1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 */
6
7 #define pr_fmt(fmt) "iommu: " fmt
8
9 #include <linux/amba/bus.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/host1x_context_bus.h>
20 #include <linux/iommu.h>
21 #include <linux/idr.h>
22 #include <linux/err.h>
23 #include <linux/pci.h>
24 #include <linux/pci-ats.h>
25 #include <linux/bitops.h>
26 #include <linux/platform_device.h>
27 #include <linux/property.h>
28 #include <linux/fsl/mc.h>
29 #include <linux/module.h>
30 #include <linux/cc_platform.h>
31 #include <linux/cdx/cdx_bus.h>
32 #include <trace/events/iommu.h>
33 #include <linux/sched/mm.h>
34 #include <linux/msi.h>
35
36 #include "dma-iommu.h"
37 #include "iommu-priv.h"
38
39 #include "iommu-sva.h"
40 #include "iommu-priv.h"
41
42 static struct kset *iommu_group_kset;
43 static DEFINE_IDA(iommu_group_ida);
44 static DEFINE_IDA(iommu_global_pasid_ida);
45
46 static unsigned int iommu_def_domain_type __read_mostly;
47 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
48 static u32 iommu_cmd_line __read_mostly;
49
50 struct iommu_group {
51 struct kobject kobj;
52 struct kobject *devices_kobj;
53 struct list_head devices;
54 struct xarray pasid_array;
55 struct mutex mutex;
56 void *iommu_data;
57 void (*iommu_data_release)(void *iommu_data);
58 char *name;
59 int id;
60 struct iommu_domain *default_domain;
61 struct iommu_domain *blocking_domain;
62 struct iommu_domain *domain;
63 struct list_head entry;
64 unsigned int owner_cnt;
65 void *owner;
66 };
67
68 struct group_device {
69 struct list_head list;
70 struct device *dev;
71 char *name;
72 };
73
74 /* Iterate over each struct group_device in a struct iommu_group */
75 #define for_each_group_device(group, pos) \
76 list_for_each_entry(pos, &(group)->devices, list)
77
78 struct iommu_group_attribute {
79 struct attribute attr;
80 ssize_t (*show)(struct iommu_group *group, char *buf);
81 ssize_t (*store)(struct iommu_group *group,
82 const char *buf, size_t count);
83 };
84
85 static const char * const iommu_group_resv_type_string[] = {
86 [IOMMU_RESV_DIRECT] = "direct",
87 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable",
88 [IOMMU_RESV_RESERVED] = "reserved",
89 [IOMMU_RESV_MSI] = "msi",
90 [IOMMU_RESV_SW_MSI] = "msi",
91 };
92
93 #define IOMMU_CMD_LINE_DMA_API BIT(0)
94 #define IOMMU_CMD_LINE_STRICT BIT(1)
95
96 static int iommu_bus_notifier(struct notifier_block *nb,
97 unsigned long action, void *data);
98 static void iommu_release_device(struct device *dev);
99 static struct iommu_domain *__iommu_domain_alloc(const struct bus_type *bus,
100 unsigned type);
101 static int __iommu_attach_device(struct iommu_domain *domain,
102 struct device *dev);
103 static int __iommu_attach_group(struct iommu_domain *domain,
104 struct iommu_group *group);
105
106 enum {
107 IOMMU_SET_DOMAIN_MUST_SUCCEED = 1 << 0,
108 };
109
110 static int __iommu_device_set_domain(struct iommu_group *group,
111 struct device *dev,
112 struct iommu_domain *new_domain,
113 unsigned int flags);
114 static int __iommu_group_set_domain_internal(struct iommu_group *group,
115 struct iommu_domain *new_domain,
116 unsigned int flags);
__iommu_group_set_domain(struct iommu_group * group,struct iommu_domain * new_domain)117 static int __iommu_group_set_domain(struct iommu_group *group,
118 struct iommu_domain *new_domain)
119 {
120 return __iommu_group_set_domain_internal(group, new_domain, 0);
121 }
__iommu_group_set_domain_nofail(struct iommu_group * group,struct iommu_domain * new_domain)122 static void __iommu_group_set_domain_nofail(struct iommu_group *group,
123 struct iommu_domain *new_domain)
124 {
125 WARN_ON(__iommu_group_set_domain_internal(
126 group, new_domain, IOMMU_SET_DOMAIN_MUST_SUCCEED));
127 }
128
129 static int iommu_setup_default_domain(struct iommu_group *group,
130 int target_type);
131 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
132 struct device *dev);
133 static ssize_t iommu_group_store_type(struct iommu_group *group,
134 const char *buf, size_t count);
135 static struct group_device *iommu_group_alloc_device(struct iommu_group *group,
136 struct device *dev);
137 static void __iommu_group_free_device(struct iommu_group *group,
138 struct group_device *grp_dev);
139
140 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \
141 struct iommu_group_attribute iommu_group_attr_##_name = \
142 __ATTR(_name, _mode, _show, _store)
143
144 #define to_iommu_group_attr(_attr) \
145 container_of(_attr, struct iommu_group_attribute, attr)
146 #define to_iommu_group(_kobj) \
147 container_of(_kobj, struct iommu_group, kobj)
148
149 static LIST_HEAD(iommu_device_list);
150 static DEFINE_SPINLOCK(iommu_device_lock);
151
152 static struct bus_type * const iommu_buses[] = {
153 &platform_bus_type,
154 #ifdef CONFIG_PCI
155 &pci_bus_type,
156 #endif
157 #ifdef CONFIG_ARM_AMBA
158 &amba_bustype,
159 #endif
160 #ifdef CONFIG_FSL_MC_BUS
161 &fsl_mc_bus_type,
162 #endif
163 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS
164 &host1x_context_device_bus_type,
165 #endif
166 #ifdef CONFIG_CDX_BUS
167 &cdx_bus_type,
168 #endif
169 };
170
171 /*
172 * Use a function instead of an array here because the domain-type is a
173 * bit-field, so an array would waste memory.
174 */
iommu_domain_type_str(unsigned int t)175 static const char *iommu_domain_type_str(unsigned int t)
176 {
177 switch (t) {
178 case IOMMU_DOMAIN_BLOCKED:
179 return "Blocked";
180 case IOMMU_DOMAIN_IDENTITY:
181 return "Passthrough";
182 case IOMMU_DOMAIN_UNMANAGED:
183 return "Unmanaged";
184 case IOMMU_DOMAIN_DMA:
185 case IOMMU_DOMAIN_DMA_FQ:
186 return "Translated";
187 default:
188 return "Unknown";
189 }
190 }
191
iommu_subsys_init(void)192 static int __init iommu_subsys_init(void)
193 {
194 struct notifier_block *nb;
195
196 if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
197 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
198 iommu_set_default_passthrough(false);
199 else
200 iommu_set_default_translated(false);
201
202 if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
203 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
204 iommu_set_default_translated(false);
205 }
206 }
207
208 if (!iommu_default_passthrough() && !iommu_dma_strict)
209 iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
210
211 pr_info("Default domain type: %s%s\n",
212 iommu_domain_type_str(iommu_def_domain_type),
213 (iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
214 " (set via kernel command line)" : "");
215
216 if (!iommu_default_passthrough())
217 pr_info("DMA domain TLB invalidation policy: %s mode%s\n",
218 iommu_dma_strict ? "strict" : "lazy",
219 (iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
220 " (set via kernel command line)" : "");
221
222 nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL);
223 if (!nb)
224 return -ENOMEM;
225
226 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) {
227 nb[i].notifier_call = iommu_bus_notifier;
228 bus_register_notifier(iommu_buses[i], &nb[i]);
229 }
230
231 return 0;
232 }
233 subsys_initcall(iommu_subsys_init);
234
remove_iommu_group(struct device * dev,void * data)235 static int remove_iommu_group(struct device *dev, void *data)
236 {
237 if (dev->iommu && dev->iommu->iommu_dev == data)
238 iommu_release_device(dev);
239
240 return 0;
241 }
242
243 /**
244 * iommu_device_register() - Register an IOMMU hardware instance
245 * @iommu: IOMMU handle for the instance
246 * @ops: IOMMU ops to associate with the instance
247 * @hwdev: (optional) actual instance device, used for fwnode lookup
248 *
249 * Return: 0 on success, or an error.
250 */
iommu_device_register(struct iommu_device * iommu,const struct iommu_ops * ops,struct device * hwdev)251 int iommu_device_register(struct iommu_device *iommu,
252 const struct iommu_ops *ops, struct device *hwdev)
253 {
254 int err = 0;
255
256 /* We need to be able to take module references appropriately */
257 if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
258 return -EINVAL;
259 /*
260 * Temporarily enforce global restriction to a single driver. This was
261 * already the de-facto behaviour, since any possible combination of
262 * existing drivers would compete for at least the PCI or platform bus.
263 */
264 if (iommu_buses[0]->iommu_ops && iommu_buses[0]->iommu_ops != ops)
265 return -EBUSY;
266
267 iommu->ops = ops;
268 if (hwdev)
269 iommu->fwnode = dev_fwnode(hwdev);
270
271 spin_lock(&iommu_device_lock);
272 list_add_tail(&iommu->list, &iommu_device_list);
273 spin_unlock(&iommu_device_lock);
274
275 for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++) {
276 iommu_buses[i]->iommu_ops = ops;
277 err = bus_iommu_probe(iommu_buses[i]);
278 }
279 if (err)
280 iommu_device_unregister(iommu);
281 return err;
282 }
283 EXPORT_SYMBOL_GPL(iommu_device_register);
284
iommu_device_unregister(struct iommu_device * iommu)285 void iommu_device_unregister(struct iommu_device *iommu)
286 {
287 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++)
288 bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group);
289
290 spin_lock(&iommu_device_lock);
291 list_del(&iommu->list);
292 spin_unlock(&iommu_device_lock);
293 }
294 EXPORT_SYMBOL_GPL(iommu_device_unregister);
295
296 #if IS_ENABLED(CONFIG_IOMMUFD_TEST)
iommu_device_unregister_bus(struct iommu_device * iommu,struct bus_type * bus,struct notifier_block * nb)297 void iommu_device_unregister_bus(struct iommu_device *iommu,
298 struct bus_type *bus,
299 struct notifier_block *nb)
300 {
301 bus_unregister_notifier(bus, nb);
302 iommu_device_unregister(iommu);
303 }
304 EXPORT_SYMBOL_GPL(iommu_device_unregister_bus);
305
306 /*
307 * Register an iommu driver against a single bus. This is only used by iommufd
308 * selftest to create a mock iommu driver. The caller must provide
309 * some memory to hold a notifier_block.
310 */
iommu_device_register_bus(struct iommu_device * iommu,const struct iommu_ops * ops,struct bus_type * bus,struct notifier_block * nb)311 int iommu_device_register_bus(struct iommu_device *iommu,
312 const struct iommu_ops *ops, struct bus_type *bus,
313 struct notifier_block *nb)
314 {
315 int err;
316
317 iommu->ops = ops;
318 nb->notifier_call = iommu_bus_notifier;
319 err = bus_register_notifier(bus, nb);
320 if (err)
321 return err;
322
323 spin_lock(&iommu_device_lock);
324 list_add_tail(&iommu->list, &iommu_device_list);
325 spin_unlock(&iommu_device_lock);
326
327 bus->iommu_ops = ops;
328 err = bus_iommu_probe(bus);
329 if (err) {
330 iommu_device_unregister_bus(iommu, bus, nb);
331 return err;
332 }
333 return 0;
334 }
335 EXPORT_SYMBOL_GPL(iommu_device_register_bus);
336 #endif
337
dev_iommu_get(struct device * dev)338 static struct dev_iommu *dev_iommu_get(struct device *dev)
339 {
340 struct dev_iommu *param = dev->iommu;
341
342 if (param)
343 return param;
344
345 param = kzalloc(sizeof(*param), GFP_KERNEL);
346 if (!param)
347 return NULL;
348
349 mutex_init(¶m->lock);
350 dev->iommu = param;
351 return param;
352 }
353
dev_iommu_free(struct device * dev)354 static void dev_iommu_free(struct device *dev)
355 {
356 struct dev_iommu *param = dev->iommu;
357
358 dev->iommu = NULL;
359 if (param->fwspec) {
360 fwnode_handle_put(param->fwspec->iommu_fwnode);
361 kfree(param->fwspec);
362 }
363 kfree(param);
364 }
365
dev_iommu_get_max_pasids(struct device * dev)366 static u32 dev_iommu_get_max_pasids(struct device *dev)
367 {
368 u32 max_pasids = 0, bits = 0;
369 int ret;
370
371 if (dev_is_pci(dev)) {
372 ret = pci_max_pasids(to_pci_dev(dev));
373 if (ret > 0)
374 max_pasids = ret;
375 } else {
376 ret = device_property_read_u32(dev, "pasid-num-bits", &bits);
377 if (!ret)
378 max_pasids = 1UL << bits;
379 }
380
381 return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids);
382 }
383
384 /*
385 * Init the dev->iommu and dev->iommu_group in the struct device and get the
386 * driver probed
387 */
iommu_init_device(struct device * dev,const struct iommu_ops * ops)388 static int iommu_init_device(struct device *dev, const struct iommu_ops *ops)
389 {
390 struct iommu_device *iommu_dev;
391 struct iommu_group *group;
392 int ret;
393
394 if (!dev_iommu_get(dev))
395 return -ENOMEM;
396
397 if (!try_module_get(ops->owner)) {
398 ret = -EINVAL;
399 goto err_free;
400 }
401
402 iommu_dev = ops->probe_device(dev);
403 if (IS_ERR(iommu_dev)) {
404 ret = PTR_ERR(iommu_dev);
405 goto err_module_put;
406 }
407
408 ret = iommu_device_link(iommu_dev, dev);
409 if (ret)
410 goto err_release;
411
412 group = ops->device_group(dev);
413 if (WARN_ON_ONCE(group == NULL))
414 group = ERR_PTR(-EINVAL);
415 if (IS_ERR(group)) {
416 ret = PTR_ERR(group);
417 goto err_unlink;
418 }
419 dev->iommu_group = group;
420
421 dev->iommu->iommu_dev = iommu_dev;
422 dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev);
423 if (ops->is_attach_deferred)
424 dev->iommu->attach_deferred = ops->is_attach_deferred(dev);
425 return 0;
426
427 err_unlink:
428 iommu_device_unlink(iommu_dev, dev);
429 err_release:
430 if (ops->release_device)
431 ops->release_device(dev);
432 err_module_put:
433 module_put(ops->owner);
434 err_free:
435 dev_iommu_free(dev);
436 return ret;
437 }
438
iommu_deinit_device(struct device * dev)439 static void iommu_deinit_device(struct device *dev)
440 {
441 struct iommu_group *group = dev->iommu_group;
442 const struct iommu_ops *ops = dev_iommu_ops(dev);
443
444 lockdep_assert_held(&group->mutex);
445
446 iommu_device_unlink(dev->iommu->iommu_dev, dev);
447
448 /*
449 * release_device() must stop using any attached domain on the device.
450 * If there are still other devices in the group they are not effected
451 * by this callback.
452 *
453 * The IOMMU driver must set the device to either an identity or
454 * blocking translation and stop using any domain pointer, as it is
455 * going to be freed.
456 */
457 if (ops->release_device)
458 ops->release_device(dev);
459
460 /*
461 * If this is the last driver to use the group then we must free the
462 * domains before we do the module_put().
463 */
464 if (list_empty(&group->devices)) {
465 if (group->default_domain) {
466 iommu_domain_free(group->default_domain);
467 group->default_domain = NULL;
468 }
469 if (group->blocking_domain) {
470 iommu_domain_free(group->blocking_domain);
471 group->blocking_domain = NULL;
472 }
473 group->domain = NULL;
474 }
475
476 /* Caller must put iommu_group */
477 dev->iommu_group = NULL;
478 module_put(ops->owner);
479 dev_iommu_free(dev);
480 }
481
482 DEFINE_MUTEX(iommu_probe_device_lock);
483
__iommu_probe_device(struct device * dev,struct list_head * group_list)484 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
485 {
486 const struct iommu_ops *ops = dev->bus->iommu_ops;
487 struct iommu_group *group;
488 struct group_device *gdev;
489 int ret;
490
491 if (!ops)
492 return -ENODEV;
493 /*
494 * Serialise to avoid races between IOMMU drivers registering in
495 * parallel and/or the "replay" calls from ACPI/OF code via client
496 * driver probe. Once the latter have been cleaned up we should
497 * probably be able to use device_lock() here to minimise the scope,
498 * but for now enforcing a simple global ordering is fine.
499 */
500 lockdep_assert_held(&iommu_probe_device_lock);
501
502 /* Device is probed already if in a group */
503 if (dev->iommu_group)
504 return 0;
505
506 ret = iommu_init_device(dev, ops);
507 if (ret)
508 return ret;
509
510 group = dev->iommu_group;
511 gdev = iommu_group_alloc_device(group, dev);
512 mutex_lock(&group->mutex);
513 if (IS_ERR(gdev)) {
514 ret = PTR_ERR(gdev);
515 goto err_put_group;
516 }
517
518 /*
519 * The gdev must be in the list before calling
520 * iommu_setup_default_domain()
521 */
522 list_add_tail(&gdev->list, &group->devices);
523 WARN_ON(group->default_domain && !group->domain);
524 if (group->default_domain)
525 iommu_create_device_direct_mappings(group->default_domain, dev);
526 if (group->domain) {
527 ret = __iommu_device_set_domain(group, dev, group->domain, 0);
528 if (ret)
529 goto err_remove_gdev;
530 } else if (!group->default_domain && !group_list) {
531 ret = iommu_setup_default_domain(group, 0);
532 if (ret)
533 goto err_remove_gdev;
534 } else if (!group->default_domain) {
535 /*
536 * With a group_list argument we defer the default_domain setup
537 * to the caller by providing a de-duplicated list of groups
538 * that need further setup.
539 */
540 if (list_empty(&group->entry))
541 list_add_tail(&group->entry, group_list);
542 }
543 mutex_unlock(&group->mutex);
544
545 if (dev_is_pci(dev))
546 iommu_dma_set_pci_32bit_workaround(dev);
547
548 return 0;
549
550 err_remove_gdev:
551 list_del(&gdev->list);
552 __iommu_group_free_device(group, gdev);
553 err_put_group:
554 iommu_deinit_device(dev);
555 mutex_unlock(&group->mutex);
556 iommu_group_put(group);
557
558 return ret;
559 }
560
iommu_probe_device(struct device * dev)561 int iommu_probe_device(struct device *dev)
562 {
563 const struct iommu_ops *ops;
564 int ret;
565
566 mutex_lock(&iommu_probe_device_lock);
567 ret = __iommu_probe_device(dev, NULL);
568 mutex_unlock(&iommu_probe_device_lock);
569
570 /*
571 * The dma_configure replay paths need bus_iommu_probe() to
572 * finish before they can call arch_setup_dma_ops()
573 */
574 if (IS_ENABLED(CONFIG_IOMMU_DMA) && !ret && dev->iommu_group) {
575 mutex_lock(&dev->iommu_group->mutex);
576 if (!dev->iommu_group->default_domain &&
577 !dev_iommu_ops(dev)->set_platform_dma_ops)
578 ret = -EPROBE_DEFER;
579 mutex_unlock(&dev->iommu_group->mutex);
580 }
581 if (ret)
582 return ret;
583
584 ops = dev_iommu_ops(dev);
585 if (ops->probe_finalize)
586 ops->probe_finalize(dev);
587
588 return 0;
589 }
590
__iommu_group_free_device(struct iommu_group * group,struct group_device * grp_dev)591 static void __iommu_group_free_device(struct iommu_group *group,
592 struct group_device *grp_dev)
593 {
594 struct device *dev = grp_dev->dev;
595
596 sysfs_remove_link(group->devices_kobj, grp_dev->name);
597 sysfs_remove_link(&dev->kobj, "iommu_group");
598
599 trace_remove_device_from_group(group->id, dev);
600
601 /*
602 * If the group has become empty then ownership must have been
603 * released, and the current domain must be set back to NULL or
604 * the default domain.
605 */
606 if (list_empty(&group->devices))
607 WARN_ON(group->owner_cnt ||
608 group->domain != group->default_domain);
609
610 kfree(grp_dev->name);
611 kfree(grp_dev);
612 }
613
614 /* Remove the iommu_group from the struct device. */
__iommu_group_remove_device(struct device * dev)615 static void __iommu_group_remove_device(struct device *dev)
616 {
617 struct iommu_group *group = dev->iommu_group;
618 struct group_device *device;
619
620 mutex_lock(&group->mutex);
621 for_each_group_device(group, device) {
622 if (device->dev != dev)
623 continue;
624
625 list_del(&device->list);
626 __iommu_group_free_device(group, device);
627 if (dev->iommu && dev->iommu->iommu_dev)
628 iommu_deinit_device(dev);
629 else
630 dev->iommu_group = NULL;
631 break;
632 }
633 mutex_unlock(&group->mutex);
634
635 /*
636 * Pairs with the get in iommu_init_device() or
637 * iommu_group_add_device()
638 */
639 iommu_group_put(group);
640 }
641
iommu_release_device(struct device * dev)642 static void iommu_release_device(struct device *dev)
643 {
644 struct iommu_group *group = dev->iommu_group;
645
646 if (group)
647 __iommu_group_remove_device(dev);
648
649 /* Free any fwspec if no iommu_driver was ever attached */
650 if (dev->iommu)
651 dev_iommu_free(dev);
652 }
653
iommu_set_def_domain_type(char * str)654 static int __init iommu_set_def_domain_type(char *str)
655 {
656 bool pt;
657 int ret;
658
659 ret = kstrtobool(str, &pt);
660 if (ret)
661 return ret;
662
663 if (pt)
664 iommu_set_default_passthrough(true);
665 else
666 iommu_set_default_translated(true);
667
668 return 0;
669 }
670 early_param("iommu.passthrough", iommu_set_def_domain_type);
671
iommu_dma_setup(char * str)672 static int __init iommu_dma_setup(char *str)
673 {
674 int ret = kstrtobool(str, &iommu_dma_strict);
675
676 if (!ret)
677 iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
678 return ret;
679 }
680 early_param("iommu.strict", iommu_dma_setup);
681
iommu_set_dma_strict(void)682 void iommu_set_dma_strict(void)
683 {
684 iommu_dma_strict = true;
685 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
686 iommu_def_domain_type = IOMMU_DOMAIN_DMA;
687 }
688
iommu_group_attr_show(struct kobject * kobj,struct attribute * __attr,char * buf)689 static ssize_t iommu_group_attr_show(struct kobject *kobj,
690 struct attribute *__attr, char *buf)
691 {
692 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
693 struct iommu_group *group = to_iommu_group(kobj);
694 ssize_t ret = -EIO;
695
696 if (attr->show)
697 ret = attr->show(group, buf);
698 return ret;
699 }
700
iommu_group_attr_store(struct kobject * kobj,struct attribute * __attr,const char * buf,size_t count)701 static ssize_t iommu_group_attr_store(struct kobject *kobj,
702 struct attribute *__attr,
703 const char *buf, size_t count)
704 {
705 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
706 struct iommu_group *group = to_iommu_group(kobj);
707 ssize_t ret = -EIO;
708
709 if (attr->store)
710 ret = attr->store(group, buf, count);
711 return ret;
712 }
713
714 static const struct sysfs_ops iommu_group_sysfs_ops = {
715 .show = iommu_group_attr_show,
716 .store = iommu_group_attr_store,
717 };
718
iommu_group_create_file(struct iommu_group * group,struct iommu_group_attribute * attr)719 static int iommu_group_create_file(struct iommu_group *group,
720 struct iommu_group_attribute *attr)
721 {
722 return sysfs_create_file(&group->kobj, &attr->attr);
723 }
724
iommu_group_remove_file(struct iommu_group * group,struct iommu_group_attribute * attr)725 static void iommu_group_remove_file(struct iommu_group *group,
726 struct iommu_group_attribute *attr)
727 {
728 sysfs_remove_file(&group->kobj, &attr->attr);
729 }
730
iommu_group_show_name(struct iommu_group * group,char * buf)731 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
732 {
733 return sysfs_emit(buf, "%s\n", group->name);
734 }
735
736 /**
737 * iommu_insert_resv_region - Insert a new region in the
738 * list of reserved regions.
739 * @new: new region to insert
740 * @regions: list of regions
741 *
742 * Elements are sorted by start address and overlapping segments
743 * of the same type are merged.
744 */
iommu_insert_resv_region(struct iommu_resv_region * new,struct list_head * regions)745 static int iommu_insert_resv_region(struct iommu_resv_region *new,
746 struct list_head *regions)
747 {
748 struct iommu_resv_region *iter, *tmp, *nr, *top;
749 LIST_HEAD(stack);
750
751 nr = iommu_alloc_resv_region(new->start, new->length,
752 new->prot, new->type, GFP_KERNEL);
753 if (!nr)
754 return -ENOMEM;
755
756 /* First add the new element based on start address sorting */
757 list_for_each_entry(iter, regions, list) {
758 if (nr->start < iter->start ||
759 (nr->start == iter->start && nr->type <= iter->type))
760 break;
761 }
762 list_add_tail(&nr->list, &iter->list);
763
764 /* Merge overlapping segments of type nr->type in @regions, if any */
765 list_for_each_entry_safe(iter, tmp, regions, list) {
766 phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
767
768 /* no merge needed on elements of different types than @new */
769 if (iter->type != new->type) {
770 list_move_tail(&iter->list, &stack);
771 continue;
772 }
773
774 /* look for the last stack element of same type as @iter */
775 list_for_each_entry_reverse(top, &stack, list)
776 if (top->type == iter->type)
777 goto check_overlap;
778
779 list_move_tail(&iter->list, &stack);
780 continue;
781
782 check_overlap:
783 top_end = top->start + top->length - 1;
784
785 if (iter->start > top_end + 1) {
786 list_move_tail(&iter->list, &stack);
787 } else {
788 top->length = max(top_end, iter_end) - top->start + 1;
789 list_del(&iter->list);
790 kfree(iter);
791 }
792 }
793 list_splice(&stack, regions);
794 return 0;
795 }
796
797 static int
iommu_insert_device_resv_regions(struct list_head * dev_resv_regions,struct list_head * group_resv_regions)798 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
799 struct list_head *group_resv_regions)
800 {
801 struct iommu_resv_region *entry;
802 int ret = 0;
803
804 list_for_each_entry(entry, dev_resv_regions, list) {
805 ret = iommu_insert_resv_region(entry, group_resv_regions);
806 if (ret)
807 break;
808 }
809 return ret;
810 }
811
iommu_get_group_resv_regions(struct iommu_group * group,struct list_head * head)812 int iommu_get_group_resv_regions(struct iommu_group *group,
813 struct list_head *head)
814 {
815 struct group_device *device;
816 int ret = 0;
817
818 mutex_lock(&group->mutex);
819 for_each_group_device(group, device) {
820 struct list_head dev_resv_regions;
821
822 /*
823 * Non-API groups still expose reserved_regions in sysfs,
824 * so filter out calls that get here that way.
825 */
826 if (!device->dev->iommu)
827 break;
828
829 INIT_LIST_HEAD(&dev_resv_regions);
830 iommu_get_resv_regions(device->dev, &dev_resv_regions);
831 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
832 iommu_put_resv_regions(device->dev, &dev_resv_regions);
833 if (ret)
834 break;
835 }
836 mutex_unlock(&group->mutex);
837 return ret;
838 }
839 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
840
iommu_group_show_resv_regions(struct iommu_group * group,char * buf)841 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
842 char *buf)
843 {
844 struct iommu_resv_region *region, *next;
845 struct list_head group_resv_regions;
846 int offset = 0;
847
848 INIT_LIST_HEAD(&group_resv_regions);
849 iommu_get_group_resv_regions(group, &group_resv_regions);
850
851 list_for_each_entry_safe(region, next, &group_resv_regions, list) {
852 offset += sysfs_emit_at(buf, offset, "0x%016llx 0x%016llx %s\n",
853 (long long)region->start,
854 (long long)(region->start +
855 region->length - 1),
856 iommu_group_resv_type_string[region->type]);
857 kfree(region);
858 }
859
860 return offset;
861 }
862
iommu_group_show_type(struct iommu_group * group,char * buf)863 static ssize_t iommu_group_show_type(struct iommu_group *group,
864 char *buf)
865 {
866 char *type = "unknown";
867
868 mutex_lock(&group->mutex);
869 if (group->default_domain) {
870 switch (group->default_domain->type) {
871 case IOMMU_DOMAIN_BLOCKED:
872 type = "blocked";
873 break;
874 case IOMMU_DOMAIN_IDENTITY:
875 type = "identity";
876 break;
877 case IOMMU_DOMAIN_UNMANAGED:
878 type = "unmanaged";
879 break;
880 case IOMMU_DOMAIN_DMA:
881 type = "DMA";
882 break;
883 case IOMMU_DOMAIN_DMA_FQ:
884 type = "DMA-FQ";
885 break;
886 }
887 }
888 mutex_unlock(&group->mutex);
889
890 return sysfs_emit(buf, "%s\n", type);
891 }
892
893 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
894
895 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
896 iommu_group_show_resv_regions, NULL);
897
898 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
899 iommu_group_store_type);
900
iommu_group_release(struct kobject * kobj)901 static void iommu_group_release(struct kobject *kobj)
902 {
903 struct iommu_group *group = to_iommu_group(kobj);
904
905 pr_debug("Releasing group %d\n", group->id);
906
907 if (group->iommu_data_release)
908 group->iommu_data_release(group->iommu_data);
909
910 ida_free(&iommu_group_ida, group->id);
911
912 /* Domains are free'd by iommu_deinit_device() */
913 WARN_ON(group->default_domain);
914 WARN_ON(group->blocking_domain);
915
916 kfree(group->name);
917 kfree(group);
918 }
919
920 static const struct kobj_type iommu_group_ktype = {
921 .sysfs_ops = &iommu_group_sysfs_ops,
922 .release = iommu_group_release,
923 };
924
925 /**
926 * iommu_group_alloc - Allocate a new group
927 *
928 * This function is called by an iommu driver to allocate a new iommu
929 * group. The iommu group represents the minimum granularity of the iommu.
930 * Upon successful return, the caller holds a reference to the supplied
931 * group in order to hold the group until devices are added. Use
932 * iommu_group_put() to release this extra reference count, allowing the
933 * group to be automatically reclaimed once it has no devices or external
934 * references.
935 */
iommu_group_alloc(void)936 struct iommu_group *iommu_group_alloc(void)
937 {
938 struct iommu_group *group;
939 int ret;
940
941 group = kzalloc(sizeof(*group), GFP_KERNEL);
942 if (!group)
943 return ERR_PTR(-ENOMEM);
944
945 group->kobj.kset = iommu_group_kset;
946 mutex_init(&group->mutex);
947 INIT_LIST_HEAD(&group->devices);
948 INIT_LIST_HEAD(&group->entry);
949 xa_init(&group->pasid_array);
950
951 ret = ida_alloc(&iommu_group_ida, GFP_KERNEL);
952 if (ret < 0) {
953 kfree(group);
954 return ERR_PTR(ret);
955 }
956 group->id = ret;
957
958 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
959 NULL, "%d", group->id);
960 if (ret) {
961 kobject_put(&group->kobj);
962 return ERR_PTR(ret);
963 }
964
965 group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
966 if (!group->devices_kobj) {
967 kobject_put(&group->kobj); /* triggers .release & free */
968 return ERR_PTR(-ENOMEM);
969 }
970
971 /*
972 * The devices_kobj holds a reference on the group kobject, so
973 * as long as that exists so will the group. We can therefore
974 * use the devices_kobj for reference counting.
975 */
976 kobject_put(&group->kobj);
977
978 ret = iommu_group_create_file(group,
979 &iommu_group_attr_reserved_regions);
980 if (ret) {
981 kobject_put(group->devices_kobj);
982 return ERR_PTR(ret);
983 }
984
985 ret = iommu_group_create_file(group, &iommu_group_attr_type);
986 if (ret) {
987 kobject_put(group->devices_kobj);
988 return ERR_PTR(ret);
989 }
990
991 pr_debug("Allocated group %d\n", group->id);
992
993 return group;
994 }
995 EXPORT_SYMBOL_GPL(iommu_group_alloc);
996
997 /**
998 * iommu_group_get_iommudata - retrieve iommu_data registered for a group
999 * @group: the group
1000 *
1001 * iommu drivers can store data in the group for use when doing iommu
1002 * operations. This function provides a way to retrieve it. Caller
1003 * should hold a group reference.
1004 */
iommu_group_get_iommudata(struct iommu_group * group)1005 void *iommu_group_get_iommudata(struct iommu_group *group)
1006 {
1007 return group->iommu_data;
1008 }
1009 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
1010
1011 /**
1012 * iommu_group_set_iommudata - set iommu_data for a group
1013 * @group: the group
1014 * @iommu_data: new data
1015 * @release: release function for iommu_data
1016 *
1017 * iommu drivers can store data in the group for use when doing iommu
1018 * operations. This function provides a way to set the data after
1019 * the group has been allocated. Caller should hold a group reference.
1020 */
iommu_group_set_iommudata(struct iommu_group * group,void * iommu_data,void (* release)(void * iommu_data))1021 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
1022 void (*release)(void *iommu_data))
1023 {
1024 group->iommu_data = iommu_data;
1025 group->iommu_data_release = release;
1026 }
1027 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
1028
1029 /**
1030 * iommu_group_set_name - set name for a group
1031 * @group: the group
1032 * @name: name
1033 *
1034 * Allow iommu driver to set a name for a group. When set it will
1035 * appear in a name attribute file under the group in sysfs.
1036 */
iommu_group_set_name(struct iommu_group * group,const char * name)1037 int iommu_group_set_name(struct iommu_group *group, const char *name)
1038 {
1039 int ret;
1040
1041 if (group->name) {
1042 iommu_group_remove_file(group, &iommu_group_attr_name);
1043 kfree(group->name);
1044 group->name = NULL;
1045 if (!name)
1046 return 0;
1047 }
1048
1049 group->name = kstrdup(name, GFP_KERNEL);
1050 if (!group->name)
1051 return -ENOMEM;
1052
1053 ret = iommu_group_create_file(group, &iommu_group_attr_name);
1054 if (ret) {
1055 kfree(group->name);
1056 group->name = NULL;
1057 return ret;
1058 }
1059
1060 return 0;
1061 }
1062 EXPORT_SYMBOL_GPL(iommu_group_set_name);
1063
iommu_create_device_direct_mappings(struct iommu_domain * domain,struct device * dev)1064 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
1065 struct device *dev)
1066 {
1067 struct iommu_resv_region *entry;
1068 struct list_head mappings;
1069 unsigned long pg_size;
1070 int ret = 0;
1071
1072 pg_size = domain->pgsize_bitmap ? 1UL << __ffs(domain->pgsize_bitmap) : 0;
1073 INIT_LIST_HEAD(&mappings);
1074
1075 if (WARN_ON_ONCE(iommu_is_dma_domain(domain) && !pg_size))
1076 return -EINVAL;
1077
1078 iommu_get_resv_regions(dev, &mappings);
1079
1080 /* We need to consider overlapping regions for different devices */
1081 list_for_each_entry(entry, &mappings, list) {
1082 dma_addr_t start, end, addr;
1083 size_t map_size = 0;
1084
1085 if (entry->type == IOMMU_RESV_DIRECT)
1086 dev->iommu->require_direct = 1;
1087
1088 if ((entry->type != IOMMU_RESV_DIRECT &&
1089 entry->type != IOMMU_RESV_DIRECT_RELAXABLE) ||
1090 !iommu_is_dma_domain(domain))
1091 continue;
1092
1093 start = ALIGN(entry->start, pg_size);
1094 end = ALIGN(entry->start + entry->length, pg_size);
1095
1096 for (addr = start; addr <= end; addr += pg_size) {
1097 phys_addr_t phys_addr;
1098
1099 if (addr == end)
1100 goto map_end;
1101
1102 phys_addr = iommu_iova_to_phys(domain, addr);
1103 if (!phys_addr) {
1104 map_size += pg_size;
1105 continue;
1106 }
1107
1108 map_end:
1109 if (map_size) {
1110 ret = iommu_map(domain, addr - map_size,
1111 addr - map_size, map_size,
1112 entry->prot, GFP_KERNEL);
1113 if (ret)
1114 goto out;
1115 map_size = 0;
1116 }
1117 }
1118
1119 }
1120
1121 if (!list_empty(&mappings) && iommu_is_dma_domain(domain))
1122 iommu_flush_iotlb_all(domain);
1123
1124 out:
1125 iommu_put_resv_regions(dev, &mappings);
1126
1127 return ret;
1128 }
1129
1130 /* This is undone by __iommu_group_free_device() */
iommu_group_alloc_device(struct iommu_group * group,struct device * dev)1131 static struct group_device *iommu_group_alloc_device(struct iommu_group *group,
1132 struct device *dev)
1133 {
1134 int ret, i = 0;
1135 struct group_device *device;
1136
1137 device = kzalloc(sizeof(*device), GFP_KERNEL);
1138 if (!device)
1139 return ERR_PTR(-ENOMEM);
1140
1141 device->dev = dev;
1142
1143 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
1144 if (ret)
1145 goto err_free_device;
1146
1147 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
1148 rename:
1149 if (!device->name) {
1150 ret = -ENOMEM;
1151 goto err_remove_link;
1152 }
1153
1154 ret = sysfs_create_link_nowarn(group->devices_kobj,
1155 &dev->kobj, device->name);
1156 if (ret) {
1157 if (ret == -EEXIST && i >= 0) {
1158 /*
1159 * Account for the slim chance of collision
1160 * and append an instance to the name.
1161 */
1162 kfree(device->name);
1163 device->name = kasprintf(GFP_KERNEL, "%s.%d",
1164 kobject_name(&dev->kobj), i++);
1165 goto rename;
1166 }
1167 goto err_free_name;
1168 }
1169
1170 trace_add_device_to_group(group->id, dev);
1171
1172 dev_info(dev, "Adding to iommu group %d\n", group->id);
1173
1174 return device;
1175
1176 err_free_name:
1177 kfree(device->name);
1178 err_remove_link:
1179 sysfs_remove_link(&dev->kobj, "iommu_group");
1180 err_free_device:
1181 kfree(device);
1182 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
1183 return ERR_PTR(ret);
1184 }
1185
1186 /**
1187 * iommu_group_add_device - add a device to an iommu group
1188 * @group: the group into which to add the device (reference should be held)
1189 * @dev: the device
1190 *
1191 * This function is called by an iommu driver to add a device into a
1192 * group. Adding a device increments the group reference count.
1193 */
iommu_group_add_device(struct iommu_group * group,struct device * dev)1194 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
1195 {
1196 struct group_device *gdev;
1197
1198 gdev = iommu_group_alloc_device(group, dev);
1199 if (IS_ERR(gdev))
1200 return PTR_ERR(gdev);
1201
1202 iommu_group_ref_get(group);
1203 dev->iommu_group = group;
1204
1205 mutex_lock(&group->mutex);
1206 list_add_tail(&gdev->list, &group->devices);
1207 mutex_unlock(&group->mutex);
1208 return 0;
1209 }
1210 EXPORT_SYMBOL_GPL(iommu_group_add_device);
1211
1212 /**
1213 * iommu_group_remove_device - remove a device from it's current group
1214 * @dev: device to be removed
1215 *
1216 * This function is called by an iommu driver to remove the device from
1217 * it's current group. This decrements the iommu group reference count.
1218 */
iommu_group_remove_device(struct device * dev)1219 void iommu_group_remove_device(struct device *dev)
1220 {
1221 struct iommu_group *group = dev->iommu_group;
1222
1223 if (!group)
1224 return;
1225
1226 dev_info(dev, "Removing from iommu group %d\n", group->id);
1227
1228 __iommu_group_remove_device(dev);
1229 }
1230 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
1231
1232 /**
1233 * iommu_group_for_each_dev - iterate over each device in the group
1234 * @group: the group
1235 * @data: caller opaque data to be passed to callback function
1236 * @fn: caller supplied callback function
1237 *
1238 * This function is called by group users to iterate over group devices.
1239 * Callers should hold a reference count to the group during callback.
1240 * The group->mutex is held across callbacks, which will block calls to
1241 * iommu_group_add/remove_device.
1242 */
iommu_group_for_each_dev(struct iommu_group * group,void * data,int (* fn)(struct device *,void *))1243 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1244 int (*fn)(struct device *, void *))
1245 {
1246 struct group_device *device;
1247 int ret = 0;
1248
1249 mutex_lock(&group->mutex);
1250 for_each_group_device(group, device) {
1251 ret = fn(device->dev, data);
1252 if (ret)
1253 break;
1254 }
1255 mutex_unlock(&group->mutex);
1256
1257 return ret;
1258 }
1259 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1260
1261 /**
1262 * iommu_group_get - Return the group for a device and increment reference
1263 * @dev: get the group that this device belongs to
1264 *
1265 * This function is called by iommu drivers and users to get the group
1266 * for the specified device. If found, the group is returned and the group
1267 * reference in incremented, else NULL.
1268 */
iommu_group_get(struct device * dev)1269 struct iommu_group *iommu_group_get(struct device *dev)
1270 {
1271 struct iommu_group *group = dev->iommu_group;
1272
1273 if (group)
1274 kobject_get(group->devices_kobj);
1275
1276 return group;
1277 }
1278 EXPORT_SYMBOL_GPL(iommu_group_get);
1279
1280 /**
1281 * iommu_group_ref_get - Increment reference on a group
1282 * @group: the group to use, must not be NULL
1283 *
1284 * This function is called by iommu drivers to take additional references on an
1285 * existing group. Returns the given group for convenience.
1286 */
iommu_group_ref_get(struct iommu_group * group)1287 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1288 {
1289 kobject_get(group->devices_kobj);
1290 return group;
1291 }
1292 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1293
1294 /**
1295 * iommu_group_put - Decrement group reference
1296 * @group: the group to use
1297 *
1298 * This function is called by iommu drivers and users to release the
1299 * iommu group. Once the reference count is zero, the group is released.
1300 */
iommu_group_put(struct iommu_group * group)1301 void iommu_group_put(struct iommu_group *group)
1302 {
1303 if (group)
1304 kobject_put(group->devices_kobj);
1305 }
1306 EXPORT_SYMBOL_GPL(iommu_group_put);
1307
1308 /**
1309 * iommu_register_device_fault_handler() - Register a device fault handler
1310 * @dev: the device
1311 * @handler: the fault handler
1312 * @data: private data passed as argument to the handler
1313 *
1314 * When an IOMMU fault event is received, this handler gets called with the
1315 * fault event and data as argument. The handler should return 0 on success. If
1316 * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
1317 * complete the fault by calling iommu_page_response() with one of the following
1318 * response code:
1319 * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
1320 * - IOMMU_PAGE_RESP_INVALID: terminate the fault
1321 * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
1322 * page faults if possible.
1323 *
1324 * Return 0 if the fault handler was installed successfully, or an error.
1325 */
iommu_register_device_fault_handler(struct device * dev,iommu_dev_fault_handler_t handler,void * data)1326 int iommu_register_device_fault_handler(struct device *dev,
1327 iommu_dev_fault_handler_t handler,
1328 void *data)
1329 {
1330 struct dev_iommu *param = dev->iommu;
1331 int ret = 0;
1332
1333 if (!param)
1334 return -EINVAL;
1335
1336 mutex_lock(¶m->lock);
1337 /* Only allow one fault handler registered for each device */
1338 if (param->fault_param) {
1339 ret = -EBUSY;
1340 goto done_unlock;
1341 }
1342
1343 get_device(dev);
1344 param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
1345 if (!param->fault_param) {
1346 put_device(dev);
1347 ret = -ENOMEM;
1348 goto done_unlock;
1349 }
1350 param->fault_param->handler = handler;
1351 param->fault_param->data = data;
1352 mutex_init(¶m->fault_param->lock);
1353 INIT_LIST_HEAD(¶m->fault_param->faults);
1354
1355 done_unlock:
1356 mutex_unlock(¶m->lock);
1357
1358 return ret;
1359 }
1360 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
1361
1362 /**
1363 * iommu_unregister_device_fault_handler() - Unregister the device fault handler
1364 * @dev: the device
1365 *
1366 * Remove the device fault handler installed with
1367 * iommu_register_device_fault_handler().
1368 *
1369 * Return 0 on success, or an error.
1370 */
iommu_unregister_device_fault_handler(struct device * dev)1371 int iommu_unregister_device_fault_handler(struct device *dev)
1372 {
1373 struct dev_iommu *param = dev->iommu;
1374 int ret = 0;
1375
1376 if (!param)
1377 return -EINVAL;
1378
1379 mutex_lock(¶m->lock);
1380
1381 if (!param->fault_param)
1382 goto unlock;
1383
1384 /* we cannot unregister handler if there are pending faults */
1385 if (!list_empty(¶m->fault_param->faults)) {
1386 ret = -EBUSY;
1387 goto unlock;
1388 }
1389
1390 kfree(param->fault_param);
1391 param->fault_param = NULL;
1392 put_device(dev);
1393 unlock:
1394 mutex_unlock(¶m->lock);
1395
1396 return ret;
1397 }
1398 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1399
1400 /**
1401 * iommu_report_device_fault() - Report fault event to device driver
1402 * @dev: the device
1403 * @evt: fault event data
1404 *
1405 * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1406 * handler. When this function fails and the fault is recoverable, it is the
1407 * caller's responsibility to complete the fault.
1408 *
1409 * Return 0 on success, or an error.
1410 */
iommu_report_device_fault(struct device * dev,struct iommu_fault_event * evt)1411 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1412 {
1413 struct dev_iommu *param = dev->iommu;
1414 struct iommu_fault_event *evt_pending = NULL;
1415 struct iommu_fault_param *fparam;
1416 int ret = 0;
1417
1418 if (!param || !evt)
1419 return -EINVAL;
1420
1421 /* we only report device fault if there is a handler registered */
1422 mutex_lock(¶m->lock);
1423 fparam = param->fault_param;
1424 if (!fparam || !fparam->handler) {
1425 ret = -EINVAL;
1426 goto done_unlock;
1427 }
1428
1429 if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1430 (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1431 evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1432 GFP_KERNEL);
1433 if (!evt_pending) {
1434 ret = -ENOMEM;
1435 goto done_unlock;
1436 }
1437 mutex_lock(&fparam->lock);
1438 list_add_tail(&evt_pending->list, &fparam->faults);
1439 mutex_unlock(&fparam->lock);
1440 }
1441
1442 ret = fparam->handler(&evt->fault, fparam->data);
1443 if (ret && evt_pending) {
1444 mutex_lock(&fparam->lock);
1445 list_del(&evt_pending->list);
1446 mutex_unlock(&fparam->lock);
1447 kfree(evt_pending);
1448 }
1449 done_unlock:
1450 mutex_unlock(¶m->lock);
1451 return ret;
1452 }
1453 EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1454
iommu_page_response(struct device * dev,struct iommu_page_response * msg)1455 int iommu_page_response(struct device *dev,
1456 struct iommu_page_response *msg)
1457 {
1458 bool needs_pasid;
1459 int ret = -EINVAL;
1460 struct iommu_fault_event *evt;
1461 struct iommu_fault_page_request *prm;
1462 struct dev_iommu *param = dev->iommu;
1463 const struct iommu_ops *ops = dev_iommu_ops(dev);
1464 bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID;
1465
1466 if (!ops->page_response)
1467 return -ENODEV;
1468
1469 if (!param || !param->fault_param)
1470 return -EINVAL;
1471
1472 if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1473 msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1474 return -EINVAL;
1475
1476 /* Only send response if there is a fault report pending */
1477 mutex_lock(¶m->fault_param->lock);
1478 if (list_empty(¶m->fault_param->faults)) {
1479 dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1480 goto done_unlock;
1481 }
1482 /*
1483 * Check if we have a matching page request pending to respond,
1484 * otherwise return -EINVAL
1485 */
1486 list_for_each_entry(evt, ¶m->fault_param->faults, list) {
1487 prm = &evt->fault.prm;
1488 if (prm->grpid != msg->grpid)
1489 continue;
1490
1491 /*
1492 * If the PASID is required, the corresponding request is
1493 * matched using the group ID, the PASID valid bit and the PASID
1494 * value. Otherwise only the group ID matches request and
1495 * response.
1496 */
1497 needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
1498 if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid))
1499 continue;
1500
1501 if (!needs_pasid && has_pasid) {
1502 /* No big deal, just clear it. */
1503 msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID;
1504 msg->pasid = 0;
1505 }
1506
1507 ret = ops->page_response(dev, evt, msg);
1508 list_del(&evt->list);
1509 kfree(evt);
1510 break;
1511 }
1512
1513 done_unlock:
1514 mutex_unlock(¶m->fault_param->lock);
1515 return ret;
1516 }
1517 EXPORT_SYMBOL_GPL(iommu_page_response);
1518
1519 /**
1520 * iommu_group_id - Return ID for a group
1521 * @group: the group to ID
1522 *
1523 * Return the unique ID for the group matching the sysfs group number.
1524 */
iommu_group_id(struct iommu_group * group)1525 int iommu_group_id(struct iommu_group *group)
1526 {
1527 return group->id;
1528 }
1529 EXPORT_SYMBOL_GPL(iommu_group_id);
1530
1531 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1532 unsigned long *devfns);
1533
1534 /*
1535 * To consider a PCI device isolated, we require ACS to support Source
1536 * Validation, Request Redirection, Completer Redirection, and Upstream
1537 * Forwarding. This effectively means that devices cannot spoof their
1538 * requester ID, requests and completions cannot be redirected, and all
1539 * transactions are forwarded upstream, even as it passes through a
1540 * bridge where the target device is downstream.
1541 */
1542 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1543
1544 /*
1545 * For multifunction devices which are not isolated from each other, find
1546 * all the other non-isolated functions and look for existing groups. For
1547 * each function, we also need to look for aliases to or from other devices
1548 * that may already have a group.
1549 */
get_pci_function_alias_group(struct pci_dev * pdev,unsigned long * devfns)1550 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1551 unsigned long *devfns)
1552 {
1553 struct pci_dev *tmp = NULL;
1554 struct iommu_group *group;
1555
1556 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1557 return NULL;
1558
1559 for_each_pci_dev(tmp) {
1560 if (tmp == pdev || tmp->bus != pdev->bus ||
1561 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1562 pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1563 continue;
1564
1565 group = get_pci_alias_group(tmp, devfns);
1566 if (group) {
1567 pci_dev_put(tmp);
1568 return group;
1569 }
1570 }
1571
1572 return NULL;
1573 }
1574
1575 /*
1576 * Look for aliases to or from the given device for existing groups. DMA
1577 * aliases are only supported on the same bus, therefore the search
1578 * space is quite small (especially since we're really only looking at pcie
1579 * device, and therefore only expect multiple slots on the root complex or
1580 * downstream switch ports). It's conceivable though that a pair of
1581 * multifunction devices could have aliases between them that would cause a
1582 * loop. To prevent this, we use a bitmap to track where we've been.
1583 */
get_pci_alias_group(struct pci_dev * pdev,unsigned long * devfns)1584 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1585 unsigned long *devfns)
1586 {
1587 struct pci_dev *tmp = NULL;
1588 struct iommu_group *group;
1589
1590 if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1591 return NULL;
1592
1593 group = iommu_group_get(&pdev->dev);
1594 if (group)
1595 return group;
1596
1597 for_each_pci_dev(tmp) {
1598 if (tmp == pdev || tmp->bus != pdev->bus)
1599 continue;
1600
1601 /* We alias them or they alias us */
1602 if (pci_devs_are_dma_aliases(pdev, tmp)) {
1603 group = get_pci_alias_group(tmp, devfns);
1604 if (group) {
1605 pci_dev_put(tmp);
1606 return group;
1607 }
1608
1609 group = get_pci_function_alias_group(tmp, devfns);
1610 if (group) {
1611 pci_dev_put(tmp);
1612 return group;
1613 }
1614 }
1615 }
1616
1617 return NULL;
1618 }
1619
1620 struct group_for_pci_data {
1621 struct pci_dev *pdev;
1622 struct iommu_group *group;
1623 };
1624
1625 /*
1626 * DMA alias iterator callback, return the last seen device. Stop and return
1627 * the IOMMU group if we find one along the way.
1628 */
get_pci_alias_or_group(struct pci_dev * pdev,u16 alias,void * opaque)1629 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1630 {
1631 struct group_for_pci_data *data = opaque;
1632
1633 data->pdev = pdev;
1634 data->group = iommu_group_get(&pdev->dev);
1635
1636 return data->group != NULL;
1637 }
1638
1639 /*
1640 * Generic device_group call-back function. It just allocates one
1641 * iommu-group per device.
1642 */
generic_device_group(struct device * dev)1643 struct iommu_group *generic_device_group(struct device *dev)
1644 {
1645 return iommu_group_alloc();
1646 }
1647 EXPORT_SYMBOL_GPL(generic_device_group);
1648
1649 /*
1650 * Use standard PCI bus topology, isolation features, and DMA alias quirks
1651 * to find or create an IOMMU group for a device.
1652 */
pci_device_group(struct device * dev)1653 struct iommu_group *pci_device_group(struct device *dev)
1654 {
1655 struct pci_dev *pdev = to_pci_dev(dev);
1656 struct group_for_pci_data data;
1657 struct pci_bus *bus;
1658 struct iommu_group *group = NULL;
1659 u64 devfns[4] = { 0 };
1660
1661 if (WARN_ON(!dev_is_pci(dev)))
1662 return ERR_PTR(-EINVAL);
1663
1664 /*
1665 * Find the upstream DMA alias for the device. A device must not
1666 * be aliased due to topology in order to have its own IOMMU group.
1667 * If we find an alias along the way that already belongs to a
1668 * group, use it.
1669 */
1670 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1671 return data.group;
1672
1673 pdev = data.pdev;
1674
1675 /*
1676 * Continue upstream from the point of minimum IOMMU granularity
1677 * due to aliases to the point where devices are protected from
1678 * peer-to-peer DMA by PCI ACS. Again, if we find an existing
1679 * group, use it.
1680 */
1681 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1682 if (!bus->self)
1683 continue;
1684
1685 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1686 break;
1687
1688 pdev = bus->self;
1689
1690 group = iommu_group_get(&pdev->dev);
1691 if (group)
1692 return group;
1693 }
1694
1695 /*
1696 * Look for existing groups on device aliases. If we alias another
1697 * device or another device aliases us, use the same group.
1698 */
1699 group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1700 if (group)
1701 return group;
1702
1703 /*
1704 * Look for existing groups on non-isolated functions on the same
1705 * slot and aliases of those funcions, if any. No need to clear
1706 * the search bitmap, the tested devfns are still valid.
1707 */
1708 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1709 if (group)
1710 return group;
1711
1712 /* No shared group found, allocate new */
1713 return iommu_group_alloc();
1714 }
1715 EXPORT_SYMBOL_GPL(pci_device_group);
1716
1717 /* Get the IOMMU group for device on fsl-mc bus */
fsl_mc_device_group(struct device * dev)1718 struct iommu_group *fsl_mc_device_group(struct device *dev)
1719 {
1720 struct device *cont_dev = fsl_mc_cont_dev(dev);
1721 struct iommu_group *group;
1722
1723 group = iommu_group_get(cont_dev);
1724 if (!group)
1725 group = iommu_group_alloc();
1726 return group;
1727 }
1728 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1729
iommu_get_def_domain_type(struct device * dev)1730 static int iommu_get_def_domain_type(struct device *dev)
1731 {
1732 const struct iommu_ops *ops = dev_iommu_ops(dev);
1733
1734 if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
1735 return IOMMU_DOMAIN_DMA;
1736
1737 if (ops->def_domain_type)
1738 return ops->def_domain_type(dev);
1739
1740 return 0;
1741 }
1742
1743 static struct iommu_domain *
__iommu_group_alloc_default_domain(const struct bus_type * bus,struct iommu_group * group,int req_type)1744 __iommu_group_alloc_default_domain(const struct bus_type *bus,
1745 struct iommu_group *group, int req_type)
1746 {
1747 if (group->default_domain && group->default_domain->type == req_type)
1748 return group->default_domain;
1749 return __iommu_domain_alloc(bus, req_type);
1750 }
1751
1752 /*
1753 * req_type of 0 means "auto" which means to select a domain based on
1754 * iommu_def_domain_type or what the driver actually supports.
1755 */
1756 static struct iommu_domain *
iommu_group_alloc_default_domain(struct iommu_group * group,int req_type)1757 iommu_group_alloc_default_domain(struct iommu_group *group, int req_type)
1758 {
1759 const struct bus_type *bus =
1760 list_first_entry(&group->devices, struct group_device, list)
1761 ->dev->bus;
1762 struct iommu_domain *dom;
1763
1764 lockdep_assert_held(&group->mutex);
1765
1766 if (req_type)
1767 return __iommu_group_alloc_default_domain(bus, group, req_type);
1768
1769 /* The driver gave no guidance on what type to use, try the default */
1770 dom = __iommu_group_alloc_default_domain(bus, group, iommu_def_domain_type);
1771 if (dom)
1772 return dom;
1773
1774 /* Otherwise IDENTITY and DMA_FQ defaults will try DMA */
1775 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA)
1776 return NULL;
1777 dom = __iommu_group_alloc_default_domain(bus, group, IOMMU_DOMAIN_DMA);
1778 if (!dom)
1779 return NULL;
1780
1781 pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1782 iommu_def_domain_type, group->name);
1783 return dom;
1784 }
1785
iommu_group_default_domain(struct iommu_group * group)1786 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1787 {
1788 return group->default_domain;
1789 }
1790
probe_iommu_group(struct device * dev,void * data)1791 static int probe_iommu_group(struct device *dev, void *data)
1792 {
1793 struct list_head *group_list = data;
1794 int ret;
1795
1796 mutex_lock(&iommu_probe_device_lock);
1797 ret = __iommu_probe_device(dev, group_list);
1798 mutex_unlock(&iommu_probe_device_lock);
1799 if (ret == -ENODEV)
1800 ret = 0;
1801
1802 return ret;
1803 }
1804
iommu_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)1805 static int iommu_bus_notifier(struct notifier_block *nb,
1806 unsigned long action, void *data)
1807 {
1808 struct device *dev = data;
1809
1810 if (action == BUS_NOTIFY_ADD_DEVICE) {
1811 int ret;
1812
1813 ret = iommu_probe_device(dev);
1814 return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1815 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1816 iommu_release_device(dev);
1817 return NOTIFY_OK;
1818 }
1819
1820 return 0;
1821 }
1822
1823 /* A target_type of 0 will select the best domain type and cannot fail */
iommu_get_default_domain_type(struct iommu_group * group,int target_type)1824 static int iommu_get_default_domain_type(struct iommu_group *group,
1825 int target_type)
1826 {
1827 int best_type = target_type;
1828 struct group_device *gdev;
1829 struct device *last_dev;
1830
1831 lockdep_assert_held(&group->mutex);
1832
1833 for_each_group_device(group, gdev) {
1834 unsigned int type = iommu_get_def_domain_type(gdev->dev);
1835
1836 if (best_type && type && best_type != type) {
1837 if (target_type) {
1838 dev_err_ratelimited(
1839 gdev->dev,
1840 "Device cannot be in %s domain\n",
1841 iommu_domain_type_str(target_type));
1842 return -1;
1843 }
1844
1845 dev_warn(
1846 gdev->dev,
1847 "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n",
1848 iommu_domain_type_str(type), dev_name(last_dev),
1849 iommu_domain_type_str(best_type));
1850 return 0;
1851 }
1852 if (!best_type)
1853 best_type = type;
1854 last_dev = gdev->dev;
1855 }
1856 return best_type;
1857 }
1858
iommu_group_do_probe_finalize(struct device * dev)1859 static void iommu_group_do_probe_finalize(struct device *dev)
1860 {
1861 const struct iommu_ops *ops = dev_iommu_ops(dev);
1862
1863 if (ops->probe_finalize)
1864 ops->probe_finalize(dev);
1865 }
1866
bus_iommu_probe(const struct bus_type * bus)1867 int bus_iommu_probe(const struct bus_type *bus)
1868 {
1869 struct iommu_group *group, *next;
1870 LIST_HEAD(group_list);
1871 int ret;
1872
1873 ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1874 if (ret)
1875 return ret;
1876
1877 list_for_each_entry_safe(group, next, &group_list, entry) {
1878 struct group_device *gdev;
1879
1880 mutex_lock(&group->mutex);
1881
1882 /* Remove item from the list */
1883 list_del_init(&group->entry);
1884
1885 /*
1886 * We go to the trouble of deferred default domain creation so
1887 * that the cross-group default domain type and the setup of the
1888 * IOMMU_RESV_DIRECT will work correctly in non-hotpug scenarios.
1889 */
1890 ret = iommu_setup_default_domain(group, 0);
1891 if (ret) {
1892 mutex_unlock(&group->mutex);
1893 return ret;
1894 }
1895 mutex_unlock(&group->mutex);
1896
1897 /*
1898 * FIXME: Mis-locked because the ops->probe_finalize() call-back
1899 * of some IOMMU drivers calls arm_iommu_attach_device() which
1900 * in-turn might call back into IOMMU core code, where it tries
1901 * to take group->mutex, resulting in a deadlock.
1902 */
1903 for_each_group_device(group, gdev)
1904 iommu_group_do_probe_finalize(gdev->dev);
1905 }
1906
1907 return 0;
1908 }
1909
iommu_present(const struct bus_type * bus)1910 bool iommu_present(const struct bus_type *bus)
1911 {
1912 return bus->iommu_ops != NULL;
1913 }
1914 EXPORT_SYMBOL_GPL(iommu_present);
1915
1916 /**
1917 * device_iommu_capable() - check for a general IOMMU capability
1918 * @dev: device to which the capability would be relevant, if available
1919 * @cap: IOMMU capability
1920 *
1921 * Return: true if an IOMMU is present and supports the given capability
1922 * for the given device, otherwise false.
1923 */
device_iommu_capable(struct device * dev,enum iommu_cap cap)1924 bool device_iommu_capable(struct device *dev, enum iommu_cap cap)
1925 {
1926 const struct iommu_ops *ops;
1927
1928 if (!dev->iommu || !dev->iommu->iommu_dev)
1929 return false;
1930
1931 ops = dev_iommu_ops(dev);
1932 if (!ops->capable)
1933 return false;
1934
1935 return ops->capable(dev, cap);
1936 }
1937 EXPORT_SYMBOL_GPL(device_iommu_capable);
1938
1939 /**
1940 * iommu_group_has_isolated_msi() - Compute msi_device_has_isolated_msi()
1941 * for a group
1942 * @group: Group to query
1943 *
1944 * IOMMU groups should not have differing values of
1945 * msi_device_has_isolated_msi() for devices in a group. However nothing
1946 * directly prevents this, so ensure mistakes don't result in isolation failures
1947 * by checking that all the devices are the same.
1948 */
iommu_group_has_isolated_msi(struct iommu_group * group)1949 bool iommu_group_has_isolated_msi(struct iommu_group *group)
1950 {
1951 struct group_device *group_dev;
1952 bool ret = true;
1953
1954 mutex_lock(&group->mutex);
1955 for_each_group_device(group, group_dev)
1956 ret &= msi_device_has_isolated_msi(group_dev->dev);
1957 mutex_unlock(&group->mutex);
1958 return ret;
1959 }
1960 EXPORT_SYMBOL_GPL(iommu_group_has_isolated_msi);
1961
1962 /**
1963 * iommu_set_fault_handler() - set a fault handler for an iommu domain
1964 * @domain: iommu domain
1965 * @handler: fault handler
1966 * @token: user data, will be passed back to the fault handler
1967 *
1968 * This function should be used by IOMMU users which want to be notified
1969 * whenever an IOMMU fault happens.
1970 *
1971 * The fault handler itself should return 0 on success, and an appropriate
1972 * error code otherwise.
1973 */
iommu_set_fault_handler(struct iommu_domain * domain,iommu_fault_handler_t handler,void * token)1974 void iommu_set_fault_handler(struct iommu_domain *domain,
1975 iommu_fault_handler_t handler,
1976 void *token)
1977 {
1978 BUG_ON(!domain);
1979
1980 domain->handler = handler;
1981 domain->handler_token = token;
1982 }
1983 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1984
__iommu_domain_alloc(const struct bus_type * bus,unsigned type)1985 static struct iommu_domain *__iommu_domain_alloc(const struct bus_type *bus,
1986 unsigned type)
1987 {
1988 struct iommu_domain *domain;
1989 unsigned int alloc_type = type & IOMMU_DOMAIN_ALLOC_FLAGS;
1990
1991 if (bus == NULL || bus->iommu_ops == NULL)
1992 return NULL;
1993
1994 domain = bus->iommu_ops->domain_alloc(alloc_type);
1995 if (!domain)
1996 return NULL;
1997
1998 domain->type = type;
1999 /*
2000 * If not already set, assume all sizes by default; the driver
2001 * may override this later
2002 */
2003 if (!domain->pgsize_bitmap)
2004 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap;
2005
2006 if (!domain->ops)
2007 domain->ops = bus->iommu_ops->default_domain_ops;
2008
2009 if (iommu_is_dma_domain(domain) && iommu_get_dma_cookie(domain)) {
2010 iommu_domain_free(domain);
2011 domain = NULL;
2012 }
2013 return domain;
2014 }
2015
iommu_domain_alloc(const struct bus_type * bus)2016 struct iommu_domain *iommu_domain_alloc(const struct bus_type *bus)
2017 {
2018 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
2019 }
2020 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
2021
iommu_domain_free(struct iommu_domain * domain)2022 void iommu_domain_free(struct iommu_domain *domain)
2023 {
2024 if (domain->type == IOMMU_DOMAIN_SVA)
2025 mmdrop(domain->mm);
2026 iommu_put_dma_cookie(domain);
2027 domain->ops->free(domain);
2028 }
2029 EXPORT_SYMBOL_GPL(iommu_domain_free);
2030
2031 /*
2032 * Put the group's domain back to the appropriate core-owned domain - either the
2033 * standard kernel-mode DMA configuration or an all-DMA-blocked domain.
2034 */
__iommu_group_set_core_domain(struct iommu_group * group)2035 static void __iommu_group_set_core_domain(struct iommu_group *group)
2036 {
2037 struct iommu_domain *new_domain;
2038
2039 if (group->owner)
2040 new_domain = group->blocking_domain;
2041 else
2042 new_domain = group->default_domain;
2043
2044 __iommu_group_set_domain_nofail(group, new_domain);
2045 }
2046
__iommu_attach_device(struct iommu_domain * domain,struct device * dev)2047 static int __iommu_attach_device(struct iommu_domain *domain,
2048 struct device *dev)
2049 {
2050 int ret;
2051
2052 if (unlikely(domain->ops->attach_dev == NULL))
2053 return -ENODEV;
2054
2055 ret = domain->ops->attach_dev(domain, dev);
2056 if (ret)
2057 return ret;
2058 dev->iommu->attach_deferred = 0;
2059 trace_attach_device_to_domain(dev);
2060 return 0;
2061 }
2062
2063 /**
2064 * iommu_attach_device - Attach an IOMMU domain to a device
2065 * @domain: IOMMU domain to attach
2066 * @dev: Device that will be attached
2067 *
2068 * Returns 0 on success and error code on failure
2069 *
2070 * Note that EINVAL can be treated as a soft failure, indicating
2071 * that certain configuration of the domain is incompatible with
2072 * the device. In this case attaching a different domain to the
2073 * device may succeed.
2074 */
iommu_attach_device(struct iommu_domain * domain,struct device * dev)2075 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
2076 {
2077 struct iommu_group *group;
2078 int ret;
2079
2080 group = iommu_group_get(dev);
2081 if (!group)
2082 return -ENODEV;
2083
2084 /*
2085 * Lock the group to make sure the device-count doesn't
2086 * change while we are attaching
2087 */
2088 mutex_lock(&group->mutex);
2089 ret = -EINVAL;
2090 if (list_count_nodes(&group->devices) != 1)
2091 goto out_unlock;
2092
2093 ret = __iommu_attach_group(domain, group);
2094
2095 out_unlock:
2096 mutex_unlock(&group->mutex);
2097 iommu_group_put(group);
2098
2099 return ret;
2100 }
2101 EXPORT_SYMBOL_GPL(iommu_attach_device);
2102
iommu_deferred_attach(struct device * dev,struct iommu_domain * domain)2103 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2104 {
2105 if (dev->iommu && dev->iommu->attach_deferred)
2106 return __iommu_attach_device(domain, dev);
2107
2108 return 0;
2109 }
2110
iommu_detach_device(struct iommu_domain * domain,struct device * dev)2111 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2112 {
2113 struct iommu_group *group;
2114
2115 group = iommu_group_get(dev);
2116 if (!group)
2117 return;
2118
2119 mutex_lock(&group->mutex);
2120 if (WARN_ON(domain != group->domain) ||
2121 WARN_ON(list_count_nodes(&group->devices) != 1))
2122 goto out_unlock;
2123 __iommu_group_set_core_domain(group);
2124
2125 out_unlock:
2126 mutex_unlock(&group->mutex);
2127 iommu_group_put(group);
2128 }
2129 EXPORT_SYMBOL_GPL(iommu_detach_device);
2130
iommu_get_domain_for_dev(struct device * dev)2131 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2132 {
2133 struct iommu_domain *domain;
2134 struct iommu_group *group;
2135
2136 group = iommu_group_get(dev);
2137 if (!group)
2138 return NULL;
2139
2140 domain = group->domain;
2141
2142 iommu_group_put(group);
2143
2144 return domain;
2145 }
2146 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2147
2148 /*
2149 * For IOMMU_DOMAIN_DMA implementations which already provide their own
2150 * guarantees that the group and its default domain are valid and correct.
2151 */
iommu_get_dma_domain(struct device * dev)2152 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2153 {
2154 return dev->iommu_group->default_domain;
2155 }
2156
__iommu_attach_group(struct iommu_domain * domain,struct iommu_group * group)2157 static int __iommu_attach_group(struct iommu_domain *domain,
2158 struct iommu_group *group)
2159 {
2160 if (group->domain && group->domain != group->default_domain &&
2161 group->domain != group->blocking_domain)
2162 return -EBUSY;
2163
2164 return __iommu_group_set_domain(group, domain);
2165 }
2166
2167 /**
2168 * iommu_attach_group - Attach an IOMMU domain to an IOMMU group
2169 * @domain: IOMMU domain to attach
2170 * @group: IOMMU group that will be attached
2171 *
2172 * Returns 0 on success and error code on failure
2173 *
2174 * Note that EINVAL can be treated as a soft failure, indicating
2175 * that certain configuration of the domain is incompatible with
2176 * the group. In this case attaching a different domain to the
2177 * group may succeed.
2178 */
iommu_attach_group(struct iommu_domain * domain,struct iommu_group * group)2179 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2180 {
2181 int ret;
2182
2183 mutex_lock(&group->mutex);
2184 ret = __iommu_attach_group(domain, group);
2185 mutex_unlock(&group->mutex);
2186
2187 return ret;
2188 }
2189 EXPORT_SYMBOL_GPL(iommu_attach_group);
2190
2191 /**
2192 * iommu_group_replace_domain - replace the domain that a group is attached to
2193 * @new_domain: new IOMMU domain to replace with
2194 * @group: IOMMU group that will be attached to the new domain
2195 *
2196 * This API allows the group to switch domains without being forced to go to
2197 * the blocking domain in-between.
2198 *
2199 * If the currently attached domain is a core domain (e.g. a default_domain),
2200 * it will act just like the iommu_attach_group().
2201 */
iommu_group_replace_domain(struct iommu_group * group,struct iommu_domain * new_domain)2202 int iommu_group_replace_domain(struct iommu_group *group,
2203 struct iommu_domain *new_domain)
2204 {
2205 int ret;
2206
2207 if (!new_domain)
2208 return -EINVAL;
2209
2210 mutex_lock(&group->mutex);
2211 ret = __iommu_group_set_domain(group, new_domain);
2212 mutex_unlock(&group->mutex);
2213 return ret;
2214 }
2215 EXPORT_SYMBOL_NS_GPL(iommu_group_replace_domain, IOMMUFD_INTERNAL);
2216
__iommu_device_set_domain(struct iommu_group * group,struct device * dev,struct iommu_domain * new_domain,unsigned int flags)2217 static int __iommu_device_set_domain(struct iommu_group *group,
2218 struct device *dev,
2219 struct iommu_domain *new_domain,
2220 unsigned int flags)
2221 {
2222 int ret;
2223
2224 /*
2225 * If the device requires IOMMU_RESV_DIRECT then we cannot allow
2226 * the blocking domain to be attached as it does not contain the
2227 * required 1:1 mapping. This test effectively excludes the device
2228 * being used with iommu_group_claim_dma_owner() which will block
2229 * vfio and iommufd as well.
2230 */
2231 if (dev->iommu->require_direct &&
2232 (new_domain->type == IOMMU_DOMAIN_BLOCKED ||
2233 new_domain == group->blocking_domain)) {
2234 dev_warn(dev,
2235 "Firmware has requested this device have a 1:1 IOMMU mapping, rejecting configuring the device without a 1:1 mapping. Contact your platform vendor.\n");
2236 return -EINVAL;
2237 }
2238
2239 if (dev->iommu->attach_deferred) {
2240 if (new_domain == group->default_domain)
2241 return 0;
2242 dev->iommu->attach_deferred = 0;
2243 }
2244
2245 ret = __iommu_attach_device(new_domain, dev);
2246 if (ret) {
2247 /*
2248 * If we have a blocking domain then try to attach that in hopes
2249 * of avoiding a UAF. Modern drivers should implement blocking
2250 * domains as global statics that cannot fail.
2251 */
2252 if ((flags & IOMMU_SET_DOMAIN_MUST_SUCCEED) &&
2253 group->blocking_domain &&
2254 group->blocking_domain != new_domain)
2255 __iommu_attach_device(group->blocking_domain, dev);
2256 return ret;
2257 }
2258 return 0;
2259 }
2260
2261 /*
2262 * If 0 is returned the group's domain is new_domain. If an error is returned
2263 * then the group's domain will be set back to the existing domain unless
2264 * IOMMU_SET_DOMAIN_MUST_SUCCEED, otherwise an error is returned and the group's
2265 * domains is left inconsistent. This is a driver bug to fail attach with a
2266 * previously good domain. We try to avoid a kernel UAF because of this.
2267 *
2268 * IOMMU groups are really the natural working unit of the IOMMU, but the IOMMU
2269 * API works on domains and devices. Bridge that gap by iterating over the
2270 * devices in a group. Ideally we'd have a single device which represents the
2271 * requestor ID of the group, but we also allow IOMMU drivers to create policy
2272 * defined minimum sets, where the physical hardware may be able to distiguish
2273 * members, but we wish to group them at a higher level (ex. untrusted
2274 * multi-function PCI devices). Thus we attach each device.
2275 */
__iommu_group_set_domain_internal(struct iommu_group * group,struct iommu_domain * new_domain,unsigned int flags)2276 static int __iommu_group_set_domain_internal(struct iommu_group *group,
2277 struct iommu_domain *new_domain,
2278 unsigned int flags)
2279 {
2280 struct group_device *last_gdev;
2281 struct group_device *gdev;
2282 int result;
2283 int ret;
2284
2285 lockdep_assert_held(&group->mutex);
2286
2287 if (group->domain == new_domain)
2288 return 0;
2289
2290 /*
2291 * New drivers should support default domains, so set_platform_dma()
2292 * op will never be called. Otherwise the NULL domain represents some
2293 * platform specific behavior.
2294 */
2295 if (!new_domain) {
2296 for_each_group_device(group, gdev) {
2297 const struct iommu_ops *ops = dev_iommu_ops(gdev->dev);
2298
2299 if (!WARN_ON(!ops->set_platform_dma_ops))
2300 ops->set_platform_dma_ops(gdev->dev);
2301 }
2302 group->domain = NULL;
2303 return 0;
2304 }
2305
2306 /*
2307 * Changing the domain is done by calling attach_dev() on the new
2308 * domain. This switch does not have to be atomic and DMA can be
2309 * discarded during the transition. DMA must only be able to access
2310 * either new_domain or group->domain, never something else.
2311 */
2312 result = 0;
2313 for_each_group_device(group, gdev) {
2314 ret = __iommu_device_set_domain(group, gdev->dev, new_domain,
2315 flags);
2316 if (ret) {
2317 result = ret;
2318 /*
2319 * Keep trying the other devices in the group. If a
2320 * driver fails attach to an otherwise good domain, and
2321 * does not support blocking domains, it should at least
2322 * drop its reference on the current domain so we don't
2323 * UAF.
2324 */
2325 if (flags & IOMMU_SET_DOMAIN_MUST_SUCCEED)
2326 continue;
2327 goto err_revert;
2328 }
2329 }
2330 group->domain = new_domain;
2331 return result;
2332
2333 err_revert:
2334 /*
2335 * This is called in error unwind paths. A well behaved driver should
2336 * always allow us to attach to a domain that was already attached.
2337 */
2338 last_gdev = gdev;
2339 for_each_group_device(group, gdev) {
2340 const struct iommu_ops *ops = dev_iommu_ops(gdev->dev);
2341
2342 /*
2343 * If set_platform_dma_ops is not present a NULL domain can
2344 * happen only for first probe, in which case we leave
2345 * group->domain as NULL and let release clean everything up.
2346 */
2347 if (group->domain)
2348 WARN_ON(__iommu_device_set_domain(
2349 group, gdev->dev, group->domain,
2350 IOMMU_SET_DOMAIN_MUST_SUCCEED));
2351 else if (ops->set_platform_dma_ops)
2352 ops->set_platform_dma_ops(gdev->dev);
2353 if (gdev == last_gdev)
2354 break;
2355 }
2356 return ret;
2357 }
2358
iommu_detach_group(struct iommu_domain * domain,struct iommu_group * group)2359 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2360 {
2361 mutex_lock(&group->mutex);
2362 __iommu_group_set_core_domain(group);
2363 mutex_unlock(&group->mutex);
2364 }
2365 EXPORT_SYMBOL_GPL(iommu_detach_group);
2366
iommu_iova_to_phys(struct iommu_domain * domain,dma_addr_t iova)2367 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2368 {
2369 if (domain->type == IOMMU_DOMAIN_IDENTITY)
2370 return iova;
2371
2372 if (domain->type == IOMMU_DOMAIN_BLOCKED)
2373 return 0;
2374
2375 return domain->ops->iova_to_phys(domain, iova);
2376 }
2377 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2378
iommu_pgsize(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,size_t * count)2379 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2380 phys_addr_t paddr, size_t size, size_t *count)
2381 {
2382 unsigned int pgsize_idx, pgsize_idx_next;
2383 unsigned long pgsizes;
2384 size_t offset, pgsize, pgsize_next;
2385 size_t offset_end;
2386 unsigned long addr_merge = paddr | iova;
2387
2388 /* Page sizes supported by the hardware and small enough for @size */
2389 pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2390
2391 /* Constrain the page sizes further based on the maximum alignment */
2392 if (likely(addr_merge))
2393 pgsizes &= GENMASK(__ffs(addr_merge), 0);
2394
2395 /* Make sure we have at least one suitable page size */
2396 BUG_ON(!pgsizes);
2397
2398 /* Pick the biggest page size remaining */
2399 pgsize_idx = __fls(pgsizes);
2400 pgsize = BIT(pgsize_idx);
2401 if (!count)
2402 return pgsize;
2403
2404 /* Find the next biggest support page size, if it exists */
2405 pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2406 if (!pgsizes)
2407 goto out_set_count;
2408
2409 pgsize_idx_next = __ffs(pgsizes);
2410 pgsize_next = BIT(pgsize_idx_next);
2411
2412 /*
2413 * There's no point trying a bigger page size unless the virtual
2414 * and physical addresses are similarly offset within the larger page.
2415 */
2416 if ((iova ^ paddr) & (pgsize_next - 1))
2417 goto out_set_count;
2418
2419 /* Calculate the offset to the next page size alignment boundary */
2420 offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2421
2422 /*
2423 * If size is big enough to accommodate the larger page, reduce
2424 * the number of smaller pages.
2425 */
2426 if (!check_add_overflow(offset, pgsize_next, &offset_end) &&
2427 offset_end <= size)
2428 size = offset;
2429
2430 out_set_count:
2431 *count = size >> pgsize_idx;
2432 return pgsize;
2433 }
2434
__iommu_map_pages(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp,size_t * mapped)2435 static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova,
2436 phys_addr_t paddr, size_t size, int prot,
2437 gfp_t gfp, size_t *mapped)
2438 {
2439 const struct iommu_domain_ops *ops = domain->ops;
2440 size_t pgsize, count;
2441 int ret;
2442
2443 pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2444
2445 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2446 iova, &paddr, pgsize, count);
2447
2448 if (ops->map_pages) {
2449 ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2450 gfp, mapped);
2451 } else {
2452 ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);
2453 *mapped = ret ? 0 : pgsize;
2454 }
2455
2456 return ret;
2457 }
2458
__iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)2459 static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2460 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2461 {
2462 const struct iommu_domain_ops *ops = domain->ops;
2463 unsigned long orig_iova = iova;
2464 unsigned int min_pagesz;
2465 size_t orig_size = size;
2466 phys_addr_t orig_paddr = paddr;
2467 int ret = 0;
2468
2469 if (unlikely(!(ops->map || ops->map_pages) ||
2470 domain->pgsize_bitmap == 0UL))
2471 return -ENODEV;
2472
2473 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2474 return -EINVAL;
2475
2476 /* find out the minimum page size supported */
2477 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2478
2479 /*
2480 * both the virtual address and the physical one, as well as
2481 * the size of the mapping, must be aligned (at least) to the
2482 * size of the smallest page supported by the hardware
2483 */
2484 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2485 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2486 iova, &paddr, size, min_pagesz);
2487 return -EINVAL;
2488 }
2489
2490 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2491
2492 while (size) {
2493 size_t mapped = 0;
2494
2495 ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp,
2496 &mapped);
2497 /*
2498 * Some pages may have been mapped, even if an error occurred,
2499 * so we should account for those so they can be unmapped.
2500 */
2501 size -= mapped;
2502
2503 if (ret)
2504 break;
2505
2506 iova += mapped;
2507 paddr += mapped;
2508 }
2509
2510 /* unroll mapping in case something went wrong */
2511 if (ret)
2512 iommu_unmap(domain, orig_iova, orig_size - size);
2513 else
2514 trace_map(orig_iova, orig_paddr, orig_size);
2515
2516 return ret;
2517 }
2518
iommu_map(struct iommu_domain * domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)2519 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2520 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2521 {
2522 const struct iommu_domain_ops *ops = domain->ops;
2523 int ret;
2524
2525 might_sleep_if(gfpflags_allow_blocking(gfp));
2526
2527 /* Discourage passing strange GFP flags */
2528 if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2529 __GFP_HIGHMEM)))
2530 return -EINVAL;
2531
2532 ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2533 if (ret == 0 && ops->iotlb_sync_map)
2534 ops->iotlb_sync_map(domain, iova, size);
2535
2536 return ret;
2537 }
2538 EXPORT_SYMBOL_GPL(iommu_map);
2539
__iommu_unmap_pages(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2540 static size_t __iommu_unmap_pages(struct iommu_domain *domain,
2541 unsigned long iova, size_t size,
2542 struct iommu_iotlb_gather *iotlb_gather)
2543 {
2544 const struct iommu_domain_ops *ops = domain->ops;
2545 size_t pgsize, count;
2546
2547 pgsize = iommu_pgsize(domain, iova, iova, size, &count);
2548 return ops->unmap_pages ?
2549 ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) :
2550 ops->unmap(domain, iova, pgsize, iotlb_gather);
2551 }
2552
__iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2553 static size_t __iommu_unmap(struct iommu_domain *domain,
2554 unsigned long iova, size_t size,
2555 struct iommu_iotlb_gather *iotlb_gather)
2556 {
2557 const struct iommu_domain_ops *ops = domain->ops;
2558 size_t unmapped_page, unmapped = 0;
2559 unsigned long orig_iova = iova;
2560 unsigned int min_pagesz;
2561
2562 if (unlikely(!(ops->unmap || ops->unmap_pages) ||
2563 domain->pgsize_bitmap == 0UL))
2564 return 0;
2565
2566 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2567 return 0;
2568
2569 /* find out the minimum page size supported */
2570 min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2571
2572 /*
2573 * The virtual address, as well as the size of the mapping, must be
2574 * aligned (at least) to the size of the smallest page supported
2575 * by the hardware
2576 */
2577 if (!IS_ALIGNED(iova | size, min_pagesz)) {
2578 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2579 iova, size, min_pagesz);
2580 return 0;
2581 }
2582
2583 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2584
2585 /*
2586 * Keep iterating until we either unmap 'size' bytes (or more)
2587 * or we hit an area that isn't mapped.
2588 */
2589 while (unmapped < size) {
2590 unmapped_page = __iommu_unmap_pages(domain, iova,
2591 size - unmapped,
2592 iotlb_gather);
2593 if (!unmapped_page)
2594 break;
2595
2596 pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2597 iova, unmapped_page);
2598
2599 iova += unmapped_page;
2600 unmapped += unmapped_page;
2601 }
2602
2603 trace_unmap(orig_iova, size, unmapped);
2604 return unmapped;
2605 }
2606
iommu_unmap(struct iommu_domain * domain,unsigned long iova,size_t size)2607 size_t iommu_unmap(struct iommu_domain *domain,
2608 unsigned long iova, size_t size)
2609 {
2610 struct iommu_iotlb_gather iotlb_gather;
2611 size_t ret;
2612
2613 iommu_iotlb_gather_init(&iotlb_gather);
2614 ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2615 iommu_iotlb_sync(domain, &iotlb_gather);
2616
2617 return ret;
2618 }
2619 EXPORT_SYMBOL_GPL(iommu_unmap);
2620
iommu_unmap_fast(struct iommu_domain * domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * iotlb_gather)2621 size_t iommu_unmap_fast(struct iommu_domain *domain,
2622 unsigned long iova, size_t size,
2623 struct iommu_iotlb_gather *iotlb_gather)
2624 {
2625 return __iommu_unmap(domain, iova, size, iotlb_gather);
2626 }
2627 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2628
iommu_map_sg(struct iommu_domain * domain,unsigned long iova,struct scatterlist * sg,unsigned int nents,int prot,gfp_t gfp)2629 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2630 struct scatterlist *sg, unsigned int nents, int prot,
2631 gfp_t gfp)
2632 {
2633 const struct iommu_domain_ops *ops = domain->ops;
2634 size_t len = 0, mapped = 0;
2635 phys_addr_t start;
2636 unsigned int i = 0;
2637 int ret;
2638
2639 might_sleep_if(gfpflags_allow_blocking(gfp));
2640
2641 /* Discourage passing strange GFP flags */
2642 if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2643 __GFP_HIGHMEM)))
2644 return -EINVAL;
2645
2646 while (i <= nents) {
2647 phys_addr_t s_phys = sg_phys(sg);
2648
2649 if (len && s_phys != start + len) {
2650 ret = __iommu_map(domain, iova + mapped, start,
2651 len, prot, gfp);
2652
2653 if (ret)
2654 goto out_err;
2655
2656 mapped += len;
2657 len = 0;
2658 }
2659
2660 if (sg_dma_is_bus_address(sg))
2661 goto next;
2662
2663 if (len) {
2664 len += sg->length;
2665 } else {
2666 len = sg->length;
2667 start = s_phys;
2668 }
2669
2670 next:
2671 if (++i < nents)
2672 sg = sg_next(sg);
2673 }
2674
2675 if (ops->iotlb_sync_map)
2676 ops->iotlb_sync_map(domain, iova, mapped);
2677 return mapped;
2678
2679 out_err:
2680 /* undo mappings already done */
2681 iommu_unmap(domain, iova, mapped);
2682
2683 return ret;
2684 }
2685 EXPORT_SYMBOL_GPL(iommu_map_sg);
2686
2687 /**
2688 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2689 * @domain: the iommu domain where the fault has happened
2690 * @dev: the device where the fault has happened
2691 * @iova: the faulting address
2692 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2693 *
2694 * This function should be called by the low-level IOMMU implementations
2695 * whenever IOMMU faults happen, to allow high-level users, that are
2696 * interested in such events, to know about them.
2697 *
2698 * This event may be useful for several possible use cases:
2699 * - mere logging of the event
2700 * - dynamic TLB/PTE loading
2701 * - if restarting of the faulting device is required
2702 *
2703 * Returns 0 on success and an appropriate error code otherwise (if dynamic
2704 * PTE/TLB loading will one day be supported, implementations will be able
2705 * to tell whether it succeeded or not according to this return value).
2706 *
2707 * Specifically, -ENOSYS is returned if a fault handler isn't installed
2708 * (though fault handlers can also return -ENOSYS, in case they want to
2709 * elicit the default behavior of the IOMMU drivers).
2710 */
report_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags)2711 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2712 unsigned long iova, int flags)
2713 {
2714 int ret = -ENOSYS;
2715
2716 /*
2717 * if upper layers showed interest and installed a fault handler,
2718 * invoke it.
2719 */
2720 if (domain->handler)
2721 ret = domain->handler(domain, dev, iova, flags,
2722 domain->handler_token);
2723
2724 trace_io_page_fault(dev, iova, flags);
2725 return ret;
2726 }
2727 EXPORT_SYMBOL_GPL(report_iommu_fault);
2728
iommu_init(void)2729 static int __init iommu_init(void)
2730 {
2731 iommu_group_kset = kset_create_and_add("iommu_groups",
2732 NULL, kernel_kobj);
2733 BUG_ON(!iommu_group_kset);
2734
2735 iommu_debugfs_setup();
2736
2737 return 0;
2738 }
2739 core_initcall(iommu_init);
2740
iommu_enable_nesting(struct iommu_domain * domain)2741 int iommu_enable_nesting(struct iommu_domain *domain)
2742 {
2743 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2744 return -EINVAL;
2745 if (!domain->ops->enable_nesting)
2746 return -EINVAL;
2747 return domain->ops->enable_nesting(domain);
2748 }
2749 EXPORT_SYMBOL_GPL(iommu_enable_nesting);
2750
iommu_set_pgtable_quirks(struct iommu_domain * domain,unsigned long quirk)2751 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2752 unsigned long quirk)
2753 {
2754 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2755 return -EINVAL;
2756 if (!domain->ops->set_pgtable_quirks)
2757 return -EINVAL;
2758 return domain->ops->set_pgtable_quirks(domain, quirk);
2759 }
2760 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2761
2762 /**
2763 * iommu_get_resv_regions - get reserved regions
2764 * @dev: device for which to get reserved regions
2765 * @list: reserved region list for device
2766 *
2767 * This returns a list of reserved IOVA regions specific to this device.
2768 * A domain user should not map IOVA in these ranges.
2769 */
iommu_get_resv_regions(struct device * dev,struct list_head * list)2770 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2771 {
2772 const struct iommu_ops *ops = dev_iommu_ops(dev);
2773
2774 if (ops->get_resv_regions)
2775 ops->get_resv_regions(dev, list);
2776 }
2777 EXPORT_SYMBOL_GPL(iommu_get_resv_regions);
2778
2779 /**
2780 * iommu_put_resv_regions - release reserved regions
2781 * @dev: device for which to free reserved regions
2782 * @list: reserved region list for device
2783 *
2784 * This releases a reserved region list acquired by iommu_get_resv_regions().
2785 */
iommu_put_resv_regions(struct device * dev,struct list_head * list)2786 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2787 {
2788 struct iommu_resv_region *entry, *next;
2789
2790 list_for_each_entry_safe(entry, next, list, list) {
2791 if (entry->free)
2792 entry->free(dev, entry);
2793 else
2794 kfree(entry);
2795 }
2796 }
2797 EXPORT_SYMBOL(iommu_put_resv_regions);
2798
iommu_alloc_resv_region(phys_addr_t start,size_t length,int prot,enum iommu_resv_type type,gfp_t gfp)2799 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2800 size_t length, int prot,
2801 enum iommu_resv_type type,
2802 gfp_t gfp)
2803 {
2804 struct iommu_resv_region *region;
2805
2806 region = kzalloc(sizeof(*region), gfp);
2807 if (!region)
2808 return NULL;
2809
2810 INIT_LIST_HEAD(®ion->list);
2811 region->start = start;
2812 region->length = length;
2813 region->prot = prot;
2814 region->type = type;
2815 return region;
2816 }
2817 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2818
iommu_set_default_passthrough(bool cmd_line)2819 void iommu_set_default_passthrough(bool cmd_line)
2820 {
2821 if (cmd_line)
2822 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2823 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2824 }
2825
iommu_set_default_translated(bool cmd_line)2826 void iommu_set_default_translated(bool cmd_line)
2827 {
2828 if (cmd_line)
2829 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2830 iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2831 }
2832
iommu_default_passthrough(void)2833 bool iommu_default_passthrough(void)
2834 {
2835 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2836 }
2837 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2838
iommu_ops_from_fwnode(struct fwnode_handle * fwnode)2839 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2840 {
2841 const struct iommu_ops *ops = NULL;
2842 struct iommu_device *iommu;
2843
2844 spin_lock(&iommu_device_lock);
2845 list_for_each_entry(iommu, &iommu_device_list, list)
2846 if (iommu->fwnode == fwnode) {
2847 ops = iommu->ops;
2848 break;
2849 }
2850 spin_unlock(&iommu_device_lock);
2851 return ops;
2852 }
2853
iommu_fwspec_init(struct device * dev,struct fwnode_handle * iommu_fwnode,const struct iommu_ops * ops)2854 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2855 const struct iommu_ops *ops)
2856 {
2857 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2858
2859 if (fwspec)
2860 return ops == fwspec->ops ? 0 : -EINVAL;
2861
2862 if (!dev_iommu_get(dev))
2863 return -ENOMEM;
2864
2865 /* Preallocate for the overwhelmingly common case of 1 ID */
2866 fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2867 if (!fwspec)
2868 return -ENOMEM;
2869
2870 of_node_get(to_of_node(iommu_fwnode));
2871 fwspec->iommu_fwnode = iommu_fwnode;
2872 fwspec->ops = ops;
2873 dev_iommu_fwspec_set(dev, fwspec);
2874 return 0;
2875 }
2876 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2877
iommu_fwspec_free(struct device * dev)2878 void iommu_fwspec_free(struct device *dev)
2879 {
2880 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2881
2882 if (fwspec) {
2883 fwnode_handle_put(fwspec->iommu_fwnode);
2884 kfree(fwspec);
2885 dev_iommu_fwspec_set(dev, NULL);
2886 }
2887 }
2888 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2889
iommu_fwspec_add_ids(struct device * dev,u32 * ids,int num_ids)2890 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2891 {
2892 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2893 int i, new_num;
2894
2895 if (!fwspec)
2896 return -EINVAL;
2897
2898 new_num = fwspec->num_ids + num_ids;
2899 if (new_num > 1) {
2900 fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2901 GFP_KERNEL);
2902 if (!fwspec)
2903 return -ENOMEM;
2904
2905 dev_iommu_fwspec_set(dev, fwspec);
2906 }
2907
2908 for (i = 0; i < num_ids; i++)
2909 fwspec->ids[fwspec->num_ids + i] = ids[i];
2910
2911 fwspec->num_ids = new_num;
2912 return 0;
2913 }
2914 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2915
2916 /*
2917 * Per device IOMMU features.
2918 */
iommu_dev_enable_feature(struct device * dev,enum iommu_dev_features feat)2919 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2920 {
2921 if (dev->iommu && dev->iommu->iommu_dev) {
2922 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2923
2924 if (ops->dev_enable_feat)
2925 return ops->dev_enable_feat(dev, feat);
2926 }
2927
2928 return -ENODEV;
2929 }
2930 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2931
2932 /*
2933 * The device drivers should do the necessary cleanups before calling this.
2934 */
iommu_dev_disable_feature(struct device * dev,enum iommu_dev_features feat)2935 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2936 {
2937 if (dev->iommu && dev->iommu->iommu_dev) {
2938 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2939
2940 if (ops->dev_disable_feat)
2941 return ops->dev_disable_feat(dev, feat);
2942 }
2943
2944 return -EBUSY;
2945 }
2946 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2947
2948 /**
2949 * iommu_setup_default_domain - Set the default_domain for the group
2950 * @group: Group to change
2951 * @target_type: Domain type to set as the default_domain
2952 *
2953 * Allocate a default domain and set it as the current domain on the group. If
2954 * the group already has a default domain it will be changed to the target_type.
2955 * When target_type is 0 the default domain is selected based on driver and
2956 * system preferences.
2957 */
iommu_setup_default_domain(struct iommu_group * group,int target_type)2958 static int iommu_setup_default_domain(struct iommu_group *group,
2959 int target_type)
2960 {
2961 struct iommu_domain *old_dom = group->default_domain;
2962 struct group_device *gdev;
2963 struct iommu_domain *dom;
2964 bool direct_failed;
2965 int req_type;
2966 int ret;
2967
2968 lockdep_assert_held(&group->mutex);
2969
2970 req_type = iommu_get_default_domain_type(group, target_type);
2971 if (req_type < 0)
2972 return -EINVAL;
2973
2974 /*
2975 * There are still some drivers which don't support default domains, so
2976 * we ignore the failure and leave group->default_domain NULL.
2977 *
2978 * We assume that the iommu driver starts up the device in
2979 * 'set_platform_dma_ops' mode if it does not support default domains.
2980 */
2981 dom = iommu_group_alloc_default_domain(group, req_type);
2982 if (!dom) {
2983 /* Once in default_domain mode we never leave */
2984 if (group->default_domain)
2985 return -ENODEV;
2986 group->default_domain = NULL;
2987 return 0;
2988 }
2989
2990 if (group->default_domain == dom)
2991 return 0;
2992
2993 /*
2994 * IOMMU_RESV_DIRECT and IOMMU_RESV_DIRECT_RELAXABLE regions must be
2995 * mapped before their device is attached, in order to guarantee
2996 * continuity with any FW activity
2997 */
2998 direct_failed = false;
2999 for_each_group_device(group, gdev) {
3000 if (iommu_create_device_direct_mappings(dom, gdev->dev)) {
3001 direct_failed = true;
3002 dev_warn_once(
3003 gdev->dev->iommu->iommu_dev->dev,
3004 "IOMMU driver was not able to establish FW requested direct mapping.");
3005 }
3006 }
3007
3008 /* We must set default_domain early for __iommu_device_set_domain */
3009 group->default_domain = dom;
3010 if (!group->domain) {
3011 /*
3012 * Drivers are not allowed to fail the first domain attach.
3013 * The only way to recover from this is to fail attaching the
3014 * iommu driver and call ops->release_device. Put the domain
3015 * in group->default_domain so it is freed after.
3016 */
3017 ret = __iommu_group_set_domain_internal(
3018 group, dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
3019 if (WARN_ON(ret))
3020 goto out_free_old;
3021 } else {
3022 ret = __iommu_group_set_domain(group, dom);
3023 if (ret)
3024 goto err_restore_def_domain;
3025 }
3026
3027 /*
3028 * Drivers are supposed to allow mappings to be installed in a domain
3029 * before device attachment, but some don't. Hack around this defect by
3030 * trying again after attaching. If this happens it means the device
3031 * will not continuously have the IOMMU_RESV_DIRECT map.
3032 */
3033 if (direct_failed) {
3034 for_each_group_device(group, gdev) {
3035 ret = iommu_create_device_direct_mappings(dom, gdev->dev);
3036 if (ret)
3037 goto err_restore_domain;
3038 }
3039 }
3040
3041 out_free_old:
3042 if (old_dom)
3043 iommu_domain_free(old_dom);
3044 return ret;
3045
3046 err_restore_domain:
3047 if (old_dom)
3048 __iommu_group_set_domain_internal(
3049 group, old_dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
3050 err_restore_def_domain:
3051 if (old_dom) {
3052 iommu_domain_free(dom);
3053 group->default_domain = old_dom;
3054 }
3055 return ret;
3056 }
3057
3058 /*
3059 * Changing the default domain through sysfs requires the users to unbind the
3060 * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
3061 * transition. Return failure if this isn't met.
3062 *
3063 * We need to consider the race between this and the device release path.
3064 * group->mutex is used here to guarantee that the device release path
3065 * will not be entered at the same time.
3066 */
iommu_group_store_type(struct iommu_group * group,const char * buf,size_t count)3067 static ssize_t iommu_group_store_type(struct iommu_group *group,
3068 const char *buf, size_t count)
3069 {
3070 struct group_device *gdev;
3071 int ret, req_type;
3072
3073 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
3074 return -EACCES;
3075
3076 if (WARN_ON(!group) || !group->default_domain)
3077 return -EINVAL;
3078
3079 if (sysfs_streq(buf, "identity"))
3080 req_type = IOMMU_DOMAIN_IDENTITY;
3081 else if (sysfs_streq(buf, "DMA"))
3082 req_type = IOMMU_DOMAIN_DMA;
3083 else if (sysfs_streq(buf, "DMA-FQ"))
3084 req_type = IOMMU_DOMAIN_DMA_FQ;
3085 else if (sysfs_streq(buf, "auto"))
3086 req_type = 0;
3087 else
3088 return -EINVAL;
3089
3090 mutex_lock(&group->mutex);
3091 /* We can bring up a flush queue without tearing down the domain. */
3092 if (req_type == IOMMU_DOMAIN_DMA_FQ &&
3093 group->default_domain->type == IOMMU_DOMAIN_DMA) {
3094 ret = iommu_dma_init_fq(group->default_domain);
3095 if (ret)
3096 goto out_unlock;
3097
3098 group->default_domain->type = IOMMU_DOMAIN_DMA_FQ;
3099 ret = count;
3100 goto out_unlock;
3101 }
3102
3103 /* Otherwise, ensure that device exists and no driver is bound. */
3104 if (list_empty(&group->devices) || group->owner_cnt) {
3105 ret = -EPERM;
3106 goto out_unlock;
3107 }
3108
3109 ret = iommu_setup_default_domain(group, req_type);
3110 if (ret)
3111 goto out_unlock;
3112
3113 /*
3114 * Release the mutex here because ops->probe_finalize() call-back of
3115 * some vendor IOMMU drivers calls arm_iommu_attach_device() which
3116 * in-turn might call back into IOMMU core code, where it tries to take
3117 * group->mutex, resulting in a deadlock.
3118 */
3119 mutex_unlock(&group->mutex);
3120
3121 /* Make sure dma_ops is appropriatley set */
3122 for_each_group_device(group, gdev)
3123 iommu_group_do_probe_finalize(gdev->dev);
3124 return count;
3125
3126 out_unlock:
3127 mutex_unlock(&group->mutex);
3128 return ret ?: count;
3129 }
3130
iommu_is_default_domain(struct iommu_group * group)3131 static bool iommu_is_default_domain(struct iommu_group *group)
3132 {
3133 if (group->domain == group->default_domain)
3134 return true;
3135
3136 /*
3137 * If the default domain was set to identity and it is still an identity
3138 * domain then we consider this a pass. This happens because of
3139 * amd_iommu_init_device() replacing the default idenytity domain with an
3140 * identity domain that has a different configuration for AMDGPU.
3141 */
3142 if (group->default_domain &&
3143 group->default_domain->type == IOMMU_DOMAIN_IDENTITY &&
3144 group->domain && group->domain->type == IOMMU_DOMAIN_IDENTITY)
3145 return true;
3146 return false;
3147 }
3148
3149 /**
3150 * iommu_device_use_default_domain() - Device driver wants to handle device
3151 * DMA through the kernel DMA API.
3152 * @dev: The device.
3153 *
3154 * The device driver about to bind @dev wants to do DMA through the kernel
3155 * DMA API. Return 0 if it is allowed, otherwise an error.
3156 */
iommu_device_use_default_domain(struct device * dev)3157 int iommu_device_use_default_domain(struct device *dev)
3158 {
3159 struct iommu_group *group = iommu_group_get(dev);
3160 int ret = 0;
3161
3162 if (!group)
3163 return 0;
3164
3165 mutex_lock(&group->mutex);
3166 /* We may race against bus_iommu_probe() finalising groups here */
3167 if (IS_ENABLED(CONFIG_IOMMU_DMA) && !group->default_domain &&
3168 !dev_iommu_ops(dev)->set_platform_dma_ops) {
3169 ret = -EPROBE_DEFER;
3170 goto unlock_out;
3171 }
3172 if (group->owner_cnt) {
3173 if (group->owner || !iommu_is_default_domain(group) ||
3174 !xa_empty(&group->pasid_array)) {
3175 ret = -EBUSY;
3176 goto unlock_out;
3177 }
3178 }
3179
3180 group->owner_cnt++;
3181
3182 unlock_out:
3183 mutex_unlock(&group->mutex);
3184 iommu_group_put(group);
3185
3186 return ret;
3187 }
3188
3189 /**
3190 * iommu_device_unuse_default_domain() - Device driver stops handling device
3191 * DMA through the kernel DMA API.
3192 * @dev: The device.
3193 *
3194 * The device driver doesn't want to do DMA through kernel DMA API anymore.
3195 * It must be called after iommu_device_use_default_domain().
3196 */
iommu_device_unuse_default_domain(struct device * dev)3197 void iommu_device_unuse_default_domain(struct device *dev)
3198 {
3199 struct iommu_group *group = iommu_group_get(dev);
3200
3201 if (!group)
3202 return;
3203
3204 mutex_lock(&group->mutex);
3205 if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array)))
3206 group->owner_cnt--;
3207
3208 mutex_unlock(&group->mutex);
3209 iommu_group_put(group);
3210 }
3211
__iommu_group_alloc_blocking_domain(struct iommu_group * group)3212 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group)
3213 {
3214 struct group_device *dev =
3215 list_first_entry(&group->devices, struct group_device, list);
3216
3217 if (group->blocking_domain)
3218 return 0;
3219
3220 group->blocking_domain =
3221 __iommu_domain_alloc(dev->dev->bus, IOMMU_DOMAIN_BLOCKED);
3222 if (!group->blocking_domain) {
3223 /*
3224 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED
3225 * create an empty domain instead.
3226 */
3227 group->blocking_domain = __iommu_domain_alloc(
3228 dev->dev->bus, IOMMU_DOMAIN_UNMANAGED);
3229 if (!group->blocking_domain)
3230 return -EINVAL;
3231 }
3232 return 0;
3233 }
3234
__iommu_take_dma_ownership(struct iommu_group * group,void * owner)3235 static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner)
3236 {
3237 int ret;
3238
3239 if ((group->domain && group->domain != group->default_domain) ||
3240 !xa_empty(&group->pasid_array))
3241 return -EBUSY;
3242
3243 ret = __iommu_group_alloc_blocking_domain(group);
3244 if (ret)
3245 return ret;
3246 ret = __iommu_group_set_domain(group, group->blocking_domain);
3247 if (ret)
3248 return ret;
3249
3250 group->owner = owner;
3251 group->owner_cnt++;
3252 return 0;
3253 }
3254
3255 /**
3256 * iommu_group_claim_dma_owner() - Set DMA ownership of a group
3257 * @group: The group.
3258 * @owner: Caller specified pointer. Used for exclusive ownership.
3259 *
3260 * This is to support backward compatibility for vfio which manages the dma
3261 * ownership in iommu_group level. New invocations on this interface should be
3262 * prohibited. Only a single owner may exist for a group.
3263 */
iommu_group_claim_dma_owner(struct iommu_group * group,void * owner)3264 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner)
3265 {
3266 int ret = 0;
3267
3268 if (WARN_ON(!owner))
3269 return -EINVAL;
3270
3271 mutex_lock(&group->mutex);
3272 if (group->owner_cnt) {
3273 ret = -EPERM;
3274 goto unlock_out;
3275 }
3276
3277 ret = __iommu_take_dma_ownership(group, owner);
3278 unlock_out:
3279 mutex_unlock(&group->mutex);
3280
3281 return ret;
3282 }
3283 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner);
3284
3285 /**
3286 * iommu_device_claim_dma_owner() - Set DMA ownership of a device
3287 * @dev: The device.
3288 * @owner: Caller specified pointer. Used for exclusive ownership.
3289 *
3290 * Claim the DMA ownership of a device. Multiple devices in the same group may
3291 * concurrently claim ownership if they present the same owner value. Returns 0
3292 * on success and error code on failure
3293 */
iommu_device_claim_dma_owner(struct device * dev,void * owner)3294 int iommu_device_claim_dma_owner(struct device *dev, void *owner)
3295 {
3296 struct iommu_group *group;
3297 int ret = 0;
3298
3299 if (WARN_ON(!owner))
3300 return -EINVAL;
3301
3302 group = iommu_group_get(dev);
3303 if (!group)
3304 return -ENODEV;
3305
3306 mutex_lock(&group->mutex);
3307 if (group->owner_cnt) {
3308 if (group->owner != owner) {
3309 ret = -EPERM;
3310 goto unlock_out;
3311 }
3312 group->owner_cnt++;
3313 goto unlock_out;
3314 }
3315
3316 ret = __iommu_take_dma_ownership(group, owner);
3317 unlock_out:
3318 mutex_unlock(&group->mutex);
3319 iommu_group_put(group);
3320
3321 return ret;
3322 }
3323 EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner);
3324
__iommu_release_dma_ownership(struct iommu_group * group)3325 static void __iommu_release_dma_ownership(struct iommu_group *group)
3326 {
3327 if (WARN_ON(!group->owner_cnt || !group->owner ||
3328 !xa_empty(&group->pasid_array)))
3329 return;
3330
3331 group->owner_cnt = 0;
3332 group->owner = NULL;
3333 __iommu_group_set_domain_nofail(group, group->default_domain);
3334 }
3335
3336 /**
3337 * iommu_group_release_dma_owner() - Release DMA ownership of a group
3338 * @group: The group
3339 *
3340 * Release the DMA ownership claimed by iommu_group_claim_dma_owner().
3341 */
iommu_group_release_dma_owner(struct iommu_group * group)3342 void iommu_group_release_dma_owner(struct iommu_group *group)
3343 {
3344 mutex_lock(&group->mutex);
3345 __iommu_release_dma_ownership(group);
3346 mutex_unlock(&group->mutex);
3347 }
3348 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner);
3349
3350 /**
3351 * iommu_device_release_dma_owner() - Release DMA ownership of a device
3352 * @dev: The device.
3353 *
3354 * Release the DMA ownership claimed by iommu_device_claim_dma_owner().
3355 */
iommu_device_release_dma_owner(struct device * dev)3356 void iommu_device_release_dma_owner(struct device *dev)
3357 {
3358 struct iommu_group *group = iommu_group_get(dev);
3359
3360 mutex_lock(&group->mutex);
3361 if (group->owner_cnt > 1)
3362 group->owner_cnt--;
3363 else
3364 __iommu_release_dma_ownership(group);
3365 mutex_unlock(&group->mutex);
3366 iommu_group_put(group);
3367 }
3368 EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner);
3369
3370 /**
3371 * iommu_group_dma_owner_claimed() - Query group dma ownership status
3372 * @group: The group.
3373 *
3374 * This provides status query on a given group. It is racy and only for
3375 * non-binding status reporting.
3376 */
iommu_group_dma_owner_claimed(struct iommu_group * group)3377 bool iommu_group_dma_owner_claimed(struct iommu_group *group)
3378 {
3379 unsigned int user;
3380
3381 mutex_lock(&group->mutex);
3382 user = group->owner_cnt;
3383 mutex_unlock(&group->mutex);
3384
3385 return user;
3386 }
3387 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed);
3388
__iommu_set_group_pasid(struct iommu_domain * domain,struct iommu_group * group,ioasid_t pasid)3389 static int __iommu_set_group_pasid(struct iommu_domain *domain,
3390 struct iommu_group *group, ioasid_t pasid)
3391 {
3392 struct group_device *device, *last_gdev;
3393 int ret;
3394
3395 for_each_group_device(group, device) {
3396 ret = domain->ops->set_dev_pasid(domain, device->dev, pasid);
3397 if (ret)
3398 goto err_revert;
3399 }
3400
3401 return 0;
3402
3403 err_revert:
3404 last_gdev = device;
3405 for_each_group_device(group, device) {
3406 const struct iommu_ops *ops = dev_iommu_ops(device->dev);
3407
3408 if (device == last_gdev)
3409 break;
3410 ops->remove_dev_pasid(device->dev, pasid);
3411 }
3412 return ret;
3413 }
3414
__iommu_remove_group_pasid(struct iommu_group * group,ioasid_t pasid)3415 static void __iommu_remove_group_pasid(struct iommu_group *group,
3416 ioasid_t pasid)
3417 {
3418 struct group_device *device;
3419 const struct iommu_ops *ops;
3420
3421 for_each_group_device(group, device) {
3422 ops = dev_iommu_ops(device->dev);
3423 ops->remove_dev_pasid(device->dev, pasid);
3424 }
3425 }
3426
3427 /*
3428 * iommu_attach_device_pasid() - Attach a domain to pasid of device
3429 * @domain: the iommu domain.
3430 * @dev: the attached device.
3431 * @pasid: the pasid of the device.
3432 *
3433 * Return: 0 on success, or an error.
3434 */
iommu_attach_device_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid)3435 int iommu_attach_device_pasid(struct iommu_domain *domain,
3436 struct device *dev, ioasid_t pasid)
3437 {
3438 struct iommu_group *group;
3439 void *curr;
3440 int ret;
3441
3442 if (!domain->ops->set_dev_pasid)
3443 return -EOPNOTSUPP;
3444
3445 group = iommu_group_get(dev);
3446 if (!group)
3447 return -ENODEV;
3448
3449 mutex_lock(&group->mutex);
3450 curr = xa_cmpxchg(&group->pasid_array, pasid, NULL, domain, GFP_KERNEL);
3451 if (curr) {
3452 ret = xa_err(curr) ? : -EBUSY;
3453 goto out_unlock;
3454 }
3455
3456 ret = __iommu_set_group_pasid(domain, group, pasid);
3457 if (ret)
3458 xa_erase(&group->pasid_array, pasid);
3459 out_unlock:
3460 mutex_unlock(&group->mutex);
3461 iommu_group_put(group);
3462
3463 return ret;
3464 }
3465 EXPORT_SYMBOL_GPL(iommu_attach_device_pasid);
3466
3467 /*
3468 * iommu_detach_device_pasid() - Detach the domain from pasid of device
3469 * @domain: the iommu domain.
3470 * @dev: the attached device.
3471 * @pasid: the pasid of the device.
3472 *
3473 * The @domain must have been attached to @pasid of the @dev with
3474 * iommu_attach_device_pasid().
3475 */
iommu_detach_device_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid)3476 void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev,
3477 ioasid_t pasid)
3478 {
3479 struct iommu_group *group = iommu_group_get(dev);
3480
3481 mutex_lock(&group->mutex);
3482 __iommu_remove_group_pasid(group, pasid);
3483 WARN_ON(xa_erase(&group->pasid_array, pasid) != domain);
3484 mutex_unlock(&group->mutex);
3485
3486 iommu_group_put(group);
3487 }
3488 EXPORT_SYMBOL_GPL(iommu_detach_device_pasid);
3489
3490 /*
3491 * iommu_get_domain_for_dev_pasid() - Retrieve domain for @pasid of @dev
3492 * @dev: the queried device
3493 * @pasid: the pasid of the device
3494 * @type: matched domain type, 0 for any match
3495 *
3496 * This is a variant of iommu_get_domain_for_dev(). It returns the existing
3497 * domain attached to pasid of a device. Callers must hold a lock around this
3498 * function, and both iommu_attach/detach_dev_pasid() whenever a domain of
3499 * type is being manipulated. This API does not internally resolve races with
3500 * attach/detach.
3501 *
3502 * Return: attached domain on success, NULL otherwise.
3503 */
iommu_get_domain_for_dev_pasid(struct device * dev,ioasid_t pasid,unsigned int type)3504 struct iommu_domain *iommu_get_domain_for_dev_pasid(struct device *dev,
3505 ioasid_t pasid,
3506 unsigned int type)
3507 {
3508 struct iommu_domain *domain;
3509 struct iommu_group *group;
3510
3511 group = iommu_group_get(dev);
3512 if (!group)
3513 return NULL;
3514
3515 xa_lock(&group->pasid_array);
3516 domain = xa_load(&group->pasid_array, pasid);
3517 if (type && domain && domain->type != type)
3518 domain = ERR_PTR(-EBUSY);
3519 xa_unlock(&group->pasid_array);
3520 iommu_group_put(group);
3521
3522 return domain;
3523 }
3524 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev_pasid);
3525
iommu_sva_domain_alloc(struct device * dev,struct mm_struct * mm)3526 struct iommu_domain *iommu_sva_domain_alloc(struct device *dev,
3527 struct mm_struct *mm)
3528 {
3529 const struct iommu_ops *ops = dev_iommu_ops(dev);
3530 struct iommu_domain *domain;
3531
3532 domain = ops->domain_alloc(IOMMU_DOMAIN_SVA);
3533 if (!domain)
3534 return NULL;
3535
3536 domain->type = IOMMU_DOMAIN_SVA;
3537 mmgrab(mm);
3538 domain->mm = mm;
3539 domain->iopf_handler = iommu_sva_handle_iopf;
3540 domain->fault_data = mm;
3541
3542 return domain;
3543 }
3544
iommu_alloc_global_pasid(struct device * dev)3545 ioasid_t iommu_alloc_global_pasid(struct device *dev)
3546 {
3547 int ret;
3548
3549 /* max_pasids == 0 means that the device does not support PASID */
3550 if (!dev->iommu->max_pasids)
3551 return IOMMU_PASID_INVALID;
3552
3553 /*
3554 * max_pasids is set up by vendor driver based on number of PASID bits
3555 * supported but the IDA allocation is inclusive.
3556 */
3557 ret = ida_alloc_range(&iommu_global_pasid_ida, IOMMU_FIRST_GLOBAL_PASID,
3558 dev->iommu->max_pasids - 1, GFP_KERNEL);
3559 return ret < 0 ? IOMMU_PASID_INVALID : ret;
3560 }
3561 EXPORT_SYMBOL_GPL(iommu_alloc_global_pasid);
3562
iommu_free_global_pasid(ioasid_t pasid)3563 void iommu_free_global_pasid(ioasid_t pasid)
3564 {
3565 if (WARN_ON(pasid == IOMMU_PASID_INVALID))
3566 return;
3567
3568 ida_free(&iommu_global_pasid_ida, pasid);
3569 }
3570 EXPORT_SYMBOL_GPL(iommu_free_global_pasid);
3571