xref: /openbmc/linux/net/ipv4/fib_trie.c (revision 7e24a55b2122746c2eef192296fc84624354f895)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   *
4   *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
5   *     & Swedish University of Agricultural Sciences.
6   *
7   *   Jens Laas <jens.laas@data.slu.se> Swedish University of
8   *     Agricultural Sciences.
9   *
10   *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
11   *
12   * This work is based on the LPC-trie which is originally described in:
13   *
14   * An experimental study of compression methods for dynamic tries
15   * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16   * https://www.csc.kth.se/~snilsson/software/dyntrie2/
17   *
18   * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19   * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
20   *
21   * Code from fib_hash has been reused which includes the following header:
22   *
23   * INET		An implementation of the TCP/IP protocol suite for the LINUX
24   *		operating system.  INET is implemented using the  BSD Socket
25   *		interface as the means of communication with the user level.
26   *
27   *		IPv4 FIB: lookup engine and maintenance routines.
28   *
29   * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
30   *
31   * Substantial contributions to this work comes from:
32   *
33   *		David S. Miller, <davem@davemloft.net>
34   *		Stephen Hemminger <shemminger@osdl.org>
35   *		Paul E. McKenney <paulmck@us.ibm.com>
36   *		Patrick McHardy <kaber@trash.net>
37   */
38  #include <linux/cache.h>
39  #include <linux/uaccess.h>
40  #include <linux/bitops.h>
41  #include <linux/types.h>
42  #include <linux/kernel.h>
43  #include <linux/mm.h>
44  #include <linux/string.h>
45  #include <linux/socket.h>
46  #include <linux/sockios.h>
47  #include <linux/errno.h>
48  #include <linux/in.h>
49  #include <linux/inet.h>
50  #include <linux/inetdevice.h>
51  #include <linux/netdevice.h>
52  #include <linux/if_arp.h>
53  #include <linux/proc_fs.h>
54  #include <linux/rcupdate.h>
55  #include <linux/skbuff.h>
56  #include <linux/netlink.h>
57  #include <linux/init.h>
58  #include <linux/list.h>
59  #include <linux/slab.h>
60  #include <linux/export.h>
61  #include <linux/vmalloc.h>
62  #include <linux/notifier.h>
63  #include <net/net_namespace.h>
64  #include <net/inet_dscp.h>
65  #include <net/ip.h>
66  #include <net/protocol.h>
67  #include <net/route.h>
68  #include <net/tcp.h>
69  #include <net/sock.h>
70  #include <net/ip_fib.h>
71  #include <net/fib_notifier.h>
72  #include <trace/events/fib.h>
73  #include "fib_lookup.h"
74  
call_fib_entry_notifier(struct notifier_block * nb,enum fib_event_type event_type,u32 dst,int dst_len,struct fib_alias * fa,struct netlink_ext_ack * extack)75  static int call_fib_entry_notifier(struct notifier_block *nb,
76  				   enum fib_event_type event_type, u32 dst,
77  				   int dst_len, struct fib_alias *fa,
78  				   struct netlink_ext_ack *extack)
79  {
80  	struct fib_entry_notifier_info info = {
81  		.info.extack = extack,
82  		.dst = dst,
83  		.dst_len = dst_len,
84  		.fi = fa->fa_info,
85  		.dscp = fa->fa_dscp,
86  		.type = fa->fa_type,
87  		.tb_id = fa->tb_id,
88  	};
89  	return call_fib4_notifier(nb, event_type, &info.info);
90  }
91  
call_fib_entry_notifiers(struct net * net,enum fib_event_type event_type,u32 dst,int dst_len,struct fib_alias * fa,struct netlink_ext_ack * extack)92  static int call_fib_entry_notifiers(struct net *net,
93  				    enum fib_event_type event_type, u32 dst,
94  				    int dst_len, struct fib_alias *fa,
95  				    struct netlink_ext_ack *extack)
96  {
97  	struct fib_entry_notifier_info info = {
98  		.info.extack = extack,
99  		.dst = dst,
100  		.dst_len = dst_len,
101  		.fi = fa->fa_info,
102  		.dscp = fa->fa_dscp,
103  		.type = fa->fa_type,
104  		.tb_id = fa->tb_id,
105  	};
106  	return call_fib4_notifiers(net, event_type, &info.info);
107  }
108  
109  #define MAX_STAT_DEPTH 32
110  
111  #define KEYLENGTH	(8*sizeof(t_key))
112  #define KEY_MAX		((t_key)~0)
113  
114  typedef unsigned int t_key;
115  
116  #define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
117  #define IS_TNODE(n)	((n)->bits)
118  #define IS_LEAF(n)	(!(n)->bits)
119  
120  struct key_vector {
121  	t_key key;
122  	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
123  	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
124  	unsigned char slen;
125  	union {
126  		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
127  		struct hlist_head leaf;
128  		/* This array is valid if (pos | bits) > 0 (TNODE) */
129  		DECLARE_FLEX_ARRAY(struct key_vector __rcu *, tnode);
130  	};
131  };
132  
133  struct tnode {
134  	struct rcu_head rcu;
135  	t_key empty_children;		/* KEYLENGTH bits needed */
136  	t_key full_children;		/* KEYLENGTH bits needed */
137  	struct key_vector __rcu *parent;
138  	struct key_vector kv[1];
139  #define tn_bits kv[0].bits
140  };
141  
142  #define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
143  #define LEAF_SIZE	TNODE_SIZE(1)
144  
145  #ifdef CONFIG_IP_FIB_TRIE_STATS
146  struct trie_use_stats {
147  	unsigned int gets;
148  	unsigned int backtrack;
149  	unsigned int semantic_match_passed;
150  	unsigned int semantic_match_miss;
151  	unsigned int null_node_hit;
152  	unsigned int resize_node_skipped;
153  };
154  #endif
155  
156  struct trie_stat {
157  	unsigned int totdepth;
158  	unsigned int maxdepth;
159  	unsigned int tnodes;
160  	unsigned int leaves;
161  	unsigned int nullpointers;
162  	unsigned int prefixes;
163  	unsigned int nodesizes[MAX_STAT_DEPTH];
164  };
165  
166  struct trie {
167  	struct key_vector kv[1];
168  #ifdef CONFIG_IP_FIB_TRIE_STATS
169  	struct trie_use_stats __percpu *stats;
170  #endif
171  };
172  
173  static struct key_vector *resize(struct trie *t, struct key_vector *tn);
174  static unsigned int tnode_free_size;
175  
176  /*
177   * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
178   * especially useful before resizing the root node with PREEMPT_NONE configs;
179   * the value was obtained experimentally, aiming to avoid visible slowdown.
180   */
181  unsigned int sysctl_fib_sync_mem = 512 * 1024;
182  unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
183  unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
184  
185  static struct kmem_cache *fn_alias_kmem __ro_after_init;
186  static struct kmem_cache *trie_leaf_kmem __ro_after_init;
187  
tn_info(struct key_vector * kv)188  static inline struct tnode *tn_info(struct key_vector *kv)
189  {
190  	return container_of(kv, struct tnode, kv[0]);
191  }
192  
193  /* caller must hold RTNL */
194  #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
195  #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
196  
197  /* caller must hold RCU read lock or RTNL */
198  #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
199  #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
200  
201  /* wrapper for rcu_assign_pointer */
node_set_parent(struct key_vector * n,struct key_vector * tp)202  static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
203  {
204  	if (n)
205  		rcu_assign_pointer(tn_info(n)->parent, tp);
206  }
207  
208  #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
209  
210  /* This provides us with the number of children in this node, in the case of a
211   * leaf this will return 0 meaning none of the children are accessible.
212   */
child_length(const struct key_vector * tn)213  static inline unsigned long child_length(const struct key_vector *tn)
214  {
215  	return (1ul << tn->bits) & ~(1ul);
216  }
217  
218  #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
219  
get_index(t_key key,struct key_vector * kv)220  static inline unsigned long get_index(t_key key, struct key_vector *kv)
221  {
222  	unsigned long index = key ^ kv->key;
223  
224  	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
225  		return 0;
226  
227  	return index >> kv->pos;
228  }
229  
230  /* To understand this stuff, an understanding of keys and all their bits is
231   * necessary. Every node in the trie has a key associated with it, but not
232   * all of the bits in that key are significant.
233   *
234   * Consider a node 'n' and its parent 'tp'.
235   *
236   * If n is a leaf, every bit in its key is significant. Its presence is
237   * necessitated by path compression, since during a tree traversal (when
238   * searching for a leaf - unless we are doing an insertion) we will completely
239   * ignore all skipped bits we encounter. Thus we need to verify, at the end of
240   * a potentially successful search, that we have indeed been walking the
241   * correct key path.
242   *
243   * Note that we can never "miss" the correct key in the tree if present by
244   * following the wrong path. Path compression ensures that segments of the key
245   * that are the same for all keys with a given prefix are skipped, but the
246   * skipped part *is* identical for each node in the subtrie below the skipped
247   * bit! trie_insert() in this implementation takes care of that.
248   *
249   * if n is an internal node - a 'tnode' here, the various parts of its key
250   * have many different meanings.
251   *
252   * Example:
253   * _________________________________________________________________
254   * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
255   * -----------------------------------------------------------------
256   *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
257   *
258   * _________________________________________________________________
259   * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
260   * -----------------------------------------------------------------
261   *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
262   *
263   * tp->pos = 22
264   * tp->bits = 3
265   * n->pos = 13
266   * n->bits = 4
267   *
268   * First, let's just ignore the bits that come before the parent tp, that is
269   * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
270   * point we do not use them for anything.
271   *
272   * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
273   * index into the parent's child array. That is, they will be used to find
274   * 'n' among tp's children.
275   *
276   * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
277   * for the node n.
278   *
279   * All the bits we have seen so far are significant to the node n. The rest
280   * of the bits are really not needed or indeed known in n->key.
281   *
282   * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
283   * n's child array, and will of course be different for each child.
284   *
285   * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
286   * at this point.
287   */
288  
289  static const int halve_threshold = 25;
290  static const int inflate_threshold = 50;
291  static const int halve_threshold_root = 15;
292  static const int inflate_threshold_root = 30;
293  
__alias_free_mem(struct rcu_head * head)294  static void __alias_free_mem(struct rcu_head *head)
295  {
296  	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
297  	kmem_cache_free(fn_alias_kmem, fa);
298  }
299  
alias_free_mem_rcu(struct fib_alias * fa)300  static inline void alias_free_mem_rcu(struct fib_alias *fa)
301  {
302  	call_rcu(&fa->rcu, __alias_free_mem);
303  }
304  
305  #define TNODE_VMALLOC_MAX \
306  	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
307  
__node_free_rcu(struct rcu_head * head)308  static void __node_free_rcu(struct rcu_head *head)
309  {
310  	struct tnode *n = container_of(head, struct tnode, rcu);
311  
312  	if (!n->tn_bits)
313  		kmem_cache_free(trie_leaf_kmem, n);
314  	else
315  		kvfree(n);
316  }
317  
318  #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
319  
tnode_alloc(int bits)320  static struct tnode *tnode_alloc(int bits)
321  {
322  	size_t size;
323  
324  	/* verify bits is within bounds */
325  	if (bits > TNODE_VMALLOC_MAX)
326  		return NULL;
327  
328  	/* determine size and verify it is non-zero and didn't overflow */
329  	size = TNODE_SIZE(1ul << bits);
330  
331  	if (size <= PAGE_SIZE)
332  		return kzalloc(size, GFP_KERNEL);
333  	else
334  		return vzalloc(size);
335  }
336  
empty_child_inc(struct key_vector * n)337  static inline void empty_child_inc(struct key_vector *n)
338  {
339  	tn_info(n)->empty_children++;
340  
341  	if (!tn_info(n)->empty_children)
342  		tn_info(n)->full_children++;
343  }
344  
empty_child_dec(struct key_vector * n)345  static inline void empty_child_dec(struct key_vector *n)
346  {
347  	if (!tn_info(n)->empty_children)
348  		tn_info(n)->full_children--;
349  
350  	tn_info(n)->empty_children--;
351  }
352  
leaf_new(t_key key,struct fib_alias * fa)353  static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
354  {
355  	struct key_vector *l;
356  	struct tnode *kv;
357  
358  	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
359  	if (!kv)
360  		return NULL;
361  
362  	/* initialize key vector */
363  	l = kv->kv;
364  	l->key = key;
365  	l->pos = 0;
366  	l->bits = 0;
367  	l->slen = fa->fa_slen;
368  
369  	/* link leaf to fib alias */
370  	INIT_HLIST_HEAD(&l->leaf);
371  	hlist_add_head(&fa->fa_list, &l->leaf);
372  
373  	return l;
374  }
375  
tnode_new(t_key key,int pos,int bits)376  static struct key_vector *tnode_new(t_key key, int pos, int bits)
377  {
378  	unsigned int shift = pos + bits;
379  	struct key_vector *tn;
380  	struct tnode *tnode;
381  
382  	/* verify bits and pos their msb bits clear and values are valid */
383  	BUG_ON(!bits || (shift > KEYLENGTH));
384  
385  	tnode = tnode_alloc(bits);
386  	if (!tnode)
387  		return NULL;
388  
389  	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
390  		 sizeof(struct key_vector *) << bits);
391  
392  	if (bits == KEYLENGTH)
393  		tnode->full_children = 1;
394  	else
395  		tnode->empty_children = 1ul << bits;
396  
397  	tn = tnode->kv;
398  	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
399  	tn->pos = pos;
400  	tn->bits = bits;
401  	tn->slen = pos;
402  
403  	return tn;
404  }
405  
406  /* Check whether a tnode 'n' is "full", i.e. it is an internal node
407   * and no bits are skipped. See discussion in dyntree paper p. 6
408   */
tnode_full(struct key_vector * tn,struct key_vector * n)409  static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
410  {
411  	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
412  }
413  
414  /* Add a child at position i overwriting the old value.
415   * Update the value of full_children and empty_children.
416   */
put_child(struct key_vector * tn,unsigned long i,struct key_vector * n)417  static void put_child(struct key_vector *tn, unsigned long i,
418  		      struct key_vector *n)
419  {
420  	struct key_vector *chi = get_child(tn, i);
421  	int isfull, wasfull;
422  
423  	BUG_ON(i >= child_length(tn));
424  
425  	/* update emptyChildren, overflow into fullChildren */
426  	if (!n && chi)
427  		empty_child_inc(tn);
428  	if (n && !chi)
429  		empty_child_dec(tn);
430  
431  	/* update fullChildren */
432  	wasfull = tnode_full(tn, chi);
433  	isfull = tnode_full(tn, n);
434  
435  	if (wasfull && !isfull)
436  		tn_info(tn)->full_children--;
437  	else if (!wasfull && isfull)
438  		tn_info(tn)->full_children++;
439  
440  	if (n && (tn->slen < n->slen))
441  		tn->slen = n->slen;
442  
443  	rcu_assign_pointer(tn->tnode[i], n);
444  }
445  
update_children(struct key_vector * tn)446  static void update_children(struct key_vector *tn)
447  {
448  	unsigned long i;
449  
450  	/* update all of the child parent pointers */
451  	for (i = child_length(tn); i;) {
452  		struct key_vector *inode = get_child(tn, --i);
453  
454  		if (!inode)
455  			continue;
456  
457  		/* Either update the children of a tnode that
458  		 * already belongs to us or update the child
459  		 * to point to ourselves.
460  		 */
461  		if (node_parent(inode) == tn)
462  			update_children(inode);
463  		else
464  			node_set_parent(inode, tn);
465  	}
466  }
467  
put_child_root(struct key_vector * tp,t_key key,struct key_vector * n)468  static inline void put_child_root(struct key_vector *tp, t_key key,
469  				  struct key_vector *n)
470  {
471  	if (IS_TRIE(tp))
472  		rcu_assign_pointer(tp->tnode[0], n);
473  	else
474  		put_child(tp, get_index(key, tp), n);
475  }
476  
tnode_free_init(struct key_vector * tn)477  static inline void tnode_free_init(struct key_vector *tn)
478  {
479  	tn_info(tn)->rcu.next = NULL;
480  }
481  
tnode_free_append(struct key_vector * tn,struct key_vector * n)482  static inline void tnode_free_append(struct key_vector *tn,
483  				     struct key_vector *n)
484  {
485  	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
486  	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
487  }
488  
tnode_free(struct key_vector * tn)489  static void tnode_free(struct key_vector *tn)
490  {
491  	struct callback_head *head = &tn_info(tn)->rcu;
492  
493  	while (head) {
494  		head = head->next;
495  		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
496  		node_free(tn);
497  
498  		tn = container_of(head, struct tnode, rcu)->kv;
499  	}
500  
501  	if (tnode_free_size >= READ_ONCE(sysctl_fib_sync_mem)) {
502  		tnode_free_size = 0;
503  		synchronize_rcu();
504  	}
505  }
506  
replace(struct trie * t,struct key_vector * oldtnode,struct key_vector * tn)507  static struct key_vector *replace(struct trie *t,
508  				  struct key_vector *oldtnode,
509  				  struct key_vector *tn)
510  {
511  	struct key_vector *tp = node_parent(oldtnode);
512  	unsigned long i;
513  
514  	/* setup the parent pointer out of and back into this node */
515  	NODE_INIT_PARENT(tn, tp);
516  	put_child_root(tp, tn->key, tn);
517  
518  	/* update all of the child parent pointers */
519  	update_children(tn);
520  
521  	/* all pointers should be clean so we are done */
522  	tnode_free(oldtnode);
523  
524  	/* resize children now that oldtnode is freed */
525  	for (i = child_length(tn); i;) {
526  		struct key_vector *inode = get_child(tn, --i);
527  
528  		/* resize child node */
529  		if (tnode_full(tn, inode))
530  			tn = resize(t, inode);
531  	}
532  
533  	return tp;
534  }
535  
inflate(struct trie * t,struct key_vector * oldtnode)536  static struct key_vector *inflate(struct trie *t,
537  				  struct key_vector *oldtnode)
538  {
539  	struct key_vector *tn;
540  	unsigned long i;
541  	t_key m;
542  
543  	pr_debug("In inflate\n");
544  
545  	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
546  	if (!tn)
547  		goto notnode;
548  
549  	/* prepare oldtnode to be freed */
550  	tnode_free_init(oldtnode);
551  
552  	/* Assemble all of the pointers in our cluster, in this case that
553  	 * represents all of the pointers out of our allocated nodes that
554  	 * point to existing tnodes and the links between our allocated
555  	 * nodes.
556  	 */
557  	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
558  		struct key_vector *inode = get_child(oldtnode, --i);
559  		struct key_vector *node0, *node1;
560  		unsigned long j, k;
561  
562  		/* An empty child */
563  		if (!inode)
564  			continue;
565  
566  		/* A leaf or an internal node with skipped bits */
567  		if (!tnode_full(oldtnode, inode)) {
568  			put_child(tn, get_index(inode->key, tn), inode);
569  			continue;
570  		}
571  
572  		/* drop the node in the old tnode free list */
573  		tnode_free_append(oldtnode, inode);
574  
575  		/* An internal node with two children */
576  		if (inode->bits == 1) {
577  			put_child(tn, 2 * i + 1, get_child(inode, 1));
578  			put_child(tn, 2 * i, get_child(inode, 0));
579  			continue;
580  		}
581  
582  		/* We will replace this node 'inode' with two new
583  		 * ones, 'node0' and 'node1', each with half of the
584  		 * original children. The two new nodes will have
585  		 * a position one bit further down the key and this
586  		 * means that the "significant" part of their keys
587  		 * (see the discussion near the top of this file)
588  		 * will differ by one bit, which will be "0" in
589  		 * node0's key and "1" in node1's key. Since we are
590  		 * moving the key position by one step, the bit that
591  		 * we are moving away from - the bit at position
592  		 * (tn->pos) - is the one that will differ between
593  		 * node0 and node1. So... we synthesize that bit in the
594  		 * two new keys.
595  		 */
596  		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
597  		if (!node1)
598  			goto nomem;
599  		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
600  
601  		tnode_free_append(tn, node1);
602  		if (!node0)
603  			goto nomem;
604  		tnode_free_append(tn, node0);
605  
606  		/* populate child pointers in new nodes */
607  		for (k = child_length(inode), j = k / 2; j;) {
608  			put_child(node1, --j, get_child(inode, --k));
609  			put_child(node0, j, get_child(inode, j));
610  			put_child(node1, --j, get_child(inode, --k));
611  			put_child(node0, j, get_child(inode, j));
612  		}
613  
614  		/* link new nodes to parent */
615  		NODE_INIT_PARENT(node1, tn);
616  		NODE_INIT_PARENT(node0, tn);
617  
618  		/* link parent to nodes */
619  		put_child(tn, 2 * i + 1, node1);
620  		put_child(tn, 2 * i, node0);
621  	}
622  
623  	/* setup the parent pointers into and out of this node */
624  	return replace(t, oldtnode, tn);
625  nomem:
626  	/* all pointers should be clean so we are done */
627  	tnode_free(tn);
628  notnode:
629  	return NULL;
630  }
631  
halve(struct trie * t,struct key_vector * oldtnode)632  static struct key_vector *halve(struct trie *t,
633  				struct key_vector *oldtnode)
634  {
635  	struct key_vector *tn;
636  	unsigned long i;
637  
638  	pr_debug("In halve\n");
639  
640  	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
641  	if (!tn)
642  		goto notnode;
643  
644  	/* prepare oldtnode to be freed */
645  	tnode_free_init(oldtnode);
646  
647  	/* Assemble all of the pointers in our cluster, in this case that
648  	 * represents all of the pointers out of our allocated nodes that
649  	 * point to existing tnodes and the links between our allocated
650  	 * nodes.
651  	 */
652  	for (i = child_length(oldtnode); i;) {
653  		struct key_vector *node1 = get_child(oldtnode, --i);
654  		struct key_vector *node0 = get_child(oldtnode, --i);
655  		struct key_vector *inode;
656  
657  		/* At least one of the children is empty */
658  		if (!node1 || !node0) {
659  			put_child(tn, i / 2, node1 ? : node0);
660  			continue;
661  		}
662  
663  		/* Two nonempty children */
664  		inode = tnode_new(node0->key, oldtnode->pos, 1);
665  		if (!inode)
666  			goto nomem;
667  		tnode_free_append(tn, inode);
668  
669  		/* initialize pointers out of node */
670  		put_child(inode, 1, node1);
671  		put_child(inode, 0, node0);
672  		NODE_INIT_PARENT(inode, tn);
673  
674  		/* link parent to node */
675  		put_child(tn, i / 2, inode);
676  	}
677  
678  	/* setup the parent pointers into and out of this node */
679  	return replace(t, oldtnode, tn);
680  nomem:
681  	/* all pointers should be clean so we are done */
682  	tnode_free(tn);
683  notnode:
684  	return NULL;
685  }
686  
collapse(struct trie * t,struct key_vector * oldtnode)687  static struct key_vector *collapse(struct trie *t,
688  				   struct key_vector *oldtnode)
689  {
690  	struct key_vector *n, *tp;
691  	unsigned long i;
692  
693  	/* scan the tnode looking for that one child that might still exist */
694  	for (n = NULL, i = child_length(oldtnode); !n && i;)
695  		n = get_child(oldtnode, --i);
696  
697  	/* compress one level */
698  	tp = node_parent(oldtnode);
699  	put_child_root(tp, oldtnode->key, n);
700  	node_set_parent(n, tp);
701  
702  	/* drop dead node */
703  	node_free(oldtnode);
704  
705  	return tp;
706  }
707  
update_suffix(struct key_vector * tn)708  static unsigned char update_suffix(struct key_vector *tn)
709  {
710  	unsigned char slen = tn->pos;
711  	unsigned long stride, i;
712  	unsigned char slen_max;
713  
714  	/* only vector 0 can have a suffix length greater than or equal to
715  	 * tn->pos + tn->bits, the second highest node will have a suffix
716  	 * length at most of tn->pos + tn->bits - 1
717  	 */
718  	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
719  
720  	/* search though the list of children looking for nodes that might
721  	 * have a suffix greater than the one we currently have.  This is
722  	 * why we start with a stride of 2 since a stride of 1 would
723  	 * represent the nodes with suffix length equal to tn->pos
724  	 */
725  	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
726  		struct key_vector *n = get_child(tn, i);
727  
728  		if (!n || (n->slen <= slen))
729  			continue;
730  
731  		/* update stride and slen based on new value */
732  		stride <<= (n->slen - slen);
733  		slen = n->slen;
734  		i &= ~(stride - 1);
735  
736  		/* stop searching if we have hit the maximum possible value */
737  		if (slen >= slen_max)
738  			break;
739  	}
740  
741  	tn->slen = slen;
742  
743  	return slen;
744  }
745  
746  /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
747   * the Helsinki University of Technology and Matti Tikkanen of Nokia
748   * Telecommunications, page 6:
749   * "A node is doubled if the ratio of non-empty children to all
750   * children in the *doubled* node is at least 'high'."
751   *
752   * 'high' in this instance is the variable 'inflate_threshold'. It
753   * is expressed as a percentage, so we multiply it with
754   * child_length() and instead of multiplying by 2 (since the
755   * child array will be doubled by inflate()) and multiplying
756   * the left-hand side by 100 (to handle the percentage thing) we
757   * multiply the left-hand side by 50.
758   *
759   * The left-hand side may look a bit weird: child_length(tn)
760   * - tn->empty_children is of course the number of non-null children
761   * in the current node. tn->full_children is the number of "full"
762   * children, that is non-null tnodes with a skip value of 0.
763   * All of those will be doubled in the resulting inflated tnode, so
764   * we just count them one extra time here.
765   *
766   * A clearer way to write this would be:
767   *
768   * to_be_doubled = tn->full_children;
769   * not_to_be_doubled = child_length(tn) - tn->empty_children -
770   *     tn->full_children;
771   *
772   * new_child_length = child_length(tn) * 2;
773   *
774   * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
775   *      new_child_length;
776   * if (new_fill_factor >= inflate_threshold)
777   *
778   * ...and so on, tho it would mess up the while () loop.
779   *
780   * anyway,
781   * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
782   *      inflate_threshold
783   *
784   * avoid a division:
785   * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
786   *      inflate_threshold * new_child_length
787   *
788   * expand not_to_be_doubled and to_be_doubled, and shorten:
789   * 100 * (child_length(tn) - tn->empty_children +
790   *    tn->full_children) >= inflate_threshold * new_child_length
791   *
792   * expand new_child_length:
793   * 100 * (child_length(tn) - tn->empty_children +
794   *    tn->full_children) >=
795   *      inflate_threshold * child_length(tn) * 2
796   *
797   * shorten again:
798   * 50 * (tn->full_children + child_length(tn) -
799   *    tn->empty_children) >= inflate_threshold *
800   *    child_length(tn)
801   *
802   */
should_inflate(struct key_vector * tp,struct key_vector * tn)803  static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
804  {
805  	unsigned long used = child_length(tn);
806  	unsigned long threshold = used;
807  
808  	/* Keep root node larger */
809  	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
810  	used -= tn_info(tn)->empty_children;
811  	used += tn_info(tn)->full_children;
812  
813  	/* if bits == KEYLENGTH then pos = 0, and will fail below */
814  
815  	return (used > 1) && tn->pos && ((50 * used) >= threshold);
816  }
817  
should_halve(struct key_vector * tp,struct key_vector * tn)818  static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
819  {
820  	unsigned long used = child_length(tn);
821  	unsigned long threshold = used;
822  
823  	/* Keep root node larger */
824  	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
825  	used -= tn_info(tn)->empty_children;
826  
827  	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
828  
829  	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
830  }
831  
should_collapse(struct key_vector * tn)832  static inline bool should_collapse(struct key_vector *tn)
833  {
834  	unsigned long used = child_length(tn);
835  
836  	used -= tn_info(tn)->empty_children;
837  
838  	/* account for bits == KEYLENGTH case */
839  	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
840  		used -= KEY_MAX;
841  
842  	/* One child or none, time to drop us from the trie */
843  	return used < 2;
844  }
845  
846  #define MAX_WORK 10
resize(struct trie * t,struct key_vector * tn)847  static struct key_vector *resize(struct trie *t, struct key_vector *tn)
848  {
849  #ifdef CONFIG_IP_FIB_TRIE_STATS
850  	struct trie_use_stats __percpu *stats = t->stats;
851  #endif
852  	struct key_vector *tp = node_parent(tn);
853  	unsigned long cindex = get_index(tn->key, tp);
854  	int max_work = MAX_WORK;
855  
856  	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
857  		 tn, inflate_threshold, halve_threshold);
858  
859  	/* track the tnode via the pointer from the parent instead of
860  	 * doing it ourselves.  This way we can let RCU fully do its
861  	 * thing without us interfering
862  	 */
863  	BUG_ON(tn != get_child(tp, cindex));
864  
865  	/* Double as long as the resulting node has a number of
866  	 * nonempty nodes that are above the threshold.
867  	 */
868  	while (should_inflate(tp, tn) && max_work) {
869  		tp = inflate(t, tn);
870  		if (!tp) {
871  #ifdef CONFIG_IP_FIB_TRIE_STATS
872  			this_cpu_inc(stats->resize_node_skipped);
873  #endif
874  			break;
875  		}
876  
877  		max_work--;
878  		tn = get_child(tp, cindex);
879  	}
880  
881  	/* update parent in case inflate failed */
882  	tp = node_parent(tn);
883  
884  	/* Return if at least one inflate is run */
885  	if (max_work != MAX_WORK)
886  		return tp;
887  
888  	/* Halve as long as the number of empty children in this
889  	 * node is above threshold.
890  	 */
891  	while (should_halve(tp, tn) && max_work) {
892  		tp = halve(t, tn);
893  		if (!tp) {
894  #ifdef CONFIG_IP_FIB_TRIE_STATS
895  			this_cpu_inc(stats->resize_node_skipped);
896  #endif
897  			break;
898  		}
899  
900  		max_work--;
901  		tn = get_child(tp, cindex);
902  	}
903  
904  	/* Only one child remains */
905  	if (should_collapse(tn))
906  		return collapse(t, tn);
907  
908  	/* update parent in case halve failed */
909  	return node_parent(tn);
910  }
911  
node_pull_suffix(struct key_vector * tn,unsigned char slen)912  static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
913  {
914  	unsigned char node_slen = tn->slen;
915  
916  	while ((node_slen > tn->pos) && (node_slen > slen)) {
917  		slen = update_suffix(tn);
918  		if (node_slen == slen)
919  			break;
920  
921  		tn = node_parent(tn);
922  		node_slen = tn->slen;
923  	}
924  }
925  
node_push_suffix(struct key_vector * tn,unsigned char slen)926  static void node_push_suffix(struct key_vector *tn, unsigned char slen)
927  {
928  	while (tn->slen < slen) {
929  		tn->slen = slen;
930  		tn = node_parent(tn);
931  	}
932  }
933  
934  /* rcu_read_lock needs to be hold by caller from readside */
fib_find_node(struct trie * t,struct key_vector ** tp,u32 key)935  static struct key_vector *fib_find_node(struct trie *t,
936  					struct key_vector **tp, u32 key)
937  {
938  	struct key_vector *pn, *n = t->kv;
939  	unsigned long index = 0;
940  
941  	do {
942  		pn = n;
943  		n = get_child_rcu(n, index);
944  
945  		if (!n)
946  			break;
947  
948  		index = get_cindex(key, n);
949  
950  		/* This bit of code is a bit tricky but it combines multiple
951  		 * checks into a single check.  The prefix consists of the
952  		 * prefix plus zeros for the bits in the cindex. The index
953  		 * is the difference between the key and this value.  From
954  		 * this we can actually derive several pieces of data.
955  		 *   if (index >= (1ul << bits))
956  		 *     we have a mismatch in skip bits and failed
957  		 *   else
958  		 *     we know the value is cindex
959  		 *
960  		 * This check is safe even if bits == KEYLENGTH due to the
961  		 * fact that we can only allocate a node with 32 bits if a
962  		 * long is greater than 32 bits.
963  		 */
964  		if (index >= (1ul << n->bits)) {
965  			n = NULL;
966  			break;
967  		}
968  
969  		/* keep searching until we find a perfect match leaf or NULL */
970  	} while (IS_TNODE(n));
971  
972  	*tp = pn;
973  
974  	return n;
975  }
976  
977  /* Return the first fib alias matching DSCP with
978   * priority less than or equal to PRIO.
979   * If 'find_first' is set, return the first matching
980   * fib alias, regardless of DSCP and priority.
981   */
fib_find_alias(struct hlist_head * fah,u8 slen,dscp_t dscp,u32 prio,u32 tb_id,bool find_first)982  static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
983  					dscp_t dscp, u32 prio, u32 tb_id,
984  					bool find_first)
985  {
986  	struct fib_alias *fa;
987  
988  	if (!fah)
989  		return NULL;
990  
991  	hlist_for_each_entry(fa, fah, fa_list) {
992  		/* Avoid Sparse warning when using dscp_t in inequalities */
993  		u8 __fa_dscp = inet_dscp_to_dsfield(fa->fa_dscp);
994  		u8 __dscp = inet_dscp_to_dsfield(dscp);
995  
996  		if (fa->fa_slen < slen)
997  			continue;
998  		if (fa->fa_slen != slen)
999  			break;
1000  		if (fa->tb_id > tb_id)
1001  			continue;
1002  		if (fa->tb_id != tb_id)
1003  			break;
1004  		if (find_first)
1005  			return fa;
1006  		if (__fa_dscp > __dscp)
1007  			continue;
1008  		if (fa->fa_info->fib_priority >= prio || __fa_dscp < __dscp)
1009  			return fa;
1010  	}
1011  
1012  	return NULL;
1013  }
1014  
1015  static struct fib_alias *
fib_find_matching_alias(struct net * net,const struct fib_rt_info * fri)1016  fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1017  {
1018  	u8 slen = KEYLENGTH - fri->dst_len;
1019  	struct key_vector *l, *tp;
1020  	struct fib_table *tb;
1021  	struct fib_alias *fa;
1022  	struct trie *t;
1023  
1024  	tb = fib_get_table(net, fri->tb_id);
1025  	if (!tb)
1026  		return NULL;
1027  
1028  	t = (struct trie *)tb->tb_data;
1029  	l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1030  	if (!l)
1031  		return NULL;
1032  
1033  	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1034  		if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1035  		    fa->fa_dscp == fri->dscp && fa->fa_info == fri->fi &&
1036  		    fa->fa_type == fri->type)
1037  			return fa;
1038  	}
1039  
1040  	return NULL;
1041  }
1042  
fib_alias_hw_flags_set(struct net * net,const struct fib_rt_info * fri)1043  void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1044  {
1045  	u8 fib_notify_on_flag_change;
1046  	struct fib_alias *fa_match;
1047  	struct sk_buff *skb;
1048  	int err;
1049  
1050  	rcu_read_lock();
1051  
1052  	fa_match = fib_find_matching_alias(net, fri);
1053  	if (!fa_match)
1054  		goto out;
1055  
1056  	/* These are paired with the WRITE_ONCE() happening in this function.
1057  	 * The reason is that we are only protected by RCU at this point.
1058  	 */
1059  	if (READ_ONCE(fa_match->offload) == fri->offload &&
1060  	    READ_ONCE(fa_match->trap) == fri->trap &&
1061  	    READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1062  		goto out;
1063  
1064  	WRITE_ONCE(fa_match->offload, fri->offload);
1065  	WRITE_ONCE(fa_match->trap, fri->trap);
1066  
1067  	fib_notify_on_flag_change = READ_ONCE(net->ipv4.sysctl_fib_notify_on_flag_change);
1068  
1069  	/* 2 means send notifications only if offload_failed was changed. */
1070  	if (fib_notify_on_flag_change == 2 &&
1071  	    READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1072  		goto out;
1073  
1074  	WRITE_ONCE(fa_match->offload_failed, fri->offload_failed);
1075  
1076  	if (!fib_notify_on_flag_change)
1077  		goto out;
1078  
1079  	skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC);
1080  	if (!skb) {
1081  		err = -ENOBUFS;
1082  		goto errout;
1083  	}
1084  
1085  	err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0);
1086  	if (err < 0) {
1087  		/* -EMSGSIZE implies BUG in fib_nlmsg_size() */
1088  		WARN_ON(err == -EMSGSIZE);
1089  		kfree_skb(skb);
1090  		goto errout;
1091  	}
1092  
1093  	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC);
1094  	goto out;
1095  
1096  errout:
1097  	rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err);
1098  out:
1099  	rcu_read_unlock();
1100  }
1101  EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1102  
trie_rebalance(struct trie * t,struct key_vector * tn)1103  static void trie_rebalance(struct trie *t, struct key_vector *tn)
1104  {
1105  	while (!IS_TRIE(tn))
1106  		tn = resize(t, tn);
1107  }
1108  
fib_insert_node(struct trie * t,struct key_vector * tp,struct fib_alias * new,t_key key)1109  static int fib_insert_node(struct trie *t, struct key_vector *tp,
1110  			   struct fib_alias *new, t_key key)
1111  {
1112  	struct key_vector *n, *l;
1113  
1114  	l = leaf_new(key, new);
1115  	if (!l)
1116  		goto noleaf;
1117  
1118  	/* retrieve child from parent node */
1119  	n = get_child(tp, get_index(key, tp));
1120  
1121  	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1122  	 *
1123  	 *  Add a new tnode here
1124  	 *  first tnode need some special handling
1125  	 *  leaves us in position for handling as case 3
1126  	 */
1127  	if (n) {
1128  		struct key_vector *tn;
1129  
1130  		tn = tnode_new(key, __fls(key ^ n->key), 1);
1131  		if (!tn)
1132  			goto notnode;
1133  
1134  		/* initialize routes out of node */
1135  		NODE_INIT_PARENT(tn, tp);
1136  		put_child(tn, get_index(key, tn) ^ 1, n);
1137  
1138  		/* start adding routes into the node */
1139  		put_child_root(tp, key, tn);
1140  		node_set_parent(n, tn);
1141  
1142  		/* parent now has a NULL spot where the leaf can go */
1143  		tp = tn;
1144  	}
1145  
1146  	/* Case 3: n is NULL, and will just insert a new leaf */
1147  	node_push_suffix(tp, new->fa_slen);
1148  	NODE_INIT_PARENT(l, tp);
1149  	put_child_root(tp, key, l);
1150  	trie_rebalance(t, tp);
1151  
1152  	return 0;
1153  notnode:
1154  	node_free(l);
1155  noleaf:
1156  	return -ENOMEM;
1157  }
1158  
fib_insert_alias(struct trie * t,struct key_vector * tp,struct key_vector * l,struct fib_alias * new,struct fib_alias * fa,t_key key)1159  static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1160  			    struct key_vector *l, struct fib_alias *new,
1161  			    struct fib_alias *fa, t_key key)
1162  {
1163  	if (!l)
1164  		return fib_insert_node(t, tp, new, key);
1165  
1166  	if (fa) {
1167  		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1168  	} else {
1169  		struct fib_alias *last;
1170  
1171  		hlist_for_each_entry(last, &l->leaf, fa_list) {
1172  			if (new->fa_slen < last->fa_slen)
1173  				break;
1174  			if ((new->fa_slen == last->fa_slen) &&
1175  			    (new->tb_id > last->tb_id))
1176  				break;
1177  			fa = last;
1178  		}
1179  
1180  		if (fa)
1181  			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1182  		else
1183  			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1184  	}
1185  
1186  	/* if we added to the tail node then we need to update slen */
1187  	if (l->slen < new->fa_slen) {
1188  		l->slen = new->fa_slen;
1189  		node_push_suffix(tp, new->fa_slen);
1190  	}
1191  
1192  	return 0;
1193  }
1194  
fib_valid_key_len(u32 key,u8 plen,struct netlink_ext_ack * extack)1195  static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1196  {
1197  	if (plen > KEYLENGTH) {
1198  		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1199  		return false;
1200  	}
1201  
1202  	if ((plen < KEYLENGTH) && (key << plen)) {
1203  		NL_SET_ERR_MSG(extack,
1204  			       "Invalid prefix for given prefix length");
1205  		return false;
1206  	}
1207  
1208  	return true;
1209  }
1210  
1211  static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1212  			     struct key_vector *l, struct fib_alias *old);
1213  
1214  /* Caller must hold RTNL. */
fib_table_insert(struct net * net,struct fib_table * tb,struct fib_config * cfg,struct netlink_ext_ack * extack)1215  int fib_table_insert(struct net *net, struct fib_table *tb,
1216  		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1217  {
1218  	struct trie *t = (struct trie *)tb->tb_data;
1219  	struct fib_alias *fa, *new_fa;
1220  	struct key_vector *l, *tp;
1221  	u16 nlflags = NLM_F_EXCL;
1222  	struct fib_info *fi;
1223  	u8 plen = cfg->fc_dst_len;
1224  	u8 slen = KEYLENGTH - plen;
1225  	dscp_t dscp;
1226  	u32 key;
1227  	int err;
1228  
1229  	key = ntohl(cfg->fc_dst);
1230  
1231  	if (!fib_valid_key_len(key, plen, extack))
1232  		return -EINVAL;
1233  
1234  	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1235  
1236  	fi = fib_create_info(cfg, extack);
1237  	if (IS_ERR(fi)) {
1238  		err = PTR_ERR(fi);
1239  		goto err;
1240  	}
1241  
1242  	dscp = cfg->fc_dscp;
1243  	l = fib_find_node(t, &tp, key);
1244  	fa = l ? fib_find_alias(&l->leaf, slen, dscp, fi->fib_priority,
1245  				tb->tb_id, false) : NULL;
1246  
1247  	/* Now fa, if non-NULL, points to the first fib alias
1248  	 * with the same keys [prefix,dscp,priority], if such key already
1249  	 * exists or to the node before which we will insert new one.
1250  	 *
1251  	 * If fa is NULL, we will need to allocate a new one and
1252  	 * insert to the tail of the section matching the suffix length
1253  	 * of the new alias.
1254  	 */
1255  
1256  	if (fa && fa->fa_dscp == dscp &&
1257  	    fa->fa_info->fib_priority == fi->fib_priority) {
1258  		struct fib_alias *fa_first, *fa_match;
1259  
1260  		err = -EEXIST;
1261  		if (cfg->fc_nlflags & NLM_F_EXCL)
1262  			goto out;
1263  
1264  		nlflags &= ~NLM_F_EXCL;
1265  
1266  		/* We have 2 goals:
1267  		 * 1. Find exact match for type, scope, fib_info to avoid
1268  		 * duplicate routes
1269  		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1270  		 */
1271  		fa_match = NULL;
1272  		fa_first = fa;
1273  		hlist_for_each_entry_from(fa, fa_list) {
1274  			if ((fa->fa_slen != slen) ||
1275  			    (fa->tb_id != tb->tb_id) ||
1276  			    (fa->fa_dscp != dscp))
1277  				break;
1278  			if (fa->fa_info->fib_priority != fi->fib_priority)
1279  				break;
1280  			if (fa->fa_type == cfg->fc_type &&
1281  			    fa->fa_info == fi) {
1282  				fa_match = fa;
1283  				break;
1284  			}
1285  		}
1286  
1287  		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1288  			struct fib_info *fi_drop;
1289  			u8 state;
1290  
1291  			nlflags |= NLM_F_REPLACE;
1292  			fa = fa_first;
1293  			if (fa_match) {
1294  				if (fa == fa_match)
1295  					err = 0;
1296  				goto out;
1297  			}
1298  			err = -ENOBUFS;
1299  			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1300  			if (!new_fa)
1301  				goto out;
1302  
1303  			fi_drop = fa->fa_info;
1304  			new_fa->fa_dscp = fa->fa_dscp;
1305  			new_fa->fa_info = fi;
1306  			new_fa->fa_type = cfg->fc_type;
1307  			state = fa->fa_state;
1308  			new_fa->fa_state = state & ~FA_S_ACCESSED;
1309  			new_fa->fa_slen = fa->fa_slen;
1310  			new_fa->tb_id = tb->tb_id;
1311  			new_fa->fa_default = -1;
1312  			new_fa->offload = 0;
1313  			new_fa->trap = 0;
1314  			new_fa->offload_failed = 0;
1315  
1316  			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1317  
1318  			if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1319  					   tb->tb_id, true) == new_fa) {
1320  				enum fib_event_type fib_event;
1321  
1322  				fib_event = FIB_EVENT_ENTRY_REPLACE;
1323  				err = call_fib_entry_notifiers(net, fib_event,
1324  							       key, plen,
1325  							       new_fa, extack);
1326  				if (err) {
1327  					hlist_replace_rcu(&new_fa->fa_list,
1328  							  &fa->fa_list);
1329  					goto out_free_new_fa;
1330  				}
1331  			}
1332  
1333  			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1334  				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1335  
1336  			alias_free_mem_rcu(fa);
1337  
1338  			fib_release_info(fi_drop);
1339  			if (state & FA_S_ACCESSED)
1340  				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1341  
1342  			goto succeeded;
1343  		}
1344  		/* Error if we find a perfect match which
1345  		 * uses the same scope, type, and nexthop
1346  		 * information.
1347  		 */
1348  		if (fa_match)
1349  			goto out;
1350  
1351  		if (cfg->fc_nlflags & NLM_F_APPEND)
1352  			nlflags |= NLM_F_APPEND;
1353  		else
1354  			fa = fa_first;
1355  	}
1356  	err = -ENOENT;
1357  	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1358  		goto out;
1359  
1360  	nlflags |= NLM_F_CREATE;
1361  	err = -ENOBUFS;
1362  	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1363  	if (!new_fa)
1364  		goto out;
1365  
1366  	new_fa->fa_info = fi;
1367  	new_fa->fa_dscp = dscp;
1368  	new_fa->fa_type = cfg->fc_type;
1369  	new_fa->fa_state = 0;
1370  	new_fa->fa_slen = slen;
1371  	new_fa->tb_id = tb->tb_id;
1372  	new_fa->fa_default = -1;
1373  	new_fa->offload = 0;
1374  	new_fa->trap = 0;
1375  	new_fa->offload_failed = 0;
1376  
1377  	/* Insert new entry to the list. */
1378  	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1379  	if (err)
1380  		goto out_free_new_fa;
1381  
1382  	/* The alias was already inserted, so the node must exist. */
1383  	l = l ? l : fib_find_node(t, &tp, key);
1384  	if (WARN_ON_ONCE(!l)) {
1385  		err = -ENOENT;
1386  		goto out_free_new_fa;
1387  	}
1388  
1389  	if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1390  	    new_fa) {
1391  		enum fib_event_type fib_event;
1392  
1393  		fib_event = FIB_EVENT_ENTRY_REPLACE;
1394  		err = call_fib_entry_notifiers(net, fib_event, key, plen,
1395  					       new_fa, extack);
1396  		if (err)
1397  			goto out_remove_new_fa;
1398  	}
1399  
1400  	if (!plen)
1401  		tb->tb_num_default++;
1402  
1403  	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1404  	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1405  		  &cfg->fc_nlinfo, nlflags);
1406  succeeded:
1407  	return 0;
1408  
1409  out_remove_new_fa:
1410  	fib_remove_alias(t, tp, l, new_fa);
1411  out_free_new_fa:
1412  	kmem_cache_free(fn_alias_kmem, new_fa);
1413  out:
1414  	fib_release_info(fi);
1415  err:
1416  	return err;
1417  }
1418  
prefix_mismatch(t_key key,struct key_vector * n)1419  static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1420  {
1421  	t_key prefix = n->key;
1422  
1423  	return (key ^ prefix) & (prefix | -prefix);
1424  }
1425  
fib_lookup_good_nhc(const struct fib_nh_common * nhc,int fib_flags,const struct flowi4 * flp)1426  bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1427  			 const struct flowi4 *flp)
1428  {
1429  	if (nhc->nhc_flags & RTNH_F_DEAD)
1430  		return false;
1431  
1432  	if (ip_ignore_linkdown(nhc->nhc_dev) &&
1433  	    nhc->nhc_flags & RTNH_F_LINKDOWN &&
1434  	    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1435  		return false;
1436  
1437  	if (flp->flowi4_oif && flp->flowi4_oif != nhc->nhc_oif)
1438  		return false;
1439  
1440  	return true;
1441  }
1442  
1443  /* should be called with rcu_read_lock */
fib_table_lookup(struct fib_table * tb,const struct flowi4 * flp,struct fib_result * res,int fib_flags)1444  int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1445  		     struct fib_result *res, int fib_flags)
1446  {
1447  	struct trie *t = (struct trie *) tb->tb_data;
1448  #ifdef CONFIG_IP_FIB_TRIE_STATS
1449  	struct trie_use_stats __percpu *stats = t->stats;
1450  #endif
1451  	const t_key key = ntohl(flp->daddr);
1452  	struct key_vector *n, *pn;
1453  	struct fib_alias *fa;
1454  	unsigned long index;
1455  	t_key cindex;
1456  
1457  	pn = t->kv;
1458  	cindex = 0;
1459  
1460  	n = get_child_rcu(pn, cindex);
1461  	if (!n) {
1462  		trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1463  		return -EAGAIN;
1464  	}
1465  
1466  #ifdef CONFIG_IP_FIB_TRIE_STATS
1467  	this_cpu_inc(stats->gets);
1468  #endif
1469  
1470  	/* Step 1: Travel to the longest prefix match in the trie */
1471  	for (;;) {
1472  		index = get_cindex(key, n);
1473  
1474  		/* This bit of code is a bit tricky but it combines multiple
1475  		 * checks into a single check.  The prefix consists of the
1476  		 * prefix plus zeros for the "bits" in the prefix. The index
1477  		 * is the difference between the key and this value.  From
1478  		 * this we can actually derive several pieces of data.
1479  		 *   if (index >= (1ul << bits))
1480  		 *     we have a mismatch in skip bits and failed
1481  		 *   else
1482  		 *     we know the value is cindex
1483  		 *
1484  		 * This check is safe even if bits == KEYLENGTH due to the
1485  		 * fact that we can only allocate a node with 32 bits if a
1486  		 * long is greater than 32 bits.
1487  		 */
1488  		if (index >= (1ul << n->bits))
1489  			break;
1490  
1491  		/* we have found a leaf. Prefixes have already been compared */
1492  		if (IS_LEAF(n))
1493  			goto found;
1494  
1495  		/* only record pn and cindex if we are going to be chopping
1496  		 * bits later.  Otherwise we are just wasting cycles.
1497  		 */
1498  		if (n->slen > n->pos) {
1499  			pn = n;
1500  			cindex = index;
1501  		}
1502  
1503  		n = get_child_rcu(n, index);
1504  		if (unlikely(!n))
1505  			goto backtrace;
1506  	}
1507  
1508  	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1509  	for (;;) {
1510  		/* record the pointer where our next node pointer is stored */
1511  		struct key_vector __rcu **cptr = n->tnode;
1512  
1513  		/* This test verifies that none of the bits that differ
1514  		 * between the key and the prefix exist in the region of
1515  		 * the lsb and higher in the prefix.
1516  		 */
1517  		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1518  			goto backtrace;
1519  
1520  		/* exit out and process leaf */
1521  		if (unlikely(IS_LEAF(n)))
1522  			break;
1523  
1524  		/* Don't bother recording parent info.  Since we are in
1525  		 * prefix match mode we will have to come back to wherever
1526  		 * we started this traversal anyway
1527  		 */
1528  
1529  		while ((n = rcu_dereference(*cptr)) == NULL) {
1530  backtrace:
1531  #ifdef CONFIG_IP_FIB_TRIE_STATS
1532  			if (!n)
1533  				this_cpu_inc(stats->null_node_hit);
1534  #endif
1535  			/* If we are at cindex 0 there are no more bits for
1536  			 * us to strip at this level so we must ascend back
1537  			 * up one level to see if there are any more bits to
1538  			 * be stripped there.
1539  			 */
1540  			while (!cindex) {
1541  				t_key pkey = pn->key;
1542  
1543  				/* If we don't have a parent then there is
1544  				 * nothing for us to do as we do not have any
1545  				 * further nodes to parse.
1546  				 */
1547  				if (IS_TRIE(pn)) {
1548  					trace_fib_table_lookup(tb->tb_id, flp,
1549  							       NULL, -EAGAIN);
1550  					return -EAGAIN;
1551  				}
1552  #ifdef CONFIG_IP_FIB_TRIE_STATS
1553  				this_cpu_inc(stats->backtrack);
1554  #endif
1555  				/* Get Child's index */
1556  				pn = node_parent_rcu(pn);
1557  				cindex = get_index(pkey, pn);
1558  			}
1559  
1560  			/* strip the least significant bit from the cindex */
1561  			cindex &= cindex - 1;
1562  
1563  			/* grab pointer for next child node */
1564  			cptr = &pn->tnode[cindex];
1565  		}
1566  	}
1567  
1568  found:
1569  	/* this line carries forward the xor from earlier in the function */
1570  	index = key ^ n->key;
1571  
1572  	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1573  	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1574  		struct fib_info *fi = fa->fa_info;
1575  		struct fib_nh_common *nhc;
1576  		int nhsel, err;
1577  
1578  		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1579  			if (index >= (1ul << fa->fa_slen))
1580  				continue;
1581  		}
1582  		if (fa->fa_dscp &&
1583  		    inet_dscp_to_dsfield(fa->fa_dscp) != flp->flowi4_tos)
1584  			continue;
1585  		/* Paired with WRITE_ONCE() in fib_release_info() */
1586  		if (READ_ONCE(fi->fib_dead))
1587  			continue;
1588  		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1589  			continue;
1590  		fib_alias_accessed(fa);
1591  		err = fib_props[fa->fa_type].error;
1592  		if (unlikely(err < 0)) {
1593  out_reject:
1594  #ifdef CONFIG_IP_FIB_TRIE_STATS
1595  			this_cpu_inc(stats->semantic_match_passed);
1596  #endif
1597  			trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1598  			return err;
1599  		}
1600  		if (fi->fib_flags & RTNH_F_DEAD)
1601  			continue;
1602  
1603  		if (unlikely(fi->nh)) {
1604  			if (nexthop_is_blackhole(fi->nh)) {
1605  				err = fib_props[RTN_BLACKHOLE].error;
1606  				goto out_reject;
1607  			}
1608  
1609  			nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1610  						     &nhsel);
1611  			if (nhc)
1612  				goto set_result;
1613  			goto miss;
1614  		}
1615  
1616  		for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1617  			nhc = fib_info_nhc(fi, nhsel);
1618  
1619  			if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1620  				continue;
1621  set_result:
1622  			if (!(fib_flags & FIB_LOOKUP_NOREF))
1623  				refcount_inc(&fi->fib_clntref);
1624  
1625  			res->prefix = htonl(n->key);
1626  			res->prefixlen = KEYLENGTH - fa->fa_slen;
1627  			res->nh_sel = nhsel;
1628  			res->nhc = nhc;
1629  			res->type = fa->fa_type;
1630  			res->scope = fi->fib_scope;
1631  			res->dscp = fa->fa_dscp;
1632  			res->fi = fi;
1633  			res->table = tb;
1634  			res->fa_head = &n->leaf;
1635  #ifdef CONFIG_IP_FIB_TRIE_STATS
1636  			this_cpu_inc(stats->semantic_match_passed);
1637  #endif
1638  			trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1639  
1640  			return err;
1641  		}
1642  	}
1643  miss:
1644  #ifdef CONFIG_IP_FIB_TRIE_STATS
1645  	this_cpu_inc(stats->semantic_match_miss);
1646  #endif
1647  	goto backtrace;
1648  }
1649  EXPORT_SYMBOL_GPL(fib_table_lookup);
1650  
fib_remove_alias(struct trie * t,struct key_vector * tp,struct key_vector * l,struct fib_alias * old)1651  static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1652  			     struct key_vector *l, struct fib_alias *old)
1653  {
1654  	/* record the location of the previous list_info entry */
1655  	struct hlist_node **pprev = old->fa_list.pprev;
1656  	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1657  
1658  	/* remove the fib_alias from the list */
1659  	hlist_del_rcu(&old->fa_list);
1660  
1661  	/* if we emptied the list this leaf will be freed and we can sort
1662  	 * out parent suffix lengths as a part of trie_rebalance
1663  	 */
1664  	if (hlist_empty(&l->leaf)) {
1665  		if (tp->slen == l->slen)
1666  			node_pull_suffix(tp, tp->pos);
1667  		put_child_root(tp, l->key, NULL);
1668  		node_free(l);
1669  		trie_rebalance(t, tp);
1670  		return;
1671  	}
1672  
1673  	/* only access fa if it is pointing at the last valid hlist_node */
1674  	if (*pprev)
1675  		return;
1676  
1677  	/* update the trie with the latest suffix length */
1678  	l->slen = fa->fa_slen;
1679  	node_pull_suffix(tp, fa->fa_slen);
1680  }
1681  
fib_notify_alias_delete(struct net * net,u32 key,struct hlist_head * fah,struct fib_alias * fa_to_delete,struct netlink_ext_ack * extack)1682  static void fib_notify_alias_delete(struct net *net, u32 key,
1683  				    struct hlist_head *fah,
1684  				    struct fib_alias *fa_to_delete,
1685  				    struct netlink_ext_ack *extack)
1686  {
1687  	struct fib_alias *fa_next, *fa_to_notify;
1688  	u32 tb_id = fa_to_delete->tb_id;
1689  	u8 slen = fa_to_delete->fa_slen;
1690  	enum fib_event_type fib_event;
1691  
1692  	/* Do not notify if we do not care about the route. */
1693  	if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1694  		return;
1695  
1696  	/* Determine if the route should be replaced by the next route in the
1697  	 * list.
1698  	 */
1699  	fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1700  				   struct fib_alias, fa_list);
1701  	if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1702  		fib_event = FIB_EVENT_ENTRY_REPLACE;
1703  		fa_to_notify = fa_next;
1704  	} else {
1705  		fib_event = FIB_EVENT_ENTRY_DEL;
1706  		fa_to_notify = fa_to_delete;
1707  	}
1708  	call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1709  				 fa_to_notify, extack);
1710  }
1711  
1712  /* Caller must hold RTNL. */
fib_table_delete(struct net * net,struct fib_table * tb,struct fib_config * cfg,struct netlink_ext_ack * extack)1713  int fib_table_delete(struct net *net, struct fib_table *tb,
1714  		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1715  {
1716  	struct trie *t = (struct trie *) tb->tb_data;
1717  	struct fib_alias *fa, *fa_to_delete;
1718  	struct key_vector *l, *tp;
1719  	u8 plen = cfg->fc_dst_len;
1720  	u8 slen = KEYLENGTH - plen;
1721  	dscp_t dscp;
1722  	u32 key;
1723  
1724  	key = ntohl(cfg->fc_dst);
1725  
1726  	if (!fib_valid_key_len(key, plen, extack))
1727  		return -EINVAL;
1728  
1729  	l = fib_find_node(t, &tp, key);
1730  	if (!l)
1731  		return -ESRCH;
1732  
1733  	dscp = cfg->fc_dscp;
1734  	fa = fib_find_alias(&l->leaf, slen, dscp, 0, tb->tb_id, false);
1735  	if (!fa)
1736  		return -ESRCH;
1737  
1738  	pr_debug("Deleting %08x/%d dsfield=0x%02x t=%p\n", key, plen,
1739  		 inet_dscp_to_dsfield(dscp), t);
1740  
1741  	fa_to_delete = NULL;
1742  	hlist_for_each_entry_from(fa, fa_list) {
1743  		struct fib_info *fi = fa->fa_info;
1744  
1745  		if ((fa->fa_slen != slen) ||
1746  		    (fa->tb_id != tb->tb_id) ||
1747  		    (fa->fa_dscp != dscp))
1748  			break;
1749  
1750  		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1751  		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1752  		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1753  		    (!cfg->fc_prefsrc ||
1754  		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1755  		    (!cfg->fc_protocol ||
1756  		     fi->fib_protocol == cfg->fc_protocol) &&
1757  		    fib_nh_match(net, cfg, fi, extack) == 0 &&
1758  		    fib_metrics_match(cfg, fi)) {
1759  			fa_to_delete = fa;
1760  			break;
1761  		}
1762  	}
1763  
1764  	if (!fa_to_delete)
1765  		return -ESRCH;
1766  
1767  	fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
1768  	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1769  		  &cfg->fc_nlinfo, 0);
1770  
1771  	if (!plen)
1772  		tb->tb_num_default--;
1773  
1774  	fib_remove_alias(t, tp, l, fa_to_delete);
1775  
1776  	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1777  		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1778  
1779  	fib_release_info(fa_to_delete->fa_info);
1780  	alias_free_mem_rcu(fa_to_delete);
1781  	return 0;
1782  }
1783  
1784  /* Scan for the next leaf starting at the provided key value */
leaf_walk_rcu(struct key_vector ** tn,t_key key)1785  static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1786  {
1787  	struct key_vector *pn, *n = *tn;
1788  	unsigned long cindex;
1789  
1790  	/* this loop is meant to try and find the key in the trie */
1791  	do {
1792  		/* record parent and next child index */
1793  		pn = n;
1794  		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1795  
1796  		if (cindex >> pn->bits)
1797  			break;
1798  
1799  		/* descend into the next child */
1800  		n = get_child_rcu(pn, cindex++);
1801  		if (!n)
1802  			break;
1803  
1804  		/* guarantee forward progress on the keys */
1805  		if (IS_LEAF(n) && (n->key >= key))
1806  			goto found;
1807  	} while (IS_TNODE(n));
1808  
1809  	/* this loop will search for the next leaf with a greater key */
1810  	while (!IS_TRIE(pn)) {
1811  		/* if we exhausted the parent node we will need to climb */
1812  		if (cindex >= (1ul << pn->bits)) {
1813  			t_key pkey = pn->key;
1814  
1815  			pn = node_parent_rcu(pn);
1816  			cindex = get_index(pkey, pn) + 1;
1817  			continue;
1818  		}
1819  
1820  		/* grab the next available node */
1821  		n = get_child_rcu(pn, cindex++);
1822  		if (!n)
1823  			continue;
1824  
1825  		/* no need to compare keys since we bumped the index */
1826  		if (IS_LEAF(n))
1827  			goto found;
1828  
1829  		/* Rescan start scanning in new node */
1830  		pn = n;
1831  		cindex = 0;
1832  	}
1833  
1834  	*tn = pn;
1835  	return NULL; /* Root of trie */
1836  found:
1837  	/* if we are at the limit for keys just return NULL for the tnode */
1838  	*tn = pn;
1839  	return n;
1840  }
1841  
fib_trie_free(struct fib_table * tb)1842  static void fib_trie_free(struct fib_table *tb)
1843  {
1844  	struct trie *t = (struct trie *)tb->tb_data;
1845  	struct key_vector *pn = t->kv;
1846  	unsigned long cindex = 1;
1847  	struct hlist_node *tmp;
1848  	struct fib_alias *fa;
1849  
1850  	/* walk trie in reverse order and free everything */
1851  	for (;;) {
1852  		struct key_vector *n;
1853  
1854  		if (!(cindex--)) {
1855  			t_key pkey = pn->key;
1856  
1857  			if (IS_TRIE(pn))
1858  				break;
1859  
1860  			n = pn;
1861  			pn = node_parent(pn);
1862  
1863  			/* drop emptied tnode */
1864  			put_child_root(pn, n->key, NULL);
1865  			node_free(n);
1866  
1867  			cindex = get_index(pkey, pn);
1868  
1869  			continue;
1870  		}
1871  
1872  		/* grab the next available node */
1873  		n = get_child(pn, cindex);
1874  		if (!n)
1875  			continue;
1876  
1877  		if (IS_TNODE(n)) {
1878  			/* record pn and cindex for leaf walking */
1879  			pn = n;
1880  			cindex = 1ul << n->bits;
1881  
1882  			continue;
1883  		}
1884  
1885  		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1886  			hlist_del_rcu(&fa->fa_list);
1887  			alias_free_mem_rcu(fa);
1888  		}
1889  
1890  		put_child_root(pn, n->key, NULL);
1891  		node_free(n);
1892  	}
1893  
1894  #ifdef CONFIG_IP_FIB_TRIE_STATS
1895  	free_percpu(t->stats);
1896  #endif
1897  	kfree(tb);
1898  }
1899  
fib_trie_unmerge(struct fib_table * oldtb)1900  struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1901  {
1902  	struct trie *ot = (struct trie *)oldtb->tb_data;
1903  	struct key_vector *l, *tp = ot->kv;
1904  	struct fib_table *local_tb;
1905  	struct fib_alias *fa;
1906  	struct trie *lt;
1907  	t_key key = 0;
1908  
1909  	if (oldtb->tb_data == oldtb->__data)
1910  		return oldtb;
1911  
1912  	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1913  	if (!local_tb)
1914  		return NULL;
1915  
1916  	lt = (struct trie *)local_tb->tb_data;
1917  
1918  	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1919  		struct key_vector *local_l = NULL, *local_tp;
1920  
1921  		hlist_for_each_entry(fa, &l->leaf, fa_list) {
1922  			struct fib_alias *new_fa;
1923  
1924  			if (local_tb->tb_id != fa->tb_id)
1925  				continue;
1926  
1927  			/* clone fa for new local table */
1928  			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1929  			if (!new_fa)
1930  				goto out;
1931  
1932  			memcpy(new_fa, fa, sizeof(*fa));
1933  
1934  			/* insert clone into table */
1935  			if (!local_l)
1936  				local_l = fib_find_node(lt, &local_tp, l->key);
1937  
1938  			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1939  					     NULL, l->key)) {
1940  				kmem_cache_free(fn_alias_kmem, new_fa);
1941  				goto out;
1942  			}
1943  		}
1944  
1945  		/* stop loop if key wrapped back to 0 */
1946  		key = l->key + 1;
1947  		if (key < l->key)
1948  			break;
1949  	}
1950  
1951  	return local_tb;
1952  out:
1953  	fib_trie_free(local_tb);
1954  
1955  	return NULL;
1956  }
1957  
1958  /* Caller must hold RTNL */
fib_table_flush_external(struct fib_table * tb)1959  void fib_table_flush_external(struct fib_table *tb)
1960  {
1961  	struct trie *t = (struct trie *)tb->tb_data;
1962  	struct key_vector *pn = t->kv;
1963  	unsigned long cindex = 1;
1964  	struct hlist_node *tmp;
1965  	struct fib_alias *fa;
1966  
1967  	/* walk trie in reverse order */
1968  	for (;;) {
1969  		unsigned char slen = 0;
1970  		struct key_vector *n;
1971  
1972  		if (!(cindex--)) {
1973  			t_key pkey = pn->key;
1974  
1975  			/* cannot resize the trie vector */
1976  			if (IS_TRIE(pn))
1977  				break;
1978  
1979  			/* update the suffix to address pulled leaves */
1980  			if (pn->slen > pn->pos)
1981  				update_suffix(pn);
1982  
1983  			/* resize completed node */
1984  			pn = resize(t, pn);
1985  			cindex = get_index(pkey, pn);
1986  
1987  			continue;
1988  		}
1989  
1990  		/* grab the next available node */
1991  		n = get_child(pn, cindex);
1992  		if (!n)
1993  			continue;
1994  
1995  		if (IS_TNODE(n)) {
1996  			/* record pn and cindex for leaf walking */
1997  			pn = n;
1998  			cindex = 1ul << n->bits;
1999  
2000  			continue;
2001  		}
2002  
2003  		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2004  			/* if alias was cloned to local then we just
2005  			 * need to remove the local copy from main
2006  			 */
2007  			if (tb->tb_id != fa->tb_id) {
2008  				hlist_del_rcu(&fa->fa_list);
2009  				alias_free_mem_rcu(fa);
2010  				continue;
2011  			}
2012  
2013  			/* record local slen */
2014  			slen = fa->fa_slen;
2015  		}
2016  
2017  		/* update leaf slen */
2018  		n->slen = slen;
2019  
2020  		if (hlist_empty(&n->leaf)) {
2021  			put_child_root(pn, n->key, NULL);
2022  			node_free(n);
2023  		}
2024  	}
2025  }
2026  
2027  /* Caller must hold RTNL. */
fib_table_flush(struct net * net,struct fib_table * tb,bool flush_all)2028  int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
2029  {
2030  	struct trie *t = (struct trie *)tb->tb_data;
2031  	struct nl_info info = { .nl_net = net };
2032  	struct key_vector *pn = t->kv;
2033  	unsigned long cindex = 1;
2034  	struct hlist_node *tmp;
2035  	struct fib_alias *fa;
2036  	int found = 0;
2037  
2038  	/* walk trie in reverse order */
2039  	for (;;) {
2040  		unsigned char slen = 0;
2041  		struct key_vector *n;
2042  
2043  		if (!(cindex--)) {
2044  			t_key pkey = pn->key;
2045  
2046  			/* cannot resize the trie vector */
2047  			if (IS_TRIE(pn))
2048  				break;
2049  
2050  			/* update the suffix to address pulled leaves */
2051  			if (pn->slen > pn->pos)
2052  				update_suffix(pn);
2053  
2054  			/* resize completed node */
2055  			pn = resize(t, pn);
2056  			cindex = get_index(pkey, pn);
2057  
2058  			continue;
2059  		}
2060  
2061  		/* grab the next available node */
2062  		n = get_child(pn, cindex);
2063  		if (!n)
2064  			continue;
2065  
2066  		if (IS_TNODE(n)) {
2067  			/* record pn and cindex for leaf walking */
2068  			pn = n;
2069  			cindex = 1ul << n->bits;
2070  
2071  			continue;
2072  		}
2073  
2074  		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2075  			struct fib_info *fi = fa->fa_info;
2076  
2077  			if (!fi || tb->tb_id != fa->tb_id ||
2078  			    (!(fi->fib_flags & RTNH_F_DEAD) &&
2079  			     !fib_props[fa->fa_type].error)) {
2080  				slen = fa->fa_slen;
2081  				continue;
2082  			}
2083  
2084  			/* Do not flush error routes if network namespace is
2085  			 * not being dismantled
2086  			 */
2087  			if (!flush_all && fib_props[fa->fa_type].error) {
2088  				slen = fa->fa_slen;
2089  				continue;
2090  			}
2091  
2092  			fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2093  						NULL);
2094  			if (fi->pfsrc_removed)
2095  				rtmsg_fib(RTM_DELROUTE, htonl(n->key), fa,
2096  					  KEYLENGTH - fa->fa_slen, tb->tb_id, &info, 0);
2097  			hlist_del_rcu(&fa->fa_list);
2098  			fib_release_info(fa->fa_info);
2099  			alias_free_mem_rcu(fa);
2100  			found++;
2101  		}
2102  
2103  		/* update leaf slen */
2104  		n->slen = slen;
2105  
2106  		if (hlist_empty(&n->leaf)) {
2107  			put_child_root(pn, n->key, NULL);
2108  			node_free(n);
2109  		}
2110  	}
2111  
2112  	pr_debug("trie_flush found=%d\n", found);
2113  	return found;
2114  }
2115  
2116  /* derived from fib_trie_free */
__fib_info_notify_update(struct net * net,struct fib_table * tb,struct nl_info * info)2117  static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2118  				     struct nl_info *info)
2119  {
2120  	struct trie *t = (struct trie *)tb->tb_data;
2121  	struct key_vector *pn = t->kv;
2122  	unsigned long cindex = 1;
2123  	struct fib_alias *fa;
2124  
2125  	for (;;) {
2126  		struct key_vector *n;
2127  
2128  		if (!(cindex--)) {
2129  			t_key pkey = pn->key;
2130  
2131  			if (IS_TRIE(pn))
2132  				break;
2133  
2134  			pn = node_parent(pn);
2135  			cindex = get_index(pkey, pn);
2136  			continue;
2137  		}
2138  
2139  		/* grab the next available node */
2140  		n = get_child(pn, cindex);
2141  		if (!n)
2142  			continue;
2143  
2144  		if (IS_TNODE(n)) {
2145  			/* record pn and cindex for leaf walking */
2146  			pn = n;
2147  			cindex = 1ul << n->bits;
2148  
2149  			continue;
2150  		}
2151  
2152  		hlist_for_each_entry(fa, &n->leaf, fa_list) {
2153  			struct fib_info *fi = fa->fa_info;
2154  
2155  			if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2156  				continue;
2157  
2158  			rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2159  				  KEYLENGTH - fa->fa_slen, tb->tb_id,
2160  				  info, NLM_F_REPLACE);
2161  		}
2162  	}
2163  }
2164  
fib_info_notify_update(struct net * net,struct nl_info * info)2165  void fib_info_notify_update(struct net *net, struct nl_info *info)
2166  {
2167  	unsigned int h;
2168  
2169  	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2170  		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2171  		struct fib_table *tb;
2172  
2173  		hlist_for_each_entry_rcu(tb, head, tb_hlist,
2174  					 lockdep_rtnl_is_held())
2175  			__fib_info_notify_update(net, tb, info);
2176  	}
2177  }
2178  
fib_leaf_notify(struct key_vector * l,struct fib_table * tb,struct notifier_block * nb,struct netlink_ext_ack * extack)2179  static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2180  			   struct notifier_block *nb,
2181  			   struct netlink_ext_ack *extack)
2182  {
2183  	struct fib_alias *fa;
2184  	int last_slen = -1;
2185  	int err;
2186  
2187  	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2188  		struct fib_info *fi = fa->fa_info;
2189  
2190  		if (!fi)
2191  			continue;
2192  
2193  		/* local and main table can share the same trie,
2194  		 * so don't notify twice for the same entry.
2195  		 */
2196  		if (tb->tb_id != fa->tb_id)
2197  			continue;
2198  
2199  		if (fa->fa_slen == last_slen)
2200  			continue;
2201  
2202  		last_slen = fa->fa_slen;
2203  		err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2204  					      l->key, KEYLENGTH - fa->fa_slen,
2205  					      fa, extack);
2206  		if (err)
2207  			return err;
2208  	}
2209  	return 0;
2210  }
2211  
fib_table_notify(struct fib_table * tb,struct notifier_block * nb,struct netlink_ext_ack * extack)2212  static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2213  			    struct netlink_ext_ack *extack)
2214  {
2215  	struct trie *t = (struct trie *)tb->tb_data;
2216  	struct key_vector *l, *tp = t->kv;
2217  	t_key key = 0;
2218  	int err;
2219  
2220  	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2221  		err = fib_leaf_notify(l, tb, nb, extack);
2222  		if (err)
2223  			return err;
2224  
2225  		key = l->key + 1;
2226  		/* stop in case of wrap around */
2227  		if (key < l->key)
2228  			break;
2229  	}
2230  	return 0;
2231  }
2232  
fib_notify(struct net * net,struct notifier_block * nb,struct netlink_ext_ack * extack)2233  int fib_notify(struct net *net, struct notifier_block *nb,
2234  	       struct netlink_ext_ack *extack)
2235  {
2236  	unsigned int h;
2237  	int err;
2238  
2239  	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2240  		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2241  		struct fib_table *tb;
2242  
2243  		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2244  			err = fib_table_notify(tb, nb, extack);
2245  			if (err)
2246  				return err;
2247  		}
2248  	}
2249  	return 0;
2250  }
2251  
__trie_free_rcu(struct rcu_head * head)2252  static void __trie_free_rcu(struct rcu_head *head)
2253  {
2254  	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2255  #ifdef CONFIG_IP_FIB_TRIE_STATS
2256  	struct trie *t = (struct trie *)tb->tb_data;
2257  
2258  	if (tb->tb_data == tb->__data)
2259  		free_percpu(t->stats);
2260  #endif /* CONFIG_IP_FIB_TRIE_STATS */
2261  	kfree(tb);
2262  }
2263  
fib_free_table(struct fib_table * tb)2264  void fib_free_table(struct fib_table *tb)
2265  {
2266  	call_rcu(&tb->rcu, __trie_free_rcu);
2267  }
2268  
fn_trie_dump_leaf(struct key_vector * l,struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb,struct fib_dump_filter * filter)2269  static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2270  			     struct sk_buff *skb, struct netlink_callback *cb,
2271  			     struct fib_dump_filter *filter)
2272  {
2273  	unsigned int flags = NLM_F_MULTI;
2274  	__be32 xkey = htonl(l->key);
2275  	int i, s_i, i_fa, s_fa, err;
2276  	struct fib_alias *fa;
2277  
2278  	if (filter->filter_set ||
2279  	    !filter->dump_exceptions || !filter->dump_routes)
2280  		flags |= NLM_F_DUMP_FILTERED;
2281  
2282  	s_i = cb->args[4];
2283  	s_fa = cb->args[5];
2284  	i = 0;
2285  
2286  	/* rcu_read_lock is hold by caller */
2287  	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2288  		struct fib_info *fi = fa->fa_info;
2289  
2290  		if (i < s_i)
2291  			goto next;
2292  
2293  		i_fa = 0;
2294  
2295  		if (tb->tb_id != fa->tb_id)
2296  			goto next;
2297  
2298  		if (filter->filter_set) {
2299  			if (filter->rt_type && fa->fa_type != filter->rt_type)
2300  				goto next;
2301  
2302  			if ((filter->protocol &&
2303  			     fi->fib_protocol != filter->protocol))
2304  				goto next;
2305  
2306  			if (filter->dev &&
2307  			    !fib_info_nh_uses_dev(fi, filter->dev))
2308  				goto next;
2309  		}
2310  
2311  		if (filter->dump_routes) {
2312  			if (!s_fa) {
2313  				struct fib_rt_info fri;
2314  
2315  				fri.fi = fi;
2316  				fri.tb_id = tb->tb_id;
2317  				fri.dst = xkey;
2318  				fri.dst_len = KEYLENGTH - fa->fa_slen;
2319  				fri.dscp = fa->fa_dscp;
2320  				fri.type = fa->fa_type;
2321  				fri.offload = READ_ONCE(fa->offload);
2322  				fri.trap = READ_ONCE(fa->trap);
2323  				fri.offload_failed = READ_ONCE(fa->offload_failed);
2324  				err = fib_dump_info(skb,
2325  						    NETLINK_CB(cb->skb).portid,
2326  						    cb->nlh->nlmsg_seq,
2327  						    RTM_NEWROUTE, &fri, flags);
2328  				if (err < 0)
2329  					goto stop;
2330  			}
2331  
2332  			i_fa++;
2333  		}
2334  
2335  		if (filter->dump_exceptions) {
2336  			err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2337  						 &i_fa, s_fa, flags);
2338  			if (err < 0)
2339  				goto stop;
2340  		}
2341  
2342  next:
2343  		i++;
2344  	}
2345  
2346  	cb->args[4] = i;
2347  	return skb->len;
2348  
2349  stop:
2350  	cb->args[4] = i;
2351  	cb->args[5] = i_fa;
2352  	return err;
2353  }
2354  
2355  /* rcu_read_lock needs to be hold by caller from readside */
fib_table_dump(struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb,struct fib_dump_filter * filter)2356  int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2357  		   struct netlink_callback *cb, struct fib_dump_filter *filter)
2358  {
2359  	struct trie *t = (struct trie *)tb->tb_data;
2360  	struct key_vector *l, *tp = t->kv;
2361  	/* Dump starting at last key.
2362  	 * Note: 0.0.0.0/0 (ie default) is first key.
2363  	 */
2364  	int count = cb->args[2];
2365  	t_key key = cb->args[3];
2366  
2367  	/* First time here, count and key are both always 0. Count > 0
2368  	 * and key == 0 means the dump has wrapped around and we are done.
2369  	 */
2370  	if (count && !key)
2371  		return skb->len;
2372  
2373  	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2374  		int err;
2375  
2376  		err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2377  		if (err < 0) {
2378  			cb->args[3] = key;
2379  			cb->args[2] = count;
2380  			return err;
2381  		}
2382  
2383  		++count;
2384  		key = l->key + 1;
2385  
2386  		memset(&cb->args[4], 0,
2387  		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2388  
2389  		/* stop loop if key wrapped back to 0 */
2390  		if (key < l->key)
2391  			break;
2392  	}
2393  
2394  	cb->args[3] = key;
2395  	cb->args[2] = count;
2396  
2397  	return skb->len;
2398  }
2399  
fib_trie_init(void)2400  void __init fib_trie_init(void)
2401  {
2402  	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2403  					  sizeof(struct fib_alias),
2404  					  0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2405  
2406  	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2407  					   LEAF_SIZE,
2408  					   0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2409  }
2410  
fib_trie_table(u32 id,struct fib_table * alias)2411  struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2412  {
2413  	struct fib_table *tb;
2414  	struct trie *t;
2415  	size_t sz = sizeof(*tb);
2416  
2417  	if (!alias)
2418  		sz += sizeof(struct trie);
2419  
2420  	tb = kzalloc(sz, GFP_KERNEL);
2421  	if (!tb)
2422  		return NULL;
2423  
2424  	tb->tb_id = id;
2425  	tb->tb_num_default = 0;
2426  	tb->tb_data = (alias ? alias->__data : tb->__data);
2427  
2428  	if (alias)
2429  		return tb;
2430  
2431  	t = (struct trie *) tb->tb_data;
2432  	t->kv[0].pos = KEYLENGTH;
2433  	t->kv[0].slen = KEYLENGTH;
2434  #ifdef CONFIG_IP_FIB_TRIE_STATS
2435  	t->stats = alloc_percpu(struct trie_use_stats);
2436  	if (!t->stats) {
2437  		kfree(tb);
2438  		tb = NULL;
2439  	}
2440  #endif
2441  
2442  	return tb;
2443  }
2444  
2445  #ifdef CONFIG_PROC_FS
2446  /* Depth first Trie walk iterator */
2447  struct fib_trie_iter {
2448  	struct seq_net_private p;
2449  	struct fib_table *tb;
2450  	struct key_vector *tnode;
2451  	unsigned int index;
2452  	unsigned int depth;
2453  };
2454  
fib_trie_get_next(struct fib_trie_iter * iter)2455  static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2456  {
2457  	unsigned long cindex = iter->index;
2458  	struct key_vector *pn = iter->tnode;
2459  	t_key pkey;
2460  
2461  	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2462  		 iter->tnode, iter->index, iter->depth);
2463  
2464  	while (!IS_TRIE(pn)) {
2465  		while (cindex < child_length(pn)) {
2466  			struct key_vector *n = get_child_rcu(pn, cindex++);
2467  
2468  			if (!n)
2469  				continue;
2470  
2471  			if (IS_LEAF(n)) {
2472  				iter->tnode = pn;
2473  				iter->index = cindex;
2474  			} else {
2475  				/* push down one level */
2476  				iter->tnode = n;
2477  				iter->index = 0;
2478  				++iter->depth;
2479  			}
2480  
2481  			return n;
2482  		}
2483  
2484  		/* Current node exhausted, pop back up */
2485  		pkey = pn->key;
2486  		pn = node_parent_rcu(pn);
2487  		cindex = get_index(pkey, pn) + 1;
2488  		--iter->depth;
2489  	}
2490  
2491  	/* record root node so further searches know we are done */
2492  	iter->tnode = pn;
2493  	iter->index = 0;
2494  
2495  	return NULL;
2496  }
2497  
fib_trie_get_first(struct fib_trie_iter * iter,struct trie * t)2498  static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2499  					     struct trie *t)
2500  {
2501  	struct key_vector *n, *pn;
2502  
2503  	if (!t)
2504  		return NULL;
2505  
2506  	pn = t->kv;
2507  	n = rcu_dereference(pn->tnode[0]);
2508  	if (!n)
2509  		return NULL;
2510  
2511  	if (IS_TNODE(n)) {
2512  		iter->tnode = n;
2513  		iter->index = 0;
2514  		iter->depth = 1;
2515  	} else {
2516  		iter->tnode = pn;
2517  		iter->index = 0;
2518  		iter->depth = 0;
2519  	}
2520  
2521  	return n;
2522  }
2523  
trie_collect_stats(struct trie * t,struct trie_stat * s)2524  static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2525  {
2526  	struct key_vector *n;
2527  	struct fib_trie_iter iter;
2528  
2529  	memset(s, 0, sizeof(*s));
2530  
2531  	rcu_read_lock();
2532  	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2533  		if (IS_LEAF(n)) {
2534  			struct fib_alias *fa;
2535  
2536  			s->leaves++;
2537  			s->totdepth += iter.depth;
2538  			if (iter.depth > s->maxdepth)
2539  				s->maxdepth = iter.depth;
2540  
2541  			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2542  				++s->prefixes;
2543  		} else {
2544  			s->tnodes++;
2545  			if (n->bits < MAX_STAT_DEPTH)
2546  				s->nodesizes[n->bits]++;
2547  			s->nullpointers += tn_info(n)->empty_children;
2548  		}
2549  	}
2550  	rcu_read_unlock();
2551  }
2552  
2553  /*
2554   *	This outputs /proc/net/fib_triestats
2555   */
trie_show_stats(struct seq_file * seq,struct trie_stat * stat)2556  static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2557  {
2558  	unsigned int i, max, pointers, bytes, avdepth;
2559  
2560  	if (stat->leaves)
2561  		avdepth = stat->totdepth*100 / stat->leaves;
2562  	else
2563  		avdepth = 0;
2564  
2565  	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2566  		   avdepth / 100, avdepth % 100);
2567  	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2568  
2569  	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2570  	bytes = LEAF_SIZE * stat->leaves;
2571  
2572  	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2573  	bytes += sizeof(struct fib_alias) * stat->prefixes;
2574  
2575  	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2576  	bytes += TNODE_SIZE(0) * stat->tnodes;
2577  
2578  	max = MAX_STAT_DEPTH;
2579  	while (max > 0 && stat->nodesizes[max-1] == 0)
2580  		max--;
2581  
2582  	pointers = 0;
2583  	for (i = 1; i < max; i++)
2584  		if (stat->nodesizes[i] != 0) {
2585  			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2586  			pointers += (1<<i) * stat->nodesizes[i];
2587  		}
2588  	seq_putc(seq, '\n');
2589  	seq_printf(seq, "\tPointers: %u\n", pointers);
2590  
2591  	bytes += sizeof(struct key_vector *) * pointers;
2592  	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2593  	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2594  }
2595  
2596  #ifdef CONFIG_IP_FIB_TRIE_STATS
trie_show_usage(struct seq_file * seq,const struct trie_use_stats __percpu * stats)2597  static void trie_show_usage(struct seq_file *seq,
2598  			    const struct trie_use_stats __percpu *stats)
2599  {
2600  	struct trie_use_stats s = { 0 };
2601  	int cpu;
2602  
2603  	/* loop through all of the CPUs and gather up the stats */
2604  	for_each_possible_cpu(cpu) {
2605  		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2606  
2607  		s.gets += pcpu->gets;
2608  		s.backtrack += pcpu->backtrack;
2609  		s.semantic_match_passed += pcpu->semantic_match_passed;
2610  		s.semantic_match_miss += pcpu->semantic_match_miss;
2611  		s.null_node_hit += pcpu->null_node_hit;
2612  		s.resize_node_skipped += pcpu->resize_node_skipped;
2613  	}
2614  
2615  	seq_printf(seq, "\nCounters:\n---------\n");
2616  	seq_printf(seq, "gets = %u\n", s.gets);
2617  	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2618  	seq_printf(seq, "semantic match passed = %u\n",
2619  		   s.semantic_match_passed);
2620  	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2621  	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2622  	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2623  }
2624  #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2625  
fib_table_print(struct seq_file * seq,struct fib_table * tb)2626  static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2627  {
2628  	if (tb->tb_id == RT_TABLE_LOCAL)
2629  		seq_puts(seq, "Local:\n");
2630  	else if (tb->tb_id == RT_TABLE_MAIN)
2631  		seq_puts(seq, "Main:\n");
2632  	else
2633  		seq_printf(seq, "Id %d:\n", tb->tb_id);
2634  }
2635  
2636  
fib_triestat_seq_show(struct seq_file * seq,void * v)2637  static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2638  {
2639  	struct net *net = seq->private;
2640  	unsigned int h;
2641  
2642  	seq_printf(seq,
2643  		   "Basic info: size of leaf:"
2644  		   " %zd bytes, size of tnode: %zd bytes.\n",
2645  		   LEAF_SIZE, TNODE_SIZE(0));
2646  
2647  	rcu_read_lock();
2648  	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2649  		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2650  		struct fib_table *tb;
2651  
2652  		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2653  			struct trie *t = (struct trie *) tb->tb_data;
2654  			struct trie_stat stat;
2655  
2656  			if (!t)
2657  				continue;
2658  
2659  			fib_table_print(seq, tb);
2660  
2661  			trie_collect_stats(t, &stat);
2662  			trie_show_stats(seq, &stat);
2663  #ifdef CONFIG_IP_FIB_TRIE_STATS
2664  			trie_show_usage(seq, t->stats);
2665  #endif
2666  		}
2667  		cond_resched_rcu();
2668  	}
2669  	rcu_read_unlock();
2670  
2671  	return 0;
2672  }
2673  
fib_trie_get_idx(struct seq_file * seq,loff_t pos)2674  static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2675  {
2676  	struct fib_trie_iter *iter = seq->private;
2677  	struct net *net = seq_file_net(seq);
2678  	loff_t idx = 0;
2679  	unsigned int h;
2680  
2681  	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2682  		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2683  		struct fib_table *tb;
2684  
2685  		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2686  			struct key_vector *n;
2687  
2688  			for (n = fib_trie_get_first(iter,
2689  						    (struct trie *) tb->tb_data);
2690  			     n; n = fib_trie_get_next(iter))
2691  				if (pos == idx++) {
2692  					iter->tb = tb;
2693  					return n;
2694  				}
2695  		}
2696  	}
2697  
2698  	return NULL;
2699  }
2700  
fib_trie_seq_start(struct seq_file * seq,loff_t * pos)2701  static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2702  	__acquires(RCU)
2703  {
2704  	rcu_read_lock();
2705  	return fib_trie_get_idx(seq, *pos);
2706  }
2707  
fib_trie_seq_next(struct seq_file * seq,void * v,loff_t * pos)2708  static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2709  {
2710  	struct fib_trie_iter *iter = seq->private;
2711  	struct net *net = seq_file_net(seq);
2712  	struct fib_table *tb = iter->tb;
2713  	struct hlist_node *tb_node;
2714  	unsigned int h;
2715  	struct key_vector *n;
2716  
2717  	++*pos;
2718  	/* next node in same table */
2719  	n = fib_trie_get_next(iter);
2720  	if (n)
2721  		return n;
2722  
2723  	/* walk rest of this hash chain */
2724  	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2725  	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2726  		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2727  		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2728  		if (n)
2729  			goto found;
2730  	}
2731  
2732  	/* new hash chain */
2733  	while (++h < FIB_TABLE_HASHSZ) {
2734  		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2735  		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2736  			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2737  			if (n)
2738  				goto found;
2739  		}
2740  	}
2741  	return NULL;
2742  
2743  found:
2744  	iter->tb = tb;
2745  	return n;
2746  }
2747  
fib_trie_seq_stop(struct seq_file * seq,void * v)2748  static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2749  	__releases(RCU)
2750  {
2751  	rcu_read_unlock();
2752  }
2753  
seq_indent(struct seq_file * seq,int n)2754  static void seq_indent(struct seq_file *seq, int n)
2755  {
2756  	while (n-- > 0)
2757  		seq_puts(seq, "   ");
2758  }
2759  
rtn_scope(char * buf,size_t len,enum rt_scope_t s)2760  static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2761  {
2762  	switch (s) {
2763  	case RT_SCOPE_UNIVERSE: return "universe";
2764  	case RT_SCOPE_SITE:	return "site";
2765  	case RT_SCOPE_LINK:	return "link";
2766  	case RT_SCOPE_HOST:	return "host";
2767  	case RT_SCOPE_NOWHERE:	return "nowhere";
2768  	default:
2769  		snprintf(buf, len, "scope=%d", s);
2770  		return buf;
2771  	}
2772  }
2773  
2774  static const char *const rtn_type_names[__RTN_MAX] = {
2775  	[RTN_UNSPEC] = "UNSPEC",
2776  	[RTN_UNICAST] = "UNICAST",
2777  	[RTN_LOCAL] = "LOCAL",
2778  	[RTN_BROADCAST] = "BROADCAST",
2779  	[RTN_ANYCAST] = "ANYCAST",
2780  	[RTN_MULTICAST] = "MULTICAST",
2781  	[RTN_BLACKHOLE] = "BLACKHOLE",
2782  	[RTN_UNREACHABLE] = "UNREACHABLE",
2783  	[RTN_PROHIBIT] = "PROHIBIT",
2784  	[RTN_THROW] = "THROW",
2785  	[RTN_NAT] = "NAT",
2786  	[RTN_XRESOLVE] = "XRESOLVE",
2787  };
2788  
rtn_type(char * buf,size_t len,unsigned int t)2789  static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2790  {
2791  	if (t < __RTN_MAX && rtn_type_names[t])
2792  		return rtn_type_names[t];
2793  	snprintf(buf, len, "type %u", t);
2794  	return buf;
2795  }
2796  
2797  /* Pretty print the trie */
fib_trie_seq_show(struct seq_file * seq,void * v)2798  static int fib_trie_seq_show(struct seq_file *seq, void *v)
2799  {
2800  	const struct fib_trie_iter *iter = seq->private;
2801  	struct key_vector *n = v;
2802  
2803  	if (IS_TRIE(node_parent_rcu(n)))
2804  		fib_table_print(seq, iter->tb);
2805  
2806  	if (IS_TNODE(n)) {
2807  		__be32 prf = htonl(n->key);
2808  
2809  		seq_indent(seq, iter->depth-1);
2810  		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2811  			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2812  			   tn_info(n)->full_children,
2813  			   tn_info(n)->empty_children);
2814  	} else {
2815  		__be32 val = htonl(n->key);
2816  		struct fib_alias *fa;
2817  
2818  		seq_indent(seq, iter->depth);
2819  		seq_printf(seq, "  |-- %pI4\n", &val);
2820  
2821  		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2822  			char buf1[32], buf2[32];
2823  
2824  			seq_indent(seq, iter->depth + 1);
2825  			seq_printf(seq, "  /%zu %s %s",
2826  				   KEYLENGTH - fa->fa_slen,
2827  				   rtn_scope(buf1, sizeof(buf1),
2828  					     fa->fa_info->fib_scope),
2829  				   rtn_type(buf2, sizeof(buf2),
2830  					    fa->fa_type));
2831  			if (fa->fa_dscp)
2832  				seq_printf(seq, " tos=%d",
2833  					   inet_dscp_to_dsfield(fa->fa_dscp));
2834  			seq_putc(seq, '\n');
2835  		}
2836  	}
2837  
2838  	return 0;
2839  }
2840  
2841  static const struct seq_operations fib_trie_seq_ops = {
2842  	.start  = fib_trie_seq_start,
2843  	.next   = fib_trie_seq_next,
2844  	.stop   = fib_trie_seq_stop,
2845  	.show   = fib_trie_seq_show,
2846  };
2847  
2848  struct fib_route_iter {
2849  	struct seq_net_private p;
2850  	struct fib_table *main_tb;
2851  	struct key_vector *tnode;
2852  	loff_t	pos;
2853  	t_key	key;
2854  };
2855  
fib_route_get_idx(struct fib_route_iter * iter,loff_t pos)2856  static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2857  					    loff_t pos)
2858  {
2859  	struct key_vector *l, **tp = &iter->tnode;
2860  	t_key key;
2861  
2862  	/* use cached location of previously found key */
2863  	if (iter->pos > 0 && pos >= iter->pos) {
2864  		key = iter->key;
2865  	} else {
2866  		iter->pos = 1;
2867  		key = 0;
2868  	}
2869  
2870  	pos -= iter->pos;
2871  
2872  	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2873  		key = l->key + 1;
2874  		iter->pos++;
2875  		l = NULL;
2876  
2877  		/* handle unlikely case of a key wrap */
2878  		if (!key)
2879  			break;
2880  	}
2881  
2882  	if (l)
2883  		iter->key = l->key;	/* remember it */
2884  	else
2885  		iter->pos = 0;		/* forget it */
2886  
2887  	return l;
2888  }
2889  
fib_route_seq_start(struct seq_file * seq,loff_t * pos)2890  static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2891  	__acquires(RCU)
2892  {
2893  	struct fib_route_iter *iter = seq->private;
2894  	struct fib_table *tb;
2895  	struct trie *t;
2896  
2897  	rcu_read_lock();
2898  
2899  	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2900  	if (!tb)
2901  		return NULL;
2902  
2903  	iter->main_tb = tb;
2904  	t = (struct trie *)tb->tb_data;
2905  	iter->tnode = t->kv;
2906  
2907  	if (*pos != 0)
2908  		return fib_route_get_idx(iter, *pos);
2909  
2910  	iter->pos = 0;
2911  	iter->key = KEY_MAX;
2912  
2913  	return SEQ_START_TOKEN;
2914  }
2915  
fib_route_seq_next(struct seq_file * seq,void * v,loff_t * pos)2916  static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2917  {
2918  	struct fib_route_iter *iter = seq->private;
2919  	struct key_vector *l = NULL;
2920  	t_key key = iter->key + 1;
2921  
2922  	++*pos;
2923  
2924  	/* only allow key of 0 for start of sequence */
2925  	if ((v == SEQ_START_TOKEN) || key)
2926  		l = leaf_walk_rcu(&iter->tnode, key);
2927  
2928  	if (l) {
2929  		iter->key = l->key;
2930  		iter->pos++;
2931  	} else {
2932  		iter->pos = 0;
2933  	}
2934  
2935  	return l;
2936  }
2937  
fib_route_seq_stop(struct seq_file * seq,void * v)2938  static void fib_route_seq_stop(struct seq_file *seq, void *v)
2939  	__releases(RCU)
2940  {
2941  	rcu_read_unlock();
2942  }
2943  
fib_flag_trans(int type,__be32 mask,struct fib_info * fi)2944  static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2945  {
2946  	unsigned int flags = 0;
2947  
2948  	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2949  		flags = RTF_REJECT;
2950  	if (fi) {
2951  		const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2952  
2953  		if (nhc->nhc_gw.ipv4)
2954  			flags |= RTF_GATEWAY;
2955  	}
2956  	if (mask == htonl(0xFFFFFFFF))
2957  		flags |= RTF_HOST;
2958  	flags |= RTF_UP;
2959  	return flags;
2960  }
2961  
2962  /*
2963   *	This outputs /proc/net/route.
2964   *	The format of the file is not supposed to be changed
2965   *	and needs to be same as fib_hash output to avoid breaking
2966   *	legacy utilities
2967   */
fib_route_seq_show(struct seq_file * seq,void * v)2968  static int fib_route_seq_show(struct seq_file *seq, void *v)
2969  {
2970  	struct fib_route_iter *iter = seq->private;
2971  	struct fib_table *tb = iter->main_tb;
2972  	struct fib_alias *fa;
2973  	struct key_vector *l = v;
2974  	__be32 prefix;
2975  
2976  	if (v == SEQ_START_TOKEN) {
2977  		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2978  			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2979  			   "\tWindow\tIRTT");
2980  		return 0;
2981  	}
2982  
2983  	prefix = htonl(l->key);
2984  
2985  	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2986  		struct fib_info *fi = fa->fa_info;
2987  		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2988  		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2989  
2990  		if ((fa->fa_type == RTN_BROADCAST) ||
2991  		    (fa->fa_type == RTN_MULTICAST))
2992  			continue;
2993  
2994  		if (fa->tb_id != tb->tb_id)
2995  			continue;
2996  
2997  		seq_setwidth(seq, 127);
2998  
2999  		if (fi) {
3000  			struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
3001  			__be32 gw = 0;
3002  
3003  			if (nhc->nhc_gw_family == AF_INET)
3004  				gw = nhc->nhc_gw.ipv4;
3005  
3006  			seq_printf(seq,
3007  				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
3008  				   "%d\t%08X\t%d\t%u\t%u",
3009  				   nhc->nhc_dev ? nhc->nhc_dev->name : "*",
3010  				   prefix, gw, flags, 0, 0,
3011  				   fi->fib_priority,
3012  				   mask,
3013  				   (fi->fib_advmss ?
3014  				    fi->fib_advmss + 40 : 0),
3015  				   fi->fib_window,
3016  				   fi->fib_rtt >> 3);
3017  		} else {
3018  			seq_printf(seq,
3019  				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
3020  				   "%d\t%08X\t%d\t%u\t%u",
3021  				   prefix, 0, flags, 0, 0, 0,
3022  				   mask, 0, 0, 0);
3023  		}
3024  		seq_pad(seq, '\n');
3025  	}
3026  
3027  	return 0;
3028  }
3029  
3030  static const struct seq_operations fib_route_seq_ops = {
3031  	.start  = fib_route_seq_start,
3032  	.next   = fib_route_seq_next,
3033  	.stop   = fib_route_seq_stop,
3034  	.show   = fib_route_seq_show,
3035  };
3036  
fib_proc_init(struct net * net)3037  int __net_init fib_proc_init(struct net *net)
3038  {
3039  	if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
3040  			sizeof(struct fib_trie_iter)))
3041  		goto out1;
3042  
3043  	if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
3044  			fib_triestat_seq_show, NULL))
3045  		goto out2;
3046  
3047  	if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
3048  			sizeof(struct fib_route_iter)))
3049  		goto out3;
3050  
3051  	return 0;
3052  
3053  out3:
3054  	remove_proc_entry("fib_triestat", net->proc_net);
3055  out2:
3056  	remove_proc_entry("fib_trie", net->proc_net);
3057  out1:
3058  	return -ENOMEM;
3059  }
3060  
fib_proc_exit(struct net * net)3061  void __net_exit fib_proc_exit(struct net *net)
3062  {
3063  	remove_proc_entry("fib_trie", net->proc_net);
3064  	remove_proc_entry("fib_triestat", net->proc_net);
3065  	remove_proc_entry("route", net->proc_net);
3066  }
3067  
3068  #endif /* CONFIG_PROC_FS */
3069