1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9 /*
10 * Handle hardware traps and faults.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/kmsan.h>
19 #include <linux/spinlock.h>
20 #include <linux/kprobes.h>
21 #include <linux/uaccess.h>
22 #include <linux/kdebug.h>
23 #include <linux/kgdb.h>
24 #include <linux/kernel.h>
25 #include <linux/export.h>
26 #include <linux/ptrace.h>
27 #include <linux/uprobes.h>
28 #include <linux/string.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/kexec.h>
32 #include <linux/sched.h>
33 #include <linux/sched/task_stack.h>
34 #include <linux/timer.h>
35 #include <linux/init.h>
36 #include <linux/bug.h>
37 #include <linux/nmi.h>
38 #include <linux/mm.h>
39 #include <linux/smp.h>
40 #include <linux/io.h>
41 #include <linux/hardirq.h>
42 #include <linux/atomic.h>
43 #include <linux/iommu.h>
44 #include <linux/ubsan.h>
45
46 #include <asm/stacktrace.h>
47 #include <asm/processor.h>
48 #include <asm/debugreg.h>
49 #include <asm/realmode.h>
50 #include <asm/text-patching.h>
51 #include <asm/ftrace.h>
52 #include <asm/traps.h>
53 #include <asm/desc.h>
54 #include <asm/fpu/api.h>
55 #include <asm/cpu.h>
56 #include <asm/cpu_entry_area.h>
57 #include <asm/mce.h>
58 #include <asm/fixmap.h>
59 #include <asm/mach_traps.h>
60 #include <asm/alternative.h>
61 #include <asm/fpu/xstate.h>
62 #include <asm/vm86.h>
63 #include <asm/umip.h>
64 #include <asm/insn.h>
65 #include <asm/insn-eval.h>
66 #include <asm/vdso.h>
67 #include <asm/tdx.h>
68 #include <asm/cfi.h>
69
70 #ifdef CONFIG_X86_64
71 #include <asm/x86_init.h>
72 #else
73 #include <asm/processor-flags.h>
74 #include <asm/setup.h>
75 #endif
76
77 #include <asm/proto.h>
78
79 DECLARE_BITMAP(system_vectors, NR_VECTORS);
80
is_valid_bugaddr(unsigned long addr)81 __always_inline int is_valid_bugaddr(unsigned long addr)
82 {
83 if (addr < TASK_SIZE_MAX)
84 return 0;
85
86 /*
87 * We got #UD, if the text isn't readable we'd have gotten
88 * a different exception.
89 */
90 return *(unsigned short *)addr == INSN_UD2;
91 }
92
93 /*
94 * Check for UD1 or UD2, accounting for Address Size Override Prefixes.
95 * If it's a UD1, get the ModRM byte to pass along to UBSan.
96 */
decode_bug(unsigned long addr,u32 * imm)97 __always_inline int decode_bug(unsigned long addr, u32 *imm)
98 {
99 u8 v;
100
101 if (addr < TASK_SIZE_MAX)
102 return BUG_NONE;
103
104 v = *(u8 *)(addr++);
105 if (v == INSN_ASOP)
106 v = *(u8 *)(addr++);
107 if (v != OPCODE_ESCAPE)
108 return BUG_NONE;
109
110 v = *(u8 *)(addr++);
111 if (v == SECOND_BYTE_OPCODE_UD2)
112 return BUG_UD2;
113
114 if (!IS_ENABLED(CONFIG_UBSAN_TRAP) || v != SECOND_BYTE_OPCODE_UD1)
115 return BUG_NONE;
116
117 /* Retrieve the immediate (type value) for the UBSAN UD1 */
118 v = *(u8 *)(addr++);
119 if (X86_MODRM_RM(v) == 4)
120 addr++;
121
122 *imm = 0;
123 if (X86_MODRM_MOD(v) == 1)
124 *imm = *(u8 *)addr;
125 else if (X86_MODRM_MOD(v) == 2)
126 *imm = *(u32 *)addr;
127 else
128 WARN_ONCE(1, "Unexpected MODRM_MOD: %u\n", X86_MODRM_MOD(v));
129
130 return BUG_UD1;
131 }
132
133
134 static nokprobe_inline int
do_trap_no_signal(struct task_struct * tsk,int trapnr,const char * str,struct pt_regs * regs,long error_code)135 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
136 struct pt_regs *regs, long error_code)
137 {
138 if (v8086_mode(regs)) {
139 /*
140 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
141 * On nmi (interrupt 2), do_trap should not be called.
142 */
143 if (trapnr < X86_TRAP_UD) {
144 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
145 error_code, trapnr))
146 return 0;
147 }
148 } else if (!user_mode(regs)) {
149 if (fixup_exception(regs, trapnr, error_code, 0))
150 return 0;
151
152 tsk->thread.error_code = error_code;
153 tsk->thread.trap_nr = trapnr;
154 die(str, regs, error_code);
155 } else {
156 if (fixup_vdso_exception(regs, trapnr, error_code, 0))
157 return 0;
158 }
159
160 /*
161 * We want error_code and trap_nr set for userspace faults and
162 * kernelspace faults which result in die(), but not
163 * kernelspace faults which are fixed up. die() gives the
164 * process no chance to handle the signal and notice the
165 * kernel fault information, so that won't result in polluting
166 * the information about previously queued, but not yet
167 * delivered, faults. See also exc_general_protection below.
168 */
169 tsk->thread.error_code = error_code;
170 tsk->thread.trap_nr = trapnr;
171
172 return -1;
173 }
174
show_signal(struct task_struct * tsk,int signr,const char * type,const char * desc,struct pt_regs * regs,long error_code)175 static void show_signal(struct task_struct *tsk, int signr,
176 const char *type, const char *desc,
177 struct pt_regs *regs, long error_code)
178 {
179 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
180 printk_ratelimit()) {
181 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
182 tsk->comm, task_pid_nr(tsk), type, desc,
183 regs->ip, regs->sp, error_code);
184 print_vma_addr(KERN_CONT " in ", regs->ip);
185 pr_cont("\n");
186 }
187 }
188
189 static void
do_trap(int trapnr,int signr,char * str,struct pt_regs * regs,long error_code,int sicode,void __user * addr)190 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
191 long error_code, int sicode, void __user *addr)
192 {
193 struct task_struct *tsk = current;
194
195 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
196 return;
197
198 show_signal(tsk, signr, "trap ", str, regs, error_code);
199
200 if (!sicode)
201 force_sig(signr);
202 else
203 force_sig_fault(signr, sicode, addr);
204 }
205 NOKPROBE_SYMBOL(do_trap);
206
do_error_trap(struct pt_regs * regs,long error_code,char * str,unsigned long trapnr,int signr,int sicode,void __user * addr)207 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
208 unsigned long trapnr, int signr, int sicode, void __user *addr)
209 {
210 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
211
212 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
213 NOTIFY_STOP) {
214 cond_local_irq_enable(regs);
215 do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
216 cond_local_irq_disable(regs);
217 }
218 }
219
220 /*
221 * Posix requires to provide the address of the faulting instruction for
222 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
223 *
224 * This address is usually regs->ip, but when an uprobe moved the code out
225 * of line then regs->ip points to the XOL code which would confuse
226 * anything which analyzes the fault address vs. the unmodified binary. If
227 * a trap happened in XOL code then uprobe maps regs->ip back to the
228 * original instruction address.
229 */
error_get_trap_addr(struct pt_regs * regs)230 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
231 {
232 return (void __user *)uprobe_get_trap_addr(regs);
233 }
234
DEFINE_IDTENTRY(exc_divide_error)235 DEFINE_IDTENTRY(exc_divide_error)
236 {
237 do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
238 FPE_INTDIV, error_get_trap_addr(regs));
239 }
240
DEFINE_IDTENTRY(exc_overflow)241 DEFINE_IDTENTRY(exc_overflow)
242 {
243 do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
244 }
245
246 #ifdef CONFIG_X86_F00F_BUG
handle_invalid_op(struct pt_regs * regs)247 void handle_invalid_op(struct pt_regs *regs)
248 #else
249 static inline void handle_invalid_op(struct pt_regs *regs)
250 #endif
251 {
252 do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
253 ILL_ILLOPN, error_get_trap_addr(regs));
254 }
255
handle_bug(struct pt_regs * regs)256 static noinstr bool handle_bug(struct pt_regs *regs)
257 {
258 bool handled = false;
259 int ud_type;
260 u32 imm;
261
262 ud_type = decode_bug(regs->ip, &imm);
263 if (ud_type == BUG_NONE)
264 return handled;
265
266 /*
267 * All lies, just get the WARN/BUG out.
268 */
269 instrumentation_begin();
270 /*
271 * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug()
272 * is a rare case that uses @regs without passing them to
273 * irqentry_enter().
274 */
275 kmsan_unpoison_entry_regs(regs);
276 /*
277 * Since we're emulating a CALL with exceptions, restore the interrupt
278 * state to what it was at the exception site.
279 */
280 if (regs->flags & X86_EFLAGS_IF)
281 raw_local_irq_enable();
282 if (ud_type == BUG_UD2) {
283 if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN ||
284 handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) {
285 regs->ip += LEN_UD2;
286 handled = true;
287 }
288 } else if (IS_ENABLED(CONFIG_UBSAN_TRAP)) {
289 pr_crit("%s at %pS\n", report_ubsan_failure(regs, imm), (void *)regs->ip);
290 }
291 if (regs->flags & X86_EFLAGS_IF)
292 raw_local_irq_disable();
293 instrumentation_end();
294
295 return handled;
296 }
297
DEFINE_IDTENTRY_RAW(exc_invalid_op)298 DEFINE_IDTENTRY_RAW(exc_invalid_op)
299 {
300 irqentry_state_t state;
301
302 /*
303 * We use UD2 as a short encoding for 'CALL __WARN', as such
304 * handle it before exception entry to avoid recursive WARN
305 * in case exception entry is the one triggering WARNs.
306 */
307 if (!user_mode(regs) && handle_bug(regs))
308 return;
309
310 state = irqentry_enter(regs);
311 instrumentation_begin();
312 handle_invalid_op(regs);
313 instrumentation_end();
314 irqentry_exit(regs, state);
315 }
316
DEFINE_IDTENTRY(exc_coproc_segment_overrun)317 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
318 {
319 do_error_trap(regs, 0, "coprocessor segment overrun",
320 X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
321 }
322
DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)323 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
324 {
325 do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
326 0, NULL);
327 }
328
DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)329 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
330 {
331 do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
332 SIGBUS, 0, NULL);
333 }
334
DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)335 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
336 {
337 do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
338 0, NULL);
339 }
340
DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)341 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
342 {
343 char *str = "alignment check";
344
345 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
346 return;
347
348 if (!user_mode(regs))
349 die("Split lock detected\n", regs, error_code);
350
351 local_irq_enable();
352
353 if (handle_user_split_lock(regs, error_code))
354 goto out;
355
356 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
357 error_code, BUS_ADRALN, NULL);
358
359 out:
360 local_irq_disable();
361 }
362
363 #ifdef CONFIG_VMAP_STACK
handle_stack_overflow(struct pt_regs * regs,unsigned long fault_address,struct stack_info * info)364 __visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
365 unsigned long fault_address,
366 struct stack_info *info)
367 {
368 const char *name = stack_type_name(info->type);
369
370 printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
371 name, (void *)fault_address, info->begin, info->end);
372
373 die("stack guard page", regs, 0);
374
375 /* Be absolutely certain we don't return. */
376 panic("%s stack guard hit", name);
377 }
378 #endif
379
380 /*
381 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
382 *
383 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the
384 * SDM's warnings about double faults being unrecoverable, returning works as
385 * expected. Presumably what the SDM actually means is that the CPU may get
386 * the register state wrong on entry, so returning could be a bad idea.
387 *
388 * Various CPU engineers have promised that double faults due to an IRET fault
389 * while the stack is read-only are, in fact, recoverable.
390 *
391 * On x86_32, this is entered through a task gate, and regs are synthesized
392 * from the TSS. Returning is, in principle, okay, but changes to regs will
393 * be lost. If, for some reason, we need to return to a context with modified
394 * regs, the shim code could be adjusted to synchronize the registers.
395 *
396 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
397 * to be read before doing anything else.
398 */
DEFINE_IDTENTRY_DF(exc_double_fault)399 DEFINE_IDTENTRY_DF(exc_double_fault)
400 {
401 static const char str[] = "double fault";
402 struct task_struct *tsk = current;
403
404 #ifdef CONFIG_VMAP_STACK
405 unsigned long address = read_cr2();
406 struct stack_info info;
407 #endif
408
409 #ifdef CONFIG_X86_ESPFIX64
410 extern unsigned char native_irq_return_iret[];
411
412 /*
413 * If IRET takes a non-IST fault on the espfix64 stack, then we
414 * end up promoting it to a doublefault. In that case, take
415 * advantage of the fact that we're not using the normal (TSS.sp0)
416 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
417 * and then modify our own IRET frame so that, when we return,
418 * we land directly at the #GP(0) vector with the stack already
419 * set up according to its expectations.
420 *
421 * The net result is that our #GP handler will think that we
422 * entered from usermode with the bad user context.
423 *
424 * No need for nmi_enter() here because we don't use RCU.
425 */
426 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
427 regs->cs == __KERNEL_CS &&
428 regs->ip == (unsigned long)native_irq_return_iret)
429 {
430 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
431 unsigned long *p = (unsigned long *)regs->sp;
432
433 /*
434 * regs->sp points to the failing IRET frame on the
435 * ESPFIX64 stack. Copy it to the entry stack. This fills
436 * in gpregs->ss through gpregs->ip.
437 *
438 */
439 gpregs->ip = p[0];
440 gpregs->cs = p[1];
441 gpregs->flags = p[2];
442 gpregs->sp = p[3];
443 gpregs->ss = p[4];
444 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
445
446 /*
447 * Adjust our frame so that we return straight to the #GP
448 * vector with the expected RSP value. This is safe because
449 * we won't enable interrupts or schedule before we invoke
450 * general_protection, so nothing will clobber the stack
451 * frame we just set up.
452 *
453 * We will enter general_protection with kernel GSBASE,
454 * which is what the stub expects, given that the faulting
455 * RIP will be the IRET instruction.
456 */
457 regs->ip = (unsigned long)asm_exc_general_protection;
458 regs->sp = (unsigned long)&gpregs->orig_ax;
459
460 return;
461 }
462 #endif
463
464 irqentry_nmi_enter(regs);
465 instrumentation_begin();
466 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
467
468 tsk->thread.error_code = error_code;
469 tsk->thread.trap_nr = X86_TRAP_DF;
470
471 #ifdef CONFIG_VMAP_STACK
472 /*
473 * If we overflow the stack into a guard page, the CPU will fail
474 * to deliver #PF and will send #DF instead. Similarly, if we
475 * take any non-IST exception while too close to the bottom of
476 * the stack, the processor will get a page fault while
477 * delivering the exception and will generate a double fault.
478 *
479 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
480 * Page-Fault Exception (#PF):
481 *
482 * Processors update CR2 whenever a page fault is detected. If a
483 * second page fault occurs while an earlier page fault is being
484 * delivered, the faulting linear address of the second fault will
485 * overwrite the contents of CR2 (replacing the previous
486 * address). These updates to CR2 occur even if the page fault
487 * results in a double fault or occurs during the delivery of a
488 * double fault.
489 *
490 * The logic below has a small possibility of incorrectly diagnosing
491 * some errors as stack overflows. For example, if the IDT or GDT
492 * gets corrupted such that #GP delivery fails due to a bad descriptor
493 * causing #GP and we hit this condition while CR2 coincidentally
494 * points to the stack guard page, we'll think we overflowed the
495 * stack. Given that we're going to panic one way or another
496 * if this happens, this isn't necessarily worth fixing.
497 *
498 * If necessary, we could improve the test by only diagnosing
499 * a stack overflow if the saved RSP points within 47 bytes of
500 * the bottom of the stack: if RSP == tsk_stack + 48 and we
501 * take an exception, the stack is already aligned and there
502 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
503 * possible error code, so a stack overflow would *not* double
504 * fault. With any less space left, exception delivery could
505 * fail, and, as a practical matter, we've overflowed the
506 * stack even if the actual trigger for the double fault was
507 * something else.
508 */
509 if (get_stack_guard_info((void *)address, &info))
510 handle_stack_overflow(regs, address, &info);
511 #endif
512
513 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
514 die("double fault", regs, error_code);
515 panic("Machine halted.");
516 instrumentation_end();
517 }
518
DEFINE_IDTENTRY(exc_bounds)519 DEFINE_IDTENTRY(exc_bounds)
520 {
521 if (notify_die(DIE_TRAP, "bounds", regs, 0,
522 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
523 return;
524 cond_local_irq_enable(regs);
525
526 if (!user_mode(regs))
527 die("bounds", regs, 0);
528
529 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
530
531 cond_local_irq_disable(regs);
532 }
533
534 enum kernel_gp_hint {
535 GP_NO_HINT,
536 GP_NON_CANONICAL,
537 GP_CANONICAL
538 };
539
540 /*
541 * When an uncaught #GP occurs, try to determine the memory address accessed by
542 * the instruction and return that address to the caller. Also, try to figure
543 * out whether any part of the access to that address was non-canonical.
544 */
get_kernel_gp_address(struct pt_regs * regs,unsigned long * addr)545 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
546 unsigned long *addr)
547 {
548 u8 insn_buf[MAX_INSN_SIZE];
549 struct insn insn;
550 int ret;
551
552 if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
553 MAX_INSN_SIZE))
554 return GP_NO_HINT;
555
556 ret = insn_decode_kernel(&insn, insn_buf);
557 if (ret < 0)
558 return GP_NO_HINT;
559
560 *addr = (unsigned long)insn_get_addr_ref(&insn, regs);
561 if (*addr == -1UL)
562 return GP_NO_HINT;
563
564 #ifdef CONFIG_X86_64
565 /*
566 * Check that:
567 * - the operand is not in the kernel half
568 * - the last byte of the operand is not in the user canonical half
569 */
570 if (*addr < ~__VIRTUAL_MASK &&
571 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
572 return GP_NON_CANONICAL;
573 #endif
574
575 return GP_CANONICAL;
576 }
577
578 #define GPFSTR "general protection fault"
579
fixup_iopl_exception(struct pt_regs * regs)580 static bool fixup_iopl_exception(struct pt_regs *regs)
581 {
582 struct thread_struct *t = ¤t->thread;
583 unsigned char byte;
584 unsigned long ip;
585
586 if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
587 return false;
588
589 if (insn_get_effective_ip(regs, &ip))
590 return false;
591
592 if (get_user(byte, (const char __user *)ip))
593 return false;
594
595 if (byte != 0xfa && byte != 0xfb)
596 return false;
597
598 if (!t->iopl_warn && printk_ratelimit()) {
599 pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
600 current->comm, task_pid_nr(current), ip);
601 print_vma_addr(KERN_CONT " in ", ip);
602 pr_cont("\n");
603 t->iopl_warn = 1;
604 }
605
606 regs->ip += 1;
607 return true;
608 }
609
610 /*
611 * The unprivileged ENQCMD instruction generates #GPs if the
612 * IA32_PASID MSR has not been populated. If possible, populate
613 * the MSR from a PASID previously allocated to the mm.
614 */
try_fixup_enqcmd_gp(void)615 static bool try_fixup_enqcmd_gp(void)
616 {
617 #ifdef CONFIG_IOMMU_SVA
618 u32 pasid;
619
620 /*
621 * MSR_IA32_PASID is managed using XSAVE. Directly
622 * writing to the MSR is only possible when fpregs
623 * are valid and the fpstate is not. This is
624 * guaranteed when handling a userspace exception
625 * in *before* interrupts are re-enabled.
626 */
627 lockdep_assert_irqs_disabled();
628
629 /*
630 * Hardware without ENQCMD will not generate
631 * #GPs that can be fixed up here.
632 */
633 if (!cpu_feature_enabled(X86_FEATURE_ENQCMD))
634 return false;
635
636 /*
637 * If the mm has not been allocated a
638 * PASID, the #GP can not be fixed up.
639 */
640 if (!mm_valid_pasid(current->mm))
641 return false;
642
643 pasid = current->mm->pasid;
644
645 /*
646 * Did this thread already have its PASID activated?
647 * If so, the #GP must be from something else.
648 */
649 if (current->pasid_activated)
650 return false;
651
652 wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID);
653 current->pasid_activated = 1;
654
655 return true;
656 #else
657 return false;
658 #endif
659 }
660
gp_try_fixup_and_notify(struct pt_regs * regs,int trapnr,unsigned long error_code,const char * str,unsigned long address)661 static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr,
662 unsigned long error_code, const char *str,
663 unsigned long address)
664 {
665 if (fixup_exception(regs, trapnr, error_code, address))
666 return true;
667
668 current->thread.error_code = error_code;
669 current->thread.trap_nr = trapnr;
670
671 /*
672 * To be potentially processing a kprobe fault and to trust the result
673 * from kprobe_running(), we have to be non-preemptible.
674 */
675 if (!preemptible() && kprobe_running() &&
676 kprobe_fault_handler(regs, trapnr))
677 return true;
678
679 return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP;
680 }
681
gp_user_force_sig_segv(struct pt_regs * regs,int trapnr,unsigned long error_code,const char * str)682 static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr,
683 unsigned long error_code, const char *str)
684 {
685 current->thread.error_code = error_code;
686 current->thread.trap_nr = trapnr;
687 show_signal(current, SIGSEGV, "", str, regs, error_code);
688 force_sig(SIGSEGV);
689 }
690
DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)691 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
692 {
693 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
694 enum kernel_gp_hint hint = GP_NO_HINT;
695 unsigned long gp_addr;
696
697 if (user_mode(regs) && try_fixup_enqcmd_gp())
698 return;
699
700 cond_local_irq_enable(regs);
701
702 if (static_cpu_has(X86_FEATURE_UMIP)) {
703 if (user_mode(regs) && fixup_umip_exception(regs))
704 goto exit;
705 }
706
707 if (v8086_mode(regs)) {
708 local_irq_enable();
709 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
710 local_irq_disable();
711 return;
712 }
713
714 if (user_mode(regs)) {
715 if (fixup_iopl_exception(regs))
716 goto exit;
717
718 if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
719 goto exit;
720
721 gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc);
722 goto exit;
723 }
724
725 if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc, 0))
726 goto exit;
727
728 if (error_code)
729 snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
730 else
731 hint = get_kernel_gp_address(regs, &gp_addr);
732
733 if (hint != GP_NO_HINT)
734 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
735 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
736 : "maybe for address",
737 gp_addr);
738
739 /*
740 * KASAN is interested only in the non-canonical case, clear it
741 * otherwise.
742 */
743 if (hint != GP_NON_CANONICAL)
744 gp_addr = 0;
745
746 die_addr(desc, regs, error_code, gp_addr);
747
748 exit:
749 cond_local_irq_disable(regs);
750 }
751
do_int3(struct pt_regs * regs)752 static bool do_int3(struct pt_regs *regs)
753 {
754 int res;
755
756 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
757 if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
758 SIGTRAP) == NOTIFY_STOP)
759 return true;
760 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
761
762 #ifdef CONFIG_KPROBES
763 if (kprobe_int3_handler(regs))
764 return true;
765 #endif
766 res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
767
768 return res == NOTIFY_STOP;
769 }
770 NOKPROBE_SYMBOL(do_int3);
771
do_int3_user(struct pt_regs * regs)772 static void do_int3_user(struct pt_regs *regs)
773 {
774 if (do_int3(regs))
775 return;
776
777 cond_local_irq_enable(regs);
778 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
779 cond_local_irq_disable(regs);
780 }
781
DEFINE_IDTENTRY_RAW(exc_int3)782 DEFINE_IDTENTRY_RAW(exc_int3)
783 {
784 /*
785 * poke_int3_handler() is completely self contained code; it does (and
786 * must) *NOT* call out to anything, lest it hits upon yet another
787 * INT3.
788 */
789 if (poke_int3_handler(regs))
790 return;
791
792 /*
793 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
794 * and therefore can trigger INT3, hence poke_int3_handler() must
795 * be done before. If the entry came from kernel mode, then use
796 * nmi_enter() because the INT3 could have been hit in any context
797 * including NMI.
798 */
799 if (user_mode(regs)) {
800 irqentry_enter_from_user_mode(regs);
801 instrumentation_begin();
802 do_int3_user(regs);
803 instrumentation_end();
804 irqentry_exit_to_user_mode(regs);
805 } else {
806 irqentry_state_t irq_state = irqentry_nmi_enter(regs);
807
808 instrumentation_begin();
809 if (!do_int3(regs))
810 die("int3", regs, 0);
811 instrumentation_end();
812 irqentry_nmi_exit(regs, irq_state);
813 }
814 }
815
816 #ifdef CONFIG_X86_64
817 /*
818 * Help handler running on a per-cpu (IST or entry trampoline) stack
819 * to switch to the normal thread stack if the interrupted code was in
820 * user mode. The actual stack switch is done in entry_64.S
821 */
sync_regs(struct pt_regs * eregs)822 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
823 {
824 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(pcpu_hot.top_of_stack) - 1;
825 if (regs != eregs)
826 *regs = *eregs;
827 return regs;
828 }
829
830 #ifdef CONFIG_AMD_MEM_ENCRYPT
vc_switch_off_ist(struct pt_regs * regs)831 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
832 {
833 unsigned long sp, *stack;
834 struct stack_info info;
835 struct pt_regs *regs_ret;
836
837 /*
838 * In the SYSCALL entry path the RSP value comes from user-space - don't
839 * trust it and switch to the current kernel stack
840 */
841 if (ip_within_syscall_gap(regs)) {
842 sp = this_cpu_read(pcpu_hot.top_of_stack);
843 goto sync;
844 }
845
846 /*
847 * From here on the RSP value is trusted. Now check whether entry
848 * happened from a safe stack. Not safe are the entry or unknown stacks,
849 * use the fall-back stack instead in this case.
850 */
851 sp = regs->sp;
852 stack = (unsigned long *)sp;
853
854 if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
855 info.type > STACK_TYPE_EXCEPTION_LAST)
856 sp = __this_cpu_ist_top_va(VC2);
857
858 sync:
859 /*
860 * Found a safe stack - switch to it as if the entry didn't happen via
861 * IST stack. The code below only copies pt_regs, the real switch happens
862 * in assembly code.
863 */
864 sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
865
866 regs_ret = (struct pt_regs *)sp;
867 *regs_ret = *regs;
868
869 return regs_ret;
870 }
871 #endif
872
fixup_bad_iret(struct pt_regs * bad_regs)873 asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs)
874 {
875 struct pt_regs tmp, *new_stack;
876
877 /*
878 * This is called from entry_64.S early in handling a fault
879 * caused by a bad iret to user mode. To handle the fault
880 * correctly, we want to move our stack frame to where it would
881 * be had we entered directly on the entry stack (rather than
882 * just below the IRET frame) and we want to pretend that the
883 * exception came from the IRET target.
884 */
885 new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
886
887 /* Copy the IRET target to the temporary storage. */
888 __memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8);
889
890 /* Copy the remainder of the stack from the current stack. */
891 __memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip));
892
893 /* Update the entry stack */
894 __memcpy(new_stack, &tmp, sizeof(tmp));
895
896 BUG_ON(!user_mode(new_stack));
897 return new_stack;
898 }
899 #endif
900
is_sysenter_singlestep(struct pt_regs * regs)901 static bool is_sysenter_singlestep(struct pt_regs *regs)
902 {
903 /*
904 * We don't try for precision here. If we're anywhere in the region of
905 * code that can be single-stepped in the SYSENTER entry path, then
906 * assume that this is a useless single-step trap due to SYSENTER
907 * being invoked with TF set. (We don't know in advance exactly
908 * which instructions will be hit because BTF could plausibly
909 * be set.)
910 */
911 #ifdef CONFIG_X86_32
912 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
913 (unsigned long)__end_SYSENTER_singlestep_region -
914 (unsigned long)__begin_SYSENTER_singlestep_region;
915 #elif defined(CONFIG_IA32_EMULATION)
916 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
917 (unsigned long)__end_entry_SYSENTER_compat -
918 (unsigned long)entry_SYSENTER_compat;
919 #else
920 return false;
921 #endif
922 }
923
debug_read_clear_dr6(void)924 static __always_inline unsigned long debug_read_clear_dr6(void)
925 {
926 unsigned long dr6;
927
928 /*
929 * The Intel SDM says:
930 *
931 * Certain debug exceptions may clear bits 0-3. The remaining
932 * contents of the DR6 register are never cleared by the
933 * processor. To avoid confusion in identifying debug
934 * exceptions, debug handlers should clear the register before
935 * returning to the interrupted task.
936 *
937 * Keep it simple: clear DR6 immediately.
938 */
939 get_debugreg(dr6, 6);
940 set_debugreg(DR6_RESERVED, 6);
941 dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
942
943 return dr6;
944 }
945
946 /*
947 * Our handling of the processor debug registers is non-trivial.
948 * We do not clear them on entry and exit from the kernel. Therefore
949 * it is possible to get a watchpoint trap here from inside the kernel.
950 * However, the code in ./ptrace.c has ensured that the user can
951 * only set watchpoints on userspace addresses. Therefore the in-kernel
952 * watchpoint trap can only occur in code which is reading/writing
953 * from user space. Such code must not hold kernel locks (since it
954 * can equally take a page fault), therefore it is safe to call
955 * force_sig_info even though that claims and releases locks.
956 *
957 * Code in ./signal.c ensures that the debug control register
958 * is restored before we deliver any signal, and therefore that
959 * user code runs with the correct debug control register even though
960 * we clear it here.
961 *
962 * Being careful here means that we don't have to be as careful in a
963 * lot of more complicated places (task switching can be a bit lazy
964 * about restoring all the debug state, and ptrace doesn't have to
965 * find every occurrence of the TF bit that could be saved away even
966 * by user code)
967 *
968 * May run on IST stack.
969 */
970
notify_debug(struct pt_regs * regs,unsigned long * dr6)971 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
972 {
973 /*
974 * Notifiers will clear bits in @dr6 to indicate the event has been
975 * consumed - hw_breakpoint_handler(), single_stop_cont().
976 *
977 * Notifiers will set bits in @virtual_dr6 to indicate the desire
978 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
979 */
980 if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
981 return true;
982
983 return false;
984 }
985
exc_debug_kernel(struct pt_regs * regs,unsigned long dr6)986 static __always_inline void exc_debug_kernel(struct pt_regs *regs,
987 unsigned long dr6)
988 {
989 /*
990 * Disable breakpoints during exception handling; recursive exceptions
991 * are exceedingly 'fun'.
992 *
993 * Since this function is NOKPROBE, and that also applies to
994 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
995 * HW_BREAKPOINT_W on our stack)
996 *
997 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
998 * includes the entry stack is excluded for everything.
999 */
1000 unsigned long dr7 = local_db_save();
1001 irqentry_state_t irq_state = irqentry_nmi_enter(regs);
1002 instrumentation_begin();
1003
1004 /*
1005 * If something gets miswired and we end up here for a user mode
1006 * #DB, we will malfunction.
1007 */
1008 WARN_ON_ONCE(user_mode(regs));
1009
1010 if (test_thread_flag(TIF_BLOCKSTEP)) {
1011 /*
1012 * The SDM says "The processor clears the BTF flag when it
1013 * generates a debug exception." but PTRACE_BLOCKSTEP requested
1014 * it for userspace, but we just took a kernel #DB, so re-set
1015 * BTF.
1016 */
1017 unsigned long debugctl;
1018
1019 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1020 debugctl |= DEBUGCTLMSR_BTF;
1021 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1022 }
1023
1024 /*
1025 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
1026 * watchpoint at the same time then that will still be handled.
1027 */
1028 if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
1029 dr6 &= ~DR_STEP;
1030
1031 /*
1032 * The kernel doesn't use INT1
1033 */
1034 if (!dr6)
1035 goto out;
1036
1037 if (notify_debug(regs, &dr6))
1038 goto out;
1039
1040 /*
1041 * The kernel doesn't use TF single-step outside of:
1042 *
1043 * - Kprobes, consumed through kprobe_debug_handler()
1044 * - KGDB, consumed through notify_debug()
1045 *
1046 * So if we get here with DR_STEP set, something is wonky.
1047 *
1048 * A known way to trigger this is through QEMU's GDB stub,
1049 * which leaks #DB into the guest and causes IST recursion.
1050 */
1051 if (WARN_ON_ONCE(dr6 & DR_STEP))
1052 regs->flags &= ~X86_EFLAGS_TF;
1053 out:
1054 instrumentation_end();
1055 irqentry_nmi_exit(regs, irq_state);
1056
1057 local_db_restore(dr7);
1058 }
1059
exc_debug_user(struct pt_regs * regs,unsigned long dr6)1060 static __always_inline void exc_debug_user(struct pt_regs *regs,
1061 unsigned long dr6)
1062 {
1063 bool icebp;
1064
1065 /*
1066 * If something gets miswired and we end up here for a kernel mode
1067 * #DB, we will malfunction.
1068 */
1069 WARN_ON_ONCE(!user_mode(regs));
1070
1071 /*
1072 * NB: We can't easily clear DR7 here because
1073 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
1074 * user memory, etc. This means that a recursive #DB is possible. If
1075 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
1076 * Since we're not on the IST stack right now, everything will be
1077 * fine.
1078 */
1079
1080 irqentry_enter_from_user_mode(regs);
1081 instrumentation_begin();
1082
1083 /*
1084 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
1085 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
1086 *
1087 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
1088 * even if it is not the result of PTRACE_SINGLESTEP.
1089 */
1090 current->thread.virtual_dr6 = (dr6 & DR_STEP);
1091
1092 /*
1093 * The SDM says "The processor clears the BTF flag when it
1094 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
1095 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
1096 */
1097 clear_thread_flag(TIF_BLOCKSTEP);
1098
1099 /*
1100 * If dr6 has no reason to give us about the origin of this trap,
1101 * then it's very likely the result of an icebp/int01 trap.
1102 * User wants a sigtrap for that.
1103 */
1104 icebp = !dr6;
1105
1106 if (notify_debug(regs, &dr6))
1107 goto out;
1108
1109 /* It's safe to allow irq's after DR6 has been saved */
1110 local_irq_enable();
1111
1112 if (v8086_mode(regs)) {
1113 handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
1114 goto out_irq;
1115 }
1116
1117 /* #DB for bus lock can only be triggered from userspace. */
1118 if (dr6 & DR_BUS_LOCK)
1119 handle_bus_lock(regs);
1120
1121 /* Add the virtual_dr6 bits for signals. */
1122 dr6 |= current->thread.virtual_dr6;
1123 if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
1124 send_sigtrap(regs, 0, get_si_code(dr6));
1125
1126 out_irq:
1127 local_irq_disable();
1128 out:
1129 instrumentation_end();
1130 irqentry_exit_to_user_mode(regs);
1131 }
1132
1133 #ifdef CONFIG_X86_64
1134 /* IST stack entry */
DEFINE_IDTENTRY_DEBUG(exc_debug)1135 DEFINE_IDTENTRY_DEBUG(exc_debug)
1136 {
1137 exc_debug_kernel(regs, debug_read_clear_dr6());
1138 }
1139
1140 /* User entry, runs on regular task stack */
DEFINE_IDTENTRY_DEBUG_USER(exc_debug)1141 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1142 {
1143 exc_debug_user(regs, debug_read_clear_dr6());
1144 }
1145 #else
1146 /* 32 bit does not have separate entry points. */
DEFINE_IDTENTRY_RAW(exc_debug)1147 DEFINE_IDTENTRY_RAW(exc_debug)
1148 {
1149 unsigned long dr6 = debug_read_clear_dr6();
1150
1151 if (user_mode(regs))
1152 exc_debug_user(regs, dr6);
1153 else
1154 exc_debug_kernel(regs, dr6);
1155 }
1156 #endif
1157
1158 /*
1159 * Note that we play around with the 'TS' bit in an attempt to get
1160 * the correct behaviour even in the presence of the asynchronous
1161 * IRQ13 behaviour
1162 */
math_error(struct pt_regs * regs,int trapnr)1163 static void math_error(struct pt_regs *regs, int trapnr)
1164 {
1165 struct task_struct *task = current;
1166 struct fpu *fpu = &task->thread.fpu;
1167 int si_code;
1168 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1169 "simd exception";
1170
1171 cond_local_irq_enable(regs);
1172
1173 if (!user_mode(regs)) {
1174 if (fixup_exception(regs, trapnr, 0, 0))
1175 goto exit;
1176
1177 task->thread.error_code = 0;
1178 task->thread.trap_nr = trapnr;
1179
1180 if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1181 SIGFPE) != NOTIFY_STOP)
1182 die(str, regs, 0);
1183 goto exit;
1184 }
1185
1186 /*
1187 * Synchronize the FPU register state to the memory register state
1188 * if necessary. This allows the exception handler to inspect it.
1189 */
1190 fpu_sync_fpstate(fpu);
1191
1192 task->thread.trap_nr = trapnr;
1193 task->thread.error_code = 0;
1194
1195 si_code = fpu__exception_code(fpu, trapnr);
1196 /* Retry when we get spurious exceptions: */
1197 if (!si_code)
1198 goto exit;
1199
1200 if (fixup_vdso_exception(regs, trapnr, 0, 0))
1201 goto exit;
1202
1203 force_sig_fault(SIGFPE, si_code,
1204 (void __user *)uprobe_get_trap_addr(regs));
1205 exit:
1206 cond_local_irq_disable(regs);
1207 }
1208
DEFINE_IDTENTRY(exc_coprocessor_error)1209 DEFINE_IDTENTRY(exc_coprocessor_error)
1210 {
1211 math_error(regs, X86_TRAP_MF);
1212 }
1213
DEFINE_IDTENTRY(exc_simd_coprocessor_error)1214 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1215 {
1216 if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1217 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1218 if (!static_cpu_has(X86_FEATURE_XMM)) {
1219 __exc_general_protection(regs, 0);
1220 return;
1221 }
1222 }
1223 math_error(regs, X86_TRAP_XF);
1224 }
1225
DEFINE_IDTENTRY(exc_spurious_interrupt_bug)1226 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1227 {
1228 /*
1229 * This addresses a Pentium Pro Erratum:
1230 *
1231 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1232 * Virtual Wire mode implemented through the local APIC, an
1233 * interrupt vector of 0Fh (Intel reserved encoding) may be
1234 * generated by the local APIC (Int 15). This vector may be
1235 * generated upon receipt of a spurious interrupt (an interrupt
1236 * which is removed before the system receives the INTA sequence)
1237 * instead of the programmed 8259 spurious interrupt vector.
1238 *
1239 * IMPLICATION: The spurious interrupt vector programmed in the
1240 * 8259 is normally handled by an operating system's spurious
1241 * interrupt handler. However, a vector of 0Fh is unknown to some
1242 * operating systems, which would crash if this erratum occurred.
1243 *
1244 * In theory this could be limited to 32bit, but the handler is not
1245 * hurting and who knows which other CPUs suffer from this.
1246 */
1247 }
1248
handle_xfd_event(struct pt_regs * regs)1249 static bool handle_xfd_event(struct pt_regs *regs)
1250 {
1251 u64 xfd_err;
1252 int err;
1253
1254 if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
1255 return false;
1256
1257 rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
1258 if (!xfd_err)
1259 return false;
1260
1261 wrmsrl(MSR_IA32_XFD_ERR, 0);
1262
1263 /* Die if that happens in kernel space */
1264 if (WARN_ON(!user_mode(regs)))
1265 return false;
1266
1267 local_irq_enable();
1268
1269 err = xfd_enable_feature(xfd_err);
1270
1271 switch (err) {
1272 case -EPERM:
1273 force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
1274 break;
1275 case -EFAULT:
1276 force_sig(SIGSEGV);
1277 break;
1278 }
1279
1280 local_irq_disable();
1281 return true;
1282 }
1283
DEFINE_IDTENTRY(exc_device_not_available)1284 DEFINE_IDTENTRY(exc_device_not_available)
1285 {
1286 unsigned long cr0 = read_cr0();
1287
1288 if (handle_xfd_event(regs))
1289 return;
1290
1291 #ifdef CONFIG_MATH_EMULATION
1292 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1293 struct math_emu_info info = { };
1294
1295 cond_local_irq_enable(regs);
1296
1297 info.regs = regs;
1298 math_emulate(&info);
1299
1300 cond_local_irq_disable(regs);
1301 return;
1302 }
1303 #endif
1304
1305 /* This should not happen. */
1306 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1307 /* Try to fix it up and carry on. */
1308 write_cr0(cr0 & ~X86_CR0_TS);
1309 } else {
1310 /*
1311 * Something terrible happened, and we're better off trying
1312 * to kill the task than getting stuck in a never-ending
1313 * loop of #NM faults.
1314 */
1315 die("unexpected #NM exception", regs, 0);
1316 }
1317 }
1318
1319 #ifdef CONFIG_INTEL_TDX_GUEST
1320
1321 #define VE_FAULT_STR "VE fault"
1322
ve_raise_fault(struct pt_regs * regs,long error_code,unsigned long address)1323 static void ve_raise_fault(struct pt_regs *regs, long error_code,
1324 unsigned long address)
1325 {
1326 if (user_mode(regs)) {
1327 gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR);
1328 return;
1329 }
1330
1331 if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code,
1332 VE_FAULT_STR, address)) {
1333 return;
1334 }
1335
1336 die_addr(VE_FAULT_STR, regs, error_code, address);
1337 }
1338
1339 /*
1340 * Virtualization Exceptions (#VE) are delivered to TDX guests due to
1341 * specific guest actions which may happen in either user space or the
1342 * kernel:
1343 *
1344 * * Specific instructions (WBINVD, for example)
1345 * * Specific MSR accesses
1346 * * Specific CPUID leaf accesses
1347 * * Access to specific guest physical addresses
1348 *
1349 * In the settings that Linux will run in, virtualization exceptions are
1350 * never generated on accesses to normal, TD-private memory that has been
1351 * accepted (by BIOS or with tdx_enc_status_changed()).
1352 *
1353 * Syscall entry code has a critical window where the kernel stack is not
1354 * yet set up. Any exception in this window leads to hard to debug issues
1355 * and can be exploited for privilege escalation. Exceptions in the NMI
1356 * entry code also cause issues. Returning from the exception handler with
1357 * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.
1358 *
1359 * For these reasons, the kernel avoids #VEs during the syscall gap and
1360 * the NMI entry code. Entry code paths do not access TD-shared memory,
1361 * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
1362 * that might generate #VE. VMM can remove memory from TD at any point,
1363 * but access to unaccepted (or missing) private memory leads to VM
1364 * termination, not to #VE.
1365 *
1366 * Similarly to page faults and breakpoints, #VEs are allowed in NMI
1367 * handlers once the kernel is ready to deal with nested NMIs.
1368 *
1369 * During #VE delivery, all interrupts, including NMIs, are blocked until
1370 * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
1371 * the VE info.
1372 *
1373 * If a guest kernel action which would normally cause a #VE occurs in
1374 * the interrupt-disabled region before TDGETVEINFO, a #DF (fault
1375 * exception) is delivered to the guest which will result in an oops.
1376 *
1377 * The entry code has been audited carefully for following these expectations.
1378 * Changes in the entry code have to be audited for correctness vs. this
1379 * aspect. Similarly to #PF, #VE in these places will expose kernel to
1380 * privilege escalation or may lead to random crashes.
1381 */
DEFINE_IDTENTRY(exc_virtualization_exception)1382 DEFINE_IDTENTRY(exc_virtualization_exception)
1383 {
1384 struct ve_info ve;
1385
1386 /*
1387 * NMIs/Machine-checks/Interrupts will be in a disabled state
1388 * till TDGETVEINFO TDCALL is executed. This ensures that VE
1389 * info cannot be overwritten by a nested #VE.
1390 */
1391 tdx_get_ve_info(&ve);
1392
1393 cond_local_irq_enable(regs);
1394
1395 /*
1396 * If tdx_handle_virt_exception() could not process
1397 * it successfully, treat it as #GP(0) and handle it.
1398 */
1399 if (!tdx_handle_virt_exception(regs, &ve))
1400 ve_raise_fault(regs, 0, ve.gla);
1401
1402 cond_local_irq_disable(regs);
1403 }
1404
1405 #endif
1406
1407 #ifdef CONFIG_X86_32
DEFINE_IDTENTRY_SW(iret_error)1408 DEFINE_IDTENTRY_SW(iret_error)
1409 {
1410 local_irq_enable();
1411 if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1412 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1413 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1414 ILL_BADSTK, (void __user *)NULL);
1415 }
1416 local_irq_disable();
1417 }
1418 #endif
1419
trap_init(void)1420 void __init trap_init(void)
1421 {
1422 /* Init cpu_entry_area before IST entries are set up */
1423 setup_cpu_entry_areas();
1424
1425 /* Init GHCB memory pages when running as an SEV-ES guest */
1426 sev_es_init_vc_handling();
1427
1428 /* Initialize TSS before setting up traps so ISTs work */
1429 cpu_init_exception_handling();
1430 /* Setup traps as cpu_init() might #GP */
1431 idt_setup_traps();
1432 cpu_init();
1433 }
1434