1 // SPDX-License-Identifier: GPL-2.0-only
2 /* CAN driver for Geschwister Schneider USB/CAN devices
3 * and bytewerk.org candleLight USB CAN interfaces.
4 *
5 * Copyright (C) 2013-2016 Geschwister Schneider Technologie-,
6 * Entwicklungs- und Vertriebs UG (Haftungsbeschränkt).
7 * Copyright (C) 2016 Hubert Denkmair
8 * Copyright (c) 2023 Pengutronix, Marc Kleine-Budde <kernel@pengutronix.de>
9 *
10 * Many thanks to all socketcan devs!
11 */
12
13 #include <linux/bitfield.h>
14 #include <linux/clocksource.h>
15 #include <linux/ethtool.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/netdevice.h>
19 #include <linux/signal.h>
20 #include <linux/timecounter.h>
21 #include <linux/units.h>
22 #include <linux/usb.h>
23 #include <linux/workqueue.h>
24
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/error.h>
28 #include <linux/can/rx-offload.h>
29
30 /* Device specific constants */
31 #define USB_GS_USB_1_VENDOR_ID 0x1d50
32 #define USB_GS_USB_1_PRODUCT_ID 0x606f
33
34 #define USB_CANDLELIGHT_VENDOR_ID 0x1209
35 #define USB_CANDLELIGHT_PRODUCT_ID 0x2323
36
37 #define USB_CES_CANEXT_FD_VENDOR_ID 0x1cd2
38 #define USB_CES_CANEXT_FD_PRODUCT_ID 0x606f
39
40 #define USB_ABE_CANDEBUGGER_FD_VENDOR_ID 0x16d0
41 #define USB_ABE_CANDEBUGGER_FD_PRODUCT_ID 0x10b8
42
43 #define GS_USB_ENDPOINT_IN 1
44 #define GS_USB_ENDPOINT_OUT 2
45
46 /* Timestamp 32 bit timer runs at 1 MHz (1 µs tick). Worker accounts
47 * for timer overflow (will be after ~71 minutes)
48 */
49 #define GS_USB_TIMESTAMP_TIMER_HZ (1 * HZ_PER_MHZ)
50 #define GS_USB_TIMESTAMP_WORK_DELAY_SEC 1800
51 static_assert(GS_USB_TIMESTAMP_WORK_DELAY_SEC <
52 CYCLECOUNTER_MASK(32) / GS_USB_TIMESTAMP_TIMER_HZ / 2);
53
54 /* Device specific constants */
55 enum gs_usb_breq {
56 GS_USB_BREQ_HOST_FORMAT = 0,
57 GS_USB_BREQ_BITTIMING,
58 GS_USB_BREQ_MODE,
59 GS_USB_BREQ_BERR,
60 GS_USB_BREQ_BT_CONST,
61 GS_USB_BREQ_DEVICE_CONFIG,
62 GS_USB_BREQ_TIMESTAMP,
63 GS_USB_BREQ_IDENTIFY,
64 GS_USB_BREQ_GET_USER_ID,
65 GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING = GS_USB_BREQ_GET_USER_ID,
66 GS_USB_BREQ_SET_USER_ID,
67 GS_USB_BREQ_DATA_BITTIMING,
68 GS_USB_BREQ_BT_CONST_EXT,
69 GS_USB_BREQ_SET_TERMINATION,
70 GS_USB_BREQ_GET_TERMINATION,
71 GS_USB_BREQ_GET_STATE,
72 };
73
74 enum gs_can_mode {
75 /* reset a channel. turns it off */
76 GS_CAN_MODE_RESET = 0,
77 /* starts a channel */
78 GS_CAN_MODE_START
79 };
80
81 enum gs_can_state {
82 GS_CAN_STATE_ERROR_ACTIVE = 0,
83 GS_CAN_STATE_ERROR_WARNING,
84 GS_CAN_STATE_ERROR_PASSIVE,
85 GS_CAN_STATE_BUS_OFF,
86 GS_CAN_STATE_STOPPED,
87 GS_CAN_STATE_SLEEPING
88 };
89
90 enum gs_can_identify_mode {
91 GS_CAN_IDENTIFY_OFF = 0,
92 GS_CAN_IDENTIFY_ON
93 };
94
95 enum gs_can_termination_state {
96 GS_CAN_TERMINATION_STATE_OFF = 0,
97 GS_CAN_TERMINATION_STATE_ON
98 };
99
100 #define GS_USB_TERMINATION_DISABLED CAN_TERMINATION_DISABLED
101 #define GS_USB_TERMINATION_ENABLED 120
102
103 /* data types passed between host and device */
104
105 /* The firmware on the original USB2CAN by Geschwister Schneider
106 * Technologie Entwicklungs- und Vertriebs UG exchanges all data
107 * between the host and the device in host byte order. This is done
108 * with the struct gs_host_config::byte_order member, which is sent
109 * first to indicate the desired byte order.
110 *
111 * The widely used open source firmware candleLight doesn't support
112 * this feature and exchanges the data in little endian byte order.
113 */
114 struct gs_host_config {
115 __le32 byte_order;
116 } __packed;
117
118 struct gs_device_config {
119 u8 reserved1;
120 u8 reserved2;
121 u8 reserved3;
122 u8 icount;
123 __le32 sw_version;
124 __le32 hw_version;
125 } __packed;
126
127 #define GS_CAN_MODE_NORMAL 0
128 #define GS_CAN_MODE_LISTEN_ONLY BIT(0)
129 #define GS_CAN_MODE_LOOP_BACK BIT(1)
130 #define GS_CAN_MODE_TRIPLE_SAMPLE BIT(2)
131 #define GS_CAN_MODE_ONE_SHOT BIT(3)
132 #define GS_CAN_MODE_HW_TIMESTAMP BIT(4)
133 /* GS_CAN_FEATURE_IDENTIFY BIT(5) */
134 /* GS_CAN_FEATURE_USER_ID BIT(6) */
135 #define GS_CAN_MODE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
136 #define GS_CAN_MODE_FD BIT(8)
137 /* GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9) */
138 /* GS_CAN_FEATURE_BT_CONST_EXT BIT(10) */
139 /* GS_CAN_FEATURE_TERMINATION BIT(11) */
140 #define GS_CAN_MODE_BERR_REPORTING BIT(12)
141 /* GS_CAN_FEATURE_GET_STATE BIT(13) */
142
143 struct gs_device_mode {
144 __le32 mode;
145 __le32 flags;
146 } __packed;
147
148 struct gs_device_state {
149 __le32 state;
150 __le32 rxerr;
151 __le32 txerr;
152 } __packed;
153
154 struct gs_device_bittiming {
155 __le32 prop_seg;
156 __le32 phase_seg1;
157 __le32 phase_seg2;
158 __le32 sjw;
159 __le32 brp;
160 } __packed;
161
162 struct gs_identify_mode {
163 __le32 mode;
164 } __packed;
165
166 struct gs_device_termination_state {
167 __le32 state;
168 } __packed;
169
170 #define GS_CAN_FEATURE_LISTEN_ONLY BIT(0)
171 #define GS_CAN_FEATURE_LOOP_BACK BIT(1)
172 #define GS_CAN_FEATURE_TRIPLE_SAMPLE BIT(2)
173 #define GS_CAN_FEATURE_ONE_SHOT BIT(3)
174 #define GS_CAN_FEATURE_HW_TIMESTAMP BIT(4)
175 #define GS_CAN_FEATURE_IDENTIFY BIT(5)
176 #define GS_CAN_FEATURE_USER_ID BIT(6)
177 #define GS_CAN_FEATURE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
178 #define GS_CAN_FEATURE_FD BIT(8)
179 #define GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9)
180 #define GS_CAN_FEATURE_BT_CONST_EXT BIT(10)
181 #define GS_CAN_FEATURE_TERMINATION BIT(11)
182 #define GS_CAN_FEATURE_BERR_REPORTING BIT(12)
183 #define GS_CAN_FEATURE_GET_STATE BIT(13)
184 #define GS_CAN_FEATURE_MASK GENMASK(13, 0)
185
186 /* internal quirks - keep in GS_CAN_FEATURE space for now */
187
188 /* CANtact Pro original firmware:
189 * BREQ DATA_BITTIMING overlaps with GET_USER_ID
190 */
191 #define GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO BIT(31)
192
193 struct gs_device_bt_const {
194 __le32 feature;
195 __le32 fclk_can;
196 __le32 tseg1_min;
197 __le32 tseg1_max;
198 __le32 tseg2_min;
199 __le32 tseg2_max;
200 __le32 sjw_max;
201 __le32 brp_min;
202 __le32 brp_max;
203 __le32 brp_inc;
204 } __packed;
205
206 struct gs_device_bt_const_extended {
207 __le32 feature;
208 __le32 fclk_can;
209 __le32 tseg1_min;
210 __le32 tseg1_max;
211 __le32 tseg2_min;
212 __le32 tseg2_max;
213 __le32 sjw_max;
214 __le32 brp_min;
215 __le32 brp_max;
216 __le32 brp_inc;
217
218 __le32 dtseg1_min;
219 __le32 dtseg1_max;
220 __le32 dtseg2_min;
221 __le32 dtseg2_max;
222 __le32 dsjw_max;
223 __le32 dbrp_min;
224 __le32 dbrp_max;
225 __le32 dbrp_inc;
226 } __packed;
227
228 #define GS_CAN_FLAG_OVERFLOW BIT(0)
229 #define GS_CAN_FLAG_FD BIT(1)
230 #define GS_CAN_FLAG_BRS BIT(2)
231 #define GS_CAN_FLAG_ESI BIT(3)
232
233 struct classic_can {
234 u8 data[8];
235 } __packed;
236
237 struct classic_can_ts {
238 u8 data[8];
239 __le32 timestamp_us;
240 } __packed;
241
242 struct classic_can_quirk {
243 u8 data[8];
244 u8 quirk;
245 } __packed;
246
247 struct canfd {
248 u8 data[64];
249 } __packed;
250
251 struct canfd_ts {
252 u8 data[64];
253 __le32 timestamp_us;
254 } __packed;
255
256 struct canfd_quirk {
257 u8 data[64];
258 u8 quirk;
259 } __packed;
260
261 struct gs_host_frame {
262 u32 echo_id;
263 __le32 can_id;
264
265 u8 can_dlc;
266 u8 channel;
267 u8 flags;
268 u8 reserved;
269
270 union {
271 DECLARE_FLEX_ARRAY(struct classic_can, classic_can);
272 DECLARE_FLEX_ARRAY(struct classic_can_ts, classic_can_ts);
273 DECLARE_FLEX_ARRAY(struct classic_can_quirk, classic_can_quirk);
274 DECLARE_FLEX_ARRAY(struct canfd, canfd);
275 DECLARE_FLEX_ARRAY(struct canfd_ts, canfd_ts);
276 DECLARE_FLEX_ARRAY(struct canfd_quirk, canfd_quirk);
277 };
278 } __packed;
279 /* The GS USB devices make use of the same flags and masks as in
280 * linux/can.h and linux/can/error.h, and no additional mapping is necessary.
281 */
282
283 /* Only send a max of GS_MAX_TX_URBS frames per channel at a time. */
284 #define GS_MAX_TX_URBS 10
285 /* Only launch a max of GS_MAX_RX_URBS usb requests at a time. */
286 #define GS_MAX_RX_URBS 30
287 #define GS_NAPI_WEIGHT 32
288
289 /* Maximum number of interfaces the driver supports per device.
290 * Current hardware only supports 3 interfaces. The future may vary.
291 */
292 #define GS_MAX_INTF 3
293
294 struct gs_tx_context {
295 struct gs_can *dev;
296 unsigned int echo_id;
297 };
298
299 struct gs_can {
300 struct can_priv can; /* must be the first member */
301
302 struct can_rx_offload offload;
303 struct gs_usb *parent;
304
305 struct net_device *netdev;
306 struct usb_device *udev;
307
308 struct can_bittiming_const bt_const, data_bt_const;
309 unsigned int channel; /* channel number */
310
311 u32 feature;
312 unsigned int hf_size_tx;
313
314 /* This lock prevents a race condition between xmit and receive. */
315 spinlock_t tx_ctx_lock;
316 struct gs_tx_context tx_context[GS_MAX_TX_URBS];
317
318 struct usb_anchor tx_submitted;
319 atomic_t active_tx_urbs;
320 };
321
322 /* usb interface struct */
323 struct gs_usb {
324 struct gs_can *canch[GS_MAX_INTF];
325 struct usb_anchor rx_submitted;
326 struct usb_device *udev;
327
328 /* time counter for hardware timestamps */
329 struct cyclecounter cc;
330 struct timecounter tc;
331 spinlock_t tc_lock; /* spinlock to guard access tc->cycle_last */
332 struct delayed_work timestamp;
333
334 unsigned int hf_size_rx;
335 u8 active_channels;
336 };
337
338 /* 'allocate' a tx context.
339 * returns a valid tx context or NULL if there is no space.
340 */
gs_alloc_tx_context(struct gs_can * dev)341 static struct gs_tx_context *gs_alloc_tx_context(struct gs_can *dev)
342 {
343 int i = 0;
344 unsigned long flags;
345
346 spin_lock_irqsave(&dev->tx_ctx_lock, flags);
347
348 for (; i < GS_MAX_TX_URBS; i++) {
349 if (dev->tx_context[i].echo_id == GS_MAX_TX_URBS) {
350 dev->tx_context[i].echo_id = i;
351 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
352 return &dev->tx_context[i];
353 }
354 }
355
356 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
357 return NULL;
358 }
359
360 /* releases a tx context
361 */
gs_free_tx_context(struct gs_tx_context * txc)362 static void gs_free_tx_context(struct gs_tx_context *txc)
363 {
364 txc->echo_id = GS_MAX_TX_URBS;
365 }
366
367 /* Get a tx context by id.
368 */
gs_get_tx_context(struct gs_can * dev,unsigned int id)369 static struct gs_tx_context *gs_get_tx_context(struct gs_can *dev,
370 unsigned int id)
371 {
372 unsigned long flags;
373
374 if (id < GS_MAX_TX_URBS) {
375 spin_lock_irqsave(&dev->tx_ctx_lock, flags);
376 if (dev->tx_context[id].echo_id == id) {
377 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
378 return &dev->tx_context[id];
379 }
380 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
381 }
382 return NULL;
383 }
384
gs_cmd_reset(struct gs_can * dev)385 static int gs_cmd_reset(struct gs_can *dev)
386 {
387 struct gs_device_mode dm = {
388 .mode = GS_CAN_MODE_RESET,
389 };
390
391 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE,
392 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
393 dev->channel, 0, &dm, sizeof(dm), 1000,
394 GFP_KERNEL);
395 }
396
gs_usb_get_timestamp(const struct gs_usb * parent,u32 * timestamp_p)397 static inline int gs_usb_get_timestamp(const struct gs_usb *parent,
398 u32 *timestamp_p)
399 {
400 __le32 timestamp;
401 int rc;
402
403 rc = usb_control_msg_recv(parent->udev, 0, GS_USB_BREQ_TIMESTAMP,
404 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
405 0, 0,
406 ×tamp, sizeof(timestamp),
407 USB_CTRL_GET_TIMEOUT,
408 GFP_KERNEL);
409 if (rc)
410 return rc;
411
412 *timestamp_p = le32_to_cpu(timestamp);
413
414 return 0;
415 }
416
gs_usb_timestamp_read(const struct cyclecounter * cc)417 static u64 gs_usb_timestamp_read(const struct cyclecounter *cc) __must_hold(&dev->tc_lock)
418 {
419 struct gs_usb *parent = container_of(cc, struct gs_usb, cc);
420 u32 timestamp = 0;
421 int err;
422
423 lockdep_assert_held(&parent->tc_lock);
424
425 /* drop lock for synchronous USB transfer */
426 spin_unlock_bh(&parent->tc_lock);
427 err = gs_usb_get_timestamp(parent, ×tamp);
428 spin_lock_bh(&parent->tc_lock);
429 if (err)
430 dev_err(&parent->udev->dev,
431 "Error %d while reading timestamp. HW timestamps may be inaccurate.",
432 err);
433
434 return timestamp;
435 }
436
gs_usb_timestamp_work(struct work_struct * work)437 static void gs_usb_timestamp_work(struct work_struct *work)
438 {
439 struct delayed_work *delayed_work = to_delayed_work(work);
440 struct gs_usb *parent;
441
442 parent = container_of(delayed_work, struct gs_usb, timestamp);
443 spin_lock_bh(&parent->tc_lock);
444 timecounter_read(&parent->tc);
445 spin_unlock_bh(&parent->tc_lock);
446
447 schedule_delayed_work(&parent->timestamp,
448 GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
449 }
450
gs_usb_skb_set_timestamp(struct gs_can * dev,struct sk_buff * skb,u32 timestamp)451 static void gs_usb_skb_set_timestamp(struct gs_can *dev,
452 struct sk_buff *skb, u32 timestamp)
453 {
454 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
455 struct gs_usb *parent = dev->parent;
456 u64 ns;
457
458 spin_lock_bh(&parent->tc_lock);
459 ns = timecounter_cyc2time(&parent->tc, timestamp);
460 spin_unlock_bh(&parent->tc_lock);
461
462 hwtstamps->hwtstamp = ns_to_ktime(ns);
463 }
464
gs_usb_timestamp_init(struct gs_usb * parent)465 static void gs_usb_timestamp_init(struct gs_usb *parent)
466 {
467 struct cyclecounter *cc = &parent->cc;
468
469 cc->read = gs_usb_timestamp_read;
470 cc->mask = CYCLECOUNTER_MASK(32);
471 cc->shift = 32 - bits_per(NSEC_PER_SEC / GS_USB_TIMESTAMP_TIMER_HZ);
472 cc->mult = clocksource_hz2mult(GS_USB_TIMESTAMP_TIMER_HZ, cc->shift);
473
474 spin_lock_init(&parent->tc_lock);
475 spin_lock_bh(&parent->tc_lock);
476 timecounter_init(&parent->tc, &parent->cc, ktime_get_real_ns());
477 spin_unlock_bh(&parent->tc_lock);
478
479 INIT_DELAYED_WORK(&parent->timestamp, gs_usb_timestamp_work);
480 schedule_delayed_work(&parent->timestamp,
481 GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
482 }
483
gs_usb_timestamp_stop(struct gs_usb * parent)484 static void gs_usb_timestamp_stop(struct gs_usb *parent)
485 {
486 cancel_delayed_work_sync(&parent->timestamp);
487 }
488
gs_update_state(struct gs_can * dev,struct can_frame * cf)489 static void gs_update_state(struct gs_can *dev, struct can_frame *cf)
490 {
491 struct can_device_stats *can_stats = &dev->can.can_stats;
492
493 if (cf->can_id & CAN_ERR_RESTARTED) {
494 dev->can.state = CAN_STATE_ERROR_ACTIVE;
495 can_stats->restarts++;
496 } else if (cf->can_id & CAN_ERR_BUSOFF) {
497 dev->can.state = CAN_STATE_BUS_OFF;
498 can_stats->bus_off++;
499 } else if (cf->can_id & CAN_ERR_CRTL) {
500 if ((cf->data[1] & CAN_ERR_CRTL_TX_WARNING) ||
501 (cf->data[1] & CAN_ERR_CRTL_RX_WARNING)) {
502 dev->can.state = CAN_STATE_ERROR_WARNING;
503 can_stats->error_warning++;
504 } else if ((cf->data[1] & CAN_ERR_CRTL_TX_PASSIVE) ||
505 (cf->data[1] & CAN_ERR_CRTL_RX_PASSIVE)) {
506 dev->can.state = CAN_STATE_ERROR_PASSIVE;
507 can_stats->error_passive++;
508 } else {
509 dev->can.state = CAN_STATE_ERROR_ACTIVE;
510 }
511 }
512 }
513
gs_usb_set_timestamp(struct gs_can * dev,struct sk_buff * skb,const struct gs_host_frame * hf)514 static u32 gs_usb_set_timestamp(struct gs_can *dev, struct sk_buff *skb,
515 const struct gs_host_frame *hf)
516 {
517 u32 timestamp;
518
519 if (hf->flags & GS_CAN_FLAG_FD)
520 timestamp = le32_to_cpu(hf->canfd_ts->timestamp_us);
521 else
522 timestamp = le32_to_cpu(hf->classic_can_ts->timestamp_us);
523
524 if (skb)
525 gs_usb_skb_set_timestamp(dev, skb, timestamp);
526
527 return timestamp;
528 }
529
gs_usb_rx_offload(struct gs_can * dev,struct sk_buff * skb,const struct gs_host_frame * hf)530 static void gs_usb_rx_offload(struct gs_can *dev, struct sk_buff *skb,
531 const struct gs_host_frame *hf)
532 {
533 struct can_rx_offload *offload = &dev->offload;
534 int rc;
535
536 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) {
537 const u32 ts = gs_usb_set_timestamp(dev, skb, hf);
538
539 rc = can_rx_offload_queue_timestamp(offload, skb, ts);
540 } else {
541 rc = can_rx_offload_queue_tail(offload, skb);
542 }
543
544 if (rc)
545 dev->netdev->stats.rx_fifo_errors++;
546 }
547
548 static unsigned int
gs_usb_get_echo_skb(struct gs_can * dev,struct sk_buff * skb,const struct gs_host_frame * hf)549 gs_usb_get_echo_skb(struct gs_can *dev, struct sk_buff *skb,
550 const struct gs_host_frame *hf)
551 {
552 struct can_rx_offload *offload = &dev->offload;
553 const u32 echo_id = hf->echo_id;
554 unsigned int len;
555
556 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) {
557 const u32 ts = gs_usb_set_timestamp(dev, skb, hf);
558
559 len = can_rx_offload_get_echo_skb_queue_timestamp(offload, echo_id,
560 ts, NULL);
561 } else {
562 len = can_rx_offload_get_echo_skb_queue_tail(offload, echo_id,
563 NULL);
564 }
565
566 return len;
567 }
568
gs_usb_receive_bulk_callback(struct urb * urb)569 static void gs_usb_receive_bulk_callback(struct urb *urb)
570 {
571 struct gs_usb *parent = urb->context;
572 struct gs_can *dev;
573 struct net_device *netdev;
574 int rc;
575 struct net_device_stats *stats;
576 struct gs_host_frame *hf = urb->transfer_buffer;
577 struct gs_tx_context *txc;
578 struct can_frame *cf;
579 struct canfd_frame *cfd;
580 struct sk_buff *skb;
581
582 BUG_ON(!parent);
583
584 switch (urb->status) {
585 case 0: /* success */
586 break;
587 case -ENOENT:
588 case -ESHUTDOWN:
589 return;
590 default:
591 /* do not resubmit aborted urbs. eg: when device goes down */
592 return;
593 }
594
595 /* device reports out of range channel id */
596 if (hf->channel >= GS_MAX_INTF)
597 goto device_detach;
598
599 dev = parent->canch[hf->channel];
600
601 netdev = dev->netdev;
602 stats = &netdev->stats;
603
604 if (!netif_device_present(netdev))
605 return;
606
607 if (!netif_running(netdev))
608 goto resubmit_urb;
609
610 if (hf->echo_id == -1) { /* normal rx */
611 if (hf->flags & GS_CAN_FLAG_FD) {
612 skb = alloc_canfd_skb(netdev, &cfd);
613 if (!skb)
614 return;
615
616 cfd->can_id = le32_to_cpu(hf->can_id);
617 cfd->len = can_fd_dlc2len(hf->can_dlc);
618 if (hf->flags & GS_CAN_FLAG_BRS)
619 cfd->flags |= CANFD_BRS;
620 if (hf->flags & GS_CAN_FLAG_ESI)
621 cfd->flags |= CANFD_ESI;
622
623 memcpy(cfd->data, hf->canfd->data, cfd->len);
624 } else {
625 skb = alloc_can_skb(netdev, &cf);
626 if (!skb)
627 return;
628
629 cf->can_id = le32_to_cpu(hf->can_id);
630 can_frame_set_cc_len(cf, hf->can_dlc, dev->can.ctrlmode);
631
632 memcpy(cf->data, hf->classic_can->data, 8);
633
634 /* ERROR frames tell us information about the controller */
635 if (le32_to_cpu(hf->can_id) & CAN_ERR_FLAG)
636 gs_update_state(dev, cf);
637 }
638
639 gs_usb_rx_offload(dev, skb, hf);
640 } else { /* echo_id == hf->echo_id */
641 if (hf->echo_id >= GS_MAX_TX_URBS) {
642 netdev_err(netdev,
643 "Unexpected out of range echo id %u\n",
644 hf->echo_id);
645 goto resubmit_urb;
646 }
647
648 txc = gs_get_tx_context(dev, hf->echo_id);
649
650 /* bad devices send bad echo_ids. */
651 if (!txc) {
652 netdev_err(netdev,
653 "Unexpected unused echo id %u\n",
654 hf->echo_id);
655 goto resubmit_urb;
656 }
657
658 skb = dev->can.echo_skb[hf->echo_id];
659 stats->tx_packets++;
660 stats->tx_bytes += gs_usb_get_echo_skb(dev, skb, hf);
661 gs_free_tx_context(txc);
662
663 atomic_dec(&dev->active_tx_urbs);
664
665 netif_wake_queue(netdev);
666 }
667
668 if (hf->flags & GS_CAN_FLAG_OVERFLOW) {
669 stats->rx_over_errors++;
670 stats->rx_errors++;
671
672 skb = alloc_can_err_skb(netdev, &cf);
673 if (!skb)
674 goto resubmit_urb;
675
676 cf->can_id |= CAN_ERR_CRTL;
677 cf->len = CAN_ERR_DLC;
678 cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
679
680 gs_usb_rx_offload(dev, skb, hf);
681 }
682
683 can_rx_offload_irq_finish(&dev->offload);
684
685 resubmit_urb:
686 usb_fill_bulk_urb(urb, parent->udev,
687 usb_rcvbulkpipe(parent->udev, GS_USB_ENDPOINT_IN),
688 hf, dev->parent->hf_size_rx,
689 gs_usb_receive_bulk_callback, parent);
690
691 rc = usb_submit_urb(urb, GFP_ATOMIC);
692
693 /* USB failure take down all interfaces */
694 if (rc == -ENODEV) {
695 device_detach:
696 for (rc = 0; rc < GS_MAX_INTF; rc++) {
697 if (parent->canch[rc])
698 netif_device_detach(parent->canch[rc]->netdev);
699 }
700 }
701 }
702
gs_usb_set_bittiming(struct net_device * netdev)703 static int gs_usb_set_bittiming(struct net_device *netdev)
704 {
705 struct gs_can *dev = netdev_priv(netdev);
706 struct can_bittiming *bt = &dev->can.bittiming;
707 struct gs_device_bittiming dbt = {
708 .prop_seg = cpu_to_le32(bt->prop_seg),
709 .phase_seg1 = cpu_to_le32(bt->phase_seg1),
710 .phase_seg2 = cpu_to_le32(bt->phase_seg2),
711 .sjw = cpu_to_le32(bt->sjw),
712 .brp = cpu_to_le32(bt->brp),
713 };
714
715 /* request bit timings */
716 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_BITTIMING,
717 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
718 dev->channel, 0, &dbt, sizeof(dbt), 1000,
719 GFP_KERNEL);
720 }
721
gs_usb_set_data_bittiming(struct net_device * netdev)722 static int gs_usb_set_data_bittiming(struct net_device *netdev)
723 {
724 struct gs_can *dev = netdev_priv(netdev);
725 struct can_bittiming *bt = &dev->can.data_bittiming;
726 struct gs_device_bittiming dbt = {
727 .prop_seg = cpu_to_le32(bt->prop_seg),
728 .phase_seg1 = cpu_to_le32(bt->phase_seg1),
729 .phase_seg2 = cpu_to_le32(bt->phase_seg2),
730 .sjw = cpu_to_le32(bt->sjw),
731 .brp = cpu_to_le32(bt->brp),
732 };
733 u8 request = GS_USB_BREQ_DATA_BITTIMING;
734
735 if (dev->feature & GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO)
736 request = GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING;
737
738 /* request data bit timings */
739 return usb_control_msg_send(dev->udev, 0, request,
740 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
741 dev->channel, 0, &dbt, sizeof(dbt), 1000,
742 GFP_KERNEL);
743 }
744
gs_usb_xmit_callback(struct urb * urb)745 static void gs_usb_xmit_callback(struct urb *urb)
746 {
747 struct gs_tx_context *txc = urb->context;
748 struct gs_can *dev = txc->dev;
749 struct net_device *netdev = dev->netdev;
750
751 if (urb->status)
752 netdev_info(netdev, "usb xmit fail %u\n", txc->echo_id);
753 }
754
gs_can_start_xmit(struct sk_buff * skb,struct net_device * netdev)755 static netdev_tx_t gs_can_start_xmit(struct sk_buff *skb,
756 struct net_device *netdev)
757 {
758 struct gs_can *dev = netdev_priv(netdev);
759 struct net_device_stats *stats = &dev->netdev->stats;
760 struct urb *urb;
761 struct gs_host_frame *hf;
762 struct can_frame *cf;
763 struct canfd_frame *cfd;
764 int rc;
765 unsigned int idx;
766 struct gs_tx_context *txc;
767
768 if (can_dev_dropped_skb(netdev, skb))
769 return NETDEV_TX_OK;
770
771 /* find an empty context to keep track of transmission */
772 txc = gs_alloc_tx_context(dev);
773 if (!txc)
774 return NETDEV_TX_BUSY;
775
776 /* create a URB, and a buffer for it */
777 urb = usb_alloc_urb(0, GFP_ATOMIC);
778 if (!urb)
779 goto nomem_urb;
780
781 hf = kmalloc(dev->hf_size_tx, GFP_ATOMIC);
782 if (!hf)
783 goto nomem_hf;
784
785 idx = txc->echo_id;
786
787 if (idx >= GS_MAX_TX_URBS) {
788 netdev_err(netdev, "Invalid tx context %u\n", idx);
789 goto badidx;
790 }
791
792 hf->echo_id = idx;
793 hf->channel = dev->channel;
794 hf->flags = 0;
795 hf->reserved = 0;
796
797 if (can_is_canfd_skb(skb)) {
798 cfd = (struct canfd_frame *)skb->data;
799
800 hf->can_id = cpu_to_le32(cfd->can_id);
801 hf->can_dlc = can_fd_len2dlc(cfd->len);
802 hf->flags |= GS_CAN_FLAG_FD;
803 if (cfd->flags & CANFD_BRS)
804 hf->flags |= GS_CAN_FLAG_BRS;
805 if (cfd->flags & CANFD_ESI)
806 hf->flags |= GS_CAN_FLAG_ESI;
807
808 memcpy(hf->canfd->data, cfd->data, cfd->len);
809 } else {
810 cf = (struct can_frame *)skb->data;
811
812 hf->can_id = cpu_to_le32(cf->can_id);
813 hf->can_dlc = can_get_cc_dlc(cf, dev->can.ctrlmode);
814
815 memcpy(hf->classic_can->data, cf->data, cf->len);
816 }
817
818 usb_fill_bulk_urb(urb, dev->udev,
819 usb_sndbulkpipe(dev->udev, GS_USB_ENDPOINT_OUT),
820 hf, dev->hf_size_tx,
821 gs_usb_xmit_callback, txc);
822
823 urb->transfer_flags |= URB_FREE_BUFFER;
824 usb_anchor_urb(urb, &dev->tx_submitted);
825
826 can_put_echo_skb(skb, netdev, idx, 0);
827
828 atomic_inc(&dev->active_tx_urbs);
829
830 rc = usb_submit_urb(urb, GFP_ATOMIC);
831 if (unlikely(rc)) { /* usb send failed */
832 atomic_dec(&dev->active_tx_urbs);
833
834 can_free_echo_skb(netdev, idx, NULL);
835 gs_free_tx_context(txc);
836
837 usb_unanchor_urb(urb);
838
839 if (rc == -ENODEV) {
840 netif_device_detach(netdev);
841 } else {
842 netdev_err(netdev, "usb_submit failed (err=%d)\n", rc);
843 stats->tx_dropped++;
844 }
845 } else {
846 /* Slow down tx path */
847 if (atomic_read(&dev->active_tx_urbs) >= GS_MAX_TX_URBS)
848 netif_stop_queue(netdev);
849 }
850
851 /* let usb core take care of this urb */
852 usb_free_urb(urb);
853
854 return NETDEV_TX_OK;
855
856 badidx:
857 kfree(hf);
858 nomem_hf:
859 usb_free_urb(urb);
860
861 nomem_urb:
862 gs_free_tx_context(txc);
863 dev_kfree_skb(skb);
864 stats->tx_dropped++;
865 return NETDEV_TX_OK;
866 }
867
gs_can_open(struct net_device * netdev)868 static int gs_can_open(struct net_device *netdev)
869 {
870 struct gs_can *dev = netdev_priv(netdev);
871 struct gs_usb *parent = dev->parent;
872 struct gs_device_mode dm = {
873 .mode = cpu_to_le32(GS_CAN_MODE_START),
874 };
875 struct gs_host_frame *hf;
876 struct urb *urb = NULL;
877 u32 ctrlmode;
878 u32 flags = 0;
879 int rc, i;
880
881 rc = open_candev(netdev);
882 if (rc)
883 return rc;
884
885 ctrlmode = dev->can.ctrlmode;
886 if (ctrlmode & CAN_CTRLMODE_FD) {
887 if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
888 dev->hf_size_tx = struct_size(hf, canfd_quirk, 1);
889 else
890 dev->hf_size_tx = struct_size(hf, canfd, 1);
891 } else {
892 if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
893 dev->hf_size_tx = struct_size(hf, classic_can_quirk, 1);
894 else
895 dev->hf_size_tx = struct_size(hf, classic_can, 1);
896 }
897
898 can_rx_offload_enable(&dev->offload);
899
900 if (!parent->active_channels) {
901 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
902 gs_usb_timestamp_init(parent);
903
904 for (i = 0; i < GS_MAX_RX_URBS; i++) {
905 u8 *buf;
906
907 /* alloc rx urb */
908 urb = usb_alloc_urb(0, GFP_KERNEL);
909 if (!urb) {
910 rc = -ENOMEM;
911 goto out_usb_kill_anchored_urbs;
912 }
913
914 /* alloc rx buffer */
915 buf = kmalloc(dev->parent->hf_size_rx,
916 GFP_KERNEL);
917 if (!buf) {
918 rc = -ENOMEM;
919 goto out_usb_free_urb;
920 }
921
922 /* fill, anchor, and submit rx urb */
923 usb_fill_bulk_urb(urb,
924 dev->udev,
925 usb_rcvbulkpipe(dev->udev,
926 GS_USB_ENDPOINT_IN),
927 buf,
928 dev->parent->hf_size_rx,
929 gs_usb_receive_bulk_callback, parent);
930 urb->transfer_flags |= URB_FREE_BUFFER;
931
932 usb_anchor_urb(urb, &parent->rx_submitted);
933
934 rc = usb_submit_urb(urb, GFP_KERNEL);
935 if (rc) {
936 if (rc == -ENODEV)
937 netif_device_detach(dev->netdev);
938
939 netdev_err(netdev,
940 "usb_submit_urb() failed, error %pe\n",
941 ERR_PTR(rc));
942
943 goto out_usb_unanchor_urb;
944 }
945
946 /* Drop reference,
947 * USB core will take care of freeing it
948 */
949 usb_free_urb(urb);
950 }
951 }
952
953 /* flags */
954 if (ctrlmode & CAN_CTRLMODE_LOOPBACK)
955 flags |= GS_CAN_MODE_LOOP_BACK;
956
957 if (ctrlmode & CAN_CTRLMODE_LISTENONLY)
958 flags |= GS_CAN_MODE_LISTEN_ONLY;
959
960 if (ctrlmode & CAN_CTRLMODE_3_SAMPLES)
961 flags |= GS_CAN_MODE_TRIPLE_SAMPLE;
962
963 if (ctrlmode & CAN_CTRLMODE_ONE_SHOT)
964 flags |= GS_CAN_MODE_ONE_SHOT;
965
966 if (ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
967 flags |= GS_CAN_MODE_BERR_REPORTING;
968
969 if (ctrlmode & CAN_CTRLMODE_FD)
970 flags |= GS_CAN_MODE_FD;
971
972 /* if hardware supports timestamps, enable it */
973 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
974 flags |= GS_CAN_MODE_HW_TIMESTAMP;
975
976 /* finally start device */
977 dev->can.state = CAN_STATE_ERROR_ACTIVE;
978 dm.flags = cpu_to_le32(flags);
979 rc = usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE,
980 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
981 dev->channel, 0, &dm, sizeof(dm), 1000,
982 GFP_KERNEL);
983 if (rc) {
984 netdev_err(netdev, "Couldn't start device (err=%d)\n", rc);
985 dev->can.state = CAN_STATE_STOPPED;
986
987 goto out_usb_kill_anchored_urbs;
988 }
989
990 parent->active_channels++;
991 if (!(dev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY))
992 netif_start_queue(netdev);
993
994 return 0;
995
996 out_usb_unanchor_urb:
997 usb_unanchor_urb(urb);
998 out_usb_free_urb:
999 usb_free_urb(urb);
1000 out_usb_kill_anchored_urbs:
1001 if (!parent->active_channels) {
1002 usb_kill_anchored_urbs(&dev->tx_submitted);
1003
1004 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1005 gs_usb_timestamp_stop(parent);
1006 }
1007
1008 can_rx_offload_disable(&dev->offload);
1009 close_candev(netdev);
1010
1011 return rc;
1012 }
1013
gs_usb_get_state(const struct net_device * netdev,struct can_berr_counter * bec,enum can_state * state)1014 static int gs_usb_get_state(const struct net_device *netdev,
1015 struct can_berr_counter *bec,
1016 enum can_state *state)
1017 {
1018 struct gs_can *dev = netdev_priv(netdev);
1019 struct gs_device_state ds;
1020 int rc;
1021
1022 rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_STATE,
1023 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1024 dev->channel, 0,
1025 &ds, sizeof(ds),
1026 USB_CTRL_GET_TIMEOUT,
1027 GFP_KERNEL);
1028 if (rc)
1029 return rc;
1030
1031 if (le32_to_cpu(ds.state) >= CAN_STATE_MAX)
1032 return -EOPNOTSUPP;
1033
1034 *state = le32_to_cpu(ds.state);
1035 bec->txerr = le32_to_cpu(ds.txerr);
1036 bec->rxerr = le32_to_cpu(ds.rxerr);
1037
1038 return 0;
1039 }
1040
gs_usb_can_get_berr_counter(const struct net_device * netdev,struct can_berr_counter * bec)1041 static int gs_usb_can_get_berr_counter(const struct net_device *netdev,
1042 struct can_berr_counter *bec)
1043 {
1044 enum can_state state;
1045
1046 return gs_usb_get_state(netdev, bec, &state);
1047 }
1048
gs_can_close(struct net_device * netdev)1049 static int gs_can_close(struct net_device *netdev)
1050 {
1051 int rc;
1052 struct gs_can *dev = netdev_priv(netdev);
1053 struct gs_usb *parent = dev->parent;
1054
1055 netif_stop_queue(netdev);
1056
1057 /* Stop polling */
1058 parent->active_channels--;
1059 if (!parent->active_channels) {
1060 usb_kill_anchored_urbs(&parent->rx_submitted);
1061
1062 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1063 gs_usb_timestamp_stop(parent);
1064 }
1065
1066 /* Stop sending URBs */
1067 usb_kill_anchored_urbs(&dev->tx_submitted);
1068 atomic_set(&dev->active_tx_urbs, 0);
1069
1070 dev->can.state = CAN_STATE_STOPPED;
1071
1072 /* reset the device */
1073 gs_cmd_reset(dev);
1074
1075 /* reset tx contexts */
1076 for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
1077 dev->tx_context[rc].dev = dev;
1078 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
1079 }
1080
1081 can_rx_offload_disable(&dev->offload);
1082
1083 /* close the netdev */
1084 close_candev(netdev);
1085
1086 return 0;
1087 }
1088
gs_can_eth_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)1089 static int gs_can_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1090 {
1091 const struct gs_can *dev = netdev_priv(netdev);
1092
1093 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1094 return can_eth_ioctl_hwts(netdev, ifr, cmd);
1095
1096 return -EOPNOTSUPP;
1097 }
1098
1099 static const struct net_device_ops gs_usb_netdev_ops = {
1100 .ndo_open = gs_can_open,
1101 .ndo_stop = gs_can_close,
1102 .ndo_start_xmit = gs_can_start_xmit,
1103 .ndo_change_mtu = can_change_mtu,
1104 .ndo_eth_ioctl = gs_can_eth_ioctl,
1105 };
1106
gs_usb_set_identify(struct net_device * netdev,bool do_identify)1107 static int gs_usb_set_identify(struct net_device *netdev, bool do_identify)
1108 {
1109 struct gs_can *dev = netdev_priv(netdev);
1110 struct gs_identify_mode imode;
1111
1112 if (do_identify)
1113 imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_ON);
1114 else
1115 imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_OFF);
1116
1117 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_IDENTIFY,
1118 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1119 dev->channel, 0, &imode, sizeof(imode), 100,
1120 GFP_KERNEL);
1121 }
1122
1123 /* blink LED's for finding the this interface */
gs_usb_set_phys_id(struct net_device * netdev,enum ethtool_phys_id_state state)1124 static int gs_usb_set_phys_id(struct net_device *netdev,
1125 enum ethtool_phys_id_state state)
1126 {
1127 const struct gs_can *dev = netdev_priv(netdev);
1128 int rc = 0;
1129
1130 if (!(dev->feature & GS_CAN_FEATURE_IDENTIFY))
1131 return -EOPNOTSUPP;
1132
1133 switch (state) {
1134 case ETHTOOL_ID_ACTIVE:
1135 rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_ON);
1136 break;
1137 case ETHTOOL_ID_INACTIVE:
1138 rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_OFF);
1139 break;
1140 default:
1141 break;
1142 }
1143
1144 return rc;
1145 }
1146
gs_usb_get_ts_info(struct net_device * netdev,struct ethtool_ts_info * info)1147 static int gs_usb_get_ts_info(struct net_device *netdev,
1148 struct ethtool_ts_info *info)
1149 {
1150 struct gs_can *dev = netdev_priv(netdev);
1151
1152 /* report if device supports HW timestamps */
1153 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1154 return can_ethtool_op_get_ts_info_hwts(netdev, info);
1155
1156 return ethtool_op_get_ts_info(netdev, info);
1157 }
1158
1159 static const struct ethtool_ops gs_usb_ethtool_ops = {
1160 .set_phys_id = gs_usb_set_phys_id,
1161 .get_ts_info = gs_usb_get_ts_info,
1162 };
1163
gs_usb_get_termination(struct net_device * netdev,u16 * term)1164 static int gs_usb_get_termination(struct net_device *netdev, u16 *term)
1165 {
1166 struct gs_can *dev = netdev_priv(netdev);
1167 struct gs_device_termination_state term_state;
1168 int rc;
1169
1170 rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_TERMINATION,
1171 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1172 dev->channel, 0,
1173 &term_state, sizeof(term_state), 1000,
1174 GFP_KERNEL);
1175 if (rc)
1176 return rc;
1177
1178 if (term_state.state == cpu_to_le32(GS_CAN_TERMINATION_STATE_ON))
1179 *term = GS_USB_TERMINATION_ENABLED;
1180 else
1181 *term = GS_USB_TERMINATION_DISABLED;
1182
1183 return 0;
1184 }
1185
gs_usb_set_termination(struct net_device * netdev,u16 term)1186 static int gs_usb_set_termination(struct net_device *netdev, u16 term)
1187 {
1188 struct gs_can *dev = netdev_priv(netdev);
1189 struct gs_device_termination_state term_state;
1190
1191 if (term == GS_USB_TERMINATION_ENABLED)
1192 term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_ON);
1193 else
1194 term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_OFF);
1195
1196 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_SET_TERMINATION,
1197 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1198 dev->channel, 0,
1199 &term_state, sizeof(term_state), 1000,
1200 GFP_KERNEL);
1201 }
1202
1203 static const u16 gs_usb_termination_const[] = {
1204 GS_USB_TERMINATION_DISABLED,
1205 GS_USB_TERMINATION_ENABLED
1206 };
1207
gs_make_candev(unsigned int channel,struct usb_interface * intf,struct gs_device_config * dconf)1208 static struct gs_can *gs_make_candev(unsigned int channel,
1209 struct usb_interface *intf,
1210 struct gs_device_config *dconf)
1211 {
1212 struct gs_can *dev;
1213 struct net_device *netdev;
1214 int rc;
1215 struct gs_device_bt_const_extended bt_const_extended;
1216 struct gs_device_bt_const bt_const;
1217 u32 feature;
1218
1219 /* fetch bit timing constants */
1220 rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
1221 GS_USB_BREQ_BT_CONST,
1222 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1223 channel, 0, &bt_const, sizeof(bt_const), 1000,
1224 GFP_KERNEL);
1225
1226 if (rc) {
1227 dev_err(&intf->dev,
1228 "Couldn't get bit timing const for channel %d (%pe)\n",
1229 channel, ERR_PTR(rc));
1230 return ERR_PTR(rc);
1231 }
1232
1233 /* create netdev */
1234 netdev = alloc_candev(sizeof(struct gs_can), GS_MAX_TX_URBS);
1235 if (!netdev) {
1236 dev_err(&intf->dev, "Couldn't allocate candev\n");
1237 return ERR_PTR(-ENOMEM);
1238 }
1239
1240 dev = netdev_priv(netdev);
1241
1242 netdev->netdev_ops = &gs_usb_netdev_ops;
1243 netdev->ethtool_ops = &gs_usb_ethtool_ops;
1244
1245 netdev->flags |= IFF_ECHO; /* we support full roundtrip echo */
1246 netdev->dev_id = channel;
1247
1248 /* dev setup */
1249 strcpy(dev->bt_const.name, KBUILD_MODNAME);
1250 dev->bt_const.tseg1_min = le32_to_cpu(bt_const.tseg1_min);
1251 dev->bt_const.tseg1_max = le32_to_cpu(bt_const.tseg1_max);
1252 dev->bt_const.tseg2_min = le32_to_cpu(bt_const.tseg2_min);
1253 dev->bt_const.tseg2_max = le32_to_cpu(bt_const.tseg2_max);
1254 dev->bt_const.sjw_max = le32_to_cpu(bt_const.sjw_max);
1255 dev->bt_const.brp_min = le32_to_cpu(bt_const.brp_min);
1256 dev->bt_const.brp_max = le32_to_cpu(bt_const.brp_max);
1257 dev->bt_const.brp_inc = le32_to_cpu(bt_const.brp_inc);
1258
1259 dev->udev = interface_to_usbdev(intf);
1260 dev->netdev = netdev;
1261 dev->channel = channel;
1262
1263 init_usb_anchor(&dev->tx_submitted);
1264 atomic_set(&dev->active_tx_urbs, 0);
1265 spin_lock_init(&dev->tx_ctx_lock);
1266 for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
1267 dev->tx_context[rc].dev = dev;
1268 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
1269 }
1270
1271 /* can setup */
1272 dev->can.state = CAN_STATE_STOPPED;
1273 dev->can.clock.freq = le32_to_cpu(bt_const.fclk_can);
1274 dev->can.bittiming_const = &dev->bt_const;
1275 dev->can.do_set_bittiming = gs_usb_set_bittiming;
1276
1277 dev->can.ctrlmode_supported = CAN_CTRLMODE_CC_LEN8_DLC;
1278
1279 feature = le32_to_cpu(bt_const.feature);
1280 dev->feature = FIELD_GET(GS_CAN_FEATURE_MASK, feature);
1281 if (feature & GS_CAN_FEATURE_LISTEN_ONLY)
1282 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY;
1283
1284 if (feature & GS_CAN_FEATURE_LOOP_BACK)
1285 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK;
1286
1287 if (feature & GS_CAN_FEATURE_TRIPLE_SAMPLE)
1288 dev->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES;
1289
1290 if (feature & GS_CAN_FEATURE_ONE_SHOT)
1291 dev->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT;
1292
1293 if (feature & GS_CAN_FEATURE_FD) {
1294 dev->can.ctrlmode_supported |= CAN_CTRLMODE_FD;
1295 /* The data bit timing will be overwritten, if
1296 * GS_CAN_FEATURE_BT_CONST_EXT is set.
1297 */
1298 dev->can.data_bittiming_const = &dev->bt_const;
1299 dev->can.do_set_data_bittiming = gs_usb_set_data_bittiming;
1300 }
1301
1302 if (feature & GS_CAN_FEATURE_TERMINATION) {
1303 rc = gs_usb_get_termination(netdev, &dev->can.termination);
1304 if (rc) {
1305 dev->feature &= ~GS_CAN_FEATURE_TERMINATION;
1306
1307 dev_info(&intf->dev,
1308 "Disabling termination support for channel %d (%pe)\n",
1309 channel, ERR_PTR(rc));
1310 } else {
1311 dev->can.termination_const = gs_usb_termination_const;
1312 dev->can.termination_const_cnt = ARRAY_SIZE(gs_usb_termination_const);
1313 dev->can.do_set_termination = gs_usb_set_termination;
1314 }
1315 }
1316
1317 if (feature & GS_CAN_FEATURE_BERR_REPORTING)
1318 dev->can.ctrlmode_supported |= CAN_CTRLMODE_BERR_REPORTING;
1319
1320 if (feature & GS_CAN_FEATURE_GET_STATE)
1321 dev->can.do_get_berr_counter = gs_usb_can_get_berr_counter;
1322
1323 /* The CANtact Pro from LinkLayer Labs is based on the
1324 * LPC54616 µC, which is affected by the NXP LPC USB transfer
1325 * erratum. However, the current firmware (version 2) doesn't
1326 * set the GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX bit. Set the
1327 * feature GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX to workaround
1328 * this issue.
1329 *
1330 * For the GS_USB_BREQ_DATA_BITTIMING USB control message the
1331 * CANtact Pro firmware uses a request value, which is already
1332 * used by the candleLight firmware for a different purpose
1333 * (GS_USB_BREQ_GET_USER_ID). Set the feature
1334 * GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO to workaround this
1335 * issue.
1336 */
1337 if (dev->udev->descriptor.idVendor == cpu_to_le16(USB_GS_USB_1_VENDOR_ID) &&
1338 dev->udev->descriptor.idProduct == cpu_to_le16(USB_GS_USB_1_PRODUCT_ID) &&
1339 dev->udev->manufacturer && dev->udev->product &&
1340 !strcmp(dev->udev->manufacturer, "LinkLayer Labs") &&
1341 !strcmp(dev->udev->product, "CANtact Pro") &&
1342 (le32_to_cpu(dconf->sw_version) <= 2))
1343 dev->feature |= GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX |
1344 GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO;
1345
1346 /* GS_CAN_FEATURE_IDENTIFY is only supported for sw_version > 1 */
1347 if (!(le32_to_cpu(dconf->sw_version) > 1 &&
1348 feature & GS_CAN_FEATURE_IDENTIFY))
1349 dev->feature &= ~GS_CAN_FEATURE_IDENTIFY;
1350
1351 /* fetch extended bit timing constants if device has feature
1352 * GS_CAN_FEATURE_FD and GS_CAN_FEATURE_BT_CONST_EXT
1353 */
1354 if (feature & GS_CAN_FEATURE_FD &&
1355 feature & GS_CAN_FEATURE_BT_CONST_EXT) {
1356 rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
1357 GS_USB_BREQ_BT_CONST_EXT,
1358 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1359 channel, 0, &bt_const_extended,
1360 sizeof(bt_const_extended),
1361 1000, GFP_KERNEL);
1362 if (rc) {
1363 dev_err(&intf->dev,
1364 "Couldn't get extended bit timing const for channel %d (%pe)\n",
1365 channel, ERR_PTR(rc));
1366 goto out_free_candev;
1367 }
1368
1369 strcpy(dev->data_bt_const.name, KBUILD_MODNAME);
1370 dev->data_bt_const.tseg1_min = le32_to_cpu(bt_const_extended.dtseg1_min);
1371 dev->data_bt_const.tseg1_max = le32_to_cpu(bt_const_extended.dtseg1_max);
1372 dev->data_bt_const.tseg2_min = le32_to_cpu(bt_const_extended.dtseg2_min);
1373 dev->data_bt_const.tseg2_max = le32_to_cpu(bt_const_extended.dtseg2_max);
1374 dev->data_bt_const.sjw_max = le32_to_cpu(bt_const_extended.dsjw_max);
1375 dev->data_bt_const.brp_min = le32_to_cpu(bt_const_extended.dbrp_min);
1376 dev->data_bt_const.brp_max = le32_to_cpu(bt_const_extended.dbrp_max);
1377 dev->data_bt_const.brp_inc = le32_to_cpu(bt_const_extended.dbrp_inc);
1378
1379 dev->can.data_bittiming_const = &dev->data_bt_const;
1380 }
1381
1382 can_rx_offload_add_manual(netdev, &dev->offload, GS_NAPI_WEIGHT);
1383 SET_NETDEV_DEV(netdev, &intf->dev);
1384
1385 rc = register_candev(dev->netdev);
1386 if (rc) {
1387 dev_err(&intf->dev,
1388 "Couldn't register candev for channel %d (%pe)\n",
1389 channel, ERR_PTR(rc));
1390 goto out_can_rx_offload_del;
1391 }
1392
1393 return dev;
1394
1395 out_can_rx_offload_del:
1396 can_rx_offload_del(&dev->offload);
1397 out_free_candev:
1398 free_candev(dev->netdev);
1399 return ERR_PTR(rc);
1400 }
1401
gs_destroy_candev(struct gs_can * dev)1402 static void gs_destroy_candev(struct gs_can *dev)
1403 {
1404 unregister_candev(dev->netdev);
1405 can_rx_offload_del(&dev->offload);
1406 free_candev(dev->netdev);
1407 }
1408
gs_usb_probe(struct usb_interface * intf,const struct usb_device_id * id)1409 static int gs_usb_probe(struct usb_interface *intf,
1410 const struct usb_device_id *id)
1411 {
1412 struct usb_device *udev = interface_to_usbdev(intf);
1413 struct gs_host_frame *hf;
1414 struct gs_usb *parent;
1415 struct gs_host_config hconf = {
1416 .byte_order = cpu_to_le32(0x0000beef),
1417 };
1418 struct gs_device_config dconf;
1419 unsigned int icount, i;
1420 int rc;
1421
1422 /* send host config */
1423 rc = usb_control_msg_send(udev, 0,
1424 GS_USB_BREQ_HOST_FORMAT,
1425 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1426 1, intf->cur_altsetting->desc.bInterfaceNumber,
1427 &hconf, sizeof(hconf), 1000,
1428 GFP_KERNEL);
1429 if (rc) {
1430 dev_err(&intf->dev, "Couldn't send data format (err=%d)\n", rc);
1431 return rc;
1432 }
1433
1434 /* read device config */
1435 rc = usb_control_msg_recv(udev, 0,
1436 GS_USB_BREQ_DEVICE_CONFIG,
1437 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1438 1, intf->cur_altsetting->desc.bInterfaceNumber,
1439 &dconf, sizeof(dconf), 1000,
1440 GFP_KERNEL);
1441 if (rc) {
1442 dev_err(&intf->dev, "Couldn't get device config: (err=%d)\n",
1443 rc);
1444 return rc;
1445 }
1446
1447 icount = dconf.icount + 1;
1448 dev_info(&intf->dev, "Configuring for %u interfaces\n", icount);
1449
1450 if (icount > GS_MAX_INTF) {
1451 dev_err(&intf->dev,
1452 "Driver cannot handle more that %u CAN interfaces\n",
1453 GS_MAX_INTF);
1454 return -EINVAL;
1455 }
1456
1457 parent = kzalloc(sizeof(*parent), GFP_KERNEL);
1458 if (!parent)
1459 return -ENOMEM;
1460
1461 init_usb_anchor(&parent->rx_submitted);
1462
1463 usb_set_intfdata(intf, parent);
1464 parent->udev = udev;
1465
1466 for (i = 0; i < icount; i++) {
1467 unsigned int hf_size_rx = 0;
1468
1469 parent->canch[i] = gs_make_candev(i, intf, &dconf);
1470 if (IS_ERR_OR_NULL(parent->canch[i])) {
1471 /* save error code to return later */
1472 rc = PTR_ERR(parent->canch[i]);
1473
1474 /* on failure destroy previously created candevs */
1475 icount = i;
1476 for (i = 0; i < icount; i++)
1477 gs_destroy_candev(parent->canch[i]);
1478
1479 usb_kill_anchored_urbs(&parent->rx_submitted);
1480 kfree(parent);
1481 return rc;
1482 }
1483 parent->canch[i]->parent = parent;
1484
1485 /* set RX packet size based on FD and if hardware
1486 * timestamps are supported.
1487 */
1488 if (parent->canch[i]->can.ctrlmode_supported & CAN_CTRLMODE_FD) {
1489 if (parent->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1490 hf_size_rx = struct_size(hf, canfd_ts, 1);
1491 else
1492 hf_size_rx = struct_size(hf, canfd, 1);
1493 } else {
1494 if (parent->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1495 hf_size_rx = struct_size(hf, classic_can_ts, 1);
1496 else
1497 hf_size_rx = struct_size(hf, classic_can, 1);
1498 }
1499 parent->hf_size_rx = max(parent->hf_size_rx, hf_size_rx);
1500 }
1501
1502 return 0;
1503 }
1504
gs_usb_disconnect(struct usb_interface * intf)1505 static void gs_usb_disconnect(struct usb_interface *intf)
1506 {
1507 struct gs_usb *parent = usb_get_intfdata(intf);
1508 unsigned int i;
1509
1510 usb_set_intfdata(intf, NULL);
1511
1512 if (!parent) {
1513 dev_err(&intf->dev, "Disconnect (nodata)\n");
1514 return;
1515 }
1516
1517 for (i = 0; i < GS_MAX_INTF; i++)
1518 if (parent->canch[i])
1519 gs_destroy_candev(parent->canch[i]);
1520
1521 kfree(parent);
1522 }
1523
1524 static const struct usb_device_id gs_usb_table[] = {
1525 { USB_DEVICE_INTERFACE_NUMBER(USB_GS_USB_1_VENDOR_ID,
1526 USB_GS_USB_1_PRODUCT_ID, 0) },
1527 { USB_DEVICE_INTERFACE_NUMBER(USB_CANDLELIGHT_VENDOR_ID,
1528 USB_CANDLELIGHT_PRODUCT_ID, 0) },
1529 { USB_DEVICE_INTERFACE_NUMBER(USB_CES_CANEXT_FD_VENDOR_ID,
1530 USB_CES_CANEXT_FD_PRODUCT_ID, 0) },
1531 { USB_DEVICE_INTERFACE_NUMBER(USB_ABE_CANDEBUGGER_FD_VENDOR_ID,
1532 USB_ABE_CANDEBUGGER_FD_PRODUCT_ID, 0) },
1533 {} /* Terminating entry */
1534 };
1535
1536 MODULE_DEVICE_TABLE(usb, gs_usb_table);
1537
1538 static struct usb_driver gs_usb_driver = {
1539 .name = KBUILD_MODNAME,
1540 .probe = gs_usb_probe,
1541 .disconnect = gs_usb_disconnect,
1542 .id_table = gs_usb_table,
1543 };
1544
1545 module_usb_driver(gs_usb_driver);
1546
1547 MODULE_AUTHOR("Maximilian Schneider <mws@schneidersoft.net>");
1548 MODULE_DESCRIPTION(
1549 "Socket CAN device driver for Geschwister Schneider Technologie-, "
1550 "Entwicklungs- und Vertriebs UG. USB2.0 to CAN interfaces\n"
1551 "and bytewerk.org candleLight USB CAN interfaces.");
1552 MODULE_LICENSE("GPL v2");
1553