1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 #include "gen8_engine_cs.h"
7 #include "intel_engine_regs.h"
8 #include "intel_gpu_commands.h"
9 #include "intel_gt.h"
10 #include "intel_lrc.h"
11 #include "intel_ring.h"
12 
gen8_emit_flush_rcs(struct i915_request * rq,u32 mode)13 int gen8_emit_flush_rcs(struct i915_request *rq, u32 mode)
14 {
15 	bool vf_flush_wa = false, dc_flush_wa = false;
16 	u32 *cs, flags = 0;
17 	int len;
18 
19 	flags |= PIPE_CONTROL_CS_STALL;
20 
21 	if (mode & EMIT_FLUSH) {
22 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
23 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
24 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
25 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
26 	}
27 
28 	if (mode & EMIT_INVALIDATE) {
29 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
30 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
31 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
32 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
33 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
34 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
35 		flags |= PIPE_CONTROL_QW_WRITE;
36 		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
37 
38 		/*
39 		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
40 		 * pipe control.
41 		 */
42 		if (GRAPHICS_VER(rq->i915) == 9)
43 			vf_flush_wa = true;
44 
45 		/* WaForGAMHang:kbl */
46 		if (IS_KABYLAKE(rq->i915) && IS_GRAPHICS_STEP(rq->i915, 0, STEP_C0))
47 			dc_flush_wa = true;
48 	}
49 
50 	len = 6;
51 
52 	if (vf_flush_wa)
53 		len += 6;
54 
55 	if (dc_flush_wa)
56 		len += 12;
57 
58 	cs = intel_ring_begin(rq, len);
59 	if (IS_ERR(cs))
60 		return PTR_ERR(cs);
61 
62 	if (vf_flush_wa)
63 		cs = gen8_emit_pipe_control(cs, 0, 0);
64 
65 	if (dc_flush_wa)
66 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
67 					    0);
68 
69 	cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
70 
71 	if (dc_flush_wa)
72 		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
73 
74 	intel_ring_advance(rq, cs);
75 
76 	return 0;
77 }
78 
gen8_emit_flush_xcs(struct i915_request * rq,u32 mode)79 int gen8_emit_flush_xcs(struct i915_request *rq, u32 mode)
80 {
81 	u32 cmd, *cs;
82 
83 	cs = intel_ring_begin(rq, 4);
84 	if (IS_ERR(cs))
85 		return PTR_ERR(cs);
86 
87 	cmd = MI_FLUSH_DW + 1;
88 
89 	/*
90 	 * We always require a command barrier so that subsequent
91 	 * commands, such as breadcrumb interrupts, are strictly ordered
92 	 * wrt the contents of the write cache being flushed to memory
93 	 * (and thus being coherent from the CPU).
94 	 */
95 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
96 
97 	if (mode & EMIT_INVALIDATE) {
98 		cmd |= MI_INVALIDATE_TLB;
99 		if (rq->engine->class == VIDEO_DECODE_CLASS)
100 			cmd |= MI_INVALIDATE_BSD;
101 	}
102 
103 	*cs++ = cmd;
104 	*cs++ = LRC_PPHWSP_SCRATCH_ADDR;
105 	*cs++ = 0; /* upper addr */
106 	*cs++ = 0; /* value */
107 	intel_ring_advance(rq, cs);
108 
109 	return 0;
110 }
111 
gen11_emit_flush_rcs(struct i915_request * rq,u32 mode)112 int gen11_emit_flush_rcs(struct i915_request *rq, u32 mode)
113 {
114 	if (mode & EMIT_FLUSH) {
115 		u32 *cs;
116 		u32 flags = 0;
117 
118 		flags |= PIPE_CONTROL_CS_STALL;
119 
120 		flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
121 		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
122 		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
123 		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
124 		flags |= PIPE_CONTROL_FLUSH_ENABLE;
125 		flags |= PIPE_CONTROL_QW_WRITE;
126 		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
127 
128 		cs = intel_ring_begin(rq, 6);
129 		if (IS_ERR(cs))
130 			return PTR_ERR(cs);
131 
132 		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
133 		intel_ring_advance(rq, cs);
134 	}
135 
136 	if (mode & EMIT_INVALIDATE) {
137 		u32 *cs;
138 		u32 flags = 0;
139 
140 		flags |= PIPE_CONTROL_CS_STALL;
141 
142 		flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
143 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
144 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
145 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
146 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
147 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
148 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
149 		flags |= PIPE_CONTROL_QW_WRITE;
150 		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
151 
152 		cs = intel_ring_begin(rq, 6);
153 		if (IS_ERR(cs))
154 			return PTR_ERR(cs);
155 
156 		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
157 		intel_ring_advance(rq, cs);
158 	}
159 
160 	return 0;
161 }
162 
preparser_disable(bool state)163 static u32 preparser_disable(bool state)
164 {
165 	return MI_ARB_CHECK | 1 << 8 | state;
166 }
167 
gen12_get_aux_inv_reg(struct intel_engine_cs * engine)168 static i915_reg_t gen12_get_aux_inv_reg(struct intel_engine_cs *engine)
169 {
170 	switch (engine->id) {
171 	case RCS0:
172 		return GEN12_CCS_AUX_INV;
173 	case BCS0:
174 		return GEN12_BCS0_AUX_INV;
175 	case VCS0:
176 		return GEN12_VD0_AUX_INV;
177 	case VCS2:
178 		return GEN12_VD2_AUX_INV;
179 	case VECS0:
180 		return GEN12_VE0_AUX_INV;
181 	case CCS0:
182 		return GEN12_CCS0_AUX_INV;
183 	default:
184 		return INVALID_MMIO_REG;
185 	}
186 }
187 
gen12_needs_ccs_aux_inv(struct intel_engine_cs * engine)188 static bool gen12_needs_ccs_aux_inv(struct intel_engine_cs *engine)
189 {
190 	i915_reg_t reg = gen12_get_aux_inv_reg(engine);
191 
192 	if (IS_PONTEVECCHIO(engine->i915))
193 		return false;
194 
195 	/*
196 	 * So far platforms supported by i915 having flat ccs do not require
197 	 * AUX invalidation. Check also whether the engine requires it.
198 	 */
199 	return i915_mmio_reg_valid(reg) && !HAS_FLAT_CCS(engine->i915);
200 }
201 
gen12_emit_aux_table_inv(struct intel_engine_cs * engine,u32 * cs)202 u32 *gen12_emit_aux_table_inv(struct intel_engine_cs *engine, u32 *cs)
203 {
204 	i915_reg_t inv_reg = gen12_get_aux_inv_reg(engine);
205 	u32 gsi_offset = engine->gt->uncore->gsi_offset;
206 
207 	if (!gen12_needs_ccs_aux_inv(engine))
208 		return cs;
209 
210 	*cs++ = MI_LOAD_REGISTER_IMM(1) | MI_LRI_MMIO_REMAP_EN;
211 	*cs++ = i915_mmio_reg_offset(inv_reg) + gsi_offset;
212 	*cs++ = AUX_INV;
213 
214 	*cs++ = MI_SEMAPHORE_WAIT_TOKEN |
215 		MI_SEMAPHORE_REGISTER_POLL |
216 		MI_SEMAPHORE_POLL |
217 		MI_SEMAPHORE_SAD_EQ_SDD;
218 	*cs++ = 0;
219 	*cs++ = i915_mmio_reg_offset(inv_reg) + gsi_offset;
220 	*cs++ = 0;
221 	*cs++ = 0;
222 
223 	return cs;
224 }
225 
mtl_dummy_pipe_control(struct i915_request * rq)226 static int mtl_dummy_pipe_control(struct i915_request *rq)
227 {
228 	/* Wa_14016712196 */
229 	if (IS_GFX_GT_IP_RANGE(rq->engine->gt, IP_VER(12, 70), IP_VER(12, 74)) ||
230 	    IS_DG2(rq->i915)) {
231 		u32 *cs;
232 
233 		/* dummy PIPE_CONTROL + depth flush */
234 		cs = intel_ring_begin(rq, 6);
235 		if (IS_ERR(cs))
236 			return PTR_ERR(cs);
237 		cs = gen12_emit_pipe_control(cs,
238 					     0,
239 					     PIPE_CONTROL_DEPTH_CACHE_FLUSH,
240 					     LRC_PPHWSP_SCRATCH_ADDR);
241 		intel_ring_advance(rq, cs);
242 	}
243 
244 	return 0;
245 }
246 
gen12_emit_flush_rcs(struct i915_request * rq,u32 mode)247 int gen12_emit_flush_rcs(struct i915_request *rq, u32 mode)
248 {
249 	struct intel_engine_cs *engine = rq->engine;
250 
251 	/*
252 	 * On Aux CCS platforms the invalidation of the Aux
253 	 * table requires quiescing memory traffic beforehand
254 	 */
255 	if (mode & EMIT_FLUSH || gen12_needs_ccs_aux_inv(engine)) {
256 		u32 bit_group_0 = 0;
257 		u32 bit_group_1 = 0;
258 		int err;
259 		u32 *cs;
260 
261 		err = mtl_dummy_pipe_control(rq);
262 		if (err)
263 			return err;
264 
265 		bit_group_0 |= PIPE_CONTROL0_HDC_PIPELINE_FLUSH;
266 
267 		/*
268 		 * When required, in MTL and beyond platforms we
269 		 * need to set the CCS_FLUSH bit in the pipe control
270 		 */
271 		if (GRAPHICS_VER_FULL(rq->i915) >= IP_VER(12, 70))
272 			bit_group_0 |= PIPE_CONTROL_CCS_FLUSH;
273 
274 		/*
275 		 * L3 fabric flush is needed for AUX CCS invalidation
276 		 * which happens as part of pipe-control so we can
277 		 * ignore PIPE_CONTROL_FLUSH_L3. Also PIPE_CONTROL_FLUSH_L3
278 		 * deals with Protected Memory which is not needed for
279 		 * AUX CCS invalidation and lead to unwanted side effects.
280 		 */
281 		if (mode & EMIT_FLUSH)
282 			bit_group_1 |= PIPE_CONTROL_FLUSH_L3;
283 
284 		bit_group_1 |= PIPE_CONTROL_TILE_CACHE_FLUSH;
285 		bit_group_1 |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
286 		bit_group_1 |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
287 		/* Wa_1409600907:tgl,adl-p */
288 		bit_group_1 |= PIPE_CONTROL_DEPTH_STALL;
289 		bit_group_1 |= PIPE_CONTROL_DC_FLUSH_ENABLE;
290 		bit_group_1 |= PIPE_CONTROL_FLUSH_ENABLE;
291 
292 		bit_group_1 |= PIPE_CONTROL_STORE_DATA_INDEX;
293 		bit_group_1 |= PIPE_CONTROL_QW_WRITE;
294 
295 		bit_group_1 |= PIPE_CONTROL_CS_STALL;
296 
297 		if (!HAS_3D_PIPELINE(engine->i915))
298 			bit_group_1 &= ~PIPE_CONTROL_3D_ARCH_FLAGS;
299 		else if (engine->class == COMPUTE_CLASS)
300 			bit_group_1 &= ~PIPE_CONTROL_3D_ENGINE_FLAGS;
301 
302 		cs = intel_ring_begin(rq, 6);
303 		if (IS_ERR(cs))
304 			return PTR_ERR(cs);
305 
306 		cs = gen12_emit_pipe_control(cs, bit_group_0, bit_group_1,
307 					     LRC_PPHWSP_SCRATCH_ADDR);
308 		intel_ring_advance(rq, cs);
309 	}
310 
311 	if (mode & EMIT_INVALIDATE) {
312 		u32 flags = 0;
313 		u32 *cs, count;
314 		int err;
315 
316 		err = mtl_dummy_pipe_control(rq);
317 		if (err)
318 			return err;
319 
320 		flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
321 		flags |= PIPE_CONTROL_TLB_INVALIDATE;
322 		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
323 		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
324 		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
325 		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
326 		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
327 
328 		flags |= PIPE_CONTROL_STORE_DATA_INDEX;
329 		flags |= PIPE_CONTROL_QW_WRITE;
330 
331 		flags |= PIPE_CONTROL_CS_STALL;
332 
333 		if (!HAS_3D_PIPELINE(engine->i915))
334 			flags &= ~PIPE_CONTROL_3D_ARCH_FLAGS;
335 		else if (engine->class == COMPUTE_CLASS)
336 			flags &= ~PIPE_CONTROL_3D_ENGINE_FLAGS;
337 
338 		count = 8;
339 		if (gen12_needs_ccs_aux_inv(rq->engine))
340 			count += 8;
341 
342 		cs = intel_ring_begin(rq, count);
343 		if (IS_ERR(cs))
344 			return PTR_ERR(cs);
345 
346 		/*
347 		 * Prevent the pre-parser from skipping past the TLB
348 		 * invalidate and loading a stale page for the batch
349 		 * buffer / request payload.
350 		 */
351 		*cs++ = preparser_disable(true);
352 
353 		cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
354 
355 		cs = gen12_emit_aux_table_inv(engine, cs);
356 
357 		*cs++ = preparser_disable(false);
358 		intel_ring_advance(rq, cs);
359 	}
360 
361 	return 0;
362 }
363 
gen12_emit_flush_xcs(struct i915_request * rq,u32 mode)364 int gen12_emit_flush_xcs(struct i915_request *rq, u32 mode)
365 {
366 	u32 cmd = 4;
367 	u32 *cs;
368 
369 	if (mode & EMIT_INVALIDATE) {
370 		cmd += 2;
371 
372 		if (gen12_needs_ccs_aux_inv(rq->engine))
373 			cmd += 8;
374 	}
375 
376 	cs = intel_ring_begin(rq, cmd);
377 	if (IS_ERR(cs))
378 		return PTR_ERR(cs);
379 
380 	if (mode & EMIT_INVALIDATE)
381 		*cs++ = preparser_disable(true);
382 
383 	cmd = MI_FLUSH_DW + 1;
384 
385 	/*
386 	 * We always require a command barrier so that subsequent
387 	 * commands, such as breadcrumb interrupts, are strictly ordered
388 	 * wrt the contents of the write cache being flushed to memory
389 	 * (and thus being coherent from the CPU).
390 	 */
391 	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
392 
393 	if (mode & EMIT_INVALIDATE) {
394 		cmd |= MI_INVALIDATE_TLB;
395 		if (rq->engine->class == VIDEO_DECODE_CLASS)
396 			cmd |= MI_INVALIDATE_BSD;
397 
398 		if (gen12_needs_ccs_aux_inv(rq->engine) &&
399 		    rq->engine->class == COPY_ENGINE_CLASS)
400 			cmd |= MI_FLUSH_DW_CCS;
401 	}
402 
403 	*cs++ = cmd;
404 	*cs++ = LRC_PPHWSP_SCRATCH_ADDR;
405 	*cs++ = 0; /* upper addr */
406 	*cs++ = 0; /* value */
407 
408 	cs = gen12_emit_aux_table_inv(rq->engine, cs);
409 
410 	if (mode & EMIT_INVALIDATE)
411 		*cs++ = preparser_disable(false);
412 
413 	intel_ring_advance(rq, cs);
414 
415 	return 0;
416 }
417 
preempt_address(struct intel_engine_cs * engine)418 static u32 preempt_address(struct intel_engine_cs *engine)
419 {
420 	return (i915_ggtt_offset(engine->status_page.vma) +
421 		I915_GEM_HWS_PREEMPT_ADDR);
422 }
423 
hwsp_offset(const struct i915_request * rq)424 static u32 hwsp_offset(const struct i915_request *rq)
425 {
426 	const struct intel_timeline *tl;
427 
428 	/* Before the request is executed, the timeline is fixed */
429 	tl = rcu_dereference_protected(rq->timeline,
430 				       !i915_request_signaled(rq));
431 
432 	/* See the comment in i915_request_active_seqno(). */
433 	return page_mask_bits(tl->hwsp_offset) + offset_in_page(rq->hwsp_seqno);
434 }
435 
gen8_emit_init_breadcrumb(struct i915_request * rq)436 int gen8_emit_init_breadcrumb(struct i915_request *rq)
437 {
438 	u32 *cs;
439 
440 	GEM_BUG_ON(i915_request_has_initial_breadcrumb(rq));
441 	if (!i915_request_timeline(rq)->has_initial_breadcrumb)
442 		return 0;
443 
444 	cs = intel_ring_begin(rq, 6);
445 	if (IS_ERR(cs))
446 		return PTR_ERR(cs);
447 
448 	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
449 	*cs++ = hwsp_offset(rq);
450 	*cs++ = 0;
451 	*cs++ = rq->fence.seqno - 1;
452 
453 	/*
454 	 * Check if we have been preempted before we even get started.
455 	 *
456 	 * After this point i915_request_started() reports true, even if
457 	 * we get preempted and so are no longer running.
458 	 *
459 	 * i915_request_started() is used during preemption processing
460 	 * to decide if the request is currently inside the user payload
461 	 * or spinning on a kernel semaphore (or earlier). For no-preemption
462 	 * requests, we do allow preemption on the semaphore before the user
463 	 * payload, but do not allow preemption once the request is started.
464 	 *
465 	 * i915_request_started() is similarly used during GPU hangs to
466 	 * determine if the user's payload was guilty, and if so, the
467 	 * request is banned. Before the request is started, it is assumed
468 	 * to be unharmed and an innocent victim of another's hang.
469 	 */
470 	*cs++ = MI_NOOP;
471 	*cs++ = MI_ARB_CHECK;
472 
473 	intel_ring_advance(rq, cs);
474 
475 	/* Record the updated position of the request's payload */
476 	rq->infix = intel_ring_offset(rq, cs);
477 
478 	__set_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags);
479 
480 	return 0;
481 }
482 
__xehp_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags,u32 arb)483 static int __xehp_emit_bb_start(struct i915_request *rq,
484 				u64 offset, u32 len,
485 				const unsigned int flags,
486 				u32 arb)
487 {
488 	struct intel_context *ce = rq->context;
489 	u32 wa_offset = lrc_indirect_bb(ce);
490 	u32 *cs;
491 
492 	GEM_BUG_ON(!ce->wa_bb_page);
493 
494 	cs = intel_ring_begin(rq, 12);
495 	if (IS_ERR(cs))
496 		return PTR_ERR(cs);
497 
498 	*cs++ = MI_ARB_ON_OFF | arb;
499 
500 	*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
501 		MI_SRM_LRM_GLOBAL_GTT |
502 		MI_LRI_LRM_CS_MMIO;
503 	*cs++ = i915_mmio_reg_offset(RING_PREDICATE_RESULT(0));
504 	*cs++ = wa_offset + DG2_PREDICATE_RESULT_WA;
505 	*cs++ = 0;
506 
507 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
508 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
509 	*cs++ = lower_32_bits(offset);
510 	*cs++ = upper_32_bits(offset);
511 
512 	/* Fixup stray MI_SET_PREDICATE as it prevents us executing the ring */
513 	*cs++ = MI_BATCH_BUFFER_START_GEN8;
514 	*cs++ = wa_offset + DG2_PREDICATE_RESULT_BB;
515 	*cs++ = 0;
516 
517 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
518 
519 	intel_ring_advance(rq, cs);
520 
521 	return 0;
522 }
523 
xehp_emit_bb_start_noarb(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)524 int xehp_emit_bb_start_noarb(struct i915_request *rq,
525 			     u64 offset, u32 len,
526 			     const unsigned int flags)
527 {
528 	return __xehp_emit_bb_start(rq, offset, len, flags, MI_ARB_DISABLE);
529 }
530 
xehp_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)531 int xehp_emit_bb_start(struct i915_request *rq,
532 		       u64 offset, u32 len,
533 		       const unsigned int flags)
534 {
535 	return __xehp_emit_bb_start(rq, offset, len, flags, MI_ARB_ENABLE);
536 }
537 
gen8_emit_bb_start_noarb(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)538 int gen8_emit_bb_start_noarb(struct i915_request *rq,
539 			     u64 offset, u32 len,
540 			     const unsigned int flags)
541 {
542 	u32 *cs;
543 
544 	cs = intel_ring_begin(rq, 4);
545 	if (IS_ERR(cs))
546 		return PTR_ERR(cs);
547 
548 	/*
549 	 * WaDisableCtxRestoreArbitration:bdw,chv
550 	 *
551 	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
552 	 * particular all the gen that do not need the w/a at all!), if we
553 	 * took care to make sure that on every switch into this context
554 	 * (both ordinary and for preemption) that arbitrartion was enabled
555 	 * we would be fine.  However, for gen8 there is another w/a that
556 	 * requires us to not preempt inside GPGPU execution, so we keep
557 	 * arbitration disabled for gen8 batches. Arbitration will be
558 	 * re-enabled before we close the request
559 	 * (engine->emit_fini_breadcrumb).
560 	 */
561 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
562 
563 	/* FIXME(BDW+): Address space and security selectors. */
564 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
565 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
566 	*cs++ = lower_32_bits(offset);
567 	*cs++ = upper_32_bits(offset);
568 
569 	intel_ring_advance(rq, cs);
570 
571 	return 0;
572 }
573 
gen8_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)574 int gen8_emit_bb_start(struct i915_request *rq,
575 		       u64 offset, u32 len,
576 		       const unsigned int flags)
577 {
578 	u32 *cs;
579 
580 	if (unlikely(i915_request_has_nopreempt(rq)))
581 		return gen8_emit_bb_start_noarb(rq, offset, len, flags);
582 
583 	cs = intel_ring_begin(rq, 6);
584 	if (IS_ERR(cs))
585 		return PTR_ERR(cs);
586 
587 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
588 
589 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
590 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
591 	*cs++ = lower_32_bits(offset);
592 	*cs++ = upper_32_bits(offset);
593 
594 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
595 	*cs++ = MI_NOOP;
596 
597 	intel_ring_advance(rq, cs);
598 
599 	return 0;
600 }
601 
assert_request_valid(struct i915_request * rq)602 static void assert_request_valid(struct i915_request *rq)
603 {
604 	struct intel_ring *ring __maybe_unused = rq->ring;
605 
606 	/* Can we unwind this request without appearing to go forwards? */
607 	GEM_BUG_ON(intel_ring_direction(ring, rq->wa_tail, rq->head) <= 0);
608 }
609 
610 /*
611  * Reserve space for 2 NOOPs at the end of each request to be
612  * used as a workaround for not being allowed to do lite
613  * restore with HEAD==TAIL (WaIdleLiteRestore).
614  */
gen8_emit_wa_tail(struct i915_request * rq,u32 * cs)615 static u32 *gen8_emit_wa_tail(struct i915_request *rq, u32 *cs)
616 {
617 	/* Ensure there's always at least one preemption point per-request. */
618 	*cs++ = MI_ARB_CHECK;
619 	*cs++ = MI_NOOP;
620 	rq->wa_tail = intel_ring_offset(rq, cs);
621 
622 	/* Check that entire request is less than half the ring */
623 	assert_request_valid(rq);
624 
625 	return cs;
626 }
627 
emit_preempt_busywait(struct i915_request * rq,u32 * cs)628 static u32 *emit_preempt_busywait(struct i915_request *rq, u32 *cs)
629 {
630 	*cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */
631 	*cs++ = MI_SEMAPHORE_WAIT |
632 		MI_SEMAPHORE_GLOBAL_GTT |
633 		MI_SEMAPHORE_POLL |
634 		MI_SEMAPHORE_SAD_EQ_SDD;
635 	*cs++ = 0;
636 	*cs++ = preempt_address(rq->engine);
637 	*cs++ = 0;
638 	*cs++ = MI_NOOP;
639 
640 	return cs;
641 }
642 
643 static __always_inline u32*
gen8_emit_fini_breadcrumb_tail(struct i915_request * rq,u32 * cs)644 gen8_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs)
645 {
646 	*cs++ = MI_USER_INTERRUPT;
647 
648 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
649 	if (intel_engine_has_semaphores(rq->engine) &&
650 	    !intel_uc_uses_guc_submission(&rq->engine->gt->uc))
651 		cs = emit_preempt_busywait(rq, cs);
652 
653 	rq->tail = intel_ring_offset(rq, cs);
654 	assert_ring_tail_valid(rq->ring, rq->tail);
655 
656 	return gen8_emit_wa_tail(rq, cs);
657 }
658 
emit_xcs_breadcrumb(struct i915_request * rq,u32 * cs)659 static u32 *emit_xcs_breadcrumb(struct i915_request *rq, u32 *cs)
660 {
661 	return gen8_emit_ggtt_write(cs, rq->fence.seqno, hwsp_offset(rq), 0);
662 }
663 
gen8_emit_fini_breadcrumb_xcs(struct i915_request * rq,u32 * cs)664 u32 *gen8_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
665 {
666 	return gen8_emit_fini_breadcrumb_tail(rq, emit_xcs_breadcrumb(rq, cs));
667 }
668 
gen8_emit_fini_breadcrumb_rcs(struct i915_request * rq,u32 * cs)669 u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
670 {
671 	cs = gen8_emit_pipe_control(cs,
672 				    PIPE_CONTROL_CS_STALL |
673 				    PIPE_CONTROL_TLB_INVALIDATE |
674 				    PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
675 				    PIPE_CONTROL_DEPTH_CACHE_FLUSH |
676 				    PIPE_CONTROL_DC_FLUSH_ENABLE,
677 				    0);
678 
679 	/* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
680 	cs = gen8_emit_ggtt_write_rcs(cs,
681 				      rq->fence.seqno,
682 				      hwsp_offset(rq),
683 				      PIPE_CONTROL_FLUSH_ENABLE |
684 				      PIPE_CONTROL_CS_STALL);
685 
686 	return gen8_emit_fini_breadcrumb_tail(rq, cs);
687 }
688 
gen11_emit_fini_breadcrumb_rcs(struct i915_request * rq,u32 * cs)689 u32 *gen11_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
690 {
691 	cs = gen8_emit_pipe_control(cs,
692 				    PIPE_CONTROL_CS_STALL |
693 				    PIPE_CONTROL_TLB_INVALIDATE |
694 				    PIPE_CONTROL_TILE_CACHE_FLUSH |
695 				    PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
696 				    PIPE_CONTROL_DEPTH_CACHE_FLUSH |
697 				    PIPE_CONTROL_DC_FLUSH_ENABLE,
698 				    0);
699 
700 	/*XXX: Look at gen8_emit_fini_breadcrumb_rcs */
701 	cs = gen8_emit_ggtt_write_rcs(cs,
702 				      rq->fence.seqno,
703 				      hwsp_offset(rq),
704 				      PIPE_CONTROL_FLUSH_ENABLE |
705 				      PIPE_CONTROL_CS_STALL);
706 
707 	return gen8_emit_fini_breadcrumb_tail(rq, cs);
708 }
709 
710 /*
711  * Note that the CS instruction pre-parser will not stall on the breadcrumb
712  * flush and will continue pre-fetching the instructions after it before the
713  * memory sync is completed. On pre-gen12 HW, the pre-parser will stop at
714  * BB_START/END instructions, so, even though we might pre-fetch the pre-amble
715  * of the next request before the memory has been flushed, we're guaranteed that
716  * we won't access the batch itself too early.
717  * However, on gen12+ the parser can pre-fetch across the BB_START/END commands,
718  * so, if the current request is modifying an instruction in the next request on
719  * the same intel_context, we might pre-fetch and then execute the pre-update
720  * instruction. To avoid this, the users of self-modifying code should either
721  * disable the parser around the code emitting the memory writes, via a new flag
722  * added to MI_ARB_CHECK, or emit the writes from a different intel_context. For
723  * the in-kernel use-cases we've opted to use a separate context, see
724  * reloc_gpu() as an example.
725  * All the above applies only to the instructions themselves. Non-inline data
726  * used by the instructions is not pre-fetched.
727  */
728 
gen12_emit_preempt_busywait(struct i915_request * rq,u32 * cs)729 static u32 *gen12_emit_preempt_busywait(struct i915_request *rq, u32 *cs)
730 {
731 	*cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */
732 	*cs++ = MI_SEMAPHORE_WAIT_TOKEN |
733 		MI_SEMAPHORE_GLOBAL_GTT |
734 		MI_SEMAPHORE_POLL |
735 		MI_SEMAPHORE_SAD_EQ_SDD;
736 	*cs++ = 0;
737 	*cs++ = preempt_address(rq->engine);
738 	*cs++ = 0;
739 	*cs++ = 0;
740 
741 	return cs;
742 }
743 
744 /* Wa_14014475959:dg2 */
745 #define CCS_SEMAPHORE_PPHWSP_OFFSET	0x540
ccs_semaphore_offset(struct i915_request * rq)746 static u32 ccs_semaphore_offset(struct i915_request *rq)
747 {
748 	return i915_ggtt_offset(rq->context->state) +
749 		(LRC_PPHWSP_PN * PAGE_SIZE) + CCS_SEMAPHORE_PPHWSP_OFFSET;
750 }
751 
752 /* Wa_14014475959:dg2 */
ccs_emit_wa_busywait(struct i915_request * rq,u32 * cs)753 static u32 *ccs_emit_wa_busywait(struct i915_request *rq, u32 *cs)
754 {
755 	int i;
756 
757 	*cs++ = MI_ATOMIC_INLINE | MI_ATOMIC_GLOBAL_GTT | MI_ATOMIC_CS_STALL |
758 		MI_ATOMIC_MOVE;
759 	*cs++ = ccs_semaphore_offset(rq);
760 	*cs++ = 0;
761 	*cs++ = 1;
762 
763 	/*
764 	 * When MI_ATOMIC_INLINE_DATA set this command must be 11 DW + (1 NOP)
765 	 * to align. 4 DWs above + 8 filler DWs here.
766 	 */
767 	for (i = 0; i < 8; ++i)
768 		*cs++ = 0;
769 
770 	*cs++ = MI_SEMAPHORE_WAIT |
771 		MI_SEMAPHORE_GLOBAL_GTT |
772 		MI_SEMAPHORE_POLL |
773 		MI_SEMAPHORE_SAD_EQ_SDD;
774 	*cs++ = 0;
775 	*cs++ = ccs_semaphore_offset(rq);
776 	*cs++ = 0;
777 
778 	return cs;
779 }
780 
781 static __always_inline u32*
gen12_emit_fini_breadcrumb_tail(struct i915_request * rq,u32 * cs)782 gen12_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs)
783 {
784 	*cs++ = MI_USER_INTERRUPT;
785 
786 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
787 	if (intel_engine_has_semaphores(rq->engine) &&
788 	    !intel_uc_uses_guc_submission(&rq->engine->gt->uc))
789 		cs = gen12_emit_preempt_busywait(rq, cs);
790 
791 	/* Wa_14014475959:dg2 */
792 	if (intel_engine_uses_wa_hold_ccs_switchout(rq->engine))
793 		cs = ccs_emit_wa_busywait(rq, cs);
794 
795 	rq->tail = intel_ring_offset(rq, cs);
796 	assert_ring_tail_valid(rq->ring, rq->tail);
797 
798 	return gen8_emit_wa_tail(rq, cs);
799 }
800 
gen12_emit_fini_breadcrumb_xcs(struct i915_request * rq,u32 * cs)801 u32 *gen12_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
802 {
803 	/* XXX Stalling flush before seqno write; post-sync not */
804 	cs = emit_xcs_breadcrumb(rq, __gen8_emit_flush_dw(cs, 0, 0, 0));
805 	return gen12_emit_fini_breadcrumb_tail(rq, cs);
806 }
807 
gen12_emit_fini_breadcrumb_rcs(struct i915_request * rq,u32 * cs)808 u32 *gen12_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
809 {
810 	struct drm_i915_private *i915 = rq->i915;
811 	struct intel_gt *gt = rq->engine->gt;
812 	u32 flags = (PIPE_CONTROL_CS_STALL |
813 		     PIPE_CONTROL_TLB_INVALIDATE |
814 		     PIPE_CONTROL_TILE_CACHE_FLUSH |
815 		     PIPE_CONTROL_FLUSH_L3 |
816 		     PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
817 		     PIPE_CONTROL_DEPTH_CACHE_FLUSH |
818 		     PIPE_CONTROL_DC_FLUSH_ENABLE |
819 		     PIPE_CONTROL_FLUSH_ENABLE);
820 
821 	/* Wa_14016712196 */
822 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)) || IS_DG2(i915))
823 		/* dummy PIPE_CONTROL + depth flush */
824 		cs = gen12_emit_pipe_control(cs, 0,
825 					     PIPE_CONTROL_DEPTH_CACHE_FLUSH, 0);
826 
827 	if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
828 		/* Wa_1409600907 */
829 		flags |= PIPE_CONTROL_DEPTH_STALL;
830 
831 	if (!HAS_3D_PIPELINE(rq->i915))
832 		flags &= ~PIPE_CONTROL_3D_ARCH_FLAGS;
833 	else if (rq->engine->class == COMPUTE_CLASS)
834 		flags &= ~PIPE_CONTROL_3D_ENGINE_FLAGS;
835 
836 	cs = gen12_emit_pipe_control(cs, PIPE_CONTROL0_HDC_PIPELINE_FLUSH, flags, 0);
837 
838 	/*XXX: Look at gen8_emit_fini_breadcrumb_rcs */
839 	cs = gen12_emit_ggtt_write_rcs(cs,
840 				       rq->fence.seqno,
841 				       hwsp_offset(rq),
842 				       0,
843 				       PIPE_CONTROL_FLUSH_ENABLE |
844 				       PIPE_CONTROL_CS_STALL);
845 
846 	return gen12_emit_fini_breadcrumb_tail(rq, cs);
847 }
848