in kernel space since the last update
187 */
account_system_time(struct task_struct * p,int hardirq_offset,u64 cputime)188 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
189 {
190 int index;
191
192 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
193 account_guest_time(p, cputime);
194 return;
195 }
196
197 if (hardirq_count() - hardirq_offset)
198 index = CPUTIME_IRQ;
199 else if (in_serving_softirq())
200 index = CPUTIME_SOFTIRQ;
201 else
202 index = CPUTIME_SYSTEM;
203
204 account_system_index_time(p, cputime, index);
205 }
206
207 /*
208 * Account for involuntary wait time.
209 * @cputime: the CPU time spent in involuntary wait
210 */
account_steal_time(u64 cputime)211 void account_steal_time(u64 cputime)
212 {
213 u64 *cpustat = kcpustat_this_cpu->cpustat;
214
215 cpustat[CPUTIME_STEAL] += cputime;
216 }
217
218 /*
219 * Account for idle time.
220 * @cputime: the CPU time spent in idle wait
221 */
account_idle_time(u64 cputime)222 void account_idle_time(u64 cputime)
223 {
224 u64 *cpustat = kcpustat_this_cpu->cpustat;
225 struct rq *rq = this_rq();
226
227 if (atomic_read(&rq->nr_iowait) > 0)
228 cpustat[CPUTIME_IOWAIT] += cputime;
229 else
230 cpustat[CPUTIME_IDLE] += cputime;
231 }
232
233
234 #ifdef CONFIG_SCHED_CORE
235 /*
236 * Account for forceidle time due to core scheduling.
237 *
238 * REQUIRES: schedstat is enabled.
239 */
__account_forceidle_time(struct task_struct * p,u64 delta)240 void __account_forceidle_time(struct task_struct *p, u64 delta)
241 {
242 __schedstat_add(p->stats.core_forceidle_sum, delta);
243
244 task_group_account_field(p, CPUTIME_FORCEIDLE, delta);
245 }
246 #endif
247
248 /*
249 * When a guest is interrupted for a longer amount of time, missed clock
250 * ticks are not redelivered later. Due to that, this function may on
251 * occasion account more time than the calling functions think elapsed.
252 */
steal_account_process_time(u64 maxtime)253 static __always_inline u64 steal_account_process_time(u64 maxtime)
254 {
255 #ifdef CONFIG_PARAVIRT
256 if (static_key_false(¶virt_steal_enabled)) {
257 u64 steal;
258
259 steal = paravirt_steal_clock(smp_processor_id());
260 steal -= this_rq()->prev_steal_time;
261 steal = min(steal, maxtime);
262 account_steal_time(steal);
263 this_rq()->prev_steal_time += steal;
264
265 return steal;
266 }
267 #endif
268 return 0;
269 }
270
271 /*
272 * Account how much elapsed time was spent in steal, irq, or softirq time.
273 */
account_other_time(u64 max)274 static inline u64 account_other_time(u64 max)
275 {
276 u64 accounted;
277
278 lockdep_assert_irqs_disabled();
279
280 accounted = steal_account_process_time(max);
281
282 if (accounted < max)
283 accounted += irqtime_tick_accounted(max - accounted);
284
285 return accounted;
286 }
287
288 #ifdef CONFIG_64BIT
read_sum_exec_runtime(struct task_struct * t)289 static inline u64 read_sum_exec_runtime(struct task_struct *t)
290 {
291 return t->se.sum_exec_runtime;
292 }
293 #else
read_sum_exec_runtime(struct task_struct * t)294 static u64 read_sum_exec_runtime(struct task_struct *t)
295 {
296 u64 ns;
297 struct rq_flags rf;
298 struct rq *rq;
299
300 rq = task_rq_lock(t, &rf);
301 ns = t->se.sum_exec_runtime;
302 task_rq_unlock(rq, t, &rf);
303
304 return ns;
305 }
306 #endif
307
308 /*
309 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
310 * tasks (sum on group iteration) belonging to @tsk's group.
311 */
thread_group_cputime(struct task_struct * tsk,struct task_cputime * times)312 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
313 {
314 struct signal_struct *sig = tsk->signal;
315 u64 utime, stime;
316 struct task_struct *t;
317 unsigned int seq, nextseq;
318 unsigned long flags;
319
320 /*
321 * Update current task runtime to account pending time since last
322 * scheduler action or thread_group_cputime() call. This thread group
323 * might have other running tasks on different CPUs, but updating
324 * their runtime can affect syscall performance, so we skip account
325 * those pending times and rely only on values updated on tick or
326 * other scheduler action.
327 */
328 if (same_thread_group(current, tsk))
329 (void) task_sched_runtime(current);
330
331 rcu_read_lock();
332 /* Attempt a lockless read on the first round. */
333 nextseq = 0;
334 do {
335 seq = nextseq;
336 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
337 times->utime = sig->utime;
338 times->stime = sig->stime;
339 times->sum_exec_runtime = sig->sum_sched_runtime;
340
341 for_each_thread(tsk, t) {
342 task_cputime(t, &utime, &stime);
343 times->utime += utime;
344 times->stime += stime;
345 times->sum_exec_runtime += read_sum_exec_runtime(t);
346 }
347 /* If lockless access failed, take the lock. */
348 nextseq = 1;
349 } while (need_seqretry(&sig->stats_lock, seq));
350 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
351 rcu_read_unlock();
352 }
353
354 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
355 /*
356 * Account a tick to a process and cpustat
357 * @p: the process that the CPU time gets accounted to
358 * @user_tick: is the tick from userspace
359 * @rq: the pointer to rq
360 *
361 * Tick demultiplexing follows the order
362 * - pending hardirq update
363 * - pending softirq update
364 * - user_time
365 * - idle_time
366 * - system time
367 * - check for guest_time
368 * - else account as system_time
369 *
370 * Check for hardirq is done both for system and user time as there is
371 * no timer going off while we are on hardirq and hence we may never get an
372 * opportunity to update it solely in system time.
373 * p->stime and friends are only updated on system time and not on irq
374 * softirq as those do not count in task exec_runtime any more.
375 */
irqtime_account_process_tick(struct task_struct * p,int user_tick,int ticks)376 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
377 int ticks)
378 {
379 u64 other, cputime = TICK_NSEC * ticks;
380
381 /*
382 * When returning from idle, many ticks can get accounted at
383 * once, including some ticks of steal, irq, and softirq time.
384 * Subtract those ticks from the amount of time accounted to
385 * idle, or potentially user or system time. Due to rounding,
386 * other time can exceed ticks occasionally.
387 */
388 other = account_other_time(ULONG_MAX);
389 if (other >= cputime)
390 return;
391
392 cputime -= other;
393
394 if (this_cpu_ksoftirqd() == p) {
395 /*
396 * ksoftirqd time do not get accounted in cpu_softirq_time.
397 * So, we have to handle it separately here.
398 * Also, p->stime needs to be updated for ksoftirqd.
399 */
400 account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
401 } else if (user_tick) {
402 account_user_time(p, cputime);
403 } else if (p == this_rq()->idle) {
404 account_idle_time(cputime);
405 } else if (p->flags & PF_VCPU) { /* System time or guest time */
406 account_guest_time(p, cputime);
407 } else {
408 account_system_index_time(p, cputime, CPUTIME_SYSTEM);
409 }
410 }
411
irqtime_account_idle_ticks(int ticks)412 static void irqtime_account_idle_ticks(int ticks)
413 {
414 irqtime_account_process_tick(current, 0, ticks);
415 }
416 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
irqtime_account_idle_ticks(int ticks)417 static inline void irqtime_account_idle_ticks(int ticks) { }
irqtime_account_process_tick(struct task_struct * p,int user_tick,int nr_ticks)418 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
419 int nr_ticks) { }
420 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
421
422 /*
423 * Use precise platform statistics if available:
424 */
425 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
426
427 # ifndef __ARCH_HAS_VTIME_TASK_SWITCH
vtime_task_switch(struct task_struct * prev)428 void vtime_task_switch(struct task_struct *prev)
429 {
430 if (is_idle_task(prev))
431 vtime_account_idle(prev);
432 else
433 vtime_account_kernel(prev);
434
435 vtime_flush(prev);
436 arch_vtime_task_switch(prev);
437 }
438 # endif
439
vtime_account_irq(struct task_struct * tsk,unsigned int offset)440 void vtime_account_irq(struct task_struct *tsk, unsigned int offset)
441 {
442 unsigned int pc = irq_count() - offset;
443
444 if (pc & HARDIRQ_OFFSET) {
445 vtime_account_hardirq(tsk);
446 } else if (pc & SOFTIRQ_OFFSET) {
447 vtime_account_softirq(tsk);
448 } else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) &&
449 is_idle_task(tsk)) {
450 vtime_account_idle(tsk);
451 } else {
452 vtime_account_kernel(tsk);
453 }
454 }
455
cputime_adjust(struct task_cputime * curr,struct prev_cputime * prev,u64 * ut,u64 * st)456 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
457 u64 *ut, u64 *st)
458 {
459 *ut = curr->utime;
460 *st = curr->stime;
461 }
462
task_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)463 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
464 {
465 *ut = p->utime;
466 *st = p->stime;
467 }
468 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
469
thread_group_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)470 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
471 {
472 struct task_cputime cputime;
473
474 thread_group_cputime(p, &cputime);
475
476 *ut = cputime.utime;
477 *st = cputime.stime;
478 }
479
480 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
481
482 /*
483 * Account a single tick of CPU time.
484 * @p: the process that the CPU time gets accounted to
485 * @user_tick: indicates if the tick is a user or a system tick
486 */
account_process_tick(struct task_struct * p,int user_tick)487 void account_process_tick(struct task_struct *p, int user_tick)
488 {
489 u64 cputime, steal;
490
491 if (vtime_accounting_enabled_this_cpu())
492 return;
493
494 if (sched_clock_irqtime) {
495 irqtime_account_process_tick(p, user_tick, 1);
496 return;
497 }
498
499 cputime = TICK_NSEC;
500 steal = steal_account_process_time(ULONG_MAX);
501
502 if (steal >= cputime)
503 return;
504
505 cputime -= steal;
506
507 if (user_tick)
508 account_user_time(p, cputime);
509 else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
510 account_system_time(p, HARDIRQ_OFFSET, cputime);
511 else
512 account_idle_time(cputime);
513 }
514
515 /*
516 * Account multiple ticks of idle time.
517 * @ticks: number of stolen ticks
518 */
account_idle_ticks(unsigned long ticks)519 void account_idle_ticks(unsigned long ticks)
520 {
521 u64 cputime, steal;
522
523 if (sched_clock_irqtime) {
524 irqtime_account_idle_ticks(ticks);
525 return;
526 }
527
528 cputime = ticks * TICK_NSEC;
529 steal = steal_account_process_time(ULONG_MAX);
530
531 if (steal >= cputime)
532 return;
533
534 cputime -= steal;
535 account_idle_time(cputime);
536 }
537
538 /*
539 * Adjust tick based cputime random precision against scheduler runtime
540 * accounting.
541 *
542 * Tick based cputime accounting depend on random scheduling timeslices of a
543 * task to be interrupted or not by the timer. Depending on these
544 * circumstances, the number of these interrupts may be over or
545 * under-optimistic, matching the real user and system cputime with a variable
546 * precision.
547 *
548 * Fix this by scaling these tick based values against the total runtime
549 * accounted by the CFS scheduler.
550 *
551 * This code provides the following guarantees:
552 *
553 * stime + utime == rtime
554 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
555 *
556 * Assuming that rtime_i+1 >= rtime_i.
557 */
cputime_adjust(struct task_cputime * curr,struct prev_cputime * prev,u64 * ut,u64 * st)558 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
559 u64 *ut, u64 *st)
560 {
561 u64 rtime, stime, utime;
562 unsigned long flags;
563
564 /* Serialize concurrent callers such that we can honour our guarantees */
565 raw_spin_lock_irqsave(&prev->lock, flags);
566 rtime = curr->sum_exec_runtime;
567
568 /*
569 * This is possible under two circumstances:
570 * - rtime isn't monotonic after all (a bug);
571 * - we got reordered by the lock.
572 *
573 * In both cases this acts as a filter such that the rest of the code
574 * can assume it is monotonic regardless of anything else.
575 */
576 if (prev->stime + prev->utime >= rtime)
577 goto out;
578
579 stime = curr->stime;
580 utime = curr->utime;
581
582 /*
583 * If either stime or utime are 0, assume all runtime is userspace.
584 * Once a task gets some ticks, the monotonicity code at 'update:'
585 * will ensure things converge to the observed ratio.
586 */
587 if (stime == 0) {
588 utime = rtime;
589 goto update;
590 }
591
592 if (utime == 0) {
593 stime = rtime;
594 goto update;
595 }
596
597 stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
598 /*
599 * Because mul_u64_u64_div_u64() can approximate on some
600 * achitectures; enforce the constraint that: a*b/(b+c) <= a.
601 */
602 if (unlikely(stime > rtime))
603 stime = rtime;
604
605 update:
606 /*
607 * Make sure stime doesn't go backwards; this preserves monotonicity
608 * for utime because rtime is monotonic.
609 *
610 * utime_i+1 = rtime_i+1 - stime_i
611 * = rtime_i+1 - (rtime_i - utime_i)
612 * = (rtime_i+1 - rtime_i) + utime_i
613 * >= utime_i
614 */
615 if (stime < prev->stime)
616 stime = prev->stime;
617 utime = rtime - stime;
618
619 /*
620 * Make sure utime doesn't go backwards; this still preserves
621 * monotonicity for stime, analogous argument to above.
622 */
623 if (utime < prev->utime) {
624 utime = prev->utime;
625 stime = rtime - utime;
626 }
627
628 prev->stime = stime;
629 prev->utime = utime;
630 out:
631 *ut = prev->utime;
632 *st = prev->stime;
633 raw_spin_unlock_irqrestore(&prev->lock, flags);
634 }
635
task_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)636 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
637 {
638 struct task_cputime cputime = {
639 .sum_exec_runtime = p->se.sum_exec_runtime,
640 };
641
642 if (task_cputime(p, &cputime.utime, &cputime.stime))
643 cputime.sum_exec_runtime = task_sched_runtime(p);
644 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
645 }
646 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
647
thread_group_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)648 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
649 {
650 struct task_cputime cputime;
651
652 thread_group_cputime(p, &cputime);
653 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
654 }
655 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
656
657 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
vtime_delta(struct vtime * vtime)658 static u64 vtime_delta(struct vtime *vtime)
659 {
660 unsigned long long clock;
661
662 clock = sched_clock();
663 if (clock < vtime->starttime)
664 return 0;
665
666 return clock - vtime->starttime;
667 }
668
get_vtime_delta(struct vtime * vtime)669 static u64 get_vtime_delta(struct vtime *vtime)
670 {
671 u64 delta = vtime_delta(vtime);
672 u64 other;
673
674 /*
675 * Unlike tick based timing, vtime based timing never has lost
676 * ticks, and no need for steal time accounting to make up for
677 * lost ticks. Vtime accounts a rounded version of actual
678 * elapsed time. Limit account_other_time to prevent rounding
679 * errors from causing elapsed vtime to go negative.
680 */
681 other = account_other_time(delta);
682 WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
683 vtime->starttime += delta;
684
685 return delta - other;
686 }
687
vtime_account_system(struct task_struct * tsk,struct vtime * vtime)688 static void vtime_account_system(struct task_struct *tsk,
689 struct vtime *vtime)
690 {
691 vtime->stime += get_vtime_delta(vtime);
692 if (vtime->stime >= TICK_NSEC) {
693 account_system_time(tsk, irq_count(), vtime->stime);
694 vtime->stime = 0;
695 }
696 }
697
vtime_account_guest(struct task_struct * tsk,struct vtime * vtime)698 static void vtime_account_guest(struct task_struct *tsk,
699 struct vtime *vtime)
700 {
701 vtime->gtime += get_vtime_delta(vtime);
702 if (vtime->gtime >= TICK_NSEC) {
703 account_guest_time(tsk, vtime->gtime);
704 vtime->gtime = 0;
705 }
706 }
707
__vtime_account_kernel(struct task_struct * tsk,struct vtime * vtime)708 static void __vtime_account_kernel(struct task_struct *tsk,
709 struct vtime *vtime)
710 {
711 /* We might have scheduled out from guest path */
712 if (vtime->state == VTIME_GUEST)
713 vtime_account_guest(tsk, vtime);
714 else
715 vtime_account_system(tsk, vtime);
716 }
717
vtime_account_kernel(struct task_struct * tsk)718 void vtime_account_kernel(struct task_struct *tsk)
719 {
720 struct vtime *vtime = &tsk->vtime;
721
722 if (!vtime_delta(vtime))
723 return;
724
725 write_seqcount_begin(&vtime->seqcount);
726 __vtime_account_kernel(tsk, vtime);
727 write_seqcount_end(&vtime->seqcount);
728 }
729
vtime_user_enter(struct task_struct * tsk)730 void vtime_user_enter(struct task_struct *tsk)
731 {
732 struct vtime *vtime = &tsk->vtime;
733
734 write_seqcount_begin(&vtime->seqcount);
735 vtime_account_system(tsk, vtime);
736 vtime->state = VTIME_USER;
737 write_seqcount_end(&vtime->seqcount);
738 }
739
vtime_user_exit(struct task_struct * tsk)740 void vtime_user_exit(struct task_struct *tsk)
741 {
742 struct vtime *vtime = &tsk->vtime;
743
744 write_seqcount_begin(&vtime->seqcount);
745 vtime->utime += get_vtime_delta(vtime);
746 if (vtime->utime >= TICK_NSEC) {
747 account_user_time(tsk, vtime->utime);
748 vtime->utime = 0;
749 }
750 vtime->state = VTIME_SYS;
751 write_seqcount_end(&vtime->seqcount);
752 }
753
vtime_guest_enter(struct task_struct * tsk)754 void vtime_guest_enter(struct task_struct *tsk)
755 {
756 struct vtime *vtime = &tsk->vtime;
757 /*
758 * The flags must be updated under the lock with
759 * the vtime_starttime flush and update.
760 * That enforces a right ordering and update sequence
761 * synchronization against the reader (task_gtime())
762 * that can thus safely catch up with a tickless delta.
763 */
764 write_seqcount_begin(&vtime->seqcount);
765 vtime_account_system(tsk, vtime);
766 tsk->flags |= PF_VCPU;
767 vtime->state = VTIME_GUEST;
768 write_seqcount_end(&vtime->seqcount);
769 }
770 EXPORT_SYMBOL_GPL(vtime_guest_enter);
771
vtime_guest_exit(struct task_struct * tsk)772 void vtime_guest_exit(struct task_struct *tsk)
773 {
774 struct vtime *vtime = &tsk->vtime;
775
776 write_seqcount_begin(&vtime->seqcount);
777 vtime_account_guest(tsk, vtime);
778 tsk->flags &= ~PF_VCPU;
779 vtime->state = VTIME_SYS;
780 write_seqcount_end(&vtime->seqcount);
781 }
782 EXPORT_SYMBOL_GPL(vtime_guest_exit);
783
vtime_account_idle(struct task_struct * tsk)784 void vtime_account_idle(struct task_struct *tsk)
785 {
786 account_idle_time(get_vtime_delta(&tsk->vtime));
787 }
788
vtime_task_switch_generic(struct task_struct * prev)789 void vtime_task_switch_generic(struct task_struct *prev)
790 {
791 struct vtime *vtime = &prev->vtime;
792
793 write_seqcount_begin(&vtime->seqcount);
794 if (vtime->state == VTIME_IDLE)
795 vtime_account_idle(prev);
796 else
797 __vtime_account_kernel(prev, vtime);
798 vtime->state = VTIME_INACTIVE;
799 vtime->cpu = -1;
800 write_seqcount_end(&vtime->seqcount);
801
802 vtime = ¤t->vtime;
803
804 write_seqcount_begin(&vtime->seqcount);
805 if (is_idle_task(current))
806 vtime->state = VTIME_IDLE;
807 else if (current->flags & PF_VCPU)
808 vtime->state = VTIME_GUEST;
809 else
810 vtime->state = VTIME_SYS;
811 vtime->starttime = sched_clock();
812 vtime->cpu = smp_processor_id();
813 write_seqcount_end(&vtime->seqcount);
814 }
815
vtime_init_idle(struct task_struct * t,int cpu)816 void vtime_init_idle(struct task_struct *t, int cpu)
817 {
818 struct vtime *vtime = &t->vtime;
819 unsigned long flags;
820
821 local_irq_save(flags);
822 write_seqcount_begin(&vtime->seqcount);
823 vtime->state = VTIME_IDLE;
824 vtime->starttime = sched_clock();
825 vtime->cpu = cpu;
826 write_seqcount_end(&vtime->seqcount);
827 local_irq_restore(flags);
828 }
829
task_gtime(struct task_struct * t)830 u64 task_gtime(struct task_struct *t)
831 {
832 struct vtime *vtime = &t->vtime;
833 unsigned int seq;
834 u64 gtime;
835
836 if (!vtime_accounting_enabled())
837 return t->gtime;
838
839 do {
840 seq = read_seqcount_begin(&vtime->seqcount);
841
842 gtime = t->gtime;
843 if (vtime->state == VTIME_GUEST)
844 gtime += vtime->gtime + vtime_delta(vtime);
845
846 } while (read_seqcount_retry(&vtime->seqcount, seq));
847
848 return gtime;
849 }
850
851 /*
852 * Fetch cputime raw values from fields of task_struct and
853 * add up the pending nohz execution time since the last
854 * cputime snapshot.
855 */
task_cputime(struct task_struct * t,u64 * utime,u64 * stime)856 bool task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
857 {
858 struct vtime *vtime = &t->vtime;
859 unsigned int seq;
860 u64 delta;
861 int ret;
862
863 if (!vtime_accounting_enabled()) {
864 *utime = t->utime;
865 *stime = t->stime;
866 return false;
867 }
868
869 do {
870 ret = false;
871 seq = read_seqcount_begin(&vtime->seqcount);
872
873 *utime = t->utime;
874 *stime = t->stime;
875
876 /* Task is sleeping or idle, nothing to add */
877 if (vtime->state < VTIME_SYS)
878 continue;
879
880 ret = true;
881 delta = vtime_delta(vtime);
882
883 /*
884 * Task runs either in user (including guest) or kernel space,
885 * add pending nohz time to the right place.
886 */
887 if (vtime->state == VTIME_SYS)
888 *stime += vtime->stime + delta;
889 else
890 *utime += vtime->utime + delta;
891 } while (read_seqcount_retry(&vtime->seqcount, seq));
892
893 return ret;
894 }
895
vtime_state_fetch(struct vtime * vtime,int cpu)896 static int vtime_state_fetch(struct vtime *vtime, int cpu)
897 {
898 int state = READ_ONCE(vtime->state);
899
900 /*
901 * We raced against a context switch, fetch the
902 * kcpustat task again.
903 */
904 if (vtime->cpu != cpu && vtime->cpu != -1)
905 return -EAGAIN;
906
907 /*
908 * Two possible things here:
909 * 1) We are seeing the scheduling out task (prev) or any past one.
910 * 2) We are seeing the scheduling in task (next) but it hasn't
911 * passed though vtime_task_switch() yet so the pending
912 * cputime of the prev task may not be flushed yet.
913 *
914 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
915 */
916 if (state == VTIME_INACTIVE)
917 return -EAGAIN;
918
919 return state;
920 }
921
kcpustat_user_vtime(struct vtime * vtime)922 static u64 kcpustat_user_vtime(struct vtime *vtime)
923 {
924 if (vtime->state == VTIME_USER)
925 return vtime->utime + vtime_delta(vtime);
926 else if (vtime->state == VTIME_GUEST)
927 return vtime->gtime + vtime_delta(vtime);
928 return 0;
929 }
930
kcpustat_field_vtime(u64 * cpustat,struct task_struct * tsk,enum cpu_usage_stat usage,int cpu,u64 * val)931 static int kcpustat_field_vtime(u64 *cpustat,
932 struct task_struct *tsk,
933 enum cpu_usage_stat usage,
934 int cpu, u64 *val)
935 {
936 struct vtime *vtime = &tsk->vtime;
937 unsigned int seq;
938
939 do {
940 int state;
941
942 seq = read_seqcount_begin(&vtime->seqcount);
943
944 state = vtime_state_fetch(vtime, cpu);
945 if (state < 0)
946 return state;
947
948 *val = cpustat[usage];
949
950 /*
951 * Nice VS unnice cputime accounting may be inaccurate if
952 * the nice value has changed since the last vtime update.
953 * But proper fix would involve interrupting target on nice
954 * updates which is a no go on nohz_full (although the scheduler
955 * may still interrupt the target if rescheduling is needed...)
956 */
957 switch (usage) {
958 case CPUTIME_SYSTEM:
959 if (state == VTIME_SYS)
960 *val += vtime->stime + vtime_delta(vtime);
961 break;
962 case CPUTIME_USER:
963 if (task_nice(tsk) <= 0)
964 *val += kcpustat_user_vtime(vtime);
965 break;
966 case CPUTIME_NICE:
967 if (task_nice(tsk) > 0)
968 *val += kcpustat_user_vtime(vtime);
969 break;
970 case CPUTIME_GUEST:
971 if (state == VTIME_GUEST && task_nice(tsk) <= 0)
972 *val += vtime->gtime + vtime_delta(vtime);
973 break;
974 case CPUTIME_GUEST_NICE:
975 if (state == VTIME_GUEST && task_nice(tsk) > 0)
976 *val += vtime->gtime + vtime_delta(vtime);
977 break;
978 default:
979 break;
980 }
981 } while (read_seqcount_retry(&vtime->seqcount, seq));
982
983 return 0;
984 }
985
kcpustat_field(struct kernel_cpustat * kcpustat,enum cpu_usage_stat usage,int cpu)986 u64 kcpustat_field(struct kernel_cpustat *kcpustat,
987 enum cpu_usage_stat usage, int cpu)
988 {
989 u64 *cpustat = kcpustat->cpustat;
990 u64 val = cpustat[usage];
991 struct rq *rq;
992 int err;
993
994 if (!vtime_accounting_enabled_cpu(cpu))
995 return val;
996
997 rq = cpu_rq(cpu);
998
999 for (;;) {
1000 struct task_struct *curr;
1001
1002 rcu_read_lock();
1003 curr = rcu_dereference(rq->curr);
1004 if (WARN_ON_ONCE(!curr)) {
1005 rcu_read_unlock();
1006 return cpustat[usage];
1007 }
1008
1009 err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
1010 rcu_read_unlock();
1011
1012 if (!err)
1013 return val;
1014
1015 cpu_relax();
1016 }
1017 }
1018 EXPORT_SYMBOL_GPL(kcpustat_field);
1019
kcpustat_cpu_fetch_vtime(struct kernel_cpustat * dst,const struct kernel_cpustat * src,struct task_struct * tsk,int cpu)1020 static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
1021 const struct kernel_cpustat *src,
1022 struct task_struct *tsk, int cpu)
1023 {
1024 struct vtime *vtime = &tsk->vtime;
1025 unsigned int seq;
1026
1027 do {
1028 u64 *cpustat;
1029 u64 delta;
1030 int state;
1031
1032 seq = read_seqcount_begin(&vtime->seqcount);
1033
1034 state = vtime_state_fetch(vtime, cpu);
1035 if (state < 0)
1036 return state;
1037
1038 *dst = *src;
1039 cpustat = dst->cpustat;
1040
1041 /* Task is sleeping, dead or idle, nothing to add */
1042 if (state < VTIME_SYS)
1043 continue;
1044
1045 delta = vtime_delta(vtime);
1046
1047 /*
1048 * Task runs either in user (including guest) or kernel space,
1049 * add pending nohz time to the right place.
1050 */
1051 if (state == VTIME_SYS) {
1052 cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1053 } else if (state == VTIME_USER) {
1054 if (task_nice(tsk) > 0)
1055 cpustat[CPUTIME_NICE] += vtime->utime + delta;
1056 else
1057 cpustat[CPUTIME_USER] += vtime->utime + delta;
1058 } else {
1059 WARN_ON_ONCE(state != VTIME_GUEST);
1060 if (task_nice(tsk) > 0) {
1061 cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1062 cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1063 } else {
1064 cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1065 cpustat[CPUTIME_USER] += vtime->gtime + delta;
1066 }
1067 }
1068 } while (read_seqcount_retry(&vtime->seqcount, seq));
1069
1070 return 0;
1071 }
1072
kcpustat_cpu_fetch(struct kernel_cpustat * dst,int cpu)1073 void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1074 {
1075 const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1076 struct rq *rq;
1077 int err;
1078
1079 if (!vtime_accounting_enabled_cpu(cpu)) {
1080 *dst = *src;
1081 return;
1082 }
1083
1084 rq = cpu_rq(cpu);
1085
1086 for (;;) {
1087 struct task_struct *curr;
1088
1089 rcu_read_lock();
1090 curr = rcu_dereference(rq->curr);
1091 if (WARN_ON_ONCE(!curr)) {
1092 rcu_read_unlock();
1093 *dst = *src;
1094 return;
1095 }
1096
1097 err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1098 rcu_read_unlock();
1099
1100 if (!err)
1101 return;
1102
1103 cpu_relax();
1104 }
1105 }
1106 EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1107
1108 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
1109