1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014 Intel Corporation
4 */
5
6 #include <linux/circ_buf.h>
7
8 #include "gem/i915_gem_context.h"
9 #include "gem/i915_gem_lmem.h"
10 #include "gt/gen8_engine_cs.h"
11 #include "gt/intel_breadcrumbs.h"
12 #include "gt/intel_context.h"
13 #include "gt/intel_engine_heartbeat.h"
14 #include "gt/intel_engine_pm.h"
15 #include "gt/intel_engine_regs.h"
16 #include "gt/intel_gpu_commands.h"
17 #include "gt/intel_gt.h"
18 #include "gt/intel_gt_clock_utils.h"
19 #include "gt/intel_gt_irq.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_gt_regs.h"
22 #include "gt/intel_gt_requests.h"
23 #include "gt/intel_lrc.h"
24 #include "gt/intel_lrc_reg.h"
25 #include "gt/intel_mocs.h"
26 #include "gt/intel_ring.h"
27
28 #include "intel_guc_ads.h"
29 #include "intel_guc_capture.h"
30 #include "intel_guc_print.h"
31 #include "intel_guc_submission.h"
32
33 #include "i915_drv.h"
34 #include "i915_reg.h"
35 #include "i915_trace.h"
36
37 /**
38 * DOC: GuC-based command submission
39 *
40 * The Scratch registers:
41 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
42 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
43 * triggers an interrupt on the GuC via another register write (0xC4C8).
44 * Firmware writes a success/fail code back to the action register after
45 * processes the request. The kernel driver polls waiting for this update and
46 * then proceeds.
47 *
48 * Command Transport buffers (CTBs):
49 * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
50 * - G2H) are a message interface between the i915 and GuC.
51 *
52 * Context registration:
53 * Before a context can be submitted it must be registered with the GuC via a
54 * H2G. A unique guc_id is associated with each context. The context is either
55 * registered at request creation time (normal operation) or at submission time
56 * (abnormal operation, e.g. after a reset).
57 *
58 * Context submission:
59 * The i915 updates the LRC tail value in memory. The i915 must enable the
60 * scheduling of the context within the GuC for the GuC to actually consider it.
61 * Therefore, the first time a disabled context is submitted we use a schedule
62 * enable H2G, while follow up submissions are done via the context submit H2G,
63 * which informs the GuC that a previously enabled context has new work
64 * available.
65 *
66 * Context unpin:
67 * To unpin a context a H2G is used to disable scheduling. When the
68 * corresponding G2H returns indicating the scheduling disable operation has
69 * completed it is safe to unpin the context. While a disable is in flight it
70 * isn't safe to resubmit the context so a fence is used to stall all future
71 * requests of that context until the G2H is returned. Because this interaction
72 * with the GuC takes a non-zero amount of time we delay the disabling of
73 * scheduling after the pin count goes to zero by a configurable period of time
74 * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of
75 * time to resubmit something on the context before doing this costly operation.
76 * This delay is only done if the context isn't closed and the guc_id usage is
77 * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD).
78 *
79 * Context deregistration:
80 * Before a context can be destroyed or if we steal its guc_id we must
81 * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
82 * safe to submit anything to this guc_id until the deregister completes so a
83 * fence is used to stall all requests associated with this guc_id until the
84 * corresponding G2H returns indicating the guc_id has been deregistered.
85 *
86 * submission_state.guc_ids:
87 * Unique number associated with private GuC context data passed in during
88 * context registration / submission / deregistration. 64k available. Simple ida
89 * is used for allocation.
90 *
91 * Stealing guc_ids:
92 * If no guc_ids are available they can be stolen from another context at
93 * request creation time if that context is unpinned. If a guc_id can't be found
94 * we punt this problem to the user as we believe this is near impossible to hit
95 * during normal use cases.
96 *
97 * Locking:
98 * In the GuC submission code we have 3 basic spin locks which protect
99 * everything. Details about each below.
100 *
101 * sched_engine->lock
102 * This is the submission lock for all contexts that share an i915 schedule
103 * engine (sched_engine), thus only one of the contexts which share a
104 * sched_engine can be submitting at a time. Currently only one sched_engine is
105 * used for all of GuC submission but that could change in the future.
106 *
107 * guc->submission_state.lock
108 * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
109 * list.
110 *
111 * ce->guc_state.lock
112 * Protects everything under ce->guc_state. Ensures that a context is in the
113 * correct state before issuing a H2G. e.g. We don't issue a schedule disable
114 * on a disabled context (bad idea), we don't issue a schedule enable when a
115 * schedule disable is in flight, etc... Also protects list of inflight requests
116 * on the context and the priority management state. Lock is individual to each
117 * context.
118 *
119 * Lock ordering rules:
120 * sched_engine->lock -> ce->guc_state.lock
121 * guc->submission_state.lock -> ce->guc_state.lock
122 *
123 * Reset races:
124 * When a full GT reset is triggered it is assumed that some G2H responses to
125 * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
126 * fatal as we do certain operations upon receiving a G2H (e.g. destroy
127 * contexts, release guc_ids, etc...). When this occurs we can scrub the
128 * context state and cleanup appropriately, however this is quite racey.
129 * To avoid races, the reset code must disable submission before scrubbing for
130 * the missing G2H, while the submission code must check for submission being
131 * disabled and skip sending H2Gs and updating context states when it is. Both
132 * sides must also make sure to hold the relevant locks.
133 */
134
135 /* GuC Virtual Engine */
136 struct guc_virtual_engine {
137 struct intel_engine_cs base;
138 struct intel_context context;
139 };
140
141 static struct intel_context *
142 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
143 unsigned long flags);
144
145 static struct intel_context *
146 guc_create_parallel(struct intel_engine_cs **engines,
147 unsigned int num_siblings,
148 unsigned int width);
149
150 #define GUC_REQUEST_SIZE 64 /* bytes */
151
152 /*
153 * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
154 * per the GuC submission interface. A different allocation algorithm is used
155 * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
156 * partition the guc_id space. We believe the number of multi-lrc contexts in
157 * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
158 * multi-lrc.
159 */
160 #define NUMBER_MULTI_LRC_GUC_ID(guc) \
161 ((guc)->submission_state.num_guc_ids / 16)
162
163 /*
164 * Below is a set of functions which control the GuC scheduling state which
165 * require a lock.
166 */
167 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER BIT(0)
168 #define SCHED_STATE_DESTROYED BIT(1)
169 #define SCHED_STATE_PENDING_DISABLE BIT(2)
170 #define SCHED_STATE_BANNED BIT(3)
171 #define SCHED_STATE_ENABLED BIT(4)
172 #define SCHED_STATE_PENDING_ENABLE BIT(5)
173 #define SCHED_STATE_REGISTERED BIT(6)
174 #define SCHED_STATE_POLICY_REQUIRED BIT(7)
175 #define SCHED_STATE_CLOSED BIT(8)
176 #define SCHED_STATE_BLOCKED_SHIFT 9
177 #define SCHED_STATE_BLOCKED BIT(SCHED_STATE_BLOCKED_SHIFT)
178 #define SCHED_STATE_BLOCKED_MASK (0xfff << SCHED_STATE_BLOCKED_SHIFT)
179
init_sched_state(struct intel_context * ce)180 static inline void init_sched_state(struct intel_context *ce)
181 {
182 lockdep_assert_held(&ce->guc_state.lock);
183 ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
184 }
185
186 /*
187 * Kernel contexts can have SCHED_STATE_REGISTERED after suspend.
188 * A context close can race with the submission path, so SCHED_STATE_CLOSED
189 * can be set immediately before we try to register.
190 */
191 #define SCHED_STATE_VALID_INIT \
192 (SCHED_STATE_BLOCKED_MASK | \
193 SCHED_STATE_CLOSED | \
194 SCHED_STATE_REGISTERED)
195
196 __maybe_unused
sched_state_is_init(struct intel_context * ce)197 static bool sched_state_is_init(struct intel_context *ce)
198 {
199 return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT);
200 }
201
202 static inline bool
context_wait_for_deregister_to_register(struct intel_context * ce)203 context_wait_for_deregister_to_register(struct intel_context *ce)
204 {
205 return ce->guc_state.sched_state &
206 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
207 }
208
209 static inline void
set_context_wait_for_deregister_to_register(struct intel_context * ce)210 set_context_wait_for_deregister_to_register(struct intel_context *ce)
211 {
212 lockdep_assert_held(&ce->guc_state.lock);
213 ce->guc_state.sched_state |=
214 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
215 }
216
217 static inline void
clr_context_wait_for_deregister_to_register(struct intel_context * ce)218 clr_context_wait_for_deregister_to_register(struct intel_context *ce)
219 {
220 lockdep_assert_held(&ce->guc_state.lock);
221 ce->guc_state.sched_state &=
222 ~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
223 }
224
225 static inline bool
context_destroyed(struct intel_context * ce)226 context_destroyed(struct intel_context *ce)
227 {
228 return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
229 }
230
231 static inline void
set_context_destroyed(struct intel_context * ce)232 set_context_destroyed(struct intel_context *ce)
233 {
234 lockdep_assert_held(&ce->guc_state.lock);
235 ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
236 }
237
context_pending_disable(struct intel_context * ce)238 static inline bool context_pending_disable(struct intel_context *ce)
239 {
240 return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
241 }
242
set_context_pending_disable(struct intel_context * ce)243 static inline void set_context_pending_disable(struct intel_context *ce)
244 {
245 lockdep_assert_held(&ce->guc_state.lock);
246 ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
247 }
248
clr_context_pending_disable(struct intel_context * ce)249 static inline void clr_context_pending_disable(struct intel_context *ce)
250 {
251 lockdep_assert_held(&ce->guc_state.lock);
252 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
253 }
254
context_banned(struct intel_context * ce)255 static inline bool context_banned(struct intel_context *ce)
256 {
257 return ce->guc_state.sched_state & SCHED_STATE_BANNED;
258 }
259
set_context_banned(struct intel_context * ce)260 static inline void set_context_banned(struct intel_context *ce)
261 {
262 lockdep_assert_held(&ce->guc_state.lock);
263 ce->guc_state.sched_state |= SCHED_STATE_BANNED;
264 }
265
clr_context_banned(struct intel_context * ce)266 static inline void clr_context_banned(struct intel_context *ce)
267 {
268 lockdep_assert_held(&ce->guc_state.lock);
269 ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
270 }
271
context_enabled(struct intel_context * ce)272 static inline bool context_enabled(struct intel_context *ce)
273 {
274 return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
275 }
276
set_context_enabled(struct intel_context * ce)277 static inline void set_context_enabled(struct intel_context *ce)
278 {
279 lockdep_assert_held(&ce->guc_state.lock);
280 ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
281 }
282
clr_context_enabled(struct intel_context * ce)283 static inline void clr_context_enabled(struct intel_context *ce)
284 {
285 lockdep_assert_held(&ce->guc_state.lock);
286 ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
287 }
288
context_pending_enable(struct intel_context * ce)289 static inline bool context_pending_enable(struct intel_context *ce)
290 {
291 return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
292 }
293
set_context_pending_enable(struct intel_context * ce)294 static inline void set_context_pending_enable(struct intel_context *ce)
295 {
296 lockdep_assert_held(&ce->guc_state.lock);
297 ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
298 }
299
clr_context_pending_enable(struct intel_context * ce)300 static inline void clr_context_pending_enable(struct intel_context *ce)
301 {
302 lockdep_assert_held(&ce->guc_state.lock);
303 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
304 }
305
context_registered(struct intel_context * ce)306 static inline bool context_registered(struct intel_context *ce)
307 {
308 return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
309 }
310
set_context_registered(struct intel_context * ce)311 static inline void set_context_registered(struct intel_context *ce)
312 {
313 lockdep_assert_held(&ce->guc_state.lock);
314 ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
315 }
316
clr_context_registered(struct intel_context * ce)317 static inline void clr_context_registered(struct intel_context *ce)
318 {
319 lockdep_assert_held(&ce->guc_state.lock);
320 ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
321 }
322
context_policy_required(struct intel_context * ce)323 static inline bool context_policy_required(struct intel_context *ce)
324 {
325 return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED;
326 }
327
set_context_policy_required(struct intel_context * ce)328 static inline void set_context_policy_required(struct intel_context *ce)
329 {
330 lockdep_assert_held(&ce->guc_state.lock);
331 ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED;
332 }
333
clr_context_policy_required(struct intel_context * ce)334 static inline void clr_context_policy_required(struct intel_context *ce)
335 {
336 lockdep_assert_held(&ce->guc_state.lock);
337 ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED;
338 }
339
context_close_done(struct intel_context * ce)340 static inline bool context_close_done(struct intel_context *ce)
341 {
342 return ce->guc_state.sched_state & SCHED_STATE_CLOSED;
343 }
344
set_context_close_done(struct intel_context * ce)345 static inline void set_context_close_done(struct intel_context *ce)
346 {
347 lockdep_assert_held(&ce->guc_state.lock);
348 ce->guc_state.sched_state |= SCHED_STATE_CLOSED;
349 }
350
context_blocked(struct intel_context * ce)351 static inline u32 context_blocked(struct intel_context *ce)
352 {
353 return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
354 SCHED_STATE_BLOCKED_SHIFT;
355 }
356
incr_context_blocked(struct intel_context * ce)357 static inline void incr_context_blocked(struct intel_context *ce)
358 {
359 lockdep_assert_held(&ce->guc_state.lock);
360
361 ce->guc_state.sched_state += SCHED_STATE_BLOCKED;
362
363 GEM_BUG_ON(!context_blocked(ce)); /* Overflow check */
364 }
365
decr_context_blocked(struct intel_context * ce)366 static inline void decr_context_blocked(struct intel_context *ce)
367 {
368 lockdep_assert_held(&ce->guc_state.lock);
369
370 GEM_BUG_ON(!context_blocked(ce)); /* Underflow check */
371
372 ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
373 }
374
375 static struct intel_context *
request_to_scheduling_context(struct i915_request * rq)376 request_to_scheduling_context(struct i915_request *rq)
377 {
378 return intel_context_to_parent(rq->context);
379 }
380
context_guc_id_invalid(struct intel_context * ce)381 static inline bool context_guc_id_invalid(struct intel_context *ce)
382 {
383 return ce->guc_id.id == GUC_INVALID_CONTEXT_ID;
384 }
385
set_context_guc_id_invalid(struct intel_context * ce)386 static inline void set_context_guc_id_invalid(struct intel_context *ce)
387 {
388 ce->guc_id.id = GUC_INVALID_CONTEXT_ID;
389 }
390
ce_to_guc(struct intel_context * ce)391 static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
392 {
393 return &ce->engine->gt->uc.guc;
394 }
395
to_priolist(struct rb_node * rb)396 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
397 {
398 return rb_entry(rb, struct i915_priolist, node);
399 }
400
401 /*
402 * When using multi-lrc submission a scratch memory area is reserved in the
403 * parent's context state for the process descriptor, work queue, and handshake
404 * between the parent + children contexts to insert safe preemption points
405 * between each of the BBs. Currently the scratch area is sized to a page.
406 *
407 * The layout of this scratch area is below:
408 * 0 guc_process_desc
409 * + sizeof(struct guc_process_desc) child go
410 * + CACHELINE_BYTES child join[0]
411 * ...
412 * + CACHELINE_BYTES child join[n - 1]
413 * ... unused
414 * PARENT_SCRATCH_SIZE / 2 work queue start
415 * ... work queue
416 * PARENT_SCRATCH_SIZE - 1 work queue end
417 */
418 #define WQ_SIZE (PARENT_SCRATCH_SIZE / 2)
419 #define WQ_OFFSET (PARENT_SCRATCH_SIZE - WQ_SIZE)
420
421 struct sync_semaphore {
422 u32 semaphore;
423 u8 unused[CACHELINE_BYTES - sizeof(u32)];
424 };
425
426 struct parent_scratch {
427 union guc_descs {
428 struct guc_sched_wq_desc wq_desc;
429 struct guc_process_desc_v69 pdesc;
430 } descs;
431
432 struct sync_semaphore go;
433 struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];
434
435 u8 unused[WQ_OFFSET - sizeof(union guc_descs) -
436 sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];
437
438 u32 wq[WQ_SIZE / sizeof(u32)];
439 };
440
__get_parent_scratch_offset(struct intel_context * ce)441 static u32 __get_parent_scratch_offset(struct intel_context *ce)
442 {
443 GEM_BUG_ON(!ce->parallel.guc.parent_page);
444
445 return ce->parallel.guc.parent_page * PAGE_SIZE;
446 }
447
__get_wq_offset(struct intel_context * ce)448 static u32 __get_wq_offset(struct intel_context *ce)
449 {
450 BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);
451
452 return __get_parent_scratch_offset(ce) + WQ_OFFSET;
453 }
454
455 static struct parent_scratch *
__get_parent_scratch(struct intel_context * ce)456 __get_parent_scratch(struct intel_context *ce)
457 {
458 BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
459 BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);
460
461 /*
462 * Need to subtract LRC_STATE_OFFSET here as the
463 * parallel.guc.parent_page is the offset into ce->state while
464 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
465 */
466 return (struct parent_scratch *)
467 (ce->lrc_reg_state +
468 ((__get_parent_scratch_offset(ce) -
469 LRC_STATE_OFFSET) / sizeof(u32)));
470 }
471
472 static struct guc_process_desc_v69 *
__get_process_desc_v69(struct intel_context * ce)473 __get_process_desc_v69(struct intel_context *ce)
474 {
475 struct parent_scratch *ps = __get_parent_scratch(ce);
476
477 return &ps->descs.pdesc;
478 }
479
480 static struct guc_sched_wq_desc *
__get_wq_desc_v70(struct intel_context * ce)481 __get_wq_desc_v70(struct intel_context *ce)
482 {
483 struct parent_scratch *ps = __get_parent_scratch(ce);
484
485 return &ps->descs.wq_desc;
486 }
487
get_wq_pointer(struct intel_context * ce,u32 wqi_size)488 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size)
489 {
490 /*
491 * Check for space in work queue. Caching a value of head pointer in
492 * intel_context structure in order reduce the number accesses to shared
493 * GPU memory which may be across a PCIe bus.
494 */
495 #define AVAILABLE_SPACE \
496 CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
497 if (wqi_size > AVAILABLE_SPACE) {
498 ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head);
499
500 if (wqi_size > AVAILABLE_SPACE)
501 return NULL;
502 }
503 #undef AVAILABLE_SPACE
504
505 return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
506 }
507
__get_context(struct intel_guc * guc,u32 id)508 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
509 {
510 struct intel_context *ce = xa_load(&guc->context_lookup, id);
511
512 GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID);
513
514 return ce;
515 }
516
__get_lrc_desc_v69(struct intel_guc * guc,u32 index)517 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index)
518 {
519 struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69;
520
521 if (!base)
522 return NULL;
523
524 GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID);
525
526 return &base[index];
527 }
528
guc_lrc_desc_pool_create_v69(struct intel_guc * guc)529 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc)
530 {
531 u32 size;
532 int ret;
533
534 size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) *
535 GUC_MAX_CONTEXT_ID);
536 ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69,
537 (void **)&guc->lrc_desc_pool_vaddr_v69);
538 if (ret)
539 return ret;
540
541 return 0;
542 }
543
guc_lrc_desc_pool_destroy_v69(struct intel_guc * guc)544 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc)
545 {
546 if (!guc->lrc_desc_pool_vaddr_v69)
547 return;
548
549 guc->lrc_desc_pool_vaddr_v69 = NULL;
550 i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP);
551 }
552
guc_submission_initialized(struct intel_guc * guc)553 static inline bool guc_submission_initialized(struct intel_guc *guc)
554 {
555 return guc->submission_initialized;
556 }
557
_reset_lrc_desc_v69(struct intel_guc * guc,u32 id)558 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id)
559 {
560 struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id);
561
562 if (desc)
563 memset(desc, 0, sizeof(*desc));
564 }
565
ctx_id_mapped(struct intel_guc * guc,u32 id)566 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id)
567 {
568 return __get_context(guc, id);
569 }
570
set_ctx_id_mapping(struct intel_guc * guc,u32 id,struct intel_context * ce)571 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id,
572 struct intel_context *ce)
573 {
574 unsigned long flags;
575
576 /*
577 * xarray API doesn't have xa_save_irqsave wrapper, so calling the
578 * lower level functions directly.
579 */
580 xa_lock_irqsave(&guc->context_lookup, flags);
581 __xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
582 xa_unlock_irqrestore(&guc->context_lookup, flags);
583 }
584
clr_ctx_id_mapping(struct intel_guc * guc,u32 id)585 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id)
586 {
587 unsigned long flags;
588
589 if (unlikely(!guc_submission_initialized(guc)))
590 return;
591
592 _reset_lrc_desc_v69(guc, id);
593
594 /*
595 * xarray API doesn't have xa_erase_irqsave wrapper, so calling
596 * the lower level functions directly.
597 */
598 xa_lock_irqsave(&guc->context_lookup, flags);
599 __xa_erase(&guc->context_lookup, id);
600 xa_unlock_irqrestore(&guc->context_lookup, flags);
601 }
602
decr_outstanding_submission_g2h(struct intel_guc * guc)603 static void decr_outstanding_submission_g2h(struct intel_guc *guc)
604 {
605 if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
606 wake_up_all(&guc->ct.wq);
607 }
608
guc_submission_send_busy_loop(struct intel_guc * guc,const u32 * action,u32 len,u32 g2h_len_dw,bool loop)609 static int guc_submission_send_busy_loop(struct intel_guc *guc,
610 const u32 *action,
611 u32 len,
612 u32 g2h_len_dw,
613 bool loop)
614 {
615 /*
616 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
617 * so we don't handle the case where we don't get a reply because we
618 * aborted the send due to the channel being busy.
619 */
620 GEM_BUG_ON(g2h_len_dw && !loop);
621
622 if (g2h_len_dw)
623 atomic_inc(&guc->outstanding_submission_g2h);
624
625 return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
626 }
627
intel_guc_wait_for_pending_msg(struct intel_guc * guc,atomic_t * wait_var,bool interruptible,long timeout)628 int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
629 atomic_t *wait_var,
630 bool interruptible,
631 long timeout)
632 {
633 const int state = interruptible ?
634 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
635 DEFINE_WAIT(wait);
636
637 might_sleep();
638 GEM_BUG_ON(timeout < 0);
639
640 if (!atomic_read(wait_var))
641 return 0;
642
643 if (!timeout)
644 return -ETIME;
645
646 for (;;) {
647 prepare_to_wait(&guc->ct.wq, &wait, state);
648
649 if (!atomic_read(wait_var))
650 break;
651
652 if (signal_pending_state(state, current)) {
653 timeout = -EINTR;
654 break;
655 }
656
657 if (!timeout) {
658 timeout = -ETIME;
659 break;
660 }
661
662 timeout = io_schedule_timeout(timeout);
663 }
664 finish_wait(&guc->ct.wq, &wait);
665
666 return (timeout < 0) ? timeout : 0;
667 }
668
intel_guc_wait_for_idle(struct intel_guc * guc,long timeout)669 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
670 {
671 if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
672 return 0;
673
674 return intel_guc_wait_for_pending_msg(guc,
675 &guc->outstanding_submission_g2h,
676 true, timeout);
677 }
678
679 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop);
680 static int try_context_registration(struct intel_context *ce, bool loop);
681
__guc_add_request(struct intel_guc * guc,struct i915_request * rq)682 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
683 {
684 int err = 0;
685 struct intel_context *ce = request_to_scheduling_context(rq);
686 u32 action[3];
687 int len = 0;
688 u32 g2h_len_dw = 0;
689 bool enabled;
690
691 lockdep_assert_held(&rq->engine->sched_engine->lock);
692
693 /*
694 * Corner case where requests were sitting in the priority list or a
695 * request resubmitted after the context was banned.
696 */
697 if (unlikely(!intel_context_is_schedulable(ce))) {
698 i915_request_put(i915_request_mark_eio(rq));
699 intel_engine_signal_breadcrumbs(ce->engine);
700 return 0;
701 }
702
703 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
704 GEM_BUG_ON(context_guc_id_invalid(ce));
705
706 if (context_policy_required(ce)) {
707 err = guc_context_policy_init_v70(ce, false);
708 if (err)
709 return err;
710 }
711
712 spin_lock(&ce->guc_state.lock);
713
714 /*
715 * The request / context will be run on the hardware when scheduling
716 * gets enabled in the unblock. For multi-lrc we still submit the
717 * context to move the LRC tails.
718 */
719 if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
720 goto out;
721
722 enabled = context_enabled(ce) || context_blocked(ce);
723
724 if (!enabled) {
725 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
726 action[len++] = ce->guc_id.id;
727 action[len++] = GUC_CONTEXT_ENABLE;
728 set_context_pending_enable(ce);
729 intel_context_get(ce);
730 g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
731 } else {
732 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
733 action[len++] = ce->guc_id.id;
734 }
735
736 err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
737 if (!enabled && !err) {
738 trace_intel_context_sched_enable(ce);
739 atomic_inc(&guc->outstanding_submission_g2h);
740 set_context_enabled(ce);
741
742 /*
743 * Without multi-lrc KMD does the submission step (moving the
744 * lrc tail) so enabling scheduling is sufficient to submit the
745 * context. This isn't the case in multi-lrc submission as the
746 * GuC needs to move the tails, hence the need for another H2G
747 * to submit a multi-lrc context after enabling scheduling.
748 */
749 if (intel_context_is_parent(ce)) {
750 action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
751 err = intel_guc_send_nb(guc, action, len - 1, 0);
752 }
753 } else if (!enabled) {
754 clr_context_pending_enable(ce);
755 intel_context_put(ce);
756 }
757 if (likely(!err))
758 trace_i915_request_guc_submit(rq);
759
760 out:
761 spin_unlock(&ce->guc_state.lock);
762 return err;
763 }
764
guc_add_request(struct intel_guc * guc,struct i915_request * rq)765 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
766 {
767 int ret = __guc_add_request(guc, rq);
768
769 if (unlikely(ret == -EBUSY)) {
770 guc->stalled_request = rq;
771 guc->submission_stall_reason = STALL_ADD_REQUEST;
772 }
773
774 return ret;
775 }
776
guc_set_lrc_tail(struct i915_request * rq)777 static inline void guc_set_lrc_tail(struct i915_request *rq)
778 {
779 rq->context->lrc_reg_state[CTX_RING_TAIL] =
780 intel_ring_set_tail(rq->ring, rq->tail);
781 }
782
rq_prio(const struct i915_request * rq)783 static inline int rq_prio(const struct i915_request *rq)
784 {
785 return rq->sched.attr.priority;
786 }
787
is_multi_lrc_rq(struct i915_request * rq)788 static bool is_multi_lrc_rq(struct i915_request *rq)
789 {
790 return intel_context_is_parallel(rq->context);
791 }
792
can_merge_rq(struct i915_request * rq,struct i915_request * last)793 static bool can_merge_rq(struct i915_request *rq,
794 struct i915_request *last)
795 {
796 return request_to_scheduling_context(rq) ==
797 request_to_scheduling_context(last);
798 }
799
wq_space_until_wrap(struct intel_context * ce)800 static u32 wq_space_until_wrap(struct intel_context *ce)
801 {
802 return (WQ_SIZE - ce->parallel.guc.wqi_tail);
803 }
804
write_wqi(struct intel_context * ce,u32 wqi_size)805 static void write_wqi(struct intel_context *ce, u32 wqi_size)
806 {
807 BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));
808
809 /*
810 * Ensure WQI are visible before updating tail
811 */
812 intel_guc_write_barrier(ce_to_guc(ce));
813
814 ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
815 (WQ_SIZE - 1);
816 WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail);
817 }
818
guc_wq_noop_append(struct intel_context * ce)819 static int guc_wq_noop_append(struct intel_context *ce)
820 {
821 u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce));
822 u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;
823
824 if (!wqi)
825 return -EBUSY;
826
827 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
828
829 *wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
830 FIELD_PREP(WQ_LEN_MASK, len_dw);
831 ce->parallel.guc.wqi_tail = 0;
832
833 return 0;
834 }
835
__guc_wq_item_append(struct i915_request * rq)836 static int __guc_wq_item_append(struct i915_request *rq)
837 {
838 struct intel_context *ce = request_to_scheduling_context(rq);
839 struct intel_context *child;
840 unsigned int wqi_size = (ce->parallel.number_children + 4) *
841 sizeof(u32);
842 u32 *wqi;
843 u32 len_dw = (wqi_size / sizeof(u32)) - 1;
844 int ret;
845
846 /* Ensure context is in correct state updating work queue */
847 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
848 GEM_BUG_ON(context_guc_id_invalid(ce));
849 GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
850 GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id));
851
852 /* Insert NOOP if this work queue item will wrap the tail pointer. */
853 if (wqi_size > wq_space_until_wrap(ce)) {
854 ret = guc_wq_noop_append(ce);
855 if (ret)
856 return ret;
857 }
858
859 wqi = get_wq_pointer(ce, wqi_size);
860 if (!wqi)
861 return -EBUSY;
862
863 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
864
865 *wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
866 FIELD_PREP(WQ_LEN_MASK, len_dw);
867 *wqi++ = ce->lrc.lrca;
868 *wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
869 FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
870 *wqi++ = 0; /* fence_id */
871 for_each_child(ce, child)
872 *wqi++ = child->ring->tail / sizeof(u64);
873
874 write_wqi(ce, wqi_size);
875
876 return 0;
877 }
878
guc_wq_item_append(struct intel_guc * guc,struct i915_request * rq)879 static int guc_wq_item_append(struct intel_guc *guc,
880 struct i915_request *rq)
881 {
882 struct intel_context *ce = request_to_scheduling_context(rq);
883 int ret;
884
885 if (unlikely(!intel_context_is_schedulable(ce)))
886 return 0;
887
888 ret = __guc_wq_item_append(rq);
889 if (unlikely(ret == -EBUSY)) {
890 guc->stalled_request = rq;
891 guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
892 }
893
894 return ret;
895 }
896
multi_lrc_submit(struct i915_request * rq)897 static bool multi_lrc_submit(struct i915_request *rq)
898 {
899 struct intel_context *ce = request_to_scheduling_context(rq);
900
901 intel_ring_set_tail(rq->ring, rq->tail);
902
903 /*
904 * We expect the front end (execbuf IOCTL) to set this flag on the last
905 * request generated from a multi-BB submission. This indicates to the
906 * backend (GuC interface) that we should submit this context thus
907 * submitting all the requests generated in parallel.
908 */
909 return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
910 !intel_context_is_schedulable(ce);
911 }
912
guc_dequeue_one_context(struct intel_guc * guc)913 static int guc_dequeue_one_context(struct intel_guc *guc)
914 {
915 struct i915_sched_engine * const sched_engine = guc->sched_engine;
916 struct i915_request *last = NULL;
917 bool submit = false;
918 struct rb_node *rb;
919 int ret;
920
921 lockdep_assert_held(&sched_engine->lock);
922
923 if (guc->stalled_request) {
924 submit = true;
925 last = guc->stalled_request;
926
927 switch (guc->submission_stall_reason) {
928 case STALL_REGISTER_CONTEXT:
929 goto register_context;
930 case STALL_MOVE_LRC_TAIL:
931 goto move_lrc_tail;
932 case STALL_ADD_REQUEST:
933 goto add_request;
934 default:
935 MISSING_CASE(guc->submission_stall_reason);
936 }
937 }
938
939 while ((rb = rb_first_cached(&sched_engine->queue))) {
940 struct i915_priolist *p = to_priolist(rb);
941 struct i915_request *rq, *rn;
942
943 priolist_for_each_request_consume(rq, rn, p) {
944 if (last && !can_merge_rq(rq, last))
945 goto register_context;
946
947 list_del_init(&rq->sched.link);
948
949 __i915_request_submit(rq);
950
951 trace_i915_request_in(rq, 0);
952 last = rq;
953
954 if (is_multi_lrc_rq(rq)) {
955 /*
956 * We need to coalesce all multi-lrc requests in
957 * a relationship into a single H2G. We are
958 * guaranteed that all of these requests will be
959 * submitted sequentially.
960 */
961 if (multi_lrc_submit(rq)) {
962 submit = true;
963 goto register_context;
964 }
965 } else {
966 submit = true;
967 }
968 }
969
970 rb_erase_cached(&p->node, &sched_engine->queue);
971 i915_priolist_free(p);
972 }
973
974 register_context:
975 if (submit) {
976 struct intel_context *ce = request_to_scheduling_context(last);
977
978 if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) &&
979 intel_context_is_schedulable(ce))) {
980 ret = try_context_registration(ce, false);
981 if (unlikely(ret == -EPIPE)) {
982 goto deadlk;
983 } else if (ret == -EBUSY) {
984 guc->stalled_request = last;
985 guc->submission_stall_reason =
986 STALL_REGISTER_CONTEXT;
987 goto schedule_tasklet;
988 } else if (ret != 0) {
989 GEM_WARN_ON(ret); /* Unexpected */
990 goto deadlk;
991 }
992 }
993
994 move_lrc_tail:
995 if (is_multi_lrc_rq(last)) {
996 ret = guc_wq_item_append(guc, last);
997 if (ret == -EBUSY) {
998 goto schedule_tasklet;
999 } else if (ret != 0) {
1000 GEM_WARN_ON(ret); /* Unexpected */
1001 goto deadlk;
1002 }
1003 } else {
1004 guc_set_lrc_tail(last);
1005 }
1006
1007 add_request:
1008 ret = guc_add_request(guc, last);
1009 if (unlikely(ret == -EPIPE)) {
1010 goto deadlk;
1011 } else if (ret == -EBUSY) {
1012 goto schedule_tasklet;
1013 } else if (ret != 0) {
1014 GEM_WARN_ON(ret); /* Unexpected */
1015 goto deadlk;
1016 }
1017 }
1018
1019 guc->stalled_request = NULL;
1020 guc->submission_stall_reason = STALL_NONE;
1021 return submit;
1022
1023 deadlk:
1024 sched_engine->tasklet.callback = NULL;
1025 tasklet_disable_nosync(&sched_engine->tasklet);
1026 return false;
1027
1028 schedule_tasklet:
1029 tasklet_schedule(&sched_engine->tasklet);
1030 return false;
1031 }
1032
guc_submission_tasklet(struct tasklet_struct * t)1033 static void guc_submission_tasklet(struct tasklet_struct *t)
1034 {
1035 struct i915_sched_engine *sched_engine =
1036 from_tasklet(sched_engine, t, tasklet);
1037 unsigned long flags;
1038 bool loop;
1039
1040 spin_lock_irqsave(&sched_engine->lock, flags);
1041
1042 do {
1043 loop = guc_dequeue_one_context(sched_engine->private_data);
1044 } while (loop);
1045
1046 i915_sched_engine_reset_on_empty(sched_engine);
1047
1048 spin_unlock_irqrestore(&sched_engine->lock, flags);
1049 }
1050
cs_irq_handler(struct intel_engine_cs * engine,u16 iir)1051 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
1052 {
1053 if (iir & GT_RENDER_USER_INTERRUPT)
1054 intel_engine_signal_breadcrumbs(engine);
1055 }
1056
1057 static void __guc_context_destroy(struct intel_context *ce);
1058 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
1059 static void guc_signal_context_fence(struct intel_context *ce);
1060 static void guc_cancel_context_requests(struct intel_context *ce);
1061 static void guc_blocked_fence_complete(struct intel_context *ce);
1062
scrub_guc_desc_for_outstanding_g2h(struct intel_guc * guc)1063 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
1064 {
1065 struct intel_context *ce;
1066 unsigned long index, flags;
1067 bool pending_disable, pending_enable, deregister, destroyed, banned;
1068
1069 xa_lock_irqsave(&guc->context_lookup, flags);
1070 xa_for_each(&guc->context_lookup, index, ce) {
1071 /*
1072 * Corner case where the ref count on the object is zero but and
1073 * deregister G2H was lost. In this case we don't touch the ref
1074 * count and finish the destroy of the context.
1075 */
1076 bool do_put = kref_get_unless_zero(&ce->ref);
1077
1078 xa_unlock(&guc->context_lookup);
1079
1080 if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
1081 (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) {
1082 /* successful cancel so jump straight to close it */
1083 intel_context_sched_disable_unpin(ce);
1084 }
1085
1086 spin_lock(&ce->guc_state.lock);
1087
1088 /*
1089 * Once we are at this point submission_disabled() is guaranteed
1090 * to be visible to all callers who set the below flags (see above
1091 * flush and flushes in reset_prepare). If submission_disabled()
1092 * is set, the caller shouldn't set these flags.
1093 */
1094
1095 destroyed = context_destroyed(ce);
1096 pending_enable = context_pending_enable(ce);
1097 pending_disable = context_pending_disable(ce);
1098 deregister = context_wait_for_deregister_to_register(ce);
1099 banned = context_banned(ce);
1100 init_sched_state(ce);
1101
1102 spin_unlock(&ce->guc_state.lock);
1103
1104 if (pending_enable || destroyed || deregister) {
1105 decr_outstanding_submission_g2h(guc);
1106 if (deregister)
1107 guc_signal_context_fence(ce);
1108 if (destroyed) {
1109 intel_gt_pm_put_async(guc_to_gt(guc));
1110 release_guc_id(guc, ce);
1111 __guc_context_destroy(ce);
1112 }
1113 if (pending_enable || deregister)
1114 intel_context_put(ce);
1115 }
1116
1117 /* Not mutualy exclusive with above if statement. */
1118 if (pending_disable) {
1119 guc_signal_context_fence(ce);
1120 if (banned) {
1121 guc_cancel_context_requests(ce);
1122 intel_engine_signal_breadcrumbs(ce->engine);
1123 }
1124 intel_context_sched_disable_unpin(ce);
1125 decr_outstanding_submission_g2h(guc);
1126
1127 spin_lock(&ce->guc_state.lock);
1128 guc_blocked_fence_complete(ce);
1129 spin_unlock(&ce->guc_state.lock);
1130
1131 intel_context_put(ce);
1132 }
1133
1134 if (do_put)
1135 intel_context_put(ce);
1136 xa_lock(&guc->context_lookup);
1137 }
1138 xa_unlock_irqrestore(&guc->context_lookup, flags);
1139 }
1140
1141 /*
1142 * GuC stores busyness stats for each engine at context in/out boundaries. A
1143 * context 'in' logs execution start time, 'out' adds in -> out delta to total.
1144 * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
1145 * GuC.
1146 *
1147 * __i915_pmu_event_read samples engine busyness. When sampling, if context id
1148 * is valid (!= ~0) and start is non-zero, the engine is considered to be
1149 * active. For an active engine total busyness = total + (now - start), where
1150 * 'now' is the time at which the busyness is sampled. For inactive engine,
1151 * total busyness = total.
1152 *
1153 * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
1154 *
1155 * The start and total values provided by GuC are 32 bits and wrap around in a
1156 * few minutes. Since perf pmu provides busyness as 64 bit monotonically
1157 * increasing ns values, there is a need for this implementation to account for
1158 * overflows and extend the GuC provided values to 64 bits before returning
1159 * busyness to the user. In order to do that, a worker runs periodically at
1160 * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
1161 * 27 seconds for a gt clock frequency of 19.2 MHz).
1162 */
1163
1164 #define WRAP_TIME_CLKS U32_MAX
1165 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)
1166
1167 static void
__extend_last_switch(struct intel_guc * guc,u64 * prev_start,u32 new_start)1168 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
1169 {
1170 u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1171 u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);
1172
1173 if (new_start == lower_32_bits(*prev_start))
1174 return;
1175
1176 /*
1177 * When gt is unparked, we update the gt timestamp and start the ping
1178 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
1179 * is unparked, all switched in contexts will have a start time that is
1180 * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
1181 *
1182 * If neither gt_stamp nor new_start has rolled over, then the
1183 * gt_stamp_hi does not need to be adjusted, however if one of them has
1184 * rolled over, we need to adjust gt_stamp_hi accordingly.
1185 *
1186 * The below conditions address the cases of new_start rollover and
1187 * gt_stamp_last rollover respectively.
1188 */
1189 if (new_start < gt_stamp_last &&
1190 (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
1191 gt_stamp_hi++;
1192
1193 if (new_start > gt_stamp_last &&
1194 (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
1195 gt_stamp_hi--;
1196
1197 *prev_start = ((u64)gt_stamp_hi << 32) | new_start;
1198 }
1199
1200 #define record_read(map_, field_) \
1201 iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)
1202
1203 /*
1204 * GuC updates shared memory and KMD reads it. Since this is not synchronized,
1205 * we run into a race where the value read is inconsistent. Sometimes the
1206 * inconsistency is in reading the upper MSB bytes of the last_in value when
1207 * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
1208 * 24 bits are zero. Since these are non-zero values, it is non-trivial to
1209 * determine validity of these values. Instead we read the values multiple times
1210 * until they are consistent. In test runs, 3 attempts results in consistent
1211 * values. The upper bound is set to 6 attempts and may need to be tuned as per
1212 * any new occurences.
1213 */
__get_engine_usage_record(struct intel_engine_cs * engine,u32 * last_in,u32 * id,u32 * total)1214 static void __get_engine_usage_record(struct intel_engine_cs *engine,
1215 u32 *last_in, u32 *id, u32 *total)
1216 {
1217 struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1218 int i = 0;
1219
1220 do {
1221 *last_in = record_read(&rec_map, last_switch_in_stamp);
1222 *id = record_read(&rec_map, current_context_index);
1223 *total = record_read(&rec_map, total_runtime);
1224
1225 if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
1226 record_read(&rec_map, current_context_index) == *id &&
1227 record_read(&rec_map, total_runtime) == *total)
1228 break;
1229 } while (++i < 6);
1230 }
1231
__set_engine_usage_record(struct intel_engine_cs * engine,u32 last_in,u32 id,u32 total)1232 static void __set_engine_usage_record(struct intel_engine_cs *engine,
1233 u32 last_in, u32 id, u32 total)
1234 {
1235 struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1236
1237 #define record_write(map_, field_, val_) \
1238 iosys_map_wr_field(map_, 0, struct guc_engine_usage_record, field_, val_)
1239
1240 record_write(&rec_map, last_switch_in_stamp, last_in);
1241 record_write(&rec_map, current_context_index, id);
1242 record_write(&rec_map, total_runtime, total);
1243
1244 #undef record_write
1245 }
1246
guc_update_engine_gt_clks(struct intel_engine_cs * engine)1247 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
1248 {
1249 struct intel_engine_guc_stats *stats = &engine->stats.guc;
1250 struct intel_guc *guc = &engine->gt->uc.guc;
1251 u32 last_switch, ctx_id, total;
1252
1253 lockdep_assert_held(&guc->timestamp.lock);
1254
1255 __get_engine_usage_record(engine, &last_switch, &ctx_id, &total);
1256
1257 stats->running = ctx_id != ~0U && last_switch;
1258 if (stats->running)
1259 __extend_last_switch(guc, &stats->start_gt_clk, last_switch);
1260
1261 /*
1262 * Instead of adjusting the total for overflow, just add the
1263 * difference from previous sample stats->total_gt_clks
1264 */
1265 if (total && total != ~0U) {
1266 stats->total_gt_clks += (u32)(total - stats->prev_total);
1267 stats->prev_total = total;
1268 }
1269 }
1270
gpm_timestamp_shift(struct intel_gt * gt)1271 static u32 gpm_timestamp_shift(struct intel_gt *gt)
1272 {
1273 intel_wakeref_t wakeref;
1274 u32 reg, shift;
1275
1276 with_intel_runtime_pm(gt->uncore->rpm, wakeref)
1277 reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);
1278
1279 shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
1280 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT;
1281
1282 return 3 - shift;
1283 }
1284
guc_update_pm_timestamp(struct intel_guc * guc,ktime_t * now)1285 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
1286 {
1287 struct intel_gt *gt = guc_to_gt(guc);
1288 u32 gt_stamp_lo, gt_stamp_hi;
1289 u64 gpm_ts;
1290
1291 lockdep_assert_held(&guc->timestamp.lock);
1292
1293 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1294 gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0,
1295 MISC_STATUS1) >> guc->timestamp.shift;
1296 gt_stamp_lo = lower_32_bits(gpm_ts);
1297 *now = ktime_get();
1298
1299 if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1300 gt_stamp_hi++;
1301
1302 guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1303 }
1304
1305 /*
1306 * Unlike the execlist mode of submission total and active times are in terms of
1307 * gt clocks. The *now parameter is retained to return the cpu time at which the
1308 * busyness was sampled.
1309 */
guc_engine_busyness(struct intel_engine_cs * engine,ktime_t * now)1310 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
1311 {
1312 struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
1313 struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
1314 struct intel_gt *gt = engine->gt;
1315 struct intel_guc *guc = >->uc.guc;
1316 u64 total, gt_stamp_saved;
1317 unsigned long flags;
1318 u32 reset_count;
1319 bool in_reset;
1320
1321 spin_lock_irqsave(&guc->timestamp.lock, flags);
1322
1323 /*
1324 * If a reset happened, we risk reading partially updated engine
1325 * busyness from GuC, so we just use the driver stored copy of busyness.
1326 * Synchronize with gt reset using reset_count and the
1327 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
1328 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
1329 * usable by checking the flag afterwards.
1330 */
1331 reset_count = i915_reset_count(gpu_error);
1332 in_reset = test_bit(I915_RESET_BACKOFF, >->reset.flags);
1333
1334 *now = ktime_get();
1335
1336 /*
1337 * The active busyness depends on start_gt_clk and gt_stamp.
1338 * gt_stamp is updated by i915 only when gt is awake and the
1339 * start_gt_clk is derived from GuC state. To get a consistent
1340 * view of activity, we query the GuC state only if gt is awake.
1341 */
1342 if (!in_reset && intel_gt_pm_get_if_awake(gt)) {
1343 stats_saved = *stats;
1344 gt_stamp_saved = guc->timestamp.gt_stamp;
1345 /*
1346 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
1347 * start_gt_clk' calculation below for active engines.
1348 */
1349 guc_update_engine_gt_clks(engine);
1350 guc_update_pm_timestamp(guc, now);
1351 intel_gt_pm_put_async(gt);
1352 if (i915_reset_count(gpu_error) != reset_count) {
1353 *stats = stats_saved;
1354 guc->timestamp.gt_stamp = gt_stamp_saved;
1355 }
1356 }
1357
1358 total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
1359 if (stats->running) {
1360 u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1361
1362 total += intel_gt_clock_interval_to_ns(gt, clk);
1363 }
1364
1365 if (total > stats->total)
1366 stats->total = total;
1367
1368 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1369
1370 return ns_to_ktime(stats->total);
1371 }
1372
guc_enable_busyness_worker(struct intel_guc * guc)1373 static void guc_enable_busyness_worker(struct intel_guc *guc)
1374 {
1375 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, guc->timestamp.ping_delay);
1376 }
1377
guc_cancel_busyness_worker(struct intel_guc * guc)1378 static void guc_cancel_busyness_worker(struct intel_guc *guc)
1379 {
1380 cancel_delayed_work_sync(&guc->timestamp.work);
1381 }
1382
__reset_guc_busyness_stats(struct intel_guc * guc)1383 static void __reset_guc_busyness_stats(struct intel_guc *guc)
1384 {
1385 struct intel_gt *gt = guc_to_gt(guc);
1386 struct intel_engine_cs *engine;
1387 enum intel_engine_id id;
1388 unsigned long flags;
1389 ktime_t unused;
1390
1391 guc_cancel_busyness_worker(guc);
1392
1393 spin_lock_irqsave(&guc->timestamp.lock, flags);
1394
1395 guc_update_pm_timestamp(guc, &unused);
1396 for_each_engine(engine, gt, id) {
1397 struct intel_engine_guc_stats *stats = &engine->stats.guc;
1398
1399 guc_update_engine_gt_clks(engine);
1400
1401 /*
1402 * If resetting a running context, accumulate the active
1403 * time as well since there will be no context switch.
1404 */
1405 if (stats->running) {
1406 u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1407
1408 stats->total_gt_clks += clk;
1409 }
1410 stats->prev_total = 0;
1411 stats->running = 0;
1412 }
1413
1414 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1415 }
1416
__update_guc_busyness_stats(struct intel_guc * guc)1417 static void __update_guc_busyness_stats(struct intel_guc *guc)
1418 {
1419 struct intel_gt *gt = guc_to_gt(guc);
1420 struct intel_engine_cs *engine;
1421 enum intel_engine_id id;
1422 unsigned long flags;
1423 ktime_t unused;
1424
1425 guc->timestamp.last_stat_jiffies = jiffies;
1426
1427 spin_lock_irqsave(&guc->timestamp.lock, flags);
1428
1429 guc_update_pm_timestamp(guc, &unused);
1430 for_each_engine(engine, gt, id)
1431 guc_update_engine_gt_clks(engine);
1432
1433 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1434 }
1435
__guc_context_update_stats(struct intel_context * ce)1436 static void __guc_context_update_stats(struct intel_context *ce)
1437 {
1438 struct intel_guc *guc = ce_to_guc(ce);
1439 unsigned long flags;
1440
1441 spin_lock_irqsave(&guc->timestamp.lock, flags);
1442 lrc_update_runtime(ce);
1443 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1444 }
1445
guc_context_update_stats(struct intel_context * ce)1446 static void guc_context_update_stats(struct intel_context *ce)
1447 {
1448 if (!intel_context_pin_if_active(ce))
1449 return;
1450
1451 __guc_context_update_stats(ce);
1452 intel_context_unpin(ce);
1453 }
1454
guc_timestamp_ping(struct work_struct * wrk)1455 static void guc_timestamp_ping(struct work_struct *wrk)
1456 {
1457 struct intel_guc *guc = container_of(wrk, typeof(*guc),
1458 timestamp.work.work);
1459 struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
1460 struct intel_gt *gt = guc_to_gt(guc);
1461 struct intel_context *ce;
1462 intel_wakeref_t wakeref;
1463 unsigned long index;
1464 int srcu, ret;
1465
1466 /*
1467 * Ideally the busyness worker should take a gt pm wakeref because the
1468 * worker only needs to be active while gt is awake. However, the
1469 * gt_park path cancels the worker synchronously and this complicates
1470 * the flow if the worker is also running at the same time. The cancel
1471 * waits for the worker and when the worker releases the wakeref, that
1472 * would call gt_park and would lead to a deadlock.
1473 *
1474 * The resolution is to take the global pm wakeref if runtime pm is
1475 * already active. If not, we don't need to update the busyness stats as
1476 * the stats would already be updated when the gt was parked.
1477 *
1478 * Note:
1479 * - We do not requeue the worker if we cannot take a reference to runtime
1480 * pm since intel_guc_busyness_unpark would requeue the worker in the
1481 * resume path.
1482 *
1483 * - If the gt was parked longer than time taken for GT timestamp to roll
1484 * over, we ignore those rollovers since we don't care about tracking
1485 * the exact GT time. We only care about roll overs when the gt is
1486 * active and running workloads.
1487 *
1488 * - There is a window of time between gt_park and runtime suspend,
1489 * where the worker may run. This is acceptable since the worker will
1490 * not find any new data to update busyness.
1491 */
1492 wakeref = intel_runtime_pm_get_if_active(>->i915->runtime_pm);
1493 if (!wakeref)
1494 return;
1495
1496 /*
1497 * Synchronize with gt reset to make sure the worker does not
1498 * corrupt the engine/guc stats. NB: can't actually block waiting
1499 * for a reset to complete as the reset requires flushing out
1500 * this worker thread if started. So waiting would deadlock.
1501 */
1502 ret = intel_gt_reset_trylock(gt, &srcu);
1503 if (ret)
1504 goto err_trylock;
1505
1506 __update_guc_busyness_stats(guc);
1507
1508 /* adjust context stats for overflow */
1509 xa_for_each(&guc->context_lookup, index, ce)
1510 guc_context_update_stats(ce);
1511
1512 intel_gt_reset_unlock(gt, srcu);
1513
1514 guc_enable_busyness_worker(guc);
1515
1516 err_trylock:
1517 intel_runtime_pm_put(>->i915->runtime_pm, wakeref);
1518 }
1519
guc_action_enable_usage_stats(struct intel_guc * guc)1520 static int guc_action_enable_usage_stats(struct intel_guc *guc)
1521 {
1522 struct intel_gt *gt = guc_to_gt(guc);
1523 struct intel_engine_cs *engine;
1524 enum intel_engine_id id;
1525 u32 offset = intel_guc_engine_usage_offset(guc);
1526 u32 action[] = {
1527 INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
1528 offset,
1529 0,
1530 };
1531
1532 for_each_engine(engine, gt, id)
1533 __set_engine_usage_record(engine, 0, 0xffffffff, 0);
1534
1535 return intel_guc_send(guc, action, ARRAY_SIZE(action));
1536 }
1537
guc_init_engine_stats(struct intel_guc * guc)1538 static int guc_init_engine_stats(struct intel_guc *guc)
1539 {
1540 struct intel_gt *gt = guc_to_gt(guc);
1541 intel_wakeref_t wakeref;
1542 int ret;
1543
1544 with_intel_runtime_pm(>->i915->runtime_pm, wakeref)
1545 ret = guc_action_enable_usage_stats(guc);
1546
1547 if (ret)
1548 guc_err(guc, "Failed to enable usage stats: %pe\n", ERR_PTR(ret));
1549 else
1550 guc_enable_busyness_worker(guc);
1551
1552 return ret;
1553 }
1554
guc_fini_engine_stats(struct intel_guc * guc)1555 static void guc_fini_engine_stats(struct intel_guc *guc)
1556 {
1557 guc_cancel_busyness_worker(guc);
1558 }
1559
intel_guc_busyness_park(struct intel_gt * gt)1560 void intel_guc_busyness_park(struct intel_gt *gt)
1561 {
1562 struct intel_guc *guc = >->uc.guc;
1563
1564 if (!guc_submission_initialized(guc))
1565 return;
1566
1567 /*
1568 * There is a race with suspend flow where the worker runs after suspend
1569 * and causes an unclaimed register access warning. Cancel the worker
1570 * synchronously here.
1571 */
1572 guc_cancel_busyness_worker(guc);
1573
1574 /*
1575 * Before parking, we should sample engine busyness stats if we need to.
1576 * We can skip it if we are less than half a ping from the last time we
1577 * sampled the busyness stats.
1578 */
1579 if (guc->timestamp.last_stat_jiffies &&
1580 !time_after(jiffies, guc->timestamp.last_stat_jiffies +
1581 (guc->timestamp.ping_delay / 2)))
1582 return;
1583
1584 __update_guc_busyness_stats(guc);
1585 }
1586
intel_guc_busyness_unpark(struct intel_gt * gt)1587 void intel_guc_busyness_unpark(struct intel_gt *gt)
1588 {
1589 struct intel_guc *guc = >->uc.guc;
1590 unsigned long flags;
1591 ktime_t unused;
1592
1593 if (!guc_submission_initialized(guc))
1594 return;
1595
1596 spin_lock_irqsave(&guc->timestamp.lock, flags);
1597 guc_update_pm_timestamp(guc, &unused);
1598 spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1599 guc_enable_busyness_worker(guc);
1600 }
1601
1602 static inline bool
submission_disabled(struct intel_guc * guc)1603 submission_disabled(struct intel_guc *guc)
1604 {
1605 struct i915_sched_engine * const sched_engine = guc->sched_engine;
1606
1607 return unlikely(!sched_engine ||
1608 !__tasklet_is_enabled(&sched_engine->tasklet) ||
1609 intel_gt_is_wedged(guc_to_gt(guc)));
1610 }
1611
disable_submission(struct intel_guc * guc)1612 static void disable_submission(struct intel_guc *guc)
1613 {
1614 struct i915_sched_engine * const sched_engine = guc->sched_engine;
1615
1616 if (__tasklet_is_enabled(&sched_engine->tasklet)) {
1617 GEM_BUG_ON(!guc->ct.enabled);
1618 __tasklet_disable_sync_once(&sched_engine->tasklet);
1619 sched_engine->tasklet.callback = NULL;
1620 }
1621 }
1622
enable_submission(struct intel_guc * guc)1623 static void enable_submission(struct intel_guc *guc)
1624 {
1625 struct i915_sched_engine * const sched_engine = guc->sched_engine;
1626 unsigned long flags;
1627
1628 spin_lock_irqsave(&guc->sched_engine->lock, flags);
1629 sched_engine->tasklet.callback = guc_submission_tasklet;
1630 wmb(); /* Make sure callback visible */
1631 if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
1632 __tasklet_enable(&sched_engine->tasklet)) {
1633 GEM_BUG_ON(!guc->ct.enabled);
1634
1635 /* And kick in case we missed a new request submission. */
1636 tasklet_hi_schedule(&sched_engine->tasklet);
1637 }
1638 spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
1639 }
1640
guc_flush_submissions(struct intel_guc * guc)1641 static void guc_flush_submissions(struct intel_guc *guc)
1642 {
1643 struct i915_sched_engine * const sched_engine = guc->sched_engine;
1644 unsigned long flags;
1645
1646 spin_lock_irqsave(&sched_engine->lock, flags);
1647 spin_unlock_irqrestore(&sched_engine->lock, flags);
1648 }
1649
1650 static void guc_flush_destroyed_contexts(struct intel_guc *guc);
1651
intel_guc_submission_reset_prepare(struct intel_guc * guc)1652 void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1653 {
1654 if (unlikely(!guc_submission_initialized(guc))) {
1655 /* Reset called during driver load? GuC not yet initialised! */
1656 return;
1657 }
1658
1659 intel_gt_park_heartbeats(guc_to_gt(guc));
1660 disable_submission(guc);
1661 guc->interrupts.disable(guc);
1662 __reset_guc_busyness_stats(guc);
1663
1664 /* Flush IRQ handler */
1665 spin_lock_irq(guc_to_gt(guc)->irq_lock);
1666 spin_unlock_irq(guc_to_gt(guc)->irq_lock);
1667
1668 guc_flush_submissions(guc);
1669 guc_flush_destroyed_contexts(guc);
1670 flush_work(&guc->ct.requests.worker);
1671
1672 scrub_guc_desc_for_outstanding_g2h(guc);
1673 }
1674
1675 static struct intel_engine_cs *
guc_virtual_get_sibling(struct intel_engine_cs * ve,unsigned int sibling)1676 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
1677 {
1678 struct intel_engine_cs *engine;
1679 intel_engine_mask_t tmp, mask = ve->mask;
1680 unsigned int num_siblings = 0;
1681
1682 for_each_engine_masked(engine, ve->gt, mask, tmp)
1683 if (num_siblings++ == sibling)
1684 return engine;
1685
1686 return NULL;
1687 }
1688
1689 static inline struct intel_engine_cs *
__context_to_physical_engine(struct intel_context * ce)1690 __context_to_physical_engine(struct intel_context *ce)
1691 {
1692 struct intel_engine_cs *engine = ce->engine;
1693
1694 if (intel_engine_is_virtual(engine))
1695 engine = guc_virtual_get_sibling(engine, 0);
1696
1697 return engine;
1698 }
1699
guc_reset_state(struct intel_context * ce,u32 head,bool scrub)1700 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1701 {
1702 struct intel_engine_cs *engine = __context_to_physical_engine(ce);
1703
1704 if (!intel_context_is_schedulable(ce))
1705 return;
1706
1707 GEM_BUG_ON(!intel_context_is_pinned(ce));
1708
1709 /*
1710 * We want a simple context + ring to execute the breadcrumb update.
1711 * We cannot rely on the context being intact across the GPU hang,
1712 * so clear it and rebuild just what we need for the breadcrumb.
1713 * All pending requests for this context will be zapped, and any
1714 * future request will be after userspace has had the opportunity
1715 * to recreate its own state.
1716 */
1717 if (scrub)
1718 lrc_init_regs(ce, engine, true);
1719
1720 /* Rerun the request; its payload has been neutered (if guilty). */
1721 lrc_update_regs(ce, engine, head);
1722 }
1723
guc_engine_reset_prepare(struct intel_engine_cs * engine)1724 static void guc_engine_reset_prepare(struct intel_engine_cs *engine)
1725 {
1726 /*
1727 * Wa_22011802037: In addition to stopping the cs, we need
1728 * to wait for any pending mi force wakeups
1729 */
1730 if (intel_engine_reset_needs_wa_22011802037(engine->gt)) {
1731 intel_engine_stop_cs(engine);
1732 intel_engine_wait_for_pending_mi_fw(engine);
1733 }
1734 }
1735
guc_reset_nop(struct intel_engine_cs * engine)1736 static void guc_reset_nop(struct intel_engine_cs *engine)
1737 {
1738 }
1739
guc_rewind_nop(struct intel_engine_cs * engine,bool stalled)1740 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
1741 {
1742 }
1743
1744 static void
__unwind_incomplete_requests(struct intel_context * ce)1745 __unwind_incomplete_requests(struct intel_context *ce)
1746 {
1747 struct i915_request *rq, *rn;
1748 struct list_head *pl;
1749 int prio = I915_PRIORITY_INVALID;
1750 struct i915_sched_engine * const sched_engine =
1751 ce->engine->sched_engine;
1752 unsigned long flags;
1753
1754 spin_lock_irqsave(&sched_engine->lock, flags);
1755 spin_lock(&ce->guc_state.lock);
1756 list_for_each_entry_safe_reverse(rq, rn,
1757 &ce->guc_state.requests,
1758 sched.link) {
1759 if (i915_request_completed(rq))
1760 continue;
1761
1762 list_del_init(&rq->sched.link);
1763 __i915_request_unsubmit(rq);
1764
1765 /* Push the request back into the queue for later resubmission. */
1766 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1767 if (rq_prio(rq) != prio) {
1768 prio = rq_prio(rq);
1769 pl = i915_sched_lookup_priolist(sched_engine, prio);
1770 }
1771 GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));
1772
1773 list_add(&rq->sched.link, pl);
1774 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1775 }
1776 spin_unlock(&ce->guc_state.lock);
1777 spin_unlock_irqrestore(&sched_engine->lock, flags);
1778 }
1779
__guc_reset_context(struct intel_context * ce,intel_engine_mask_t stalled)1780 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled)
1781 {
1782 bool guilty;
1783 struct i915_request *rq;
1784 unsigned long flags;
1785 u32 head;
1786 int i, number_children = ce->parallel.number_children;
1787 struct intel_context *parent = ce;
1788
1789 GEM_BUG_ON(intel_context_is_child(ce));
1790
1791 intel_context_get(ce);
1792
1793 /*
1794 * GuC will implicitly mark the context as non-schedulable when it sends
1795 * the reset notification. Make sure our state reflects this change. The
1796 * context will be marked enabled on resubmission.
1797 */
1798 spin_lock_irqsave(&ce->guc_state.lock, flags);
1799 clr_context_enabled(ce);
1800 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1801
1802 /*
1803 * For each context in the relationship find the hanging request
1804 * resetting each context / request as needed
1805 */
1806 for (i = 0; i < number_children + 1; ++i) {
1807 if (!intel_context_is_pinned(ce))
1808 goto next_context;
1809
1810 guilty = false;
1811 rq = intel_context_get_active_request(ce);
1812 if (!rq) {
1813 head = ce->ring->tail;
1814 goto out_replay;
1815 }
1816
1817 if (i915_request_started(rq))
1818 guilty = stalled & ce->engine->mask;
1819
1820 GEM_BUG_ON(i915_active_is_idle(&ce->active));
1821 head = intel_ring_wrap(ce->ring, rq->head);
1822
1823 __i915_request_reset(rq, guilty);
1824 i915_request_put(rq);
1825 out_replay:
1826 guc_reset_state(ce, head, guilty);
1827 next_context:
1828 if (i != number_children)
1829 ce = list_next_entry(ce, parallel.child_link);
1830 }
1831
1832 __unwind_incomplete_requests(parent);
1833 intel_context_put(parent);
1834 }
1835
intel_guc_submission_reset(struct intel_guc * guc,intel_engine_mask_t stalled)1836 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled)
1837 {
1838 struct intel_context *ce;
1839 unsigned long index;
1840 unsigned long flags;
1841
1842 if (unlikely(!guc_submission_initialized(guc))) {
1843 /* Reset called during driver load? GuC not yet initialised! */
1844 return;
1845 }
1846
1847 xa_lock_irqsave(&guc->context_lookup, flags);
1848 xa_for_each(&guc->context_lookup, index, ce) {
1849 if (!kref_get_unless_zero(&ce->ref))
1850 continue;
1851
1852 xa_unlock(&guc->context_lookup);
1853
1854 if (intel_context_is_pinned(ce) &&
1855 !intel_context_is_child(ce))
1856 __guc_reset_context(ce, stalled);
1857
1858 intel_context_put(ce);
1859
1860 xa_lock(&guc->context_lookup);
1861 }
1862 xa_unlock_irqrestore(&guc->context_lookup, flags);
1863
1864 /* GuC is blown away, drop all references to contexts */
1865 xa_destroy(&guc->context_lookup);
1866 }
1867
guc_cancel_context_requests(struct intel_context * ce)1868 static void guc_cancel_context_requests(struct intel_context *ce)
1869 {
1870 struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
1871 struct i915_request *rq;
1872 unsigned long flags;
1873
1874 /* Mark all executing requests as skipped. */
1875 spin_lock_irqsave(&sched_engine->lock, flags);
1876 spin_lock(&ce->guc_state.lock);
1877 list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1878 i915_request_put(i915_request_mark_eio(rq));
1879 spin_unlock(&ce->guc_state.lock);
1880 spin_unlock_irqrestore(&sched_engine->lock, flags);
1881 }
1882
1883 static void
guc_cancel_sched_engine_requests(struct i915_sched_engine * sched_engine)1884 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1885 {
1886 struct i915_request *rq, *rn;
1887 struct rb_node *rb;
1888 unsigned long flags;
1889
1890 /* Can be called during boot if GuC fails to load */
1891 if (!sched_engine)
1892 return;
1893
1894 /*
1895 * Before we call engine->cancel_requests(), we should have exclusive
1896 * access to the submission state. This is arranged for us by the
1897 * caller disabling the interrupt generation, the tasklet and other
1898 * threads that may then access the same state, giving us a free hand
1899 * to reset state. However, we still need to let lockdep be aware that
1900 * we know this state may be accessed in hardirq context, so we
1901 * disable the irq around this manipulation and we want to keep
1902 * the spinlock focused on its duties and not accidentally conflate
1903 * coverage to the submission's irq state. (Similarly, although we
1904 * shouldn't need to disable irq around the manipulation of the
1905 * submission's irq state, we also wish to remind ourselves that
1906 * it is irq state.)
1907 */
1908 spin_lock_irqsave(&sched_engine->lock, flags);
1909
1910 /* Flush the queued requests to the timeline list (for retiring). */
1911 while ((rb = rb_first_cached(&sched_engine->queue))) {
1912 struct i915_priolist *p = to_priolist(rb);
1913
1914 priolist_for_each_request_consume(rq, rn, p) {
1915 list_del_init(&rq->sched.link);
1916
1917 __i915_request_submit(rq);
1918
1919 i915_request_put(i915_request_mark_eio(rq));
1920 }
1921
1922 rb_erase_cached(&p->node, &sched_engine->queue);
1923 i915_priolist_free(p);
1924 }
1925
1926 /* Remaining _unready_ requests will be nop'ed when submitted */
1927
1928 sched_engine->queue_priority_hint = INT_MIN;
1929 sched_engine->queue = RB_ROOT_CACHED;
1930
1931 spin_unlock_irqrestore(&sched_engine->lock, flags);
1932 }
1933
intel_guc_submission_cancel_requests(struct intel_guc * guc)1934 void intel_guc_submission_cancel_requests(struct intel_guc *guc)
1935 {
1936 struct intel_context *ce;
1937 unsigned long index;
1938 unsigned long flags;
1939
1940 xa_lock_irqsave(&guc->context_lookup, flags);
1941 xa_for_each(&guc->context_lookup, index, ce) {
1942 if (!kref_get_unless_zero(&ce->ref))
1943 continue;
1944
1945 xa_unlock(&guc->context_lookup);
1946
1947 if (intel_context_is_pinned(ce) &&
1948 !intel_context_is_child(ce))
1949 guc_cancel_context_requests(ce);
1950
1951 intel_context_put(ce);
1952
1953 xa_lock(&guc->context_lookup);
1954 }
1955 xa_unlock_irqrestore(&guc->context_lookup, flags);
1956
1957 guc_cancel_sched_engine_requests(guc->sched_engine);
1958
1959 /* GuC is blown away, drop all references to contexts */
1960 xa_destroy(&guc->context_lookup);
1961 }
1962
intel_guc_submission_reset_finish(struct intel_guc * guc)1963 void intel_guc_submission_reset_finish(struct intel_guc *guc)
1964 {
1965 /* Reset called during driver load or during wedge? */
1966 if (unlikely(!guc_submission_initialized(guc) ||
1967 intel_gt_is_wedged(guc_to_gt(guc)))) {
1968 return;
1969 }
1970
1971 /*
1972 * Technically possible for either of these values to be non-zero here,
1973 * but very unlikely + harmless. Regardless let's add a warn so we can
1974 * see in CI if this happens frequently / a precursor to taking down the
1975 * machine.
1976 */
1977 GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h));
1978 atomic_set(&guc->outstanding_submission_g2h, 0);
1979
1980 intel_guc_global_policies_update(guc);
1981 enable_submission(guc);
1982 intel_gt_unpark_heartbeats(guc_to_gt(guc));
1983 }
1984
1985 static void destroyed_worker_func(struct work_struct *w);
1986 static void reset_fail_worker_func(struct work_struct *w);
1987
1988 /*
1989 * Set up the memory resources to be shared with the GuC (via the GGTT)
1990 * at firmware loading time.
1991 */
intel_guc_submission_init(struct intel_guc * guc)1992 int intel_guc_submission_init(struct intel_guc *guc)
1993 {
1994 struct intel_gt *gt = guc_to_gt(guc);
1995 int ret;
1996
1997 if (guc->submission_initialized)
1998 return 0;
1999
2000 if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 0, 0)) {
2001 ret = guc_lrc_desc_pool_create_v69(guc);
2002 if (ret)
2003 return ret;
2004 }
2005
2006 guc->submission_state.guc_ids_bitmap =
2007 bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
2008 if (!guc->submission_state.guc_ids_bitmap) {
2009 ret = -ENOMEM;
2010 goto destroy_pool;
2011 }
2012
2013 guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
2014 guc->timestamp.shift = gpm_timestamp_shift(gt);
2015 guc->submission_initialized = true;
2016
2017 return 0;
2018
2019 destroy_pool:
2020 guc_lrc_desc_pool_destroy_v69(guc);
2021
2022 return ret;
2023 }
2024
intel_guc_submission_fini(struct intel_guc * guc)2025 void intel_guc_submission_fini(struct intel_guc *guc)
2026 {
2027 if (!guc->submission_initialized)
2028 return;
2029
2030 guc_flush_destroyed_contexts(guc);
2031 guc_lrc_desc_pool_destroy_v69(guc);
2032 i915_sched_engine_put(guc->sched_engine);
2033 bitmap_free(guc->submission_state.guc_ids_bitmap);
2034 guc->submission_initialized = false;
2035 }
2036
queue_request(struct i915_sched_engine * sched_engine,struct i915_request * rq,int prio)2037 static inline void queue_request(struct i915_sched_engine *sched_engine,
2038 struct i915_request *rq,
2039 int prio)
2040 {
2041 GEM_BUG_ON(!list_empty(&rq->sched.link));
2042 list_add_tail(&rq->sched.link,
2043 i915_sched_lookup_priolist(sched_engine, prio));
2044 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2045 tasklet_hi_schedule(&sched_engine->tasklet);
2046 }
2047
guc_bypass_tasklet_submit(struct intel_guc * guc,struct i915_request * rq)2048 static int guc_bypass_tasklet_submit(struct intel_guc *guc,
2049 struct i915_request *rq)
2050 {
2051 int ret = 0;
2052
2053 __i915_request_submit(rq);
2054
2055 trace_i915_request_in(rq, 0);
2056
2057 if (is_multi_lrc_rq(rq)) {
2058 if (multi_lrc_submit(rq)) {
2059 ret = guc_wq_item_append(guc, rq);
2060 if (!ret)
2061 ret = guc_add_request(guc, rq);
2062 }
2063 } else {
2064 guc_set_lrc_tail(rq);
2065 ret = guc_add_request(guc, rq);
2066 }
2067
2068 if (unlikely(ret == -EPIPE))
2069 disable_submission(guc);
2070
2071 return ret;
2072 }
2073
need_tasklet(struct intel_guc * guc,struct i915_request * rq)2074 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
2075 {
2076 struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2077 struct intel_context *ce = request_to_scheduling_context(rq);
2078
2079 return submission_disabled(guc) || guc->stalled_request ||
2080 !i915_sched_engine_is_empty(sched_engine) ||
2081 !ctx_id_mapped(guc, ce->guc_id.id);
2082 }
2083
guc_submit_request(struct i915_request * rq)2084 static void guc_submit_request(struct i915_request *rq)
2085 {
2086 struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2087 struct intel_guc *guc = &rq->engine->gt->uc.guc;
2088 unsigned long flags;
2089
2090 /* Will be called from irq-context when using foreign fences. */
2091 spin_lock_irqsave(&sched_engine->lock, flags);
2092
2093 if (need_tasklet(guc, rq))
2094 queue_request(sched_engine, rq, rq_prio(rq));
2095 else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
2096 tasklet_hi_schedule(&sched_engine->tasklet);
2097
2098 spin_unlock_irqrestore(&sched_engine->lock, flags);
2099 }
2100
new_guc_id(struct intel_guc * guc,struct intel_context * ce)2101 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
2102 {
2103 int ret;
2104
2105 GEM_BUG_ON(intel_context_is_child(ce));
2106
2107 if (intel_context_is_parent(ce))
2108 ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
2109 NUMBER_MULTI_LRC_GUC_ID(guc),
2110 order_base_2(ce->parallel.number_children
2111 + 1));
2112 else
2113 ret = ida_simple_get(&guc->submission_state.guc_ids,
2114 NUMBER_MULTI_LRC_GUC_ID(guc),
2115 guc->submission_state.num_guc_ids,
2116 GFP_KERNEL | __GFP_RETRY_MAYFAIL |
2117 __GFP_NOWARN);
2118 if (unlikely(ret < 0))
2119 return ret;
2120
2121 if (!intel_context_is_parent(ce))
2122 ++guc->submission_state.guc_ids_in_use;
2123
2124 ce->guc_id.id = ret;
2125 return 0;
2126 }
2127
__release_guc_id(struct intel_guc * guc,struct intel_context * ce)2128 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2129 {
2130 GEM_BUG_ON(intel_context_is_child(ce));
2131
2132 if (!context_guc_id_invalid(ce)) {
2133 if (intel_context_is_parent(ce)) {
2134 bitmap_release_region(guc->submission_state.guc_ids_bitmap,
2135 ce->guc_id.id,
2136 order_base_2(ce->parallel.number_children
2137 + 1));
2138 } else {
2139 --guc->submission_state.guc_ids_in_use;
2140 ida_simple_remove(&guc->submission_state.guc_ids,
2141 ce->guc_id.id);
2142 }
2143 clr_ctx_id_mapping(guc, ce->guc_id.id);
2144 set_context_guc_id_invalid(ce);
2145 }
2146 if (!list_empty(&ce->guc_id.link))
2147 list_del_init(&ce->guc_id.link);
2148 }
2149
release_guc_id(struct intel_guc * guc,struct intel_context * ce)2150 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2151 {
2152 unsigned long flags;
2153
2154 spin_lock_irqsave(&guc->submission_state.lock, flags);
2155 __release_guc_id(guc, ce);
2156 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2157 }
2158
steal_guc_id(struct intel_guc * guc,struct intel_context * ce)2159 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
2160 {
2161 struct intel_context *cn;
2162
2163 lockdep_assert_held(&guc->submission_state.lock);
2164 GEM_BUG_ON(intel_context_is_child(ce));
2165 GEM_BUG_ON(intel_context_is_parent(ce));
2166
2167 if (!list_empty(&guc->submission_state.guc_id_list)) {
2168 cn = list_first_entry(&guc->submission_state.guc_id_list,
2169 struct intel_context,
2170 guc_id.link);
2171
2172 GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
2173 GEM_BUG_ON(context_guc_id_invalid(cn));
2174 GEM_BUG_ON(intel_context_is_child(cn));
2175 GEM_BUG_ON(intel_context_is_parent(cn));
2176
2177 list_del_init(&cn->guc_id.link);
2178 ce->guc_id.id = cn->guc_id.id;
2179
2180 spin_lock(&cn->guc_state.lock);
2181 clr_context_registered(cn);
2182 spin_unlock(&cn->guc_state.lock);
2183
2184 set_context_guc_id_invalid(cn);
2185
2186 #ifdef CONFIG_DRM_I915_SELFTEST
2187 guc->number_guc_id_stolen++;
2188 #endif
2189
2190 return 0;
2191 } else {
2192 return -EAGAIN;
2193 }
2194 }
2195
assign_guc_id(struct intel_guc * guc,struct intel_context * ce)2196 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
2197 {
2198 int ret;
2199
2200 lockdep_assert_held(&guc->submission_state.lock);
2201 GEM_BUG_ON(intel_context_is_child(ce));
2202
2203 ret = new_guc_id(guc, ce);
2204 if (unlikely(ret < 0)) {
2205 if (intel_context_is_parent(ce))
2206 return -ENOSPC;
2207
2208 ret = steal_guc_id(guc, ce);
2209 if (ret < 0)
2210 return ret;
2211 }
2212
2213 if (intel_context_is_parent(ce)) {
2214 struct intel_context *child;
2215 int i = 1;
2216
2217 for_each_child(ce, child)
2218 child->guc_id.id = ce->guc_id.id + i++;
2219 }
2220
2221 return 0;
2222 }
2223
2224 #define PIN_GUC_ID_TRIES 4
pin_guc_id(struct intel_guc * guc,struct intel_context * ce)2225 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2226 {
2227 int ret = 0;
2228 unsigned long flags, tries = PIN_GUC_ID_TRIES;
2229
2230 GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2231
2232 try_again:
2233 spin_lock_irqsave(&guc->submission_state.lock, flags);
2234
2235 might_lock(&ce->guc_state.lock);
2236
2237 if (context_guc_id_invalid(ce)) {
2238 ret = assign_guc_id(guc, ce);
2239 if (ret)
2240 goto out_unlock;
2241 ret = 1; /* Indidcates newly assigned guc_id */
2242 }
2243 if (!list_empty(&ce->guc_id.link))
2244 list_del_init(&ce->guc_id.link);
2245 atomic_inc(&ce->guc_id.ref);
2246
2247 out_unlock:
2248 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2249
2250 /*
2251 * -EAGAIN indicates no guc_id are available, let's retire any
2252 * outstanding requests to see if that frees up a guc_id. If the first
2253 * retire didn't help, insert a sleep with the timeslice duration before
2254 * attempting to retire more requests. Double the sleep period each
2255 * subsequent pass before finally giving up. The sleep period has max of
2256 * 100ms and minimum of 1ms.
2257 */
2258 if (ret == -EAGAIN && --tries) {
2259 if (PIN_GUC_ID_TRIES - tries > 1) {
2260 unsigned int timeslice_shifted =
2261 ce->engine->props.timeslice_duration_ms <<
2262 (PIN_GUC_ID_TRIES - tries - 2);
2263 unsigned int max = min_t(unsigned int, 100,
2264 timeslice_shifted);
2265
2266 msleep(max_t(unsigned int, max, 1));
2267 }
2268 intel_gt_retire_requests(guc_to_gt(guc));
2269 goto try_again;
2270 }
2271
2272 return ret;
2273 }
2274
unpin_guc_id(struct intel_guc * guc,struct intel_context * ce)2275 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2276 {
2277 unsigned long flags;
2278
2279 GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2280 GEM_BUG_ON(intel_context_is_child(ce));
2281
2282 if (unlikely(context_guc_id_invalid(ce) ||
2283 intel_context_is_parent(ce)))
2284 return;
2285
2286 spin_lock_irqsave(&guc->submission_state.lock, flags);
2287 if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
2288 !atomic_read(&ce->guc_id.ref))
2289 list_add_tail(&ce->guc_id.link,
2290 &guc->submission_state.guc_id_list);
2291 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2292 }
2293
__guc_action_register_multi_lrc_v69(struct intel_guc * guc,struct intel_context * ce,u32 guc_id,u32 offset,bool loop)2294 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc,
2295 struct intel_context *ce,
2296 u32 guc_id,
2297 u32 offset,
2298 bool loop)
2299 {
2300 struct intel_context *child;
2301 u32 action[4 + MAX_ENGINE_INSTANCE];
2302 int len = 0;
2303
2304 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2305
2306 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2307 action[len++] = guc_id;
2308 action[len++] = ce->parallel.number_children + 1;
2309 action[len++] = offset;
2310 for_each_child(ce, child) {
2311 offset += sizeof(struct guc_lrc_desc_v69);
2312 action[len++] = offset;
2313 }
2314
2315 return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2316 }
2317
__guc_action_register_multi_lrc_v70(struct intel_guc * guc,struct intel_context * ce,struct guc_ctxt_registration_info * info,bool loop)2318 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc,
2319 struct intel_context *ce,
2320 struct guc_ctxt_registration_info *info,
2321 bool loop)
2322 {
2323 struct intel_context *child;
2324 u32 action[13 + (MAX_ENGINE_INSTANCE * 2)];
2325 int len = 0;
2326 u32 next_id;
2327
2328 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2329
2330 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2331 action[len++] = info->flags;
2332 action[len++] = info->context_idx;
2333 action[len++] = info->engine_class;
2334 action[len++] = info->engine_submit_mask;
2335 action[len++] = info->wq_desc_lo;
2336 action[len++] = info->wq_desc_hi;
2337 action[len++] = info->wq_base_lo;
2338 action[len++] = info->wq_base_hi;
2339 action[len++] = info->wq_size;
2340 action[len++] = ce->parallel.number_children + 1;
2341 action[len++] = info->hwlrca_lo;
2342 action[len++] = info->hwlrca_hi;
2343
2344 next_id = info->context_idx + 1;
2345 for_each_child(ce, child) {
2346 GEM_BUG_ON(next_id++ != child->guc_id.id);
2347
2348 /*
2349 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2350 * only supports 32 bit currently.
2351 */
2352 action[len++] = lower_32_bits(child->lrc.lrca);
2353 action[len++] = upper_32_bits(child->lrc.lrca);
2354 }
2355
2356 GEM_BUG_ON(len > ARRAY_SIZE(action));
2357
2358 return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2359 }
2360
__guc_action_register_context_v69(struct intel_guc * guc,u32 guc_id,u32 offset,bool loop)2361 static int __guc_action_register_context_v69(struct intel_guc *guc,
2362 u32 guc_id,
2363 u32 offset,
2364 bool loop)
2365 {
2366 u32 action[] = {
2367 INTEL_GUC_ACTION_REGISTER_CONTEXT,
2368 guc_id,
2369 offset,
2370 };
2371
2372 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2373 0, loop);
2374 }
2375
__guc_action_register_context_v70(struct intel_guc * guc,struct guc_ctxt_registration_info * info,bool loop)2376 static int __guc_action_register_context_v70(struct intel_guc *guc,
2377 struct guc_ctxt_registration_info *info,
2378 bool loop)
2379 {
2380 u32 action[] = {
2381 INTEL_GUC_ACTION_REGISTER_CONTEXT,
2382 info->flags,
2383 info->context_idx,
2384 info->engine_class,
2385 info->engine_submit_mask,
2386 info->wq_desc_lo,
2387 info->wq_desc_hi,
2388 info->wq_base_lo,
2389 info->wq_base_hi,
2390 info->wq_size,
2391 info->hwlrca_lo,
2392 info->hwlrca_hi,
2393 };
2394
2395 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2396 0, loop);
2397 }
2398
2399 static void prepare_context_registration_info_v69(struct intel_context *ce);
2400 static void prepare_context_registration_info_v70(struct intel_context *ce,
2401 struct guc_ctxt_registration_info *info);
2402
2403 static int
register_context_v69(struct intel_guc * guc,struct intel_context * ce,bool loop)2404 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop)
2405 {
2406 u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) +
2407 ce->guc_id.id * sizeof(struct guc_lrc_desc_v69);
2408
2409 prepare_context_registration_info_v69(ce);
2410
2411 if (intel_context_is_parent(ce))
2412 return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id,
2413 offset, loop);
2414 else
2415 return __guc_action_register_context_v69(guc, ce->guc_id.id,
2416 offset, loop);
2417 }
2418
2419 static int
register_context_v70(struct intel_guc * guc,struct intel_context * ce,bool loop)2420 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop)
2421 {
2422 struct guc_ctxt_registration_info info;
2423
2424 prepare_context_registration_info_v70(ce, &info);
2425
2426 if (intel_context_is_parent(ce))
2427 return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop);
2428 else
2429 return __guc_action_register_context_v70(guc, &info, loop);
2430 }
2431
register_context(struct intel_context * ce,bool loop)2432 static int register_context(struct intel_context *ce, bool loop)
2433 {
2434 struct intel_guc *guc = ce_to_guc(ce);
2435 int ret;
2436
2437 GEM_BUG_ON(intel_context_is_child(ce));
2438 trace_intel_context_register(ce);
2439
2440 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2441 ret = register_context_v70(guc, ce, loop);
2442 else
2443 ret = register_context_v69(guc, ce, loop);
2444
2445 if (likely(!ret)) {
2446 unsigned long flags;
2447
2448 spin_lock_irqsave(&ce->guc_state.lock, flags);
2449 set_context_registered(ce);
2450 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2451
2452 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2453 guc_context_policy_init_v70(ce, loop);
2454 }
2455
2456 return ret;
2457 }
2458
__guc_action_deregister_context(struct intel_guc * guc,u32 guc_id)2459 static int __guc_action_deregister_context(struct intel_guc *guc,
2460 u32 guc_id)
2461 {
2462 u32 action[] = {
2463 INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
2464 guc_id,
2465 };
2466
2467 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2468 G2H_LEN_DW_DEREGISTER_CONTEXT,
2469 true);
2470 }
2471
deregister_context(struct intel_context * ce,u32 guc_id)2472 static int deregister_context(struct intel_context *ce, u32 guc_id)
2473 {
2474 struct intel_guc *guc = ce_to_guc(ce);
2475
2476 GEM_BUG_ON(intel_context_is_child(ce));
2477 trace_intel_context_deregister(ce);
2478
2479 return __guc_action_deregister_context(guc, guc_id);
2480 }
2481
clear_children_join_go_memory(struct intel_context * ce)2482 static inline void clear_children_join_go_memory(struct intel_context *ce)
2483 {
2484 struct parent_scratch *ps = __get_parent_scratch(ce);
2485 int i;
2486
2487 ps->go.semaphore = 0;
2488 for (i = 0; i < ce->parallel.number_children + 1; ++i)
2489 ps->join[i].semaphore = 0;
2490 }
2491
get_children_go_value(struct intel_context * ce)2492 static inline u32 get_children_go_value(struct intel_context *ce)
2493 {
2494 return __get_parent_scratch(ce)->go.semaphore;
2495 }
2496
get_children_join_value(struct intel_context * ce,u8 child_index)2497 static inline u32 get_children_join_value(struct intel_context *ce,
2498 u8 child_index)
2499 {
2500 return __get_parent_scratch(ce)->join[child_index].semaphore;
2501 }
2502
2503 struct context_policy {
2504 u32 count;
2505 struct guc_update_context_policy h2g;
2506 };
2507
__guc_context_policy_action_size(struct context_policy * policy)2508 static u32 __guc_context_policy_action_size(struct context_policy *policy)
2509 {
2510 size_t bytes = sizeof(policy->h2g.header) +
2511 (sizeof(policy->h2g.klv[0]) * policy->count);
2512
2513 return bytes / sizeof(u32);
2514 }
2515
__guc_context_policy_start_klv(struct context_policy * policy,u16 guc_id)2516 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id)
2517 {
2518 policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
2519 policy->h2g.header.ctx_id = guc_id;
2520 policy->count = 0;
2521 }
2522
2523 #define MAKE_CONTEXT_POLICY_ADD(func, id) \
2524 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \
2525 { \
2526 GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
2527 policy->h2g.klv[policy->count].kl = \
2528 FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
2529 FIELD_PREP(GUC_KLV_0_LEN, 1); \
2530 policy->h2g.klv[policy->count].value = data; \
2531 policy->count++; \
2532 }
2533
MAKE_CONTEXT_POLICY_ADD(execution_quantum,EXECUTION_QUANTUM)2534 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
2535 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
2536 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY)
2537 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY)
2538
2539 #undef MAKE_CONTEXT_POLICY_ADD
2540
2541 static int __guc_context_set_context_policies(struct intel_guc *guc,
2542 struct context_policy *policy,
2543 bool loop)
2544 {
2545 return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g,
2546 __guc_context_policy_action_size(policy),
2547 0, loop);
2548 }
2549
guc_context_policy_init_v70(struct intel_context * ce,bool loop)2550 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop)
2551 {
2552 struct intel_engine_cs *engine = ce->engine;
2553 struct intel_guc *guc = &engine->gt->uc.guc;
2554 struct context_policy policy;
2555 u32 execution_quantum;
2556 u32 preemption_timeout;
2557 unsigned long flags;
2558 int ret;
2559
2560 /* NB: For both of these, zero means disabled. */
2561 GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2562 execution_quantum));
2563 GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2564 preemption_timeout));
2565 execution_quantum = engine->props.timeslice_duration_ms * 1000;
2566 preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2567
2568 __guc_context_policy_start_klv(&policy, ce->guc_id.id);
2569
2570 __guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2571 __guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2572 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2573
2574 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2575 __guc_context_policy_add_preempt_to_idle(&policy, 1);
2576
2577 ret = __guc_context_set_context_policies(guc, &policy, loop);
2578
2579 spin_lock_irqsave(&ce->guc_state.lock, flags);
2580 if (ret != 0)
2581 set_context_policy_required(ce);
2582 else
2583 clr_context_policy_required(ce);
2584 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2585
2586 return ret;
2587 }
2588
guc_context_policy_init_v69(struct intel_engine_cs * engine,struct guc_lrc_desc_v69 * desc)2589 static void guc_context_policy_init_v69(struct intel_engine_cs *engine,
2590 struct guc_lrc_desc_v69 *desc)
2591 {
2592 desc->policy_flags = 0;
2593
2594 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2595 desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69;
2596
2597 /* NB: For both of these, zero means disabled. */
2598 GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2599 desc->execution_quantum));
2600 GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2601 desc->preemption_timeout));
2602 desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
2603 desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2604 }
2605
map_guc_prio_to_lrc_desc_prio(u8 prio)2606 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio)
2607 {
2608 /*
2609 * this matches the mapping we do in map_i915_prio_to_guc_prio()
2610 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL)
2611 */
2612 switch (prio) {
2613 default:
2614 MISSING_CASE(prio);
2615 fallthrough;
2616 case GUC_CLIENT_PRIORITY_KMD_NORMAL:
2617 return GEN12_CTX_PRIORITY_NORMAL;
2618 case GUC_CLIENT_PRIORITY_NORMAL:
2619 return GEN12_CTX_PRIORITY_LOW;
2620 case GUC_CLIENT_PRIORITY_HIGH:
2621 case GUC_CLIENT_PRIORITY_KMD_HIGH:
2622 return GEN12_CTX_PRIORITY_HIGH;
2623 }
2624 }
2625
prepare_context_registration_info_v69(struct intel_context * ce)2626 static void prepare_context_registration_info_v69(struct intel_context *ce)
2627 {
2628 struct intel_engine_cs *engine = ce->engine;
2629 struct intel_guc *guc = &engine->gt->uc.guc;
2630 u32 ctx_id = ce->guc_id.id;
2631 struct guc_lrc_desc_v69 *desc;
2632 struct intel_context *child;
2633
2634 GEM_BUG_ON(!engine->mask);
2635
2636 /*
2637 * Ensure LRC + CT vmas are is same region as write barrier is done
2638 * based on CT vma region.
2639 */
2640 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2641 i915_gem_object_is_lmem(ce->ring->vma->obj));
2642
2643 desc = __get_lrc_desc_v69(guc, ctx_id);
2644 GEM_BUG_ON(!desc);
2645 desc->engine_class = engine_class_to_guc_class(engine->class);
2646 desc->engine_submit_mask = engine->logical_mask;
2647 desc->hw_context_desc = ce->lrc.lrca;
2648 desc->priority = ce->guc_state.prio;
2649 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2650 guc_context_policy_init_v69(engine, desc);
2651
2652 /*
2653 * If context is a parent, we need to register a process descriptor
2654 * describing a work queue and register all child contexts.
2655 */
2656 if (intel_context_is_parent(ce)) {
2657 struct guc_process_desc_v69 *pdesc;
2658
2659 ce->parallel.guc.wqi_tail = 0;
2660 ce->parallel.guc.wqi_head = 0;
2661
2662 desc->process_desc = i915_ggtt_offset(ce->state) +
2663 __get_parent_scratch_offset(ce);
2664 desc->wq_addr = i915_ggtt_offset(ce->state) +
2665 __get_wq_offset(ce);
2666 desc->wq_size = WQ_SIZE;
2667
2668 pdesc = __get_process_desc_v69(ce);
2669 memset(pdesc, 0, sizeof(*(pdesc)));
2670 pdesc->stage_id = ce->guc_id.id;
2671 pdesc->wq_base_addr = desc->wq_addr;
2672 pdesc->wq_size_bytes = desc->wq_size;
2673 pdesc->wq_status = WQ_STATUS_ACTIVE;
2674
2675 ce->parallel.guc.wq_head = &pdesc->head;
2676 ce->parallel.guc.wq_tail = &pdesc->tail;
2677 ce->parallel.guc.wq_status = &pdesc->wq_status;
2678
2679 for_each_child(ce, child) {
2680 desc = __get_lrc_desc_v69(guc, child->guc_id.id);
2681
2682 desc->engine_class =
2683 engine_class_to_guc_class(engine->class);
2684 desc->hw_context_desc = child->lrc.lrca;
2685 desc->priority = ce->guc_state.prio;
2686 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2687 guc_context_policy_init_v69(engine, desc);
2688 }
2689
2690 clear_children_join_go_memory(ce);
2691 }
2692 }
2693
prepare_context_registration_info_v70(struct intel_context * ce,struct guc_ctxt_registration_info * info)2694 static void prepare_context_registration_info_v70(struct intel_context *ce,
2695 struct guc_ctxt_registration_info *info)
2696 {
2697 struct intel_engine_cs *engine = ce->engine;
2698 struct intel_guc *guc = &engine->gt->uc.guc;
2699 u32 ctx_id = ce->guc_id.id;
2700
2701 GEM_BUG_ON(!engine->mask);
2702
2703 /*
2704 * Ensure LRC + CT vmas are is same region as write barrier is done
2705 * based on CT vma region.
2706 */
2707 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2708 i915_gem_object_is_lmem(ce->ring->vma->obj));
2709
2710 memset(info, 0, sizeof(*info));
2711 info->context_idx = ctx_id;
2712 info->engine_class = engine_class_to_guc_class(engine->class);
2713 info->engine_submit_mask = engine->logical_mask;
2714 /*
2715 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2716 * only supports 32 bit currently.
2717 */
2718 info->hwlrca_lo = lower_32_bits(ce->lrc.lrca);
2719 info->hwlrca_hi = upper_32_bits(ce->lrc.lrca);
2720 if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
2721 info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio);
2722 info->flags = CONTEXT_REGISTRATION_FLAG_KMD;
2723
2724 /*
2725 * If context is a parent, we need to register a process descriptor
2726 * describing a work queue and register all child contexts.
2727 */
2728 if (intel_context_is_parent(ce)) {
2729 struct guc_sched_wq_desc *wq_desc;
2730 u64 wq_desc_offset, wq_base_offset;
2731
2732 ce->parallel.guc.wqi_tail = 0;
2733 ce->parallel.guc.wqi_head = 0;
2734
2735 wq_desc_offset = (u64)i915_ggtt_offset(ce->state) +
2736 __get_parent_scratch_offset(ce);
2737 wq_base_offset = (u64)i915_ggtt_offset(ce->state) +
2738 __get_wq_offset(ce);
2739 info->wq_desc_lo = lower_32_bits(wq_desc_offset);
2740 info->wq_desc_hi = upper_32_bits(wq_desc_offset);
2741 info->wq_base_lo = lower_32_bits(wq_base_offset);
2742 info->wq_base_hi = upper_32_bits(wq_base_offset);
2743 info->wq_size = WQ_SIZE;
2744
2745 wq_desc = __get_wq_desc_v70(ce);
2746 memset(wq_desc, 0, sizeof(*wq_desc));
2747 wq_desc->wq_status = WQ_STATUS_ACTIVE;
2748
2749 ce->parallel.guc.wq_head = &wq_desc->head;
2750 ce->parallel.guc.wq_tail = &wq_desc->tail;
2751 ce->parallel.guc.wq_status = &wq_desc->wq_status;
2752
2753 clear_children_join_go_memory(ce);
2754 }
2755 }
2756
try_context_registration(struct intel_context * ce,bool loop)2757 static int try_context_registration(struct intel_context *ce, bool loop)
2758 {
2759 struct intel_engine_cs *engine = ce->engine;
2760 struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
2761 struct intel_guc *guc = &engine->gt->uc.guc;
2762 intel_wakeref_t wakeref;
2763 u32 ctx_id = ce->guc_id.id;
2764 bool context_registered;
2765 int ret = 0;
2766
2767 GEM_BUG_ON(!sched_state_is_init(ce));
2768
2769 context_registered = ctx_id_mapped(guc, ctx_id);
2770
2771 clr_ctx_id_mapping(guc, ctx_id);
2772 set_ctx_id_mapping(guc, ctx_id, ce);
2773
2774 /*
2775 * The context_lookup xarray is used to determine if the hardware
2776 * context is currently registered. There are two cases in which it
2777 * could be registered either the guc_id has been stolen from another
2778 * context or the lrc descriptor address of this context has changed. In
2779 * either case the context needs to be deregistered with the GuC before
2780 * registering this context.
2781 */
2782 if (context_registered) {
2783 bool disabled;
2784 unsigned long flags;
2785
2786 trace_intel_context_steal_guc_id(ce);
2787 GEM_BUG_ON(!loop);
2788
2789 /* Seal race with Reset */
2790 spin_lock_irqsave(&ce->guc_state.lock, flags);
2791 disabled = submission_disabled(guc);
2792 if (likely(!disabled)) {
2793 set_context_wait_for_deregister_to_register(ce);
2794 intel_context_get(ce);
2795 }
2796 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2797 if (unlikely(disabled)) {
2798 clr_ctx_id_mapping(guc, ctx_id);
2799 return 0; /* Will get registered later */
2800 }
2801
2802 /*
2803 * If stealing the guc_id, this ce has the same guc_id as the
2804 * context whose guc_id was stolen.
2805 */
2806 with_intel_runtime_pm(runtime_pm, wakeref)
2807 ret = deregister_context(ce, ce->guc_id.id);
2808 if (unlikely(ret == -ENODEV))
2809 ret = 0; /* Will get registered later */
2810 } else {
2811 with_intel_runtime_pm(runtime_pm, wakeref)
2812 ret = register_context(ce, loop);
2813 if (unlikely(ret == -EBUSY)) {
2814 clr_ctx_id_mapping(guc, ctx_id);
2815 } else if (unlikely(ret == -ENODEV)) {
2816 clr_ctx_id_mapping(guc, ctx_id);
2817 ret = 0; /* Will get registered later */
2818 }
2819 }
2820
2821 return ret;
2822 }
2823
__guc_context_pre_pin(struct intel_context * ce,struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,void ** vaddr)2824 static int __guc_context_pre_pin(struct intel_context *ce,
2825 struct intel_engine_cs *engine,
2826 struct i915_gem_ww_ctx *ww,
2827 void **vaddr)
2828 {
2829 return lrc_pre_pin(ce, engine, ww, vaddr);
2830 }
2831
__guc_context_pin(struct intel_context * ce,struct intel_engine_cs * engine,void * vaddr)2832 static int __guc_context_pin(struct intel_context *ce,
2833 struct intel_engine_cs *engine,
2834 void *vaddr)
2835 {
2836 if (i915_ggtt_offset(ce->state) !=
2837 (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
2838 set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
2839
2840 /*
2841 * GuC context gets pinned in guc_request_alloc. See that function for
2842 * explaination of why.
2843 */
2844
2845 return lrc_pin(ce, engine, vaddr);
2846 }
2847
guc_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)2848 static int guc_context_pre_pin(struct intel_context *ce,
2849 struct i915_gem_ww_ctx *ww,
2850 void **vaddr)
2851 {
2852 return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
2853 }
2854
guc_context_pin(struct intel_context * ce,void * vaddr)2855 static int guc_context_pin(struct intel_context *ce, void *vaddr)
2856 {
2857 int ret = __guc_context_pin(ce, ce->engine, vaddr);
2858
2859 if (likely(!ret && !intel_context_is_barrier(ce)))
2860 intel_engine_pm_get(ce->engine);
2861
2862 return ret;
2863 }
2864
guc_context_unpin(struct intel_context * ce)2865 static void guc_context_unpin(struct intel_context *ce)
2866 {
2867 struct intel_guc *guc = ce_to_guc(ce);
2868
2869 __guc_context_update_stats(ce);
2870 unpin_guc_id(guc, ce);
2871 lrc_unpin(ce);
2872
2873 if (likely(!intel_context_is_barrier(ce)))
2874 intel_engine_pm_put_async(ce->engine);
2875 }
2876
guc_context_post_unpin(struct intel_context * ce)2877 static void guc_context_post_unpin(struct intel_context *ce)
2878 {
2879 lrc_post_unpin(ce);
2880 }
2881
__guc_context_sched_enable(struct intel_guc * guc,struct intel_context * ce)2882 static void __guc_context_sched_enable(struct intel_guc *guc,
2883 struct intel_context *ce)
2884 {
2885 u32 action[] = {
2886 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2887 ce->guc_id.id,
2888 GUC_CONTEXT_ENABLE
2889 };
2890
2891 trace_intel_context_sched_enable(ce);
2892
2893 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2894 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2895 }
2896
__guc_context_sched_disable(struct intel_guc * guc,struct intel_context * ce,u16 guc_id)2897 static void __guc_context_sched_disable(struct intel_guc *guc,
2898 struct intel_context *ce,
2899 u16 guc_id)
2900 {
2901 u32 action[] = {
2902 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2903 guc_id, /* ce->guc_id.id not stable */
2904 GUC_CONTEXT_DISABLE
2905 };
2906
2907 GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID);
2908
2909 GEM_BUG_ON(intel_context_is_child(ce));
2910 trace_intel_context_sched_disable(ce);
2911
2912 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2913 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2914 }
2915
guc_blocked_fence_complete(struct intel_context * ce)2916 static void guc_blocked_fence_complete(struct intel_context *ce)
2917 {
2918 lockdep_assert_held(&ce->guc_state.lock);
2919
2920 if (!i915_sw_fence_done(&ce->guc_state.blocked))
2921 i915_sw_fence_complete(&ce->guc_state.blocked);
2922 }
2923
guc_blocked_fence_reinit(struct intel_context * ce)2924 static void guc_blocked_fence_reinit(struct intel_context *ce)
2925 {
2926 lockdep_assert_held(&ce->guc_state.lock);
2927 GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
2928
2929 /*
2930 * This fence is always complete unless a pending schedule disable is
2931 * outstanding. We arm the fence here and complete it when we receive
2932 * the pending schedule disable complete message.
2933 */
2934 i915_sw_fence_fini(&ce->guc_state.blocked);
2935 i915_sw_fence_reinit(&ce->guc_state.blocked);
2936 i915_sw_fence_await(&ce->guc_state.blocked);
2937 i915_sw_fence_commit(&ce->guc_state.blocked);
2938 }
2939
prep_context_pending_disable(struct intel_context * ce)2940 static u16 prep_context_pending_disable(struct intel_context *ce)
2941 {
2942 lockdep_assert_held(&ce->guc_state.lock);
2943
2944 set_context_pending_disable(ce);
2945 clr_context_enabled(ce);
2946 guc_blocked_fence_reinit(ce);
2947 intel_context_get(ce);
2948
2949 return ce->guc_id.id;
2950 }
2951
guc_context_block(struct intel_context * ce)2952 static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
2953 {
2954 struct intel_guc *guc = ce_to_guc(ce);
2955 unsigned long flags;
2956 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
2957 intel_wakeref_t wakeref;
2958 u16 guc_id;
2959 bool enabled;
2960
2961 GEM_BUG_ON(intel_context_is_child(ce));
2962
2963 spin_lock_irqsave(&ce->guc_state.lock, flags);
2964
2965 incr_context_blocked(ce);
2966
2967 enabled = context_enabled(ce);
2968 if (unlikely(!enabled || submission_disabled(guc))) {
2969 if (enabled)
2970 clr_context_enabled(ce);
2971 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2972 return &ce->guc_state.blocked;
2973 }
2974
2975 /*
2976 * We add +2 here as the schedule disable complete CTB handler calls
2977 * intel_context_sched_disable_unpin (-2 to pin_count).
2978 */
2979 atomic_add(2, &ce->pin_count);
2980
2981 guc_id = prep_context_pending_disable(ce);
2982
2983 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2984
2985 with_intel_runtime_pm(runtime_pm, wakeref)
2986 __guc_context_sched_disable(guc, ce, guc_id);
2987
2988 return &ce->guc_state.blocked;
2989 }
2990
2991 #define SCHED_STATE_MULTI_BLOCKED_MASK \
2992 (SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
2993 #define SCHED_STATE_NO_UNBLOCK \
2994 (SCHED_STATE_MULTI_BLOCKED_MASK | \
2995 SCHED_STATE_PENDING_DISABLE | \
2996 SCHED_STATE_BANNED)
2997
context_cant_unblock(struct intel_context * ce)2998 static bool context_cant_unblock(struct intel_context *ce)
2999 {
3000 lockdep_assert_held(&ce->guc_state.lock);
3001
3002 return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
3003 context_guc_id_invalid(ce) ||
3004 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) ||
3005 !intel_context_is_pinned(ce);
3006 }
3007
guc_context_unblock(struct intel_context * ce)3008 static void guc_context_unblock(struct intel_context *ce)
3009 {
3010 struct intel_guc *guc = ce_to_guc(ce);
3011 unsigned long flags;
3012 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3013 intel_wakeref_t wakeref;
3014 bool enable;
3015
3016 GEM_BUG_ON(context_enabled(ce));
3017 GEM_BUG_ON(intel_context_is_child(ce));
3018
3019 spin_lock_irqsave(&ce->guc_state.lock, flags);
3020
3021 if (unlikely(submission_disabled(guc) ||
3022 context_cant_unblock(ce))) {
3023 enable = false;
3024 } else {
3025 enable = true;
3026 set_context_pending_enable(ce);
3027 set_context_enabled(ce);
3028 intel_context_get(ce);
3029 }
3030
3031 decr_context_blocked(ce);
3032
3033 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3034
3035 if (enable) {
3036 with_intel_runtime_pm(runtime_pm, wakeref)
3037 __guc_context_sched_enable(guc, ce);
3038 }
3039 }
3040
guc_context_cancel_request(struct intel_context * ce,struct i915_request * rq)3041 static void guc_context_cancel_request(struct intel_context *ce,
3042 struct i915_request *rq)
3043 {
3044 struct intel_context *block_context =
3045 request_to_scheduling_context(rq);
3046
3047 if (i915_sw_fence_signaled(&rq->submit)) {
3048 struct i915_sw_fence *fence;
3049
3050 intel_context_get(ce);
3051 fence = guc_context_block(block_context);
3052 i915_sw_fence_wait(fence);
3053 if (!i915_request_completed(rq)) {
3054 __i915_request_skip(rq);
3055 guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
3056 true);
3057 }
3058
3059 guc_context_unblock(block_context);
3060 intel_context_put(ce);
3061 }
3062 }
3063
__guc_context_set_preemption_timeout(struct intel_guc * guc,u16 guc_id,u32 preemption_timeout)3064 static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
3065 u16 guc_id,
3066 u32 preemption_timeout)
3067 {
3068 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3069 struct context_policy policy;
3070
3071 __guc_context_policy_start_klv(&policy, guc_id);
3072 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
3073 __guc_context_set_context_policies(guc, &policy, true);
3074 } else {
3075 u32 action[] = {
3076 INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT,
3077 guc_id,
3078 preemption_timeout
3079 };
3080
3081 intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3082 }
3083 }
3084
3085 static void
guc_context_revoke(struct intel_context * ce,struct i915_request * rq,unsigned int preempt_timeout_ms)3086 guc_context_revoke(struct intel_context *ce, struct i915_request *rq,
3087 unsigned int preempt_timeout_ms)
3088 {
3089 struct intel_guc *guc = ce_to_guc(ce);
3090 struct intel_runtime_pm *runtime_pm =
3091 &ce->engine->gt->i915->runtime_pm;
3092 intel_wakeref_t wakeref;
3093 unsigned long flags;
3094
3095 GEM_BUG_ON(intel_context_is_child(ce));
3096
3097 guc_flush_submissions(guc);
3098
3099 spin_lock_irqsave(&ce->guc_state.lock, flags);
3100 set_context_banned(ce);
3101
3102 if (submission_disabled(guc) ||
3103 (!context_enabled(ce) && !context_pending_disable(ce))) {
3104 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3105
3106 guc_cancel_context_requests(ce);
3107 intel_engine_signal_breadcrumbs(ce->engine);
3108 } else if (!context_pending_disable(ce)) {
3109 u16 guc_id;
3110
3111 /*
3112 * We add +2 here as the schedule disable complete CTB handler
3113 * calls intel_context_sched_disable_unpin (-2 to pin_count).
3114 */
3115 atomic_add(2, &ce->pin_count);
3116
3117 guc_id = prep_context_pending_disable(ce);
3118 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3119
3120 /*
3121 * In addition to disabling scheduling, set the preemption
3122 * timeout to the minimum value (1 us) so the banned context
3123 * gets kicked off the HW ASAP.
3124 */
3125 with_intel_runtime_pm(runtime_pm, wakeref) {
3126 __guc_context_set_preemption_timeout(guc, guc_id,
3127 preempt_timeout_ms);
3128 __guc_context_sched_disable(guc, ce, guc_id);
3129 }
3130 } else {
3131 if (!context_guc_id_invalid(ce))
3132 with_intel_runtime_pm(runtime_pm, wakeref)
3133 __guc_context_set_preemption_timeout(guc,
3134 ce->guc_id.id,
3135 preempt_timeout_ms);
3136 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3137 }
3138 }
3139
do_sched_disable(struct intel_guc * guc,struct intel_context * ce,unsigned long flags)3140 static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce,
3141 unsigned long flags)
3142 __releases(ce->guc_state.lock)
3143 {
3144 struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
3145 intel_wakeref_t wakeref;
3146 u16 guc_id;
3147
3148 lockdep_assert_held(&ce->guc_state.lock);
3149 guc_id = prep_context_pending_disable(ce);
3150
3151 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3152
3153 with_intel_runtime_pm(runtime_pm, wakeref)
3154 __guc_context_sched_disable(guc, ce, guc_id);
3155 }
3156
bypass_sched_disable(struct intel_guc * guc,struct intel_context * ce)3157 static bool bypass_sched_disable(struct intel_guc *guc,
3158 struct intel_context *ce)
3159 {
3160 lockdep_assert_held(&ce->guc_state.lock);
3161 GEM_BUG_ON(intel_context_is_child(ce));
3162
3163 if (submission_disabled(guc) || context_guc_id_invalid(ce) ||
3164 !ctx_id_mapped(guc, ce->guc_id.id)) {
3165 clr_context_enabled(ce);
3166 return true;
3167 }
3168
3169 return !context_enabled(ce);
3170 }
3171
__delay_sched_disable(struct work_struct * wrk)3172 static void __delay_sched_disable(struct work_struct *wrk)
3173 {
3174 struct intel_context *ce =
3175 container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work);
3176 struct intel_guc *guc = ce_to_guc(ce);
3177 unsigned long flags;
3178
3179 spin_lock_irqsave(&ce->guc_state.lock, flags);
3180
3181 if (bypass_sched_disable(guc, ce)) {
3182 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3183 intel_context_sched_disable_unpin(ce);
3184 } else {
3185 do_sched_disable(guc, ce, flags);
3186 }
3187 }
3188
guc_id_pressure(struct intel_guc * guc,struct intel_context * ce)3189 static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce)
3190 {
3191 /*
3192 * parent contexts are perma-pinned, if we are unpinning do schedule
3193 * disable immediately.
3194 */
3195 if (intel_context_is_parent(ce))
3196 return true;
3197
3198 /*
3199 * If we are beyond the threshold for avail guc_ids, do schedule disable immediately.
3200 */
3201 return guc->submission_state.guc_ids_in_use >
3202 guc->submission_state.sched_disable_gucid_threshold;
3203 }
3204
guc_context_sched_disable(struct intel_context * ce)3205 static void guc_context_sched_disable(struct intel_context *ce)
3206 {
3207 struct intel_guc *guc = ce_to_guc(ce);
3208 u64 delay = guc->submission_state.sched_disable_delay_ms;
3209 unsigned long flags;
3210
3211 spin_lock_irqsave(&ce->guc_state.lock, flags);
3212
3213 if (bypass_sched_disable(guc, ce)) {
3214 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3215 intel_context_sched_disable_unpin(ce);
3216 } else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) &&
3217 delay) {
3218 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3219 mod_delayed_work(system_unbound_wq,
3220 &ce->guc_state.sched_disable_delay_work,
3221 msecs_to_jiffies(delay));
3222 } else {
3223 do_sched_disable(guc, ce, flags);
3224 }
3225 }
3226
guc_context_close(struct intel_context * ce)3227 static void guc_context_close(struct intel_context *ce)
3228 {
3229 unsigned long flags;
3230
3231 if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
3232 cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))
3233 __delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work);
3234
3235 spin_lock_irqsave(&ce->guc_state.lock, flags);
3236 set_context_close_done(ce);
3237 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3238 }
3239
guc_lrc_desc_unpin(struct intel_context * ce)3240 static inline void guc_lrc_desc_unpin(struct intel_context *ce)
3241 {
3242 struct intel_guc *guc = ce_to_guc(ce);
3243 struct intel_gt *gt = guc_to_gt(guc);
3244 unsigned long flags;
3245 bool disabled;
3246
3247 GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
3248 GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id));
3249 GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
3250 GEM_BUG_ON(context_enabled(ce));
3251
3252 /* Seal race with Reset */
3253 spin_lock_irqsave(&ce->guc_state.lock, flags);
3254 disabled = submission_disabled(guc);
3255 if (likely(!disabled)) {
3256 __intel_gt_pm_get(gt);
3257 set_context_destroyed(ce);
3258 clr_context_registered(ce);
3259 }
3260 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3261 if (unlikely(disabled)) {
3262 release_guc_id(guc, ce);
3263 __guc_context_destroy(ce);
3264 return;
3265 }
3266
3267 deregister_context(ce, ce->guc_id.id);
3268 }
3269
__guc_context_destroy(struct intel_context * ce)3270 static void __guc_context_destroy(struct intel_context *ce)
3271 {
3272 GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
3273 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
3274 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
3275 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
3276
3277 lrc_fini(ce);
3278 intel_context_fini(ce);
3279
3280 if (intel_engine_is_virtual(ce->engine)) {
3281 struct guc_virtual_engine *ve =
3282 container_of(ce, typeof(*ve), context);
3283
3284 if (ve->base.breadcrumbs)
3285 intel_breadcrumbs_put(ve->base.breadcrumbs);
3286
3287 kfree(ve);
3288 } else {
3289 intel_context_free(ce);
3290 }
3291 }
3292
guc_flush_destroyed_contexts(struct intel_guc * guc)3293 static void guc_flush_destroyed_contexts(struct intel_guc *guc)
3294 {
3295 struct intel_context *ce;
3296 unsigned long flags;
3297
3298 GEM_BUG_ON(!submission_disabled(guc) &&
3299 guc_submission_initialized(guc));
3300
3301 while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3302 spin_lock_irqsave(&guc->submission_state.lock, flags);
3303 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3304 struct intel_context,
3305 destroyed_link);
3306 if (ce)
3307 list_del_init(&ce->destroyed_link);
3308 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3309
3310 if (!ce)
3311 break;
3312
3313 release_guc_id(guc, ce);
3314 __guc_context_destroy(ce);
3315 }
3316 }
3317
deregister_destroyed_contexts(struct intel_guc * guc)3318 static void deregister_destroyed_contexts(struct intel_guc *guc)
3319 {
3320 struct intel_context *ce;
3321 unsigned long flags;
3322
3323 while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3324 spin_lock_irqsave(&guc->submission_state.lock, flags);
3325 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3326 struct intel_context,
3327 destroyed_link);
3328 if (ce)
3329 list_del_init(&ce->destroyed_link);
3330 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3331
3332 if (!ce)
3333 break;
3334
3335 guc_lrc_desc_unpin(ce);
3336 }
3337 }
3338
destroyed_worker_func(struct work_struct * w)3339 static void destroyed_worker_func(struct work_struct *w)
3340 {
3341 struct intel_guc *guc = container_of(w, struct intel_guc,
3342 submission_state.destroyed_worker);
3343 struct intel_gt *gt = guc_to_gt(guc);
3344 int tmp;
3345
3346 with_intel_gt_pm(gt, tmp)
3347 deregister_destroyed_contexts(guc);
3348 }
3349
guc_context_destroy(struct kref * kref)3350 static void guc_context_destroy(struct kref *kref)
3351 {
3352 struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3353 struct intel_guc *guc = ce_to_guc(ce);
3354 unsigned long flags;
3355 bool destroy;
3356
3357 /*
3358 * If the guc_id is invalid this context has been stolen and we can free
3359 * it immediately. Also can be freed immediately if the context is not
3360 * registered with the GuC or the GuC is in the middle of a reset.
3361 */
3362 spin_lock_irqsave(&guc->submission_state.lock, flags);
3363 destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
3364 !ctx_id_mapped(guc, ce->guc_id.id);
3365 if (likely(!destroy)) {
3366 if (!list_empty(&ce->guc_id.link))
3367 list_del_init(&ce->guc_id.link);
3368 list_add_tail(&ce->destroyed_link,
3369 &guc->submission_state.destroyed_contexts);
3370 } else {
3371 __release_guc_id(guc, ce);
3372 }
3373 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3374 if (unlikely(destroy)) {
3375 __guc_context_destroy(ce);
3376 return;
3377 }
3378
3379 /*
3380 * We use a worker to issue the H2G to deregister the context as we can
3381 * take the GT PM for the first time which isn't allowed from an atomic
3382 * context.
3383 */
3384 queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
3385 }
3386
guc_context_alloc(struct intel_context * ce)3387 static int guc_context_alloc(struct intel_context *ce)
3388 {
3389 return lrc_alloc(ce, ce->engine);
3390 }
3391
__guc_context_set_prio(struct intel_guc * guc,struct intel_context * ce)3392 static void __guc_context_set_prio(struct intel_guc *guc,
3393 struct intel_context *ce)
3394 {
3395 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3396 struct context_policy policy;
3397
3398 __guc_context_policy_start_klv(&policy, ce->guc_id.id);
3399 __guc_context_policy_add_priority(&policy, ce->guc_state.prio);
3400 __guc_context_set_context_policies(guc, &policy, true);
3401 } else {
3402 u32 action[] = {
3403 INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY,
3404 ce->guc_id.id,
3405 ce->guc_state.prio,
3406 };
3407
3408 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3409 }
3410 }
3411
guc_context_set_prio(struct intel_guc * guc,struct intel_context * ce,u8 prio)3412 static void guc_context_set_prio(struct intel_guc *guc,
3413 struct intel_context *ce,
3414 u8 prio)
3415 {
3416 GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
3417 prio > GUC_CLIENT_PRIORITY_NORMAL);
3418 lockdep_assert_held(&ce->guc_state.lock);
3419
3420 if (ce->guc_state.prio == prio || submission_disabled(guc) ||
3421 !context_registered(ce)) {
3422 ce->guc_state.prio = prio;
3423 return;
3424 }
3425
3426 ce->guc_state.prio = prio;
3427 __guc_context_set_prio(guc, ce);
3428
3429 trace_intel_context_set_prio(ce);
3430 }
3431
map_i915_prio_to_guc_prio(int prio)3432 static inline u8 map_i915_prio_to_guc_prio(int prio)
3433 {
3434 if (prio == I915_PRIORITY_NORMAL)
3435 return GUC_CLIENT_PRIORITY_KMD_NORMAL;
3436 else if (prio < I915_PRIORITY_NORMAL)
3437 return GUC_CLIENT_PRIORITY_NORMAL;
3438 else if (prio < I915_PRIORITY_DISPLAY)
3439 return GUC_CLIENT_PRIORITY_HIGH;
3440 else
3441 return GUC_CLIENT_PRIORITY_KMD_HIGH;
3442 }
3443
add_context_inflight_prio(struct intel_context * ce,u8 guc_prio)3444 static inline void add_context_inflight_prio(struct intel_context *ce,
3445 u8 guc_prio)
3446 {
3447 lockdep_assert_held(&ce->guc_state.lock);
3448 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3449
3450 ++ce->guc_state.prio_count[guc_prio];
3451
3452 /* Overflow protection */
3453 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3454 }
3455
sub_context_inflight_prio(struct intel_context * ce,u8 guc_prio)3456 static inline void sub_context_inflight_prio(struct intel_context *ce,
3457 u8 guc_prio)
3458 {
3459 lockdep_assert_held(&ce->guc_state.lock);
3460 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3461
3462 /* Underflow protection */
3463 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3464
3465 --ce->guc_state.prio_count[guc_prio];
3466 }
3467
update_context_prio(struct intel_context * ce)3468 static inline void update_context_prio(struct intel_context *ce)
3469 {
3470 struct intel_guc *guc = &ce->engine->gt->uc.guc;
3471 int i;
3472
3473 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
3474 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);
3475
3476 lockdep_assert_held(&ce->guc_state.lock);
3477
3478 for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
3479 if (ce->guc_state.prio_count[i]) {
3480 guc_context_set_prio(guc, ce, i);
3481 break;
3482 }
3483 }
3484 }
3485
new_guc_prio_higher(u8 old_guc_prio,u8 new_guc_prio)3486 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
3487 {
3488 /* Lower value is higher priority */
3489 return new_guc_prio < old_guc_prio;
3490 }
3491
add_to_context(struct i915_request * rq)3492 static void add_to_context(struct i915_request *rq)
3493 {
3494 struct intel_context *ce = request_to_scheduling_context(rq);
3495 u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));
3496
3497 GEM_BUG_ON(intel_context_is_child(ce));
3498 GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
3499
3500 spin_lock(&ce->guc_state.lock);
3501 list_move_tail(&rq->sched.link, &ce->guc_state.requests);
3502
3503 if (rq->guc_prio == GUC_PRIO_INIT) {
3504 rq->guc_prio = new_guc_prio;
3505 add_context_inflight_prio(ce, rq->guc_prio);
3506 } else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
3507 sub_context_inflight_prio(ce, rq->guc_prio);
3508 rq->guc_prio = new_guc_prio;
3509 add_context_inflight_prio(ce, rq->guc_prio);
3510 }
3511 update_context_prio(ce);
3512
3513 spin_unlock(&ce->guc_state.lock);
3514 }
3515
guc_prio_fini(struct i915_request * rq,struct intel_context * ce)3516 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
3517 {
3518 lockdep_assert_held(&ce->guc_state.lock);
3519
3520 if (rq->guc_prio != GUC_PRIO_INIT &&
3521 rq->guc_prio != GUC_PRIO_FINI) {
3522 sub_context_inflight_prio(ce, rq->guc_prio);
3523 update_context_prio(ce);
3524 }
3525 rq->guc_prio = GUC_PRIO_FINI;
3526 }
3527
remove_from_context(struct i915_request * rq)3528 static void remove_from_context(struct i915_request *rq)
3529 {
3530 struct intel_context *ce = request_to_scheduling_context(rq);
3531
3532 GEM_BUG_ON(intel_context_is_child(ce));
3533
3534 spin_lock_irq(&ce->guc_state.lock);
3535
3536 list_del_init(&rq->sched.link);
3537 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3538
3539 /* Prevent further __await_execution() registering a cb, then flush */
3540 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3541
3542 guc_prio_fini(rq, ce);
3543
3544 spin_unlock_irq(&ce->guc_state.lock);
3545
3546 atomic_dec(&ce->guc_id.ref);
3547 i915_request_notify_execute_cb_imm(rq);
3548 }
3549
3550 static const struct intel_context_ops guc_context_ops = {
3551 .flags = COPS_RUNTIME_CYCLES,
3552 .alloc = guc_context_alloc,
3553
3554 .close = guc_context_close,
3555
3556 .pre_pin = guc_context_pre_pin,
3557 .pin = guc_context_pin,
3558 .unpin = guc_context_unpin,
3559 .post_unpin = guc_context_post_unpin,
3560
3561 .revoke = guc_context_revoke,
3562
3563 .cancel_request = guc_context_cancel_request,
3564
3565 .enter = intel_context_enter_engine,
3566 .exit = intel_context_exit_engine,
3567
3568 .sched_disable = guc_context_sched_disable,
3569
3570 .update_stats = guc_context_update_stats,
3571
3572 .reset = lrc_reset,
3573 .destroy = guc_context_destroy,
3574
3575 .create_virtual = guc_create_virtual,
3576 .create_parallel = guc_create_parallel,
3577 };
3578
submit_work_cb(struct irq_work * wrk)3579 static void submit_work_cb(struct irq_work *wrk)
3580 {
3581 struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);
3582
3583 might_lock(&rq->engine->sched_engine->lock);
3584 i915_sw_fence_complete(&rq->submit);
3585 }
3586
__guc_signal_context_fence(struct intel_context * ce)3587 static void __guc_signal_context_fence(struct intel_context *ce)
3588 {
3589 struct i915_request *rq, *rn;
3590
3591 lockdep_assert_held(&ce->guc_state.lock);
3592
3593 if (!list_empty(&ce->guc_state.fences))
3594 trace_intel_context_fence_release(ce);
3595
3596 /*
3597 * Use an IRQ to ensure locking order of sched_engine->lock ->
3598 * ce->guc_state.lock is preserved.
3599 */
3600 list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
3601 guc_fence_link) {
3602 list_del(&rq->guc_fence_link);
3603 irq_work_queue(&rq->submit_work);
3604 }
3605
3606 INIT_LIST_HEAD(&ce->guc_state.fences);
3607 }
3608
guc_signal_context_fence(struct intel_context * ce)3609 static void guc_signal_context_fence(struct intel_context *ce)
3610 {
3611 unsigned long flags;
3612
3613 GEM_BUG_ON(intel_context_is_child(ce));
3614
3615 spin_lock_irqsave(&ce->guc_state.lock, flags);
3616 clr_context_wait_for_deregister_to_register(ce);
3617 __guc_signal_context_fence(ce);
3618 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3619 }
3620
context_needs_register(struct intel_context * ce,bool new_guc_id)3621 static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
3622 {
3623 return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3624 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) &&
3625 !submission_disabled(ce_to_guc(ce));
3626 }
3627
guc_context_init(struct intel_context * ce)3628 static void guc_context_init(struct intel_context *ce)
3629 {
3630 const struct i915_gem_context *ctx;
3631 int prio = I915_CONTEXT_DEFAULT_PRIORITY;
3632
3633 rcu_read_lock();
3634 ctx = rcu_dereference(ce->gem_context);
3635 if (ctx)
3636 prio = ctx->sched.priority;
3637 rcu_read_unlock();
3638
3639 ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3640
3641 INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work,
3642 __delay_sched_disable);
3643
3644 set_bit(CONTEXT_GUC_INIT, &ce->flags);
3645 }
3646
guc_request_alloc(struct i915_request * rq)3647 static int guc_request_alloc(struct i915_request *rq)
3648 {
3649 struct intel_context *ce = request_to_scheduling_context(rq);
3650 struct intel_guc *guc = ce_to_guc(ce);
3651 unsigned long flags;
3652 int ret;
3653
3654 GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3655
3656 /*
3657 * Flush enough space to reduce the likelihood of waiting after
3658 * we start building the request - in which case we will just
3659 * have to repeat work.
3660 */
3661 rq->reserved_space += GUC_REQUEST_SIZE;
3662
3663 /*
3664 * Note that after this point, we have committed to using
3665 * this request as it is being used to both track the
3666 * state of engine initialisation and liveness of the
3667 * golden renderstate above. Think twice before you try
3668 * to cancel/unwind this request now.
3669 */
3670
3671 /* Unconditionally invalidate GPU caches and TLBs. */
3672 ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3673 if (ret)
3674 return ret;
3675
3676 rq->reserved_space -= GUC_REQUEST_SIZE;
3677
3678 if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
3679 guc_context_init(ce);
3680
3681 /*
3682 * If the context gets closed while the execbuf is ongoing, the context
3683 * close code will race with the below code to cancel the delayed work.
3684 * If the context close wins the race and cancels the work, it will
3685 * immediately call the sched disable (see guc_context_close), so there
3686 * is a chance we can get past this check while the sched_disable code
3687 * is being executed. To make sure that code completes before we check
3688 * the status further down, we wait for the close process to complete.
3689 * Else, this code path could send a request down thinking that the
3690 * context is still in a schedule-enable mode while the GuC ends up
3691 * dropping the request completely because the disable did go from the
3692 * context_close path right to GuC just prior. In the event the CT is
3693 * full, we could potentially need to wait up to 1.5 seconds.
3694 */
3695 if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work))
3696 intel_context_sched_disable_unpin(ce);
3697 else if (intel_context_is_closed(ce))
3698 if (wait_for(context_close_done(ce), 1500))
3699 guc_warn(guc, "timed out waiting on context sched close before realloc\n");
3700 /*
3701 * Call pin_guc_id here rather than in the pinning step as with
3702 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3703 * guc_id and creating horrible race conditions. This is especially bad
3704 * when guc_id are being stolen due to over subscription. By the time
3705 * this function is reached, it is guaranteed that the guc_id will be
3706 * persistent until the generated request is retired. Thus, sealing these
3707 * race conditions. It is still safe to fail here if guc_id are
3708 * exhausted and return -EAGAIN to the user indicating that they can try
3709 * again in the future.
3710 *
3711 * There is no need for a lock here as the timeline mutex ensures at
3712 * most one context can be executing this code path at once. The
3713 * guc_id_ref is incremented once for every request in flight and
3714 * decremented on each retire. When it is zero, a lock around the
3715 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
3716 */
3717 if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3718 goto out;
3719
3720 ret = pin_guc_id(guc, ce); /* returns 1 if new guc_id assigned */
3721 if (unlikely(ret < 0))
3722 return ret;
3723 if (context_needs_register(ce, !!ret)) {
3724 ret = try_context_registration(ce, true);
3725 if (unlikely(ret)) { /* unwind */
3726 if (ret == -EPIPE) {
3727 disable_submission(guc);
3728 goto out; /* GPU will be reset */
3729 }
3730 atomic_dec(&ce->guc_id.ref);
3731 unpin_guc_id(guc, ce);
3732 return ret;
3733 }
3734 }
3735
3736 clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3737
3738 out:
3739 /*
3740 * We block all requests on this context if a G2H is pending for a
3741 * schedule disable or context deregistration as the GuC will fail a
3742 * schedule enable or context registration if either G2H is pending
3743 * respectfully. Once a G2H returns, the fence is released that is
3744 * blocking these requests (see guc_signal_context_fence).
3745 */
3746 spin_lock_irqsave(&ce->guc_state.lock, flags);
3747 if (context_wait_for_deregister_to_register(ce) ||
3748 context_pending_disable(ce)) {
3749 init_irq_work(&rq->submit_work, submit_work_cb);
3750 i915_sw_fence_await(&rq->submit);
3751
3752 list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
3753 }
3754 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3755
3756 return 0;
3757 }
3758
guc_virtual_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)3759 static int guc_virtual_context_pre_pin(struct intel_context *ce,
3760 struct i915_gem_ww_ctx *ww,
3761 void **vaddr)
3762 {
3763 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3764
3765 return __guc_context_pre_pin(ce, engine, ww, vaddr);
3766 }
3767
guc_virtual_context_pin(struct intel_context * ce,void * vaddr)3768 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
3769 {
3770 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3771 int ret = __guc_context_pin(ce, engine, vaddr);
3772 intel_engine_mask_t tmp, mask = ce->engine->mask;
3773
3774 if (likely(!ret))
3775 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3776 intel_engine_pm_get(engine);
3777
3778 return ret;
3779 }
3780
guc_virtual_context_unpin(struct intel_context * ce)3781 static void guc_virtual_context_unpin(struct intel_context *ce)
3782 {
3783 intel_engine_mask_t tmp, mask = ce->engine->mask;
3784 struct intel_engine_cs *engine;
3785 struct intel_guc *guc = ce_to_guc(ce);
3786
3787 GEM_BUG_ON(context_enabled(ce));
3788 GEM_BUG_ON(intel_context_is_barrier(ce));
3789
3790 unpin_guc_id(guc, ce);
3791 lrc_unpin(ce);
3792
3793 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3794 intel_engine_pm_put_async(engine);
3795 }
3796
guc_virtual_context_enter(struct intel_context * ce)3797 static void guc_virtual_context_enter(struct intel_context *ce)
3798 {
3799 intel_engine_mask_t tmp, mask = ce->engine->mask;
3800 struct intel_engine_cs *engine;
3801
3802 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3803 intel_engine_pm_get(engine);
3804
3805 intel_timeline_enter(ce->timeline);
3806 }
3807
guc_virtual_context_exit(struct intel_context * ce)3808 static void guc_virtual_context_exit(struct intel_context *ce)
3809 {
3810 intel_engine_mask_t tmp, mask = ce->engine->mask;
3811 struct intel_engine_cs *engine;
3812
3813 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3814 intel_engine_pm_put(engine);
3815
3816 intel_timeline_exit(ce->timeline);
3817 }
3818
guc_virtual_context_alloc(struct intel_context * ce)3819 static int guc_virtual_context_alloc(struct intel_context *ce)
3820 {
3821 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3822
3823 return lrc_alloc(ce, engine);
3824 }
3825
3826 static const struct intel_context_ops virtual_guc_context_ops = {
3827 .flags = COPS_RUNTIME_CYCLES,
3828 .alloc = guc_virtual_context_alloc,
3829
3830 .close = guc_context_close,
3831
3832 .pre_pin = guc_virtual_context_pre_pin,
3833 .pin = guc_virtual_context_pin,
3834 .unpin = guc_virtual_context_unpin,
3835 .post_unpin = guc_context_post_unpin,
3836
3837 .revoke = guc_context_revoke,
3838
3839 .cancel_request = guc_context_cancel_request,
3840
3841 .enter = guc_virtual_context_enter,
3842 .exit = guc_virtual_context_exit,
3843
3844 .sched_disable = guc_context_sched_disable,
3845 .update_stats = guc_context_update_stats,
3846
3847 .destroy = guc_context_destroy,
3848
3849 .get_sibling = guc_virtual_get_sibling,
3850 };
3851
guc_parent_context_pin(struct intel_context * ce,void * vaddr)3852 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
3853 {
3854 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3855 struct intel_guc *guc = ce_to_guc(ce);
3856 int ret;
3857
3858 GEM_BUG_ON(!intel_context_is_parent(ce));
3859 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3860
3861 ret = pin_guc_id(guc, ce);
3862 if (unlikely(ret < 0))
3863 return ret;
3864
3865 return __guc_context_pin(ce, engine, vaddr);
3866 }
3867
guc_child_context_pin(struct intel_context * ce,void * vaddr)3868 static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
3869 {
3870 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3871
3872 GEM_BUG_ON(!intel_context_is_child(ce));
3873 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3874
3875 __intel_context_pin(ce->parallel.parent);
3876 return __guc_context_pin(ce, engine, vaddr);
3877 }
3878
guc_parent_context_unpin(struct intel_context * ce)3879 static void guc_parent_context_unpin(struct intel_context *ce)
3880 {
3881 struct intel_guc *guc = ce_to_guc(ce);
3882
3883 GEM_BUG_ON(context_enabled(ce));
3884 GEM_BUG_ON(intel_context_is_barrier(ce));
3885 GEM_BUG_ON(!intel_context_is_parent(ce));
3886 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3887
3888 unpin_guc_id(guc, ce);
3889 lrc_unpin(ce);
3890 }
3891
guc_child_context_unpin(struct intel_context * ce)3892 static void guc_child_context_unpin(struct intel_context *ce)
3893 {
3894 GEM_BUG_ON(context_enabled(ce));
3895 GEM_BUG_ON(intel_context_is_barrier(ce));
3896 GEM_BUG_ON(!intel_context_is_child(ce));
3897 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3898
3899 lrc_unpin(ce);
3900 }
3901
guc_child_context_post_unpin(struct intel_context * ce)3902 static void guc_child_context_post_unpin(struct intel_context *ce)
3903 {
3904 GEM_BUG_ON(!intel_context_is_child(ce));
3905 GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
3906 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3907
3908 lrc_post_unpin(ce);
3909 intel_context_unpin(ce->parallel.parent);
3910 }
3911
guc_child_context_destroy(struct kref * kref)3912 static void guc_child_context_destroy(struct kref *kref)
3913 {
3914 struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3915
3916 __guc_context_destroy(ce);
3917 }
3918
3919 static const struct intel_context_ops virtual_parent_context_ops = {
3920 .alloc = guc_virtual_context_alloc,
3921
3922 .close = guc_context_close,
3923
3924 .pre_pin = guc_context_pre_pin,
3925 .pin = guc_parent_context_pin,
3926 .unpin = guc_parent_context_unpin,
3927 .post_unpin = guc_context_post_unpin,
3928
3929 .revoke = guc_context_revoke,
3930
3931 .cancel_request = guc_context_cancel_request,
3932
3933 .enter = guc_virtual_context_enter,
3934 .exit = guc_virtual_context_exit,
3935
3936 .sched_disable = guc_context_sched_disable,
3937
3938 .destroy = guc_context_destroy,
3939
3940 .get_sibling = guc_virtual_get_sibling,
3941 };
3942
3943 static const struct intel_context_ops virtual_child_context_ops = {
3944 .alloc = guc_virtual_context_alloc,
3945
3946 .pre_pin = guc_context_pre_pin,
3947 .pin = guc_child_context_pin,
3948 .unpin = guc_child_context_unpin,
3949 .post_unpin = guc_child_context_post_unpin,
3950
3951 .cancel_request = guc_context_cancel_request,
3952
3953 .enter = guc_virtual_context_enter,
3954 .exit = guc_virtual_context_exit,
3955
3956 .destroy = guc_child_context_destroy,
3957
3958 .get_sibling = guc_virtual_get_sibling,
3959 };
3960
3961 /*
3962 * The below override of the breadcrumbs is enabled when the user configures a
3963 * context for parallel submission (multi-lrc, parent-child).
3964 *
3965 * The overridden breadcrumbs implements an algorithm which allows the GuC to
3966 * safely preempt all the hw contexts configured for parallel submission
3967 * between each BB. The contract between the i915 and GuC is if the parent
3968 * context can be preempted, all the children can be preempted, and the GuC will
3969 * always try to preempt the parent before the children. A handshake between the
3970 * parent / children breadcrumbs ensures the i915 holds up its end of the deal
3971 * creating a window to preempt between each set of BBs.
3972 */
3973 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
3974 u64 offset, u32 len,
3975 const unsigned int flags);
3976 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
3977 u64 offset, u32 len,
3978 const unsigned int flags);
3979 static u32 *
3980 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
3981 u32 *cs);
3982 static u32 *
3983 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
3984 u32 *cs);
3985
3986 static struct intel_context *
guc_create_parallel(struct intel_engine_cs ** engines,unsigned int num_siblings,unsigned int width)3987 guc_create_parallel(struct intel_engine_cs **engines,
3988 unsigned int num_siblings,
3989 unsigned int width)
3990 {
3991 struct intel_engine_cs **siblings = NULL;
3992 struct intel_context *parent = NULL, *ce, *err;
3993 int i, j;
3994
3995 siblings = kmalloc_array(num_siblings,
3996 sizeof(*siblings),
3997 GFP_KERNEL);
3998 if (!siblings)
3999 return ERR_PTR(-ENOMEM);
4000
4001 for (i = 0; i < width; ++i) {
4002 for (j = 0; j < num_siblings; ++j)
4003 siblings[j] = engines[i * num_siblings + j];
4004
4005 ce = intel_engine_create_virtual(siblings, num_siblings,
4006 FORCE_VIRTUAL);
4007 if (IS_ERR(ce)) {
4008 err = ERR_CAST(ce);
4009 goto unwind;
4010 }
4011
4012 if (i == 0) {
4013 parent = ce;
4014 parent->ops = &virtual_parent_context_ops;
4015 } else {
4016 ce->ops = &virtual_child_context_ops;
4017 intel_context_bind_parent_child(parent, ce);
4018 }
4019 }
4020
4021 parent->parallel.fence_context = dma_fence_context_alloc(1);
4022
4023 parent->engine->emit_bb_start =
4024 emit_bb_start_parent_no_preempt_mid_batch;
4025 parent->engine->emit_fini_breadcrumb =
4026 emit_fini_breadcrumb_parent_no_preempt_mid_batch;
4027 parent->engine->emit_fini_breadcrumb_dw =
4028 12 + 4 * parent->parallel.number_children;
4029 for_each_child(parent, ce) {
4030 ce->engine->emit_bb_start =
4031 emit_bb_start_child_no_preempt_mid_batch;
4032 ce->engine->emit_fini_breadcrumb =
4033 emit_fini_breadcrumb_child_no_preempt_mid_batch;
4034 ce->engine->emit_fini_breadcrumb_dw = 16;
4035 }
4036
4037 kfree(siblings);
4038 return parent;
4039
4040 unwind:
4041 if (parent)
4042 intel_context_put(parent);
4043 kfree(siblings);
4044 return err;
4045 }
4046
4047 static bool
guc_irq_enable_breadcrumbs(struct intel_breadcrumbs * b)4048 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
4049 {
4050 struct intel_engine_cs *sibling;
4051 intel_engine_mask_t tmp, mask = b->engine_mask;
4052 bool result = false;
4053
4054 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4055 result |= intel_engine_irq_enable(sibling);
4056
4057 return result;
4058 }
4059
4060 static void
guc_irq_disable_breadcrumbs(struct intel_breadcrumbs * b)4061 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
4062 {
4063 struct intel_engine_cs *sibling;
4064 intel_engine_mask_t tmp, mask = b->engine_mask;
4065
4066 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4067 intel_engine_irq_disable(sibling);
4068 }
4069
guc_init_breadcrumbs(struct intel_engine_cs * engine)4070 static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
4071 {
4072 int i;
4073
4074 /*
4075 * In GuC submission mode we do not know which physical engine a request
4076 * will be scheduled on, this creates a problem because the breadcrumb
4077 * interrupt is per physical engine. To work around this we attach
4078 * requests and direct all breadcrumb interrupts to the first instance
4079 * of an engine per class. In addition all breadcrumb interrupts are
4080 * enabled / disabled across an engine class in unison.
4081 */
4082 for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
4083 struct intel_engine_cs *sibling =
4084 engine->gt->engine_class[engine->class][i];
4085
4086 if (sibling) {
4087 if (engine->breadcrumbs != sibling->breadcrumbs) {
4088 intel_breadcrumbs_put(engine->breadcrumbs);
4089 engine->breadcrumbs =
4090 intel_breadcrumbs_get(sibling->breadcrumbs);
4091 }
4092 break;
4093 }
4094 }
4095
4096 if (engine->breadcrumbs) {
4097 engine->breadcrumbs->engine_mask |= engine->mask;
4098 engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
4099 engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
4100 }
4101 }
4102
guc_bump_inflight_request_prio(struct i915_request * rq,int prio)4103 static void guc_bump_inflight_request_prio(struct i915_request *rq,
4104 int prio)
4105 {
4106 struct intel_context *ce = request_to_scheduling_context(rq);
4107 u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);
4108
4109 /* Short circuit function */
4110 if (prio < I915_PRIORITY_NORMAL ||
4111 rq->guc_prio == GUC_PRIO_FINI ||
4112 (rq->guc_prio != GUC_PRIO_INIT &&
4113 !new_guc_prio_higher(rq->guc_prio, new_guc_prio)))
4114 return;
4115
4116 spin_lock(&ce->guc_state.lock);
4117 if (rq->guc_prio != GUC_PRIO_FINI) {
4118 if (rq->guc_prio != GUC_PRIO_INIT)
4119 sub_context_inflight_prio(ce, rq->guc_prio);
4120 rq->guc_prio = new_guc_prio;
4121 add_context_inflight_prio(ce, rq->guc_prio);
4122 update_context_prio(ce);
4123 }
4124 spin_unlock(&ce->guc_state.lock);
4125 }
4126
guc_retire_inflight_request_prio(struct i915_request * rq)4127 static void guc_retire_inflight_request_prio(struct i915_request *rq)
4128 {
4129 struct intel_context *ce = request_to_scheduling_context(rq);
4130
4131 spin_lock(&ce->guc_state.lock);
4132 guc_prio_fini(rq, ce);
4133 spin_unlock(&ce->guc_state.lock);
4134 }
4135
sanitize_hwsp(struct intel_engine_cs * engine)4136 static void sanitize_hwsp(struct intel_engine_cs *engine)
4137 {
4138 struct intel_timeline *tl;
4139
4140 list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
4141 intel_timeline_reset_seqno(tl);
4142 }
4143
guc_sanitize(struct intel_engine_cs * engine)4144 static void guc_sanitize(struct intel_engine_cs *engine)
4145 {
4146 /*
4147 * Poison residual state on resume, in case the suspend didn't!
4148 *
4149 * We have to assume that across suspend/resume (or other loss
4150 * of control) that the contents of our pinned buffers has been
4151 * lost, replaced by garbage. Since this doesn't always happen,
4152 * let's poison such state so that we more quickly spot when
4153 * we falsely assume it has been preserved.
4154 */
4155 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
4156 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
4157
4158 /*
4159 * The kernel_context HWSP is stored in the status_page. As above,
4160 * that may be lost on resume/initialisation, and so we need to
4161 * reset the value in the HWSP.
4162 */
4163 sanitize_hwsp(engine);
4164
4165 /* And scrub the dirty cachelines for the HWSP */
4166 drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
4167
4168 intel_engine_reset_pinned_contexts(engine);
4169 }
4170
setup_hwsp(struct intel_engine_cs * engine)4171 static void setup_hwsp(struct intel_engine_cs *engine)
4172 {
4173 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
4174
4175 ENGINE_WRITE_FW(engine,
4176 RING_HWS_PGA,
4177 i915_ggtt_offset(engine->status_page.vma));
4178 }
4179
start_engine(struct intel_engine_cs * engine)4180 static void start_engine(struct intel_engine_cs *engine)
4181 {
4182 ENGINE_WRITE_FW(engine,
4183 RING_MODE_GEN7,
4184 _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
4185
4186 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
4187 ENGINE_POSTING_READ(engine, RING_MI_MODE);
4188 }
4189
guc_resume(struct intel_engine_cs * engine)4190 static int guc_resume(struct intel_engine_cs *engine)
4191 {
4192 assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
4193
4194 intel_mocs_init_engine(engine);
4195
4196 intel_breadcrumbs_reset(engine->breadcrumbs);
4197
4198 setup_hwsp(engine);
4199 start_engine(engine);
4200
4201 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
4202 xehp_enable_ccs_engines(engine);
4203
4204 return 0;
4205 }
4206
guc_sched_engine_disabled(struct i915_sched_engine * sched_engine)4207 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
4208 {
4209 return !sched_engine->tasklet.callback;
4210 }
4211
guc_set_default_submission(struct intel_engine_cs * engine)4212 static void guc_set_default_submission(struct intel_engine_cs *engine)
4213 {
4214 engine->submit_request = guc_submit_request;
4215 }
4216
guc_kernel_context_pin(struct intel_guc * guc,struct intel_context * ce)4217 static inline int guc_kernel_context_pin(struct intel_guc *guc,
4218 struct intel_context *ce)
4219 {
4220 int ret;
4221
4222 /*
4223 * Note: we purposefully do not check the returns below because
4224 * the registration can only fail if a reset is just starting.
4225 * This is called at the end of reset so presumably another reset
4226 * isn't happening and even it did this code would be run again.
4227 */
4228
4229 if (context_guc_id_invalid(ce)) {
4230 ret = pin_guc_id(guc, ce);
4231
4232 if (ret < 0)
4233 return ret;
4234 }
4235
4236 if (!test_bit(CONTEXT_GUC_INIT, &ce->flags))
4237 guc_context_init(ce);
4238
4239 ret = try_context_registration(ce, true);
4240 if (ret)
4241 unpin_guc_id(guc, ce);
4242
4243 return ret;
4244 }
4245
guc_init_submission(struct intel_guc * guc)4246 static inline int guc_init_submission(struct intel_guc *guc)
4247 {
4248 struct intel_gt *gt = guc_to_gt(guc);
4249 struct intel_engine_cs *engine;
4250 enum intel_engine_id id;
4251
4252 /* make sure all descriptors are clean... */
4253 xa_destroy(&guc->context_lookup);
4254
4255 /*
4256 * A reset might have occurred while we had a pending stalled request,
4257 * so make sure we clean that up.
4258 */
4259 guc->stalled_request = NULL;
4260 guc->submission_stall_reason = STALL_NONE;
4261
4262 /*
4263 * Some contexts might have been pinned before we enabled GuC
4264 * submission, so we need to add them to the GuC bookeeping.
4265 * Also, after a reset the of the GuC we want to make sure that the
4266 * information shared with GuC is properly reset. The kernel LRCs are
4267 * not attached to the gem_context, so they need to be added separately.
4268 */
4269 for_each_engine(engine, gt, id) {
4270 struct intel_context *ce;
4271
4272 list_for_each_entry(ce, &engine->pinned_contexts_list,
4273 pinned_contexts_link) {
4274 int ret = guc_kernel_context_pin(guc, ce);
4275
4276 if (ret) {
4277 /* No point in trying to clean up as i915 will wedge on failure */
4278 return ret;
4279 }
4280 }
4281 }
4282
4283 return 0;
4284 }
4285
guc_release(struct intel_engine_cs * engine)4286 static void guc_release(struct intel_engine_cs *engine)
4287 {
4288 engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
4289
4290 intel_engine_cleanup_common(engine);
4291 lrc_fini_wa_ctx(engine);
4292 }
4293
virtual_guc_bump_serial(struct intel_engine_cs * engine)4294 static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
4295 {
4296 struct intel_engine_cs *e;
4297 intel_engine_mask_t tmp, mask = engine->mask;
4298
4299 for_each_engine_masked(e, engine->gt, mask, tmp)
4300 e->serial++;
4301 }
4302
guc_default_vfuncs(struct intel_engine_cs * engine)4303 static void guc_default_vfuncs(struct intel_engine_cs *engine)
4304 {
4305 /* Default vfuncs which can be overridden by each engine. */
4306
4307 engine->resume = guc_resume;
4308
4309 engine->cops = &guc_context_ops;
4310 engine->request_alloc = guc_request_alloc;
4311 engine->add_active_request = add_to_context;
4312 engine->remove_active_request = remove_from_context;
4313
4314 engine->sched_engine->schedule = i915_schedule;
4315
4316 engine->reset.prepare = guc_engine_reset_prepare;
4317 engine->reset.rewind = guc_rewind_nop;
4318 engine->reset.cancel = guc_reset_nop;
4319 engine->reset.finish = guc_reset_nop;
4320
4321 engine->emit_flush = gen8_emit_flush_xcs;
4322 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
4323 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
4324 if (GRAPHICS_VER(engine->i915) >= 12) {
4325 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
4326 engine->emit_flush = gen12_emit_flush_xcs;
4327 }
4328 engine->set_default_submission = guc_set_default_submission;
4329 engine->busyness = guc_engine_busyness;
4330
4331 engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4332 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
4333 engine->flags |= I915_ENGINE_HAS_TIMESLICES;
4334
4335 /* Wa_14014475959:dg2 */
4336 if (engine->class == COMPUTE_CLASS)
4337 if (IS_GFX_GT_IP_STEP(engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
4338 IS_DG2(engine->i915))
4339 engine->flags |= I915_ENGINE_USES_WA_HOLD_CCS_SWITCHOUT;
4340
4341 /*
4342 * TODO: GuC supports timeslicing and semaphores as well, but they're
4343 * handled by the firmware so some minor tweaks are required before
4344 * enabling.
4345 *
4346 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4347 */
4348
4349 engine->emit_bb_start = gen8_emit_bb_start;
4350 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
4351 engine->emit_bb_start = xehp_emit_bb_start;
4352 }
4353
rcs_submission_override(struct intel_engine_cs * engine)4354 static void rcs_submission_override(struct intel_engine_cs *engine)
4355 {
4356 switch (GRAPHICS_VER(engine->i915)) {
4357 case 12:
4358 engine->emit_flush = gen12_emit_flush_rcs;
4359 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
4360 break;
4361 case 11:
4362 engine->emit_flush = gen11_emit_flush_rcs;
4363 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
4364 break;
4365 default:
4366 engine->emit_flush = gen8_emit_flush_rcs;
4367 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
4368 break;
4369 }
4370 }
4371
guc_default_irqs(struct intel_engine_cs * engine)4372 static inline void guc_default_irqs(struct intel_engine_cs *engine)
4373 {
4374 engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
4375 intel_engine_set_irq_handler(engine, cs_irq_handler);
4376 }
4377
guc_sched_engine_destroy(struct kref * kref)4378 static void guc_sched_engine_destroy(struct kref *kref)
4379 {
4380 struct i915_sched_engine *sched_engine =
4381 container_of(kref, typeof(*sched_engine), ref);
4382 struct intel_guc *guc = sched_engine->private_data;
4383
4384 guc->sched_engine = NULL;
4385 tasklet_kill(&sched_engine->tasklet); /* flush the callback */
4386 kfree(sched_engine);
4387 }
4388
intel_guc_submission_setup(struct intel_engine_cs * engine)4389 int intel_guc_submission_setup(struct intel_engine_cs *engine)
4390 {
4391 struct drm_i915_private *i915 = engine->i915;
4392 struct intel_guc *guc = &engine->gt->uc.guc;
4393
4394 /*
4395 * The setup relies on several assumptions (e.g. irqs always enabled)
4396 * that are only valid on gen11+
4397 */
4398 GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
4399
4400 if (!guc->sched_engine) {
4401 guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
4402 if (!guc->sched_engine)
4403 return -ENOMEM;
4404
4405 guc->sched_engine->schedule = i915_schedule;
4406 guc->sched_engine->disabled = guc_sched_engine_disabled;
4407 guc->sched_engine->private_data = guc;
4408 guc->sched_engine->destroy = guc_sched_engine_destroy;
4409 guc->sched_engine->bump_inflight_request_prio =
4410 guc_bump_inflight_request_prio;
4411 guc->sched_engine->retire_inflight_request_prio =
4412 guc_retire_inflight_request_prio;
4413 tasklet_setup(&guc->sched_engine->tasklet,
4414 guc_submission_tasklet);
4415 }
4416 i915_sched_engine_put(engine->sched_engine);
4417 engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
4418
4419 guc_default_vfuncs(engine);
4420 guc_default_irqs(engine);
4421 guc_init_breadcrumbs(engine);
4422
4423 if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
4424 rcs_submission_override(engine);
4425
4426 lrc_init_wa_ctx(engine);
4427
4428 /* Finally, take ownership and responsibility for cleanup! */
4429 engine->sanitize = guc_sanitize;
4430 engine->release = guc_release;
4431
4432 return 0;
4433 }
4434
4435 struct scheduling_policy {
4436 /* internal data */
4437 u32 max_words, num_words;
4438 u32 count;
4439 /* API data */
4440 struct guc_update_scheduling_policy h2g;
4441 };
4442
__guc_scheduling_policy_action_size(struct scheduling_policy * policy)4443 static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy)
4444 {
4445 u32 *start = (void *)&policy->h2g;
4446 u32 *end = policy->h2g.data + policy->num_words;
4447 size_t delta = end - start;
4448
4449 return delta;
4450 }
4451
__guc_scheduling_policy_start_klv(struct scheduling_policy * policy)4452 static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy)
4453 {
4454 policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV;
4455 policy->max_words = ARRAY_SIZE(policy->h2g.data);
4456 policy->num_words = 0;
4457 policy->count = 0;
4458
4459 return policy;
4460 }
4461
__guc_scheduling_policy_add_klv(struct scheduling_policy * policy,u32 action,u32 * data,u32 len)4462 static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy,
4463 u32 action, u32 *data, u32 len)
4464 {
4465 u32 *klv_ptr = policy->h2g.data + policy->num_words;
4466
4467 GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words);
4468 *(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) |
4469 FIELD_PREP(GUC_KLV_0_LEN, len);
4470 memcpy(klv_ptr, data, sizeof(u32) * len);
4471 policy->num_words += 1 + len;
4472 policy->count++;
4473 }
4474
__guc_action_set_scheduling_policies(struct intel_guc * guc,struct scheduling_policy * policy)4475 static int __guc_action_set_scheduling_policies(struct intel_guc *guc,
4476 struct scheduling_policy *policy)
4477 {
4478 int ret;
4479
4480 ret = intel_guc_send(guc, (u32 *)&policy->h2g,
4481 __guc_scheduling_policy_action_size(policy));
4482 if (ret < 0) {
4483 guc_probe_error(guc, "Failed to configure global scheduling policies: %pe!\n",
4484 ERR_PTR(ret));
4485 return ret;
4486 }
4487
4488 if (ret != policy->count) {
4489 guc_warn(guc, "global scheduler policy processed %d of %d KLVs!",
4490 ret, policy->count);
4491 if (ret > policy->count)
4492 return -EPROTO;
4493 }
4494
4495 return 0;
4496 }
4497
guc_init_global_schedule_policy(struct intel_guc * guc)4498 static int guc_init_global_schedule_policy(struct intel_guc *guc)
4499 {
4500 struct scheduling_policy policy;
4501 struct intel_gt *gt = guc_to_gt(guc);
4502 intel_wakeref_t wakeref;
4503 int ret;
4504
4505 if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0))
4506 return 0;
4507
4508 __guc_scheduling_policy_start_klv(&policy);
4509
4510 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) {
4511 u32 yield[] = {
4512 GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION,
4513 GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO,
4514 };
4515
4516 __guc_scheduling_policy_add_klv(&policy,
4517 GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD,
4518 yield, ARRAY_SIZE(yield));
4519
4520 ret = __guc_action_set_scheduling_policies(guc, &policy);
4521 }
4522
4523 return ret;
4524 }
4525
guc_route_semaphores(struct intel_guc * guc,bool to_guc)4526 static void guc_route_semaphores(struct intel_guc *guc, bool to_guc)
4527 {
4528 struct intel_gt *gt = guc_to_gt(guc);
4529 u32 val;
4530
4531 if (GRAPHICS_VER(gt->i915) < 12)
4532 return;
4533
4534 if (to_guc)
4535 val = GUC_SEM_INTR_ROUTE_TO_GUC | GUC_SEM_INTR_ENABLE_ALL;
4536 else
4537 val = 0;
4538
4539 intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, val);
4540 }
4541
intel_guc_submission_enable(struct intel_guc * guc)4542 int intel_guc_submission_enable(struct intel_guc *guc)
4543 {
4544 int ret;
4545
4546 /* Semaphore interrupt enable and route to GuC */
4547 guc_route_semaphores(guc, true);
4548
4549 ret = guc_init_submission(guc);
4550 if (ret)
4551 goto fail_sem;
4552
4553 ret = guc_init_engine_stats(guc);
4554 if (ret)
4555 goto fail_sem;
4556
4557 ret = guc_init_global_schedule_policy(guc);
4558 if (ret)
4559 goto fail_stats;
4560
4561 return 0;
4562
4563 fail_stats:
4564 guc_fini_engine_stats(guc);
4565 fail_sem:
4566 guc_route_semaphores(guc, false);
4567 return ret;
4568 }
4569
4570 /* Note: By the time we're here, GuC may have already been reset */
intel_guc_submission_disable(struct intel_guc * guc)4571 void intel_guc_submission_disable(struct intel_guc *guc)
4572 {
4573 guc_cancel_busyness_worker(guc);
4574
4575 /* Semaphore interrupt disable and route to host */
4576 guc_route_semaphores(guc, false);
4577 }
4578
__guc_submission_supported(struct intel_guc * guc)4579 static bool __guc_submission_supported(struct intel_guc *guc)
4580 {
4581 /* GuC submission is unavailable for pre-Gen11 */
4582 return intel_guc_is_supported(guc) &&
4583 GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11;
4584 }
4585
__guc_submission_selected(struct intel_guc * guc)4586 static bool __guc_submission_selected(struct intel_guc *guc)
4587 {
4588 struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
4589
4590 if (!intel_guc_submission_is_supported(guc))
4591 return false;
4592
4593 return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
4594 }
4595
intel_guc_sched_disable_gucid_threshold_max(struct intel_guc * guc)4596 int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc)
4597 {
4598 return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc);
4599 }
4600
4601 /*
4602 * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher
4603 * workloads are able to enjoy the latency reduction when delaying the schedule-disable
4604 * operation. This matches the 30fps game-render + encode (real world) workload this
4605 * knob was tested against.
4606 */
4607 #define SCHED_DISABLE_DELAY_MS 34
4608
4609 /*
4610 * A threshold of 75% is a reasonable starting point considering that real world apps
4611 * generally don't get anywhere near this.
4612 */
4613 #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \
4614 (((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4)
4615
intel_guc_submission_init_early(struct intel_guc * guc)4616 void intel_guc_submission_init_early(struct intel_guc *guc)
4617 {
4618 xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);
4619
4620 spin_lock_init(&guc->submission_state.lock);
4621 INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
4622 ida_init(&guc->submission_state.guc_ids);
4623 INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
4624 INIT_WORK(&guc->submission_state.destroyed_worker,
4625 destroyed_worker_func);
4626 INIT_WORK(&guc->submission_state.reset_fail_worker,
4627 reset_fail_worker_func);
4628
4629 spin_lock_init(&guc->timestamp.lock);
4630 INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
4631
4632 guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS;
4633 guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID;
4634 guc->submission_state.sched_disable_gucid_threshold =
4635 NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc);
4636 guc->submission_supported = __guc_submission_supported(guc);
4637 guc->submission_selected = __guc_submission_selected(guc);
4638 }
4639
4640 static inline struct intel_context *
g2h_context_lookup(struct intel_guc * guc,u32 ctx_id)4641 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id)
4642 {
4643 struct intel_context *ce;
4644
4645 if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) {
4646 guc_err(guc, "Invalid ctx_id %u\n", ctx_id);
4647 return NULL;
4648 }
4649
4650 ce = __get_context(guc, ctx_id);
4651 if (unlikely(!ce)) {
4652 guc_err(guc, "Context is NULL, ctx_id %u\n", ctx_id);
4653 return NULL;
4654 }
4655
4656 if (unlikely(intel_context_is_child(ce))) {
4657 guc_err(guc, "Context is child, ctx_id %u\n", ctx_id);
4658 return NULL;
4659 }
4660
4661 return ce;
4662 }
4663
intel_guc_deregister_done_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)4664 int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
4665 const u32 *msg,
4666 u32 len)
4667 {
4668 struct intel_context *ce;
4669 u32 ctx_id;
4670
4671 if (unlikely(len < 1)) {
4672 guc_err(guc, "Invalid length %u\n", len);
4673 return -EPROTO;
4674 }
4675 ctx_id = msg[0];
4676
4677 ce = g2h_context_lookup(guc, ctx_id);
4678 if (unlikely(!ce))
4679 return -EPROTO;
4680
4681 trace_intel_context_deregister_done(ce);
4682
4683 #ifdef CONFIG_DRM_I915_SELFTEST
4684 if (unlikely(ce->drop_deregister)) {
4685 ce->drop_deregister = false;
4686 return 0;
4687 }
4688 #endif
4689
4690 if (context_wait_for_deregister_to_register(ce)) {
4691 struct intel_runtime_pm *runtime_pm =
4692 &ce->engine->gt->i915->runtime_pm;
4693 intel_wakeref_t wakeref;
4694
4695 /*
4696 * Previous owner of this guc_id has been deregistered, now safe
4697 * register this context.
4698 */
4699 with_intel_runtime_pm(runtime_pm, wakeref)
4700 register_context(ce, true);
4701 guc_signal_context_fence(ce);
4702 intel_context_put(ce);
4703 } else if (context_destroyed(ce)) {
4704 /* Context has been destroyed */
4705 intel_gt_pm_put_async(guc_to_gt(guc));
4706 release_guc_id(guc, ce);
4707 __guc_context_destroy(ce);
4708 }
4709
4710 decr_outstanding_submission_g2h(guc);
4711
4712 return 0;
4713 }
4714
intel_guc_sched_done_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)4715 int intel_guc_sched_done_process_msg(struct intel_guc *guc,
4716 const u32 *msg,
4717 u32 len)
4718 {
4719 struct intel_context *ce;
4720 unsigned long flags;
4721 u32 ctx_id;
4722
4723 if (unlikely(len < 2)) {
4724 guc_err(guc, "Invalid length %u\n", len);
4725 return -EPROTO;
4726 }
4727 ctx_id = msg[0];
4728
4729 ce = g2h_context_lookup(guc, ctx_id);
4730 if (unlikely(!ce))
4731 return -EPROTO;
4732
4733 if (unlikely(context_destroyed(ce) ||
4734 (!context_pending_enable(ce) &&
4735 !context_pending_disable(ce)))) {
4736 guc_err(guc, "Bad context sched_state 0x%x, ctx_id %u\n",
4737 ce->guc_state.sched_state, ctx_id);
4738 return -EPROTO;
4739 }
4740
4741 trace_intel_context_sched_done(ce);
4742
4743 if (context_pending_enable(ce)) {
4744 #ifdef CONFIG_DRM_I915_SELFTEST
4745 if (unlikely(ce->drop_schedule_enable)) {
4746 ce->drop_schedule_enable = false;
4747 return 0;
4748 }
4749 #endif
4750
4751 spin_lock_irqsave(&ce->guc_state.lock, flags);
4752 clr_context_pending_enable(ce);
4753 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4754 } else if (context_pending_disable(ce)) {
4755 bool banned;
4756
4757 #ifdef CONFIG_DRM_I915_SELFTEST
4758 if (unlikely(ce->drop_schedule_disable)) {
4759 ce->drop_schedule_disable = false;
4760 return 0;
4761 }
4762 #endif
4763
4764 /*
4765 * Unpin must be done before __guc_signal_context_fence,
4766 * otherwise a race exists between the requests getting
4767 * submitted + retired before this unpin completes resulting in
4768 * the pin_count going to zero and the context still being
4769 * enabled.
4770 */
4771 intel_context_sched_disable_unpin(ce);
4772
4773 spin_lock_irqsave(&ce->guc_state.lock, flags);
4774 banned = context_banned(ce);
4775 clr_context_banned(ce);
4776 clr_context_pending_disable(ce);
4777 __guc_signal_context_fence(ce);
4778 guc_blocked_fence_complete(ce);
4779 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4780
4781 if (banned) {
4782 guc_cancel_context_requests(ce);
4783 intel_engine_signal_breadcrumbs(ce->engine);
4784 }
4785 }
4786
4787 decr_outstanding_submission_g2h(guc);
4788 intel_context_put(ce);
4789
4790 return 0;
4791 }
4792
capture_error_state(struct intel_guc * guc,struct intel_context * ce)4793 static void capture_error_state(struct intel_guc *guc,
4794 struct intel_context *ce)
4795 {
4796 struct intel_gt *gt = guc_to_gt(guc);
4797 struct drm_i915_private *i915 = gt->i915;
4798 intel_wakeref_t wakeref;
4799 intel_engine_mask_t engine_mask;
4800
4801 if (intel_engine_is_virtual(ce->engine)) {
4802 struct intel_engine_cs *e;
4803 intel_engine_mask_t tmp, virtual_mask = ce->engine->mask;
4804
4805 engine_mask = 0;
4806 for_each_engine_masked(e, ce->engine->gt, virtual_mask, tmp) {
4807 bool match = intel_guc_capture_is_matching_engine(gt, ce, e);
4808
4809 if (match) {
4810 intel_engine_set_hung_context(e, ce);
4811 engine_mask |= e->mask;
4812 i915_increase_reset_engine_count(&i915->gpu_error,
4813 e);
4814 }
4815 }
4816
4817 if (!engine_mask) {
4818 guc_warn(guc, "No matching physical engine capture for virtual engine context 0x%04X / %s",
4819 ce->guc_id.id, ce->engine->name);
4820 engine_mask = ~0U;
4821 }
4822 } else {
4823 intel_engine_set_hung_context(ce->engine, ce);
4824 engine_mask = ce->engine->mask;
4825 i915_increase_reset_engine_count(&i915->gpu_error, ce->engine);
4826 }
4827
4828 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
4829 i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE);
4830 }
4831
guc_context_replay(struct intel_context * ce)4832 static void guc_context_replay(struct intel_context *ce)
4833 {
4834 struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
4835
4836 __guc_reset_context(ce, ce->engine->mask);
4837 tasklet_hi_schedule(&sched_engine->tasklet);
4838 }
4839
guc_handle_context_reset(struct intel_guc * guc,struct intel_context * ce)4840 static void guc_handle_context_reset(struct intel_guc *guc,
4841 struct intel_context *ce)
4842 {
4843 trace_intel_context_reset(ce);
4844
4845 guc_dbg(guc, "Got context reset notification: 0x%04X on %s, exiting = %s, banned = %s\n",
4846 ce->guc_id.id, ce->engine->name,
4847 str_yes_no(intel_context_is_exiting(ce)),
4848 str_yes_no(intel_context_is_banned(ce)));
4849
4850 if (likely(intel_context_is_schedulable(ce))) {
4851 capture_error_state(guc, ce);
4852 guc_context_replay(ce);
4853 } else {
4854 guc_info(guc, "Ignoring context reset notification of exiting context 0x%04X on %s",
4855 ce->guc_id.id, ce->engine->name);
4856 }
4857 }
4858
intel_guc_context_reset_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)4859 int intel_guc_context_reset_process_msg(struct intel_guc *guc,
4860 const u32 *msg, u32 len)
4861 {
4862 struct intel_context *ce;
4863 unsigned long flags;
4864 int ctx_id;
4865
4866 if (unlikely(len != 1)) {
4867 guc_err(guc, "Invalid length %u", len);
4868 return -EPROTO;
4869 }
4870
4871 ctx_id = msg[0];
4872
4873 /*
4874 * The context lookup uses the xarray but lookups only require an RCU lock
4875 * not the full spinlock. So take the lock explicitly and keep it until the
4876 * context has been reference count locked to ensure it can't be destroyed
4877 * asynchronously until the reset is done.
4878 */
4879 xa_lock_irqsave(&guc->context_lookup, flags);
4880 ce = g2h_context_lookup(guc, ctx_id);
4881 if (ce)
4882 intel_context_get(ce);
4883 xa_unlock_irqrestore(&guc->context_lookup, flags);
4884
4885 if (unlikely(!ce))
4886 return -EPROTO;
4887
4888 guc_handle_context_reset(guc, ce);
4889 intel_context_put(ce);
4890
4891 return 0;
4892 }
4893
intel_guc_error_capture_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)4894 int intel_guc_error_capture_process_msg(struct intel_guc *guc,
4895 const u32 *msg, u32 len)
4896 {
4897 u32 status;
4898
4899 if (unlikely(len != 1)) {
4900 guc_dbg(guc, "Invalid length %u", len);
4901 return -EPROTO;
4902 }
4903
4904 status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
4905 if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
4906 guc_warn(guc, "No space for error capture");
4907
4908 intel_guc_capture_process(guc);
4909
4910 return 0;
4911 }
4912
4913 struct intel_engine_cs *
intel_guc_lookup_engine(struct intel_guc * guc,u8 guc_class,u8 instance)4914 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
4915 {
4916 struct intel_gt *gt = guc_to_gt(guc);
4917 u8 engine_class = guc_class_to_engine_class(guc_class);
4918
4919 /* Class index is checked in class converter */
4920 GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);
4921
4922 return gt->engine_class[engine_class][instance];
4923 }
4924
reset_fail_worker_func(struct work_struct * w)4925 static void reset_fail_worker_func(struct work_struct *w)
4926 {
4927 struct intel_guc *guc = container_of(w, struct intel_guc,
4928 submission_state.reset_fail_worker);
4929 struct intel_gt *gt = guc_to_gt(guc);
4930 intel_engine_mask_t reset_fail_mask;
4931 unsigned long flags;
4932
4933 spin_lock_irqsave(&guc->submission_state.lock, flags);
4934 reset_fail_mask = guc->submission_state.reset_fail_mask;
4935 guc->submission_state.reset_fail_mask = 0;
4936 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
4937
4938 if (likely(reset_fail_mask)) {
4939 struct intel_engine_cs *engine;
4940 enum intel_engine_id id;
4941
4942 /*
4943 * GuC is toast at this point - it dead loops after sending the failed
4944 * reset notification. So need to manually determine the guilty context.
4945 * Note that it should be reliable to do this here because the GuC is
4946 * toast and will not be scheduling behind the KMD's back.
4947 */
4948 for_each_engine_masked(engine, gt, reset_fail_mask, id)
4949 intel_guc_find_hung_context(engine);
4950
4951 intel_gt_handle_error(gt, reset_fail_mask,
4952 I915_ERROR_CAPTURE,
4953 "GuC failed to reset engine mask=0x%x",
4954 reset_fail_mask);
4955 }
4956 }
4957
intel_guc_engine_failure_process_msg(struct intel_guc * guc,const u32 * msg,u32 len)4958 int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
4959 const u32 *msg, u32 len)
4960 {
4961 struct intel_engine_cs *engine;
4962 u8 guc_class, instance;
4963 u32 reason;
4964 unsigned long flags;
4965
4966 if (unlikely(len != 3)) {
4967 guc_err(guc, "Invalid length %u", len);
4968 return -EPROTO;
4969 }
4970
4971 guc_class = msg[0];
4972 instance = msg[1];
4973 reason = msg[2];
4974
4975 engine = intel_guc_lookup_engine(guc, guc_class, instance);
4976 if (unlikely(!engine)) {
4977 guc_err(guc, "Invalid engine %d:%d", guc_class, instance);
4978 return -EPROTO;
4979 }
4980
4981 /*
4982 * This is an unexpected failure of a hardware feature. So, log a real
4983 * error message not just the informational that comes with the reset.
4984 */
4985 guc_err(guc, "Engine reset failed on %d:%d (%s) because 0x%08X",
4986 guc_class, instance, engine->name, reason);
4987
4988 spin_lock_irqsave(&guc->submission_state.lock, flags);
4989 guc->submission_state.reset_fail_mask |= engine->mask;
4990 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
4991
4992 /*
4993 * A GT reset flushes this worker queue (G2H handler) so we must use
4994 * another worker to trigger a GT reset.
4995 */
4996 queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
4997
4998 return 0;
4999 }
5000
intel_guc_find_hung_context(struct intel_engine_cs * engine)5001 void intel_guc_find_hung_context(struct intel_engine_cs *engine)
5002 {
5003 struct intel_guc *guc = &engine->gt->uc.guc;
5004 struct intel_context *ce;
5005 struct i915_request *rq;
5006 unsigned long index;
5007 unsigned long flags;
5008
5009 /* Reset called during driver load? GuC not yet initialised! */
5010 if (unlikely(!guc_submission_initialized(guc)))
5011 return;
5012
5013 xa_lock_irqsave(&guc->context_lookup, flags);
5014 xa_for_each(&guc->context_lookup, index, ce) {
5015 bool found;
5016
5017 if (!kref_get_unless_zero(&ce->ref))
5018 continue;
5019
5020 xa_unlock(&guc->context_lookup);
5021
5022 if (!intel_context_is_pinned(ce))
5023 goto next;
5024
5025 if (intel_engine_is_virtual(ce->engine)) {
5026 if (!(ce->engine->mask & engine->mask))
5027 goto next;
5028 } else {
5029 if (ce->engine != engine)
5030 goto next;
5031 }
5032
5033 found = false;
5034 spin_lock(&ce->guc_state.lock);
5035 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
5036 if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
5037 continue;
5038
5039 found = true;
5040 break;
5041 }
5042 spin_unlock(&ce->guc_state.lock);
5043
5044 if (found) {
5045 intel_engine_set_hung_context(engine, ce);
5046
5047 /* Can only cope with one hang at a time... */
5048 intel_context_put(ce);
5049 xa_lock(&guc->context_lookup);
5050 goto done;
5051 }
5052
5053 next:
5054 intel_context_put(ce);
5055 xa_lock(&guc->context_lookup);
5056 }
5057 done:
5058 xa_unlock_irqrestore(&guc->context_lookup, flags);
5059 }
5060
intel_guc_dump_active_requests(struct intel_engine_cs * engine,struct i915_request * hung_rq,struct drm_printer * m)5061 void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
5062 struct i915_request *hung_rq,
5063 struct drm_printer *m)
5064 {
5065 struct intel_guc *guc = &engine->gt->uc.guc;
5066 struct intel_context *ce;
5067 unsigned long index;
5068 unsigned long flags;
5069
5070 /* Reset called during driver load? GuC not yet initialised! */
5071 if (unlikely(!guc_submission_initialized(guc)))
5072 return;
5073
5074 xa_lock_irqsave(&guc->context_lookup, flags);
5075 xa_for_each(&guc->context_lookup, index, ce) {
5076 if (!kref_get_unless_zero(&ce->ref))
5077 continue;
5078
5079 xa_unlock(&guc->context_lookup);
5080
5081 if (!intel_context_is_pinned(ce))
5082 goto next;
5083
5084 if (intel_engine_is_virtual(ce->engine)) {
5085 if (!(ce->engine->mask & engine->mask))
5086 goto next;
5087 } else {
5088 if (ce->engine != engine)
5089 goto next;
5090 }
5091
5092 spin_lock(&ce->guc_state.lock);
5093 intel_engine_dump_active_requests(&ce->guc_state.requests,
5094 hung_rq, m);
5095 spin_unlock(&ce->guc_state.lock);
5096
5097 next:
5098 intel_context_put(ce);
5099 xa_lock(&guc->context_lookup);
5100 }
5101 xa_unlock_irqrestore(&guc->context_lookup, flags);
5102 }
5103
intel_guc_submission_print_info(struct intel_guc * guc,struct drm_printer * p)5104 void intel_guc_submission_print_info(struct intel_guc *guc,
5105 struct drm_printer *p)
5106 {
5107 struct i915_sched_engine *sched_engine = guc->sched_engine;
5108 struct rb_node *rb;
5109 unsigned long flags;
5110
5111 if (!sched_engine)
5112 return;
5113
5114 drm_printf(p, "GuC Submission API Version: %d.%d.%d\n",
5115 guc->submission_version.major, guc->submission_version.minor,
5116 guc->submission_version.patch);
5117 drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
5118 atomic_read(&guc->outstanding_submission_g2h));
5119 drm_printf(p, "GuC tasklet count: %u\n",
5120 atomic_read(&sched_engine->tasklet.count));
5121
5122 spin_lock_irqsave(&sched_engine->lock, flags);
5123 drm_printf(p, "Requests in GuC submit tasklet:\n");
5124 for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
5125 struct i915_priolist *pl = to_priolist(rb);
5126 struct i915_request *rq;
5127
5128 priolist_for_each_request(rq, pl)
5129 drm_printf(p, "guc_id=%u, seqno=%llu\n",
5130 rq->context->guc_id.id,
5131 rq->fence.seqno);
5132 }
5133 spin_unlock_irqrestore(&sched_engine->lock, flags);
5134 drm_printf(p, "\n");
5135 }
5136
guc_log_context_priority(struct drm_printer * p,struct intel_context * ce)5137 static inline void guc_log_context_priority(struct drm_printer *p,
5138 struct intel_context *ce)
5139 {
5140 int i;
5141
5142 drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
5143 drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
5144 for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
5145 i < GUC_CLIENT_PRIORITY_NUM; ++i) {
5146 drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
5147 i, ce->guc_state.prio_count[i]);
5148 }
5149 drm_printf(p, "\n");
5150 }
5151
guc_log_context(struct drm_printer * p,struct intel_context * ce)5152 static inline void guc_log_context(struct drm_printer *p,
5153 struct intel_context *ce)
5154 {
5155 drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
5156 drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
5157 drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
5158 ce->ring->head,
5159 ce->lrc_reg_state[CTX_RING_HEAD]);
5160 drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
5161 ce->ring->tail,
5162 ce->lrc_reg_state[CTX_RING_TAIL]);
5163 drm_printf(p, "\t\tContext Pin Count: %u\n",
5164 atomic_read(&ce->pin_count));
5165 drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
5166 atomic_read(&ce->guc_id.ref));
5167 drm_printf(p, "\t\tSchedule State: 0x%x\n",
5168 ce->guc_state.sched_state);
5169 }
5170
intel_guc_submission_print_context_info(struct intel_guc * guc,struct drm_printer * p)5171 void intel_guc_submission_print_context_info(struct intel_guc *guc,
5172 struct drm_printer *p)
5173 {
5174 struct intel_context *ce;
5175 unsigned long index;
5176 unsigned long flags;
5177
5178 xa_lock_irqsave(&guc->context_lookup, flags);
5179 xa_for_each(&guc->context_lookup, index, ce) {
5180 GEM_BUG_ON(intel_context_is_child(ce));
5181
5182 guc_log_context(p, ce);
5183 guc_log_context_priority(p, ce);
5184
5185 if (intel_context_is_parent(ce)) {
5186 struct intel_context *child;
5187
5188 drm_printf(p, "\t\tNumber children: %u\n",
5189 ce->parallel.number_children);
5190
5191 if (ce->parallel.guc.wq_status) {
5192 drm_printf(p, "\t\tWQI Head: %u\n",
5193 READ_ONCE(*ce->parallel.guc.wq_head));
5194 drm_printf(p, "\t\tWQI Tail: %u\n",
5195 READ_ONCE(*ce->parallel.guc.wq_tail));
5196 drm_printf(p, "\t\tWQI Status: %u\n",
5197 READ_ONCE(*ce->parallel.guc.wq_status));
5198 }
5199
5200 if (ce->engine->emit_bb_start ==
5201 emit_bb_start_parent_no_preempt_mid_batch) {
5202 u8 i;
5203
5204 drm_printf(p, "\t\tChildren Go: %u\n",
5205 get_children_go_value(ce));
5206 for (i = 0; i < ce->parallel.number_children; ++i)
5207 drm_printf(p, "\t\tChildren Join: %u\n",
5208 get_children_join_value(ce, i));
5209 }
5210
5211 for_each_child(ce, child)
5212 guc_log_context(p, child);
5213 }
5214 }
5215 xa_unlock_irqrestore(&guc->context_lookup, flags);
5216 }
5217
get_children_go_addr(struct intel_context * ce)5218 static inline u32 get_children_go_addr(struct intel_context *ce)
5219 {
5220 GEM_BUG_ON(!intel_context_is_parent(ce));
5221
5222 return i915_ggtt_offset(ce->state) +
5223 __get_parent_scratch_offset(ce) +
5224 offsetof(struct parent_scratch, go.semaphore);
5225 }
5226
get_children_join_addr(struct intel_context * ce,u8 child_index)5227 static inline u32 get_children_join_addr(struct intel_context *ce,
5228 u8 child_index)
5229 {
5230 GEM_BUG_ON(!intel_context_is_parent(ce));
5231
5232 return i915_ggtt_offset(ce->state) +
5233 __get_parent_scratch_offset(ce) +
5234 offsetof(struct parent_scratch, join[child_index].semaphore);
5235 }
5236
5237 #define PARENT_GO_BB 1
5238 #define PARENT_GO_FINI_BREADCRUMB 0
5239 #define CHILD_GO_BB 1
5240 #define CHILD_GO_FINI_BREADCRUMB 0
emit_bb_start_parent_no_preempt_mid_batch(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)5241 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
5242 u64 offset, u32 len,
5243 const unsigned int flags)
5244 {
5245 struct intel_context *ce = rq->context;
5246 u32 *cs;
5247 u8 i;
5248
5249 GEM_BUG_ON(!intel_context_is_parent(ce));
5250
5251 cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
5252 if (IS_ERR(cs))
5253 return PTR_ERR(cs);
5254
5255 /* Wait on children */
5256 for (i = 0; i < ce->parallel.number_children; ++i) {
5257 *cs++ = (MI_SEMAPHORE_WAIT |
5258 MI_SEMAPHORE_GLOBAL_GTT |
5259 MI_SEMAPHORE_POLL |
5260 MI_SEMAPHORE_SAD_EQ_SDD);
5261 *cs++ = PARENT_GO_BB;
5262 *cs++ = get_children_join_addr(ce, i);
5263 *cs++ = 0;
5264 }
5265
5266 /* Turn off preemption */
5267 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5268 *cs++ = MI_NOOP;
5269
5270 /* Tell children go */
5271 cs = gen8_emit_ggtt_write(cs,
5272 CHILD_GO_BB,
5273 get_children_go_addr(ce),
5274 0);
5275
5276 /* Jump to batch */
5277 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
5278 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5279 *cs++ = lower_32_bits(offset);
5280 *cs++ = upper_32_bits(offset);
5281 *cs++ = MI_NOOP;
5282
5283 intel_ring_advance(rq, cs);
5284
5285 return 0;
5286 }
5287
emit_bb_start_child_no_preempt_mid_batch(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)5288 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
5289 u64 offset, u32 len,
5290 const unsigned int flags)
5291 {
5292 struct intel_context *ce = rq->context;
5293 struct intel_context *parent = intel_context_to_parent(ce);
5294 u32 *cs;
5295
5296 GEM_BUG_ON(!intel_context_is_child(ce));
5297
5298 cs = intel_ring_begin(rq, 12);
5299 if (IS_ERR(cs))
5300 return PTR_ERR(cs);
5301
5302 /* Signal parent */
5303 cs = gen8_emit_ggtt_write(cs,
5304 PARENT_GO_BB,
5305 get_children_join_addr(parent,
5306 ce->parallel.child_index),
5307 0);
5308
5309 /* Wait on parent for go */
5310 *cs++ = (MI_SEMAPHORE_WAIT |
5311 MI_SEMAPHORE_GLOBAL_GTT |
5312 MI_SEMAPHORE_POLL |
5313 MI_SEMAPHORE_SAD_EQ_SDD);
5314 *cs++ = CHILD_GO_BB;
5315 *cs++ = get_children_go_addr(parent);
5316 *cs++ = 0;
5317
5318 /* Turn off preemption */
5319 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5320
5321 /* Jump to batch */
5322 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
5323 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5324 *cs++ = lower_32_bits(offset);
5325 *cs++ = upper_32_bits(offset);
5326
5327 intel_ring_advance(rq, cs);
5328
5329 return 0;
5330 }
5331
5332 static u32 *
__emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5333 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5334 u32 *cs)
5335 {
5336 struct intel_context *ce = rq->context;
5337 u8 i;
5338
5339 GEM_BUG_ON(!intel_context_is_parent(ce));
5340
5341 /* Wait on children */
5342 for (i = 0; i < ce->parallel.number_children; ++i) {
5343 *cs++ = (MI_SEMAPHORE_WAIT |
5344 MI_SEMAPHORE_GLOBAL_GTT |
5345 MI_SEMAPHORE_POLL |
5346 MI_SEMAPHORE_SAD_EQ_SDD);
5347 *cs++ = PARENT_GO_FINI_BREADCRUMB;
5348 *cs++ = get_children_join_addr(ce, i);
5349 *cs++ = 0;
5350 }
5351
5352 /* Turn on preemption */
5353 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5354 *cs++ = MI_NOOP;
5355
5356 /* Tell children go */
5357 cs = gen8_emit_ggtt_write(cs,
5358 CHILD_GO_FINI_BREADCRUMB,
5359 get_children_go_addr(ce),
5360 0);
5361
5362 return cs;
5363 }
5364
5365 /*
5366 * If this true, a submission of multi-lrc requests had an error and the
5367 * requests need to be skipped. The front end (execuf IOCTL) should've called
5368 * i915_request_skip which squashes the BB but we still need to emit the fini
5369 * breadrcrumbs seqno write. At this point we don't know how many of the
5370 * requests in the multi-lrc submission were generated so we can't do the
5371 * handshake between the parent and children (e.g. if 4 requests should be
5372 * generated but 2nd hit an error only 1 would be seen by the GuC backend).
5373 * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
5374 * has occurred on any of the requests in submission / relationship.
5375 */
skip_handshake(struct i915_request * rq)5376 static inline bool skip_handshake(struct i915_request *rq)
5377 {
5378 return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
5379 }
5380
5381 #define NON_SKIP_LEN 6
5382 static u32 *
emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5383 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5384 u32 *cs)
5385 {
5386 struct intel_context *ce = rq->context;
5387 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5388 __maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5389
5390 GEM_BUG_ON(!intel_context_is_parent(ce));
5391
5392 if (unlikely(skip_handshake(rq))) {
5393 /*
5394 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
5395 * the NON_SKIP_LEN comes from the length of the emits below.
5396 */
5397 memset(cs, 0, sizeof(u32) *
5398 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5399 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5400 } else {
5401 cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
5402 }
5403
5404 /* Emit fini breadcrumb */
5405 before_fini_breadcrumb_user_interrupt_cs = cs;
5406 cs = gen8_emit_ggtt_write(cs,
5407 rq->fence.seqno,
5408 i915_request_active_timeline(rq)->hwsp_offset,
5409 0);
5410
5411 /* User interrupt */
5412 *cs++ = MI_USER_INTERRUPT;
5413 *cs++ = MI_NOOP;
5414
5415 /* Ensure our math for skip + emit is correct */
5416 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5417 cs);
5418 GEM_BUG_ON(start_fini_breadcrumb_cs +
5419 ce->engine->emit_fini_breadcrumb_dw != cs);
5420
5421 rq->tail = intel_ring_offset(rq, cs);
5422
5423 return cs;
5424 }
5425
5426 static u32 *
__emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5427 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5428 u32 *cs)
5429 {
5430 struct intel_context *ce = rq->context;
5431 struct intel_context *parent = intel_context_to_parent(ce);
5432
5433 GEM_BUG_ON(!intel_context_is_child(ce));
5434
5435 /* Turn on preemption */
5436 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5437 *cs++ = MI_NOOP;
5438
5439 /* Signal parent */
5440 cs = gen8_emit_ggtt_write(cs,
5441 PARENT_GO_FINI_BREADCRUMB,
5442 get_children_join_addr(parent,
5443 ce->parallel.child_index),
5444 0);
5445
5446 /* Wait parent on for go */
5447 *cs++ = (MI_SEMAPHORE_WAIT |
5448 MI_SEMAPHORE_GLOBAL_GTT |
5449 MI_SEMAPHORE_POLL |
5450 MI_SEMAPHORE_SAD_EQ_SDD);
5451 *cs++ = CHILD_GO_FINI_BREADCRUMB;
5452 *cs++ = get_children_go_addr(parent);
5453 *cs++ = 0;
5454
5455 return cs;
5456 }
5457
5458 static u32 *
emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request * rq,u32 * cs)5459 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5460 u32 *cs)
5461 {
5462 struct intel_context *ce = rq->context;
5463 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5464 __maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5465
5466 GEM_BUG_ON(!intel_context_is_child(ce));
5467
5468 if (unlikely(skip_handshake(rq))) {
5469 /*
5470 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
5471 * the NON_SKIP_LEN comes from the length of the emits below.
5472 */
5473 memset(cs, 0, sizeof(u32) *
5474 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5475 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5476 } else {
5477 cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
5478 }
5479
5480 /* Emit fini breadcrumb */
5481 before_fini_breadcrumb_user_interrupt_cs = cs;
5482 cs = gen8_emit_ggtt_write(cs,
5483 rq->fence.seqno,
5484 i915_request_active_timeline(rq)->hwsp_offset,
5485 0);
5486
5487 /* User interrupt */
5488 *cs++ = MI_USER_INTERRUPT;
5489 *cs++ = MI_NOOP;
5490
5491 /* Ensure our math for skip + emit is correct */
5492 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5493 cs);
5494 GEM_BUG_ON(start_fini_breadcrumb_cs +
5495 ce->engine->emit_fini_breadcrumb_dw != cs);
5496
5497 rq->tail = intel_ring_offset(rq, cs);
5498
5499 return cs;
5500 }
5501
5502 #undef NON_SKIP_LEN
5503
5504 static struct intel_context *
guc_create_virtual(struct intel_engine_cs ** siblings,unsigned int count,unsigned long flags)5505 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
5506 unsigned long flags)
5507 {
5508 struct guc_virtual_engine *ve;
5509 struct intel_guc *guc;
5510 unsigned int n;
5511 int err;
5512
5513 ve = kzalloc(sizeof(*ve), GFP_KERNEL);
5514 if (!ve)
5515 return ERR_PTR(-ENOMEM);
5516
5517 guc = &siblings[0]->gt->uc.guc;
5518
5519 ve->base.i915 = siblings[0]->i915;
5520 ve->base.gt = siblings[0]->gt;
5521 ve->base.uncore = siblings[0]->uncore;
5522 ve->base.id = -1;
5523
5524 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
5525 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5526 ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5527 ve->base.saturated = ALL_ENGINES;
5528
5529 snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
5530
5531 ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);
5532
5533 ve->base.cops = &virtual_guc_context_ops;
5534 ve->base.request_alloc = guc_request_alloc;
5535 ve->base.bump_serial = virtual_guc_bump_serial;
5536
5537 ve->base.submit_request = guc_submit_request;
5538
5539 ve->base.flags = I915_ENGINE_IS_VIRTUAL;
5540
5541 BUILD_BUG_ON(ilog2(VIRTUAL_ENGINES) < I915_NUM_ENGINES);
5542 ve->base.mask = VIRTUAL_ENGINES;
5543
5544 intel_context_init(&ve->context, &ve->base);
5545
5546 for (n = 0; n < count; n++) {
5547 struct intel_engine_cs *sibling = siblings[n];
5548
5549 GEM_BUG_ON(!is_power_of_2(sibling->mask));
5550 if (sibling->mask & ve->base.mask) {
5551 guc_dbg(guc, "duplicate %s entry in load balancer\n",
5552 sibling->name);
5553 err = -EINVAL;
5554 goto err_put;
5555 }
5556
5557 ve->base.mask |= sibling->mask;
5558 ve->base.logical_mask |= sibling->logical_mask;
5559
5560 if (n != 0 && ve->base.class != sibling->class) {
5561 guc_dbg(guc, "invalid mixing of engine class, sibling %d, already %d\n",
5562 sibling->class, ve->base.class);
5563 err = -EINVAL;
5564 goto err_put;
5565 } else if (n == 0) {
5566 ve->base.class = sibling->class;
5567 ve->base.uabi_class = sibling->uabi_class;
5568 snprintf(ve->base.name, sizeof(ve->base.name),
5569 "v%dx%d", ve->base.class, count);
5570 ve->base.context_size = sibling->context_size;
5571
5572 ve->base.add_active_request =
5573 sibling->add_active_request;
5574 ve->base.remove_active_request =
5575 sibling->remove_active_request;
5576 ve->base.emit_bb_start = sibling->emit_bb_start;
5577 ve->base.emit_flush = sibling->emit_flush;
5578 ve->base.emit_init_breadcrumb =
5579 sibling->emit_init_breadcrumb;
5580 ve->base.emit_fini_breadcrumb =
5581 sibling->emit_fini_breadcrumb;
5582 ve->base.emit_fini_breadcrumb_dw =
5583 sibling->emit_fini_breadcrumb_dw;
5584 ve->base.breadcrumbs =
5585 intel_breadcrumbs_get(sibling->breadcrumbs);
5586
5587 ve->base.flags |= sibling->flags;
5588
5589 ve->base.props.timeslice_duration_ms =
5590 sibling->props.timeslice_duration_ms;
5591 ve->base.props.preempt_timeout_ms =
5592 sibling->props.preempt_timeout_ms;
5593 }
5594 }
5595
5596 return &ve->context;
5597
5598 err_put:
5599 intel_context_put(&ve->context);
5600 return ERR_PTR(err);
5601 }
5602
intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs * ve)5603 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
5604 {
5605 struct intel_engine_cs *engine;
5606 intel_engine_mask_t tmp, mask = ve->mask;
5607
5608 for_each_engine_masked(engine, ve->gt, mask, tmp)
5609 if (READ_ONCE(engine->props.heartbeat_interval_ms))
5610 return true;
5611
5612 return false;
5613 }
5614
5615 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5616 #include "selftest_guc.c"
5617 #include "selftest_guc_multi_lrc.c"
5618 #include "selftest_guc_hangcheck.c"
5619 #endif
5620