1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 * Internal non-public definitions that provide either classic
5 * or preemptible semantics.
6 *
7 * Copyright Red Hat, 2009
8 * Copyright IBM Corporation, 2009
9 * Copyright SUSE, 2021
10 *
11 * Author: Ingo Molnar <mingo@elte.hu>
12 * Paul E. McKenney <paulmck@linux.ibm.com>
13 * Frederic Weisbecker <frederic@kernel.org>
14 */
15
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
rcu_lockdep_is_held_nocb(struct rcu_data * rdp)19 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
20 {
21 return lockdep_is_held(&rdp->nocb_lock);
22 }
23
rcu_current_is_nocb_kthread(struct rcu_data * rdp)24 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
25 {
26 /* Race on early boot between thread creation and assignment */
27 if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
28 return true;
29
30 if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
31 if (in_task())
32 return true;
33 return false;
34 }
35
36 /*
37 * Offload callback processing from the boot-time-specified set of CPUs
38 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads
39 * created that pull the callbacks from the corresponding CPU, wait for
40 * a grace period to elapse, and invoke the callbacks. These kthreads
41 * are organized into GP kthreads, which manage incoming callbacks, wait for
42 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
43 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs
44 * do a wake_up() on their GP kthread when they insert a callback into any
45 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
46 * in which case each kthread actively polls its CPU. (Which isn't so great
47 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
48 *
49 * This is intended to be used in conjunction with Frederic Weisbecker's
50 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
51 * running CPU-bound user-mode computations.
52 *
53 * Offloading of callbacks can also be used as an energy-efficiency
54 * measure because CPUs with no RCU callbacks queued are more aggressive
55 * about entering dyntick-idle mode.
56 */
57
58
59 /*
60 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
61 * If the list is invalid, a warning is emitted and all CPUs are offloaded.
62 */
rcu_nocb_setup(char * str)63 static int __init rcu_nocb_setup(char *str)
64 {
65 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
66 if (*str == '=') {
67 if (cpulist_parse(++str, rcu_nocb_mask)) {
68 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
69 cpumask_setall(rcu_nocb_mask);
70 }
71 }
72 rcu_state.nocb_is_setup = true;
73 return 1;
74 }
75 __setup("rcu_nocbs", rcu_nocb_setup);
76
parse_rcu_nocb_poll(char * arg)77 static int __init parse_rcu_nocb_poll(char *arg)
78 {
79 rcu_nocb_poll = true;
80 return 1;
81 }
82 __setup("rcu_nocb_poll", parse_rcu_nocb_poll);
83
84 /*
85 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
86 * After all, the main point of bypassing is to avoid lock contention
87 * on ->nocb_lock, which only can happen at high call_rcu() rates.
88 */
89 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
90 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
91
92 /*
93 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the
94 * lock isn't immediately available, perform minimal sanity check.
95 */
rcu_nocb_bypass_lock(struct rcu_data * rdp)96 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
97 __acquires(&rdp->nocb_bypass_lock)
98 {
99 lockdep_assert_irqs_disabled();
100 if (raw_spin_trylock(&rdp->nocb_bypass_lock))
101 return;
102 /*
103 * Contention expected only when local enqueue collide with
104 * remote flush from kthreads.
105 */
106 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
107 raw_spin_lock(&rdp->nocb_bypass_lock);
108 }
109
110 /*
111 * Conditionally acquire the specified rcu_data structure's
112 * ->nocb_bypass_lock.
113 */
rcu_nocb_bypass_trylock(struct rcu_data * rdp)114 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
115 {
116 lockdep_assert_irqs_disabled();
117 return raw_spin_trylock(&rdp->nocb_bypass_lock);
118 }
119
120 /*
121 * Release the specified rcu_data structure's ->nocb_bypass_lock.
122 */
rcu_nocb_bypass_unlock(struct rcu_data * rdp)123 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
124 __releases(&rdp->nocb_bypass_lock)
125 {
126 lockdep_assert_irqs_disabled();
127 raw_spin_unlock(&rdp->nocb_bypass_lock);
128 }
129
130 /*
131 * Acquire the specified rcu_data structure's ->nocb_lock, but only
132 * if it corresponds to a no-CBs CPU.
133 */
rcu_nocb_lock(struct rcu_data * rdp)134 static void rcu_nocb_lock(struct rcu_data *rdp)
135 {
136 lockdep_assert_irqs_disabled();
137 if (!rcu_rdp_is_offloaded(rdp))
138 return;
139 raw_spin_lock(&rdp->nocb_lock);
140 }
141
142 /*
143 * Release the specified rcu_data structure's ->nocb_lock, but only
144 * if it corresponds to a no-CBs CPU.
145 */
rcu_nocb_unlock(struct rcu_data * rdp)146 static void rcu_nocb_unlock(struct rcu_data *rdp)
147 {
148 if (rcu_rdp_is_offloaded(rdp)) {
149 lockdep_assert_irqs_disabled();
150 raw_spin_unlock(&rdp->nocb_lock);
151 }
152 }
153
154 /*
155 * Release the specified rcu_data structure's ->nocb_lock and restore
156 * interrupts, but only if it corresponds to a no-CBs CPU.
157 */
rcu_nocb_unlock_irqrestore(struct rcu_data * rdp,unsigned long flags)158 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
159 unsigned long flags)
160 {
161 if (rcu_rdp_is_offloaded(rdp)) {
162 lockdep_assert_irqs_disabled();
163 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
164 } else {
165 local_irq_restore(flags);
166 }
167 }
168
169 /* Lockdep check that ->cblist may be safely accessed. */
rcu_lockdep_assert_cblist_protected(struct rcu_data * rdp)170 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
171 {
172 lockdep_assert_irqs_disabled();
173 if (rcu_rdp_is_offloaded(rdp))
174 lockdep_assert_held(&rdp->nocb_lock);
175 }
176
177 /*
178 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
179 * grace period.
180 */
rcu_nocb_gp_cleanup(struct swait_queue_head * sq)181 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
182 {
183 swake_up_all(sq);
184 }
185
rcu_nocb_gp_get(struct rcu_node * rnp)186 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
187 {
188 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
189 }
190
rcu_init_one_nocb(struct rcu_node * rnp)191 static void rcu_init_one_nocb(struct rcu_node *rnp)
192 {
193 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
194 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
195 }
196
__wake_nocb_gp(struct rcu_data * rdp_gp,struct rcu_data * rdp,bool force,unsigned long flags)197 static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
198 struct rcu_data *rdp,
199 bool force, unsigned long flags)
200 __releases(rdp_gp->nocb_gp_lock)
201 {
202 bool needwake = false;
203
204 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
205 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
206 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
207 TPS("AlreadyAwake"));
208 return false;
209 }
210
211 if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
212 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
213 del_timer(&rdp_gp->nocb_timer);
214 }
215
216 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
217 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
218 needwake = true;
219 }
220 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
221 if (needwake) {
222 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
223 if (cpu_is_offline(raw_smp_processor_id()))
224 swake_up_one_online(&rdp_gp->nocb_gp_wq);
225 else
226 wake_up_process(rdp_gp->nocb_gp_kthread);
227 }
228
229 return needwake;
230 }
231
232 /*
233 * Kick the GP kthread for this NOCB group.
234 */
wake_nocb_gp(struct rcu_data * rdp,bool force)235 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
236 {
237 unsigned long flags;
238 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
239
240 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
241 return __wake_nocb_gp(rdp_gp, rdp, force, flags);
242 }
243
244 /*
245 * LAZY_FLUSH_JIFFIES decides the maximum amount of time that
246 * can elapse before lazy callbacks are flushed. Lazy callbacks
247 * could be flushed much earlier for a number of other reasons
248 * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are
249 * left unsubmitted to RCU after those many jiffies.
250 */
251 #define LAZY_FLUSH_JIFFIES (10 * HZ)
252 static unsigned long jiffies_till_flush = LAZY_FLUSH_JIFFIES;
253
254 #ifdef CONFIG_RCU_LAZY
255 // To be called only from test code.
rcu_lazy_set_jiffies_till_flush(unsigned long jif)256 void rcu_lazy_set_jiffies_till_flush(unsigned long jif)
257 {
258 jiffies_till_flush = jif;
259 }
260 EXPORT_SYMBOL(rcu_lazy_set_jiffies_till_flush);
261
rcu_lazy_get_jiffies_till_flush(void)262 unsigned long rcu_lazy_get_jiffies_till_flush(void)
263 {
264 return jiffies_till_flush;
265 }
266 EXPORT_SYMBOL(rcu_lazy_get_jiffies_till_flush);
267 #endif
268
269 /*
270 * Arrange to wake the GP kthread for this NOCB group at some future
271 * time when it is safe to do so.
272 */
wake_nocb_gp_defer(struct rcu_data * rdp,int waketype,const char * reason)273 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
274 const char *reason)
275 {
276 unsigned long flags;
277 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
278
279 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
280
281 /*
282 * Bypass wakeup overrides previous deferments. In case of
283 * callback storms, no need to wake up too early.
284 */
285 if (waketype == RCU_NOCB_WAKE_LAZY &&
286 rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) {
287 mod_timer(&rdp_gp->nocb_timer, jiffies + jiffies_till_flush);
288 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
289 } else if (waketype == RCU_NOCB_WAKE_BYPASS) {
290 mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
291 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
292 } else {
293 if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
294 mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
295 if (rdp_gp->nocb_defer_wakeup < waketype)
296 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
297 }
298
299 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
300
301 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
302 }
303
304 /*
305 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
306 * However, if there is a callback to be enqueued and if ->nocb_bypass
307 * proves to be initially empty, just return false because the no-CB GP
308 * kthread may need to be awakened in this case.
309 *
310 * Return true if there was something to be flushed and it succeeded, otherwise
311 * false.
312 *
313 * Note that this function always returns true if rhp is NULL.
314 */
rcu_nocb_do_flush_bypass(struct rcu_data * rdp,struct rcu_head * rhp_in,unsigned long j,bool lazy)315 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in,
316 unsigned long j, bool lazy)
317 {
318 struct rcu_cblist rcl;
319 struct rcu_head *rhp = rhp_in;
320
321 WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
322 rcu_lockdep_assert_cblist_protected(rdp);
323 lockdep_assert_held(&rdp->nocb_bypass_lock);
324 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
325 raw_spin_unlock(&rdp->nocb_bypass_lock);
326 return false;
327 }
328 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
329 if (rhp)
330 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
331
332 /*
333 * If the new CB requested was a lazy one, queue it onto the main
334 * ->cblist so that we can take advantage of the grace-period that will
335 * happen regardless. But queue it onto the bypass list first so that
336 * the lazy CB is ordered with the existing CBs in the bypass list.
337 */
338 if (lazy && rhp) {
339 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
340 rhp = NULL;
341 }
342 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
343 WRITE_ONCE(rdp->lazy_len, 0);
344
345 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
346 WRITE_ONCE(rdp->nocb_bypass_first, j);
347 rcu_nocb_bypass_unlock(rdp);
348 return true;
349 }
350
351 /*
352 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
353 * However, if there is a callback to be enqueued and if ->nocb_bypass
354 * proves to be initially empty, just return false because the no-CB GP
355 * kthread may need to be awakened in this case.
356 *
357 * Note that this function always returns true if rhp is NULL.
358 */
rcu_nocb_flush_bypass(struct rcu_data * rdp,struct rcu_head * rhp,unsigned long j,bool lazy)359 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
360 unsigned long j, bool lazy)
361 {
362 if (!rcu_rdp_is_offloaded(rdp))
363 return true;
364 rcu_lockdep_assert_cblist_protected(rdp);
365 rcu_nocb_bypass_lock(rdp);
366 return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy);
367 }
368
369 /*
370 * If the ->nocb_bypass_lock is immediately available, flush the
371 * ->nocb_bypass queue into ->cblist.
372 */
rcu_nocb_try_flush_bypass(struct rcu_data * rdp,unsigned long j)373 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
374 {
375 rcu_lockdep_assert_cblist_protected(rdp);
376 if (!rcu_rdp_is_offloaded(rdp) ||
377 !rcu_nocb_bypass_trylock(rdp))
378 return;
379 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false));
380 }
381
382 /*
383 * See whether it is appropriate to use the ->nocb_bypass list in order
384 * to control contention on ->nocb_lock. A limited number of direct
385 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass
386 * is non-empty, further callbacks must be placed into ->nocb_bypass,
387 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch
388 * back to direct use of ->cblist. However, ->nocb_bypass should not be
389 * used if ->cblist is empty, because otherwise callbacks can be stranded
390 * on ->nocb_bypass because we cannot count on the current CPU ever again
391 * invoking call_rcu(). The general rule is that if ->nocb_bypass is
392 * non-empty, the corresponding no-CBs grace-period kthread must not be
393 * in an indefinite sleep state.
394 *
395 * Finally, it is not permitted to use the bypass during early boot,
396 * as doing so would confuse the auto-initialization code. Besides
397 * which, there is no point in worrying about lock contention while
398 * there is only one CPU in operation.
399 */
rcu_nocb_try_bypass(struct rcu_data * rdp,struct rcu_head * rhp,bool * was_alldone,unsigned long flags,bool lazy)400 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
401 bool *was_alldone, unsigned long flags,
402 bool lazy)
403 {
404 unsigned long c;
405 unsigned long cur_gp_seq;
406 unsigned long j = jiffies;
407 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
408 bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len));
409
410 lockdep_assert_irqs_disabled();
411
412 // Pure softirq/rcuc based processing: no bypassing, no
413 // locking.
414 if (!rcu_rdp_is_offloaded(rdp)) {
415 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
416 return false;
417 }
418
419 // In the process of (de-)offloading: no bypassing, but
420 // locking.
421 if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
422 rcu_nocb_lock(rdp);
423 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
424 return false; /* Not offloaded, no bypassing. */
425 }
426
427 // Don't use ->nocb_bypass during early boot.
428 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
429 rcu_nocb_lock(rdp);
430 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
431 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
432 return false;
433 }
434
435 // If we have advanced to a new jiffy, reset counts to allow
436 // moving back from ->nocb_bypass to ->cblist.
437 if (j == rdp->nocb_nobypass_last) {
438 c = rdp->nocb_nobypass_count + 1;
439 } else {
440 WRITE_ONCE(rdp->nocb_nobypass_last, j);
441 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
442 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
443 nocb_nobypass_lim_per_jiffy))
444 c = 0;
445 else if (c > nocb_nobypass_lim_per_jiffy)
446 c = nocb_nobypass_lim_per_jiffy;
447 }
448 WRITE_ONCE(rdp->nocb_nobypass_count, c);
449
450 // If there hasn't yet been all that many ->cblist enqueues
451 // this jiffy, tell the caller to enqueue onto ->cblist. But flush
452 // ->nocb_bypass first.
453 // Lazy CBs throttle this back and do immediate bypass queuing.
454 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) {
455 rcu_nocb_lock(rdp);
456 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
457 if (*was_alldone)
458 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
459 TPS("FirstQ"));
460
461 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false));
462 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
463 return false; // Caller must enqueue the callback.
464 }
465
466 // If ->nocb_bypass has been used too long or is too full,
467 // flush ->nocb_bypass to ->cblist.
468 if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) ||
469 (ncbs && bypass_is_lazy &&
470 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush))) ||
471 ncbs >= qhimark) {
472 rcu_nocb_lock(rdp);
473 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
474
475 if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) {
476 if (*was_alldone)
477 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
478 TPS("FirstQ"));
479 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
480 return false; // Caller must enqueue the callback.
481 }
482 if (j != rdp->nocb_gp_adv_time &&
483 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
484 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
485 rcu_advance_cbs_nowake(rdp->mynode, rdp);
486 rdp->nocb_gp_adv_time = j;
487 }
488
489 // The flush succeeded and we moved CBs into the regular list.
490 // Don't wait for the wake up timer as it may be too far ahead.
491 // Wake up the GP thread now instead, if the cblist was empty.
492 __call_rcu_nocb_wake(rdp, *was_alldone, flags);
493
494 return true; // Callback already enqueued.
495 }
496
497 // We need to use the bypass.
498 rcu_nocb_bypass_lock(rdp);
499 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
500 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
501 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
502
503 if (lazy)
504 WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1);
505
506 if (!ncbs) {
507 WRITE_ONCE(rdp->nocb_bypass_first, j);
508 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
509 }
510 rcu_nocb_bypass_unlock(rdp);
511 smp_mb(); /* Order enqueue before wake. */
512 // A wake up of the grace period kthread or timer adjustment
513 // needs to be done only if:
514 // 1. Bypass list was fully empty before (this is the first
515 // bypass list entry), or:
516 // 2. Both of these conditions are met:
517 // a. The bypass list previously had only lazy CBs, and:
518 // b. The new CB is non-lazy.
519 if (!ncbs || (bypass_is_lazy && !lazy)) {
520 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
521 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
522 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
523 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
524 TPS("FirstBQwake"));
525 __call_rcu_nocb_wake(rdp, true, flags);
526 } else {
527 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
528 TPS("FirstBQnoWake"));
529 rcu_nocb_unlock(rdp);
530 }
531 }
532 return true; // Callback already enqueued.
533 }
534
535 /*
536 * Awaken the no-CBs grace-period kthread if needed, either due to it
537 * legitimately being asleep or due to overload conditions.
538 *
539 * If warranted, also wake up the kthread servicing this CPUs queues.
540 */
__call_rcu_nocb_wake(struct rcu_data * rdp,bool was_alldone,unsigned long flags)541 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
542 unsigned long flags)
543 __releases(rdp->nocb_lock)
544 {
545 long bypass_len;
546 unsigned long cur_gp_seq;
547 unsigned long j;
548 long lazy_len;
549 long len;
550 struct task_struct *t;
551
552 // If we are being polled or there is no kthread, just leave.
553 t = READ_ONCE(rdp->nocb_gp_kthread);
554 if (rcu_nocb_poll || !t) {
555 rcu_nocb_unlock(rdp);
556 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
557 TPS("WakeNotPoll"));
558 return;
559 }
560 // Need to actually to a wakeup.
561 len = rcu_segcblist_n_cbs(&rdp->cblist);
562 bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass);
563 lazy_len = READ_ONCE(rdp->lazy_len);
564 if (was_alldone) {
565 rdp->qlen_last_fqs_check = len;
566 // Only lazy CBs in bypass list
567 if (lazy_len && bypass_len == lazy_len) {
568 rcu_nocb_unlock(rdp);
569 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY,
570 TPS("WakeLazy"));
571 } else if (!irqs_disabled_flags(flags) && cpu_online(rdp->cpu)) {
572 /* ... if queue was empty ... */
573 rcu_nocb_unlock(rdp);
574 wake_nocb_gp(rdp, false);
575 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
576 TPS("WakeEmpty"));
577 } else {
578 /*
579 * Don't do the wake-up upfront on fragile paths.
580 * Also offline CPUs can't call swake_up_one_online() from
581 * (soft-)IRQs. Rely on the final deferred wake-up from
582 * rcutree_report_cpu_dead()
583 */
584 rcu_nocb_unlock(rdp);
585 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
586 TPS("WakeEmptyIsDeferred"));
587 }
588 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
589 /* ... or if many callbacks queued. */
590 rdp->qlen_last_fqs_check = len;
591 j = jiffies;
592 if (j != rdp->nocb_gp_adv_time &&
593 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
594 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
595 rcu_advance_cbs_nowake(rdp->mynode, rdp);
596 rdp->nocb_gp_adv_time = j;
597 }
598 smp_mb(); /* Enqueue before timer_pending(). */
599 if ((rdp->nocb_cb_sleep ||
600 !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
601 !timer_pending(&rdp->nocb_timer)) {
602 rcu_nocb_unlock(rdp);
603 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
604 TPS("WakeOvfIsDeferred"));
605 } else {
606 rcu_nocb_unlock(rdp);
607 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
608 }
609 } else {
610 rcu_nocb_unlock(rdp);
611 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
612 }
613 }
614
nocb_gp_toggle_rdp(struct rcu_data * rdp,bool * wake_state)615 static int nocb_gp_toggle_rdp(struct rcu_data *rdp,
616 bool *wake_state)
617 {
618 struct rcu_segcblist *cblist = &rdp->cblist;
619 unsigned long flags;
620 int ret;
621
622 rcu_nocb_lock_irqsave(rdp, flags);
623 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) &&
624 !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
625 /*
626 * Offloading. Set our flag and notify the offload worker.
627 * We will handle this rdp until it ever gets de-offloaded.
628 */
629 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP);
630 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
631 *wake_state = true;
632 ret = 1;
633 } else if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) &&
634 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
635 /*
636 * De-offloading. Clear our flag and notify the de-offload worker.
637 * We will ignore this rdp until it ever gets re-offloaded.
638 */
639 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP);
640 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
641 *wake_state = true;
642 ret = 0;
643 } else {
644 WARN_ON_ONCE(1);
645 ret = -1;
646 }
647
648 rcu_nocb_unlock_irqrestore(rdp, flags);
649
650 return ret;
651 }
652
nocb_gp_sleep(struct rcu_data * my_rdp,int cpu)653 static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu)
654 {
655 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
656 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
657 !READ_ONCE(my_rdp->nocb_gp_sleep));
658 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
659 }
660
661 /*
662 * No-CBs GP kthreads come here to wait for additional callbacks to show up
663 * or for grace periods to end.
664 */
nocb_gp_wait(struct rcu_data * my_rdp)665 static void nocb_gp_wait(struct rcu_data *my_rdp)
666 {
667 bool bypass = false;
668 int __maybe_unused cpu = my_rdp->cpu;
669 unsigned long cur_gp_seq;
670 unsigned long flags;
671 bool gotcbs = false;
672 unsigned long j = jiffies;
673 bool lazy = false;
674 bool needwait_gp = false; // This prevents actual uninitialized use.
675 bool needwake;
676 bool needwake_gp;
677 struct rcu_data *rdp, *rdp_toggling = NULL;
678 struct rcu_node *rnp;
679 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
680 bool wasempty = false;
681
682 /*
683 * Each pass through the following loop checks for CBs and for the
684 * nearest grace period (if any) to wait for next. The CB kthreads
685 * and the global grace-period kthread are awakened if needed.
686 */
687 WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
688 /*
689 * An rcu_data structure is removed from the list after its
690 * CPU is de-offloaded and added to the list before that CPU is
691 * (re-)offloaded. If the following loop happens to be referencing
692 * that rcu_data structure during the time that the corresponding
693 * CPU is de-offloaded and then immediately re-offloaded, this
694 * loop's rdp pointer will be carried to the end of the list by
695 * the resulting pair of list operations. This can cause the loop
696 * to skip over some of the rcu_data structures that were supposed
697 * to have been scanned. Fortunately a new iteration through the
698 * entire loop is forced after a given CPU's rcu_data structure
699 * is added to the list, so the skipped-over rcu_data structures
700 * won't be ignored for long.
701 */
702 list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) {
703 long bypass_ncbs;
704 bool flush_bypass = false;
705 long lazy_ncbs;
706
707 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
708 rcu_nocb_lock_irqsave(rdp, flags);
709 lockdep_assert_held(&rdp->nocb_lock);
710 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
711 lazy_ncbs = READ_ONCE(rdp->lazy_len);
712
713 if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) &&
714 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush) ||
715 bypass_ncbs > 2 * qhimark)) {
716 flush_bypass = true;
717 } else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) &&
718 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
719 bypass_ncbs > 2 * qhimark)) {
720 flush_bypass = true;
721 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
722 rcu_nocb_unlock_irqrestore(rdp, flags);
723 continue; /* No callbacks here, try next. */
724 }
725
726 if (flush_bypass) {
727 // Bypass full or old, so flush it.
728 (void)rcu_nocb_try_flush_bypass(rdp, j);
729 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
730 lazy_ncbs = READ_ONCE(rdp->lazy_len);
731 }
732
733 if (bypass_ncbs) {
734 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
735 bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass"));
736 if (bypass_ncbs == lazy_ncbs)
737 lazy = true;
738 else
739 bypass = true;
740 }
741 rnp = rdp->mynode;
742
743 // Advance callbacks if helpful and low contention.
744 needwake_gp = false;
745 if (!rcu_segcblist_restempty(&rdp->cblist,
746 RCU_NEXT_READY_TAIL) ||
747 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
748 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
749 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
750 needwake_gp = rcu_advance_cbs(rnp, rdp);
751 wasempty = rcu_segcblist_restempty(&rdp->cblist,
752 RCU_NEXT_READY_TAIL);
753 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
754 }
755 // Need to wait on some grace period?
756 WARN_ON_ONCE(wasempty &&
757 !rcu_segcblist_restempty(&rdp->cblist,
758 RCU_NEXT_READY_TAIL));
759 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
760 if (!needwait_gp ||
761 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
762 wait_gp_seq = cur_gp_seq;
763 needwait_gp = true;
764 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
765 TPS("NeedWaitGP"));
766 }
767 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
768 needwake = rdp->nocb_cb_sleep;
769 WRITE_ONCE(rdp->nocb_cb_sleep, false);
770 smp_mb(); /* CB invocation -after- GP end. */
771 } else {
772 needwake = false;
773 }
774 rcu_nocb_unlock_irqrestore(rdp, flags);
775 if (needwake) {
776 swake_up_one(&rdp->nocb_cb_wq);
777 gotcbs = true;
778 }
779 if (needwake_gp)
780 rcu_gp_kthread_wake();
781 }
782
783 my_rdp->nocb_gp_bypass = bypass;
784 my_rdp->nocb_gp_gp = needwait_gp;
785 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
786
787 // At least one child with non-empty ->nocb_bypass, so set
788 // timer in order to avoid stranding its callbacks.
789 if (!rcu_nocb_poll) {
790 // If bypass list only has lazy CBs. Add a deferred lazy wake up.
791 if (lazy && !bypass) {
792 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY,
793 TPS("WakeLazyIsDeferred"));
794 // Otherwise add a deferred bypass wake up.
795 } else if (bypass) {
796 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
797 TPS("WakeBypassIsDeferred"));
798 }
799 }
800
801 if (rcu_nocb_poll) {
802 /* Polling, so trace if first poll in the series. */
803 if (gotcbs)
804 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
805 if (list_empty(&my_rdp->nocb_head_rdp)) {
806 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
807 if (!my_rdp->nocb_toggling_rdp)
808 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
809 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
810 /* Wait for any offloading rdp */
811 nocb_gp_sleep(my_rdp, cpu);
812 } else {
813 schedule_timeout_idle(1);
814 }
815 } else if (!needwait_gp) {
816 /* Wait for callbacks to appear. */
817 nocb_gp_sleep(my_rdp, cpu);
818 } else {
819 rnp = my_rdp->mynode;
820 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
821 swait_event_interruptible_exclusive(
822 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
823 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
824 !READ_ONCE(my_rdp->nocb_gp_sleep));
825 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
826 }
827
828 if (!rcu_nocb_poll) {
829 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
830 // (De-)queue an rdp to/from the group if its nocb state is changing
831 rdp_toggling = my_rdp->nocb_toggling_rdp;
832 if (rdp_toggling)
833 my_rdp->nocb_toggling_rdp = NULL;
834
835 if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
836 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
837 del_timer(&my_rdp->nocb_timer);
838 }
839 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
840 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
841 } else {
842 rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp);
843 if (rdp_toggling) {
844 /*
845 * Paranoid locking to make sure nocb_toggling_rdp is well
846 * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could
847 * race with another round of nocb toggling for this rdp.
848 * Nocb locking should prevent from that already but we stick
849 * to paranoia, especially in rare path.
850 */
851 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
852 my_rdp->nocb_toggling_rdp = NULL;
853 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
854 }
855 }
856
857 if (rdp_toggling) {
858 bool wake_state = false;
859 int ret;
860
861 ret = nocb_gp_toggle_rdp(rdp_toggling, &wake_state);
862 if (ret == 1)
863 list_add_tail(&rdp_toggling->nocb_entry_rdp, &my_rdp->nocb_head_rdp);
864 else if (ret == 0)
865 list_del(&rdp_toggling->nocb_entry_rdp);
866 if (wake_state)
867 swake_up_one(&rdp_toggling->nocb_state_wq);
868 }
869
870 my_rdp->nocb_gp_seq = -1;
871 WARN_ON(signal_pending(current));
872 }
873
874 /*
875 * No-CBs grace-period-wait kthread. There is one of these per group
876 * of CPUs, but only once at least one CPU in that group has come online
877 * at least once since boot. This kthread checks for newly posted
878 * callbacks from any of the CPUs it is responsible for, waits for a
879 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
880 * that then have callback-invocation work to do.
881 */
rcu_nocb_gp_kthread(void * arg)882 static int rcu_nocb_gp_kthread(void *arg)
883 {
884 struct rcu_data *rdp = arg;
885
886 for (;;) {
887 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
888 nocb_gp_wait(rdp);
889 cond_resched_tasks_rcu_qs();
890 }
891 return 0;
892 }
893
nocb_cb_can_run(struct rcu_data * rdp)894 static inline bool nocb_cb_can_run(struct rcu_data *rdp)
895 {
896 u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB;
897
898 return rcu_segcblist_test_flags(&rdp->cblist, flags);
899 }
900
nocb_cb_wait_cond(struct rcu_data * rdp)901 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
902 {
903 return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep);
904 }
905
906 /*
907 * Invoke any ready callbacks from the corresponding no-CBs CPU,
908 * then, if there are no more, wait for more to appear.
909 */
nocb_cb_wait(struct rcu_data * rdp)910 static void nocb_cb_wait(struct rcu_data *rdp)
911 {
912 struct rcu_segcblist *cblist = &rdp->cblist;
913 unsigned long cur_gp_seq;
914 unsigned long flags;
915 bool needwake_state = false;
916 bool needwake_gp = false;
917 bool can_sleep = true;
918 struct rcu_node *rnp = rdp->mynode;
919
920 do {
921 swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
922 nocb_cb_wait_cond(rdp));
923
924 // VVV Ensure CB invocation follows _sleep test.
925 if (smp_load_acquire(&rdp->nocb_cb_sleep)) { // ^^^
926 WARN_ON(signal_pending(current));
927 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
928 }
929 } while (!nocb_cb_can_run(rdp));
930
931
932 local_irq_save(flags);
933 rcu_momentary_dyntick_idle();
934 local_irq_restore(flags);
935 /*
936 * Disable BH to provide the expected environment. Also, when
937 * transitioning to/from NOCB mode, a self-requeuing callback might
938 * be invoked from softirq. A short grace period could cause both
939 * instances of this callback would execute concurrently.
940 */
941 local_bh_disable();
942 rcu_do_batch(rdp);
943 local_bh_enable();
944 lockdep_assert_irqs_enabled();
945 rcu_nocb_lock_irqsave(rdp, flags);
946 if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
947 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
948 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
949 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
950 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
951 }
952
953 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
954 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) {
955 rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB);
956 if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
957 needwake_state = true;
958 }
959 if (rcu_segcblist_ready_cbs(cblist))
960 can_sleep = false;
961 } else {
962 /*
963 * De-offloading. Clear our flag and notify the de-offload worker.
964 * We won't touch the callbacks and keep sleeping until we ever
965 * get re-offloaded.
966 */
967 WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB));
968 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB);
969 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
970 needwake_state = true;
971 }
972
973 WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep);
974
975 if (rdp->nocb_cb_sleep)
976 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
977
978 rcu_nocb_unlock_irqrestore(rdp, flags);
979 if (needwake_gp)
980 rcu_gp_kthread_wake();
981
982 if (needwake_state)
983 swake_up_one(&rdp->nocb_state_wq);
984 }
985
986 /*
987 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke
988 * nocb_cb_wait() to do the dirty work.
989 */
rcu_nocb_cb_kthread(void * arg)990 static int rcu_nocb_cb_kthread(void *arg)
991 {
992 struct rcu_data *rdp = arg;
993
994 // Each pass through this loop does one callback batch, and,
995 // if there are no more ready callbacks, waits for them.
996 for (;;) {
997 nocb_cb_wait(rdp);
998 cond_resched_tasks_rcu_qs();
999 }
1000 return 0;
1001 }
1002
1003 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
rcu_nocb_need_deferred_wakeup(struct rcu_data * rdp,int level)1004 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1005 {
1006 return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
1007 }
1008
1009 /* Do a deferred wakeup of rcu_nocb_kthread(). */
do_nocb_deferred_wakeup_common(struct rcu_data * rdp_gp,struct rcu_data * rdp,int level,unsigned long flags)1010 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
1011 struct rcu_data *rdp, int level,
1012 unsigned long flags)
1013 __releases(rdp_gp->nocb_gp_lock)
1014 {
1015 int ndw;
1016 int ret;
1017
1018 if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
1019 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1020 return false;
1021 }
1022
1023 ndw = rdp_gp->nocb_defer_wakeup;
1024 ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
1025 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
1026
1027 return ret;
1028 }
1029
1030 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
do_nocb_deferred_wakeup_timer(struct timer_list * t)1031 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
1032 {
1033 unsigned long flags;
1034 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
1035
1036 WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
1037 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1038
1039 raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
1040 smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1041 do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
1042 }
1043
1044 /*
1045 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
1046 * This means we do an inexact common-case check. Note that if
1047 * we miss, ->nocb_timer will eventually clean things up.
1048 */
do_nocb_deferred_wakeup(struct rcu_data * rdp)1049 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1050 {
1051 unsigned long flags;
1052 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1053
1054 if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
1055 return false;
1056
1057 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1058 return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
1059 }
1060
rcu_nocb_flush_deferred_wakeup(void)1061 void rcu_nocb_flush_deferred_wakeup(void)
1062 {
1063 do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
1064 }
1065 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);
1066
rdp_offload_toggle(struct rcu_data * rdp,bool offload,unsigned long flags)1067 static int rdp_offload_toggle(struct rcu_data *rdp,
1068 bool offload, unsigned long flags)
1069 __releases(rdp->nocb_lock)
1070 {
1071 struct rcu_segcblist *cblist = &rdp->cblist;
1072 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1073 bool wake_gp = false;
1074
1075 rcu_segcblist_offload(cblist, offload);
1076
1077 if (rdp->nocb_cb_sleep)
1078 rdp->nocb_cb_sleep = false;
1079 rcu_nocb_unlock_irqrestore(rdp, flags);
1080
1081 /*
1082 * Ignore former value of nocb_cb_sleep and force wake up as it could
1083 * have been spuriously set to false already.
1084 */
1085 swake_up_one(&rdp->nocb_cb_wq);
1086
1087 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1088 // Queue this rdp for add/del to/from the list to iterate on rcuog
1089 WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp);
1090 if (rdp_gp->nocb_gp_sleep) {
1091 rdp_gp->nocb_gp_sleep = false;
1092 wake_gp = true;
1093 }
1094 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1095
1096 return wake_gp;
1097 }
1098
rcu_nocb_rdp_deoffload(void * arg)1099 static long rcu_nocb_rdp_deoffload(void *arg)
1100 {
1101 struct rcu_data *rdp = arg;
1102 struct rcu_segcblist *cblist = &rdp->cblist;
1103 unsigned long flags;
1104 int wake_gp;
1105 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1106
1107 /*
1108 * rcu_nocb_rdp_deoffload() may be called directly if
1109 * rcuog/o[p] spawn failed, because at this time the rdp->cpu
1110 * is not online yet.
1111 */
1112 WARN_ON_ONCE((rdp->cpu != raw_smp_processor_id()) && cpu_online(rdp->cpu));
1113
1114 pr_info("De-offloading %d\n", rdp->cpu);
1115
1116 rcu_nocb_lock_irqsave(rdp, flags);
1117 /*
1118 * Flush once and for all now. This suffices because we are
1119 * running on the target CPU holding ->nocb_lock (thus having
1120 * interrupts disabled), and because rdp_offload_toggle()
1121 * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED.
1122 * Thus future calls to rcu_segcblist_completely_offloaded() will
1123 * return false, which means that future calls to rcu_nocb_try_bypass()
1124 * will refuse to put anything into the bypass.
1125 */
1126 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
1127 /*
1128 * Start with invoking rcu_core() early. This way if the current thread
1129 * happens to preempt an ongoing call to rcu_core() in the middle,
1130 * leaving some work dismissed because rcu_core() still thinks the rdp is
1131 * completely offloaded, we are guaranteed a nearby future instance of
1132 * rcu_core() to catch up.
1133 */
1134 rcu_segcblist_set_flags(cblist, SEGCBLIST_RCU_CORE);
1135 invoke_rcu_core();
1136 wake_gp = rdp_offload_toggle(rdp, false, flags);
1137
1138 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1139 if (rdp_gp->nocb_gp_kthread) {
1140 if (wake_gp)
1141 wake_up_process(rdp_gp->nocb_gp_kthread);
1142
1143 /*
1144 * If rcuo[p] kthread spawn failed, directly remove SEGCBLIST_KTHREAD_CB.
1145 * Just wait SEGCBLIST_KTHREAD_GP to be cleared by rcuog.
1146 */
1147 if (!rdp->nocb_cb_kthread) {
1148 rcu_nocb_lock_irqsave(rdp, flags);
1149 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB);
1150 rcu_nocb_unlock_irqrestore(rdp, flags);
1151 }
1152
1153 swait_event_exclusive(rdp->nocb_state_wq,
1154 !rcu_segcblist_test_flags(cblist,
1155 SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP));
1156 } else {
1157 /*
1158 * No kthread to clear the flags for us or remove the rdp from the nocb list
1159 * to iterate. Do it here instead. Locking doesn't look stricly necessary
1160 * but we stick to paranoia in this rare path.
1161 */
1162 rcu_nocb_lock_irqsave(rdp, flags);
1163 rcu_segcblist_clear_flags(&rdp->cblist,
1164 SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP);
1165 rcu_nocb_unlock_irqrestore(rdp, flags);
1166
1167 list_del(&rdp->nocb_entry_rdp);
1168 }
1169 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1170
1171 /*
1172 * Lock one last time to acquire latest callback updates from kthreads
1173 * so we can later handle callbacks locally without locking.
1174 */
1175 rcu_nocb_lock_irqsave(rdp, flags);
1176 /*
1177 * Theoretically we could clear SEGCBLIST_LOCKING after the nocb
1178 * lock is released but how about being paranoid for once?
1179 */
1180 rcu_segcblist_clear_flags(cblist, SEGCBLIST_LOCKING);
1181 /*
1182 * Without SEGCBLIST_LOCKING, we can't use
1183 * rcu_nocb_unlock_irqrestore() anymore.
1184 */
1185 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1186
1187 /* Sanity check */
1188 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1189
1190
1191 return 0;
1192 }
1193
rcu_nocb_cpu_deoffload(int cpu)1194 int rcu_nocb_cpu_deoffload(int cpu)
1195 {
1196 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1197 int ret = 0;
1198
1199 cpus_read_lock();
1200 mutex_lock(&rcu_state.barrier_mutex);
1201 if (rcu_rdp_is_offloaded(rdp)) {
1202 if (cpu_online(cpu)) {
1203 ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp);
1204 if (!ret)
1205 cpumask_clear_cpu(cpu, rcu_nocb_mask);
1206 } else {
1207 pr_info("NOCB: Cannot CB-deoffload offline CPU %d\n", rdp->cpu);
1208 ret = -EINVAL;
1209 }
1210 }
1211 mutex_unlock(&rcu_state.barrier_mutex);
1212 cpus_read_unlock();
1213
1214 return ret;
1215 }
1216 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);
1217
rcu_nocb_rdp_offload(void * arg)1218 static long rcu_nocb_rdp_offload(void *arg)
1219 {
1220 struct rcu_data *rdp = arg;
1221 struct rcu_segcblist *cblist = &rdp->cblist;
1222 unsigned long flags;
1223 int wake_gp;
1224 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1225
1226 WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
1227 /*
1228 * For now we only support re-offload, ie: the rdp must have been
1229 * offloaded on boot first.
1230 */
1231 if (!rdp->nocb_gp_rdp)
1232 return -EINVAL;
1233
1234 if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread))
1235 return -EINVAL;
1236
1237 pr_info("Offloading %d\n", rdp->cpu);
1238
1239 /*
1240 * Can't use rcu_nocb_lock_irqsave() before SEGCBLIST_LOCKING
1241 * is set.
1242 */
1243 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1244
1245 /*
1246 * We didn't take the nocb lock while working on the
1247 * rdp->cblist with SEGCBLIST_LOCKING cleared (pure softirq/rcuc mode).
1248 * Every modifications that have been done previously on
1249 * rdp->cblist must be visible remotely by the nocb kthreads
1250 * upon wake up after reading the cblist flags.
1251 *
1252 * The layout against nocb_lock enforces that ordering:
1253 *
1254 * __rcu_nocb_rdp_offload() nocb_cb_wait()/nocb_gp_wait()
1255 * ------------------------- ----------------------------
1256 * WRITE callbacks rcu_nocb_lock()
1257 * rcu_nocb_lock() READ flags
1258 * WRITE flags READ callbacks
1259 * rcu_nocb_unlock() rcu_nocb_unlock()
1260 */
1261 wake_gp = rdp_offload_toggle(rdp, true, flags);
1262 if (wake_gp)
1263 wake_up_process(rdp_gp->nocb_gp_kthread);
1264 swait_event_exclusive(rdp->nocb_state_wq,
1265 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) &&
1266 rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
1267
1268 /*
1269 * All kthreads are ready to work, we can finally relieve rcu_core() and
1270 * enable nocb bypass.
1271 */
1272 rcu_nocb_lock_irqsave(rdp, flags);
1273 rcu_segcblist_clear_flags(cblist, SEGCBLIST_RCU_CORE);
1274 rcu_nocb_unlock_irqrestore(rdp, flags);
1275
1276 return 0;
1277 }
1278
rcu_nocb_cpu_offload(int cpu)1279 int rcu_nocb_cpu_offload(int cpu)
1280 {
1281 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1282 int ret = 0;
1283
1284 cpus_read_lock();
1285 mutex_lock(&rcu_state.barrier_mutex);
1286 if (!rcu_rdp_is_offloaded(rdp)) {
1287 if (cpu_online(cpu)) {
1288 ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp);
1289 if (!ret)
1290 cpumask_set_cpu(cpu, rcu_nocb_mask);
1291 } else {
1292 pr_info("NOCB: Cannot CB-offload offline CPU %d\n", rdp->cpu);
1293 ret = -EINVAL;
1294 }
1295 }
1296 mutex_unlock(&rcu_state.barrier_mutex);
1297 cpus_read_unlock();
1298
1299 return ret;
1300 }
1301 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
1302
1303 #ifdef CONFIG_RCU_LAZY
1304 static unsigned long
lazy_rcu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1305 lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1306 {
1307 int cpu;
1308 unsigned long count = 0;
1309
1310 if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
1311 return 0;
1312
1313 /* Protect rcu_nocb_mask against concurrent (de-)offloading. */
1314 if (!mutex_trylock(&rcu_state.barrier_mutex))
1315 return 0;
1316
1317 /* Snapshot count of all CPUs */
1318 for_each_cpu(cpu, rcu_nocb_mask) {
1319 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1320
1321 count += READ_ONCE(rdp->lazy_len);
1322 }
1323
1324 mutex_unlock(&rcu_state.barrier_mutex);
1325
1326 return count ? count : SHRINK_EMPTY;
1327 }
1328
1329 static unsigned long
lazy_rcu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1330 lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1331 {
1332 int cpu;
1333 unsigned long flags;
1334 unsigned long count = 0;
1335
1336 if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
1337 return 0;
1338 /*
1339 * Protect against concurrent (de-)offloading. Otherwise nocb locking
1340 * may be ignored or imbalanced.
1341 */
1342 if (!mutex_trylock(&rcu_state.barrier_mutex)) {
1343 /*
1344 * But really don't insist if barrier_mutex is contended since we
1345 * can't guarantee that it will never engage in a dependency
1346 * chain involving memory allocation. The lock is seldom contended
1347 * anyway.
1348 */
1349 return 0;
1350 }
1351
1352 /* Snapshot count of all CPUs */
1353 for_each_cpu(cpu, rcu_nocb_mask) {
1354 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1355 int _count;
1356
1357 if (WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)))
1358 continue;
1359
1360 if (!READ_ONCE(rdp->lazy_len))
1361 continue;
1362
1363 rcu_nocb_lock_irqsave(rdp, flags);
1364 /*
1365 * Recheck under the nocb lock. Since we are not holding the bypass
1366 * lock we may still race with increments from the enqueuer but still
1367 * we know for sure if there is at least one lazy callback.
1368 */
1369 _count = READ_ONCE(rdp->lazy_len);
1370 if (!_count) {
1371 rcu_nocb_unlock_irqrestore(rdp, flags);
1372 continue;
1373 }
1374 rcu_nocb_try_flush_bypass(rdp, jiffies);
1375 rcu_nocb_unlock_irqrestore(rdp, flags);
1376 wake_nocb_gp(rdp, false);
1377 sc->nr_to_scan -= _count;
1378 count += _count;
1379 if (sc->nr_to_scan <= 0)
1380 break;
1381 }
1382
1383 mutex_unlock(&rcu_state.barrier_mutex);
1384
1385 return count ? count : SHRINK_STOP;
1386 }
1387
1388 static struct shrinker lazy_rcu_shrinker = {
1389 .count_objects = lazy_rcu_shrink_count,
1390 .scan_objects = lazy_rcu_shrink_scan,
1391 .batch = 0,
1392 .seeks = DEFAULT_SEEKS,
1393 };
1394 #endif // #ifdef CONFIG_RCU_LAZY
1395
rcu_init_nohz(void)1396 void __init rcu_init_nohz(void)
1397 {
1398 int cpu;
1399 struct rcu_data *rdp;
1400 const struct cpumask *cpumask = NULL;
1401
1402 #if defined(CONFIG_NO_HZ_FULL)
1403 if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask))
1404 cpumask = tick_nohz_full_mask;
1405 #endif
1406
1407 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) &&
1408 !rcu_state.nocb_is_setup && !cpumask)
1409 cpumask = cpu_possible_mask;
1410
1411 if (cpumask) {
1412 if (!cpumask_available(rcu_nocb_mask)) {
1413 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
1414 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
1415 return;
1416 }
1417 }
1418
1419 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, cpumask);
1420 rcu_state.nocb_is_setup = true;
1421 }
1422
1423 if (!rcu_state.nocb_is_setup)
1424 return;
1425
1426 #ifdef CONFIG_RCU_LAZY
1427 if (register_shrinker(&lazy_rcu_shrinker, "rcu-lazy"))
1428 pr_err("Failed to register lazy_rcu shrinker!\n");
1429 #endif // #ifdef CONFIG_RCU_LAZY
1430
1431 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
1432 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
1433 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
1434 rcu_nocb_mask);
1435 }
1436 if (cpumask_empty(rcu_nocb_mask))
1437 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
1438 else
1439 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
1440 cpumask_pr_args(rcu_nocb_mask));
1441 if (rcu_nocb_poll)
1442 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
1443
1444 for_each_cpu(cpu, rcu_nocb_mask) {
1445 rdp = per_cpu_ptr(&rcu_data, cpu);
1446 if (rcu_segcblist_empty(&rdp->cblist))
1447 rcu_segcblist_init(&rdp->cblist);
1448 rcu_segcblist_offload(&rdp->cblist, true);
1449 rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP);
1450 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_RCU_CORE);
1451 }
1452 rcu_organize_nocb_kthreads();
1453 }
1454
1455 /* Initialize per-rcu_data variables for no-CBs CPUs. */
rcu_boot_init_nocb_percpu_data(struct rcu_data * rdp)1456 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1457 {
1458 init_swait_queue_head(&rdp->nocb_cb_wq);
1459 init_swait_queue_head(&rdp->nocb_gp_wq);
1460 init_swait_queue_head(&rdp->nocb_state_wq);
1461 raw_spin_lock_init(&rdp->nocb_lock);
1462 raw_spin_lock_init(&rdp->nocb_bypass_lock);
1463 raw_spin_lock_init(&rdp->nocb_gp_lock);
1464 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
1465 rcu_cblist_init(&rdp->nocb_bypass);
1466 WRITE_ONCE(rdp->lazy_len, 0);
1467 mutex_init(&rdp->nocb_gp_kthread_mutex);
1468 }
1469
1470 /*
1471 * If the specified CPU is a no-CBs CPU that does not already have its
1472 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread
1473 * for this CPU's group has not yet been created, spawn it as well.
1474 */
rcu_spawn_cpu_nocb_kthread(int cpu)1475 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1476 {
1477 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1478 struct rcu_data *rdp_gp;
1479 struct task_struct *t;
1480 struct sched_param sp;
1481
1482 if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup)
1483 return;
1484
1485 /* If there already is an rcuo kthread, then nothing to do. */
1486 if (rdp->nocb_cb_kthread)
1487 return;
1488
1489 /* If we didn't spawn the GP kthread first, reorganize! */
1490 sp.sched_priority = kthread_prio;
1491 rdp_gp = rdp->nocb_gp_rdp;
1492 mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1493 if (!rdp_gp->nocb_gp_kthread) {
1494 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
1495 "rcuog/%d", rdp_gp->cpu);
1496 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) {
1497 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1498 goto end;
1499 }
1500 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
1501 if (kthread_prio)
1502 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1503 }
1504 mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1505
1506 /* Spawn the kthread for this CPU. */
1507 t = kthread_run(rcu_nocb_cb_kthread, rdp,
1508 "rcuo%c/%d", rcu_state.abbr, cpu);
1509 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
1510 goto end;
1511
1512 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio)
1513 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1514
1515 WRITE_ONCE(rdp->nocb_cb_kthread, t);
1516 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
1517 return;
1518 end:
1519 mutex_lock(&rcu_state.barrier_mutex);
1520 if (rcu_rdp_is_offloaded(rdp)) {
1521 rcu_nocb_rdp_deoffload(rdp);
1522 cpumask_clear_cpu(cpu, rcu_nocb_mask);
1523 }
1524 mutex_unlock(&rcu_state.barrier_mutex);
1525 }
1526
1527 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */
1528 static int rcu_nocb_gp_stride = -1;
1529 module_param(rcu_nocb_gp_stride, int, 0444);
1530
1531 /*
1532 * Initialize GP-CB relationships for all no-CBs CPU.
1533 */
rcu_organize_nocb_kthreads(void)1534 static void __init rcu_organize_nocb_kthreads(void)
1535 {
1536 int cpu;
1537 bool firsttime = true;
1538 bool gotnocbs = false;
1539 bool gotnocbscbs = true;
1540 int ls = rcu_nocb_gp_stride;
1541 int nl = 0; /* Next GP kthread. */
1542 struct rcu_data *rdp;
1543 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */
1544
1545 if (!cpumask_available(rcu_nocb_mask))
1546 return;
1547 if (ls == -1) {
1548 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
1549 rcu_nocb_gp_stride = ls;
1550 }
1551
1552 /*
1553 * Each pass through this loop sets up one rcu_data structure.
1554 * Should the corresponding CPU come online in the future, then
1555 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
1556 */
1557 for_each_possible_cpu(cpu) {
1558 rdp = per_cpu_ptr(&rcu_data, cpu);
1559 if (rdp->cpu >= nl) {
1560 /* New GP kthread, set up for CBs & next GP. */
1561 gotnocbs = true;
1562 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
1563 rdp_gp = rdp;
1564 INIT_LIST_HEAD(&rdp->nocb_head_rdp);
1565 if (dump_tree) {
1566 if (!firsttime)
1567 pr_cont("%s\n", gotnocbscbs
1568 ? "" : " (self only)");
1569 gotnocbscbs = false;
1570 firsttime = false;
1571 pr_alert("%s: No-CB GP kthread CPU %d:",
1572 __func__, cpu);
1573 }
1574 } else {
1575 /* Another CB kthread, link to previous GP kthread. */
1576 gotnocbscbs = true;
1577 if (dump_tree)
1578 pr_cont(" %d", cpu);
1579 }
1580 rdp->nocb_gp_rdp = rdp_gp;
1581 if (cpumask_test_cpu(cpu, rcu_nocb_mask))
1582 list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
1583 }
1584 if (gotnocbs && dump_tree)
1585 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
1586 }
1587
1588 /*
1589 * Bind the current task to the offloaded CPUs. If there are no offloaded
1590 * CPUs, leave the task unbound. Splat if the bind attempt fails.
1591 */
rcu_bind_current_to_nocb(void)1592 void rcu_bind_current_to_nocb(void)
1593 {
1594 if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask))
1595 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
1596 }
1597 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
1598
1599 // The ->on_cpu field is available only in CONFIG_SMP=y, so...
1600 #ifdef CONFIG_SMP
show_rcu_should_be_on_cpu(struct task_struct * tsp)1601 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1602 {
1603 return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
1604 }
1605 #else // #ifdef CONFIG_SMP
show_rcu_should_be_on_cpu(struct task_struct * tsp)1606 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1607 {
1608 return "";
1609 }
1610 #endif // #else #ifdef CONFIG_SMP
1611
1612 /*
1613 * Dump out nocb grace-period kthread state for the specified rcu_data
1614 * structure.
1615 */
show_rcu_nocb_gp_state(struct rcu_data * rdp)1616 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
1617 {
1618 struct rcu_node *rnp = rdp->mynode;
1619
1620 pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
1621 rdp->cpu,
1622 "kK"[!!rdp->nocb_gp_kthread],
1623 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
1624 "dD"[!!rdp->nocb_defer_wakeup],
1625 "tT"[timer_pending(&rdp->nocb_timer)],
1626 "sS"[!!rdp->nocb_gp_sleep],
1627 ".W"[swait_active(&rdp->nocb_gp_wq)],
1628 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
1629 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
1630 ".B"[!!rdp->nocb_gp_bypass],
1631 ".G"[!!rdp->nocb_gp_gp],
1632 (long)rdp->nocb_gp_seq,
1633 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
1634 rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
1635 rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
1636 show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread));
1637 }
1638
1639 /* Dump out nocb kthread state for the specified rcu_data structure. */
show_rcu_nocb_state(struct rcu_data * rdp)1640 static void show_rcu_nocb_state(struct rcu_data *rdp)
1641 {
1642 char bufw[20];
1643 char bufr[20];
1644 struct rcu_data *nocb_next_rdp;
1645 struct rcu_segcblist *rsclp = &rdp->cblist;
1646 bool waslocked;
1647 bool wassleep;
1648
1649 if (rdp->nocb_gp_rdp == rdp)
1650 show_rcu_nocb_gp_state(rdp);
1651
1652 nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp,
1653 &rdp->nocb_entry_rdp,
1654 typeof(*rdp),
1655 nocb_entry_rdp);
1656
1657 sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]);
1658 sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
1659 pr_info(" CB %d^%d->%d %c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n",
1660 rdp->cpu, rdp->nocb_gp_rdp->cpu,
1661 nocb_next_rdp ? nocb_next_rdp->cpu : -1,
1662 "kK"[!!rdp->nocb_cb_kthread],
1663 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
1664 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
1665 "sS"[!!rdp->nocb_cb_sleep],
1666 ".W"[swait_active(&rdp->nocb_cb_wq)],
1667 jiffies - rdp->nocb_bypass_first,
1668 jiffies - rdp->nocb_nobypass_last,
1669 rdp->nocb_nobypass_count,
1670 ".D"[rcu_segcblist_ready_cbs(rsclp)],
1671 ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
1672 rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
1673 ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
1674 rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
1675 ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
1676 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
1677 rcu_segcblist_n_cbs(&rdp->cblist),
1678 rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
1679 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1,
1680 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
1681
1682 /* It is OK for GP kthreads to have GP state. */
1683 if (rdp->nocb_gp_rdp == rdp)
1684 return;
1685
1686 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
1687 wassleep = swait_active(&rdp->nocb_gp_wq);
1688 if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
1689 return; /* Nothing untoward. */
1690
1691 pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
1692 "lL"[waslocked],
1693 "dD"[!!rdp->nocb_defer_wakeup],
1694 "sS"[!!rdp->nocb_gp_sleep],
1695 ".W"[wassleep]);
1696 }
1697
1698 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
1699
rcu_lockdep_is_held_nocb(struct rcu_data * rdp)1700 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
1701 {
1702 return 0;
1703 }
1704
rcu_current_is_nocb_kthread(struct rcu_data * rdp)1705 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
1706 {
1707 return false;
1708 }
1709
1710 /* No ->nocb_lock to acquire. */
rcu_nocb_lock(struct rcu_data * rdp)1711 static void rcu_nocb_lock(struct rcu_data *rdp)
1712 {
1713 }
1714
1715 /* No ->nocb_lock to release. */
rcu_nocb_unlock(struct rcu_data * rdp)1716 static void rcu_nocb_unlock(struct rcu_data *rdp)
1717 {
1718 }
1719
1720 /* No ->nocb_lock to release. */
rcu_nocb_unlock_irqrestore(struct rcu_data * rdp,unsigned long flags)1721 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1722 unsigned long flags)
1723 {
1724 local_irq_restore(flags);
1725 }
1726
1727 /* Lockdep check that ->cblist may be safely accessed. */
rcu_lockdep_assert_cblist_protected(struct rcu_data * rdp)1728 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1729 {
1730 lockdep_assert_irqs_disabled();
1731 }
1732
rcu_nocb_gp_cleanup(struct swait_queue_head * sq)1733 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1734 {
1735 }
1736
rcu_nocb_gp_get(struct rcu_node * rnp)1737 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1738 {
1739 return NULL;
1740 }
1741
rcu_init_one_nocb(struct rcu_node * rnp)1742 static void rcu_init_one_nocb(struct rcu_node *rnp)
1743 {
1744 }
1745
wake_nocb_gp(struct rcu_data * rdp,bool force)1746 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
1747 {
1748 return false;
1749 }
1750
rcu_nocb_flush_bypass(struct rcu_data * rdp,struct rcu_head * rhp,unsigned long j,bool lazy)1751 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1752 unsigned long j, bool lazy)
1753 {
1754 return true;
1755 }
1756
rcu_nocb_try_bypass(struct rcu_data * rdp,struct rcu_head * rhp,bool * was_alldone,unsigned long flags,bool lazy)1757 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1758 bool *was_alldone, unsigned long flags, bool lazy)
1759 {
1760 return false;
1761 }
1762
__call_rcu_nocb_wake(struct rcu_data * rdp,bool was_empty,unsigned long flags)1763 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
1764 unsigned long flags)
1765 {
1766 WARN_ON_ONCE(1); /* Should be dead code! */
1767 }
1768
rcu_boot_init_nocb_percpu_data(struct rcu_data * rdp)1769 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1770 {
1771 }
1772
rcu_nocb_need_deferred_wakeup(struct rcu_data * rdp,int level)1773 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1774 {
1775 return false;
1776 }
1777
do_nocb_deferred_wakeup(struct rcu_data * rdp)1778 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1779 {
1780 return false;
1781 }
1782
rcu_spawn_cpu_nocb_kthread(int cpu)1783 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1784 {
1785 }
1786
show_rcu_nocb_state(struct rcu_data * rdp)1787 static void show_rcu_nocb_state(struct rcu_data *rdp)
1788 {
1789 }
1790
1791 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
1792