xref: /openbmc/linux/tools/testing/selftests/kvm/include/x86_64/processor.h (revision 86d6a628a281a17b8341ece99997c1251bb41a41)
1  /* SPDX-License-Identifier: GPL-2.0-only */
2  /*
3   * tools/testing/selftests/kvm/include/x86_64/processor.h
4   *
5   * Copyright (C) 2018, Google LLC.
6   */
7  
8  #ifndef SELFTEST_KVM_PROCESSOR_H
9  #define SELFTEST_KVM_PROCESSOR_H
10  
11  #include <assert.h>
12  #include <stdint.h>
13  #include <syscall.h>
14  
15  #include <asm/msr-index.h>
16  #include <asm/prctl.h>
17  
18  #include <linux/stringify.h>
19  
20  #include "../kvm_util.h"
21  
22  extern bool host_cpu_is_intel;
23  extern bool host_cpu_is_amd;
24  
25  #define NMI_VECTOR		0x02
26  
27  #define X86_EFLAGS_FIXED	 (1u << 1)
28  
29  #define X86_CR4_VME		(1ul << 0)
30  #define X86_CR4_PVI		(1ul << 1)
31  #define X86_CR4_TSD		(1ul << 2)
32  #define X86_CR4_DE		(1ul << 3)
33  #define X86_CR4_PSE		(1ul << 4)
34  #define X86_CR4_PAE		(1ul << 5)
35  #define X86_CR4_MCE		(1ul << 6)
36  #define X86_CR4_PGE		(1ul << 7)
37  #define X86_CR4_PCE		(1ul << 8)
38  #define X86_CR4_OSFXSR		(1ul << 9)
39  #define X86_CR4_OSXMMEXCPT	(1ul << 10)
40  #define X86_CR4_UMIP		(1ul << 11)
41  #define X86_CR4_LA57		(1ul << 12)
42  #define X86_CR4_VMXE		(1ul << 13)
43  #define X86_CR4_SMXE		(1ul << 14)
44  #define X86_CR4_FSGSBASE	(1ul << 16)
45  #define X86_CR4_PCIDE		(1ul << 17)
46  #define X86_CR4_OSXSAVE		(1ul << 18)
47  #define X86_CR4_SMEP		(1ul << 20)
48  #define X86_CR4_SMAP		(1ul << 21)
49  #define X86_CR4_PKE		(1ul << 22)
50  
51  struct xstate_header {
52  	u64				xstate_bv;
53  	u64				xcomp_bv;
54  	u64				reserved[6];
55  } __attribute__((packed));
56  
57  struct xstate {
58  	u8				i387[512];
59  	struct xstate_header		header;
60  	u8				extended_state_area[0];
61  } __attribute__ ((packed, aligned (64)));
62  
63  #define XFEATURE_MASK_FP		BIT_ULL(0)
64  #define XFEATURE_MASK_SSE		BIT_ULL(1)
65  #define XFEATURE_MASK_YMM		BIT_ULL(2)
66  #define XFEATURE_MASK_BNDREGS		BIT_ULL(3)
67  #define XFEATURE_MASK_BNDCSR		BIT_ULL(4)
68  #define XFEATURE_MASK_OPMASK		BIT_ULL(5)
69  #define XFEATURE_MASK_ZMM_Hi256		BIT_ULL(6)
70  #define XFEATURE_MASK_Hi16_ZMM		BIT_ULL(7)
71  #define XFEATURE_MASK_PT		BIT_ULL(8)
72  #define XFEATURE_MASK_PKRU		BIT_ULL(9)
73  #define XFEATURE_MASK_PASID		BIT_ULL(10)
74  #define XFEATURE_MASK_CET_USER		BIT_ULL(11)
75  #define XFEATURE_MASK_CET_KERNEL	BIT_ULL(12)
76  #define XFEATURE_MASK_LBR		BIT_ULL(15)
77  #define XFEATURE_MASK_XTILE_CFG		BIT_ULL(17)
78  #define XFEATURE_MASK_XTILE_DATA	BIT_ULL(18)
79  
80  #define XFEATURE_MASK_AVX512		(XFEATURE_MASK_OPMASK | \
81  					 XFEATURE_MASK_ZMM_Hi256 | \
82  					 XFEATURE_MASK_Hi16_ZMM)
83  #define XFEATURE_MASK_XTILE		(XFEATURE_MASK_XTILE_DATA | \
84  					 XFEATURE_MASK_XTILE_CFG)
85  
86  /* Note, these are ordered alphabetically to match kvm_cpuid_entry2.  Eww. */
87  enum cpuid_output_regs {
88  	KVM_CPUID_EAX,
89  	KVM_CPUID_EBX,
90  	KVM_CPUID_ECX,
91  	KVM_CPUID_EDX
92  };
93  
94  /*
95   * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be
96   * passed by value with no overhead.
97   */
98  struct kvm_x86_cpu_feature {
99  	u32	function;
100  	u16	index;
101  	u8	reg;
102  	u8	bit;
103  };
104  #define	KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit)				\
105  ({										\
106  	struct kvm_x86_cpu_feature feature = {					\
107  		.function = fn,							\
108  		.index = idx,							\
109  		.reg = KVM_CPUID_##gpr,						\
110  		.bit = __bit,							\
111  	};									\
112  										\
113  	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
114  			  (fn & 0xc0000000) == 0x40000000 ||			\
115  			  (fn & 0xc0000000) == 0x80000000 ||			\
116  			  (fn & 0xc0000000) == 0xc0000000);			\
117  	kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE));	\
118  	feature;								\
119  })
120  
121  /*
122   * Basic Leafs, a.k.a. Intel defined
123   */
124  #define	X86_FEATURE_MWAIT		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3)
125  #define	X86_FEATURE_VMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5)
126  #define	X86_FEATURE_SMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6)
127  #define	X86_FEATURE_PDCM		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15)
128  #define	X86_FEATURE_PCID		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17)
129  #define X86_FEATURE_X2APIC		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21)
130  #define	X86_FEATURE_MOVBE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22)
131  #define	X86_FEATURE_TSC_DEADLINE_TIMER	KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24)
132  #define	X86_FEATURE_XSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26)
133  #define	X86_FEATURE_OSXSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27)
134  #define	X86_FEATURE_RDRAND		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30)
135  #define	X86_FEATURE_HYPERVISOR		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31)
136  #define X86_FEATURE_PAE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6)
137  #define	X86_FEATURE_MCE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7)
138  #define	X86_FEATURE_APIC		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9)
139  #define	X86_FEATURE_CLFLUSH		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19)
140  #define	X86_FEATURE_XMM			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25)
141  #define	X86_FEATURE_XMM2		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26)
142  #define	X86_FEATURE_FSGSBASE		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0)
143  #define	X86_FEATURE_TSC_ADJUST		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1)
144  #define	X86_FEATURE_SGX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2)
145  #define	X86_FEATURE_HLE			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4)
146  #define	X86_FEATURE_SMEP	        KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7)
147  #define	X86_FEATURE_INVPCID		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10)
148  #define	X86_FEATURE_RTM			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11)
149  #define	X86_FEATURE_MPX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14)
150  #define	X86_FEATURE_SMAP		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20)
151  #define	X86_FEATURE_PCOMMIT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22)
152  #define	X86_FEATURE_CLFLUSHOPT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23)
153  #define	X86_FEATURE_CLWB		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24)
154  #define	X86_FEATURE_UMIP		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2)
155  #define	X86_FEATURE_PKU			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3)
156  #define	X86_FEATURE_OSPKE		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 4)
157  #define	X86_FEATURE_LA57		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16)
158  #define	X86_FEATURE_RDPID		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22)
159  #define	X86_FEATURE_SGX_LC		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30)
160  #define	X86_FEATURE_SHSTK		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7)
161  #define	X86_FEATURE_IBT			KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20)
162  #define	X86_FEATURE_AMX_TILE		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24)
163  #define	X86_FEATURE_SPEC_CTRL		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26)
164  #define	X86_FEATURE_ARCH_CAPABILITIES	KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29)
165  #define	X86_FEATURE_PKS			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31)
166  #define	X86_FEATURE_XTILECFG		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17)
167  #define	X86_FEATURE_XTILEDATA		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18)
168  #define	X86_FEATURE_XSAVES		KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3)
169  #define	X86_FEATURE_XFD			KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4)
170  #define X86_FEATURE_XTILEDATA_XFD	KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2)
171  
172  /*
173   * Extended Leafs, a.k.a. AMD defined
174   */
175  #define	X86_FEATURE_SVM			KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2)
176  #define	X86_FEATURE_NX			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20)
177  #define	X86_FEATURE_GBPAGES		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26)
178  #define	X86_FEATURE_RDTSCP		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27)
179  #define	X86_FEATURE_LM			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29)
180  #define	X86_FEATURE_INVTSC		KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8)
181  #define	X86_FEATURE_RDPRU		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4)
182  #define	X86_FEATURE_AMD_IBPB		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12)
183  #define	X86_FEATURE_NPT			KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0)
184  #define	X86_FEATURE_LBRV		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1)
185  #define	X86_FEATURE_NRIPS		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3)
186  #define X86_FEATURE_TSCRATEMSR          KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4)
187  #define X86_FEATURE_PAUSEFILTER         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10)
188  #define X86_FEATURE_PFTHRESHOLD         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12)
189  #define	X86_FEATURE_VGIF		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16)
190  #define X86_FEATURE_SEV			KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1)
191  #define X86_FEATURE_SEV_ES		KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3)
192  
193  /*
194   * KVM defined paravirt features.
195   */
196  #define X86_FEATURE_KVM_CLOCKSOURCE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0)
197  #define X86_FEATURE_KVM_NOP_IO_DELAY	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1)
198  #define X86_FEATURE_KVM_MMU_OP		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2)
199  #define X86_FEATURE_KVM_CLOCKSOURCE2	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3)
200  #define X86_FEATURE_KVM_ASYNC_PF	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4)
201  #define X86_FEATURE_KVM_STEAL_TIME	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5)
202  #define X86_FEATURE_KVM_PV_EOI		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6)
203  #define X86_FEATURE_KVM_PV_UNHALT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7)
204  /* Bit 8 apparently isn't used?!?! */
205  #define X86_FEATURE_KVM_PV_TLB_FLUSH	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9)
206  #define X86_FEATURE_KVM_ASYNC_PF_VMEXIT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10)
207  #define X86_FEATURE_KVM_PV_SEND_IPI	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11)
208  #define X86_FEATURE_KVM_POLL_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12)
209  #define X86_FEATURE_KVM_PV_SCHED_YIELD	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13)
210  #define X86_FEATURE_KVM_ASYNC_PF_INT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14)
211  #define X86_FEATURE_KVM_MSI_EXT_DEST_ID	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15)
212  #define X86_FEATURE_KVM_HC_MAP_GPA_RANGE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16)
213  #define X86_FEATURE_KVM_MIGRATION_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17)
214  
215  /*
216   * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit
217   * value/property as opposed to a single-bit feature.  Again, pack the info
218   * into a 64-bit value to pass by value with no overhead.
219   */
220  struct kvm_x86_cpu_property {
221  	u32	function;
222  	u8	index;
223  	u8	reg;
224  	u8	lo_bit;
225  	u8	hi_bit;
226  };
227  #define	KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit)			\
228  ({										\
229  	struct kvm_x86_cpu_property property = {				\
230  		.function = fn,							\
231  		.index = idx,							\
232  		.reg = KVM_CPUID_##gpr,						\
233  		.lo_bit = low_bit,						\
234  		.hi_bit = high_bit,						\
235  	};									\
236  										\
237  	kvm_static_assert(low_bit < high_bit);					\
238  	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
239  			  (fn & 0xc0000000) == 0x40000000 ||			\
240  			  (fn & 0xc0000000) == 0x80000000 ||			\
241  			  (fn & 0xc0000000) == 0xc0000000);			\
242  	kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE));	\
243  	property;								\
244  })
245  
246  #define X86_PROPERTY_MAX_BASIC_LEAF		KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31)
247  #define X86_PROPERTY_PMU_VERSION		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7)
248  #define X86_PROPERTY_PMU_NR_GP_COUNTERS		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15)
249  #define X86_PROPERTY_PMU_GP_COUNTERS_BIT_WIDTH	KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 16, 23)
250  #define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH	KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31)
251  #define X86_PROPERTY_PMU_EVENTS_MASK		KVM_X86_CPU_PROPERTY(0xa, 0, EBX, 0, 7)
252  #define X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK	KVM_X86_CPU_PROPERTY(0xa, 0, ECX, 0, 31)
253  #define X86_PROPERTY_PMU_NR_FIXED_COUNTERS	KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 0, 4)
254  #define X86_PROPERTY_PMU_FIXED_COUNTERS_BIT_WIDTH	KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 5, 12)
255  
256  #define X86_PROPERTY_SUPPORTED_XCR0_LO		KVM_X86_CPU_PROPERTY(0xd,  0, EAX,  0, 31)
257  #define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0	KVM_X86_CPU_PROPERTY(0xd,  0, EBX,  0, 31)
258  #define X86_PROPERTY_XSTATE_MAX_SIZE		KVM_X86_CPU_PROPERTY(0xd,  0, ECX,  0, 31)
259  #define X86_PROPERTY_SUPPORTED_XCR0_HI		KVM_X86_CPU_PROPERTY(0xd,  0, EDX,  0, 31)
260  
261  #define X86_PROPERTY_XSTATE_TILE_SIZE		KVM_X86_CPU_PROPERTY(0xd, 18, EAX,  0, 31)
262  #define X86_PROPERTY_XSTATE_TILE_OFFSET		KVM_X86_CPU_PROPERTY(0xd, 18, EBX,  0, 31)
263  #define X86_PROPERTY_AMX_MAX_PALETTE_TABLES	KVM_X86_CPU_PROPERTY(0x1d, 0, EAX,  0, 31)
264  #define X86_PROPERTY_AMX_TOTAL_TILE_BYTES	KVM_X86_CPU_PROPERTY(0x1d, 1, EAX,  0, 15)
265  #define X86_PROPERTY_AMX_BYTES_PER_TILE		KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31)
266  #define X86_PROPERTY_AMX_BYTES_PER_ROW		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0,  15)
267  #define X86_PROPERTY_AMX_NR_TILE_REGS		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31)
268  #define X86_PROPERTY_AMX_MAX_ROWS		KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0,  15)
269  
270  #define X86_PROPERTY_MAX_KVM_LEAF		KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31)
271  
272  #define X86_PROPERTY_MAX_EXT_LEAF		KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31)
273  #define X86_PROPERTY_MAX_PHY_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7)
274  #define X86_PROPERTY_MAX_VIRT_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15)
275  #define X86_PROPERTY_PHYS_ADDR_REDUCTION	KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11)
276  
277  #define X86_PROPERTY_MAX_CENTAUR_LEAF		KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31)
278  
279  /*
280   * Intel's architectural PMU events are bizarre.  They have a "feature" bit
281   * that indicates the feature is _not_ supported, and a property that states
282   * the length of the bit mask of unsupported features.  A feature is supported
283   * if the size of the bit mask is larger than the "unavailable" bit, and said
284   * bit is not set.
285   *
286   * Wrap the "unavailable" feature to simplify checking whether or not a given
287   * architectural event is supported.
288   */
289  struct kvm_x86_pmu_feature {
290  	struct kvm_x86_cpu_feature anti_feature;
291  };
292  #define	KVM_X86_PMU_FEATURE(name, __bit)					\
293  ({										\
294  	struct kvm_x86_pmu_feature feature = {					\
295  		.anti_feature = KVM_X86_CPU_FEATURE(0xa, 0, EBX, __bit),	\
296  	};									\
297  										\
298  	feature;								\
299  })
300  
301  #define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED	KVM_X86_PMU_FEATURE(BRANCH_INSNS_RETIRED, 5)
302  
x86_family(unsigned int eax)303  static inline unsigned int x86_family(unsigned int eax)
304  {
305  	unsigned int x86;
306  
307  	x86 = (eax >> 8) & 0xf;
308  
309  	if (x86 == 0xf)
310  		x86 += (eax >> 20) & 0xff;
311  
312  	return x86;
313  }
314  
x86_model(unsigned int eax)315  static inline unsigned int x86_model(unsigned int eax)
316  {
317  	return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f);
318  }
319  
320  /* Page table bitfield declarations */
321  #define PTE_PRESENT_MASK        BIT_ULL(0)
322  #define PTE_WRITABLE_MASK       BIT_ULL(1)
323  #define PTE_USER_MASK           BIT_ULL(2)
324  #define PTE_ACCESSED_MASK       BIT_ULL(5)
325  #define PTE_DIRTY_MASK          BIT_ULL(6)
326  #define PTE_LARGE_MASK          BIT_ULL(7)
327  #define PTE_GLOBAL_MASK         BIT_ULL(8)
328  #define PTE_NX_MASK             BIT_ULL(63)
329  
330  #define PHYSICAL_PAGE_MASK      GENMASK_ULL(51, 12)
331  
332  #define PAGE_SHIFT		12
333  #define PAGE_SIZE		(1ULL << PAGE_SHIFT)
334  #define PAGE_MASK		(~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK)
335  
336  #define HUGEPAGE_SHIFT(x)	(PAGE_SHIFT + (((x) - 1) * 9))
337  #define HUGEPAGE_SIZE(x)	(1UL << HUGEPAGE_SHIFT(x))
338  #define HUGEPAGE_MASK(x)	(~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK)
339  
340  #define PTE_GET_PA(pte)		((pte) & PHYSICAL_PAGE_MASK)
341  #define PTE_GET_PFN(pte)        (PTE_GET_PA(pte) >> PAGE_SHIFT)
342  
343  /* General Registers in 64-Bit Mode */
344  struct gpr64_regs {
345  	u64 rax;
346  	u64 rcx;
347  	u64 rdx;
348  	u64 rbx;
349  	u64 rsp;
350  	u64 rbp;
351  	u64 rsi;
352  	u64 rdi;
353  	u64 r8;
354  	u64 r9;
355  	u64 r10;
356  	u64 r11;
357  	u64 r12;
358  	u64 r13;
359  	u64 r14;
360  	u64 r15;
361  };
362  
363  struct desc64 {
364  	uint16_t limit0;
365  	uint16_t base0;
366  	unsigned base1:8, type:4, s:1, dpl:2, p:1;
367  	unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8;
368  	uint32_t base3;
369  	uint32_t zero1;
370  } __attribute__((packed));
371  
372  struct desc_ptr {
373  	uint16_t size;
374  	uint64_t address;
375  } __attribute__((packed));
376  
377  struct kvm_x86_state {
378  	struct kvm_xsave *xsave;
379  	struct kvm_vcpu_events events;
380  	struct kvm_mp_state mp_state;
381  	struct kvm_regs regs;
382  	struct kvm_xcrs xcrs;
383  	struct kvm_sregs sregs;
384  	struct kvm_debugregs debugregs;
385  	union {
386  		struct kvm_nested_state nested;
387  		char nested_[16384];
388  	};
389  	struct kvm_msrs msrs;
390  };
391  
get_desc64_base(const struct desc64 * desc)392  static inline uint64_t get_desc64_base(const struct desc64 *desc)
393  {
394  	return ((uint64_t)desc->base3 << 32) |
395  		(desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24));
396  }
397  
rdtsc(void)398  static inline uint64_t rdtsc(void)
399  {
400  	uint32_t eax, edx;
401  	uint64_t tsc_val;
402  	/*
403  	 * The lfence is to wait (on Intel CPUs) until all previous
404  	 * instructions have been executed. If software requires RDTSC to be
405  	 * executed prior to execution of any subsequent instruction, it can
406  	 * execute LFENCE immediately after RDTSC
407  	 */
408  	__asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
409  	tsc_val = ((uint64_t)edx) << 32 | eax;
410  	return tsc_val;
411  }
412  
rdtscp(uint32_t * aux)413  static inline uint64_t rdtscp(uint32_t *aux)
414  {
415  	uint32_t eax, edx;
416  
417  	__asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux));
418  	return ((uint64_t)edx) << 32 | eax;
419  }
420  
rdmsr(uint32_t msr)421  static inline uint64_t rdmsr(uint32_t msr)
422  {
423  	uint32_t a, d;
424  
425  	__asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory");
426  
427  	return a | ((uint64_t) d << 32);
428  }
429  
wrmsr(uint32_t msr,uint64_t value)430  static inline void wrmsr(uint32_t msr, uint64_t value)
431  {
432  	uint32_t a = value;
433  	uint32_t d = value >> 32;
434  
435  	__asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory");
436  }
437  
438  
inw(uint16_t port)439  static inline uint16_t inw(uint16_t port)
440  {
441  	uint16_t tmp;
442  
443  	__asm__ __volatile__("in %%dx, %%ax"
444  		: /* output */ "=a" (tmp)
445  		: /* input */ "d" (port));
446  
447  	return tmp;
448  }
449  
get_es(void)450  static inline uint16_t get_es(void)
451  {
452  	uint16_t es;
453  
454  	__asm__ __volatile__("mov %%es, %[es]"
455  			     : /* output */ [es]"=rm"(es));
456  	return es;
457  }
458  
get_cs(void)459  static inline uint16_t get_cs(void)
460  {
461  	uint16_t cs;
462  
463  	__asm__ __volatile__("mov %%cs, %[cs]"
464  			     : /* output */ [cs]"=rm"(cs));
465  	return cs;
466  }
467  
get_ss(void)468  static inline uint16_t get_ss(void)
469  {
470  	uint16_t ss;
471  
472  	__asm__ __volatile__("mov %%ss, %[ss]"
473  			     : /* output */ [ss]"=rm"(ss));
474  	return ss;
475  }
476  
get_ds(void)477  static inline uint16_t get_ds(void)
478  {
479  	uint16_t ds;
480  
481  	__asm__ __volatile__("mov %%ds, %[ds]"
482  			     : /* output */ [ds]"=rm"(ds));
483  	return ds;
484  }
485  
get_fs(void)486  static inline uint16_t get_fs(void)
487  {
488  	uint16_t fs;
489  
490  	__asm__ __volatile__("mov %%fs, %[fs]"
491  			     : /* output */ [fs]"=rm"(fs));
492  	return fs;
493  }
494  
get_gs(void)495  static inline uint16_t get_gs(void)
496  {
497  	uint16_t gs;
498  
499  	__asm__ __volatile__("mov %%gs, %[gs]"
500  			     : /* output */ [gs]"=rm"(gs));
501  	return gs;
502  }
503  
get_tr(void)504  static inline uint16_t get_tr(void)
505  {
506  	uint16_t tr;
507  
508  	__asm__ __volatile__("str %[tr]"
509  			     : /* output */ [tr]"=rm"(tr));
510  	return tr;
511  }
512  
get_cr0(void)513  static inline uint64_t get_cr0(void)
514  {
515  	uint64_t cr0;
516  
517  	__asm__ __volatile__("mov %%cr0, %[cr0]"
518  			     : /* output */ [cr0]"=r"(cr0));
519  	return cr0;
520  }
521  
get_cr3(void)522  static inline uint64_t get_cr3(void)
523  {
524  	uint64_t cr3;
525  
526  	__asm__ __volatile__("mov %%cr3, %[cr3]"
527  			     : /* output */ [cr3]"=r"(cr3));
528  	return cr3;
529  }
530  
get_cr4(void)531  static inline uint64_t get_cr4(void)
532  {
533  	uint64_t cr4;
534  
535  	__asm__ __volatile__("mov %%cr4, %[cr4]"
536  			     : /* output */ [cr4]"=r"(cr4));
537  	return cr4;
538  }
539  
set_cr4(uint64_t val)540  static inline void set_cr4(uint64_t val)
541  {
542  	__asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory");
543  }
544  
xgetbv(u32 index)545  static inline u64 xgetbv(u32 index)
546  {
547  	u32 eax, edx;
548  
549  	__asm__ __volatile__("xgetbv;"
550  		     : "=a" (eax), "=d" (edx)
551  		     : "c" (index));
552  	return eax | ((u64)edx << 32);
553  }
554  
xsetbv(u32 index,u64 value)555  static inline void xsetbv(u32 index, u64 value)
556  {
557  	u32 eax = value;
558  	u32 edx = value >> 32;
559  
560  	__asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index));
561  }
562  
wrpkru(u32 pkru)563  static inline void wrpkru(u32 pkru)
564  {
565  	/* Note, ECX and EDX are architecturally required to be '0'. */
566  	asm volatile(".byte 0x0f,0x01,0xef\n\t"
567  		     : : "a" (pkru), "c"(0), "d"(0));
568  }
569  
get_gdt(void)570  static inline struct desc_ptr get_gdt(void)
571  {
572  	struct desc_ptr gdt;
573  	__asm__ __volatile__("sgdt %[gdt]"
574  			     : /* output */ [gdt]"=m"(gdt));
575  	return gdt;
576  }
577  
get_idt(void)578  static inline struct desc_ptr get_idt(void)
579  {
580  	struct desc_ptr idt;
581  	__asm__ __volatile__("sidt %[idt]"
582  			     : /* output */ [idt]"=m"(idt));
583  	return idt;
584  }
585  
outl(uint16_t port,uint32_t value)586  static inline void outl(uint16_t port, uint32_t value)
587  {
588  	__asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value));
589  }
590  
__cpuid(uint32_t function,uint32_t index,uint32_t * eax,uint32_t * ebx,uint32_t * ecx,uint32_t * edx)591  static inline void __cpuid(uint32_t function, uint32_t index,
592  			   uint32_t *eax, uint32_t *ebx,
593  			   uint32_t *ecx, uint32_t *edx)
594  {
595  	*eax = function;
596  	*ecx = index;
597  
598  	asm volatile("cpuid"
599  	    : "=a" (*eax),
600  	      "=b" (*ebx),
601  	      "=c" (*ecx),
602  	      "=d" (*edx)
603  	    : "0" (*eax), "2" (*ecx)
604  	    : "memory");
605  }
606  
cpuid(uint32_t function,uint32_t * eax,uint32_t * ebx,uint32_t * ecx,uint32_t * edx)607  static inline void cpuid(uint32_t function,
608  			 uint32_t *eax, uint32_t *ebx,
609  			 uint32_t *ecx, uint32_t *edx)
610  {
611  	return __cpuid(function, 0, eax, ebx, ecx, edx);
612  }
613  
this_cpu_fms(void)614  static inline uint32_t this_cpu_fms(void)
615  {
616  	uint32_t eax, ebx, ecx, edx;
617  
618  	cpuid(1, &eax, &ebx, &ecx, &edx);
619  	return eax;
620  }
621  
this_cpu_family(void)622  static inline uint32_t this_cpu_family(void)
623  {
624  	return x86_family(this_cpu_fms());
625  }
626  
this_cpu_model(void)627  static inline uint32_t this_cpu_model(void)
628  {
629  	return x86_model(this_cpu_fms());
630  }
631  
this_cpu_vendor_string_is(const char * vendor)632  static inline bool this_cpu_vendor_string_is(const char *vendor)
633  {
634  	const uint32_t *chunk = (const uint32_t *)vendor;
635  	uint32_t eax, ebx, ecx, edx;
636  
637  	cpuid(0, &eax, &ebx, &ecx, &edx);
638  	return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
639  }
640  
this_cpu_is_intel(void)641  static inline bool this_cpu_is_intel(void)
642  {
643  	return this_cpu_vendor_string_is("GenuineIntel");
644  }
645  
646  /*
647   * Exclude early K5 samples with a vendor string of "AMDisbetter!"
648   */
this_cpu_is_amd(void)649  static inline bool this_cpu_is_amd(void)
650  {
651  	return this_cpu_vendor_string_is("AuthenticAMD");
652  }
653  
__this_cpu_has(uint32_t function,uint32_t index,uint8_t reg,uint8_t lo,uint8_t hi)654  static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index,
655  				      uint8_t reg, uint8_t lo, uint8_t hi)
656  {
657  	uint32_t gprs[4];
658  
659  	__cpuid(function, index,
660  		&gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX],
661  		&gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]);
662  
663  	return (gprs[reg] & GENMASK(hi, lo)) >> lo;
664  }
665  
this_cpu_has(struct kvm_x86_cpu_feature feature)666  static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature)
667  {
668  	return __this_cpu_has(feature.function, feature.index,
669  			      feature.reg, feature.bit, feature.bit);
670  }
671  
this_cpu_property(struct kvm_x86_cpu_property property)672  static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property)
673  {
674  	return __this_cpu_has(property.function, property.index,
675  			      property.reg, property.lo_bit, property.hi_bit);
676  }
677  
this_cpu_has_p(struct kvm_x86_cpu_property property)678  static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property)
679  {
680  	uint32_t max_leaf;
681  
682  	switch (property.function & 0xc0000000) {
683  	case 0:
684  		max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
685  		break;
686  	case 0x40000000:
687  		max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
688  		break;
689  	case 0x80000000:
690  		max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
691  		break;
692  	case 0xc0000000:
693  		max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
694  	}
695  	return max_leaf >= property.function;
696  }
697  
this_pmu_has(struct kvm_x86_pmu_feature feature)698  static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature)
699  {
700  	uint32_t nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
701  
702  	return nr_bits > feature.anti_feature.bit &&
703  	       !this_cpu_has(feature.anti_feature);
704  }
705  
this_cpu_supported_xcr0(void)706  static __always_inline uint64_t this_cpu_supported_xcr0(void)
707  {
708  	if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
709  		return 0;
710  
711  	return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
712  	       ((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
713  }
714  
715  typedef u32		__attribute__((vector_size(16))) sse128_t;
716  #define __sse128_u	union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; }
717  #define sse128_lo(x)	({ __sse128_u t; t.vec = x; t.as_u64[0]; })
718  #define sse128_hi(x)	({ __sse128_u t; t.vec = x; t.as_u64[1]; })
719  
read_sse_reg(int reg,sse128_t * data)720  static inline void read_sse_reg(int reg, sse128_t *data)
721  {
722  	switch (reg) {
723  	case 0:
724  		asm("movdqa %%xmm0, %0" : "=m"(*data));
725  		break;
726  	case 1:
727  		asm("movdqa %%xmm1, %0" : "=m"(*data));
728  		break;
729  	case 2:
730  		asm("movdqa %%xmm2, %0" : "=m"(*data));
731  		break;
732  	case 3:
733  		asm("movdqa %%xmm3, %0" : "=m"(*data));
734  		break;
735  	case 4:
736  		asm("movdqa %%xmm4, %0" : "=m"(*data));
737  		break;
738  	case 5:
739  		asm("movdqa %%xmm5, %0" : "=m"(*data));
740  		break;
741  	case 6:
742  		asm("movdqa %%xmm6, %0" : "=m"(*data));
743  		break;
744  	case 7:
745  		asm("movdqa %%xmm7, %0" : "=m"(*data));
746  		break;
747  	default:
748  		BUG();
749  	}
750  }
751  
write_sse_reg(int reg,const sse128_t * data)752  static inline void write_sse_reg(int reg, const sse128_t *data)
753  {
754  	switch (reg) {
755  	case 0:
756  		asm("movdqa %0, %%xmm0" : : "m"(*data));
757  		break;
758  	case 1:
759  		asm("movdqa %0, %%xmm1" : : "m"(*data));
760  		break;
761  	case 2:
762  		asm("movdqa %0, %%xmm2" : : "m"(*data));
763  		break;
764  	case 3:
765  		asm("movdqa %0, %%xmm3" : : "m"(*data));
766  		break;
767  	case 4:
768  		asm("movdqa %0, %%xmm4" : : "m"(*data));
769  		break;
770  	case 5:
771  		asm("movdqa %0, %%xmm5" : : "m"(*data));
772  		break;
773  	case 6:
774  		asm("movdqa %0, %%xmm6" : : "m"(*data));
775  		break;
776  	case 7:
777  		asm("movdqa %0, %%xmm7" : : "m"(*data));
778  		break;
779  	default:
780  		BUG();
781  	}
782  }
783  
cpu_relax(void)784  static inline void cpu_relax(void)
785  {
786  	asm volatile("rep; nop" ::: "memory");
787  }
788  
789  #define ud2()			\
790  	__asm__ __volatile__(	\
791  		"ud2\n"	\
792  		)
793  
794  #define hlt()			\
795  	__asm__ __volatile__(	\
796  		"hlt\n"	\
797  		)
798  
799  struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu);
800  void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state);
801  void kvm_x86_state_cleanup(struct kvm_x86_state *state);
802  
803  const struct kvm_msr_list *kvm_get_msr_index_list(void);
804  const struct kvm_msr_list *kvm_get_feature_msr_index_list(void);
805  bool kvm_msr_is_in_save_restore_list(uint32_t msr_index);
806  uint64_t kvm_get_feature_msr(uint64_t msr_index);
807  
vcpu_msrs_get(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs)808  static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu,
809  				 struct kvm_msrs *msrs)
810  {
811  	int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs);
812  
813  	TEST_ASSERT(r == msrs->nmsrs,
814  		    "KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
815  		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
816  }
vcpu_msrs_set(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs)817  static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs)
818  {
819  	int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs);
820  
821  	TEST_ASSERT(r == msrs->nmsrs,
822  		    "KVM_SET_MSRS failed, r: %i (failed on MSR %x)",
823  		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
824  }
vcpu_debugregs_get(struct kvm_vcpu * vcpu,struct kvm_debugregs * debugregs)825  static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu,
826  				      struct kvm_debugregs *debugregs)
827  {
828  	vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs);
829  }
vcpu_debugregs_set(struct kvm_vcpu * vcpu,struct kvm_debugregs * debugregs)830  static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu,
831  				      struct kvm_debugregs *debugregs)
832  {
833  	vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs);
834  }
vcpu_xsave_get(struct kvm_vcpu * vcpu,struct kvm_xsave * xsave)835  static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu,
836  				  struct kvm_xsave *xsave)
837  {
838  	vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave);
839  }
vcpu_xsave2_get(struct kvm_vcpu * vcpu,struct kvm_xsave * xsave)840  static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu,
841  				   struct kvm_xsave *xsave)
842  {
843  	vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave);
844  }
vcpu_xsave_set(struct kvm_vcpu * vcpu,struct kvm_xsave * xsave)845  static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu,
846  				  struct kvm_xsave *xsave)
847  {
848  	vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave);
849  }
vcpu_xcrs_get(struct kvm_vcpu * vcpu,struct kvm_xcrs * xcrs)850  static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu,
851  				 struct kvm_xcrs *xcrs)
852  {
853  	vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs);
854  }
vcpu_xcrs_set(struct kvm_vcpu * vcpu,struct kvm_xcrs * xcrs)855  static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs)
856  {
857  	vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs);
858  }
859  
860  const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
861  					       uint32_t function, uint32_t index);
862  const struct kvm_cpuid2 *kvm_get_supported_cpuid(void);
863  const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void);
864  const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu);
865  
kvm_cpu_fms(void)866  static inline uint32_t kvm_cpu_fms(void)
867  {
868  	return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax;
869  }
870  
kvm_cpu_family(void)871  static inline uint32_t kvm_cpu_family(void)
872  {
873  	return x86_family(kvm_cpu_fms());
874  }
875  
kvm_cpu_model(void)876  static inline uint32_t kvm_cpu_model(void)
877  {
878  	return x86_model(kvm_cpu_fms());
879  }
880  
881  bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
882  		   struct kvm_x86_cpu_feature feature);
883  
kvm_cpu_has(struct kvm_x86_cpu_feature feature)884  static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature)
885  {
886  	return kvm_cpuid_has(kvm_get_supported_cpuid(), feature);
887  }
888  
889  uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
890  			    struct kvm_x86_cpu_property property);
891  
kvm_cpu_property(struct kvm_x86_cpu_property property)892  static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property)
893  {
894  	return kvm_cpuid_property(kvm_get_supported_cpuid(), property);
895  }
896  
kvm_cpu_has_p(struct kvm_x86_cpu_property property)897  static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property)
898  {
899  	uint32_t max_leaf;
900  
901  	switch (property.function & 0xc0000000) {
902  	case 0:
903  		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
904  		break;
905  	case 0x40000000:
906  		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
907  		break;
908  	case 0x80000000:
909  		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
910  		break;
911  	case 0xc0000000:
912  		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
913  	}
914  	return max_leaf >= property.function;
915  }
916  
kvm_pmu_has(struct kvm_x86_pmu_feature feature)917  static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature)
918  {
919  	uint32_t nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
920  
921  	return nr_bits > feature.anti_feature.bit &&
922  	       !kvm_cpu_has(feature.anti_feature);
923  }
924  
kvm_cpu_supported_xcr0(void)925  static __always_inline uint64_t kvm_cpu_supported_xcr0(void)
926  {
927  	if (!kvm_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
928  		return 0;
929  
930  	return kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
931  	       ((uint64_t)kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
932  }
933  
kvm_cpuid2_size(int nr_entries)934  static inline size_t kvm_cpuid2_size(int nr_entries)
935  {
936  	return sizeof(struct kvm_cpuid2) +
937  	       sizeof(struct kvm_cpuid_entry2) * nr_entries;
938  }
939  
940  /*
941   * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of
942   * entries sized to hold @nr_entries.  The caller is responsible for freeing
943   * the struct.
944   */
allocate_kvm_cpuid2(int nr_entries)945  static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries)
946  {
947  	struct kvm_cpuid2 *cpuid;
948  
949  	cpuid = malloc(kvm_cpuid2_size(nr_entries));
950  	TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2");
951  
952  	cpuid->nent = nr_entries;
953  
954  	return cpuid;
955  }
956  
957  void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid);
958  void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu);
959  
__vcpu_get_cpuid_entry(struct kvm_vcpu * vcpu,uint32_t function,uint32_t index)960  static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
961  							      uint32_t function,
962  							      uint32_t index)
963  {
964  	return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid,
965  							  function, index);
966  }
967  
vcpu_get_cpuid_entry(struct kvm_vcpu * vcpu,uint32_t function)968  static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
969  							    uint32_t function)
970  {
971  	return __vcpu_get_cpuid_entry(vcpu, function, 0);
972  }
973  
__vcpu_set_cpuid(struct kvm_vcpu * vcpu)974  static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu)
975  {
976  	int r;
977  
978  	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
979  	r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
980  	if (r)
981  		return r;
982  
983  	/* On success, refresh the cache to pick up adjustments made by KVM. */
984  	vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
985  	return 0;
986  }
987  
vcpu_set_cpuid(struct kvm_vcpu * vcpu)988  static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu)
989  {
990  	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
991  	vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
992  
993  	/* Refresh the cache to pick up adjustments made by KVM. */
994  	vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
995  }
996  
997  void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr);
998  
999  void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function);
1000  void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1001  				     struct kvm_x86_cpu_feature feature,
1002  				     bool set);
1003  
vcpu_set_cpuid_feature(struct kvm_vcpu * vcpu,struct kvm_x86_cpu_feature feature)1004  static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu,
1005  					  struct kvm_x86_cpu_feature feature)
1006  {
1007  	vcpu_set_or_clear_cpuid_feature(vcpu, feature, true);
1008  
1009  }
1010  
vcpu_clear_cpuid_feature(struct kvm_vcpu * vcpu,struct kvm_x86_cpu_feature feature)1011  static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1012  					    struct kvm_x86_cpu_feature feature)
1013  {
1014  	vcpu_set_or_clear_cpuid_feature(vcpu, feature, false);
1015  }
1016  
1017  uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index);
1018  int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value);
1019  
1020  /*
1021   * Assert on an MSR access(es) and pretty print the MSR name when possible.
1022   * Note, the caller provides the stringified name so that the name of macro is
1023   * printed, not the value the macro resolves to (due to macro expansion).
1024   */
1025  #define TEST_ASSERT_MSR(cond, fmt, msr, str, args...)				\
1026  do {										\
1027  	if (__builtin_constant_p(msr)) {					\
1028  		TEST_ASSERT(cond, fmt, str, args);				\
1029  	} else if (!(cond)) {							\
1030  		char buf[16];							\
1031  										\
1032  		snprintf(buf, sizeof(buf), "MSR 0x%x", msr);			\
1033  		TEST_ASSERT(cond, fmt, buf, args);				\
1034  	}									\
1035  } while (0)
1036  
1037  /*
1038   * Returns true if KVM should return the last written value when reading an MSR
1039   * from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that
1040   * is changing, etc.  This is NOT an exhaustive list!  The intent is to filter
1041   * out MSRs that are not durable _and_ that a selftest wants to write.
1042   */
is_durable_msr(uint32_t msr)1043  static inline bool is_durable_msr(uint32_t msr)
1044  {
1045  	return msr != MSR_IA32_TSC;
1046  }
1047  
1048  #define vcpu_set_msr(vcpu, msr, val)							\
1049  do {											\
1050  	uint64_t r, v = val;								\
1051  											\
1052  	TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1,				\
1053  			"KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v);	\
1054  	if (!is_durable_msr(msr))							\
1055  		break;									\
1056  	r = vcpu_get_msr(vcpu, msr);							\
1057  	TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\
1058  } while (0)
1059  
1060  void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits);
1061  bool vm_is_unrestricted_guest(struct kvm_vm *vm);
1062  
1063  struct ex_regs {
1064  	uint64_t rax, rcx, rdx, rbx;
1065  	uint64_t rbp, rsi, rdi;
1066  	uint64_t r8, r9, r10, r11;
1067  	uint64_t r12, r13, r14, r15;
1068  	uint64_t vector;
1069  	uint64_t error_code;
1070  	uint64_t rip;
1071  	uint64_t cs;
1072  	uint64_t rflags;
1073  };
1074  
1075  struct idt_entry {
1076  	uint16_t offset0;
1077  	uint16_t selector;
1078  	uint16_t ist : 3;
1079  	uint16_t : 5;
1080  	uint16_t type : 4;
1081  	uint16_t : 1;
1082  	uint16_t dpl : 2;
1083  	uint16_t p : 1;
1084  	uint16_t offset1;
1085  	uint32_t offset2; uint32_t reserved;
1086  };
1087  
1088  void vm_init_descriptor_tables(struct kvm_vm *vm);
1089  void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu);
1090  void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1091  			void (*handler)(struct ex_regs *));
1092  
1093  /* If a toddler were to say "abracadabra". */
1094  #define KVM_EXCEPTION_MAGIC 0xabacadabaULL
1095  
1096  /*
1097   * KVM selftest exception fixup uses registers to coordinate with the exception
1098   * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory
1099   * per-CPU data.  Using only registers avoids having to map memory into the
1100   * guest, doesn't require a valid, stable GS.base, and reduces the risk of
1101   * for recursive faults when accessing memory in the handler.  The downside to
1102   * using registers is that it restricts what registers can be used by the actual
1103   * instruction.  But, selftests are 64-bit only, making register* pressure a
1104   * minor concern.  Use r9-r11 as they are volatile, i.e. don't need to be saved
1105   * by the callee, and except for r11 are not implicit parameters to any
1106   * instructions.  Ideally, fixup would use r8-r10 and thus avoid implicit
1107   * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V
1108   * is higher priority than testing non-faulting SYSCALL/SYSRET.
1109   *
1110   * Note, the fixup handler deliberately does not handle #DE, i.e. the vector
1111   * is guaranteed to be non-zero on fault.
1112   *
1113   * REGISTER INPUTS:
1114   * r9  = MAGIC
1115   * r10 = RIP
1116   * r11 = new RIP on fault
1117   *
1118   * REGISTER OUTPUTS:
1119   * r9  = exception vector (non-zero)
1120   * r10 = error code
1121   */
1122  #define KVM_ASM_SAFE(insn)					\
1123  	"mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t"	\
1124  	"lea 1f(%%rip), %%r10\n\t"				\
1125  	"lea 2f(%%rip), %%r11\n\t"				\
1126  	"1: " insn "\n\t"					\
1127  	"xor %%r9, %%r9\n\t"					\
1128  	"2:\n\t"						\
1129  	"mov  %%r9b, %[vector]\n\t"				\
1130  	"mov  %%r10, %[error_code]\n\t"
1131  
1132  #define KVM_ASM_SAFE_OUTPUTS(v, ec)	[vector] "=qm"(v), [error_code] "=rm"(ec)
1133  #define KVM_ASM_SAFE_CLOBBERS	"r9", "r10", "r11"
1134  
1135  #define kvm_asm_safe(insn, inputs...)					\
1136  ({									\
1137  	uint64_t ign_error_code;					\
1138  	uint8_t vector;							\
1139  									\
1140  	asm volatile(KVM_ASM_SAFE(insn)					\
1141  		     : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code)	\
1142  		     : inputs						\
1143  		     : KVM_ASM_SAFE_CLOBBERS);				\
1144  	vector;								\
1145  })
1146  
1147  #define kvm_asm_safe_ec(insn, error_code, inputs...)			\
1148  ({									\
1149  	uint8_t vector;							\
1150  									\
1151  	asm volatile(KVM_ASM_SAFE(insn)					\
1152  		     : KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1153  		     : inputs						\
1154  		     : KVM_ASM_SAFE_CLOBBERS);				\
1155  	vector;								\
1156  })
1157  
rdmsr_safe(uint32_t msr,uint64_t * val)1158  static inline uint8_t rdmsr_safe(uint32_t msr, uint64_t *val)
1159  {
1160  	uint64_t error_code;
1161  	uint8_t vector;
1162  	uint32_t a, d;
1163  
1164  	asm volatile(KVM_ASM_SAFE("rdmsr")
1165  		     : "=a"(a), "=d"(d), KVM_ASM_SAFE_OUTPUTS(vector, error_code)
1166  		     : "c"(msr)
1167  		     : KVM_ASM_SAFE_CLOBBERS);
1168  
1169  	*val = (uint64_t)a | ((uint64_t)d << 32);
1170  	return vector;
1171  }
1172  
wrmsr_safe(uint32_t msr,uint64_t val)1173  static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val)
1174  {
1175  	return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr));
1176  }
1177  
xsetbv_safe(uint32_t index,uint64_t value)1178  static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value)
1179  {
1180  	u32 eax = value;
1181  	u32 edx = value >> 32;
1182  
1183  	return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index));
1184  }
1185  
1186  bool kvm_is_tdp_enabled(void);
1187  
1188  uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
1189  				    int *level);
1190  uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr);
1191  
1192  uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1193  		       uint64_t a3);
1194  uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1195  void xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1196  
1197  void __vm_xsave_require_permission(uint64_t xfeature, const char *name);
1198  
1199  #define vm_xsave_require_permission(xfeature)	\
1200  	__vm_xsave_require_permission(xfeature, #xfeature)
1201  
1202  enum pg_level {
1203  	PG_LEVEL_NONE,
1204  	PG_LEVEL_4K,
1205  	PG_LEVEL_2M,
1206  	PG_LEVEL_1G,
1207  	PG_LEVEL_512G,
1208  	PG_LEVEL_NUM
1209  };
1210  
1211  #define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12)
1212  #define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level))
1213  
1214  #define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K)
1215  #define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M)
1216  #define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G)
1217  
1218  void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level);
1219  void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1220  		    uint64_t nr_bytes, int level);
1221  
1222  /*
1223   * Basic CPU control in CR0
1224   */
1225  #define X86_CR0_PE          (1UL<<0) /* Protection Enable */
1226  #define X86_CR0_MP          (1UL<<1) /* Monitor Coprocessor */
1227  #define X86_CR0_EM          (1UL<<2) /* Emulation */
1228  #define X86_CR0_TS          (1UL<<3) /* Task Switched */
1229  #define X86_CR0_ET          (1UL<<4) /* Extension Type */
1230  #define X86_CR0_NE          (1UL<<5) /* Numeric Error */
1231  #define X86_CR0_WP          (1UL<<16) /* Write Protect */
1232  #define X86_CR0_AM          (1UL<<18) /* Alignment Mask */
1233  #define X86_CR0_NW          (1UL<<29) /* Not Write-through */
1234  #define X86_CR0_CD          (1UL<<30) /* Cache Disable */
1235  #define X86_CR0_PG          (1UL<<31) /* Paging */
1236  
1237  #define PFERR_PRESENT_BIT 0
1238  #define PFERR_WRITE_BIT 1
1239  #define PFERR_USER_BIT 2
1240  #define PFERR_RSVD_BIT 3
1241  #define PFERR_FETCH_BIT 4
1242  #define PFERR_PK_BIT 5
1243  #define PFERR_SGX_BIT 15
1244  #define PFERR_GUEST_FINAL_BIT 32
1245  #define PFERR_GUEST_PAGE_BIT 33
1246  #define PFERR_IMPLICIT_ACCESS_BIT 48
1247  
1248  #define PFERR_PRESENT_MASK	BIT(PFERR_PRESENT_BIT)
1249  #define PFERR_WRITE_MASK	BIT(PFERR_WRITE_BIT)
1250  #define PFERR_USER_MASK		BIT(PFERR_USER_BIT)
1251  #define PFERR_RSVD_MASK		BIT(PFERR_RSVD_BIT)
1252  #define PFERR_FETCH_MASK	BIT(PFERR_FETCH_BIT)
1253  #define PFERR_PK_MASK		BIT(PFERR_PK_BIT)
1254  #define PFERR_SGX_MASK		BIT(PFERR_SGX_BIT)
1255  #define PFERR_GUEST_FINAL_MASK	BIT_ULL(PFERR_GUEST_FINAL_BIT)
1256  #define PFERR_GUEST_PAGE_MASK	BIT_ULL(PFERR_GUEST_PAGE_BIT)
1257  #define PFERR_IMPLICIT_ACCESS	BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
1258  
1259  #endif /* SELFTEST_KVM_PROCESSOR_H */
1260