1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier.
4 *
5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
6 *
7 * The filters are packed to hash tables of key nodes
8 * with a set of 32bit key/mask pairs at every node.
9 * Nodes reference next level hash tables etc.
10 *
11 * This scheme is the best universal classifier I managed to
12 * invent; it is not super-fast, but it is not slow (provided you
13 * program it correctly), and general enough. And its relative
14 * speed grows as the number of rules becomes larger.
15 *
16 * It seems that it represents the best middle point between
17 * speed and manageability both by human and by machine.
18 *
19 * It is especially useful for link sharing combined with QoS;
20 * pure RSVP doesn't need such a general approach and can use
21 * much simpler (and faster) schemes, sort of cls_rsvp.c.
22 *
23 * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro>
24 */
25
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/types.h>
29 #include <linux/kernel.h>
30 #include <linux/string.h>
31 #include <linux/errno.h>
32 #include <linux/percpu.h>
33 #include <linux/rtnetlink.h>
34 #include <linux/skbuff.h>
35 #include <linux/bitmap.h>
36 #include <linux/netdevice.h>
37 #include <linux/hash.h>
38 #include <net/netlink.h>
39 #include <net/act_api.h>
40 #include <net/pkt_cls.h>
41 #include <linux/idr.h>
42 #include <net/tc_wrapper.h>
43
44 struct tc_u_knode {
45 struct tc_u_knode __rcu *next;
46 u32 handle;
47 struct tc_u_hnode __rcu *ht_up;
48 struct tcf_exts exts;
49 int ifindex;
50 u8 fshift;
51 struct tcf_result res;
52 struct tc_u_hnode __rcu *ht_down;
53 #ifdef CONFIG_CLS_U32_PERF
54 struct tc_u32_pcnt __percpu *pf;
55 #endif
56 u32 flags;
57 unsigned int in_hw_count;
58 #ifdef CONFIG_CLS_U32_MARK
59 u32 val;
60 u32 mask;
61 u32 __percpu *pcpu_success;
62 #endif
63 struct rcu_work rwork;
64 /* The 'sel' field MUST be the last field in structure to allow for
65 * tc_u32_keys allocated at end of structure.
66 */
67 struct tc_u32_sel sel;
68 };
69
70 struct tc_u_hnode {
71 struct tc_u_hnode __rcu *next;
72 u32 handle;
73 u32 prio;
74 refcount_t refcnt;
75 unsigned int divisor;
76 struct idr handle_idr;
77 bool is_root;
78 struct rcu_head rcu;
79 u32 flags;
80 /* The 'ht' field MUST be the last field in structure to allow for
81 * more entries allocated at end of structure.
82 */
83 struct tc_u_knode __rcu *ht[];
84 };
85
86 struct tc_u_common {
87 struct tc_u_hnode __rcu *hlist;
88 void *ptr;
89 refcount_t refcnt;
90 struct idr handle_idr;
91 struct hlist_node hnode;
92 long knodes;
93 };
94
handle2id(u32 h)95 static u32 handle2id(u32 h)
96 {
97 return ((h & 0x80000000) ? ((h >> 20) & 0x7FF) : h);
98 }
99
id2handle(u32 id)100 static u32 id2handle(u32 id)
101 {
102 return (id | 0x800U) << 20;
103 }
104
u32_hash_fold(__be32 key,const struct tc_u32_sel * sel,u8 fshift)105 static inline unsigned int u32_hash_fold(__be32 key,
106 const struct tc_u32_sel *sel,
107 u8 fshift)
108 {
109 unsigned int h = ntohl(key & sel->hmask) >> fshift;
110
111 return h;
112 }
113
u32_classify(struct sk_buff * skb,const struct tcf_proto * tp,struct tcf_result * res)114 TC_INDIRECT_SCOPE int u32_classify(struct sk_buff *skb,
115 const struct tcf_proto *tp,
116 struct tcf_result *res)
117 {
118 struct {
119 struct tc_u_knode *knode;
120 unsigned int off;
121 } stack[TC_U32_MAXDEPTH];
122
123 struct tc_u_hnode *ht = rcu_dereference_bh(tp->root);
124 unsigned int off = skb_network_offset(skb);
125 struct tc_u_knode *n;
126 int sdepth = 0;
127 int off2 = 0;
128 int sel = 0;
129 #ifdef CONFIG_CLS_U32_PERF
130 int j;
131 #endif
132 int i, r;
133
134 next_ht:
135 n = rcu_dereference_bh(ht->ht[sel]);
136
137 next_knode:
138 if (n) {
139 struct tc_u32_key *key = n->sel.keys;
140
141 #ifdef CONFIG_CLS_U32_PERF
142 __this_cpu_inc(n->pf->rcnt);
143 j = 0;
144 #endif
145
146 if (tc_skip_sw(n->flags)) {
147 n = rcu_dereference_bh(n->next);
148 goto next_knode;
149 }
150
151 #ifdef CONFIG_CLS_U32_MARK
152 if ((skb->mark & n->mask) != n->val) {
153 n = rcu_dereference_bh(n->next);
154 goto next_knode;
155 } else {
156 __this_cpu_inc(*n->pcpu_success);
157 }
158 #endif
159
160 for (i = n->sel.nkeys; i > 0; i--, key++) {
161 int toff = off + key->off + (off2 & key->offmask);
162 __be32 *data, hdata;
163
164 if (skb_headroom(skb) + toff > INT_MAX)
165 goto out;
166
167 data = skb_header_pointer(skb, toff, 4, &hdata);
168 if (!data)
169 goto out;
170 if ((*data ^ key->val) & key->mask) {
171 n = rcu_dereference_bh(n->next);
172 goto next_knode;
173 }
174 #ifdef CONFIG_CLS_U32_PERF
175 __this_cpu_inc(n->pf->kcnts[j]);
176 j++;
177 #endif
178 }
179
180 ht = rcu_dereference_bh(n->ht_down);
181 if (!ht) {
182 check_terminal:
183 if (n->sel.flags & TC_U32_TERMINAL) {
184
185 *res = n->res;
186 if (!tcf_match_indev(skb, n->ifindex)) {
187 n = rcu_dereference_bh(n->next);
188 goto next_knode;
189 }
190 #ifdef CONFIG_CLS_U32_PERF
191 __this_cpu_inc(n->pf->rhit);
192 #endif
193 r = tcf_exts_exec(skb, &n->exts, res);
194 if (r < 0) {
195 n = rcu_dereference_bh(n->next);
196 goto next_knode;
197 }
198
199 return r;
200 }
201 n = rcu_dereference_bh(n->next);
202 goto next_knode;
203 }
204
205 /* PUSH */
206 if (sdepth >= TC_U32_MAXDEPTH)
207 goto deadloop;
208 stack[sdepth].knode = n;
209 stack[sdepth].off = off;
210 sdepth++;
211
212 ht = rcu_dereference_bh(n->ht_down);
213 sel = 0;
214 if (ht->divisor) {
215 __be32 *data, hdata;
216
217 data = skb_header_pointer(skb, off + n->sel.hoff, 4,
218 &hdata);
219 if (!data)
220 goto out;
221 sel = ht->divisor & u32_hash_fold(*data, &n->sel,
222 n->fshift);
223 }
224 if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT)))
225 goto next_ht;
226
227 if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) {
228 off2 = n->sel.off + 3;
229 if (n->sel.flags & TC_U32_VAROFFSET) {
230 __be16 *data, hdata;
231
232 data = skb_header_pointer(skb,
233 off + n->sel.offoff,
234 2, &hdata);
235 if (!data)
236 goto out;
237 off2 += ntohs(n->sel.offmask & *data) >>
238 n->sel.offshift;
239 }
240 off2 &= ~3;
241 }
242 if (n->sel.flags & TC_U32_EAT) {
243 off += off2;
244 off2 = 0;
245 }
246
247 if (off < skb->len)
248 goto next_ht;
249 }
250
251 /* POP */
252 if (sdepth--) {
253 n = stack[sdepth].knode;
254 ht = rcu_dereference_bh(n->ht_up);
255 off = stack[sdepth].off;
256 goto check_terminal;
257 }
258 out:
259 return -1;
260
261 deadloop:
262 net_warn_ratelimited("cls_u32: dead loop\n");
263 return -1;
264 }
265
u32_lookup_ht(struct tc_u_common * tp_c,u32 handle)266 static struct tc_u_hnode *u32_lookup_ht(struct tc_u_common *tp_c, u32 handle)
267 {
268 struct tc_u_hnode *ht;
269
270 for (ht = rtnl_dereference(tp_c->hlist);
271 ht;
272 ht = rtnl_dereference(ht->next))
273 if (ht->handle == handle)
274 break;
275
276 return ht;
277 }
278
u32_lookup_key(struct tc_u_hnode * ht,u32 handle)279 static struct tc_u_knode *u32_lookup_key(struct tc_u_hnode *ht, u32 handle)
280 {
281 unsigned int sel;
282 struct tc_u_knode *n = NULL;
283
284 sel = TC_U32_HASH(handle);
285 if (sel > ht->divisor)
286 goto out;
287
288 for (n = rtnl_dereference(ht->ht[sel]);
289 n;
290 n = rtnl_dereference(n->next))
291 if (n->handle == handle)
292 break;
293 out:
294 return n;
295 }
296
297
u32_get(struct tcf_proto * tp,u32 handle)298 static void *u32_get(struct tcf_proto *tp, u32 handle)
299 {
300 struct tc_u_hnode *ht;
301 struct tc_u_common *tp_c = tp->data;
302
303 if (TC_U32_HTID(handle) == TC_U32_ROOT)
304 ht = rtnl_dereference(tp->root);
305 else
306 ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle));
307
308 if (!ht)
309 return NULL;
310
311 if (TC_U32_KEY(handle) == 0)
312 return ht;
313
314 return u32_lookup_key(ht, handle);
315 }
316
317 /* Protected by rtnl lock */
gen_new_htid(struct tc_u_common * tp_c,struct tc_u_hnode * ptr)318 static u32 gen_new_htid(struct tc_u_common *tp_c, struct tc_u_hnode *ptr)
319 {
320 int id = idr_alloc_cyclic(&tp_c->handle_idr, ptr, 1, 0x7FF, GFP_KERNEL);
321 if (id < 0)
322 return 0;
323 return id2handle(id);
324 }
325
326 static struct hlist_head *tc_u_common_hash;
327
328 #define U32_HASH_SHIFT 10
329 #define U32_HASH_SIZE (1 << U32_HASH_SHIFT)
330
tc_u_common_ptr(const struct tcf_proto * tp)331 static void *tc_u_common_ptr(const struct tcf_proto *tp)
332 {
333 struct tcf_block *block = tp->chain->block;
334
335 /* The block sharing is currently supported only
336 * for classless qdiscs. In that case we use block
337 * for tc_u_common identification. In case the
338 * block is not shared, block->q is a valid pointer
339 * and we can use that. That works for classful qdiscs.
340 */
341 if (tcf_block_shared(block))
342 return block;
343 else
344 return block->q;
345 }
346
tc_u_hash(void * key)347 static struct hlist_head *tc_u_hash(void *key)
348 {
349 return tc_u_common_hash + hash_ptr(key, U32_HASH_SHIFT);
350 }
351
tc_u_common_find(void * key)352 static struct tc_u_common *tc_u_common_find(void *key)
353 {
354 struct tc_u_common *tc;
355 hlist_for_each_entry(tc, tc_u_hash(key), hnode) {
356 if (tc->ptr == key)
357 return tc;
358 }
359 return NULL;
360 }
361
u32_init(struct tcf_proto * tp)362 static int u32_init(struct tcf_proto *tp)
363 {
364 struct tc_u_hnode *root_ht;
365 void *key = tc_u_common_ptr(tp);
366 struct tc_u_common *tp_c = tc_u_common_find(key);
367
368 root_ht = kzalloc(struct_size(root_ht, ht, 1), GFP_KERNEL);
369 if (root_ht == NULL)
370 return -ENOBUFS;
371
372 refcount_set(&root_ht->refcnt, 1);
373 root_ht->handle = tp_c ? gen_new_htid(tp_c, root_ht) : id2handle(0);
374 root_ht->prio = tp->prio;
375 root_ht->is_root = true;
376 idr_init(&root_ht->handle_idr);
377
378 if (tp_c == NULL) {
379 tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL);
380 if (tp_c == NULL) {
381 kfree(root_ht);
382 return -ENOBUFS;
383 }
384 refcount_set(&tp_c->refcnt, 1);
385 tp_c->ptr = key;
386 INIT_HLIST_NODE(&tp_c->hnode);
387 idr_init(&tp_c->handle_idr);
388
389 hlist_add_head(&tp_c->hnode, tc_u_hash(key));
390 } else {
391 refcount_inc(&tp_c->refcnt);
392 }
393
394 RCU_INIT_POINTER(root_ht->next, tp_c->hlist);
395 rcu_assign_pointer(tp_c->hlist, root_ht);
396
397 /* root_ht must be destroyed when tcf_proto is destroyed */
398 rcu_assign_pointer(tp->root, root_ht);
399 tp->data = tp_c;
400 return 0;
401 }
402
__u32_destroy_key(struct tc_u_knode * n)403 static void __u32_destroy_key(struct tc_u_knode *n)
404 {
405 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
406
407 tcf_exts_destroy(&n->exts);
408 if (ht && refcount_dec_and_test(&ht->refcnt))
409 kfree(ht);
410 kfree(n);
411 }
412
u32_destroy_key(struct tc_u_knode * n,bool free_pf)413 static void u32_destroy_key(struct tc_u_knode *n, bool free_pf)
414 {
415 tcf_exts_put_net(&n->exts);
416 #ifdef CONFIG_CLS_U32_PERF
417 if (free_pf)
418 free_percpu(n->pf);
419 #endif
420 #ifdef CONFIG_CLS_U32_MARK
421 if (free_pf)
422 free_percpu(n->pcpu_success);
423 #endif
424 __u32_destroy_key(n);
425 }
426
427 /* u32_delete_key_rcu should be called when free'ing a copied
428 * version of a tc_u_knode obtained from u32_init_knode(). When
429 * copies are obtained from u32_init_knode() the statistics are
430 * shared between the old and new copies to allow readers to
431 * continue to update the statistics during the copy. To support
432 * this the u32_delete_key_rcu variant does not free the percpu
433 * statistics.
434 */
u32_delete_key_work(struct work_struct * work)435 static void u32_delete_key_work(struct work_struct *work)
436 {
437 struct tc_u_knode *key = container_of(to_rcu_work(work),
438 struct tc_u_knode,
439 rwork);
440 rtnl_lock();
441 u32_destroy_key(key, false);
442 rtnl_unlock();
443 }
444
445 /* u32_delete_key_freepf_rcu is the rcu callback variant
446 * that free's the entire structure including the statistics
447 * percpu variables. Only use this if the key is not a copy
448 * returned by u32_init_knode(). See u32_delete_key_rcu()
449 * for the variant that should be used with keys return from
450 * u32_init_knode()
451 */
u32_delete_key_freepf_work(struct work_struct * work)452 static void u32_delete_key_freepf_work(struct work_struct *work)
453 {
454 struct tc_u_knode *key = container_of(to_rcu_work(work),
455 struct tc_u_knode,
456 rwork);
457 rtnl_lock();
458 u32_destroy_key(key, true);
459 rtnl_unlock();
460 }
461
u32_delete_key(struct tcf_proto * tp,struct tc_u_knode * key)462 static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key)
463 {
464 struct tc_u_common *tp_c = tp->data;
465 struct tc_u_knode __rcu **kp;
466 struct tc_u_knode *pkp;
467 struct tc_u_hnode *ht = rtnl_dereference(key->ht_up);
468
469 if (ht) {
470 kp = &ht->ht[TC_U32_HASH(key->handle)];
471 for (pkp = rtnl_dereference(*kp); pkp;
472 kp = &pkp->next, pkp = rtnl_dereference(*kp)) {
473 if (pkp == key) {
474 RCU_INIT_POINTER(*kp, key->next);
475 tp_c->knodes--;
476
477 tcf_unbind_filter(tp, &key->res);
478 idr_remove(&ht->handle_idr, key->handle);
479 tcf_exts_get_net(&key->exts);
480 tcf_queue_work(&key->rwork, u32_delete_key_freepf_work);
481 return 0;
482 }
483 }
484 }
485 WARN_ON(1);
486 return 0;
487 }
488
u32_clear_hw_hnode(struct tcf_proto * tp,struct tc_u_hnode * h,struct netlink_ext_ack * extack)489 static void u32_clear_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h,
490 struct netlink_ext_ack *extack)
491 {
492 struct tcf_block *block = tp->chain->block;
493 struct tc_cls_u32_offload cls_u32 = {};
494
495 tc_cls_common_offload_init(&cls_u32.common, tp, h->flags, extack);
496 cls_u32.command = TC_CLSU32_DELETE_HNODE;
497 cls_u32.hnode.divisor = h->divisor;
498 cls_u32.hnode.handle = h->handle;
499 cls_u32.hnode.prio = h->prio;
500
501 tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, false, true);
502 }
503
u32_replace_hw_hnode(struct tcf_proto * tp,struct tc_u_hnode * h,u32 flags,struct netlink_ext_ack * extack)504 static int u32_replace_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h,
505 u32 flags, struct netlink_ext_ack *extack)
506 {
507 struct tcf_block *block = tp->chain->block;
508 struct tc_cls_u32_offload cls_u32 = {};
509 bool skip_sw = tc_skip_sw(flags);
510 bool offloaded = false;
511 int err;
512
513 tc_cls_common_offload_init(&cls_u32.common, tp, flags, extack);
514 cls_u32.command = TC_CLSU32_NEW_HNODE;
515 cls_u32.hnode.divisor = h->divisor;
516 cls_u32.hnode.handle = h->handle;
517 cls_u32.hnode.prio = h->prio;
518
519 err = tc_setup_cb_call(block, TC_SETUP_CLSU32, &cls_u32, skip_sw, true);
520 if (err < 0) {
521 u32_clear_hw_hnode(tp, h, NULL);
522 return err;
523 } else if (err > 0) {
524 offloaded = true;
525 }
526
527 if (skip_sw && !offloaded)
528 return -EINVAL;
529
530 return 0;
531 }
532
u32_remove_hw_knode(struct tcf_proto * tp,struct tc_u_knode * n,struct netlink_ext_ack * extack)533 static void u32_remove_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n,
534 struct netlink_ext_ack *extack)
535 {
536 struct tcf_block *block = tp->chain->block;
537 struct tc_cls_u32_offload cls_u32 = {};
538
539 tc_cls_common_offload_init(&cls_u32.common, tp, n->flags, extack);
540 cls_u32.command = TC_CLSU32_DELETE_KNODE;
541 cls_u32.knode.handle = n->handle;
542
543 tc_setup_cb_destroy(block, tp, TC_SETUP_CLSU32, &cls_u32, false,
544 &n->flags, &n->in_hw_count, true);
545 }
546
u32_replace_hw_knode(struct tcf_proto * tp,struct tc_u_knode * n,u32 flags,struct netlink_ext_ack * extack)547 static int u32_replace_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n,
548 u32 flags, struct netlink_ext_ack *extack)
549 {
550 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
551 struct tcf_block *block = tp->chain->block;
552 struct tc_cls_u32_offload cls_u32 = {};
553 bool skip_sw = tc_skip_sw(flags);
554 int err;
555
556 tc_cls_common_offload_init(&cls_u32.common, tp, flags, extack);
557 cls_u32.command = TC_CLSU32_REPLACE_KNODE;
558 cls_u32.knode.handle = n->handle;
559 cls_u32.knode.fshift = n->fshift;
560 #ifdef CONFIG_CLS_U32_MARK
561 cls_u32.knode.val = n->val;
562 cls_u32.knode.mask = n->mask;
563 #else
564 cls_u32.knode.val = 0;
565 cls_u32.knode.mask = 0;
566 #endif
567 cls_u32.knode.sel = &n->sel;
568 cls_u32.knode.res = &n->res;
569 cls_u32.knode.exts = &n->exts;
570 if (n->ht_down)
571 cls_u32.knode.link_handle = ht->handle;
572
573 err = tc_setup_cb_add(block, tp, TC_SETUP_CLSU32, &cls_u32, skip_sw,
574 &n->flags, &n->in_hw_count, true);
575 if (err) {
576 u32_remove_hw_knode(tp, n, NULL);
577 return err;
578 }
579
580 if (skip_sw && !(n->flags & TCA_CLS_FLAGS_IN_HW))
581 return -EINVAL;
582
583 return 0;
584 }
585
u32_clear_hnode(struct tcf_proto * tp,struct tc_u_hnode * ht,struct netlink_ext_ack * extack)586 static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht,
587 struct netlink_ext_ack *extack)
588 {
589 struct tc_u_common *tp_c = tp->data;
590 struct tc_u_knode *n;
591 unsigned int h;
592
593 for (h = 0; h <= ht->divisor; h++) {
594 while ((n = rtnl_dereference(ht->ht[h])) != NULL) {
595 RCU_INIT_POINTER(ht->ht[h],
596 rtnl_dereference(n->next));
597 tp_c->knodes--;
598 tcf_unbind_filter(tp, &n->res);
599 u32_remove_hw_knode(tp, n, extack);
600 idr_remove(&ht->handle_idr, n->handle);
601 if (tcf_exts_get_net(&n->exts))
602 tcf_queue_work(&n->rwork, u32_delete_key_freepf_work);
603 else
604 u32_destroy_key(n, true);
605 }
606 }
607 }
608
u32_destroy_hnode(struct tcf_proto * tp,struct tc_u_hnode * ht,struct netlink_ext_ack * extack)609 static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht,
610 struct netlink_ext_ack *extack)
611 {
612 struct tc_u_common *tp_c = tp->data;
613 struct tc_u_hnode __rcu **hn;
614 struct tc_u_hnode *phn;
615
616 u32_clear_hnode(tp, ht, extack);
617
618 hn = &tp_c->hlist;
619 for (phn = rtnl_dereference(*hn);
620 phn;
621 hn = &phn->next, phn = rtnl_dereference(*hn)) {
622 if (phn == ht) {
623 u32_clear_hw_hnode(tp, ht, extack);
624 idr_destroy(&ht->handle_idr);
625 idr_remove(&tp_c->handle_idr, handle2id(ht->handle));
626 RCU_INIT_POINTER(*hn, ht->next);
627 kfree_rcu(ht, rcu);
628 return 0;
629 }
630 }
631
632 return -ENOENT;
633 }
634
u32_destroy(struct tcf_proto * tp,bool rtnl_held,struct netlink_ext_ack * extack)635 static void u32_destroy(struct tcf_proto *tp, bool rtnl_held,
636 struct netlink_ext_ack *extack)
637 {
638 struct tc_u_common *tp_c = tp->data;
639 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root);
640
641 WARN_ON(root_ht == NULL);
642
643 if (root_ht && refcount_dec_and_test(&root_ht->refcnt))
644 u32_destroy_hnode(tp, root_ht, extack);
645
646 if (refcount_dec_and_test(&tp_c->refcnt)) {
647 struct tc_u_hnode *ht;
648
649 hlist_del(&tp_c->hnode);
650
651 while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) {
652 u32_clear_hnode(tp, ht, extack);
653 RCU_INIT_POINTER(tp_c->hlist, ht->next);
654
655 /* u32_destroy_key() will later free ht for us, if it's
656 * still referenced by some knode
657 */
658 if (refcount_dec_and_test(&ht->refcnt))
659 kfree_rcu(ht, rcu);
660 }
661
662 idr_destroy(&tp_c->handle_idr);
663 kfree(tp_c);
664 }
665
666 tp->data = NULL;
667 }
668
u32_delete(struct tcf_proto * tp,void * arg,bool * last,bool rtnl_held,struct netlink_ext_ack * extack)669 static int u32_delete(struct tcf_proto *tp, void *arg, bool *last,
670 bool rtnl_held, struct netlink_ext_ack *extack)
671 {
672 struct tc_u_hnode *ht = arg;
673 struct tc_u_common *tp_c = tp->data;
674 int ret = 0;
675
676 if (TC_U32_KEY(ht->handle)) {
677 u32_remove_hw_knode(tp, (struct tc_u_knode *)ht, extack);
678 ret = u32_delete_key(tp, (struct tc_u_knode *)ht);
679 goto out;
680 }
681
682 if (ht->is_root) {
683 NL_SET_ERR_MSG_MOD(extack, "Not allowed to delete root node");
684 return -EINVAL;
685 }
686
687 if (refcount_dec_if_one(&ht->refcnt)) {
688 u32_destroy_hnode(tp, ht, extack);
689 } else {
690 NL_SET_ERR_MSG_MOD(extack, "Can not delete in-use filter");
691 return -EBUSY;
692 }
693
694 out:
695 *last = refcount_read(&tp_c->refcnt) == 1 && tp_c->knodes == 0;
696 return ret;
697 }
698
gen_new_kid(struct tc_u_hnode * ht,u32 htid)699 static u32 gen_new_kid(struct tc_u_hnode *ht, u32 htid)
700 {
701 u32 index = htid | 0x800;
702 u32 max = htid | 0xFFF;
703
704 if (idr_alloc_u32(&ht->handle_idr, NULL, &index, max, GFP_KERNEL)) {
705 index = htid + 1;
706 if (idr_alloc_u32(&ht->handle_idr, NULL, &index, max,
707 GFP_KERNEL))
708 index = max;
709 }
710
711 return index;
712 }
713
714 static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = {
715 [TCA_U32_CLASSID] = { .type = NLA_U32 },
716 [TCA_U32_HASH] = { .type = NLA_U32 },
717 [TCA_U32_LINK] = { .type = NLA_U32 },
718 [TCA_U32_DIVISOR] = { .type = NLA_U32 },
719 [TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) },
720 [TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ },
721 [TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) },
722 [TCA_U32_FLAGS] = { .type = NLA_U32 },
723 };
724
u32_unbind_filter(struct tcf_proto * tp,struct tc_u_knode * n,struct nlattr ** tb)725 static void u32_unbind_filter(struct tcf_proto *tp, struct tc_u_knode *n,
726 struct nlattr **tb)
727 {
728 if (tb[TCA_U32_CLASSID])
729 tcf_unbind_filter(tp, &n->res);
730 }
731
u32_bind_filter(struct tcf_proto * tp,struct tc_u_knode * n,unsigned long base,struct nlattr ** tb)732 static void u32_bind_filter(struct tcf_proto *tp, struct tc_u_knode *n,
733 unsigned long base, struct nlattr **tb)
734 {
735 if (tb[TCA_U32_CLASSID]) {
736 n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]);
737 tcf_bind_filter(tp, &n->res, base);
738 }
739 }
740
u32_set_parms(struct net * net,struct tcf_proto * tp,struct tc_u_knode * n,struct nlattr ** tb,struct nlattr * est,u32 flags,u32 fl_flags,struct netlink_ext_ack * extack)741 static int u32_set_parms(struct net *net, struct tcf_proto *tp,
742 struct tc_u_knode *n, struct nlattr **tb,
743 struct nlattr *est, u32 flags, u32 fl_flags,
744 struct netlink_ext_ack *extack)
745 {
746 int err, ifindex = -1;
747
748 err = tcf_exts_validate_ex(net, tp, tb, est, &n->exts, flags,
749 fl_flags, extack);
750 if (err < 0)
751 return err;
752
753 if (tb[TCA_U32_INDEV]) {
754 ifindex = tcf_change_indev(net, tb[TCA_U32_INDEV], extack);
755 if (ifindex < 0)
756 return -EINVAL;
757 }
758
759 if (tb[TCA_U32_LINK]) {
760 u32 handle = nla_get_u32(tb[TCA_U32_LINK]);
761 struct tc_u_hnode *ht_down = NULL, *ht_old;
762
763 if (TC_U32_KEY(handle)) {
764 NL_SET_ERR_MSG_MOD(extack, "u32 Link handle must be a hash table");
765 return -EINVAL;
766 }
767
768 if (handle) {
769 ht_down = u32_lookup_ht(tp->data, handle);
770
771 if (!ht_down) {
772 NL_SET_ERR_MSG_MOD(extack, "Link hash table not found");
773 return -EINVAL;
774 }
775 if (ht_down->is_root) {
776 NL_SET_ERR_MSG_MOD(extack, "Not linking to root node");
777 return -EINVAL;
778 }
779 refcount_inc(&ht_down->refcnt);
780 }
781
782 ht_old = rtnl_dereference(n->ht_down);
783 rcu_assign_pointer(n->ht_down, ht_down);
784
785 if (ht_old)
786 refcount_dec(&ht_old->refcnt);
787 }
788
789 if (ifindex >= 0)
790 n->ifindex = ifindex;
791
792 return 0;
793 }
794
u32_replace_knode(struct tcf_proto * tp,struct tc_u_common * tp_c,struct tc_u_knode * n)795 static void u32_replace_knode(struct tcf_proto *tp, struct tc_u_common *tp_c,
796 struct tc_u_knode *n)
797 {
798 struct tc_u_knode __rcu **ins;
799 struct tc_u_knode *pins;
800 struct tc_u_hnode *ht;
801
802 if (TC_U32_HTID(n->handle) == TC_U32_ROOT)
803 ht = rtnl_dereference(tp->root);
804 else
805 ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle));
806
807 ins = &ht->ht[TC_U32_HASH(n->handle)];
808
809 /* The node must always exist for it to be replaced if this is not the
810 * case then something went very wrong elsewhere.
811 */
812 for (pins = rtnl_dereference(*ins); ;
813 ins = &pins->next, pins = rtnl_dereference(*ins))
814 if (pins->handle == n->handle)
815 break;
816
817 idr_replace(&ht->handle_idr, n, n->handle);
818 RCU_INIT_POINTER(n->next, pins->next);
819 rcu_assign_pointer(*ins, n);
820 }
821
u32_init_knode(struct net * net,struct tcf_proto * tp,struct tc_u_knode * n)822 static struct tc_u_knode *u32_init_knode(struct net *net, struct tcf_proto *tp,
823 struct tc_u_knode *n)
824 {
825 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
826 struct tc_u32_sel *s = &n->sel;
827 struct tc_u_knode *new;
828
829 new = kzalloc(struct_size(new, sel.keys, s->nkeys), GFP_KERNEL);
830 if (!new)
831 return NULL;
832
833 RCU_INIT_POINTER(new->next, n->next);
834 new->handle = n->handle;
835 RCU_INIT_POINTER(new->ht_up, n->ht_up);
836
837 new->ifindex = n->ifindex;
838 new->fshift = n->fshift;
839 new->flags = n->flags;
840 RCU_INIT_POINTER(new->ht_down, ht);
841
842 #ifdef CONFIG_CLS_U32_PERF
843 /* Statistics may be incremented by readers during update
844 * so we must keep them in tact. When the node is later destroyed
845 * a special destroy call must be made to not free the pf memory.
846 */
847 new->pf = n->pf;
848 #endif
849
850 #ifdef CONFIG_CLS_U32_MARK
851 new->val = n->val;
852 new->mask = n->mask;
853 /* Similarly success statistics must be moved as pointers */
854 new->pcpu_success = n->pcpu_success;
855 #endif
856 memcpy(&new->sel, s, struct_size(s, keys, s->nkeys));
857
858 if (tcf_exts_init(&new->exts, net, TCA_U32_ACT, TCA_U32_POLICE)) {
859 kfree(new);
860 return NULL;
861 }
862
863 /* bump reference count as long as we hold pointer to structure */
864 if (ht)
865 refcount_inc(&ht->refcnt);
866
867 return new;
868 }
869
u32_change(struct net * net,struct sk_buff * in_skb,struct tcf_proto * tp,unsigned long base,u32 handle,struct nlattr ** tca,void ** arg,u32 flags,struct netlink_ext_ack * extack)870 static int u32_change(struct net *net, struct sk_buff *in_skb,
871 struct tcf_proto *tp, unsigned long base, u32 handle,
872 struct nlattr **tca, void **arg, u32 flags,
873 struct netlink_ext_ack *extack)
874 {
875 struct tc_u_common *tp_c = tp->data;
876 struct tc_u_hnode *ht;
877 struct tc_u_knode *n;
878 struct tc_u32_sel *s;
879 struct nlattr *opt = tca[TCA_OPTIONS];
880 struct nlattr *tb[TCA_U32_MAX + 1];
881 u32 htid, userflags = 0;
882 size_t sel_size;
883 int err;
884
885 if (!opt) {
886 if (handle) {
887 NL_SET_ERR_MSG_MOD(extack, "Filter handle requires options");
888 return -EINVAL;
889 } else {
890 return 0;
891 }
892 }
893
894 err = nla_parse_nested_deprecated(tb, TCA_U32_MAX, opt, u32_policy,
895 extack);
896 if (err < 0)
897 return err;
898
899 if (tb[TCA_U32_FLAGS]) {
900 userflags = nla_get_u32(tb[TCA_U32_FLAGS]);
901 if (!tc_flags_valid(userflags)) {
902 NL_SET_ERR_MSG_MOD(extack, "Invalid filter flags");
903 return -EINVAL;
904 }
905 }
906
907 n = *arg;
908 if (n) {
909 struct tc_u_knode *new;
910
911 if (TC_U32_KEY(n->handle) == 0) {
912 NL_SET_ERR_MSG_MOD(extack, "Key node id cannot be zero");
913 return -EINVAL;
914 }
915
916 if ((n->flags ^ userflags) &
917 ~(TCA_CLS_FLAGS_IN_HW | TCA_CLS_FLAGS_NOT_IN_HW)) {
918 NL_SET_ERR_MSG_MOD(extack, "Key node flags do not match passed flags");
919 return -EINVAL;
920 }
921
922 new = u32_init_knode(net, tp, n);
923 if (!new)
924 return -ENOMEM;
925
926 err = u32_set_parms(net, tp, new, tb, tca[TCA_RATE],
927 flags, new->flags, extack);
928
929 if (err) {
930 __u32_destroy_key(new);
931 return err;
932 }
933
934 u32_bind_filter(tp, new, base, tb);
935
936 err = u32_replace_hw_knode(tp, new, flags, extack);
937 if (err) {
938 u32_unbind_filter(tp, new, tb);
939
940 if (tb[TCA_U32_LINK]) {
941 struct tc_u_hnode *ht_old;
942
943 ht_old = rtnl_dereference(n->ht_down);
944 if (ht_old)
945 refcount_inc(&ht_old->refcnt);
946 }
947 __u32_destroy_key(new);
948 return err;
949 }
950
951 if (!tc_in_hw(new->flags))
952 new->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
953
954 u32_replace_knode(tp, tp_c, new);
955 tcf_unbind_filter(tp, &n->res);
956 tcf_exts_get_net(&n->exts);
957 tcf_queue_work(&n->rwork, u32_delete_key_work);
958 return 0;
959 }
960
961 if (tb[TCA_U32_DIVISOR]) {
962 unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]);
963
964 if (!is_power_of_2(divisor)) {
965 NL_SET_ERR_MSG_MOD(extack, "Divisor is not a power of 2");
966 return -EINVAL;
967 }
968 if (divisor-- > 0x100) {
969 NL_SET_ERR_MSG_MOD(extack, "Exceeded maximum 256 hash buckets");
970 return -EINVAL;
971 }
972 if (TC_U32_KEY(handle)) {
973 NL_SET_ERR_MSG_MOD(extack, "Divisor can only be used on a hash table");
974 return -EINVAL;
975 }
976 ht = kzalloc(struct_size(ht, ht, divisor + 1), GFP_KERNEL);
977 if (ht == NULL)
978 return -ENOBUFS;
979 if (handle == 0) {
980 handle = gen_new_htid(tp->data, ht);
981 if (handle == 0) {
982 kfree(ht);
983 return -ENOMEM;
984 }
985 } else {
986 err = idr_alloc_u32(&tp_c->handle_idr, ht, &handle,
987 handle, GFP_KERNEL);
988 if (err) {
989 kfree(ht);
990 return err;
991 }
992 }
993 refcount_set(&ht->refcnt, 1);
994 ht->divisor = divisor;
995 ht->handle = handle;
996 ht->prio = tp->prio;
997 idr_init(&ht->handle_idr);
998 ht->flags = userflags;
999
1000 err = u32_replace_hw_hnode(tp, ht, userflags, extack);
1001 if (err) {
1002 idr_remove(&tp_c->handle_idr, handle2id(handle));
1003 kfree(ht);
1004 return err;
1005 }
1006
1007 RCU_INIT_POINTER(ht->next, tp_c->hlist);
1008 rcu_assign_pointer(tp_c->hlist, ht);
1009 *arg = ht;
1010
1011 return 0;
1012 }
1013
1014 if (tb[TCA_U32_HASH]) {
1015 htid = nla_get_u32(tb[TCA_U32_HASH]);
1016 if (TC_U32_HTID(htid) == TC_U32_ROOT) {
1017 ht = rtnl_dereference(tp->root);
1018 htid = ht->handle;
1019 } else {
1020 ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid));
1021 if (!ht) {
1022 NL_SET_ERR_MSG_MOD(extack, "Specified hash table not found");
1023 return -EINVAL;
1024 }
1025 }
1026 } else {
1027 ht = rtnl_dereference(tp->root);
1028 htid = ht->handle;
1029 }
1030
1031 if (ht->divisor < TC_U32_HASH(htid)) {
1032 NL_SET_ERR_MSG_MOD(extack, "Specified hash table buckets exceed configured value");
1033 return -EINVAL;
1034 }
1035
1036 /* At this point, we need to derive the new handle that will be used to
1037 * uniquely map the identity of this table match entry. The
1038 * identity of the entry that we need to construct is 32 bits made of:
1039 * htid(12b):bucketid(8b):node/entryid(12b)
1040 *
1041 * At this point _we have the table(ht)_ in which we will insert this
1042 * entry. We carry the table's id in variable "htid".
1043 * Note that earlier code picked the ht selection either by a) the user
1044 * providing the htid specified via TCA_U32_HASH attribute or b) when
1045 * no such attribute is passed then the root ht, is default to at ID
1046 * 0x[800][00][000]. Rule: the root table has a single bucket with ID 0.
1047 * If OTOH the user passed us the htid, they may also pass a bucketid of
1048 * choice. 0 is fine. For example a user htid is 0x[600][01][000] it is
1049 * indicating hash bucketid of 1. Rule: the entry/node ID _cannot_ be
1050 * passed via the htid, so even if it was non-zero it will be ignored.
1051 *
1052 * We may also have a handle, if the user passed one. The handle also
1053 * carries the same addressing of htid(12b):bucketid(8b):node/entryid(12b).
1054 * Rule: the bucketid on the handle is ignored even if one was passed;
1055 * rather the value on "htid" is always assumed to be the bucketid.
1056 */
1057 if (handle) {
1058 /* Rule: The htid from handle and tableid from htid must match */
1059 if (TC_U32_HTID(handle) && TC_U32_HTID(handle ^ htid)) {
1060 NL_SET_ERR_MSG_MOD(extack, "Handle specified hash table address mismatch");
1061 return -EINVAL;
1062 }
1063 /* Ok, so far we have a valid htid(12b):bucketid(8b) but we
1064 * need to finalize the table entry identification with the last
1065 * part - the node/entryid(12b)). Rule: Nodeid _cannot be 0_ for
1066 * entries. Rule: nodeid of 0 is reserved only for tables(see
1067 * earlier code which processes TC_U32_DIVISOR attribute).
1068 * Rule: The nodeid can only be derived from the handle (and not
1069 * htid).
1070 * Rule: if the handle specified zero for the node id example
1071 * 0x60000000, then pick a new nodeid from the pool of IDs
1072 * this hash table has been allocating from.
1073 * If OTOH it is specified (i.e for example the user passed a
1074 * handle such as 0x60000123), then we use it generate our final
1075 * handle which is used to uniquely identify the match entry.
1076 */
1077 if (!TC_U32_NODE(handle)) {
1078 handle = gen_new_kid(ht, htid);
1079 } else {
1080 handle = htid | TC_U32_NODE(handle);
1081 err = idr_alloc_u32(&ht->handle_idr, NULL, &handle,
1082 handle, GFP_KERNEL);
1083 if (err)
1084 return err;
1085 }
1086 } else {
1087 /* The user did not give us a handle; lets just generate one
1088 * from the table's pool of nodeids.
1089 */
1090 handle = gen_new_kid(ht, htid);
1091 }
1092
1093 if (tb[TCA_U32_SEL] == NULL) {
1094 NL_SET_ERR_MSG_MOD(extack, "Selector not specified");
1095 err = -EINVAL;
1096 goto erridr;
1097 }
1098
1099 s = nla_data(tb[TCA_U32_SEL]);
1100 sel_size = struct_size(s, keys, s->nkeys);
1101 if (nla_len(tb[TCA_U32_SEL]) < sel_size) {
1102 err = -EINVAL;
1103 goto erridr;
1104 }
1105
1106 n = kzalloc(struct_size(n, sel.keys, s->nkeys), GFP_KERNEL);
1107 if (n == NULL) {
1108 err = -ENOBUFS;
1109 goto erridr;
1110 }
1111
1112 #ifdef CONFIG_CLS_U32_PERF
1113 n->pf = __alloc_percpu(struct_size(n->pf, kcnts, s->nkeys),
1114 __alignof__(struct tc_u32_pcnt));
1115 if (!n->pf) {
1116 err = -ENOBUFS;
1117 goto errfree;
1118 }
1119 #endif
1120
1121 unsafe_memcpy(&n->sel, s, sel_size,
1122 /* A composite flex-array structure destination,
1123 * which was correctly sized with struct_size(),
1124 * bounds-checked against nla_len(), and allocated
1125 * above. */);
1126 RCU_INIT_POINTER(n->ht_up, ht);
1127 n->handle = handle;
1128 n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0;
1129 n->flags = userflags;
1130
1131 err = tcf_exts_init(&n->exts, net, TCA_U32_ACT, TCA_U32_POLICE);
1132 if (err < 0)
1133 goto errout;
1134
1135 #ifdef CONFIG_CLS_U32_MARK
1136 n->pcpu_success = alloc_percpu(u32);
1137 if (!n->pcpu_success) {
1138 err = -ENOMEM;
1139 goto errout;
1140 }
1141
1142 if (tb[TCA_U32_MARK]) {
1143 struct tc_u32_mark *mark;
1144
1145 mark = nla_data(tb[TCA_U32_MARK]);
1146 n->val = mark->val;
1147 n->mask = mark->mask;
1148 }
1149 #endif
1150
1151 err = u32_set_parms(net, tp, n, tb, tca[TCA_RATE],
1152 flags, n->flags, extack);
1153
1154 u32_bind_filter(tp, n, base, tb);
1155
1156 if (err == 0) {
1157 struct tc_u_knode __rcu **ins;
1158 struct tc_u_knode *pins;
1159
1160 err = u32_replace_hw_knode(tp, n, flags, extack);
1161 if (err)
1162 goto errunbind;
1163
1164 if (!tc_in_hw(n->flags))
1165 n->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
1166
1167 ins = &ht->ht[TC_U32_HASH(handle)];
1168 for (pins = rtnl_dereference(*ins); pins;
1169 ins = &pins->next, pins = rtnl_dereference(*ins))
1170 if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle))
1171 break;
1172
1173 RCU_INIT_POINTER(n->next, pins);
1174 rcu_assign_pointer(*ins, n);
1175 tp_c->knodes++;
1176 *arg = n;
1177 return 0;
1178 }
1179
1180 errunbind:
1181 u32_unbind_filter(tp, n, tb);
1182
1183 #ifdef CONFIG_CLS_U32_MARK
1184 free_percpu(n->pcpu_success);
1185 #endif
1186
1187 errout:
1188 tcf_exts_destroy(&n->exts);
1189 #ifdef CONFIG_CLS_U32_PERF
1190 errfree:
1191 free_percpu(n->pf);
1192 #endif
1193 kfree(n);
1194 erridr:
1195 idr_remove(&ht->handle_idr, handle);
1196 return err;
1197 }
1198
u32_walk(struct tcf_proto * tp,struct tcf_walker * arg,bool rtnl_held)1199 static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg,
1200 bool rtnl_held)
1201 {
1202 struct tc_u_common *tp_c = tp->data;
1203 struct tc_u_hnode *ht;
1204 struct tc_u_knode *n;
1205 unsigned int h;
1206
1207 if (arg->stop)
1208 return;
1209
1210 for (ht = rtnl_dereference(tp_c->hlist);
1211 ht;
1212 ht = rtnl_dereference(ht->next)) {
1213 if (ht->prio != tp->prio)
1214 continue;
1215
1216 if (!tc_cls_stats_dump(tp, arg, ht))
1217 return;
1218
1219 for (h = 0; h <= ht->divisor; h++) {
1220 for (n = rtnl_dereference(ht->ht[h]);
1221 n;
1222 n = rtnl_dereference(n->next)) {
1223 if (!tc_cls_stats_dump(tp, arg, n))
1224 return;
1225 }
1226 }
1227 }
1228 }
1229
u32_reoffload_hnode(struct tcf_proto * tp,struct tc_u_hnode * ht,bool add,flow_setup_cb_t * cb,void * cb_priv,struct netlink_ext_ack * extack)1230 static int u32_reoffload_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht,
1231 bool add, flow_setup_cb_t *cb, void *cb_priv,
1232 struct netlink_ext_ack *extack)
1233 {
1234 struct tc_cls_u32_offload cls_u32 = {};
1235 int err;
1236
1237 tc_cls_common_offload_init(&cls_u32.common, tp, ht->flags, extack);
1238 cls_u32.command = add ? TC_CLSU32_NEW_HNODE : TC_CLSU32_DELETE_HNODE;
1239 cls_u32.hnode.divisor = ht->divisor;
1240 cls_u32.hnode.handle = ht->handle;
1241 cls_u32.hnode.prio = ht->prio;
1242
1243 err = cb(TC_SETUP_CLSU32, &cls_u32, cb_priv);
1244 if (err && add && tc_skip_sw(ht->flags))
1245 return err;
1246
1247 return 0;
1248 }
1249
u32_reoffload_knode(struct tcf_proto * tp,struct tc_u_knode * n,bool add,flow_setup_cb_t * cb,void * cb_priv,struct netlink_ext_ack * extack)1250 static int u32_reoffload_knode(struct tcf_proto *tp, struct tc_u_knode *n,
1251 bool add, flow_setup_cb_t *cb, void *cb_priv,
1252 struct netlink_ext_ack *extack)
1253 {
1254 struct tc_u_hnode *ht = rtnl_dereference(n->ht_down);
1255 struct tcf_block *block = tp->chain->block;
1256 struct tc_cls_u32_offload cls_u32 = {};
1257
1258 tc_cls_common_offload_init(&cls_u32.common, tp, n->flags, extack);
1259 cls_u32.command = add ?
1260 TC_CLSU32_REPLACE_KNODE : TC_CLSU32_DELETE_KNODE;
1261 cls_u32.knode.handle = n->handle;
1262
1263 if (add) {
1264 cls_u32.knode.fshift = n->fshift;
1265 #ifdef CONFIG_CLS_U32_MARK
1266 cls_u32.knode.val = n->val;
1267 cls_u32.knode.mask = n->mask;
1268 #else
1269 cls_u32.knode.val = 0;
1270 cls_u32.knode.mask = 0;
1271 #endif
1272 cls_u32.knode.sel = &n->sel;
1273 cls_u32.knode.res = &n->res;
1274 cls_u32.knode.exts = &n->exts;
1275 if (n->ht_down)
1276 cls_u32.knode.link_handle = ht->handle;
1277 }
1278
1279 return tc_setup_cb_reoffload(block, tp, add, cb, TC_SETUP_CLSU32,
1280 &cls_u32, cb_priv, &n->flags,
1281 &n->in_hw_count);
1282 }
1283
u32_reoffload(struct tcf_proto * tp,bool add,flow_setup_cb_t * cb,void * cb_priv,struct netlink_ext_ack * extack)1284 static int u32_reoffload(struct tcf_proto *tp, bool add, flow_setup_cb_t *cb,
1285 void *cb_priv, struct netlink_ext_ack *extack)
1286 {
1287 struct tc_u_common *tp_c = tp->data;
1288 struct tc_u_hnode *ht;
1289 struct tc_u_knode *n;
1290 unsigned int h;
1291 int err;
1292
1293 for (ht = rtnl_dereference(tp_c->hlist);
1294 ht;
1295 ht = rtnl_dereference(ht->next)) {
1296 if (ht->prio != tp->prio)
1297 continue;
1298
1299 /* When adding filters to a new dev, try to offload the
1300 * hashtable first. When removing, do the filters before the
1301 * hashtable.
1302 */
1303 if (add && !tc_skip_hw(ht->flags)) {
1304 err = u32_reoffload_hnode(tp, ht, add, cb, cb_priv,
1305 extack);
1306 if (err)
1307 return err;
1308 }
1309
1310 for (h = 0; h <= ht->divisor; h++) {
1311 for (n = rtnl_dereference(ht->ht[h]);
1312 n;
1313 n = rtnl_dereference(n->next)) {
1314 if (tc_skip_hw(n->flags))
1315 continue;
1316
1317 err = u32_reoffload_knode(tp, n, add, cb,
1318 cb_priv, extack);
1319 if (err)
1320 return err;
1321 }
1322 }
1323
1324 if (!add && !tc_skip_hw(ht->flags))
1325 u32_reoffload_hnode(tp, ht, add, cb, cb_priv, extack);
1326 }
1327
1328 return 0;
1329 }
1330
u32_bind_class(void * fh,u32 classid,unsigned long cl,void * q,unsigned long base)1331 static void u32_bind_class(void *fh, u32 classid, unsigned long cl, void *q,
1332 unsigned long base)
1333 {
1334 struct tc_u_knode *n = fh;
1335
1336 tc_cls_bind_class(classid, cl, q, &n->res, base);
1337 }
1338
u32_dump(struct net * net,struct tcf_proto * tp,void * fh,struct sk_buff * skb,struct tcmsg * t,bool rtnl_held)1339 static int u32_dump(struct net *net, struct tcf_proto *tp, void *fh,
1340 struct sk_buff *skb, struct tcmsg *t, bool rtnl_held)
1341 {
1342 struct tc_u_knode *n = fh;
1343 struct tc_u_hnode *ht_up, *ht_down;
1344 struct nlattr *nest;
1345
1346 if (n == NULL)
1347 return skb->len;
1348
1349 t->tcm_handle = n->handle;
1350
1351 nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1352 if (nest == NULL)
1353 goto nla_put_failure;
1354
1355 if (TC_U32_KEY(n->handle) == 0) {
1356 struct tc_u_hnode *ht = fh;
1357 u32 divisor = ht->divisor + 1;
1358
1359 if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor))
1360 goto nla_put_failure;
1361 } else {
1362 #ifdef CONFIG_CLS_U32_PERF
1363 struct tc_u32_pcnt *gpf;
1364 int cpu;
1365 #endif
1366
1367 if (nla_put(skb, TCA_U32_SEL, struct_size(&n->sel, keys, n->sel.nkeys),
1368 &n->sel))
1369 goto nla_put_failure;
1370
1371 ht_up = rtnl_dereference(n->ht_up);
1372 if (ht_up) {
1373 u32 htid = n->handle & 0xFFFFF000;
1374 if (nla_put_u32(skb, TCA_U32_HASH, htid))
1375 goto nla_put_failure;
1376 }
1377 if (n->res.classid &&
1378 nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid))
1379 goto nla_put_failure;
1380
1381 ht_down = rtnl_dereference(n->ht_down);
1382 if (ht_down &&
1383 nla_put_u32(skb, TCA_U32_LINK, ht_down->handle))
1384 goto nla_put_failure;
1385
1386 if (n->flags && nla_put_u32(skb, TCA_U32_FLAGS, n->flags))
1387 goto nla_put_failure;
1388
1389 #ifdef CONFIG_CLS_U32_MARK
1390 if ((n->val || n->mask)) {
1391 struct tc_u32_mark mark = {.val = n->val,
1392 .mask = n->mask,
1393 .success = 0};
1394 int cpum;
1395
1396 for_each_possible_cpu(cpum) {
1397 __u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum);
1398
1399 mark.success += cnt;
1400 }
1401
1402 if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark))
1403 goto nla_put_failure;
1404 }
1405 #endif
1406
1407 if (tcf_exts_dump(skb, &n->exts) < 0)
1408 goto nla_put_failure;
1409
1410 if (n->ifindex) {
1411 struct net_device *dev;
1412 dev = __dev_get_by_index(net, n->ifindex);
1413 if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name))
1414 goto nla_put_failure;
1415 }
1416 #ifdef CONFIG_CLS_U32_PERF
1417 gpf = kzalloc(struct_size(gpf, kcnts, n->sel.nkeys), GFP_KERNEL);
1418 if (!gpf)
1419 goto nla_put_failure;
1420
1421 for_each_possible_cpu(cpu) {
1422 int i;
1423 struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu);
1424
1425 gpf->rcnt += pf->rcnt;
1426 gpf->rhit += pf->rhit;
1427 for (i = 0; i < n->sel.nkeys; i++)
1428 gpf->kcnts[i] += pf->kcnts[i];
1429 }
1430
1431 if (nla_put_64bit(skb, TCA_U32_PCNT, struct_size(gpf, kcnts, n->sel.nkeys),
1432 gpf, TCA_U32_PAD)) {
1433 kfree(gpf);
1434 goto nla_put_failure;
1435 }
1436 kfree(gpf);
1437 #endif
1438 }
1439
1440 nla_nest_end(skb, nest);
1441
1442 if (TC_U32_KEY(n->handle))
1443 if (tcf_exts_dump_stats(skb, &n->exts) < 0)
1444 goto nla_put_failure;
1445 return skb->len;
1446
1447 nla_put_failure:
1448 nla_nest_cancel(skb, nest);
1449 return -1;
1450 }
1451
1452 static struct tcf_proto_ops cls_u32_ops __read_mostly = {
1453 .kind = "u32",
1454 .classify = u32_classify,
1455 .init = u32_init,
1456 .destroy = u32_destroy,
1457 .get = u32_get,
1458 .change = u32_change,
1459 .delete = u32_delete,
1460 .walk = u32_walk,
1461 .reoffload = u32_reoffload,
1462 .dump = u32_dump,
1463 .bind_class = u32_bind_class,
1464 .owner = THIS_MODULE,
1465 };
1466
init_u32(void)1467 static int __init init_u32(void)
1468 {
1469 int i, ret;
1470
1471 pr_info("u32 classifier\n");
1472 #ifdef CONFIG_CLS_U32_PERF
1473 pr_info(" Performance counters on\n");
1474 #endif
1475 pr_info(" input device check on\n");
1476 #ifdef CONFIG_NET_CLS_ACT
1477 pr_info(" Actions configured\n");
1478 #endif
1479 tc_u_common_hash = kvmalloc_array(U32_HASH_SIZE,
1480 sizeof(struct hlist_head),
1481 GFP_KERNEL);
1482 if (!tc_u_common_hash)
1483 return -ENOMEM;
1484
1485 for (i = 0; i < U32_HASH_SIZE; i++)
1486 INIT_HLIST_HEAD(&tc_u_common_hash[i]);
1487
1488 ret = register_tcf_proto_ops(&cls_u32_ops);
1489 if (ret)
1490 kvfree(tc_u_common_hash);
1491 return ret;
1492 }
1493
exit_u32(void)1494 static void __exit exit_u32(void)
1495 {
1496 unregister_tcf_proto_ops(&cls_u32_ops);
1497 kvfree(tc_u_common_hash);
1498 }
1499
1500 module_init(init_u32)
1501 module_exit(exit_u32)
1502 MODULE_LICENSE("GPL");
1503