xref: /openbmc/u-boot/drivers/ddr/fsl/main.c (revision 83d290c56fab2d38cd1ab4c4cc7099559c1d5046)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright 2008-2014 Freescale Semiconductor, Inc.
4   */
5  
6  /*
7   * Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
8   * Based on code from spd_sdram.c
9   * Author: James Yang [at freescale.com]
10   */
11  
12  #include <common.h>
13  #include <i2c.h>
14  #include <fsl_ddr_sdram.h>
15  #include <fsl_ddr.h>
16  
17  /*
18   * CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY is the physical address from the view
19   * of DDR controllers. It is the same as CONFIG_SYS_DDR_SDRAM_BASE for
20   * all Power SoCs. But it could be different for ARM SoCs. For example,
21   * fsl_lsch3 has a mapping mechanism to map DDR memory to ranges (in order) of
22   * 0x00_8000_0000 ~ 0x00_ffff_ffff
23   * 0x80_8000_0000 ~ 0xff_ffff_ffff
24   */
25  #ifndef CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY
26  #define CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY CONFIG_SYS_DDR_SDRAM_BASE
27  #endif
28  
29  #ifdef CONFIG_PPC
30  #include <asm/fsl_law.h>
31  
32  void fsl_ddr_set_lawbar(
33  		const common_timing_params_t *memctl_common_params,
34  		unsigned int memctl_interleaved,
35  		unsigned int ctrl_num);
36  #endif
37  
38  void fsl_ddr_set_intl3r(const unsigned int granule_size);
39  #if defined(SPD_EEPROM_ADDRESS) || \
40      defined(SPD_EEPROM_ADDRESS1) || defined(SPD_EEPROM_ADDRESS2) || \
41      defined(SPD_EEPROM_ADDRESS3) || defined(SPD_EEPROM_ADDRESS4)
42  #if (CONFIG_SYS_NUM_DDR_CTLRS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
43  u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
44  	[0][0] = SPD_EEPROM_ADDRESS,
45  };
46  #elif (CONFIG_SYS_NUM_DDR_CTLRS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
47  u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
48  	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
49  	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
50  };
51  #elif (CONFIG_SYS_NUM_DDR_CTLRS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
52  u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
53  	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
54  	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
55  };
56  #elif (CONFIG_SYS_NUM_DDR_CTLRS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
57  u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
58  	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
59  	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
60  	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
61  	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
62  };
63  #elif (CONFIG_SYS_NUM_DDR_CTLRS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
64  u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
65  	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
66  	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
67  	[2][0] = SPD_EEPROM_ADDRESS3,	/* controller 3 */
68  };
69  #elif (CONFIG_SYS_NUM_DDR_CTLRS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
70  u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
71  	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
72  	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
73  	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
74  	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
75  	[2][0] = SPD_EEPROM_ADDRESS5,	/* controller 3 */
76  	[2][1] = SPD_EEPROM_ADDRESS6,	/* controller 3 */
77  };
78  
79  #endif
80  
81  #define SPD_SPA0_ADDRESS	0x36
82  #define SPD_SPA1_ADDRESS	0x37
83  
__get_spd(generic_spd_eeprom_t * spd,u8 i2c_address)84  static void __get_spd(generic_spd_eeprom_t *spd, u8 i2c_address)
85  {
86  	int ret;
87  #ifdef CONFIG_SYS_FSL_DDR4
88  	uint8_t dummy = 0;
89  #endif
90  
91  	i2c_set_bus_num(CONFIG_SYS_SPD_BUS_NUM);
92  
93  #ifdef CONFIG_SYS_FSL_DDR4
94  	/*
95  	 * DDR4 SPD has 384 to 512 bytes
96  	 * To access the lower 256 bytes, we need to set EE page address to 0
97  	 * To access the upper 256 bytes, we need to set EE page address to 1
98  	 * See Jedec standar No. 21-C for detail
99  	 */
100  	i2c_write(SPD_SPA0_ADDRESS, 0, 1, &dummy, 1);
101  	ret = i2c_read(i2c_address, 0, 1, (uchar *)spd, 256);
102  	if (!ret) {
103  		i2c_write(SPD_SPA1_ADDRESS, 0, 1, &dummy, 1);
104  		ret = i2c_read(i2c_address, 0, 1,
105  			       (uchar *)((ulong)spd + 256),
106  			       min(256,
107  				   (int)sizeof(generic_spd_eeprom_t) - 256));
108  	}
109  #else
110  	ret = i2c_read(i2c_address, 0, 1, (uchar *)spd,
111  				sizeof(generic_spd_eeprom_t));
112  #endif
113  
114  	if (ret) {
115  		if (i2c_address ==
116  #ifdef SPD_EEPROM_ADDRESS
117  				SPD_EEPROM_ADDRESS
118  #elif defined(SPD_EEPROM_ADDRESS1)
119  				SPD_EEPROM_ADDRESS1
120  #endif
121  				) {
122  			printf("DDR: failed to read SPD from address %u\n",
123  				i2c_address);
124  		} else {
125  			debug("DDR: failed to read SPD from address %u\n",
126  				i2c_address);
127  		}
128  		memset(spd, 0, sizeof(generic_spd_eeprom_t));
129  	}
130  }
131  
132  __attribute__((weak, alias("__get_spd")))
133  void get_spd(generic_spd_eeprom_t *spd, u8 i2c_address);
134  
135  /* This function allows boards to update SPD address */
update_spd_address(unsigned int ctrl_num,unsigned int slot,unsigned int * addr)136  __weak void update_spd_address(unsigned int ctrl_num,
137  			       unsigned int slot,
138  			       unsigned int *addr)
139  {
140  }
141  
fsl_ddr_get_spd(generic_spd_eeprom_t * ctrl_dimms_spd,unsigned int ctrl_num,unsigned int dimm_slots_per_ctrl)142  void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
143  		      unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
144  {
145  	unsigned int i;
146  	unsigned int i2c_address = 0;
147  
148  	if (ctrl_num >= CONFIG_SYS_NUM_DDR_CTLRS) {
149  		printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
150  		return;
151  	}
152  
153  	for (i = 0; i < dimm_slots_per_ctrl; i++) {
154  		i2c_address = spd_i2c_addr[ctrl_num][i];
155  		update_spd_address(ctrl_num, i, &i2c_address);
156  		get_spd(&(ctrl_dimms_spd[i]), i2c_address);
157  	}
158  }
159  #else
fsl_ddr_get_spd(generic_spd_eeprom_t * ctrl_dimms_spd,unsigned int ctrl_num,unsigned int dimm_slots_per_ctrl)160  void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
161  		      unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
162  {
163  }
164  #endif /* SPD_EEPROM_ADDRESSx */
165  
166  /*
167   * ASSUMPTIONS:
168   *    - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller
169   *    - Same memory data bus width on all controllers
170   *
171   * NOTES:
172   *
173   * The memory controller and associated documentation use confusing
174   * terminology when referring to the orgranization of DRAM.
175   *
176   * Here is a terminology translation table:
177   *
178   * memory controller/documention  |industry   |this code  |signals
179   * -------------------------------|-----------|-----------|-----------------
180   * physical bank/bank		  |rank       |rank	  |chip select (CS)
181   * logical bank/sub-bank	  |bank       |bank	  |bank address (BA)
182   * page/row			  |row	      |page	  |row address
183   * ???				  |column     |column	  |column address
184   *
185   * The naming confusion is further exacerbated by the descriptions of the
186   * memory controller interleaving feature, where accesses are interleaved
187   * _BETWEEN_ two seperate memory controllers.  This is configured only in
188   * CS0_CONFIG[INTLV_CTL] of each memory controller.
189   *
190   * memory controller documentation | number of chip selects
191   *				   | per memory controller supported
192   * --------------------------------|-----------------------------------------
193   * cache line interleaving	   | 1 (CS0 only)
194   * page interleaving		   | 1 (CS0 only)
195   * bank interleaving		   | 1 (CS0 only)
196   * superbank interleraving	   | depends on bank (chip select)
197   *				   |   interleraving [rank interleaving]
198   *				   |   mode used on every memory controller
199   *
200   * Even further confusing is the existence of the interleaving feature
201   * _WITHIN_ each memory controller.  The feature is referred to in
202   * documentation as chip select interleaving or bank interleaving,
203   * although it is configured in the DDR_SDRAM_CFG field.
204   *
205   * Name of field		| documentation name	| this code
206   * -----------------------------|-----------------------|------------------
207   * DDR_SDRAM_CFG[BA_INTLV_CTL]	| Bank (chip select)	| rank interleaving
208   *				|  interleaving
209   */
210  
211  const char *step_string_tbl[] = {
212  	"STEP_GET_SPD",
213  	"STEP_COMPUTE_DIMM_PARMS",
214  	"STEP_COMPUTE_COMMON_PARMS",
215  	"STEP_GATHER_OPTS",
216  	"STEP_ASSIGN_ADDRESSES",
217  	"STEP_COMPUTE_REGS",
218  	"STEP_PROGRAM_REGS",
219  	"STEP_ALL"
220  };
221  
step_to_string(unsigned int step)222  const char * step_to_string(unsigned int step) {
223  
224  	unsigned int s = __ilog2(step);
225  
226  	if ((1 << s) != step)
227  		return step_string_tbl[7];
228  
229  	if (s >= ARRAY_SIZE(step_string_tbl)) {
230  		printf("Error for the step in %s\n", __func__);
231  		s = 0;
232  	}
233  
234  	return step_string_tbl[s];
235  }
236  
__step_assign_addresses(fsl_ddr_info_t * pinfo,unsigned int dbw_cap_adj[])237  static unsigned long long __step_assign_addresses(fsl_ddr_info_t *pinfo,
238  			  unsigned int dbw_cap_adj[])
239  {
240  	unsigned int i, j;
241  	unsigned long long total_mem, current_mem_base, total_ctlr_mem;
242  	unsigned long long rank_density, ctlr_density = 0;
243  	unsigned int first_ctrl = pinfo->first_ctrl;
244  	unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
245  
246  	/*
247  	 * If a reduced data width is requested, but the SPD
248  	 * specifies a physically wider device, adjust the
249  	 * computed dimm capacities accordingly before
250  	 * assigning addresses.
251  	 */
252  	for (i = first_ctrl; i <= last_ctrl; i++) {
253  		unsigned int found = 0;
254  
255  		switch (pinfo->memctl_opts[i].data_bus_width) {
256  		case 2:
257  			/* 16-bit */
258  			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
259  				unsigned int dw;
260  				if (!pinfo->dimm_params[i][j].n_ranks)
261  					continue;
262  				dw = pinfo->dimm_params[i][j].primary_sdram_width;
263  				if ((dw == 72 || dw == 64)) {
264  					dbw_cap_adj[i] = 2;
265  					break;
266  				} else if ((dw == 40 || dw == 32)) {
267  					dbw_cap_adj[i] = 1;
268  					break;
269  				}
270  			}
271  			break;
272  
273  		case 1:
274  			/* 32-bit */
275  			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
276  				unsigned int dw;
277  				dw = pinfo->dimm_params[i][j].data_width;
278  				if (pinfo->dimm_params[i][j].n_ranks
279  				    && (dw == 72 || dw == 64)) {
280  					/*
281  					 * FIXME: can't really do it
282  					 * like this because this just
283  					 * further reduces the memory
284  					 */
285  					found = 1;
286  					break;
287  				}
288  			}
289  			if (found) {
290  				dbw_cap_adj[i] = 1;
291  			}
292  			break;
293  
294  		case 0:
295  			/* 64-bit */
296  			break;
297  
298  		default:
299  			printf("unexpected data bus width "
300  				"specified controller %u\n", i);
301  			return 1;
302  		}
303  		debug("dbw_cap_adj[%d]=%d\n", i, dbw_cap_adj[i]);
304  	}
305  
306  	current_mem_base = pinfo->mem_base;
307  	total_mem = 0;
308  	if (pinfo->memctl_opts[first_ctrl].memctl_interleaving) {
309  		rank_density = pinfo->dimm_params[first_ctrl][0].rank_density >>
310  					dbw_cap_adj[first_ctrl];
311  		switch (pinfo->memctl_opts[first_ctrl].ba_intlv_ctl &
312  					FSL_DDR_CS0_CS1_CS2_CS3) {
313  		case FSL_DDR_CS0_CS1_CS2_CS3:
314  			ctlr_density = 4 * rank_density;
315  			break;
316  		case FSL_DDR_CS0_CS1:
317  		case FSL_DDR_CS0_CS1_AND_CS2_CS3:
318  			ctlr_density = 2 * rank_density;
319  			break;
320  		case FSL_DDR_CS2_CS3:
321  		default:
322  			ctlr_density = rank_density;
323  			break;
324  		}
325  		debug("rank density is 0x%llx, ctlr density is 0x%llx\n",
326  			rank_density, ctlr_density);
327  		for (i = first_ctrl; i <= last_ctrl; i++) {
328  			if (pinfo->memctl_opts[i].memctl_interleaving) {
329  				switch (pinfo->memctl_opts[i].memctl_interleaving_mode) {
330  				case FSL_DDR_256B_INTERLEAVING:
331  				case FSL_DDR_CACHE_LINE_INTERLEAVING:
332  				case FSL_DDR_PAGE_INTERLEAVING:
333  				case FSL_DDR_BANK_INTERLEAVING:
334  				case FSL_DDR_SUPERBANK_INTERLEAVING:
335  					total_ctlr_mem = 2 * ctlr_density;
336  					break;
337  				case FSL_DDR_3WAY_1KB_INTERLEAVING:
338  				case FSL_DDR_3WAY_4KB_INTERLEAVING:
339  				case FSL_DDR_3WAY_8KB_INTERLEAVING:
340  					total_ctlr_mem = 3 * ctlr_density;
341  					break;
342  				case FSL_DDR_4WAY_1KB_INTERLEAVING:
343  				case FSL_DDR_4WAY_4KB_INTERLEAVING:
344  				case FSL_DDR_4WAY_8KB_INTERLEAVING:
345  					total_ctlr_mem = 4 * ctlr_density;
346  					break;
347  				default:
348  					panic("Unknown interleaving mode");
349  				}
350  				pinfo->common_timing_params[i].base_address =
351  							current_mem_base;
352  				pinfo->common_timing_params[i].total_mem =
353  							total_ctlr_mem;
354  				total_mem = current_mem_base + total_ctlr_mem;
355  				debug("ctrl %d base 0x%llx\n", i, current_mem_base);
356  				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
357  			} else {
358  				/* when 3rd controller not interleaved */
359  				current_mem_base = total_mem;
360  				total_ctlr_mem = 0;
361  				pinfo->common_timing_params[i].base_address =
362  							current_mem_base;
363  				for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
364  					unsigned long long cap =
365  						pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
366  					pinfo->dimm_params[i][j].base_address =
367  						current_mem_base;
368  					debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
369  					current_mem_base += cap;
370  					total_ctlr_mem += cap;
371  				}
372  				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
373  				pinfo->common_timing_params[i].total_mem =
374  							total_ctlr_mem;
375  				total_mem += total_ctlr_mem;
376  			}
377  		}
378  	} else {
379  		/*
380  		 * Simple linear assignment if memory
381  		 * controllers are not interleaved.
382  		 */
383  		for (i = first_ctrl; i <= last_ctrl; i++) {
384  			total_ctlr_mem = 0;
385  			pinfo->common_timing_params[i].base_address =
386  						current_mem_base;
387  			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
388  				/* Compute DIMM base addresses. */
389  				unsigned long long cap =
390  					pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
391  				pinfo->dimm_params[i][j].base_address =
392  					current_mem_base;
393  				debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
394  				current_mem_base += cap;
395  				total_ctlr_mem += cap;
396  			}
397  			debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
398  			pinfo->common_timing_params[i].total_mem =
399  							total_ctlr_mem;
400  			total_mem += total_ctlr_mem;
401  		}
402  	}
403  	debug("Total mem by %s is 0x%llx\n", __func__, total_mem);
404  
405  	return total_mem;
406  }
407  
408  /* Use weak function to allow board file to override the address assignment */
409  __attribute__((weak, alias("__step_assign_addresses")))
410  unsigned long long step_assign_addresses(fsl_ddr_info_t *pinfo,
411  			  unsigned int dbw_cap_adj[]);
412  
413  unsigned long long
fsl_ddr_compute(fsl_ddr_info_t * pinfo,unsigned int start_step,unsigned int size_only)414  fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step,
415  				       unsigned int size_only)
416  {
417  	unsigned int i, j;
418  	unsigned long long total_mem = 0;
419  	int assert_reset = 0;
420  	unsigned int first_ctrl =  pinfo->first_ctrl;
421  	unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
422  	__maybe_unused int retval;
423  	__maybe_unused bool goodspd = false;
424  	__maybe_unused int dimm_slots_per_ctrl = pinfo->dimm_slots_per_ctrl;
425  
426  	fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg;
427  	common_timing_params_t *timing_params = pinfo->common_timing_params;
428  	if (pinfo->board_need_mem_reset)
429  		assert_reset = pinfo->board_need_mem_reset();
430  
431  	/* data bus width capacity adjust shift amount */
432  	unsigned int dbw_capacity_adjust[CONFIG_SYS_NUM_DDR_CTLRS];
433  
434  	for (i = first_ctrl; i <= last_ctrl; i++)
435  		dbw_capacity_adjust[i] = 0;
436  
437  	debug("starting at step %u (%s)\n",
438  	      start_step, step_to_string(start_step));
439  
440  	switch (start_step) {
441  	case STEP_GET_SPD:
442  #if defined(CONFIG_DDR_SPD) || defined(CONFIG_SPD_EEPROM)
443  		/* STEP 1:  Gather all DIMM SPD data */
444  		for (i = first_ctrl; i <= last_ctrl; i++) {
445  			fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i,
446  					dimm_slots_per_ctrl);
447  		}
448  
449  	case STEP_COMPUTE_DIMM_PARMS:
450  		/* STEP 2:  Compute DIMM parameters from SPD data */
451  
452  		for (i = first_ctrl; i <= last_ctrl; i++) {
453  			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
454  				generic_spd_eeprom_t *spd =
455  					&(pinfo->spd_installed_dimms[i][j]);
456  				dimm_params_t *pdimm =
457  					&(pinfo->dimm_params[i][j]);
458  				retval = compute_dimm_parameters(
459  							i, spd, pdimm, j);
460  #ifdef CONFIG_SYS_DDR_RAW_TIMING
461  				if (!j && retval) {
462  					printf("SPD error on controller %d! "
463  					"Trying fallback to raw timing "
464  					"calculation\n", i);
465  					retval = fsl_ddr_get_dimm_params(pdimm,
466  									 i, j);
467  				}
468  #else
469  				if (retval == 2) {
470  					printf("Error: compute_dimm_parameters"
471  					" non-zero returned FATAL value "
472  					"for memctl=%u dimm=%u\n", i, j);
473  					return 0;
474  				}
475  #endif
476  				if (retval) {
477  					debug("Warning: compute_dimm_parameters"
478  					" non-zero return value for memctl=%u "
479  					"dimm=%u\n", i, j);
480  				} else {
481  					goodspd = true;
482  				}
483  			}
484  		}
485  		if (!goodspd) {
486  			/*
487  			 * No valid SPD found
488  			 * Throw an error if this is for main memory, i.e.
489  			 * first_ctrl == 0. Otherwise, siliently return 0
490  			 * as the memory size.
491  			 */
492  			if (first_ctrl == 0)
493  				printf("Error: No valid SPD detected.\n");
494  
495  			return 0;
496  		}
497  #elif defined(CONFIG_SYS_DDR_RAW_TIMING)
498  	case STEP_COMPUTE_DIMM_PARMS:
499  		for (i = first_ctrl; i <= last_ctrl; i++) {
500  			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
501  				dimm_params_t *pdimm =
502  					&(pinfo->dimm_params[i][j]);
503  				fsl_ddr_get_dimm_params(pdimm, i, j);
504  			}
505  		}
506  		debug("Filling dimm parameters from board specific file\n");
507  #endif
508  	case STEP_COMPUTE_COMMON_PARMS:
509  		/*
510  		 * STEP 3: Compute a common set of timing parameters
511  		 * suitable for all of the DIMMs on each memory controller
512  		 */
513  		for (i = first_ctrl; i <= last_ctrl; i++) {
514  			debug("Computing lowest common DIMM"
515  				" parameters for memctl=%u\n", i);
516  			compute_lowest_common_dimm_parameters
517  				(i,
518  				 pinfo->dimm_params[i],
519  				 &timing_params[i],
520  				 CONFIG_DIMM_SLOTS_PER_CTLR);
521  		}
522  
523  	case STEP_GATHER_OPTS:
524  		/* STEP 4:  Gather configuration requirements from user */
525  		for (i = first_ctrl; i <= last_ctrl; i++) {
526  			debug("Reloading memory controller "
527  				"configuration options for memctl=%u\n", i);
528  			/*
529  			 * This "reloads" the memory controller options
530  			 * to defaults.  If the user "edits" an option,
531  			 * next_step points to the step after this,
532  			 * which is currently STEP_ASSIGN_ADDRESSES.
533  			 */
534  			populate_memctl_options(
535  					&timing_params[i],
536  					&pinfo->memctl_opts[i],
537  					pinfo->dimm_params[i], i);
538  			/*
539  			 * For RDIMMs, JEDEC spec requires clocks to be stable
540  			 * before reset signal is deasserted. For the boards
541  			 * using fixed parameters, this function should be
542  			 * be called from board init file.
543  			 */
544  			if (timing_params[i].all_dimms_registered)
545  				assert_reset = 1;
546  		}
547  		if (assert_reset && !size_only) {
548  			if (pinfo->board_mem_reset) {
549  				debug("Asserting mem reset\n");
550  				pinfo->board_mem_reset();
551  			} else {
552  				debug("Asserting mem reset missing\n");
553  			}
554  		}
555  
556  	case STEP_ASSIGN_ADDRESSES:
557  		/* STEP 5:  Assign addresses to chip selects */
558  		check_interleaving_options(pinfo);
559  		total_mem = step_assign_addresses(pinfo, dbw_capacity_adjust);
560  		debug("Total mem %llu assigned\n", total_mem);
561  
562  	case STEP_COMPUTE_REGS:
563  		/* STEP 6:  compute controller register values */
564  		debug("FSL Memory ctrl register computation\n");
565  		for (i = first_ctrl; i <= last_ctrl; i++) {
566  			if (timing_params[i].ndimms_present == 0) {
567  				memset(&ddr_reg[i], 0,
568  					sizeof(fsl_ddr_cfg_regs_t));
569  				continue;
570  			}
571  
572  			compute_fsl_memctl_config_regs
573  				(i,
574  				 &pinfo->memctl_opts[i],
575  				 &ddr_reg[i], &timing_params[i],
576  				 pinfo->dimm_params[i],
577  				 dbw_capacity_adjust[i],
578  				 size_only);
579  		}
580  
581  	default:
582  		break;
583  	}
584  
585  	{
586  		/*
587  		 * Compute the amount of memory available just by
588  		 * looking for the highest valid CSn_BNDS value.
589  		 * This allows us to also experiment with using
590  		 * only CS0 when using dual-rank DIMMs.
591  		 */
592  		unsigned int max_end = 0;
593  
594  		for (i = first_ctrl; i <= last_ctrl; i++) {
595  			for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) {
596  				fsl_ddr_cfg_regs_t *reg = &ddr_reg[i];
597  				if (reg->cs[j].config & 0x80000000) {
598  					unsigned int end;
599  					/*
600  					 * 0xfffffff is a special value we put
601  					 * for unused bnds
602  					 */
603  					if (reg->cs[j].bnds == 0xffffffff)
604  						continue;
605  					end = reg->cs[j].bnds & 0xffff;
606  					if (end > max_end) {
607  						max_end = end;
608  					}
609  				}
610  			}
611  		}
612  
613  		total_mem = 1 + (((unsigned long long)max_end << 24ULL) |
614  			    0xFFFFFFULL) - pinfo->mem_base;
615  	}
616  
617  	return total_mem;
618  }
619  
__fsl_ddr_sdram(fsl_ddr_info_t * pinfo)620  phys_size_t __fsl_ddr_sdram(fsl_ddr_info_t *pinfo)
621  {
622  	unsigned int i, first_ctrl, last_ctrl;
623  #ifdef CONFIG_PPC
624  	unsigned int law_memctl = LAW_TRGT_IF_DDR_1;
625  #endif
626  	unsigned long long total_memory;
627  	int deassert_reset = 0;
628  
629  	first_ctrl = pinfo->first_ctrl;
630  	last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
631  
632  	/* Compute it once normally. */
633  #ifdef CONFIG_FSL_DDR_INTERACTIVE
634  	if (tstc() && (getc() == 'd')) {	/* we got a key press of 'd' */
635  		total_memory = fsl_ddr_interactive(pinfo, 0);
636  	} else if (fsl_ddr_interactive_env_var_exists()) {
637  		total_memory = fsl_ddr_interactive(pinfo, 1);
638  	} else
639  #endif
640  		total_memory = fsl_ddr_compute(pinfo, STEP_GET_SPD, 0);
641  
642  	/* setup 3-way interleaving before enabling DDRC */
643  	switch (pinfo->memctl_opts[first_ctrl].memctl_interleaving_mode) {
644  	case FSL_DDR_3WAY_1KB_INTERLEAVING:
645  	case FSL_DDR_3WAY_4KB_INTERLEAVING:
646  	case FSL_DDR_3WAY_8KB_INTERLEAVING:
647  		fsl_ddr_set_intl3r(
648  			pinfo->memctl_opts[first_ctrl].
649  			memctl_interleaving_mode);
650  		break;
651  	default:
652  		break;
653  	}
654  
655  	/*
656  	 * Program configuration registers.
657  	 * JEDEC specs requires clocks to be stable before deasserting reset
658  	 * for RDIMMs. Clocks start after chip select is enabled and clock
659  	 * control register is set. During step 1, all controllers have their
660  	 * registers set but not enabled. Step 2 proceeds after deasserting
661  	 * reset through board FPGA or GPIO.
662  	 * For non-registered DIMMs, initialization can go through but it is
663  	 * also OK to follow the same flow.
664  	 */
665  	if (pinfo->board_need_mem_reset)
666  		deassert_reset = pinfo->board_need_mem_reset();
667  	for (i = first_ctrl; i <= last_ctrl; i++) {
668  		if (pinfo->common_timing_params[i].all_dimms_registered)
669  			deassert_reset = 1;
670  	}
671  	for (i = first_ctrl; i <= last_ctrl; i++) {
672  		debug("Programming controller %u\n", i);
673  		if (pinfo->common_timing_params[i].ndimms_present == 0) {
674  			debug("No dimms present on controller %u; "
675  					"skipping programming\n", i);
676  			continue;
677  		}
678  		/*
679  		 * The following call with step = 1 returns before enabling
680  		 * the controller. It has to finish with step = 2 later.
681  		 */
682  		fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]), i,
683  					deassert_reset ? 1 : 0);
684  	}
685  	if (deassert_reset) {
686  		/* Use board FPGA or GPIO to deassert reset signal */
687  		if (pinfo->board_mem_de_reset) {
688  			debug("Deasserting mem reset\n");
689  			pinfo->board_mem_de_reset();
690  		} else {
691  			debug("Deasserting mem reset missing\n");
692  		}
693  		for (i = first_ctrl; i <= last_ctrl; i++) {
694  			/* Call with step = 2 to continue initialization */
695  			fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]),
696  						i, 2);
697  		}
698  	}
699  
700  #ifdef CONFIG_FSL_DDR_SYNC_REFRESH
701  	fsl_ddr_sync_memctl_refresh(first_ctrl, last_ctrl);
702  #endif
703  
704  #ifdef CONFIG_PPC
705  	/* program LAWs */
706  	for (i = first_ctrl; i <= last_ctrl; i++) {
707  		if (pinfo->memctl_opts[i].memctl_interleaving) {
708  			switch (pinfo->memctl_opts[i].
709  				memctl_interleaving_mode) {
710  			case FSL_DDR_CACHE_LINE_INTERLEAVING:
711  			case FSL_DDR_PAGE_INTERLEAVING:
712  			case FSL_DDR_BANK_INTERLEAVING:
713  			case FSL_DDR_SUPERBANK_INTERLEAVING:
714  				if (i % 2)
715  					break;
716  				if (i == 0) {
717  					law_memctl = LAW_TRGT_IF_DDR_INTRLV;
718  					fsl_ddr_set_lawbar(
719  						&pinfo->common_timing_params[i],
720  						law_memctl, i);
721  				}
722  #if CONFIG_SYS_NUM_DDR_CTLRS > 3
723  				else if (i == 2) {
724  					law_memctl = LAW_TRGT_IF_DDR_INTLV_34;
725  					fsl_ddr_set_lawbar(
726  						&pinfo->common_timing_params[i],
727  						law_memctl, i);
728  				}
729  #endif
730  				break;
731  			case FSL_DDR_3WAY_1KB_INTERLEAVING:
732  			case FSL_DDR_3WAY_4KB_INTERLEAVING:
733  			case FSL_DDR_3WAY_8KB_INTERLEAVING:
734  				law_memctl = LAW_TRGT_IF_DDR_INTLV_123;
735  				if (i == 0) {
736  					fsl_ddr_set_lawbar(
737  						&pinfo->common_timing_params[i],
738  						law_memctl, i);
739  				}
740  				break;
741  			case FSL_DDR_4WAY_1KB_INTERLEAVING:
742  			case FSL_DDR_4WAY_4KB_INTERLEAVING:
743  			case FSL_DDR_4WAY_8KB_INTERLEAVING:
744  				law_memctl = LAW_TRGT_IF_DDR_INTLV_1234;
745  				if (i == 0)
746  					fsl_ddr_set_lawbar(
747  						&pinfo->common_timing_params[i],
748  						law_memctl, i);
749  				/* place holder for future 4-way interleaving */
750  				break;
751  			default:
752  				break;
753  			}
754  		} else {
755  			switch (i) {
756  			case 0:
757  				law_memctl = LAW_TRGT_IF_DDR_1;
758  				break;
759  			case 1:
760  				law_memctl = LAW_TRGT_IF_DDR_2;
761  				break;
762  			case 2:
763  				law_memctl = LAW_TRGT_IF_DDR_3;
764  				break;
765  			case 3:
766  				law_memctl = LAW_TRGT_IF_DDR_4;
767  				break;
768  			default:
769  				break;
770  			}
771  			fsl_ddr_set_lawbar(&pinfo->common_timing_params[i],
772  					   law_memctl, i);
773  		}
774  	}
775  #endif
776  
777  	debug("total_memory by %s = %llu\n", __func__, total_memory);
778  
779  #if !defined(CONFIG_PHYS_64BIT)
780  	/* Check for 4G or more.  Bad. */
781  	if ((first_ctrl == 0) && (total_memory >= (1ull << 32))) {
782  		puts("Detected ");
783  		print_size(total_memory, " of memory\n");
784  		printf("       This U-Boot only supports < 4G of DDR\n");
785  		printf("       You could rebuild it with CONFIG_PHYS_64BIT\n");
786  		printf("       "); /* re-align to match init_dram print */
787  		total_memory = CONFIG_MAX_MEM_MAPPED;
788  	}
789  #endif
790  
791  	return total_memory;
792  }
793  
794  /*
795   * fsl_ddr_sdram(void) -- this is the main function to be
796   * called by dram_init() in the board file.
797   *
798   * It returns amount of memory configured in bytes.
799   */
fsl_ddr_sdram(void)800  phys_size_t fsl_ddr_sdram(void)
801  {
802  	fsl_ddr_info_t info;
803  
804  	/* Reset info structure. */
805  	memset(&info, 0, sizeof(fsl_ddr_info_t));
806  	info.mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
807  	info.first_ctrl = 0;
808  	info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
809  	info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
810  	info.board_need_mem_reset = board_need_mem_reset;
811  	info.board_mem_reset = board_assert_mem_reset;
812  	info.board_mem_de_reset = board_deassert_mem_reset;
813  	remove_unused_controllers(&info);
814  
815  	return __fsl_ddr_sdram(&info);
816  }
817  
818  #ifdef CONFIG_SYS_FSL_OTHER_DDR_NUM_CTRLS
fsl_other_ddr_sdram(unsigned long long base,unsigned int first_ctrl,unsigned int num_ctrls,unsigned int dimm_slots_per_ctrl,int (* board_need_reset)(void),void (* board_reset)(void),void (* board_de_reset)(void))819  phys_size_t fsl_other_ddr_sdram(unsigned long long base,
820  				unsigned int first_ctrl,
821  				unsigned int num_ctrls,
822  				unsigned int dimm_slots_per_ctrl,
823  				int (*board_need_reset)(void),
824  				void (*board_reset)(void),
825  				void (*board_de_reset)(void))
826  {
827  	fsl_ddr_info_t info;
828  
829  	/* Reset info structure. */
830  	memset(&info, 0, sizeof(fsl_ddr_info_t));
831  	info.mem_base = base;
832  	info.first_ctrl = first_ctrl;
833  	info.num_ctrls = num_ctrls;
834  	info.dimm_slots_per_ctrl = dimm_slots_per_ctrl;
835  	info.board_need_mem_reset = board_need_reset;
836  	info.board_mem_reset = board_reset;
837  	info.board_mem_de_reset = board_de_reset;
838  
839  	return __fsl_ddr_sdram(&info);
840  }
841  #endif
842  
843  /*
844   * fsl_ddr_sdram_size(first_ctrl, last_intlv) - This function only returns the
845   * size of the total memory without setting ddr control registers.
846   */
847  phys_size_t
fsl_ddr_sdram_size(void)848  fsl_ddr_sdram_size(void)
849  {
850  	fsl_ddr_info_t  info;
851  	unsigned long long total_memory = 0;
852  
853  	memset(&info, 0 , sizeof(fsl_ddr_info_t));
854  	info.mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
855  	info.first_ctrl = 0;
856  	info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
857  	info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
858  	info.board_need_mem_reset = NULL;
859  	remove_unused_controllers(&info);
860  
861  	/* Compute it once normally. */
862  	total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 1);
863  
864  	return total_memory;
865  }
866