1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core IEEE1394 transaction logic
4  *
5  * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
6  */
7 
8 #include <linux/bug.h>
9 #include <linux/completion.h>
10 #include <linux/device.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/fs.h>
15 #include <linux/init.h>
16 #include <linux/idr.h>
17 #include <linux/jiffies.h>
18 #include <linux/kernel.h>
19 #include <linux/list.h>
20 #include <linux/module.h>
21 #include <linux/rculist.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/timer.h>
26 #include <linux/types.h>
27 #include <linux/workqueue.h>
28 
29 #include <asm/byteorder.h>
30 
31 #include "core.h"
32 
33 #define HEADER_PRI(pri)			((pri) << 0)
34 #define HEADER_TCODE(tcode)		((tcode) << 4)
35 #define HEADER_RETRY(retry)		((retry) << 8)
36 #define HEADER_TLABEL(tlabel)		((tlabel) << 10)
37 #define HEADER_DESTINATION(destination)	((destination) << 16)
38 #define HEADER_SOURCE(source)		((source) << 16)
39 #define HEADER_RCODE(rcode)		((rcode) << 12)
40 #define HEADER_OFFSET_HIGH(offset_high)	((offset_high) << 0)
41 #define HEADER_DATA_LENGTH(length)	((length) << 16)
42 #define HEADER_EXTENDED_TCODE(tcode)	((tcode) << 0)
43 
44 #define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
45 #define HEADER_GET_TLABEL(q)		(((q) >> 10) & 0x3f)
46 #define HEADER_GET_RCODE(q)		(((q) >> 12) & 0x0f)
47 #define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
48 #define HEADER_GET_SOURCE(q)		(((q) >> 16) & 0xffff)
49 #define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
50 #define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
51 #define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
52 
53 #define HEADER_DESTINATION_IS_BROADCAST(q) \
54 	(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
55 
56 #define PHY_PACKET_CONFIG	0x0
57 #define PHY_PACKET_LINK_ON	0x1
58 #define PHY_PACKET_SELF_ID	0x2
59 
60 #define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
61 #define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
62 #define PHY_IDENTIFIER(id)		((id) << 30)
63 
64 /* returns 0 if the split timeout handler is already running */
try_cancel_split_timeout(struct fw_transaction * t)65 static int try_cancel_split_timeout(struct fw_transaction *t)
66 {
67 	if (t->is_split_transaction)
68 		return del_timer(&t->split_timeout_timer);
69 	else
70 		return 1;
71 }
72 
close_transaction(struct fw_transaction * transaction,struct fw_card * card,int rcode,u32 response_tstamp)73 static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode,
74 			     u32 response_tstamp)
75 {
76 	struct fw_transaction *t = NULL, *iter;
77 	unsigned long flags;
78 
79 	spin_lock_irqsave(&card->lock, flags);
80 	list_for_each_entry(iter, &card->transaction_list, link) {
81 		if (iter == transaction) {
82 			if (!try_cancel_split_timeout(iter)) {
83 				spin_unlock_irqrestore(&card->lock, flags);
84 				goto timed_out;
85 			}
86 			list_del_init(&iter->link);
87 			card->tlabel_mask &= ~(1ULL << iter->tlabel);
88 			t = iter;
89 			break;
90 		}
91 	}
92 	spin_unlock_irqrestore(&card->lock, flags);
93 
94 	if (t) {
95 		if (!t->with_tstamp) {
96 			t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data);
97 		} else {
98 			t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp,
99 						NULL, 0, t->callback_data);
100 		}
101 		return 0;
102 	}
103 
104  timed_out:
105 	return -ENOENT;
106 }
107 
108 /*
109  * Only valid for transactions that are potentially pending (ie have
110  * been sent).
111  */
fw_cancel_transaction(struct fw_card * card,struct fw_transaction * transaction)112 int fw_cancel_transaction(struct fw_card *card,
113 			  struct fw_transaction *transaction)
114 {
115 	u32 tstamp;
116 
117 	/*
118 	 * Cancel the packet transmission if it's still queued.  That
119 	 * will call the packet transmission callback which cancels
120 	 * the transaction.
121 	 */
122 
123 	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
124 		return 0;
125 
126 	/*
127 	 * If the request packet has already been sent, we need to see
128 	 * if the transaction is still pending and remove it in that case.
129 	 */
130 
131 	if (transaction->packet.ack == 0) {
132 		// The timestamp is reused since it was just read now.
133 		tstamp = transaction->packet.timestamp;
134 	} else {
135 		u32 curr_cycle_time = 0;
136 
137 		(void)fw_card_read_cycle_time(card, &curr_cycle_time);
138 		tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
139 	}
140 
141 	return close_transaction(transaction, card, RCODE_CANCELLED, tstamp);
142 }
143 EXPORT_SYMBOL(fw_cancel_transaction);
144 
split_transaction_timeout_callback(struct timer_list * timer)145 static void split_transaction_timeout_callback(struct timer_list *timer)
146 {
147 	struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
148 	struct fw_card *card = t->card;
149 	unsigned long flags;
150 
151 	spin_lock_irqsave(&card->lock, flags);
152 	if (list_empty(&t->link)) {
153 		spin_unlock_irqrestore(&card->lock, flags);
154 		return;
155 	}
156 	list_del(&t->link);
157 	card->tlabel_mask &= ~(1ULL << t->tlabel);
158 	spin_unlock_irqrestore(&card->lock, flags);
159 
160 	if (!t->with_tstamp) {
161 		t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
162 	} else {
163 		t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp,
164 					t->split_timeout_cycle, NULL, 0, t->callback_data);
165 	}
166 }
167 
start_split_transaction_timeout(struct fw_transaction * t,struct fw_card * card)168 static void start_split_transaction_timeout(struct fw_transaction *t,
169 					    struct fw_card *card)
170 {
171 	unsigned long flags;
172 
173 	spin_lock_irqsave(&card->lock, flags);
174 
175 	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
176 		spin_unlock_irqrestore(&card->lock, flags);
177 		return;
178 	}
179 
180 	t->is_split_transaction = true;
181 	mod_timer(&t->split_timeout_timer,
182 		  jiffies + card->split_timeout_jiffies);
183 
184 	spin_unlock_irqrestore(&card->lock, flags);
185 }
186 
187 static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp);
188 
transmit_complete_callback(struct fw_packet * packet,struct fw_card * card,int status)189 static void transmit_complete_callback(struct fw_packet *packet,
190 				       struct fw_card *card, int status)
191 {
192 	struct fw_transaction *t =
193 	    container_of(packet, struct fw_transaction, packet);
194 
195 	switch (status) {
196 	case ACK_COMPLETE:
197 		close_transaction(t, card, RCODE_COMPLETE, packet->timestamp);
198 		break;
199 	case ACK_PENDING:
200 	{
201 		t->split_timeout_cycle =
202 			compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff;
203 		start_split_transaction_timeout(t, card);
204 		break;
205 	}
206 	case ACK_BUSY_X:
207 	case ACK_BUSY_A:
208 	case ACK_BUSY_B:
209 		close_transaction(t, card, RCODE_BUSY, packet->timestamp);
210 		break;
211 	case ACK_DATA_ERROR:
212 		close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp);
213 		break;
214 	case ACK_TYPE_ERROR:
215 		close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp);
216 		break;
217 	default:
218 		/*
219 		 * In this case the ack is really a juju specific
220 		 * rcode, so just forward that to the callback.
221 		 */
222 		close_transaction(t, card, status, packet->timestamp);
223 		break;
224 	}
225 }
226 
fw_fill_request(struct fw_packet * packet,int tcode,int tlabel,int destination_id,int source_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)227 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
228 		int destination_id, int source_id, int generation, int speed,
229 		unsigned long long offset, void *payload, size_t length)
230 {
231 	int ext_tcode;
232 
233 	if (tcode == TCODE_STREAM_DATA) {
234 		packet->header[0] =
235 			HEADER_DATA_LENGTH(length) |
236 			destination_id |
237 			HEADER_TCODE(TCODE_STREAM_DATA);
238 		packet->header_length = 4;
239 		packet->payload = payload;
240 		packet->payload_length = length;
241 
242 		goto common;
243 	}
244 
245 	if (tcode > 0x10) {
246 		ext_tcode = tcode & ~0x10;
247 		tcode = TCODE_LOCK_REQUEST;
248 	} else
249 		ext_tcode = 0;
250 
251 	packet->header[0] =
252 		HEADER_RETRY(RETRY_X) |
253 		HEADER_TLABEL(tlabel) |
254 		HEADER_TCODE(tcode) |
255 		HEADER_DESTINATION(destination_id);
256 	packet->header[1] =
257 		HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
258 	packet->header[2] =
259 		offset;
260 
261 	switch (tcode) {
262 	case TCODE_WRITE_QUADLET_REQUEST:
263 		packet->header[3] = *(u32 *)payload;
264 		packet->header_length = 16;
265 		packet->payload_length = 0;
266 		break;
267 
268 	case TCODE_LOCK_REQUEST:
269 	case TCODE_WRITE_BLOCK_REQUEST:
270 		packet->header[3] =
271 			HEADER_DATA_LENGTH(length) |
272 			HEADER_EXTENDED_TCODE(ext_tcode);
273 		packet->header_length = 16;
274 		packet->payload = payload;
275 		packet->payload_length = length;
276 		break;
277 
278 	case TCODE_READ_QUADLET_REQUEST:
279 		packet->header_length = 12;
280 		packet->payload_length = 0;
281 		break;
282 
283 	case TCODE_READ_BLOCK_REQUEST:
284 		packet->header[3] =
285 			HEADER_DATA_LENGTH(length) |
286 			HEADER_EXTENDED_TCODE(ext_tcode);
287 		packet->header_length = 16;
288 		packet->payload_length = 0;
289 		break;
290 
291 	default:
292 		WARN(1, "wrong tcode %d\n", tcode);
293 	}
294  common:
295 	packet->speed = speed;
296 	packet->generation = generation;
297 	packet->ack = 0;
298 	packet->payload_mapped = false;
299 }
300 
allocate_tlabel(struct fw_card * card)301 static int allocate_tlabel(struct fw_card *card)
302 {
303 	int tlabel;
304 
305 	tlabel = card->current_tlabel;
306 	while (card->tlabel_mask & (1ULL << tlabel)) {
307 		tlabel = (tlabel + 1) & 0x3f;
308 		if (tlabel == card->current_tlabel)
309 			return -EBUSY;
310 	}
311 
312 	card->current_tlabel = (tlabel + 1) & 0x3f;
313 	card->tlabel_mask |= 1ULL << tlabel;
314 
315 	return tlabel;
316 }
317 
318 /**
319  * __fw_send_request() - submit a request packet for transmission to generate callback for response
320  *			 subaction with or without time stamp.
321  * @card:		interface to send the request at
322  * @t:			transaction instance to which the request belongs
323  * @tcode:		transaction code
324  * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
325  * @generation:		bus generation in which request and response are valid
326  * @speed:		transmission speed
327  * @offset:		48bit wide offset into destination's address space
328  * @payload:		data payload for the request subaction
329  * @length:		length of the payload, in bytes
330  * @callback:		union of two functions whether to receive time stamp or not for response
331  *			subaction.
332  * @with_tstamp:	Whether to receive time stamp or not for response subaction.
333  * @callback_data:	data to be passed to the transaction completion callback
334  *
335  * Submit a request packet into the asynchronous request transmission queue.
336  * Can be called from atomic context.  If you prefer a blocking API, use
337  * fw_run_transaction() in a context that can sleep.
338  *
339  * In case of lock requests, specify one of the firewire-core specific %TCODE_
340  * constants instead of %TCODE_LOCK_REQUEST in @tcode.
341  *
342  * Make sure that the value in @destination_id is not older than the one in
343  * @generation.  Otherwise the request is in danger to be sent to a wrong node.
344  *
345  * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
346  * needs to synthesize @destination_id with fw_stream_packet_destination_id().
347  * It will contain tag, channel, and sy data instead of a node ID then.
348  *
349  * The payload buffer at @data is going to be DMA-mapped except in case of
350  * @length <= 8 or of local (loopback) requests.  Hence make sure that the
351  * buffer complies with the restrictions of the streaming DMA mapping API.
352  * @payload must not be freed before the @callback is called.
353  *
354  * In case of request types without payload, @data is NULL and @length is 0.
355  *
356  * After the transaction is completed successfully or unsuccessfully, the
357  * @callback will be called.  Among its parameters is the response code which
358  * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
359  * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
360  * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
361  * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
362  * generation, or missing ACK respectively.
363  *
364  * Note some timing corner cases:  fw_send_request() may complete much earlier
365  * than when the request packet actually hits the wire.  On the other hand,
366  * transaction completion and hence execution of @callback may happen even
367  * before fw_send_request() returns.
368  */
__fw_send_request(struct fw_card * card,struct fw_transaction * t,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length,union fw_transaction_callback callback,bool with_tstamp,void * callback_data)369 void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
370 		int destination_id, int generation, int speed, unsigned long long offset,
371 		void *payload, size_t length, union fw_transaction_callback callback,
372 		bool with_tstamp, void *callback_data)
373 {
374 	unsigned long flags;
375 	int tlabel;
376 
377 	/*
378 	 * Allocate tlabel from the bitmap and put the transaction on
379 	 * the list while holding the card spinlock.
380 	 */
381 
382 	spin_lock_irqsave(&card->lock, flags);
383 
384 	tlabel = allocate_tlabel(card);
385 	if (tlabel < 0) {
386 		spin_unlock_irqrestore(&card->lock, flags);
387 		if (!with_tstamp) {
388 			callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
389 		} else {
390 			// Timestamping on behalf of hardware.
391 			u32 curr_cycle_time = 0;
392 			u32 tstamp;
393 
394 			(void)fw_card_read_cycle_time(card, &curr_cycle_time);
395 			tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
396 
397 			callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0,
398 					     callback_data);
399 		}
400 		return;
401 	}
402 
403 	t->node_id = destination_id;
404 	t->tlabel = tlabel;
405 	t->card = card;
406 	t->is_split_transaction = false;
407 	timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0);
408 	t->callback = callback;
409 	t->with_tstamp = with_tstamp;
410 	t->callback_data = callback_data;
411 
412 	fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id, generation,
413 			speed, offset, payload, length);
414 	t->packet.callback = transmit_complete_callback;
415 
416 	list_add_tail(&t->link, &card->transaction_list);
417 
418 	spin_unlock_irqrestore(&card->lock, flags);
419 
420 	card->driver->send_request(card, &t->packet);
421 }
422 EXPORT_SYMBOL_GPL(__fw_send_request);
423 
424 struct transaction_callback_data {
425 	struct completion done;
426 	void *payload;
427 	int rcode;
428 };
429 
transaction_callback(struct fw_card * card,int rcode,void * payload,size_t length,void * data)430 static void transaction_callback(struct fw_card *card, int rcode,
431 				 void *payload, size_t length, void *data)
432 {
433 	struct transaction_callback_data *d = data;
434 
435 	if (rcode == RCODE_COMPLETE)
436 		memcpy(d->payload, payload, length);
437 	d->rcode = rcode;
438 	complete(&d->done);
439 }
440 
441 /**
442  * fw_run_transaction() - send request and sleep until transaction is completed
443  * @card:		card interface for this request
444  * @tcode:		transaction code
445  * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
446  * @generation:		bus generation in which request and response are valid
447  * @speed:		transmission speed
448  * @offset:		48bit wide offset into destination's address space
449  * @payload:		data payload for the request subaction
450  * @length:		length of the payload, in bytes
451  *
452  * Returns the RCODE.  See fw_send_request() for parameter documentation.
453  * Unlike fw_send_request(), @data points to the payload of the request or/and
454  * to the payload of the response.  DMA mapping restrictions apply to outbound
455  * request payloads of >= 8 bytes but not to inbound response payloads.
456  */
fw_run_transaction(struct fw_card * card,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)457 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
458 		       int generation, int speed, unsigned long long offset,
459 		       void *payload, size_t length)
460 {
461 	struct transaction_callback_data d;
462 	struct fw_transaction t;
463 
464 	timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
465 	init_completion(&d.done);
466 	d.payload = payload;
467 	fw_send_request(card, &t, tcode, destination_id, generation, speed,
468 			offset, payload, length, transaction_callback, &d);
469 	wait_for_completion(&d.done);
470 	destroy_timer_on_stack(&t.split_timeout_timer);
471 
472 	return d.rcode;
473 }
474 EXPORT_SYMBOL(fw_run_transaction);
475 
476 static DEFINE_MUTEX(phy_config_mutex);
477 static DECLARE_COMPLETION(phy_config_done);
478 
transmit_phy_packet_callback(struct fw_packet * packet,struct fw_card * card,int status)479 static void transmit_phy_packet_callback(struct fw_packet *packet,
480 					 struct fw_card *card, int status)
481 {
482 	complete(&phy_config_done);
483 }
484 
485 static struct fw_packet phy_config_packet = {
486 	.header_length	= 12,
487 	.header[0]	= TCODE_LINK_INTERNAL << 4,
488 	.payload_length	= 0,
489 	.speed		= SCODE_100,
490 	.callback	= transmit_phy_packet_callback,
491 };
492 
fw_send_phy_config(struct fw_card * card,int node_id,int generation,int gap_count)493 void fw_send_phy_config(struct fw_card *card,
494 			int node_id, int generation, int gap_count)
495 {
496 	long timeout = DIV_ROUND_UP(HZ, 10);
497 	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
498 
499 	if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
500 		data |= PHY_CONFIG_ROOT_ID(node_id);
501 
502 	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
503 		gap_count = card->driver->read_phy_reg(card, 1);
504 		if (gap_count < 0)
505 			return;
506 
507 		gap_count &= 63;
508 		if (gap_count == 63)
509 			return;
510 	}
511 	data |= PHY_CONFIG_GAP_COUNT(gap_count);
512 
513 	mutex_lock(&phy_config_mutex);
514 
515 	phy_config_packet.header[1] = data;
516 	phy_config_packet.header[2] = ~data;
517 	phy_config_packet.generation = generation;
518 	reinit_completion(&phy_config_done);
519 
520 	card->driver->send_request(card, &phy_config_packet);
521 	wait_for_completion_timeout(&phy_config_done, timeout);
522 
523 	mutex_unlock(&phy_config_mutex);
524 }
525 
lookup_overlapping_address_handler(struct list_head * list,unsigned long long offset,size_t length)526 static struct fw_address_handler *lookup_overlapping_address_handler(
527 	struct list_head *list, unsigned long long offset, size_t length)
528 {
529 	struct fw_address_handler *handler;
530 
531 	list_for_each_entry_rcu(handler, list, link) {
532 		if (handler->offset < offset + length &&
533 		    offset < handler->offset + handler->length)
534 			return handler;
535 	}
536 
537 	return NULL;
538 }
539 
is_enclosing_handler(struct fw_address_handler * handler,unsigned long long offset,size_t length)540 static bool is_enclosing_handler(struct fw_address_handler *handler,
541 				 unsigned long long offset, size_t length)
542 {
543 	return handler->offset <= offset &&
544 		offset + length <= handler->offset + handler->length;
545 }
546 
lookup_enclosing_address_handler(struct list_head * list,unsigned long long offset,size_t length)547 static struct fw_address_handler *lookup_enclosing_address_handler(
548 	struct list_head *list, unsigned long long offset, size_t length)
549 {
550 	struct fw_address_handler *handler;
551 
552 	list_for_each_entry_rcu(handler, list, link) {
553 		if (is_enclosing_handler(handler, offset, length))
554 			return handler;
555 	}
556 
557 	return NULL;
558 }
559 
560 static DEFINE_SPINLOCK(address_handler_list_lock);
561 static LIST_HEAD(address_handler_list);
562 
563 const struct fw_address_region fw_high_memory_region =
564 	{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
565 EXPORT_SYMBOL(fw_high_memory_region);
566 
567 static const struct fw_address_region low_memory_region =
568 	{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
569 
570 #if 0
571 const struct fw_address_region fw_private_region =
572 	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
573 const struct fw_address_region fw_csr_region =
574 	{ .start = CSR_REGISTER_BASE,
575 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
576 const struct fw_address_region fw_unit_space_region =
577 	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
578 #endif  /*  0  */
579 
580 /**
581  * fw_core_add_address_handler() - register for incoming requests
582  * @handler:	callback
583  * @region:	region in the IEEE 1212 node space address range
584  *
585  * region->start, ->end, and handler->length have to be quadlet-aligned.
586  *
587  * When a request is received that falls within the specified address range,
588  * the specified callback is invoked.  The parameters passed to the callback
589  * give the details of the particular request.
590  *
591  * To be called in process context.
592  * Return value:  0 on success, non-zero otherwise.
593  *
594  * The start offset of the handler's address region is determined by
595  * fw_core_add_address_handler() and is returned in handler->offset.
596  *
597  * Address allocations are exclusive, except for the FCP registers.
598  */
fw_core_add_address_handler(struct fw_address_handler * handler,const struct fw_address_region * region)599 int fw_core_add_address_handler(struct fw_address_handler *handler,
600 				const struct fw_address_region *region)
601 {
602 	struct fw_address_handler *other;
603 	int ret = -EBUSY;
604 
605 	if (region->start & 0xffff000000000003ULL ||
606 	    region->start >= region->end ||
607 	    region->end   > 0x0001000000000000ULL ||
608 	    handler->length & 3 ||
609 	    handler->length == 0)
610 		return -EINVAL;
611 
612 	spin_lock(&address_handler_list_lock);
613 
614 	handler->offset = region->start;
615 	while (handler->offset + handler->length <= region->end) {
616 		if (is_in_fcp_region(handler->offset, handler->length))
617 			other = NULL;
618 		else
619 			other = lookup_overlapping_address_handler
620 					(&address_handler_list,
621 					 handler->offset, handler->length);
622 		if (other != NULL) {
623 			handler->offset += other->length;
624 		} else {
625 			list_add_tail_rcu(&handler->link, &address_handler_list);
626 			ret = 0;
627 			break;
628 		}
629 	}
630 
631 	spin_unlock(&address_handler_list_lock);
632 
633 	return ret;
634 }
635 EXPORT_SYMBOL(fw_core_add_address_handler);
636 
637 /**
638  * fw_core_remove_address_handler() - unregister an address handler
639  * @handler: callback
640  *
641  * To be called in process context.
642  *
643  * When fw_core_remove_address_handler() returns, @handler->callback() is
644  * guaranteed to not run on any CPU anymore.
645  */
fw_core_remove_address_handler(struct fw_address_handler * handler)646 void fw_core_remove_address_handler(struct fw_address_handler *handler)
647 {
648 	spin_lock(&address_handler_list_lock);
649 	list_del_rcu(&handler->link);
650 	spin_unlock(&address_handler_list_lock);
651 	synchronize_rcu();
652 }
653 EXPORT_SYMBOL(fw_core_remove_address_handler);
654 
655 struct fw_request {
656 	struct kref kref;
657 	struct fw_packet response;
658 	u32 request_header[4];
659 	int ack;
660 	u32 timestamp;
661 	u32 length;
662 	u32 data[];
663 };
664 
fw_request_get(struct fw_request * request)665 void fw_request_get(struct fw_request *request)
666 {
667 	kref_get(&request->kref);
668 }
669 
release_request(struct kref * kref)670 static void release_request(struct kref *kref)
671 {
672 	struct fw_request *request = container_of(kref, struct fw_request, kref);
673 
674 	kfree(request);
675 }
676 
fw_request_put(struct fw_request * request)677 void fw_request_put(struct fw_request *request)
678 {
679 	kref_put(&request->kref, release_request);
680 }
681 
free_response_callback(struct fw_packet * packet,struct fw_card * card,int status)682 static void free_response_callback(struct fw_packet *packet,
683 				   struct fw_card *card, int status)
684 {
685 	struct fw_request *request = container_of(packet, struct fw_request, response);
686 
687 	// Decrease the reference count since not at in-flight.
688 	fw_request_put(request);
689 
690 	// Decrease the reference count to release the object.
691 	fw_request_put(request);
692 }
693 
fw_get_response_length(struct fw_request * r)694 int fw_get_response_length(struct fw_request *r)
695 {
696 	int tcode, ext_tcode, data_length;
697 
698 	tcode = HEADER_GET_TCODE(r->request_header[0]);
699 
700 	switch (tcode) {
701 	case TCODE_WRITE_QUADLET_REQUEST:
702 	case TCODE_WRITE_BLOCK_REQUEST:
703 		return 0;
704 
705 	case TCODE_READ_QUADLET_REQUEST:
706 		return 4;
707 
708 	case TCODE_READ_BLOCK_REQUEST:
709 		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
710 		return data_length;
711 
712 	case TCODE_LOCK_REQUEST:
713 		ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
714 		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
715 		switch (ext_tcode) {
716 		case EXTCODE_FETCH_ADD:
717 		case EXTCODE_LITTLE_ADD:
718 			return data_length;
719 		default:
720 			return data_length / 2;
721 		}
722 
723 	default:
724 		WARN(1, "wrong tcode %d\n", tcode);
725 		return 0;
726 	}
727 }
728 
fw_fill_response(struct fw_packet * response,u32 * request_header,int rcode,void * payload,size_t length)729 void fw_fill_response(struct fw_packet *response, u32 *request_header,
730 		      int rcode, void *payload, size_t length)
731 {
732 	int tcode, tlabel, extended_tcode, source, destination;
733 
734 	tcode          = HEADER_GET_TCODE(request_header[0]);
735 	tlabel         = HEADER_GET_TLABEL(request_header[0]);
736 	source         = HEADER_GET_DESTINATION(request_header[0]);
737 	destination    = HEADER_GET_SOURCE(request_header[1]);
738 	extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
739 
740 	response->header[0] =
741 		HEADER_RETRY(RETRY_1) |
742 		HEADER_TLABEL(tlabel) |
743 		HEADER_DESTINATION(destination);
744 	response->header[1] =
745 		HEADER_SOURCE(source) |
746 		HEADER_RCODE(rcode);
747 	response->header[2] = 0;
748 
749 	switch (tcode) {
750 	case TCODE_WRITE_QUADLET_REQUEST:
751 	case TCODE_WRITE_BLOCK_REQUEST:
752 		response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
753 		response->header_length = 12;
754 		response->payload_length = 0;
755 		break;
756 
757 	case TCODE_READ_QUADLET_REQUEST:
758 		response->header[0] |=
759 			HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
760 		if (payload != NULL)
761 			response->header[3] = *(u32 *)payload;
762 		else
763 			response->header[3] = 0;
764 		response->header_length = 16;
765 		response->payload_length = 0;
766 		break;
767 
768 	case TCODE_READ_BLOCK_REQUEST:
769 	case TCODE_LOCK_REQUEST:
770 		response->header[0] |= HEADER_TCODE(tcode + 2);
771 		response->header[3] =
772 			HEADER_DATA_LENGTH(length) |
773 			HEADER_EXTENDED_TCODE(extended_tcode);
774 		response->header_length = 16;
775 		response->payload = payload;
776 		response->payload_length = length;
777 		break;
778 
779 	default:
780 		WARN(1, "wrong tcode %d\n", tcode);
781 	}
782 
783 	response->payload_mapped = false;
784 }
785 EXPORT_SYMBOL(fw_fill_response);
786 
compute_split_timeout_timestamp(struct fw_card * card,u32 request_timestamp)787 static u32 compute_split_timeout_timestamp(struct fw_card *card,
788 					   u32 request_timestamp)
789 {
790 	unsigned int cycles;
791 	u32 timestamp;
792 
793 	cycles = card->split_timeout_cycles;
794 	cycles += request_timestamp & 0x1fff;
795 
796 	timestamp = request_timestamp & ~0x1fff;
797 	timestamp += (cycles / 8000) << 13;
798 	timestamp |= cycles % 8000;
799 
800 	return timestamp;
801 }
802 
allocate_request(struct fw_card * card,struct fw_packet * p)803 static struct fw_request *allocate_request(struct fw_card *card,
804 					   struct fw_packet *p)
805 {
806 	struct fw_request *request;
807 	u32 *data, length;
808 	int request_tcode;
809 
810 	request_tcode = HEADER_GET_TCODE(p->header[0]);
811 	switch (request_tcode) {
812 	case TCODE_WRITE_QUADLET_REQUEST:
813 		data = &p->header[3];
814 		length = 4;
815 		break;
816 
817 	case TCODE_WRITE_BLOCK_REQUEST:
818 	case TCODE_LOCK_REQUEST:
819 		data = p->payload;
820 		length = HEADER_GET_DATA_LENGTH(p->header[3]);
821 		break;
822 
823 	case TCODE_READ_QUADLET_REQUEST:
824 		data = NULL;
825 		length = 4;
826 		break;
827 
828 	case TCODE_READ_BLOCK_REQUEST:
829 		data = NULL;
830 		length = HEADER_GET_DATA_LENGTH(p->header[3]);
831 		break;
832 
833 	default:
834 		fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
835 			 p->header[0], p->header[1], p->header[2]);
836 		return NULL;
837 	}
838 
839 	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
840 	if (request == NULL)
841 		return NULL;
842 	kref_init(&request->kref);
843 
844 	request->response.speed = p->speed;
845 	request->response.timestamp =
846 			compute_split_timeout_timestamp(card, p->timestamp);
847 	request->response.generation = p->generation;
848 	request->response.ack = 0;
849 	request->response.callback = free_response_callback;
850 	request->ack = p->ack;
851 	request->timestamp = p->timestamp;
852 	request->length = length;
853 	if (data)
854 		memcpy(request->data, data, length);
855 
856 	memcpy(request->request_header, p->header, sizeof(p->header));
857 
858 	return request;
859 }
860 
861 /**
862  * fw_send_response: - send response packet for asynchronous transaction.
863  * @card:	interface to send the response at.
864  * @request:	firewire request data for the transaction.
865  * @rcode:	response code to send.
866  *
867  * Submit a response packet into the asynchronous response transmission queue. The @request
868  * is going to be released when the transmission successfully finishes later.
869  */
fw_send_response(struct fw_card * card,struct fw_request * request,int rcode)870 void fw_send_response(struct fw_card *card,
871 		      struct fw_request *request, int rcode)
872 {
873 	/* unified transaction or broadcast transaction: don't respond */
874 	if (request->ack != ACK_PENDING ||
875 	    HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
876 		fw_request_put(request);
877 		return;
878 	}
879 
880 	if (rcode == RCODE_COMPLETE)
881 		fw_fill_response(&request->response, request->request_header,
882 				 rcode, request->data,
883 				 fw_get_response_length(request));
884 	else
885 		fw_fill_response(&request->response, request->request_header,
886 				 rcode, NULL, 0);
887 
888 	// Increase the reference count so that the object is kept during in-flight.
889 	fw_request_get(request);
890 
891 	card->driver->send_response(card, &request->response);
892 }
893 EXPORT_SYMBOL(fw_send_response);
894 
895 /**
896  * fw_get_request_speed() - returns speed at which the @request was received
897  * @request: firewire request data
898  */
fw_get_request_speed(struct fw_request * request)899 int fw_get_request_speed(struct fw_request *request)
900 {
901 	return request->response.speed;
902 }
903 EXPORT_SYMBOL(fw_get_request_speed);
904 
905 /**
906  * fw_request_get_timestamp: Get timestamp of the request.
907  * @request: The opaque pointer to request structure.
908  *
909  * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
910  * timestamp consists of the low order 3 bits of second field and the full 13 bits of count
911  * field of isochronous cycle time register.
912  *
913  * Returns: timestamp of the request.
914  */
fw_request_get_timestamp(const struct fw_request * request)915 u32 fw_request_get_timestamp(const struct fw_request *request)
916 {
917 	return request->timestamp;
918 }
919 EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
920 
handle_exclusive_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)921 static void handle_exclusive_region_request(struct fw_card *card,
922 					    struct fw_packet *p,
923 					    struct fw_request *request,
924 					    unsigned long long offset)
925 {
926 	struct fw_address_handler *handler;
927 	int tcode, destination, source;
928 
929 	destination = HEADER_GET_DESTINATION(p->header[0]);
930 	source      = HEADER_GET_SOURCE(p->header[1]);
931 	tcode       = HEADER_GET_TCODE(p->header[0]);
932 	if (tcode == TCODE_LOCK_REQUEST)
933 		tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
934 
935 	rcu_read_lock();
936 	handler = lookup_enclosing_address_handler(&address_handler_list,
937 						   offset, request->length);
938 	if (handler)
939 		handler->address_callback(card, request,
940 					  tcode, destination, source,
941 					  p->generation, offset,
942 					  request->data, request->length,
943 					  handler->callback_data);
944 	rcu_read_unlock();
945 
946 	if (!handler)
947 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
948 }
949 
handle_fcp_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)950 static void handle_fcp_region_request(struct fw_card *card,
951 				      struct fw_packet *p,
952 				      struct fw_request *request,
953 				      unsigned long long offset)
954 {
955 	struct fw_address_handler *handler;
956 	int tcode, destination, source;
957 
958 	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
959 	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
960 	    request->length > 0x200) {
961 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
962 
963 		return;
964 	}
965 
966 	tcode       = HEADER_GET_TCODE(p->header[0]);
967 	destination = HEADER_GET_DESTINATION(p->header[0]);
968 	source      = HEADER_GET_SOURCE(p->header[1]);
969 
970 	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
971 	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
972 		fw_send_response(card, request, RCODE_TYPE_ERROR);
973 
974 		return;
975 	}
976 
977 	rcu_read_lock();
978 	list_for_each_entry_rcu(handler, &address_handler_list, link) {
979 		if (is_enclosing_handler(handler, offset, request->length))
980 			handler->address_callback(card, request, tcode,
981 						  destination, source,
982 						  p->generation, offset,
983 						  request->data,
984 						  request->length,
985 						  handler->callback_data);
986 	}
987 	rcu_read_unlock();
988 
989 	fw_send_response(card, request, RCODE_COMPLETE);
990 }
991 
fw_core_handle_request(struct fw_card * card,struct fw_packet * p)992 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
993 {
994 	struct fw_request *request;
995 	unsigned long long offset;
996 
997 	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
998 		return;
999 
1000 	if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
1001 		fw_cdev_handle_phy_packet(card, p);
1002 		return;
1003 	}
1004 
1005 	request = allocate_request(card, p);
1006 	if (request == NULL) {
1007 		/* FIXME: send statically allocated busy packet. */
1008 		return;
1009 	}
1010 
1011 	offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
1012 		p->header[2];
1013 
1014 	if (!is_in_fcp_region(offset, request->length))
1015 		handle_exclusive_region_request(card, p, request, offset);
1016 	else
1017 		handle_fcp_region_request(card, p, request, offset);
1018 
1019 }
1020 EXPORT_SYMBOL(fw_core_handle_request);
1021 
fw_core_handle_response(struct fw_card * card,struct fw_packet * p)1022 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
1023 {
1024 	struct fw_transaction *t = NULL, *iter;
1025 	unsigned long flags;
1026 	u32 *data;
1027 	size_t data_length;
1028 	int tcode, tlabel, source, rcode;
1029 
1030 	tcode	= HEADER_GET_TCODE(p->header[0]);
1031 	tlabel	= HEADER_GET_TLABEL(p->header[0]);
1032 	source	= HEADER_GET_SOURCE(p->header[1]);
1033 	rcode	= HEADER_GET_RCODE(p->header[1]);
1034 
1035 	spin_lock_irqsave(&card->lock, flags);
1036 	list_for_each_entry(iter, &card->transaction_list, link) {
1037 		if (iter->node_id == source && iter->tlabel == tlabel) {
1038 			if (!try_cancel_split_timeout(iter)) {
1039 				spin_unlock_irqrestore(&card->lock, flags);
1040 				goto timed_out;
1041 			}
1042 			list_del_init(&iter->link);
1043 			card->tlabel_mask &= ~(1ULL << iter->tlabel);
1044 			t = iter;
1045 			break;
1046 		}
1047 	}
1048 	spin_unlock_irqrestore(&card->lock, flags);
1049 
1050 	if (!t) {
1051  timed_out:
1052 		fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
1053 			  source, tlabel);
1054 		return;
1055 	}
1056 
1057 	/*
1058 	 * FIXME: sanity check packet, is length correct, does tcodes
1059 	 * and addresses match.
1060 	 */
1061 
1062 	switch (tcode) {
1063 	case TCODE_READ_QUADLET_RESPONSE:
1064 		data = (u32 *) &p->header[3];
1065 		data_length = 4;
1066 		break;
1067 
1068 	case TCODE_WRITE_RESPONSE:
1069 		data = NULL;
1070 		data_length = 0;
1071 		break;
1072 
1073 	case TCODE_READ_BLOCK_RESPONSE:
1074 	case TCODE_LOCK_RESPONSE:
1075 		data = p->payload;
1076 		data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
1077 		break;
1078 
1079 	default:
1080 		/* Should never happen, this is just to shut up gcc. */
1081 		data = NULL;
1082 		data_length = 0;
1083 		break;
1084 	}
1085 
1086 	/*
1087 	 * The response handler may be executed while the request handler
1088 	 * is still pending.  Cancel the request handler.
1089 	 */
1090 	card->driver->cancel_packet(card, &t->packet);
1091 
1092 	if (!t->with_tstamp) {
1093 		t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data);
1094 	} else {
1095 		t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data,
1096 					data_length, t->callback_data);
1097 	}
1098 }
1099 EXPORT_SYMBOL(fw_core_handle_response);
1100 
1101 /**
1102  * fw_rcode_string - convert a firewire result code to an error description
1103  * @rcode: the result code
1104  */
fw_rcode_string(int rcode)1105 const char *fw_rcode_string(int rcode)
1106 {
1107 	static const char *const names[] = {
1108 		[RCODE_COMPLETE]       = "no error",
1109 		[RCODE_CONFLICT_ERROR] = "conflict error",
1110 		[RCODE_DATA_ERROR]     = "data error",
1111 		[RCODE_TYPE_ERROR]     = "type error",
1112 		[RCODE_ADDRESS_ERROR]  = "address error",
1113 		[RCODE_SEND_ERROR]     = "send error",
1114 		[RCODE_CANCELLED]      = "timeout",
1115 		[RCODE_BUSY]           = "busy",
1116 		[RCODE_GENERATION]     = "bus reset",
1117 		[RCODE_NO_ACK]         = "no ack",
1118 	};
1119 
1120 	if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1121 		return names[rcode];
1122 	else
1123 		return "unknown";
1124 }
1125 EXPORT_SYMBOL(fw_rcode_string);
1126 
1127 static const struct fw_address_region topology_map_region =
1128 	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1129 	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1130 
handle_topology_map(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1131 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1132 		int tcode, int destination, int source, int generation,
1133 		unsigned long long offset, void *payload, size_t length,
1134 		void *callback_data)
1135 {
1136 	int start;
1137 
1138 	if (!TCODE_IS_READ_REQUEST(tcode)) {
1139 		fw_send_response(card, request, RCODE_TYPE_ERROR);
1140 		return;
1141 	}
1142 
1143 	if ((offset & 3) > 0 || (length & 3) > 0) {
1144 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1145 		return;
1146 	}
1147 
1148 	start = (offset - topology_map_region.start) / 4;
1149 	memcpy(payload, &card->topology_map[start], length);
1150 
1151 	fw_send_response(card, request, RCODE_COMPLETE);
1152 }
1153 
1154 static struct fw_address_handler topology_map = {
1155 	.length			= 0x400,
1156 	.address_callback	= handle_topology_map,
1157 };
1158 
1159 static const struct fw_address_region registers_region =
1160 	{ .start = CSR_REGISTER_BASE,
1161 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1162 
update_split_timeout(struct fw_card * card)1163 static void update_split_timeout(struct fw_card *card)
1164 {
1165 	unsigned int cycles;
1166 
1167 	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1168 
1169 	/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1170 	cycles = clamp(cycles, 800u, 3u * 8000u);
1171 
1172 	card->split_timeout_cycles = cycles;
1173 	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1174 }
1175 
handle_registers(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1176 static void handle_registers(struct fw_card *card, struct fw_request *request,
1177 		int tcode, int destination, int source, int generation,
1178 		unsigned long long offset, void *payload, size_t length,
1179 		void *callback_data)
1180 {
1181 	int reg = offset & ~CSR_REGISTER_BASE;
1182 	__be32 *data = payload;
1183 	int rcode = RCODE_COMPLETE;
1184 	unsigned long flags;
1185 
1186 	switch (reg) {
1187 	case CSR_PRIORITY_BUDGET:
1188 		if (!card->priority_budget_implemented) {
1189 			rcode = RCODE_ADDRESS_ERROR;
1190 			break;
1191 		}
1192 		fallthrough;
1193 
1194 	case CSR_NODE_IDS:
1195 		/*
1196 		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1197 		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1198 		 */
1199 		fallthrough;
1200 
1201 	case CSR_STATE_CLEAR:
1202 	case CSR_STATE_SET:
1203 	case CSR_CYCLE_TIME:
1204 	case CSR_BUS_TIME:
1205 	case CSR_BUSY_TIMEOUT:
1206 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1207 			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1208 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1209 			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1210 		else
1211 			rcode = RCODE_TYPE_ERROR;
1212 		break;
1213 
1214 	case CSR_RESET_START:
1215 		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1216 			card->driver->write_csr(card, CSR_STATE_CLEAR,
1217 						CSR_STATE_BIT_ABDICATE);
1218 		else
1219 			rcode = RCODE_TYPE_ERROR;
1220 		break;
1221 
1222 	case CSR_SPLIT_TIMEOUT_HI:
1223 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1224 			*data = cpu_to_be32(card->split_timeout_hi);
1225 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1226 			spin_lock_irqsave(&card->lock, flags);
1227 			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1228 			update_split_timeout(card);
1229 			spin_unlock_irqrestore(&card->lock, flags);
1230 		} else {
1231 			rcode = RCODE_TYPE_ERROR;
1232 		}
1233 		break;
1234 
1235 	case CSR_SPLIT_TIMEOUT_LO:
1236 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1237 			*data = cpu_to_be32(card->split_timeout_lo);
1238 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1239 			spin_lock_irqsave(&card->lock, flags);
1240 			card->split_timeout_lo =
1241 					be32_to_cpu(*data) & 0xfff80000;
1242 			update_split_timeout(card);
1243 			spin_unlock_irqrestore(&card->lock, flags);
1244 		} else {
1245 			rcode = RCODE_TYPE_ERROR;
1246 		}
1247 		break;
1248 
1249 	case CSR_MAINT_UTILITY:
1250 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1251 			*data = card->maint_utility_register;
1252 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1253 			card->maint_utility_register = *data;
1254 		else
1255 			rcode = RCODE_TYPE_ERROR;
1256 		break;
1257 
1258 	case CSR_BROADCAST_CHANNEL:
1259 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1260 			*data = cpu_to_be32(card->broadcast_channel);
1261 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1262 			card->broadcast_channel =
1263 			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1264 			    BROADCAST_CHANNEL_INITIAL;
1265 		else
1266 			rcode = RCODE_TYPE_ERROR;
1267 		break;
1268 
1269 	case CSR_BUS_MANAGER_ID:
1270 	case CSR_BANDWIDTH_AVAILABLE:
1271 	case CSR_CHANNELS_AVAILABLE_HI:
1272 	case CSR_CHANNELS_AVAILABLE_LO:
1273 		/*
1274 		 * FIXME: these are handled by the OHCI hardware and
1275 		 * the stack never sees these request. If we add
1276 		 * support for a new type of controller that doesn't
1277 		 * handle this in hardware we need to deal with these
1278 		 * transactions.
1279 		 */
1280 		BUG();
1281 		break;
1282 
1283 	default:
1284 		rcode = RCODE_ADDRESS_ERROR;
1285 		break;
1286 	}
1287 
1288 	fw_send_response(card, request, rcode);
1289 }
1290 
1291 static struct fw_address_handler registers = {
1292 	.length			= 0x400,
1293 	.address_callback	= handle_registers,
1294 };
1295 
handle_low_memory(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1296 static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1297 		int tcode, int destination, int source, int generation,
1298 		unsigned long long offset, void *payload, size_t length,
1299 		void *callback_data)
1300 {
1301 	/*
1302 	 * This catches requests not handled by the physical DMA unit,
1303 	 * i.e., wrong transaction types or unauthorized source nodes.
1304 	 */
1305 	fw_send_response(card, request, RCODE_TYPE_ERROR);
1306 }
1307 
1308 static struct fw_address_handler low_memory = {
1309 	.length			= FW_MAX_PHYSICAL_RANGE,
1310 	.address_callback	= handle_low_memory,
1311 };
1312 
1313 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1314 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1315 MODULE_LICENSE("GPL");
1316 
1317 static const u32 vendor_textual_descriptor[] = {
1318 	/* textual descriptor leaf () */
1319 	0x00060000,
1320 	0x00000000,
1321 	0x00000000,
1322 	0x4c696e75,		/* L i n u */
1323 	0x78204669,		/* x   F i */
1324 	0x72657769,		/* r e w i */
1325 	0x72650000,		/* r e     */
1326 };
1327 
1328 static const u32 model_textual_descriptor[] = {
1329 	/* model descriptor leaf () */
1330 	0x00030000,
1331 	0x00000000,
1332 	0x00000000,
1333 	0x4a756a75,		/* J u j u */
1334 };
1335 
1336 static struct fw_descriptor vendor_id_descriptor = {
1337 	.length = ARRAY_SIZE(vendor_textual_descriptor),
1338 	.immediate = 0x03001f11,
1339 	.key = 0x81000000,
1340 	.data = vendor_textual_descriptor,
1341 };
1342 
1343 static struct fw_descriptor model_id_descriptor = {
1344 	.length = ARRAY_SIZE(model_textual_descriptor),
1345 	.immediate = 0x17023901,
1346 	.key = 0x81000000,
1347 	.data = model_textual_descriptor,
1348 };
1349 
fw_core_init(void)1350 static int __init fw_core_init(void)
1351 {
1352 	int ret;
1353 
1354 	fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1355 	if (!fw_workqueue)
1356 		return -ENOMEM;
1357 
1358 	ret = bus_register(&fw_bus_type);
1359 	if (ret < 0) {
1360 		destroy_workqueue(fw_workqueue);
1361 		return ret;
1362 	}
1363 
1364 	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1365 	if (fw_cdev_major < 0) {
1366 		bus_unregister(&fw_bus_type);
1367 		destroy_workqueue(fw_workqueue);
1368 		return fw_cdev_major;
1369 	}
1370 
1371 	fw_core_add_address_handler(&topology_map, &topology_map_region);
1372 	fw_core_add_address_handler(&registers, &registers_region);
1373 	fw_core_add_address_handler(&low_memory, &low_memory_region);
1374 	fw_core_add_descriptor(&vendor_id_descriptor);
1375 	fw_core_add_descriptor(&model_id_descriptor);
1376 
1377 	return 0;
1378 }
1379 
fw_core_cleanup(void)1380 static void __exit fw_core_cleanup(void)
1381 {
1382 	unregister_chrdev(fw_cdev_major, "firewire");
1383 	bus_unregister(&fw_bus_type);
1384 	destroy_workqueue(fw_workqueue);
1385 	idr_destroy(&fw_device_idr);
1386 }
1387 
1388 module_init(fw_core_init);
1389 module_exit(fw_core_cleanup);
1390