xref: /openbmc/linux/fs/btrfs/send.c (revision 4d75f5c664195b970e1cd2fd25b65b5eff257a0a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
4  */
5 
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 #include <linux/fsverity.h>
19 
20 #include "send.h"
21 #include "ctree.h"
22 #include "backref.h"
23 #include "locking.h"
24 #include "disk-io.h"
25 #include "btrfs_inode.h"
26 #include "transaction.h"
27 #include "compression.h"
28 #include "xattr.h"
29 #include "print-tree.h"
30 #include "accessors.h"
31 #include "dir-item.h"
32 #include "file-item.h"
33 #include "ioctl.h"
34 #include "verity.h"
35 #include "lru_cache.h"
36 
37 /*
38  * Maximum number of references an extent can have in order for us to attempt to
39  * issue clone operations instead of write operations. This currently exists to
40  * avoid hitting limitations of the backreference walking code (taking a lot of
41  * time and using too much memory for extents with large number of references).
42  */
43 #define SEND_MAX_EXTENT_REFS	1024
44 
45 /*
46  * A fs_path is a helper to dynamically build path names with unknown size.
47  * It reallocates the internal buffer on demand.
48  * It allows fast adding of path elements on the right side (normal path) and
49  * fast adding to the left side (reversed path). A reversed path can also be
50  * unreversed if needed.
51  */
52 struct fs_path {
53 	union {
54 		struct {
55 			char *start;
56 			char *end;
57 
58 			char *buf;
59 			unsigned short buf_len:15;
60 			unsigned short reversed:1;
61 			char inline_buf[];
62 		};
63 		/*
64 		 * Average path length does not exceed 200 bytes, we'll have
65 		 * better packing in the slab and higher chance to satisfy
66 		 * a allocation later during send.
67 		 */
68 		char pad[256];
69 	};
70 };
71 #define FS_PATH_INLINE_SIZE \
72 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
73 
74 
75 /* reused for each extent */
76 struct clone_root {
77 	struct btrfs_root *root;
78 	u64 ino;
79 	u64 offset;
80 	u64 num_bytes;
81 	bool found_ref;
82 };
83 
84 #define SEND_MAX_NAME_CACHE_SIZE			256
85 
86 /*
87  * Limit the root_ids array of struct backref_cache_entry to 17 elements.
88  * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which
89  * can be satisfied from the kmalloc-192 slab, without wasting any space.
90  * The most common case is to have a single root for cloning, which corresponds
91  * to the send root. Having the user specify more than 16 clone roots is not
92  * common, and in such rare cases we simply don't use caching if the number of
93  * cloning roots that lead down to a leaf is more than 17.
94  */
95 #define SEND_MAX_BACKREF_CACHE_ROOTS			17
96 
97 /*
98  * Max number of entries in the cache.
99  * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding
100  * maple tree's internal nodes, is 24K.
101  */
102 #define SEND_MAX_BACKREF_CACHE_SIZE 128
103 
104 /*
105  * A backref cache entry maps a leaf to a list of IDs of roots from which the
106  * leaf is accessible and we can use for clone operations.
107  * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
108  * x86_64).
109  */
110 struct backref_cache_entry {
111 	struct btrfs_lru_cache_entry entry;
112 	u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
113 	/* Number of valid elements in the root_ids array. */
114 	int num_roots;
115 };
116 
117 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
118 static_assert(offsetof(struct backref_cache_entry, entry) == 0);
119 
120 /*
121  * Max number of entries in the cache that stores directories that were already
122  * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
123  * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
124  * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
125  */
126 #define SEND_MAX_DIR_CREATED_CACHE_SIZE			64
127 
128 /*
129  * Max number of entries in the cache that stores directories that were already
130  * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
131  * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
132  * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
133  */
134 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE			64
135 
136 struct send_ctx {
137 	struct file *send_filp;
138 	loff_t send_off;
139 	char *send_buf;
140 	u32 send_size;
141 	u32 send_max_size;
142 	/*
143 	 * Whether BTRFS_SEND_A_DATA attribute was already added to current
144 	 * command (since protocol v2, data must be the last attribute).
145 	 */
146 	bool put_data;
147 	struct page **send_buf_pages;
148 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
149 	/* Protocol version compatibility requested */
150 	u32 proto;
151 
152 	struct btrfs_root *send_root;
153 	struct btrfs_root *parent_root;
154 	struct clone_root *clone_roots;
155 	int clone_roots_cnt;
156 
157 	/* current state of the compare_tree call */
158 	struct btrfs_path *left_path;
159 	struct btrfs_path *right_path;
160 	struct btrfs_key *cmp_key;
161 
162 	/*
163 	 * Keep track of the generation of the last transaction that was used
164 	 * for relocating a block group. This is periodically checked in order
165 	 * to detect if a relocation happened since the last check, so that we
166 	 * don't operate on stale extent buffers for nodes (level >= 1) or on
167 	 * stale disk_bytenr values of file extent items.
168 	 */
169 	u64 last_reloc_trans;
170 
171 	/*
172 	 * infos of the currently processed inode. In case of deleted inodes,
173 	 * these are the values from the deleted inode.
174 	 */
175 	u64 cur_ino;
176 	u64 cur_inode_gen;
177 	u64 cur_inode_size;
178 	u64 cur_inode_mode;
179 	u64 cur_inode_rdev;
180 	u64 cur_inode_last_extent;
181 	u64 cur_inode_next_write_offset;
182 	bool cur_inode_new;
183 	bool cur_inode_new_gen;
184 	bool cur_inode_deleted;
185 	bool ignore_cur_inode;
186 	bool cur_inode_needs_verity;
187 	void *verity_descriptor;
188 
189 	u64 send_progress;
190 
191 	struct list_head new_refs;
192 	struct list_head deleted_refs;
193 
194 	struct btrfs_lru_cache name_cache;
195 
196 	/*
197 	 * The inode we are currently processing. It's not NULL only when we
198 	 * need to issue write commands for data extents from this inode.
199 	 */
200 	struct inode *cur_inode;
201 	struct file_ra_state ra;
202 	u64 page_cache_clear_start;
203 	bool clean_page_cache;
204 
205 	/*
206 	 * We process inodes by their increasing order, so if before an
207 	 * incremental send we reverse the parent/child relationship of
208 	 * directories such that a directory with a lower inode number was
209 	 * the parent of a directory with a higher inode number, and the one
210 	 * becoming the new parent got renamed too, we can't rename/move the
211 	 * directory with lower inode number when we finish processing it - we
212 	 * must process the directory with higher inode number first, then
213 	 * rename/move it and then rename/move the directory with lower inode
214 	 * number. Example follows.
215 	 *
216 	 * Tree state when the first send was performed:
217 	 *
218 	 * .
219 	 * |-- a                   (ino 257)
220 	 *     |-- b               (ino 258)
221 	 *         |
222 	 *         |
223 	 *         |-- c           (ino 259)
224 	 *         |   |-- d       (ino 260)
225 	 *         |
226 	 *         |-- c2          (ino 261)
227 	 *
228 	 * Tree state when the second (incremental) send is performed:
229 	 *
230 	 * .
231 	 * |-- a                   (ino 257)
232 	 *     |-- b               (ino 258)
233 	 *         |-- c2          (ino 261)
234 	 *             |-- d2      (ino 260)
235 	 *                 |-- cc  (ino 259)
236 	 *
237 	 * The sequence of steps that lead to the second state was:
238 	 *
239 	 * mv /a/b/c/d /a/b/c2/d2
240 	 * mv /a/b/c /a/b/c2/d2/cc
241 	 *
242 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
243 	 * before we move "d", which has higher inode number.
244 	 *
245 	 * So we just memorize which move/rename operations must be performed
246 	 * later when their respective parent is processed and moved/renamed.
247 	 */
248 
249 	/* Indexed by parent directory inode number. */
250 	struct rb_root pending_dir_moves;
251 
252 	/*
253 	 * Reverse index, indexed by the inode number of a directory that
254 	 * is waiting for the move/rename of its immediate parent before its
255 	 * own move/rename can be performed.
256 	 */
257 	struct rb_root waiting_dir_moves;
258 
259 	/*
260 	 * A directory that is going to be rm'ed might have a child directory
261 	 * which is in the pending directory moves index above. In this case,
262 	 * the directory can only be removed after the move/rename of its child
263 	 * is performed. Example:
264 	 *
265 	 * Parent snapshot:
266 	 *
267 	 * .                        (ino 256)
268 	 * |-- a/                   (ino 257)
269 	 *     |-- b/               (ino 258)
270 	 *         |-- c/           (ino 259)
271 	 *         |   |-- x/       (ino 260)
272 	 *         |
273 	 *         |-- y/           (ino 261)
274 	 *
275 	 * Send snapshot:
276 	 *
277 	 * .                        (ino 256)
278 	 * |-- a/                   (ino 257)
279 	 *     |-- b/               (ino 258)
280 	 *         |-- YY/          (ino 261)
281 	 *              |-- x/      (ino 260)
282 	 *
283 	 * Sequence of steps that lead to the send snapshot:
284 	 * rm -f /a/b/c/foo.txt
285 	 * mv /a/b/y /a/b/YY
286 	 * mv /a/b/c/x /a/b/YY
287 	 * rmdir /a/b/c
288 	 *
289 	 * When the child is processed, its move/rename is delayed until its
290 	 * parent is processed (as explained above), but all other operations
291 	 * like update utimes, chown, chgrp, etc, are performed and the paths
292 	 * that it uses for those operations must use the orphanized name of
293 	 * its parent (the directory we're going to rm later), so we need to
294 	 * memorize that name.
295 	 *
296 	 * Indexed by the inode number of the directory to be deleted.
297 	 */
298 	struct rb_root orphan_dirs;
299 
300 	struct rb_root rbtree_new_refs;
301 	struct rb_root rbtree_deleted_refs;
302 
303 	struct btrfs_lru_cache backref_cache;
304 	u64 backref_cache_last_reloc_trans;
305 
306 	struct btrfs_lru_cache dir_created_cache;
307 	struct btrfs_lru_cache dir_utimes_cache;
308 };
309 
310 struct pending_dir_move {
311 	struct rb_node node;
312 	struct list_head list;
313 	u64 parent_ino;
314 	u64 ino;
315 	u64 gen;
316 	struct list_head update_refs;
317 };
318 
319 struct waiting_dir_move {
320 	struct rb_node node;
321 	u64 ino;
322 	/*
323 	 * There might be some directory that could not be removed because it
324 	 * was waiting for this directory inode to be moved first. Therefore
325 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
326 	 */
327 	u64 rmdir_ino;
328 	u64 rmdir_gen;
329 	bool orphanized;
330 };
331 
332 struct orphan_dir_info {
333 	struct rb_node node;
334 	u64 ino;
335 	u64 gen;
336 	u64 last_dir_index_offset;
337 	u64 dir_high_seq_ino;
338 };
339 
340 struct name_cache_entry {
341 	/*
342 	 * The key in the entry is an inode number, and the generation matches
343 	 * the inode's generation.
344 	 */
345 	struct btrfs_lru_cache_entry entry;
346 	u64 parent_ino;
347 	u64 parent_gen;
348 	int ret;
349 	int need_later_update;
350 	int name_len;
351 	char name[];
352 };
353 
354 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
355 static_assert(offsetof(struct name_cache_entry, entry) == 0);
356 
357 #define ADVANCE							1
358 #define ADVANCE_ONLY_NEXT					-1
359 
360 enum btrfs_compare_tree_result {
361 	BTRFS_COMPARE_TREE_NEW,
362 	BTRFS_COMPARE_TREE_DELETED,
363 	BTRFS_COMPARE_TREE_CHANGED,
364 	BTRFS_COMPARE_TREE_SAME,
365 };
366 
367 __cold
inconsistent_snapshot_error(struct send_ctx * sctx,enum btrfs_compare_tree_result result,const char * what)368 static void inconsistent_snapshot_error(struct send_ctx *sctx,
369 					enum btrfs_compare_tree_result result,
370 					const char *what)
371 {
372 	const char *result_string;
373 
374 	switch (result) {
375 	case BTRFS_COMPARE_TREE_NEW:
376 		result_string = "new";
377 		break;
378 	case BTRFS_COMPARE_TREE_DELETED:
379 		result_string = "deleted";
380 		break;
381 	case BTRFS_COMPARE_TREE_CHANGED:
382 		result_string = "updated";
383 		break;
384 	case BTRFS_COMPARE_TREE_SAME:
385 		ASSERT(0);
386 		result_string = "unchanged";
387 		break;
388 	default:
389 		ASSERT(0);
390 		result_string = "unexpected";
391 	}
392 
393 	btrfs_err(sctx->send_root->fs_info,
394 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
395 		  result_string, what, sctx->cmp_key->objectid,
396 		  sctx->send_root->root_key.objectid,
397 		  (sctx->parent_root ?
398 		   sctx->parent_root->root_key.objectid : 0));
399 }
400 
401 __maybe_unused
proto_cmd_ok(const struct send_ctx * sctx,int cmd)402 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
403 {
404 	switch (sctx->proto) {
405 	case 1:	 return cmd <= BTRFS_SEND_C_MAX_V1;
406 	case 2:	 return cmd <= BTRFS_SEND_C_MAX_V2;
407 	case 3:	 return cmd <= BTRFS_SEND_C_MAX_V3;
408 	default: return false;
409 	}
410 }
411 
412 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
413 
414 static struct waiting_dir_move *
415 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
416 
417 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
418 
need_send_hole(struct send_ctx * sctx)419 static int need_send_hole(struct send_ctx *sctx)
420 {
421 	return (sctx->parent_root && !sctx->cur_inode_new &&
422 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
423 		S_ISREG(sctx->cur_inode_mode));
424 }
425 
fs_path_reset(struct fs_path * p)426 static void fs_path_reset(struct fs_path *p)
427 {
428 	if (p->reversed) {
429 		p->start = p->buf + p->buf_len - 1;
430 		p->end = p->start;
431 		*p->start = 0;
432 	} else {
433 		p->start = p->buf;
434 		p->end = p->start;
435 		*p->start = 0;
436 	}
437 }
438 
fs_path_alloc(void)439 static struct fs_path *fs_path_alloc(void)
440 {
441 	struct fs_path *p;
442 
443 	p = kmalloc(sizeof(*p), GFP_KERNEL);
444 	if (!p)
445 		return NULL;
446 	p->reversed = 0;
447 	p->buf = p->inline_buf;
448 	p->buf_len = FS_PATH_INLINE_SIZE;
449 	fs_path_reset(p);
450 	return p;
451 }
452 
fs_path_alloc_reversed(void)453 static struct fs_path *fs_path_alloc_reversed(void)
454 {
455 	struct fs_path *p;
456 
457 	p = fs_path_alloc();
458 	if (!p)
459 		return NULL;
460 	p->reversed = 1;
461 	fs_path_reset(p);
462 	return p;
463 }
464 
fs_path_free(struct fs_path * p)465 static void fs_path_free(struct fs_path *p)
466 {
467 	if (!p)
468 		return;
469 	if (p->buf != p->inline_buf)
470 		kfree(p->buf);
471 	kfree(p);
472 }
473 
fs_path_len(struct fs_path * p)474 static int fs_path_len(struct fs_path *p)
475 {
476 	return p->end - p->start;
477 }
478 
fs_path_ensure_buf(struct fs_path * p,int len)479 static int fs_path_ensure_buf(struct fs_path *p, int len)
480 {
481 	char *tmp_buf;
482 	int path_len;
483 	int old_buf_len;
484 
485 	len++;
486 
487 	if (p->buf_len >= len)
488 		return 0;
489 
490 	if (WARN_ON(len > PATH_MAX))
491 		return -ENAMETOOLONG;
492 
493 	path_len = p->end - p->start;
494 	old_buf_len = p->buf_len;
495 
496 	/*
497 	 * Allocate to the next largest kmalloc bucket size, to let
498 	 * the fast path happen most of the time.
499 	 */
500 	len = kmalloc_size_roundup(len);
501 	/*
502 	 * First time the inline_buf does not suffice
503 	 */
504 	if (p->buf == p->inline_buf) {
505 		tmp_buf = kmalloc(len, GFP_KERNEL);
506 		if (tmp_buf)
507 			memcpy(tmp_buf, p->buf, old_buf_len);
508 	} else {
509 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
510 	}
511 	if (!tmp_buf)
512 		return -ENOMEM;
513 	p->buf = tmp_buf;
514 	p->buf_len = len;
515 
516 	if (p->reversed) {
517 		tmp_buf = p->buf + old_buf_len - path_len - 1;
518 		p->end = p->buf + p->buf_len - 1;
519 		p->start = p->end - path_len;
520 		memmove(p->start, tmp_buf, path_len + 1);
521 	} else {
522 		p->start = p->buf;
523 		p->end = p->start + path_len;
524 	}
525 	return 0;
526 }
527 
fs_path_prepare_for_add(struct fs_path * p,int name_len,char ** prepared)528 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
529 				   char **prepared)
530 {
531 	int ret;
532 	int new_len;
533 
534 	new_len = p->end - p->start + name_len;
535 	if (p->start != p->end)
536 		new_len++;
537 	ret = fs_path_ensure_buf(p, new_len);
538 	if (ret < 0)
539 		goto out;
540 
541 	if (p->reversed) {
542 		if (p->start != p->end)
543 			*--p->start = '/';
544 		p->start -= name_len;
545 		*prepared = p->start;
546 	} else {
547 		if (p->start != p->end)
548 			*p->end++ = '/';
549 		*prepared = p->end;
550 		p->end += name_len;
551 		*p->end = 0;
552 	}
553 
554 out:
555 	return ret;
556 }
557 
fs_path_add(struct fs_path * p,const char * name,int name_len)558 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
559 {
560 	int ret;
561 	char *prepared;
562 
563 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
564 	if (ret < 0)
565 		goto out;
566 	memcpy(prepared, name, name_len);
567 
568 out:
569 	return ret;
570 }
571 
fs_path_add_path(struct fs_path * p,struct fs_path * p2)572 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
573 {
574 	int ret;
575 	char *prepared;
576 
577 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
578 	if (ret < 0)
579 		goto out;
580 	memcpy(prepared, p2->start, p2->end - p2->start);
581 
582 out:
583 	return ret;
584 }
585 
fs_path_add_from_extent_buffer(struct fs_path * p,struct extent_buffer * eb,unsigned long off,int len)586 static int fs_path_add_from_extent_buffer(struct fs_path *p,
587 					  struct extent_buffer *eb,
588 					  unsigned long off, int len)
589 {
590 	int ret;
591 	char *prepared;
592 
593 	ret = fs_path_prepare_for_add(p, len, &prepared);
594 	if (ret < 0)
595 		goto out;
596 
597 	read_extent_buffer(eb, prepared, off, len);
598 
599 out:
600 	return ret;
601 }
602 
fs_path_copy(struct fs_path * p,struct fs_path * from)603 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
604 {
605 	p->reversed = from->reversed;
606 	fs_path_reset(p);
607 
608 	return fs_path_add_path(p, from);
609 }
610 
fs_path_unreverse(struct fs_path * p)611 static void fs_path_unreverse(struct fs_path *p)
612 {
613 	char *tmp;
614 	int len;
615 
616 	if (!p->reversed)
617 		return;
618 
619 	tmp = p->start;
620 	len = p->end - p->start;
621 	p->start = p->buf;
622 	p->end = p->start + len;
623 	memmove(p->start, tmp, len + 1);
624 	p->reversed = 0;
625 }
626 
alloc_path_for_send(void)627 static struct btrfs_path *alloc_path_for_send(void)
628 {
629 	struct btrfs_path *path;
630 
631 	path = btrfs_alloc_path();
632 	if (!path)
633 		return NULL;
634 	path->search_commit_root = 1;
635 	path->skip_locking = 1;
636 	path->need_commit_sem = 1;
637 	return path;
638 }
639 
write_buf(struct file * filp,const void * buf,u32 len,loff_t * off)640 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
641 {
642 	int ret;
643 	u32 pos = 0;
644 
645 	while (pos < len) {
646 		ret = kernel_write(filp, buf + pos, len - pos, off);
647 		if (ret < 0)
648 			return ret;
649 		if (ret == 0)
650 			return -EIO;
651 		pos += ret;
652 	}
653 
654 	return 0;
655 }
656 
tlv_put(struct send_ctx * sctx,u16 attr,const void * data,int len)657 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
658 {
659 	struct btrfs_tlv_header *hdr;
660 	int total_len = sizeof(*hdr) + len;
661 	int left = sctx->send_max_size - sctx->send_size;
662 
663 	if (WARN_ON_ONCE(sctx->put_data))
664 		return -EINVAL;
665 
666 	if (unlikely(left < total_len))
667 		return -EOVERFLOW;
668 
669 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
670 	put_unaligned_le16(attr, &hdr->tlv_type);
671 	put_unaligned_le16(len, &hdr->tlv_len);
672 	memcpy(hdr + 1, data, len);
673 	sctx->send_size += total_len;
674 
675 	return 0;
676 }
677 
678 #define TLV_PUT_DEFINE_INT(bits) \
679 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
680 			u##bits attr, u##bits value)			\
681 	{								\
682 		__le##bits __tmp = cpu_to_le##bits(value);		\
683 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
684 	}
685 
686 TLV_PUT_DEFINE_INT(8)
687 TLV_PUT_DEFINE_INT(32)
688 TLV_PUT_DEFINE_INT(64)
689 
tlv_put_string(struct send_ctx * sctx,u16 attr,const char * str,int len)690 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
691 			  const char *str, int len)
692 {
693 	if (len == -1)
694 		len = strlen(str);
695 	return tlv_put(sctx, attr, str, len);
696 }
697 
tlv_put_uuid(struct send_ctx * sctx,u16 attr,const u8 * uuid)698 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
699 			const u8 *uuid)
700 {
701 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
702 }
703 
tlv_put_btrfs_timespec(struct send_ctx * sctx,u16 attr,struct extent_buffer * eb,struct btrfs_timespec * ts)704 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
705 				  struct extent_buffer *eb,
706 				  struct btrfs_timespec *ts)
707 {
708 	struct btrfs_timespec bts;
709 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
710 	return tlv_put(sctx, attr, &bts, sizeof(bts));
711 }
712 
713 
714 #define TLV_PUT(sctx, attrtype, data, attrlen) \
715 	do { \
716 		ret = tlv_put(sctx, attrtype, data, attrlen); \
717 		if (ret < 0) \
718 			goto tlv_put_failure; \
719 	} while (0)
720 
721 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
722 	do { \
723 		ret = tlv_put_u##bits(sctx, attrtype, value); \
724 		if (ret < 0) \
725 			goto tlv_put_failure; \
726 	} while (0)
727 
728 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
729 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
730 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
731 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
732 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
733 	do { \
734 		ret = tlv_put_string(sctx, attrtype, str, len); \
735 		if (ret < 0) \
736 			goto tlv_put_failure; \
737 	} while (0)
738 #define TLV_PUT_PATH(sctx, attrtype, p) \
739 	do { \
740 		ret = tlv_put_string(sctx, attrtype, p->start, \
741 			p->end - p->start); \
742 		if (ret < 0) \
743 			goto tlv_put_failure; \
744 	} while(0)
745 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
746 	do { \
747 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
748 		if (ret < 0) \
749 			goto tlv_put_failure; \
750 	} while (0)
751 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
752 	do { \
753 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
754 		if (ret < 0) \
755 			goto tlv_put_failure; \
756 	} while (0)
757 
send_header(struct send_ctx * sctx)758 static int send_header(struct send_ctx *sctx)
759 {
760 	struct btrfs_stream_header hdr;
761 
762 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
763 	hdr.version = cpu_to_le32(sctx->proto);
764 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
765 					&sctx->send_off);
766 }
767 
768 /*
769  * For each command/item we want to send to userspace, we call this function.
770  */
begin_cmd(struct send_ctx * sctx,int cmd)771 static int begin_cmd(struct send_ctx *sctx, int cmd)
772 {
773 	struct btrfs_cmd_header *hdr;
774 
775 	if (WARN_ON(!sctx->send_buf))
776 		return -EINVAL;
777 
778 	if (unlikely(sctx->send_size != 0)) {
779 		btrfs_err(sctx->send_root->fs_info,
780 			  "send: command header buffer not empty cmd %d offset %llu",
781 			  cmd, sctx->send_off);
782 		return -EINVAL;
783 	}
784 
785 	sctx->send_size += sizeof(*hdr);
786 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
787 	put_unaligned_le16(cmd, &hdr->cmd);
788 
789 	return 0;
790 }
791 
send_cmd(struct send_ctx * sctx)792 static int send_cmd(struct send_ctx *sctx)
793 {
794 	int ret;
795 	struct btrfs_cmd_header *hdr;
796 	u32 crc;
797 
798 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
799 	put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
800 	put_unaligned_le32(0, &hdr->crc);
801 
802 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
803 	put_unaligned_le32(crc, &hdr->crc);
804 
805 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
806 					&sctx->send_off);
807 
808 	sctx->send_size = 0;
809 	sctx->put_data = false;
810 
811 	return ret;
812 }
813 
814 /*
815  * Sends a move instruction to user space
816  */
send_rename(struct send_ctx * sctx,struct fs_path * from,struct fs_path * to)817 static int send_rename(struct send_ctx *sctx,
818 		     struct fs_path *from, struct fs_path *to)
819 {
820 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
821 	int ret;
822 
823 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
824 
825 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
826 	if (ret < 0)
827 		goto out;
828 
829 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
830 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
831 
832 	ret = send_cmd(sctx);
833 
834 tlv_put_failure:
835 out:
836 	return ret;
837 }
838 
839 /*
840  * Sends a link instruction to user space
841  */
send_link(struct send_ctx * sctx,struct fs_path * path,struct fs_path * lnk)842 static int send_link(struct send_ctx *sctx,
843 		     struct fs_path *path, struct fs_path *lnk)
844 {
845 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
846 	int ret;
847 
848 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
849 
850 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
851 	if (ret < 0)
852 		goto out;
853 
854 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
855 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
856 
857 	ret = send_cmd(sctx);
858 
859 tlv_put_failure:
860 out:
861 	return ret;
862 }
863 
864 /*
865  * Sends an unlink instruction to user space
866  */
send_unlink(struct send_ctx * sctx,struct fs_path * path)867 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
868 {
869 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
870 	int ret;
871 
872 	btrfs_debug(fs_info, "send_unlink %s", path->start);
873 
874 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
875 	if (ret < 0)
876 		goto out;
877 
878 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
879 
880 	ret = send_cmd(sctx);
881 
882 tlv_put_failure:
883 out:
884 	return ret;
885 }
886 
887 /*
888  * Sends a rmdir instruction to user space
889  */
send_rmdir(struct send_ctx * sctx,struct fs_path * path)890 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
891 {
892 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
893 	int ret;
894 
895 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
896 
897 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
898 	if (ret < 0)
899 		goto out;
900 
901 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
902 
903 	ret = send_cmd(sctx);
904 
905 tlv_put_failure:
906 out:
907 	return ret;
908 }
909 
910 struct btrfs_inode_info {
911 	u64 size;
912 	u64 gen;
913 	u64 mode;
914 	u64 uid;
915 	u64 gid;
916 	u64 rdev;
917 	u64 fileattr;
918 	u64 nlink;
919 };
920 
921 /*
922  * Helper function to retrieve some fields from an inode item.
923  */
get_inode_info(struct btrfs_root * root,u64 ino,struct btrfs_inode_info * info)924 static int get_inode_info(struct btrfs_root *root, u64 ino,
925 			  struct btrfs_inode_info *info)
926 {
927 	int ret;
928 	struct btrfs_path *path;
929 	struct btrfs_inode_item *ii;
930 	struct btrfs_key key;
931 
932 	path = alloc_path_for_send();
933 	if (!path)
934 		return -ENOMEM;
935 
936 	key.objectid = ino;
937 	key.type = BTRFS_INODE_ITEM_KEY;
938 	key.offset = 0;
939 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
940 	if (ret) {
941 		if (ret > 0)
942 			ret = -ENOENT;
943 		goto out;
944 	}
945 
946 	if (!info)
947 		goto out;
948 
949 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
950 			struct btrfs_inode_item);
951 	info->size = btrfs_inode_size(path->nodes[0], ii);
952 	info->gen = btrfs_inode_generation(path->nodes[0], ii);
953 	info->mode = btrfs_inode_mode(path->nodes[0], ii);
954 	info->uid = btrfs_inode_uid(path->nodes[0], ii);
955 	info->gid = btrfs_inode_gid(path->nodes[0], ii);
956 	info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
957 	info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
958 	/*
959 	 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
960 	 * otherwise logically split to 32/32 parts.
961 	 */
962 	info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
963 
964 out:
965 	btrfs_free_path(path);
966 	return ret;
967 }
968 
get_inode_gen(struct btrfs_root * root,u64 ino,u64 * gen)969 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
970 {
971 	int ret;
972 	struct btrfs_inode_info info = { 0 };
973 
974 	ASSERT(gen);
975 
976 	ret = get_inode_info(root, ino, &info);
977 	*gen = info.gen;
978 	return ret;
979 }
980 
981 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
982 				   struct fs_path *p,
983 				   void *ctx);
984 
985 /*
986  * Helper function to iterate the entries in ONE btrfs_inode_ref or
987  * btrfs_inode_extref.
988  * The iterate callback may return a non zero value to stop iteration. This can
989  * be a negative value for error codes or 1 to simply stop it.
990  *
991  * path must point to the INODE_REF or INODE_EXTREF when called.
992  */
iterate_inode_ref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * found_key,int resolve,iterate_inode_ref_t iterate,void * ctx)993 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
994 			     struct btrfs_key *found_key, int resolve,
995 			     iterate_inode_ref_t iterate, void *ctx)
996 {
997 	struct extent_buffer *eb = path->nodes[0];
998 	struct btrfs_inode_ref *iref;
999 	struct btrfs_inode_extref *extref;
1000 	struct btrfs_path *tmp_path;
1001 	struct fs_path *p;
1002 	u32 cur = 0;
1003 	u32 total;
1004 	int slot = path->slots[0];
1005 	u32 name_len;
1006 	char *start;
1007 	int ret = 0;
1008 	int num = 0;
1009 	int index;
1010 	u64 dir;
1011 	unsigned long name_off;
1012 	unsigned long elem_size;
1013 	unsigned long ptr;
1014 
1015 	p = fs_path_alloc_reversed();
1016 	if (!p)
1017 		return -ENOMEM;
1018 
1019 	tmp_path = alloc_path_for_send();
1020 	if (!tmp_path) {
1021 		fs_path_free(p);
1022 		return -ENOMEM;
1023 	}
1024 
1025 
1026 	if (found_key->type == BTRFS_INODE_REF_KEY) {
1027 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1028 						    struct btrfs_inode_ref);
1029 		total = btrfs_item_size(eb, slot);
1030 		elem_size = sizeof(*iref);
1031 	} else {
1032 		ptr = btrfs_item_ptr_offset(eb, slot);
1033 		total = btrfs_item_size(eb, slot);
1034 		elem_size = sizeof(*extref);
1035 	}
1036 
1037 	while (cur < total) {
1038 		fs_path_reset(p);
1039 
1040 		if (found_key->type == BTRFS_INODE_REF_KEY) {
1041 			iref = (struct btrfs_inode_ref *)(ptr + cur);
1042 			name_len = btrfs_inode_ref_name_len(eb, iref);
1043 			name_off = (unsigned long)(iref + 1);
1044 			index = btrfs_inode_ref_index(eb, iref);
1045 			dir = found_key->offset;
1046 		} else {
1047 			extref = (struct btrfs_inode_extref *)(ptr + cur);
1048 			name_len = btrfs_inode_extref_name_len(eb, extref);
1049 			name_off = (unsigned long)&extref->name;
1050 			index = btrfs_inode_extref_index(eb, extref);
1051 			dir = btrfs_inode_extref_parent(eb, extref);
1052 		}
1053 
1054 		if (resolve) {
1055 			start = btrfs_ref_to_path(root, tmp_path, name_len,
1056 						  name_off, eb, dir,
1057 						  p->buf, p->buf_len);
1058 			if (IS_ERR(start)) {
1059 				ret = PTR_ERR(start);
1060 				goto out;
1061 			}
1062 			if (start < p->buf) {
1063 				/* overflow , try again with larger buffer */
1064 				ret = fs_path_ensure_buf(p,
1065 						p->buf_len + p->buf - start);
1066 				if (ret < 0)
1067 					goto out;
1068 				start = btrfs_ref_to_path(root, tmp_path,
1069 							  name_len, name_off,
1070 							  eb, dir,
1071 							  p->buf, p->buf_len);
1072 				if (IS_ERR(start)) {
1073 					ret = PTR_ERR(start);
1074 					goto out;
1075 				}
1076 				if (unlikely(start < p->buf)) {
1077 					btrfs_err(root->fs_info,
1078 			"send: path ref buffer underflow for key (%llu %u %llu)",
1079 						  found_key->objectid,
1080 						  found_key->type,
1081 						  found_key->offset);
1082 					ret = -EINVAL;
1083 					goto out;
1084 				}
1085 			}
1086 			p->start = start;
1087 		} else {
1088 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1089 							     name_len);
1090 			if (ret < 0)
1091 				goto out;
1092 		}
1093 
1094 		cur += elem_size + name_len;
1095 		ret = iterate(num, dir, index, p, ctx);
1096 		if (ret)
1097 			goto out;
1098 		num++;
1099 	}
1100 
1101 out:
1102 	btrfs_free_path(tmp_path);
1103 	fs_path_free(p);
1104 	return ret;
1105 }
1106 
1107 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1108 				  const char *name, int name_len,
1109 				  const char *data, int data_len,
1110 				  void *ctx);
1111 
1112 /*
1113  * Helper function to iterate the entries in ONE btrfs_dir_item.
1114  * The iterate callback may return a non zero value to stop iteration. This can
1115  * be a negative value for error codes or 1 to simply stop it.
1116  *
1117  * path must point to the dir item when called.
1118  */
iterate_dir_item(struct btrfs_root * root,struct btrfs_path * path,iterate_dir_item_t iterate,void * ctx)1119 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1120 			    iterate_dir_item_t iterate, void *ctx)
1121 {
1122 	int ret = 0;
1123 	struct extent_buffer *eb;
1124 	struct btrfs_dir_item *di;
1125 	struct btrfs_key di_key;
1126 	char *buf = NULL;
1127 	int buf_len;
1128 	u32 name_len;
1129 	u32 data_len;
1130 	u32 cur;
1131 	u32 len;
1132 	u32 total;
1133 	int slot;
1134 	int num;
1135 
1136 	/*
1137 	 * Start with a small buffer (1 page). If later we end up needing more
1138 	 * space, which can happen for xattrs on a fs with a leaf size greater
1139 	 * then the page size, attempt to increase the buffer. Typically xattr
1140 	 * values are small.
1141 	 */
1142 	buf_len = PATH_MAX;
1143 	buf = kmalloc(buf_len, GFP_KERNEL);
1144 	if (!buf) {
1145 		ret = -ENOMEM;
1146 		goto out;
1147 	}
1148 
1149 	eb = path->nodes[0];
1150 	slot = path->slots[0];
1151 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1152 	cur = 0;
1153 	len = 0;
1154 	total = btrfs_item_size(eb, slot);
1155 
1156 	num = 0;
1157 	while (cur < total) {
1158 		name_len = btrfs_dir_name_len(eb, di);
1159 		data_len = btrfs_dir_data_len(eb, di);
1160 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1161 
1162 		if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1163 			if (name_len > XATTR_NAME_MAX) {
1164 				ret = -ENAMETOOLONG;
1165 				goto out;
1166 			}
1167 			if (name_len + data_len >
1168 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1169 				ret = -E2BIG;
1170 				goto out;
1171 			}
1172 		} else {
1173 			/*
1174 			 * Path too long
1175 			 */
1176 			if (name_len + data_len > PATH_MAX) {
1177 				ret = -ENAMETOOLONG;
1178 				goto out;
1179 			}
1180 		}
1181 
1182 		if (name_len + data_len > buf_len) {
1183 			buf_len = name_len + data_len;
1184 			if (is_vmalloc_addr(buf)) {
1185 				vfree(buf);
1186 				buf = NULL;
1187 			} else {
1188 				char *tmp = krealloc(buf, buf_len,
1189 						GFP_KERNEL | __GFP_NOWARN);
1190 
1191 				if (!tmp)
1192 					kfree(buf);
1193 				buf = tmp;
1194 			}
1195 			if (!buf) {
1196 				buf = kvmalloc(buf_len, GFP_KERNEL);
1197 				if (!buf) {
1198 					ret = -ENOMEM;
1199 					goto out;
1200 				}
1201 			}
1202 		}
1203 
1204 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1205 				name_len + data_len);
1206 
1207 		len = sizeof(*di) + name_len + data_len;
1208 		di = (struct btrfs_dir_item *)((char *)di + len);
1209 		cur += len;
1210 
1211 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1212 			      data_len, ctx);
1213 		if (ret < 0)
1214 			goto out;
1215 		if (ret) {
1216 			ret = 0;
1217 			goto out;
1218 		}
1219 
1220 		num++;
1221 	}
1222 
1223 out:
1224 	kvfree(buf);
1225 	return ret;
1226 }
1227 
__copy_first_ref(int num,u64 dir,int index,struct fs_path * p,void * ctx)1228 static int __copy_first_ref(int num, u64 dir, int index,
1229 			    struct fs_path *p, void *ctx)
1230 {
1231 	int ret;
1232 	struct fs_path *pt = ctx;
1233 
1234 	ret = fs_path_copy(pt, p);
1235 	if (ret < 0)
1236 		return ret;
1237 
1238 	/* we want the first only */
1239 	return 1;
1240 }
1241 
1242 /*
1243  * Retrieve the first path of an inode. If an inode has more then one
1244  * ref/hardlink, this is ignored.
1245  */
get_inode_path(struct btrfs_root * root,u64 ino,struct fs_path * path)1246 static int get_inode_path(struct btrfs_root *root,
1247 			  u64 ino, struct fs_path *path)
1248 {
1249 	int ret;
1250 	struct btrfs_key key, found_key;
1251 	struct btrfs_path *p;
1252 
1253 	p = alloc_path_for_send();
1254 	if (!p)
1255 		return -ENOMEM;
1256 
1257 	fs_path_reset(path);
1258 
1259 	key.objectid = ino;
1260 	key.type = BTRFS_INODE_REF_KEY;
1261 	key.offset = 0;
1262 
1263 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1264 	if (ret < 0)
1265 		goto out;
1266 	if (ret) {
1267 		ret = 1;
1268 		goto out;
1269 	}
1270 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1271 	if (found_key.objectid != ino ||
1272 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1273 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1274 		ret = -ENOENT;
1275 		goto out;
1276 	}
1277 
1278 	ret = iterate_inode_ref(root, p, &found_key, 1,
1279 				__copy_first_ref, path);
1280 	if (ret < 0)
1281 		goto out;
1282 	ret = 0;
1283 
1284 out:
1285 	btrfs_free_path(p);
1286 	return ret;
1287 }
1288 
1289 struct backref_ctx {
1290 	struct send_ctx *sctx;
1291 
1292 	/* number of total found references */
1293 	u64 found;
1294 
1295 	/*
1296 	 * used for clones found in send_root. clones found behind cur_objectid
1297 	 * and cur_offset are not considered as allowed clones.
1298 	 */
1299 	u64 cur_objectid;
1300 	u64 cur_offset;
1301 
1302 	/* may be truncated in case it's the last extent in a file */
1303 	u64 extent_len;
1304 
1305 	/* The bytenr the file extent item we are processing refers to. */
1306 	u64 bytenr;
1307 	/* The owner (root id) of the data backref for the current extent. */
1308 	u64 backref_owner;
1309 	/* The offset of the data backref for the current extent. */
1310 	u64 backref_offset;
1311 };
1312 
__clone_root_cmp_bsearch(const void * key,const void * elt)1313 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1314 {
1315 	u64 root = (u64)(uintptr_t)key;
1316 	const struct clone_root *cr = elt;
1317 
1318 	if (root < cr->root->root_key.objectid)
1319 		return -1;
1320 	if (root > cr->root->root_key.objectid)
1321 		return 1;
1322 	return 0;
1323 }
1324 
__clone_root_cmp_sort(const void * e1,const void * e2)1325 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1326 {
1327 	const struct clone_root *cr1 = e1;
1328 	const struct clone_root *cr2 = e2;
1329 
1330 	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1331 		return -1;
1332 	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1333 		return 1;
1334 	return 0;
1335 }
1336 
1337 /*
1338  * Called for every backref that is found for the current extent.
1339  * Results are collected in sctx->clone_roots->ino/offset.
1340  */
iterate_backrefs(u64 ino,u64 offset,u64 num_bytes,u64 root_id,void * ctx_)1341 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1342 			    void *ctx_)
1343 {
1344 	struct backref_ctx *bctx = ctx_;
1345 	struct clone_root *clone_root;
1346 
1347 	/* First check if the root is in the list of accepted clone sources */
1348 	clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1349 			     bctx->sctx->clone_roots_cnt,
1350 			     sizeof(struct clone_root),
1351 			     __clone_root_cmp_bsearch);
1352 	if (!clone_root)
1353 		return 0;
1354 
1355 	/* This is our own reference, bail out as we can't clone from it. */
1356 	if (clone_root->root == bctx->sctx->send_root &&
1357 	    ino == bctx->cur_objectid &&
1358 	    offset == bctx->cur_offset)
1359 		return 0;
1360 
1361 	/*
1362 	 * Make sure we don't consider clones from send_root that are
1363 	 * behind the current inode/offset.
1364 	 */
1365 	if (clone_root->root == bctx->sctx->send_root) {
1366 		/*
1367 		 * If the source inode was not yet processed we can't issue a
1368 		 * clone operation, as the source extent does not exist yet at
1369 		 * the destination of the stream.
1370 		 */
1371 		if (ino > bctx->cur_objectid)
1372 			return 0;
1373 		/*
1374 		 * We clone from the inode currently being sent as long as the
1375 		 * source extent is already processed, otherwise we could try
1376 		 * to clone from an extent that does not exist yet at the
1377 		 * destination of the stream.
1378 		 */
1379 		if (ino == bctx->cur_objectid &&
1380 		    offset + bctx->extent_len >
1381 		    bctx->sctx->cur_inode_next_write_offset)
1382 			return 0;
1383 	}
1384 
1385 	bctx->found++;
1386 	clone_root->found_ref = true;
1387 
1388 	/*
1389 	 * If the given backref refers to a file extent item with a larger
1390 	 * number of bytes than what we found before, use the new one so that
1391 	 * we clone more optimally and end up doing less writes and getting
1392 	 * less exclusive, non-shared extents at the destination.
1393 	 */
1394 	if (num_bytes > clone_root->num_bytes) {
1395 		clone_root->ino = ino;
1396 		clone_root->offset = offset;
1397 		clone_root->num_bytes = num_bytes;
1398 
1399 		/*
1400 		 * Found a perfect candidate, so there's no need to continue
1401 		 * backref walking.
1402 		 */
1403 		if (num_bytes >= bctx->extent_len)
1404 			return BTRFS_ITERATE_EXTENT_INODES_STOP;
1405 	}
1406 
1407 	return 0;
1408 }
1409 
lookup_backref_cache(u64 leaf_bytenr,void * ctx,const u64 ** root_ids_ret,int * root_count_ret)1410 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1411 				 const u64 **root_ids_ret, int *root_count_ret)
1412 {
1413 	struct backref_ctx *bctx = ctx;
1414 	struct send_ctx *sctx = bctx->sctx;
1415 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1416 	const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1417 	struct btrfs_lru_cache_entry *raw_entry;
1418 	struct backref_cache_entry *entry;
1419 
1420 	if (btrfs_lru_cache_size(&sctx->backref_cache) == 0)
1421 		return false;
1422 
1423 	/*
1424 	 * If relocation happened since we first filled the cache, then we must
1425 	 * empty the cache and can not use it, because even though we operate on
1426 	 * read-only roots, their leaves and nodes may have been reallocated and
1427 	 * now be used for different nodes/leaves of the same tree or some other
1428 	 * tree.
1429 	 *
1430 	 * We are called from iterate_extent_inodes() while either holding a
1431 	 * transaction handle or holding fs_info->commit_root_sem, so no need
1432 	 * to take any lock here.
1433 	 */
1434 	if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) {
1435 		btrfs_lru_cache_clear(&sctx->backref_cache);
1436 		return false;
1437 	}
1438 
1439 	raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0);
1440 	if (!raw_entry)
1441 		return false;
1442 
1443 	entry = container_of(raw_entry, struct backref_cache_entry, entry);
1444 	*root_ids_ret = entry->root_ids;
1445 	*root_count_ret = entry->num_roots;
1446 
1447 	return true;
1448 }
1449 
store_backref_cache(u64 leaf_bytenr,const struct ulist * root_ids,void * ctx)1450 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1451 				void *ctx)
1452 {
1453 	struct backref_ctx *bctx = ctx;
1454 	struct send_ctx *sctx = bctx->sctx;
1455 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1456 	struct backref_cache_entry *new_entry;
1457 	struct ulist_iterator uiter;
1458 	struct ulist_node *node;
1459 	int ret;
1460 
1461 	/*
1462 	 * We're called while holding a transaction handle or while holding
1463 	 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1464 	 * NOFS allocation.
1465 	 */
1466 	new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1467 	/* No worries, cache is optional. */
1468 	if (!new_entry)
1469 		return;
1470 
1471 	new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits;
1472 	new_entry->entry.gen = 0;
1473 	new_entry->num_roots = 0;
1474 	ULIST_ITER_INIT(&uiter);
1475 	while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1476 		const u64 root_id = node->val;
1477 		struct clone_root *root;
1478 
1479 		root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1480 			       sctx->clone_roots_cnt, sizeof(struct clone_root),
1481 			       __clone_root_cmp_bsearch);
1482 		if (!root)
1483 			continue;
1484 
1485 		/* Too many roots, just exit, no worries as caching is optional. */
1486 		if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1487 			kfree(new_entry);
1488 			return;
1489 		}
1490 
1491 		new_entry->root_ids[new_entry->num_roots] = root_id;
1492 		new_entry->num_roots++;
1493 	}
1494 
1495 	/*
1496 	 * We may have not added any roots to the new cache entry, which means
1497 	 * none of the roots is part of the list of roots from which we are
1498 	 * allowed to clone. Cache the new entry as it's still useful to avoid
1499 	 * backref walking to determine which roots have a path to the leaf.
1500 	 *
1501 	 * Also use GFP_NOFS because we're called while holding a transaction
1502 	 * handle or while holding fs_info->commit_root_sem.
1503 	 */
1504 	ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry,
1505 				    GFP_NOFS);
1506 	ASSERT(ret == 0 || ret == -ENOMEM);
1507 	if (ret) {
1508 		/* Caching is optional, no worries. */
1509 		kfree(new_entry);
1510 		return;
1511 	}
1512 
1513 	/*
1514 	 * We are called from iterate_extent_inodes() while either holding a
1515 	 * transaction handle or holding fs_info->commit_root_sem, so no need
1516 	 * to take any lock here.
1517 	 */
1518 	if (btrfs_lru_cache_size(&sctx->backref_cache) == 1)
1519 		sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans;
1520 }
1521 
check_extent_item(u64 bytenr,const struct btrfs_extent_item * ei,const struct extent_buffer * leaf,void * ctx)1522 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1523 			     const struct extent_buffer *leaf, void *ctx)
1524 {
1525 	const u64 refs = btrfs_extent_refs(leaf, ei);
1526 	const struct backref_ctx *bctx = ctx;
1527 	const struct send_ctx *sctx = bctx->sctx;
1528 
1529 	if (bytenr == bctx->bytenr) {
1530 		const u64 flags = btrfs_extent_flags(leaf, ei);
1531 
1532 		if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1533 			return -EUCLEAN;
1534 
1535 		/*
1536 		 * If we have only one reference and only the send root as a
1537 		 * clone source - meaning no clone roots were given in the
1538 		 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1539 		 * it's our reference and there's no point in doing backref
1540 		 * walking which is expensive, so exit early.
1541 		 */
1542 		if (refs == 1 && sctx->clone_roots_cnt == 1)
1543 			return -ENOENT;
1544 	}
1545 
1546 	/*
1547 	 * Backreference walking (iterate_extent_inodes() below) is currently
1548 	 * too expensive when an extent has a large number of references, both
1549 	 * in time spent and used memory. So for now just fallback to write
1550 	 * operations instead of clone operations when an extent has more than
1551 	 * a certain amount of references.
1552 	 */
1553 	if (refs > SEND_MAX_EXTENT_REFS)
1554 		return -ENOENT;
1555 
1556 	return 0;
1557 }
1558 
skip_self_data_ref(u64 root,u64 ino,u64 offset,void * ctx)1559 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1560 {
1561 	const struct backref_ctx *bctx = ctx;
1562 
1563 	if (ino == bctx->cur_objectid &&
1564 	    root == bctx->backref_owner &&
1565 	    offset == bctx->backref_offset)
1566 		return true;
1567 
1568 	return false;
1569 }
1570 
1571 /*
1572  * Given an inode, offset and extent item, it finds a good clone for a clone
1573  * instruction. Returns -ENOENT when none could be found. The function makes
1574  * sure that the returned clone is usable at the point where sending is at the
1575  * moment. This means, that no clones are accepted which lie behind the current
1576  * inode+offset.
1577  *
1578  * path must point to the extent item when called.
1579  */
find_extent_clone(struct send_ctx * sctx,struct btrfs_path * path,u64 ino,u64 data_offset,u64 ino_size,struct clone_root ** found)1580 static int find_extent_clone(struct send_ctx *sctx,
1581 			     struct btrfs_path *path,
1582 			     u64 ino, u64 data_offset,
1583 			     u64 ino_size,
1584 			     struct clone_root **found)
1585 {
1586 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1587 	int ret;
1588 	int extent_type;
1589 	u64 logical;
1590 	u64 disk_byte;
1591 	u64 num_bytes;
1592 	struct btrfs_file_extent_item *fi;
1593 	struct extent_buffer *eb = path->nodes[0];
1594 	struct backref_ctx backref_ctx = { 0 };
1595 	struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1596 	struct clone_root *cur_clone_root;
1597 	int compressed;
1598 	u32 i;
1599 
1600 	/*
1601 	 * With fallocate we can get prealloc extents beyond the inode's i_size,
1602 	 * so we don't do anything here because clone operations can not clone
1603 	 * to a range beyond i_size without increasing the i_size of the
1604 	 * destination inode.
1605 	 */
1606 	if (data_offset >= ino_size)
1607 		return 0;
1608 
1609 	fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1610 	extent_type = btrfs_file_extent_type(eb, fi);
1611 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1612 		return -ENOENT;
1613 
1614 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1615 	if (disk_byte == 0)
1616 		return -ENOENT;
1617 
1618 	compressed = btrfs_file_extent_compression(eb, fi);
1619 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1620 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1621 
1622 	/*
1623 	 * Setup the clone roots.
1624 	 */
1625 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1626 		cur_clone_root = sctx->clone_roots + i;
1627 		cur_clone_root->ino = (u64)-1;
1628 		cur_clone_root->offset = 0;
1629 		cur_clone_root->num_bytes = 0;
1630 		cur_clone_root->found_ref = false;
1631 	}
1632 
1633 	backref_ctx.sctx = sctx;
1634 	backref_ctx.cur_objectid = ino;
1635 	backref_ctx.cur_offset = data_offset;
1636 	backref_ctx.bytenr = disk_byte;
1637 	/*
1638 	 * Use the header owner and not the send root's id, because in case of a
1639 	 * snapshot we can have shared subtrees.
1640 	 */
1641 	backref_ctx.backref_owner = btrfs_header_owner(eb);
1642 	backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1643 
1644 	/*
1645 	 * The last extent of a file may be too large due to page alignment.
1646 	 * We need to adjust extent_len in this case so that the checks in
1647 	 * iterate_backrefs() work.
1648 	 */
1649 	if (data_offset + num_bytes >= ino_size)
1650 		backref_ctx.extent_len = ino_size - data_offset;
1651 	else
1652 		backref_ctx.extent_len = num_bytes;
1653 
1654 	/*
1655 	 * Now collect all backrefs.
1656 	 */
1657 	backref_walk_ctx.bytenr = disk_byte;
1658 	if (compressed == BTRFS_COMPRESS_NONE)
1659 		backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1660 	backref_walk_ctx.fs_info = fs_info;
1661 	backref_walk_ctx.cache_lookup = lookup_backref_cache;
1662 	backref_walk_ctx.cache_store = store_backref_cache;
1663 	backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1664 	backref_walk_ctx.check_extent_item = check_extent_item;
1665 	backref_walk_ctx.user_ctx = &backref_ctx;
1666 
1667 	/*
1668 	 * If have a single clone root, then it's the send root and we can tell
1669 	 * the backref walking code to skip our own backref and not resolve it,
1670 	 * since we can not use it for cloning - the source and destination
1671 	 * ranges can't overlap and in case the leaf is shared through a subtree
1672 	 * due to snapshots, we can't use those other roots since they are not
1673 	 * in the list of clone roots.
1674 	 */
1675 	if (sctx->clone_roots_cnt == 1)
1676 		backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1677 
1678 	ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1679 				    &backref_ctx);
1680 	if (ret < 0)
1681 		return ret;
1682 
1683 	down_read(&fs_info->commit_root_sem);
1684 	if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1685 		/*
1686 		 * A transaction commit for a transaction in which block group
1687 		 * relocation was done just happened.
1688 		 * The disk_bytenr of the file extent item we processed is
1689 		 * possibly stale, referring to the extent's location before
1690 		 * relocation. So act as if we haven't found any clone sources
1691 		 * and fallback to write commands, which will read the correct
1692 		 * data from the new extent location. Otherwise we will fail
1693 		 * below because we haven't found our own back reference or we
1694 		 * could be getting incorrect sources in case the old extent
1695 		 * was already reallocated after the relocation.
1696 		 */
1697 		up_read(&fs_info->commit_root_sem);
1698 		return -ENOENT;
1699 	}
1700 	up_read(&fs_info->commit_root_sem);
1701 
1702 	btrfs_debug(fs_info,
1703 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1704 		    data_offset, ino, num_bytes, logical);
1705 
1706 	if (!backref_ctx.found) {
1707 		btrfs_debug(fs_info, "no clones found");
1708 		return -ENOENT;
1709 	}
1710 
1711 	cur_clone_root = NULL;
1712 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1713 		struct clone_root *clone_root = &sctx->clone_roots[i];
1714 
1715 		if (!clone_root->found_ref)
1716 			continue;
1717 
1718 		/*
1719 		 * Choose the root from which we can clone more bytes, to
1720 		 * minimize write operations and therefore have more extent
1721 		 * sharing at the destination (the same as in the source).
1722 		 */
1723 		if (!cur_clone_root ||
1724 		    clone_root->num_bytes > cur_clone_root->num_bytes) {
1725 			cur_clone_root = clone_root;
1726 
1727 			/*
1728 			 * We found an optimal clone candidate (any inode from
1729 			 * any root is fine), so we're done.
1730 			 */
1731 			if (clone_root->num_bytes >= backref_ctx.extent_len)
1732 				break;
1733 		}
1734 	}
1735 
1736 	if (cur_clone_root) {
1737 		*found = cur_clone_root;
1738 		ret = 0;
1739 	} else {
1740 		ret = -ENOENT;
1741 	}
1742 
1743 	return ret;
1744 }
1745 
read_symlink(struct btrfs_root * root,u64 ino,struct fs_path * dest)1746 static int read_symlink(struct btrfs_root *root,
1747 			u64 ino,
1748 			struct fs_path *dest)
1749 {
1750 	int ret;
1751 	struct btrfs_path *path;
1752 	struct btrfs_key key;
1753 	struct btrfs_file_extent_item *ei;
1754 	u8 type;
1755 	u8 compression;
1756 	unsigned long off;
1757 	int len;
1758 
1759 	path = alloc_path_for_send();
1760 	if (!path)
1761 		return -ENOMEM;
1762 
1763 	key.objectid = ino;
1764 	key.type = BTRFS_EXTENT_DATA_KEY;
1765 	key.offset = 0;
1766 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1767 	if (ret < 0)
1768 		goto out;
1769 	if (ret) {
1770 		/*
1771 		 * An empty symlink inode. Can happen in rare error paths when
1772 		 * creating a symlink (transaction committed before the inode
1773 		 * eviction handler removed the symlink inode items and a crash
1774 		 * happened in between or the subvol was snapshoted in between).
1775 		 * Print an informative message to dmesg/syslog so that the user
1776 		 * can delete the symlink.
1777 		 */
1778 		btrfs_err(root->fs_info,
1779 			  "Found empty symlink inode %llu at root %llu",
1780 			  ino, root->root_key.objectid);
1781 		ret = -EIO;
1782 		goto out;
1783 	}
1784 
1785 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1786 			struct btrfs_file_extent_item);
1787 	type = btrfs_file_extent_type(path->nodes[0], ei);
1788 	if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) {
1789 		ret = -EUCLEAN;
1790 		btrfs_crit(root->fs_info,
1791 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d",
1792 			   ino, btrfs_root_id(root), type);
1793 		goto out;
1794 	}
1795 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1796 	if (unlikely(compression != BTRFS_COMPRESS_NONE)) {
1797 		ret = -EUCLEAN;
1798 		btrfs_crit(root->fs_info,
1799 "send: found symlink extent with compression, ino %llu root %llu compression type %d",
1800 			   ino, btrfs_root_id(root), compression);
1801 		goto out;
1802 	}
1803 
1804 	off = btrfs_file_extent_inline_start(ei);
1805 	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1806 
1807 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1808 
1809 out:
1810 	btrfs_free_path(path);
1811 	return ret;
1812 }
1813 
1814 /*
1815  * Helper function to generate a file name that is unique in the root of
1816  * send_root and parent_root. This is used to generate names for orphan inodes.
1817  */
gen_unique_name(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)1818 static int gen_unique_name(struct send_ctx *sctx,
1819 			   u64 ino, u64 gen,
1820 			   struct fs_path *dest)
1821 {
1822 	int ret = 0;
1823 	struct btrfs_path *path;
1824 	struct btrfs_dir_item *di;
1825 	char tmp[64];
1826 	int len;
1827 	u64 idx = 0;
1828 
1829 	path = alloc_path_for_send();
1830 	if (!path)
1831 		return -ENOMEM;
1832 
1833 	while (1) {
1834 		struct fscrypt_str tmp_name;
1835 
1836 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1837 				ino, gen, idx);
1838 		ASSERT(len < sizeof(tmp));
1839 		tmp_name.name = tmp;
1840 		tmp_name.len = strlen(tmp);
1841 
1842 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1843 				path, BTRFS_FIRST_FREE_OBJECTID,
1844 				&tmp_name, 0);
1845 		btrfs_release_path(path);
1846 		if (IS_ERR(di)) {
1847 			ret = PTR_ERR(di);
1848 			goto out;
1849 		}
1850 		if (di) {
1851 			/* not unique, try again */
1852 			idx++;
1853 			continue;
1854 		}
1855 
1856 		if (!sctx->parent_root) {
1857 			/* unique */
1858 			ret = 0;
1859 			break;
1860 		}
1861 
1862 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1863 				path, BTRFS_FIRST_FREE_OBJECTID,
1864 				&tmp_name, 0);
1865 		btrfs_release_path(path);
1866 		if (IS_ERR(di)) {
1867 			ret = PTR_ERR(di);
1868 			goto out;
1869 		}
1870 		if (di) {
1871 			/* not unique, try again */
1872 			idx++;
1873 			continue;
1874 		}
1875 		/* unique */
1876 		break;
1877 	}
1878 
1879 	ret = fs_path_add(dest, tmp, strlen(tmp));
1880 
1881 out:
1882 	btrfs_free_path(path);
1883 	return ret;
1884 }
1885 
1886 enum inode_state {
1887 	inode_state_no_change,
1888 	inode_state_will_create,
1889 	inode_state_did_create,
1890 	inode_state_will_delete,
1891 	inode_state_did_delete,
1892 };
1893 
get_cur_inode_state(struct send_ctx * sctx,u64 ino,u64 gen,u64 * send_gen,u64 * parent_gen)1894 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1895 			       u64 *send_gen, u64 *parent_gen)
1896 {
1897 	int ret;
1898 	int left_ret;
1899 	int right_ret;
1900 	u64 left_gen;
1901 	u64 right_gen = 0;
1902 	struct btrfs_inode_info info;
1903 
1904 	ret = get_inode_info(sctx->send_root, ino, &info);
1905 	if (ret < 0 && ret != -ENOENT)
1906 		goto out;
1907 	left_ret = (info.nlink == 0) ? -ENOENT : ret;
1908 	left_gen = info.gen;
1909 	if (send_gen)
1910 		*send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
1911 
1912 	if (!sctx->parent_root) {
1913 		right_ret = -ENOENT;
1914 	} else {
1915 		ret = get_inode_info(sctx->parent_root, ino, &info);
1916 		if (ret < 0 && ret != -ENOENT)
1917 			goto out;
1918 		right_ret = (info.nlink == 0) ? -ENOENT : ret;
1919 		right_gen = info.gen;
1920 		if (parent_gen)
1921 			*parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
1922 	}
1923 
1924 	if (!left_ret && !right_ret) {
1925 		if (left_gen == gen && right_gen == gen) {
1926 			ret = inode_state_no_change;
1927 		} else if (left_gen == gen) {
1928 			if (ino < sctx->send_progress)
1929 				ret = inode_state_did_create;
1930 			else
1931 				ret = inode_state_will_create;
1932 		} else if (right_gen == gen) {
1933 			if (ino < sctx->send_progress)
1934 				ret = inode_state_did_delete;
1935 			else
1936 				ret = inode_state_will_delete;
1937 		} else  {
1938 			ret = -ENOENT;
1939 		}
1940 	} else if (!left_ret) {
1941 		if (left_gen == gen) {
1942 			if (ino < sctx->send_progress)
1943 				ret = inode_state_did_create;
1944 			else
1945 				ret = inode_state_will_create;
1946 		} else {
1947 			ret = -ENOENT;
1948 		}
1949 	} else if (!right_ret) {
1950 		if (right_gen == gen) {
1951 			if (ino < sctx->send_progress)
1952 				ret = inode_state_did_delete;
1953 			else
1954 				ret = inode_state_will_delete;
1955 		} else {
1956 			ret = -ENOENT;
1957 		}
1958 	} else {
1959 		ret = -ENOENT;
1960 	}
1961 
1962 out:
1963 	return ret;
1964 }
1965 
is_inode_existent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * send_gen,u64 * parent_gen)1966 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1967 			     u64 *send_gen, u64 *parent_gen)
1968 {
1969 	int ret;
1970 
1971 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1972 		return 1;
1973 
1974 	ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
1975 	if (ret < 0)
1976 		goto out;
1977 
1978 	if (ret == inode_state_no_change ||
1979 	    ret == inode_state_did_create ||
1980 	    ret == inode_state_will_delete)
1981 		ret = 1;
1982 	else
1983 		ret = 0;
1984 
1985 out:
1986 	return ret;
1987 }
1988 
1989 /*
1990  * Helper function to lookup a dir item in a dir.
1991  */
lookup_dir_item_inode(struct btrfs_root * root,u64 dir,const char * name,int name_len,u64 * found_inode)1992 static int lookup_dir_item_inode(struct btrfs_root *root,
1993 				 u64 dir, const char *name, int name_len,
1994 				 u64 *found_inode)
1995 {
1996 	int ret = 0;
1997 	struct btrfs_dir_item *di;
1998 	struct btrfs_key key;
1999 	struct btrfs_path *path;
2000 	struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
2001 
2002 	path = alloc_path_for_send();
2003 	if (!path)
2004 		return -ENOMEM;
2005 
2006 	di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
2007 	if (IS_ERR_OR_NULL(di)) {
2008 		ret = di ? PTR_ERR(di) : -ENOENT;
2009 		goto out;
2010 	}
2011 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
2012 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
2013 		ret = -ENOENT;
2014 		goto out;
2015 	}
2016 	*found_inode = key.objectid;
2017 
2018 out:
2019 	btrfs_free_path(path);
2020 	return ret;
2021 }
2022 
2023 /*
2024  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
2025  * generation of the parent dir and the name of the dir entry.
2026  */
get_first_ref(struct btrfs_root * root,u64 ino,u64 * dir,u64 * dir_gen,struct fs_path * name)2027 static int get_first_ref(struct btrfs_root *root, u64 ino,
2028 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
2029 {
2030 	int ret;
2031 	struct btrfs_key key;
2032 	struct btrfs_key found_key;
2033 	struct btrfs_path *path;
2034 	int len;
2035 	u64 parent_dir;
2036 
2037 	path = alloc_path_for_send();
2038 	if (!path)
2039 		return -ENOMEM;
2040 
2041 	key.objectid = ino;
2042 	key.type = BTRFS_INODE_REF_KEY;
2043 	key.offset = 0;
2044 
2045 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2046 	if (ret < 0)
2047 		goto out;
2048 	if (!ret)
2049 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2050 				path->slots[0]);
2051 	if (ret || found_key.objectid != ino ||
2052 	    (found_key.type != BTRFS_INODE_REF_KEY &&
2053 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
2054 		ret = -ENOENT;
2055 		goto out;
2056 	}
2057 
2058 	if (found_key.type == BTRFS_INODE_REF_KEY) {
2059 		struct btrfs_inode_ref *iref;
2060 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2061 				      struct btrfs_inode_ref);
2062 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2063 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2064 						     (unsigned long)(iref + 1),
2065 						     len);
2066 		parent_dir = found_key.offset;
2067 	} else {
2068 		struct btrfs_inode_extref *extref;
2069 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2070 					struct btrfs_inode_extref);
2071 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2072 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2073 					(unsigned long)&extref->name, len);
2074 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2075 	}
2076 	if (ret < 0)
2077 		goto out;
2078 	btrfs_release_path(path);
2079 
2080 	if (dir_gen) {
2081 		ret = get_inode_gen(root, parent_dir, dir_gen);
2082 		if (ret < 0)
2083 			goto out;
2084 	}
2085 
2086 	*dir = parent_dir;
2087 
2088 out:
2089 	btrfs_free_path(path);
2090 	return ret;
2091 }
2092 
is_first_ref(struct btrfs_root * root,u64 ino,u64 dir,const char * name,int name_len)2093 static int is_first_ref(struct btrfs_root *root,
2094 			u64 ino, u64 dir,
2095 			const char *name, int name_len)
2096 {
2097 	int ret;
2098 	struct fs_path *tmp_name;
2099 	u64 tmp_dir;
2100 
2101 	tmp_name = fs_path_alloc();
2102 	if (!tmp_name)
2103 		return -ENOMEM;
2104 
2105 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2106 	if (ret < 0)
2107 		goto out;
2108 
2109 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2110 		ret = 0;
2111 		goto out;
2112 	}
2113 
2114 	ret = !memcmp(tmp_name->start, name, name_len);
2115 
2116 out:
2117 	fs_path_free(tmp_name);
2118 	return ret;
2119 }
2120 
2121 /*
2122  * Used by process_recorded_refs to determine if a new ref would overwrite an
2123  * already existing ref. In case it detects an overwrite, it returns the
2124  * inode/gen in who_ino/who_gen.
2125  * When an overwrite is detected, process_recorded_refs does proper orphanizing
2126  * to make sure later references to the overwritten inode are possible.
2127  * Orphanizing is however only required for the first ref of an inode.
2128  * process_recorded_refs does an additional is_first_ref check to see if
2129  * orphanizing is really required.
2130  */
will_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,const char * name,int name_len,u64 * who_ino,u64 * who_gen,u64 * who_mode)2131 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2132 			      const char *name, int name_len,
2133 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
2134 {
2135 	int ret;
2136 	u64 parent_root_dir_gen;
2137 	u64 other_inode = 0;
2138 	struct btrfs_inode_info info;
2139 
2140 	if (!sctx->parent_root)
2141 		return 0;
2142 
2143 	ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen);
2144 	if (ret <= 0)
2145 		return 0;
2146 
2147 	/*
2148 	 * If we have a parent root we need to verify that the parent dir was
2149 	 * not deleted and then re-created, if it was then we have no overwrite
2150 	 * and we can just unlink this entry.
2151 	 *
2152 	 * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2153 	 * parent root.
2154 	 */
2155 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2156 	    parent_root_dir_gen != dir_gen)
2157 		return 0;
2158 
2159 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2160 				    &other_inode);
2161 	if (ret == -ENOENT)
2162 		return 0;
2163 	else if (ret < 0)
2164 		return ret;
2165 
2166 	/*
2167 	 * Check if the overwritten ref was already processed. If yes, the ref
2168 	 * was already unlinked/moved, so we can safely assume that we will not
2169 	 * overwrite anything at this point in time.
2170 	 */
2171 	if (other_inode > sctx->send_progress ||
2172 	    is_waiting_for_move(sctx, other_inode)) {
2173 		ret = get_inode_info(sctx->parent_root, other_inode, &info);
2174 		if (ret < 0)
2175 			return ret;
2176 
2177 		*who_ino = other_inode;
2178 		*who_gen = info.gen;
2179 		*who_mode = info.mode;
2180 		return 1;
2181 	}
2182 
2183 	return 0;
2184 }
2185 
2186 /*
2187  * Checks if the ref was overwritten by an already processed inode. This is
2188  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2189  * thus the orphan name needs be used.
2190  * process_recorded_refs also uses it to avoid unlinking of refs that were
2191  * overwritten.
2192  */
did_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,u64 ino,u64 ino_gen,const char * name,int name_len)2193 static int did_overwrite_ref(struct send_ctx *sctx,
2194 			    u64 dir, u64 dir_gen,
2195 			    u64 ino, u64 ino_gen,
2196 			    const char *name, int name_len)
2197 {
2198 	int ret;
2199 	u64 ow_inode;
2200 	u64 ow_gen = 0;
2201 	u64 send_root_dir_gen;
2202 
2203 	if (!sctx->parent_root)
2204 		return 0;
2205 
2206 	ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL);
2207 	if (ret <= 0)
2208 		return ret;
2209 
2210 	/*
2211 	 * @send_root_dir_gen was set to 0 if the inode does not exist in the
2212 	 * send root.
2213 	 */
2214 	if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2215 		return 0;
2216 
2217 	/* check if the ref was overwritten by another ref */
2218 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2219 				    &ow_inode);
2220 	if (ret == -ENOENT) {
2221 		/* was never and will never be overwritten */
2222 		return 0;
2223 	} else if (ret < 0) {
2224 		return ret;
2225 	}
2226 
2227 	if (ow_inode == ino) {
2228 		ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2229 		if (ret < 0)
2230 			return ret;
2231 
2232 		/* It's the same inode, so no overwrite happened. */
2233 		if (ow_gen == ino_gen)
2234 			return 0;
2235 	}
2236 
2237 	/*
2238 	 * We know that it is or will be overwritten. Check this now.
2239 	 * The current inode being processed might have been the one that caused
2240 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2241 	 * the current inode being processed.
2242 	 */
2243 	if (ow_inode < sctx->send_progress)
2244 		return 1;
2245 
2246 	if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2247 		if (ow_gen == 0) {
2248 			ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2249 			if (ret < 0)
2250 				return ret;
2251 		}
2252 		if (ow_gen == sctx->cur_inode_gen)
2253 			return 1;
2254 	}
2255 
2256 	return 0;
2257 }
2258 
2259 /*
2260  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2261  * that got overwritten. This is used by process_recorded_refs to determine
2262  * if it has to use the path as returned by get_cur_path or the orphan name.
2263  */
did_overwrite_first_ref(struct send_ctx * sctx,u64 ino,u64 gen)2264 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2265 {
2266 	int ret = 0;
2267 	struct fs_path *name = NULL;
2268 	u64 dir;
2269 	u64 dir_gen;
2270 
2271 	if (!sctx->parent_root)
2272 		goto out;
2273 
2274 	name = fs_path_alloc();
2275 	if (!name)
2276 		return -ENOMEM;
2277 
2278 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2279 	if (ret < 0)
2280 		goto out;
2281 
2282 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2283 			name->start, fs_path_len(name));
2284 
2285 out:
2286 	fs_path_free(name);
2287 	return ret;
2288 }
2289 
name_cache_search(struct send_ctx * sctx,u64 ino,u64 gen)2290 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2291 							 u64 ino, u64 gen)
2292 {
2293 	struct btrfs_lru_cache_entry *entry;
2294 
2295 	entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen);
2296 	if (!entry)
2297 		return NULL;
2298 
2299 	return container_of(entry, struct name_cache_entry, entry);
2300 }
2301 
2302 /*
2303  * Used by get_cur_path for each ref up to the root.
2304  * Returns 0 if it succeeded.
2305  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2306  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2307  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2308  * Returns <0 in case of error.
2309  */
__get_cur_name_and_parent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * parent_ino,u64 * parent_gen,struct fs_path * dest)2310 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2311 				     u64 ino, u64 gen,
2312 				     u64 *parent_ino,
2313 				     u64 *parent_gen,
2314 				     struct fs_path *dest)
2315 {
2316 	int ret;
2317 	int nce_ret;
2318 	struct name_cache_entry *nce;
2319 
2320 	/*
2321 	 * First check if we already did a call to this function with the same
2322 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2323 	 * return the cached result.
2324 	 */
2325 	nce = name_cache_search(sctx, ino, gen);
2326 	if (nce) {
2327 		if (ino < sctx->send_progress && nce->need_later_update) {
2328 			btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry);
2329 			nce = NULL;
2330 		} else {
2331 			*parent_ino = nce->parent_ino;
2332 			*parent_gen = nce->parent_gen;
2333 			ret = fs_path_add(dest, nce->name, nce->name_len);
2334 			if (ret < 0)
2335 				goto out;
2336 			ret = nce->ret;
2337 			goto out;
2338 		}
2339 	}
2340 
2341 	/*
2342 	 * If the inode is not existent yet, add the orphan name and return 1.
2343 	 * This should only happen for the parent dir that we determine in
2344 	 * record_new_ref_if_needed().
2345 	 */
2346 	ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
2347 	if (ret < 0)
2348 		goto out;
2349 
2350 	if (!ret) {
2351 		ret = gen_unique_name(sctx, ino, gen, dest);
2352 		if (ret < 0)
2353 			goto out;
2354 		ret = 1;
2355 		goto out_cache;
2356 	}
2357 
2358 	/*
2359 	 * Depending on whether the inode was already processed or not, use
2360 	 * send_root or parent_root for ref lookup.
2361 	 */
2362 	if (ino < sctx->send_progress)
2363 		ret = get_first_ref(sctx->send_root, ino,
2364 				    parent_ino, parent_gen, dest);
2365 	else
2366 		ret = get_first_ref(sctx->parent_root, ino,
2367 				    parent_ino, parent_gen, dest);
2368 	if (ret < 0)
2369 		goto out;
2370 
2371 	/*
2372 	 * Check if the ref was overwritten by an inode's ref that was processed
2373 	 * earlier. If yes, treat as orphan and return 1.
2374 	 */
2375 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2376 			dest->start, dest->end - dest->start);
2377 	if (ret < 0)
2378 		goto out;
2379 	if (ret) {
2380 		fs_path_reset(dest);
2381 		ret = gen_unique_name(sctx, ino, gen, dest);
2382 		if (ret < 0)
2383 			goto out;
2384 		ret = 1;
2385 	}
2386 
2387 out_cache:
2388 	/*
2389 	 * Store the result of the lookup in the name cache.
2390 	 */
2391 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2392 	if (!nce) {
2393 		ret = -ENOMEM;
2394 		goto out;
2395 	}
2396 
2397 	nce->entry.key = ino;
2398 	nce->entry.gen = gen;
2399 	nce->parent_ino = *parent_ino;
2400 	nce->parent_gen = *parent_gen;
2401 	nce->name_len = fs_path_len(dest);
2402 	nce->ret = ret;
2403 	strcpy(nce->name, dest->start);
2404 
2405 	if (ino < sctx->send_progress)
2406 		nce->need_later_update = 0;
2407 	else
2408 		nce->need_later_update = 1;
2409 
2410 	nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL);
2411 	if (nce_ret < 0) {
2412 		kfree(nce);
2413 		ret = nce_ret;
2414 	}
2415 
2416 out:
2417 	return ret;
2418 }
2419 
2420 /*
2421  * Magic happens here. This function returns the first ref to an inode as it
2422  * would look like while receiving the stream at this point in time.
2423  * We walk the path up to the root. For every inode in between, we check if it
2424  * was already processed/sent. If yes, we continue with the parent as found
2425  * in send_root. If not, we continue with the parent as found in parent_root.
2426  * If we encounter an inode that was deleted at this point in time, we use the
2427  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2428  * that were not created yet and overwritten inodes/refs.
2429  *
2430  * When do we have orphan inodes:
2431  * 1. When an inode is freshly created and thus no valid refs are available yet
2432  * 2. When a directory lost all it's refs (deleted) but still has dir items
2433  *    inside which were not processed yet (pending for move/delete). If anyone
2434  *    tried to get the path to the dir items, it would get a path inside that
2435  *    orphan directory.
2436  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2437  *    of an unprocessed inode. If in that case the first ref would be
2438  *    overwritten, the overwritten inode gets "orphanized". Later when we
2439  *    process this overwritten inode, it is restored at a new place by moving
2440  *    the orphan inode.
2441  *
2442  * sctx->send_progress tells this function at which point in time receiving
2443  * would be.
2444  */
get_cur_path(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)2445 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2446 			struct fs_path *dest)
2447 {
2448 	int ret = 0;
2449 	struct fs_path *name = NULL;
2450 	u64 parent_inode = 0;
2451 	u64 parent_gen = 0;
2452 	int stop = 0;
2453 
2454 	name = fs_path_alloc();
2455 	if (!name) {
2456 		ret = -ENOMEM;
2457 		goto out;
2458 	}
2459 
2460 	dest->reversed = 1;
2461 	fs_path_reset(dest);
2462 
2463 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2464 		struct waiting_dir_move *wdm;
2465 
2466 		fs_path_reset(name);
2467 
2468 		if (is_waiting_for_rm(sctx, ino, gen)) {
2469 			ret = gen_unique_name(sctx, ino, gen, name);
2470 			if (ret < 0)
2471 				goto out;
2472 			ret = fs_path_add_path(dest, name);
2473 			break;
2474 		}
2475 
2476 		wdm = get_waiting_dir_move(sctx, ino);
2477 		if (wdm && wdm->orphanized) {
2478 			ret = gen_unique_name(sctx, ino, gen, name);
2479 			stop = 1;
2480 		} else if (wdm) {
2481 			ret = get_first_ref(sctx->parent_root, ino,
2482 					    &parent_inode, &parent_gen, name);
2483 		} else {
2484 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2485 							&parent_inode,
2486 							&parent_gen, name);
2487 			if (ret)
2488 				stop = 1;
2489 		}
2490 
2491 		if (ret < 0)
2492 			goto out;
2493 
2494 		ret = fs_path_add_path(dest, name);
2495 		if (ret < 0)
2496 			goto out;
2497 
2498 		ino = parent_inode;
2499 		gen = parent_gen;
2500 	}
2501 
2502 out:
2503 	fs_path_free(name);
2504 	if (!ret)
2505 		fs_path_unreverse(dest);
2506 	return ret;
2507 }
2508 
2509 /*
2510  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2511  */
send_subvol_begin(struct send_ctx * sctx)2512 static int send_subvol_begin(struct send_ctx *sctx)
2513 {
2514 	int ret;
2515 	struct btrfs_root *send_root = sctx->send_root;
2516 	struct btrfs_root *parent_root = sctx->parent_root;
2517 	struct btrfs_path *path;
2518 	struct btrfs_key key;
2519 	struct btrfs_root_ref *ref;
2520 	struct extent_buffer *leaf;
2521 	char *name = NULL;
2522 	int namelen;
2523 
2524 	path = btrfs_alloc_path();
2525 	if (!path)
2526 		return -ENOMEM;
2527 
2528 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2529 	if (!name) {
2530 		btrfs_free_path(path);
2531 		return -ENOMEM;
2532 	}
2533 
2534 	key.objectid = send_root->root_key.objectid;
2535 	key.type = BTRFS_ROOT_BACKREF_KEY;
2536 	key.offset = 0;
2537 
2538 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2539 				&key, path, 1, 0);
2540 	if (ret < 0)
2541 		goto out;
2542 	if (ret) {
2543 		ret = -ENOENT;
2544 		goto out;
2545 	}
2546 
2547 	leaf = path->nodes[0];
2548 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2549 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2550 	    key.objectid != send_root->root_key.objectid) {
2551 		ret = -ENOENT;
2552 		goto out;
2553 	}
2554 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2555 	namelen = btrfs_root_ref_name_len(leaf, ref);
2556 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2557 	btrfs_release_path(path);
2558 
2559 	if (parent_root) {
2560 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2561 		if (ret < 0)
2562 			goto out;
2563 	} else {
2564 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2565 		if (ret < 0)
2566 			goto out;
2567 	}
2568 
2569 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2570 
2571 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2572 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2573 			    sctx->send_root->root_item.received_uuid);
2574 	else
2575 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2576 			    sctx->send_root->root_item.uuid);
2577 
2578 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2579 		    btrfs_root_ctransid(&sctx->send_root->root_item));
2580 	if (parent_root) {
2581 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2582 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2583 				     parent_root->root_item.received_uuid);
2584 		else
2585 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2586 				     parent_root->root_item.uuid);
2587 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2588 			    btrfs_root_ctransid(&sctx->parent_root->root_item));
2589 	}
2590 
2591 	ret = send_cmd(sctx);
2592 
2593 tlv_put_failure:
2594 out:
2595 	btrfs_free_path(path);
2596 	kfree(name);
2597 	return ret;
2598 }
2599 
send_truncate(struct send_ctx * sctx,u64 ino,u64 gen,u64 size)2600 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2601 {
2602 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2603 	int ret = 0;
2604 	struct fs_path *p;
2605 
2606 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2607 
2608 	p = fs_path_alloc();
2609 	if (!p)
2610 		return -ENOMEM;
2611 
2612 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2613 	if (ret < 0)
2614 		goto out;
2615 
2616 	ret = get_cur_path(sctx, ino, gen, p);
2617 	if (ret < 0)
2618 		goto out;
2619 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2620 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2621 
2622 	ret = send_cmd(sctx);
2623 
2624 tlv_put_failure:
2625 out:
2626 	fs_path_free(p);
2627 	return ret;
2628 }
2629 
send_chmod(struct send_ctx * sctx,u64 ino,u64 gen,u64 mode)2630 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2631 {
2632 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2633 	int ret = 0;
2634 	struct fs_path *p;
2635 
2636 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2637 
2638 	p = fs_path_alloc();
2639 	if (!p)
2640 		return -ENOMEM;
2641 
2642 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2643 	if (ret < 0)
2644 		goto out;
2645 
2646 	ret = get_cur_path(sctx, ino, gen, p);
2647 	if (ret < 0)
2648 		goto out;
2649 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2650 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2651 
2652 	ret = send_cmd(sctx);
2653 
2654 tlv_put_failure:
2655 out:
2656 	fs_path_free(p);
2657 	return ret;
2658 }
2659 
send_fileattr(struct send_ctx * sctx,u64 ino,u64 gen,u64 fileattr)2660 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2661 {
2662 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2663 	int ret = 0;
2664 	struct fs_path *p;
2665 
2666 	if (sctx->proto < 2)
2667 		return 0;
2668 
2669 	btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2670 
2671 	p = fs_path_alloc();
2672 	if (!p)
2673 		return -ENOMEM;
2674 
2675 	ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2676 	if (ret < 0)
2677 		goto out;
2678 
2679 	ret = get_cur_path(sctx, ino, gen, p);
2680 	if (ret < 0)
2681 		goto out;
2682 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2683 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2684 
2685 	ret = send_cmd(sctx);
2686 
2687 tlv_put_failure:
2688 out:
2689 	fs_path_free(p);
2690 	return ret;
2691 }
2692 
send_chown(struct send_ctx * sctx,u64 ino,u64 gen,u64 uid,u64 gid)2693 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2694 {
2695 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2696 	int ret = 0;
2697 	struct fs_path *p;
2698 
2699 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2700 		    ino, uid, gid);
2701 
2702 	p = fs_path_alloc();
2703 	if (!p)
2704 		return -ENOMEM;
2705 
2706 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2707 	if (ret < 0)
2708 		goto out;
2709 
2710 	ret = get_cur_path(sctx, ino, gen, p);
2711 	if (ret < 0)
2712 		goto out;
2713 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2714 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2715 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2716 
2717 	ret = send_cmd(sctx);
2718 
2719 tlv_put_failure:
2720 out:
2721 	fs_path_free(p);
2722 	return ret;
2723 }
2724 
send_utimes(struct send_ctx * sctx,u64 ino,u64 gen)2725 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2726 {
2727 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2728 	int ret = 0;
2729 	struct fs_path *p = NULL;
2730 	struct btrfs_inode_item *ii;
2731 	struct btrfs_path *path = NULL;
2732 	struct extent_buffer *eb;
2733 	struct btrfs_key key;
2734 	int slot;
2735 
2736 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2737 
2738 	p = fs_path_alloc();
2739 	if (!p)
2740 		return -ENOMEM;
2741 
2742 	path = alloc_path_for_send();
2743 	if (!path) {
2744 		ret = -ENOMEM;
2745 		goto out;
2746 	}
2747 
2748 	key.objectid = ino;
2749 	key.type = BTRFS_INODE_ITEM_KEY;
2750 	key.offset = 0;
2751 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2752 	if (ret > 0)
2753 		ret = -ENOENT;
2754 	if (ret < 0)
2755 		goto out;
2756 
2757 	eb = path->nodes[0];
2758 	slot = path->slots[0];
2759 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2760 
2761 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2762 	if (ret < 0)
2763 		goto out;
2764 
2765 	ret = get_cur_path(sctx, ino, gen, p);
2766 	if (ret < 0)
2767 		goto out;
2768 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2769 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2770 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2771 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2772 	if (sctx->proto >= 2)
2773 		TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2774 
2775 	ret = send_cmd(sctx);
2776 
2777 tlv_put_failure:
2778 out:
2779 	fs_path_free(p);
2780 	btrfs_free_path(path);
2781 	return ret;
2782 }
2783 
2784 /*
2785  * If the cache is full, we can't remove entries from it and do a call to
2786  * send_utimes() for each respective inode, because we might be finishing
2787  * processing an inode that is a directory and it just got renamed, and existing
2788  * entries in the cache may refer to inodes that have the directory in their
2789  * full path - in which case we would generate outdated paths (pre-rename)
2790  * for the inodes that the cache entries point to. Instead of prunning the
2791  * cache when inserting, do it after we finish processing each inode at
2792  * finish_inode_if_needed().
2793  */
cache_dir_utimes(struct send_ctx * sctx,u64 dir,u64 gen)2794 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen)
2795 {
2796 	struct btrfs_lru_cache_entry *entry;
2797 	int ret;
2798 
2799 	entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen);
2800 	if (entry != NULL)
2801 		return 0;
2802 
2803 	/* Caching is optional, don't fail if we can't allocate memory. */
2804 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2805 	if (!entry)
2806 		return send_utimes(sctx, dir, gen);
2807 
2808 	entry->key = dir;
2809 	entry->gen = gen;
2810 
2811 	ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL);
2812 	ASSERT(ret != -EEXIST);
2813 	if (ret) {
2814 		kfree(entry);
2815 		return send_utimes(sctx, dir, gen);
2816 	}
2817 
2818 	return 0;
2819 }
2820 
trim_dir_utimes_cache(struct send_ctx * sctx)2821 static int trim_dir_utimes_cache(struct send_ctx *sctx)
2822 {
2823 	while (btrfs_lru_cache_size(&sctx->dir_utimes_cache) >
2824 	       SEND_MAX_DIR_UTIMES_CACHE_SIZE) {
2825 		struct btrfs_lru_cache_entry *lru;
2826 		int ret;
2827 
2828 		lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache);
2829 		ASSERT(lru != NULL);
2830 
2831 		ret = send_utimes(sctx, lru->key, lru->gen);
2832 		if (ret)
2833 			return ret;
2834 
2835 		btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru);
2836 	}
2837 
2838 	return 0;
2839 }
2840 
2841 /*
2842  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2843  * a valid path yet because we did not process the refs yet. So, the inode
2844  * is created as orphan.
2845  */
send_create_inode(struct send_ctx * sctx,u64 ino)2846 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2847 {
2848 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2849 	int ret = 0;
2850 	struct fs_path *p;
2851 	int cmd;
2852 	struct btrfs_inode_info info;
2853 	u64 gen;
2854 	u64 mode;
2855 	u64 rdev;
2856 
2857 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2858 
2859 	p = fs_path_alloc();
2860 	if (!p)
2861 		return -ENOMEM;
2862 
2863 	if (ino != sctx->cur_ino) {
2864 		ret = get_inode_info(sctx->send_root, ino, &info);
2865 		if (ret < 0)
2866 			goto out;
2867 		gen = info.gen;
2868 		mode = info.mode;
2869 		rdev = info.rdev;
2870 	} else {
2871 		gen = sctx->cur_inode_gen;
2872 		mode = sctx->cur_inode_mode;
2873 		rdev = sctx->cur_inode_rdev;
2874 	}
2875 
2876 	if (S_ISREG(mode)) {
2877 		cmd = BTRFS_SEND_C_MKFILE;
2878 	} else if (S_ISDIR(mode)) {
2879 		cmd = BTRFS_SEND_C_MKDIR;
2880 	} else if (S_ISLNK(mode)) {
2881 		cmd = BTRFS_SEND_C_SYMLINK;
2882 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2883 		cmd = BTRFS_SEND_C_MKNOD;
2884 	} else if (S_ISFIFO(mode)) {
2885 		cmd = BTRFS_SEND_C_MKFIFO;
2886 	} else if (S_ISSOCK(mode)) {
2887 		cmd = BTRFS_SEND_C_MKSOCK;
2888 	} else {
2889 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2890 				(int)(mode & S_IFMT));
2891 		ret = -EOPNOTSUPP;
2892 		goto out;
2893 	}
2894 
2895 	ret = begin_cmd(sctx, cmd);
2896 	if (ret < 0)
2897 		goto out;
2898 
2899 	ret = gen_unique_name(sctx, ino, gen, p);
2900 	if (ret < 0)
2901 		goto out;
2902 
2903 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2904 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2905 
2906 	if (S_ISLNK(mode)) {
2907 		fs_path_reset(p);
2908 		ret = read_symlink(sctx->send_root, ino, p);
2909 		if (ret < 0)
2910 			goto out;
2911 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2912 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2913 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2914 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2915 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2916 	}
2917 
2918 	ret = send_cmd(sctx);
2919 	if (ret < 0)
2920 		goto out;
2921 
2922 
2923 tlv_put_failure:
2924 out:
2925 	fs_path_free(p);
2926 	return ret;
2927 }
2928 
cache_dir_created(struct send_ctx * sctx,u64 dir)2929 static void cache_dir_created(struct send_ctx *sctx, u64 dir)
2930 {
2931 	struct btrfs_lru_cache_entry *entry;
2932 	int ret;
2933 
2934 	/* Caching is optional, ignore any failures. */
2935 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2936 	if (!entry)
2937 		return;
2938 
2939 	entry->key = dir;
2940 	entry->gen = 0;
2941 	ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL);
2942 	if (ret < 0)
2943 		kfree(entry);
2944 }
2945 
2946 /*
2947  * We need some special handling for inodes that get processed before the parent
2948  * directory got created. See process_recorded_refs for details.
2949  * This function does the check if we already created the dir out of order.
2950  */
did_create_dir(struct send_ctx * sctx,u64 dir)2951 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2952 {
2953 	int ret = 0;
2954 	int iter_ret = 0;
2955 	struct btrfs_path *path = NULL;
2956 	struct btrfs_key key;
2957 	struct btrfs_key found_key;
2958 	struct btrfs_key di_key;
2959 	struct btrfs_dir_item *di;
2960 
2961 	if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0))
2962 		return 1;
2963 
2964 	path = alloc_path_for_send();
2965 	if (!path)
2966 		return -ENOMEM;
2967 
2968 	key.objectid = dir;
2969 	key.type = BTRFS_DIR_INDEX_KEY;
2970 	key.offset = 0;
2971 
2972 	btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2973 		struct extent_buffer *eb = path->nodes[0];
2974 
2975 		if (found_key.objectid != key.objectid ||
2976 		    found_key.type != key.type) {
2977 			ret = 0;
2978 			break;
2979 		}
2980 
2981 		di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2982 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2983 
2984 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2985 		    di_key.objectid < sctx->send_progress) {
2986 			ret = 1;
2987 			cache_dir_created(sctx, dir);
2988 			break;
2989 		}
2990 	}
2991 	/* Catch error found during iteration */
2992 	if (iter_ret < 0)
2993 		ret = iter_ret;
2994 
2995 	btrfs_free_path(path);
2996 	return ret;
2997 }
2998 
2999 /*
3000  * Only creates the inode if it is:
3001  * 1. Not a directory
3002  * 2. Or a directory which was not created already due to out of order
3003  *    directories. See did_create_dir and process_recorded_refs for details.
3004  */
send_create_inode_if_needed(struct send_ctx * sctx)3005 static int send_create_inode_if_needed(struct send_ctx *sctx)
3006 {
3007 	int ret;
3008 
3009 	if (S_ISDIR(sctx->cur_inode_mode)) {
3010 		ret = did_create_dir(sctx, sctx->cur_ino);
3011 		if (ret < 0)
3012 			return ret;
3013 		else if (ret > 0)
3014 			return 0;
3015 	}
3016 
3017 	ret = send_create_inode(sctx, sctx->cur_ino);
3018 
3019 	if (ret == 0 && S_ISDIR(sctx->cur_inode_mode))
3020 		cache_dir_created(sctx, sctx->cur_ino);
3021 
3022 	return ret;
3023 }
3024 
3025 struct recorded_ref {
3026 	struct list_head list;
3027 	char *name;
3028 	struct fs_path *full_path;
3029 	u64 dir;
3030 	u64 dir_gen;
3031 	int name_len;
3032 	struct rb_node node;
3033 	struct rb_root *root;
3034 };
3035 
recorded_ref_alloc(void)3036 static struct recorded_ref *recorded_ref_alloc(void)
3037 {
3038 	struct recorded_ref *ref;
3039 
3040 	ref = kzalloc(sizeof(*ref), GFP_KERNEL);
3041 	if (!ref)
3042 		return NULL;
3043 	RB_CLEAR_NODE(&ref->node);
3044 	INIT_LIST_HEAD(&ref->list);
3045 	return ref;
3046 }
3047 
recorded_ref_free(struct recorded_ref * ref)3048 static void recorded_ref_free(struct recorded_ref *ref)
3049 {
3050 	if (!ref)
3051 		return;
3052 	if (!RB_EMPTY_NODE(&ref->node))
3053 		rb_erase(&ref->node, ref->root);
3054 	list_del(&ref->list);
3055 	fs_path_free(ref->full_path);
3056 	kfree(ref);
3057 }
3058 
set_ref_path(struct recorded_ref * ref,struct fs_path * path)3059 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3060 {
3061 	ref->full_path = path;
3062 	ref->name = (char *)kbasename(ref->full_path->start);
3063 	ref->name_len = ref->full_path->end - ref->name;
3064 }
3065 
dup_ref(struct recorded_ref * ref,struct list_head * list)3066 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3067 {
3068 	struct recorded_ref *new;
3069 
3070 	new = recorded_ref_alloc();
3071 	if (!new)
3072 		return -ENOMEM;
3073 
3074 	new->dir = ref->dir;
3075 	new->dir_gen = ref->dir_gen;
3076 	list_add_tail(&new->list, list);
3077 	return 0;
3078 }
3079 
__free_recorded_refs(struct list_head * head)3080 static void __free_recorded_refs(struct list_head *head)
3081 {
3082 	struct recorded_ref *cur;
3083 
3084 	while (!list_empty(head)) {
3085 		cur = list_entry(head->next, struct recorded_ref, list);
3086 		recorded_ref_free(cur);
3087 	}
3088 }
3089 
free_recorded_refs(struct send_ctx * sctx)3090 static void free_recorded_refs(struct send_ctx *sctx)
3091 {
3092 	__free_recorded_refs(&sctx->new_refs);
3093 	__free_recorded_refs(&sctx->deleted_refs);
3094 }
3095 
3096 /*
3097  * Renames/moves a file/dir to its orphan name. Used when the first
3098  * ref of an unprocessed inode gets overwritten and for all non empty
3099  * directories.
3100  */
orphanize_inode(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * path)3101 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3102 			  struct fs_path *path)
3103 {
3104 	int ret;
3105 	struct fs_path *orphan;
3106 
3107 	orphan = fs_path_alloc();
3108 	if (!orphan)
3109 		return -ENOMEM;
3110 
3111 	ret = gen_unique_name(sctx, ino, gen, orphan);
3112 	if (ret < 0)
3113 		goto out;
3114 
3115 	ret = send_rename(sctx, path, orphan);
3116 
3117 out:
3118 	fs_path_free(orphan);
3119 	return ret;
3120 }
3121 
add_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 dir_gen)3122 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3123 						   u64 dir_ino, u64 dir_gen)
3124 {
3125 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
3126 	struct rb_node *parent = NULL;
3127 	struct orphan_dir_info *entry, *odi;
3128 
3129 	while (*p) {
3130 		parent = *p;
3131 		entry = rb_entry(parent, struct orphan_dir_info, node);
3132 		if (dir_ino < entry->ino)
3133 			p = &(*p)->rb_left;
3134 		else if (dir_ino > entry->ino)
3135 			p = &(*p)->rb_right;
3136 		else if (dir_gen < entry->gen)
3137 			p = &(*p)->rb_left;
3138 		else if (dir_gen > entry->gen)
3139 			p = &(*p)->rb_right;
3140 		else
3141 			return entry;
3142 	}
3143 
3144 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3145 	if (!odi)
3146 		return ERR_PTR(-ENOMEM);
3147 	odi->ino = dir_ino;
3148 	odi->gen = dir_gen;
3149 	odi->last_dir_index_offset = 0;
3150 	odi->dir_high_seq_ino = 0;
3151 
3152 	rb_link_node(&odi->node, parent, p);
3153 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
3154 	return odi;
3155 }
3156 
get_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 gen)3157 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3158 						   u64 dir_ino, u64 gen)
3159 {
3160 	struct rb_node *n = sctx->orphan_dirs.rb_node;
3161 	struct orphan_dir_info *entry;
3162 
3163 	while (n) {
3164 		entry = rb_entry(n, struct orphan_dir_info, node);
3165 		if (dir_ino < entry->ino)
3166 			n = n->rb_left;
3167 		else if (dir_ino > entry->ino)
3168 			n = n->rb_right;
3169 		else if (gen < entry->gen)
3170 			n = n->rb_left;
3171 		else if (gen > entry->gen)
3172 			n = n->rb_right;
3173 		else
3174 			return entry;
3175 	}
3176 	return NULL;
3177 }
3178 
is_waiting_for_rm(struct send_ctx * sctx,u64 dir_ino,u64 gen)3179 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3180 {
3181 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3182 
3183 	return odi != NULL;
3184 }
3185 
free_orphan_dir_info(struct send_ctx * sctx,struct orphan_dir_info * odi)3186 static void free_orphan_dir_info(struct send_ctx *sctx,
3187 				 struct orphan_dir_info *odi)
3188 {
3189 	if (!odi)
3190 		return;
3191 	rb_erase(&odi->node, &sctx->orphan_dirs);
3192 	kfree(odi);
3193 }
3194 
3195 /*
3196  * Returns 1 if a directory can be removed at this point in time.
3197  * We check this by iterating all dir items and checking if the inode behind
3198  * the dir item was already processed.
3199  */
can_rmdir(struct send_ctx * sctx,u64 dir,u64 dir_gen)3200 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
3201 {
3202 	int ret = 0;
3203 	int iter_ret = 0;
3204 	struct btrfs_root *root = sctx->parent_root;
3205 	struct btrfs_path *path;
3206 	struct btrfs_key key;
3207 	struct btrfs_key found_key;
3208 	struct btrfs_key loc;
3209 	struct btrfs_dir_item *di;
3210 	struct orphan_dir_info *odi = NULL;
3211 	u64 dir_high_seq_ino = 0;
3212 	u64 last_dir_index_offset = 0;
3213 
3214 	/*
3215 	 * Don't try to rmdir the top/root subvolume dir.
3216 	 */
3217 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
3218 		return 0;
3219 
3220 	odi = get_orphan_dir_info(sctx, dir, dir_gen);
3221 	if (odi && sctx->cur_ino < odi->dir_high_seq_ino)
3222 		return 0;
3223 
3224 	path = alloc_path_for_send();
3225 	if (!path)
3226 		return -ENOMEM;
3227 
3228 	if (!odi) {
3229 		/*
3230 		 * Find the inode number associated with the last dir index
3231 		 * entry. This is very likely the inode with the highest number
3232 		 * of all inodes that have an entry in the directory. We can
3233 		 * then use it to avoid future calls to can_rmdir(), when
3234 		 * processing inodes with a lower number, from having to search
3235 		 * the parent root b+tree for dir index keys.
3236 		 */
3237 		key.objectid = dir;
3238 		key.type = BTRFS_DIR_INDEX_KEY;
3239 		key.offset = (u64)-1;
3240 
3241 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3242 		if (ret < 0) {
3243 			goto out;
3244 		} else if (ret > 0) {
3245 			/* Can't happen, the root is never empty. */
3246 			ASSERT(path->slots[0] > 0);
3247 			if (WARN_ON(path->slots[0] == 0)) {
3248 				ret = -EUCLEAN;
3249 				goto out;
3250 			}
3251 			path->slots[0]--;
3252 		}
3253 
3254 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3255 		if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) {
3256 			/* No index keys, dir can be removed. */
3257 			ret = 1;
3258 			goto out;
3259 		}
3260 
3261 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3262 				    struct btrfs_dir_item);
3263 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3264 		dir_high_seq_ino = loc.objectid;
3265 		if (sctx->cur_ino < dir_high_seq_ino) {
3266 			ret = 0;
3267 			goto out;
3268 		}
3269 
3270 		btrfs_release_path(path);
3271 	}
3272 
3273 	key.objectid = dir;
3274 	key.type = BTRFS_DIR_INDEX_KEY;
3275 	key.offset = (odi ? odi->last_dir_index_offset : 0);
3276 
3277 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3278 		struct waiting_dir_move *dm;
3279 
3280 		if (found_key.objectid != key.objectid ||
3281 		    found_key.type != key.type)
3282 			break;
3283 
3284 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3285 				struct btrfs_dir_item);
3286 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3287 
3288 		dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid);
3289 		last_dir_index_offset = found_key.offset;
3290 
3291 		dm = get_waiting_dir_move(sctx, loc.objectid);
3292 		if (dm) {
3293 			dm->rmdir_ino = dir;
3294 			dm->rmdir_gen = dir_gen;
3295 			ret = 0;
3296 			goto out;
3297 		}
3298 
3299 		if (loc.objectid > sctx->cur_ino) {
3300 			ret = 0;
3301 			goto out;
3302 		}
3303 	}
3304 	if (iter_ret < 0) {
3305 		ret = iter_ret;
3306 		goto out;
3307 	}
3308 	free_orphan_dir_info(sctx, odi);
3309 
3310 	ret = 1;
3311 
3312 out:
3313 	btrfs_free_path(path);
3314 
3315 	if (ret)
3316 		return ret;
3317 
3318 	if (!odi) {
3319 		odi = add_orphan_dir_info(sctx, dir, dir_gen);
3320 		if (IS_ERR(odi))
3321 			return PTR_ERR(odi);
3322 
3323 		odi->gen = dir_gen;
3324 	}
3325 
3326 	odi->last_dir_index_offset = last_dir_index_offset;
3327 	odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino);
3328 
3329 	return 0;
3330 }
3331 
is_waiting_for_move(struct send_ctx * sctx,u64 ino)3332 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3333 {
3334 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3335 
3336 	return entry != NULL;
3337 }
3338 
add_waiting_dir_move(struct send_ctx * sctx,u64 ino,bool orphanized)3339 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3340 {
3341 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3342 	struct rb_node *parent = NULL;
3343 	struct waiting_dir_move *entry, *dm;
3344 
3345 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3346 	if (!dm)
3347 		return -ENOMEM;
3348 	dm->ino = ino;
3349 	dm->rmdir_ino = 0;
3350 	dm->rmdir_gen = 0;
3351 	dm->orphanized = orphanized;
3352 
3353 	while (*p) {
3354 		parent = *p;
3355 		entry = rb_entry(parent, struct waiting_dir_move, node);
3356 		if (ino < entry->ino) {
3357 			p = &(*p)->rb_left;
3358 		} else if (ino > entry->ino) {
3359 			p = &(*p)->rb_right;
3360 		} else {
3361 			kfree(dm);
3362 			return -EEXIST;
3363 		}
3364 	}
3365 
3366 	rb_link_node(&dm->node, parent, p);
3367 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3368 	return 0;
3369 }
3370 
3371 static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx * sctx,u64 ino)3372 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3373 {
3374 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3375 	struct waiting_dir_move *entry;
3376 
3377 	while (n) {
3378 		entry = rb_entry(n, struct waiting_dir_move, node);
3379 		if (ino < entry->ino)
3380 			n = n->rb_left;
3381 		else if (ino > entry->ino)
3382 			n = n->rb_right;
3383 		else
3384 			return entry;
3385 	}
3386 	return NULL;
3387 }
3388 
free_waiting_dir_move(struct send_ctx * sctx,struct waiting_dir_move * dm)3389 static void free_waiting_dir_move(struct send_ctx *sctx,
3390 				  struct waiting_dir_move *dm)
3391 {
3392 	if (!dm)
3393 		return;
3394 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3395 	kfree(dm);
3396 }
3397 
add_pending_dir_move(struct send_ctx * sctx,u64 ino,u64 ino_gen,u64 parent_ino,struct list_head * new_refs,struct list_head * deleted_refs,const bool is_orphan)3398 static int add_pending_dir_move(struct send_ctx *sctx,
3399 				u64 ino,
3400 				u64 ino_gen,
3401 				u64 parent_ino,
3402 				struct list_head *new_refs,
3403 				struct list_head *deleted_refs,
3404 				const bool is_orphan)
3405 {
3406 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3407 	struct rb_node *parent = NULL;
3408 	struct pending_dir_move *entry = NULL, *pm;
3409 	struct recorded_ref *cur;
3410 	int exists = 0;
3411 	int ret;
3412 
3413 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3414 	if (!pm)
3415 		return -ENOMEM;
3416 	pm->parent_ino = parent_ino;
3417 	pm->ino = ino;
3418 	pm->gen = ino_gen;
3419 	INIT_LIST_HEAD(&pm->list);
3420 	INIT_LIST_HEAD(&pm->update_refs);
3421 	RB_CLEAR_NODE(&pm->node);
3422 
3423 	while (*p) {
3424 		parent = *p;
3425 		entry = rb_entry(parent, struct pending_dir_move, node);
3426 		if (parent_ino < entry->parent_ino) {
3427 			p = &(*p)->rb_left;
3428 		} else if (parent_ino > entry->parent_ino) {
3429 			p = &(*p)->rb_right;
3430 		} else {
3431 			exists = 1;
3432 			break;
3433 		}
3434 	}
3435 
3436 	list_for_each_entry(cur, deleted_refs, list) {
3437 		ret = dup_ref(cur, &pm->update_refs);
3438 		if (ret < 0)
3439 			goto out;
3440 	}
3441 	list_for_each_entry(cur, new_refs, list) {
3442 		ret = dup_ref(cur, &pm->update_refs);
3443 		if (ret < 0)
3444 			goto out;
3445 	}
3446 
3447 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3448 	if (ret)
3449 		goto out;
3450 
3451 	if (exists) {
3452 		list_add_tail(&pm->list, &entry->list);
3453 	} else {
3454 		rb_link_node(&pm->node, parent, p);
3455 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3456 	}
3457 	ret = 0;
3458 out:
3459 	if (ret) {
3460 		__free_recorded_refs(&pm->update_refs);
3461 		kfree(pm);
3462 	}
3463 	return ret;
3464 }
3465 
get_pending_dir_moves(struct send_ctx * sctx,u64 parent_ino)3466 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3467 						      u64 parent_ino)
3468 {
3469 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3470 	struct pending_dir_move *entry;
3471 
3472 	while (n) {
3473 		entry = rb_entry(n, struct pending_dir_move, node);
3474 		if (parent_ino < entry->parent_ino)
3475 			n = n->rb_left;
3476 		else if (parent_ino > entry->parent_ino)
3477 			n = n->rb_right;
3478 		else
3479 			return entry;
3480 	}
3481 	return NULL;
3482 }
3483 
path_loop(struct send_ctx * sctx,struct fs_path * name,u64 ino,u64 gen,u64 * ancestor_ino)3484 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3485 		     u64 ino, u64 gen, u64 *ancestor_ino)
3486 {
3487 	int ret = 0;
3488 	u64 parent_inode = 0;
3489 	u64 parent_gen = 0;
3490 	u64 start_ino = ino;
3491 
3492 	*ancestor_ino = 0;
3493 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3494 		fs_path_reset(name);
3495 
3496 		if (is_waiting_for_rm(sctx, ino, gen))
3497 			break;
3498 		if (is_waiting_for_move(sctx, ino)) {
3499 			if (*ancestor_ino == 0)
3500 				*ancestor_ino = ino;
3501 			ret = get_first_ref(sctx->parent_root, ino,
3502 					    &parent_inode, &parent_gen, name);
3503 		} else {
3504 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3505 							&parent_inode,
3506 							&parent_gen, name);
3507 			if (ret > 0) {
3508 				ret = 0;
3509 				break;
3510 			}
3511 		}
3512 		if (ret < 0)
3513 			break;
3514 		if (parent_inode == start_ino) {
3515 			ret = 1;
3516 			if (*ancestor_ino == 0)
3517 				*ancestor_ino = ino;
3518 			break;
3519 		}
3520 		ino = parent_inode;
3521 		gen = parent_gen;
3522 	}
3523 	return ret;
3524 }
3525 
apply_dir_move(struct send_ctx * sctx,struct pending_dir_move * pm)3526 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3527 {
3528 	struct fs_path *from_path = NULL;
3529 	struct fs_path *to_path = NULL;
3530 	struct fs_path *name = NULL;
3531 	u64 orig_progress = sctx->send_progress;
3532 	struct recorded_ref *cur;
3533 	u64 parent_ino, parent_gen;
3534 	struct waiting_dir_move *dm = NULL;
3535 	u64 rmdir_ino = 0;
3536 	u64 rmdir_gen;
3537 	u64 ancestor;
3538 	bool is_orphan;
3539 	int ret;
3540 
3541 	name = fs_path_alloc();
3542 	from_path = fs_path_alloc();
3543 	if (!name || !from_path) {
3544 		ret = -ENOMEM;
3545 		goto out;
3546 	}
3547 
3548 	dm = get_waiting_dir_move(sctx, pm->ino);
3549 	ASSERT(dm);
3550 	rmdir_ino = dm->rmdir_ino;
3551 	rmdir_gen = dm->rmdir_gen;
3552 	is_orphan = dm->orphanized;
3553 	free_waiting_dir_move(sctx, dm);
3554 
3555 	if (is_orphan) {
3556 		ret = gen_unique_name(sctx, pm->ino,
3557 				      pm->gen, from_path);
3558 	} else {
3559 		ret = get_first_ref(sctx->parent_root, pm->ino,
3560 				    &parent_ino, &parent_gen, name);
3561 		if (ret < 0)
3562 			goto out;
3563 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3564 				   from_path);
3565 		if (ret < 0)
3566 			goto out;
3567 		ret = fs_path_add_path(from_path, name);
3568 	}
3569 	if (ret < 0)
3570 		goto out;
3571 
3572 	sctx->send_progress = sctx->cur_ino + 1;
3573 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3574 	if (ret < 0)
3575 		goto out;
3576 	if (ret) {
3577 		LIST_HEAD(deleted_refs);
3578 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3579 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3580 					   &pm->update_refs, &deleted_refs,
3581 					   is_orphan);
3582 		if (ret < 0)
3583 			goto out;
3584 		if (rmdir_ino) {
3585 			dm = get_waiting_dir_move(sctx, pm->ino);
3586 			ASSERT(dm);
3587 			dm->rmdir_ino = rmdir_ino;
3588 			dm->rmdir_gen = rmdir_gen;
3589 		}
3590 		goto out;
3591 	}
3592 	fs_path_reset(name);
3593 	to_path = name;
3594 	name = NULL;
3595 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3596 	if (ret < 0)
3597 		goto out;
3598 
3599 	ret = send_rename(sctx, from_path, to_path);
3600 	if (ret < 0)
3601 		goto out;
3602 
3603 	if (rmdir_ino) {
3604 		struct orphan_dir_info *odi;
3605 		u64 gen;
3606 
3607 		odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3608 		if (!odi) {
3609 			/* already deleted */
3610 			goto finish;
3611 		}
3612 		gen = odi->gen;
3613 
3614 		ret = can_rmdir(sctx, rmdir_ino, gen);
3615 		if (ret < 0)
3616 			goto out;
3617 		if (!ret)
3618 			goto finish;
3619 
3620 		name = fs_path_alloc();
3621 		if (!name) {
3622 			ret = -ENOMEM;
3623 			goto out;
3624 		}
3625 		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3626 		if (ret < 0)
3627 			goto out;
3628 		ret = send_rmdir(sctx, name);
3629 		if (ret < 0)
3630 			goto out;
3631 	}
3632 
3633 finish:
3634 	ret = cache_dir_utimes(sctx, pm->ino, pm->gen);
3635 	if (ret < 0)
3636 		goto out;
3637 
3638 	/*
3639 	 * After rename/move, need to update the utimes of both new parent(s)
3640 	 * and old parent(s).
3641 	 */
3642 	list_for_each_entry(cur, &pm->update_refs, list) {
3643 		/*
3644 		 * The parent inode might have been deleted in the send snapshot
3645 		 */
3646 		ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3647 		if (ret == -ENOENT) {
3648 			ret = 0;
3649 			continue;
3650 		}
3651 		if (ret < 0)
3652 			goto out;
3653 
3654 		ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
3655 		if (ret < 0)
3656 			goto out;
3657 	}
3658 
3659 out:
3660 	fs_path_free(name);
3661 	fs_path_free(from_path);
3662 	fs_path_free(to_path);
3663 	sctx->send_progress = orig_progress;
3664 
3665 	return ret;
3666 }
3667 
free_pending_move(struct send_ctx * sctx,struct pending_dir_move * m)3668 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3669 {
3670 	if (!list_empty(&m->list))
3671 		list_del(&m->list);
3672 	if (!RB_EMPTY_NODE(&m->node))
3673 		rb_erase(&m->node, &sctx->pending_dir_moves);
3674 	__free_recorded_refs(&m->update_refs);
3675 	kfree(m);
3676 }
3677 
tail_append_pending_moves(struct send_ctx * sctx,struct pending_dir_move * moves,struct list_head * stack)3678 static void tail_append_pending_moves(struct send_ctx *sctx,
3679 				      struct pending_dir_move *moves,
3680 				      struct list_head *stack)
3681 {
3682 	if (list_empty(&moves->list)) {
3683 		list_add_tail(&moves->list, stack);
3684 	} else {
3685 		LIST_HEAD(list);
3686 		list_splice_init(&moves->list, &list);
3687 		list_add_tail(&moves->list, stack);
3688 		list_splice_tail(&list, stack);
3689 	}
3690 	if (!RB_EMPTY_NODE(&moves->node)) {
3691 		rb_erase(&moves->node, &sctx->pending_dir_moves);
3692 		RB_CLEAR_NODE(&moves->node);
3693 	}
3694 }
3695 
apply_children_dir_moves(struct send_ctx * sctx)3696 static int apply_children_dir_moves(struct send_ctx *sctx)
3697 {
3698 	struct pending_dir_move *pm;
3699 	LIST_HEAD(stack);
3700 	u64 parent_ino = sctx->cur_ino;
3701 	int ret = 0;
3702 
3703 	pm = get_pending_dir_moves(sctx, parent_ino);
3704 	if (!pm)
3705 		return 0;
3706 
3707 	tail_append_pending_moves(sctx, pm, &stack);
3708 
3709 	while (!list_empty(&stack)) {
3710 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3711 		parent_ino = pm->ino;
3712 		ret = apply_dir_move(sctx, pm);
3713 		free_pending_move(sctx, pm);
3714 		if (ret)
3715 			goto out;
3716 		pm = get_pending_dir_moves(sctx, parent_ino);
3717 		if (pm)
3718 			tail_append_pending_moves(sctx, pm, &stack);
3719 	}
3720 	return 0;
3721 
3722 out:
3723 	while (!list_empty(&stack)) {
3724 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3725 		free_pending_move(sctx, pm);
3726 	}
3727 	return ret;
3728 }
3729 
3730 /*
3731  * We might need to delay a directory rename even when no ancestor directory
3732  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3733  * renamed. This happens when we rename a directory to the old name (the name
3734  * in the parent root) of some other unrelated directory that got its rename
3735  * delayed due to some ancestor with higher number that got renamed.
3736  *
3737  * Example:
3738  *
3739  * Parent snapshot:
3740  * .                                       (ino 256)
3741  * |---- a/                                (ino 257)
3742  * |     |---- file                        (ino 260)
3743  * |
3744  * |---- b/                                (ino 258)
3745  * |---- c/                                (ino 259)
3746  *
3747  * Send snapshot:
3748  * .                                       (ino 256)
3749  * |---- a/                                (ino 258)
3750  * |---- x/                                (ino 259)
3751  *       |---- y/                          (ino 257)
3752  *             |----- file                 (ino 260)
3753  *
3754  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3755  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3756  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3757  * must issue is:
3758  *
3759  * 1 - rename 259 from 'c' to 'x'
3760  * 2 - rename 257 from 'a' to 'x/y'
3761  * 3 - rename 258 from 'b' to 'a'
3762  *
3763  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3764  * be done right away and < 0 on error.
3765  */
wait_for_dest_dir_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3766 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3767 				  struct recorded_ref *parent_ref,
3768 				  const bool is_orphan)
3769 {
3770 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3771 	struct btrfs_path *path;
3772 	struct btrfs_key key;
3773 	struct btrfs_key di_key;
3774 	struct btrfs_dir_item *di;
3775 	u64 left_gen;
3776 	u64 right_gen;
3777 	int ret = 0;
3778 	struct waiting_dir_move *wdm;
3779 
3780 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3781 		return 0;
3782 
3783 	path = alloc_path_for_send();
3784 	if (!path)
3785 		return -ENOMEM;
3786 
3787 	key.objectid = parent_ref->dir;
3788 	key.type = BTRFS_DIR_ITEM_KEY;
3789 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3790 
3791 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3792 	if (ret < 0) {
3793 		goto out;
3794 	} else if (ret > 0) {
3795 		ret = 0;
3796 		goto out;
3797 	}
3798 
3799 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3800 				       parent_ref->name_len);
3801 	if (!di) {
3802 		ret = 0;
3803 		goto out;
3804 	}
3805 	/*
3806 	 * di_key.objectid has the number of the inode that has a dentry in the
3807 	 * parent directory with the same name that sctx->cur_ino is being
3808 	 * renamed to. We need to check if that inode is in the send root as
3809 	 * well and if it is currently marked as an inode with a pending rename,
3810 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3811 	 * that it happens after that other inode is renamed.
3812 	 */
3813 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3814 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3815 		ret = 0;
3816 		goto out;
3817 	}
3818 
3819 	ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3820 	if (ret < 0)
3821 		goto out;
3822 	ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3823 	if (ret < 0) {
3824 		if (ret == -ENOENT)
3825 			ret = 0;
3826 		goto out;
3827 	}
3828 
3829 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3830 	if (right_gen != left_gen) {
3831 		ret = 0;
3832 		goto out;
3833 	}
3834 
3835 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3836 	if (wdm && !wdm->orphanized) {
3837 		ret = add_pending_dir_move(sctx,
3838 					   sctx->cur_ino,
3839 					   sctx->cur_inode_gen,
3840 					   di_key.objectid,
3841 					   &sctx->new_refs,
3842 					   &sctx->deleted_refs,
3843 					   is_orphan);
3844 		if (!ret)
3845 			ret = 1;
3846 	}
3847 out:
3848 	btrfs_free_path(path);
3849 	return ret;
3850 }
3851 
3852 /*
3853  * Check if inode ino2, or any of its ancestors, is inode ino1.
3854  * Return 1 if true, 0 if false and < 0 on error.
3855  */
check_ino_in_path(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,const u64 ino2_gen,struct fs_path * fs_path)3856 static int check_ino_in_path(struct btrfs_root *root,
3857 			     const u64 ino1,
3858 			     const u64 ino1_gen,
3859 			     const u64 ino2,
3860 			     const u64 ino2_gen,
3861 			     struct fs_path *fs_path)
3862 {
3863 	u64 ino = ino2;
3864 
3865 	if (ino1 == ino2)
3866 		return ino1_gen == ino2_gen;
3867 
3868 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3869 		u64 parent;
3870 		u64 parent_gen;
3871 		int ret;
3872 
3873 		fs_path_reset(fs_path);
3874 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3875 		if (ret < 0)
3876 			return ret;
3877 		if (parent == ino1)
3878 			return parent_gen == ino1_gen;
3879 		ino = parent;
3880 	}
3881 	return 0;
3882 }
3883 
3884 /*
3885  * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3886  * possible path (in case ino2 is not a directory and has multiple hard links).
3887  * Return 1 if true, 0 if false and < 0 on error.
3888  */
is_ancestor(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,struct fs_path * fs_path)3889 static int is_ancestor(struct btrfs_root *root,
3890 		       const u64 ino1,
3891 		       const u64 ino1_gen,
3892 		       const u64 ino2,
3893 		       struct fs_path *fs_path)
3894 {
3895 	bool free_fs_path = false;
3896 	int ret = 0;
3897 	int iter_ret = 0;
3898 	struct btrfs_path *path = NULL;
3899 	struct btrfs_key key;
3900 
3901 	if (!fs_path) {
3902 		fs_path = fs_path_alloc();
3903 		if (!fs_path)
3904 			return -ENOMEM;
3905 		free_fs_path = true;
3906 	}
3907 
3908 	path = alloc_path_for_send();
3909 	if (!path) {
3910 		ret = -ENOMEM;
3911 		goto out;
3912 	}
3913 
3914 	key.objectid = ino2;
3915 	key.type = BTRFS_INODE_REF_KEY;
3916 	key.offset = 0;
3917 
3918 	btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3919 		struct extent_buffer *leaf = path->nodes[0];
3920 		int slot = path->slots[0];
3921 		u32 cur_offset = 0;
3922 		u32 item_size;
3923 
3924 		if (key.objectid != ino2)
3925 			break;
3926 		if (key.type != BTRFS_INODE_REF_KEY &&
3927 		    key.type != BTRFS_INODE_EXTREF_KEY)
3928 			break;
3929 
3930 		item_size = btrfs_item_size(leaf, slot);
3931 		while (cur_offset < item_size) {
3932 			u64 parent;
3933 			u64 parent_gen;
3934 
3935 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3936 				unsigned long ptr;
3937 				struct btrfs_inode_extref *extref;
3938 
3939 				ptr = btrfs_item_ptr_offset(leaf, slot);
3940 				extref = (struct btrfs_inode_extref *)
3941 					(ptr + cur_offset);
3942 				parent = btrfs_inode_extref_parent(leaf,
3943 								   extref);
3944 				cur_offset += sizeof(*extref);
3945 				cur_offset += btrfs_inode_extref_name_len(leaf,
3946 								  extref);
3947 			} else {
3948 				parent = key.offset;
3949 				cur_offset = item_size;
3950 			}
3951 
3952 			ret = get_inode_gen(root, parent, &parent_gen);
3953 			if (ret < 0)
3954 				goto out;
3955 			ret = check_ino_in_path(root, ino1, ino1_gen,
3956 						parent, parent_gen, fs_path);
3957 			if (ret)
3958 				goto out;
3959 		}
3960 	}
3961 	ret = 0;
3962 	if (iter_ret < 0)
3963 		ret = iter_ret;
3964 
3965 out:
3966 	btrfs_free_path(path);
3967 	if (free_fs_path)
3968 		fs_path_free(fs_path);
3969 	return ret;
3970 }
3971 
wait_for_parent_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3972 static int wait_for_parent_move(struct send_ctx *sctx,
3973 				struct recorded_ref *parent_ref,
3974 				const bool is_orphan)
3975 {
3976 	int ret = 0;
3977 	u64 ino = parent_ref->dir;
3978 	u64 ino_gen = parent_ref->dir_gen;
3979 	u64 parent_ino_before, parent_ino_after;
3980 	struct fs_path *path_before = NULL;
3981 	struct fs_path *path_after = NULL;
3982 	int len1, len2;
3983 
3984 	path_after = fs_path_alloc();
3985 	path_before = fs_path_alloc();
3986 	if (!path_after || !path_before) {
3987 		ret = -ENOMEM;
3988 		goto out;
3989 	}
3990 
3991 	/*
3992 	 * Our current directory inode may not yet be renamed/moved because some
3993 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3994 	 * such ancestor exists and make sure our own rename/move happens after
3995 	 * that ancestor is processed to avoid path build infinite loops (done
3996 	 * at get_cur_path()).
3997 	 */
3998 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3999 		u64 parent_ino_after_gen;
4000 
4001 		if (is_waiting_for_move(sctx, ino)) {
4002 			/*
4003 			 * If the current inode is an ancestor of ino in the
4004 			 * parent root, we need to delay the rename of the
4005 			 * current inode, otherwise don't delayed the rename
4006 			 * because we can end up with a circular dependency
4007 			 * of renames, resulting in some directories never
4008 			 * getting the respective rename operations issued in
4009 			 * the send stream or getting into infinite path build
4010 			 * loops.
4011 			 */
4012 			ret = is_ancestor(sctx->parent_root,
4013 					  sctx->cur_ino, sctx->cur_inode_gen,
4014 					  ino, path_before);
4015 			if (ret)
4016 				break;
4017 		}
4018 
4019 		fs_path_reset(path_before);
4020 		fs_path_reset(path_after);
4021 
4022 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
4023 				    &parent_ino_after_gen, path_after);
4024 		if (ret < 0)
4025 			goto out;
4026 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
4027 				    NULL, path_before);
4028 		if (ret < 0 && ret != -ENOENT) {
4029 			goto out;
4030 		} else if (ret == -ENOENT) {
4031 			ret = 0;
4032 			break;
4033 		}
4034 
4035 		len1 = fs_path_len(path_before);
4036 		len2 = fs_path_len(path_after);
4037 		if (ino > sctx->cur_ino &&
4038 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
4039 		     memcmp(path_before->start, path_after->start, len1))) {
4040 			u64 parent_ino_gen;
4041 
4042 			ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
4043 			if (ret < 0)
4044 				goto out;
4045 			if (ino_gen == parent_ino_gen) {
4046 				ret = 1;
4047 				break;
4048 			}
4049 		}
4050 		ino = parent_ino_after;
4051 		ino_gen = parent_ino_after_gen;
4052 	}
4053 
4054 out:
4055 	fs_path_free(path_before);
4056 	fs_path_free(path_after);
4057 
4058 	if (ret == 1) {
4059 		ret = add_pending_dir_move(sctx,
4060 					   sctx->cur_ino,
4061 					   sctx->cur_inode_gen,
4062 					   ino,
4063 					   &sctx->new_refs,
4064 					   &sctx->deleted_refs,
4065 					   is_orphan);
4066 		if (!ret)
4067 			ret = 1;
4068 	}
4069 
4070 	return ret;
4071 }
4072 
update_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)4073 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4074 {
4075 	int ret;
4076 	struct fs_path *new_path;
4077 
4078 	/*
4079 	 * Our reference's name member points to its full_path member string, so
4080 	 * we use here a new path.
4081 	 */
4082 	new_path = fs_path_alloc();
4083 	if (!new_path)
4084 		return -ENOMEM;
4085 
4086 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4087 	if (ret < 0) {
4088 		fs_path_free(new_path);
4089 		return ret;
4090 	}
4091 	ret = fs_path_add(new_path, ref->name, ref->name_len);
4092 	if (ret < 0) {
4093 		fs_path_free(new_path);
4094 		return ret;
4095 	}
4096 
4097 	fs_path_free(ref->full_path);
4098 	set_ref_path(ref, new_path);
4099 
4100 	return 0;
4101 }
4102 
4103 /*
4104  * When processing the new references for an inode we may orphanize an existing
4105  * directory inode because its old name conflicts with one of the new references
4106  * of the current inode. Later, when processing another new reference of our
4107  * inode, we might need to orphanize another inode, but the path we have in the
4108  * reference reflects the pre-orphanization name of the directory we previously
4109  * orphanized. For example:
4110  *
4111  * parent snapshot looks like:
4112  *
4113  * .                                     (ino 256)
4114  * |----- f1                             (ino 257)
4115  * |----- f2                             (ino 258)
4116  * |----- d1/                            (ino 259)
4117  *        |----- d2/                     (ino 260)
4118  *
4119  * send snapshot looks like:
4120  *
4121  * .                                     (ino 256)
4122  * |----- d1                             (ino 258)
4123  * |----- f2/                            (ino 259)
4124  *        |----- f2_link/                (ino 260)
4125  *        |       |----- f1              (ino 257)
4126  *        |
4127  *        |----- d2                      (ino 258)
4128  *
4129  * When processing inode 257 we compute the name for inode 259 as "d1", and we
4130  * cache it in the name cache. Later when we start processing inode 258, when
4131  * collecting all its new references we set a full path of "d1/d2" for its new
4132  * reference with name "d2". When we start processing the new references we
4133  * start by processing the new reference with name "d1", and this results in
4134  * orphanizing inode 259, since its old reference causes a conflict. Then we
4135  * move on the next new reference, with name "d2", and we find out we must
4136  * orphanize inode 260, as its old reference conflicts with ours - but for the
4137  * orphanization we use a source path corresponding to the path we stored in the
4138  * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4139  * receiver fail since the path component "d1/" no longer exists, it was renamed
4140  * to "o259-6-0/" when processing the previous new reference. So in this case we
4141  * must recompute the path in the new reference and use it for the new
4142  * orphanization operation.
4143  */
refresh_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)4144 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4145 {
4146 	char *name;
4147 	int ret;
4148 
4149 	name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4150 	if (!name)
4151 		return -ENOMEM;
4152 
4153 	fs_path_reset(ref->full_path);
4154 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4155 	if (ret < 0)
4156 		goto out;
4157 
4158 	ret = fs_path_add(ref->full_path, name, ref->name_len);
4159 	if (ret < 0)
4160 		goto out;
4161 
4162 	/* Update the reference's base name pointer. */
4163 	set_ref_path(ref, ref->full_path);
4164 out:
4165 	kfree(name);
4166 	return ret;
4167 }
4168 
4169 /*
4170  * This does all the move/link/unlink/rmdir magic.
4171  */
process_recorded_refs(struct send_ctx * sctx,int * pending_move)4172 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4173 {
4174 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4175 	int ret = 0;
4176 	struct recorded_ref *cur;
4177 	struct recorded_ref *cur2;
4178 	LIST_HEAD(check_dirs);
4179 	struct fs_path *valid_path = NULL;
4180 	u64 ow_inode = 0;
4181 	u64 ow_gen;
4182 	u64 ow_mode;
4183 	int did_overwrite = 0;
4184 	int is_orphan = 0;
4185 	u64 last_dir_ino_rm = 0;
4186 	bool can_rename = true;
4187 	bool orphanized_dir = false;
4188 	bool orphanized_ancestor = false;
4189 
4190 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
4191 
4192 	/*
4193 	 * This should never happen as the root dir always has the same ref
4194 	 * which is always '..'
4195 	 */
4196 	if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) {
4197 		btrfs_err(fs_info,
4198 			  "send: unexpected inode %llu in process_recorded_refs()",
4199 			  sctx->cur_ino);
4200 		ret = -EINVAL;
4201 		goto out;
4202 	}
4203 
4204 	valid_path = fs_path_alloc();
4205 	if (!valid_path) {
4206 		ret = -ENOMEM;
4207 		goto out;
4208 	}
4209 
4210 	/*
4211 	 * First, check if the first ref of the current inode was overwritten
4212 	 * before. If yes, we know that the current inode was already orphanized
4213 	 * and thus use the orphan name. If not, we can use get_cur_path to
4214 	 * get the path of the first ref as it would like while receiving at
4215 	 * this point in time.
4216 	 * New inodes are always orphan at the beginning, so force to use the
4217 	 * orphan name in this case.
4218 	 * The first ref is stored in valid_path and will be updated if it
4219 	 * gets moved around.
4220 	 */
4221 	if (!sctx->cur_inode_new) {
4222 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4223 				sctx->cur_inode_gen);
4224 		if (ret < 0)
4225 			goto out;
4226 		if (ret)
4227 			did_overwrite = 1;
4228 	}
4229 	if (sctx->cur_inode_new || did_overwrite) {
4230 		ret = gen_unique_name(sctx, sctx->cur_ino,
4231 				sctx->cur_inode_gen, valid_path);
4232 		if (ret < 0)
4233 			goto out;
4234 		is_orphan = 1;
4235 	} else {
4236 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4237 				valid_path);
4238 		if (ret < 0)
4239 			goto out;
4240 	}
4241 
4242 	/*
4243 	 * Before doing any rename and link operations, do a first pass on the
4244 	 * new references to orphanize any unprocessed inodes that may have a
4245 	 * reference that conflicts with one of the new references of the current
4246 	 * inode. This needs to happen first because a new reference may conflict
4247 	 * with the old reference of a parent directory, so we must make sure
4248 	 * that the path used for link and rename commands don't use an
4249 	 * orphanized name when an ancestor was not yet orphanized.
4250 	 *
4251 	 * Example:
4252 	 *
4253 	 * Parent snapshot:
4254 	 *
4255 	 * .                                                      (ino 256)
4256 	 * |----- testdir/                                        (ino 259)
4257 	 * |          |----- a                                    (ino 257)
4258 	 * |
4259 	 * |----- b                                               (ino 258)
4260 	 *
4261 	 * Send snapshot:
4262 	 *
4263 	 * .                                                      (ino 256)
4264 	 * |----- testdir_2/                                      (ino 259)
4265 	 * |          |----- a                                    (ino 260)
4266 	 * |
4267 	 * |----- testdir                                         (ino 257)
4268 	 * |----- b                                               (ino 257)
4269 	 * |----- b2                                              (ino 258)
4270 	 *
4271 	 * Processing the new reference for inode 257 with name "b" may happen
4272 	 * before processing the new reference with name "testdir". If so, we
4273 	 * must make sure that by the time we send a link command to create the
4274 	 * hard link "b", inode 259 was already orphanized, since the generated
4275 	 * path in "valid_path" already contains the orphanized name for 259.
4276 	 * We are processing inode 257, so only later when processing 259 we do
4277 	 * the rename operation to change its temporary (orphanized) name to
4278 	 * "testdir_2".
4279 	 */
4280 	list_for_each_entry(cur, &sctx->new_refs, list) {
4281 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4282 		if (ret < 0)
4283 			goto out;
4284 		if (ret == inode_state_will_create)
4285 			continue;
4286 
4287 		/*
4288 		 * Check if this new ref would overwrite the first ref of another
4289 		 * unprocessed inode. If yes, orphanize the overwritten inode.
4290 		 * If we find an overwritten ref that is not the first ref,
4291 		 * simply unlink it.
4292 		 */
4293 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4294 				cur->name, cur->name_len,
4295 				&ow_inode, &ow_gen, &ow_mode);
4296 		if (ret < 0)
4297 			goto out;
4298 		if (ret) {
4299 			ret = is_first_ref(sctx->parent_root,
4300 					   ow_inode, cur->dir, cur->name,
4301 					   cur->name_len);
4302 			if (ret < 0)
4303 				goto out;
4304 			if (ret) {
4305 				struct name_cache_entry *nce;
4306 				struct waiting_dir_move *wdm;
4307 
4308 				if (orphanized_dir) {
4309 					ret = refresh_ref_path(sctx, cur);
4310 					if (ret < 0)
4311 						goto out;
4312 				}
4313 
4314 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
4315 						cur->full_path);
4316 				if (ret < 0)
4317 					goto out;
4318 				if (S_ISDIR(ow_mode))
4319 					orphanized_dir = true;
4320 
4321 				/*
4322 				 * If ow_inode has its rename operation delayed
4323 				 * make sure that its orphanized name is used in
4324 				 * the source path when performing its rename
4325 				 * operation.
4326 				 */
4327 				wdm = get_waiting_dir_move(sctx, ow_inode);
4328 				if (wdm)
4329 					wdm->orphanized = true;
4330 
4331 				/*
4332 				 * Make sure we clear our orphanized inode's
4333 				 * name from the name cache. This is because the
4334 				 * inode ow_inode might be an ancestor of some
4335 				 * other inode that will be orphanized as well
4336 				 * later and has an inode number greater than
4337 				 * sctx->send_progress. We need to prevent
4338 				 * future name lookups from using the old name
4339 				 * and get instead the orphan name.
4340 				 */
4341 				nce = name_cache_search(sctx, ow_inode, ow_gen);
4342 				if (nce)
4343 					btrfs_lru_cache_remove(&sctx->name_cache,
4344 							       &nce->entry);
4345 
4346 				/*
4347 				 * ow_inode might currently be an ancestor of
4348 				 * cur_ino, therefore compute valid_path (the
4349 				 * current path of cur_ino) again because it
4350 				 * might contain the pre-orphanization name of
4351 				 * ow_inode, which is no longer valid.
4352 				 */
4353 				ret = is_ancestor(sctx->parent_root,
4354 						  ow_inode, ow_gen,
4355 						  sctx->cur_ino, NULL);
4356 				if (ret > 0) {
4357 					orphanized_ancestor = true;
4358 					fs_path_reset(valid_path);
4359 					ret = get_cur_path(sctx, sctx->cur_ino,
4360 							   sctx->cur_inode_gen,
4361 							   valid_path);
4362 				}
4363 				if (ret < 0)
4364 					goto out;
4365 			} else {
4366 				/*
4367 				 * If we previously orphanized a directory that
4368 				 * collided with a new reference that we already
4369 				 * processed, recompute the current path because
4370 				 * that directory may be part of the path.
4371 				 */
4372 				if (orphanized_dir) {
4373 					ret = refresh_ref_path(sctx, cur);
4374 					if (ret < 0)
4375 						goto out;
4376 				}
4377 				ret = send_unlink(sctx, cur->full_path);
4378 				if (ret < 0)
4379 					goto out;
4380 			}
4381 		}
4382 
4383 	}
4384 
4385 	list_for_each_entry(cur, &sctx->new_refs, list) {
4386 		/*
4387 		 * We may have refs where the parent directory does not exist
4388 		 * yet. This happens if the parent directories inum is higher
4389 		 * than the current inum. To handle this case, we create the
4390 		 * parent directory out of order. But we need to check if this
4391 		 * did already happen before due to other refs in the same dir.
4392 		 */
4393 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4394 		if (ret < 0)
4395 			goto out;
4396 		if (ret == inode_state_will_create) {
4397 			ret = 0;
4398 			/*
4399 			 * First check if any of the current inodes refs did
4400 			 * already create the dir.
4401 			 */
4402 			list_for_each_entry(cur2, &sctx->new_refs, list) {
4403 				if (cur == cur2)
4404 					break;
4405 				if (cur2->dir == cur->dir) {
4406 					ret = 1;
4407 					break;
4408 				}
4409 			}
4410 
4411 			/*
4412 			 * If that did not happen, check if a previous inode
4413 			 * did already create the dir.
4414 			 */
4415 			if (!ret)
4416 				ret = did_create_dir(sctx, cur->dir);
4417 			if (ret < 0)
4418 				goto out;
4419 			if (!ret) {
4420 				ret = send_create_inode(sctx, cur->dir);
4421 				if (ret < 0)
4422 					goto out;
4423 				cache_dir_created(sctx, cur->dir);
4424 			}
4425 		}
4426 
4427 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4428 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4429 			if (ret < 0)
4430 				goto out;
4431 			if (ret == 1) {
4432 				can_rename = false;
4433 				*pending_move = 1;
4434 			}
4435 		}
4436 
4437 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4438 		    can_rename) {
4439 			ret = wait_for_parent_move(sctx, cur, is_orphan);
4440 			if (ret < 0)
4441 				goto out;
4442 			if (ret == 1) {
4443 				can_rename = false;
4444 				*pending_move = 1;
4445 			}
4446 		}
4447 
4448 		/*
4449 		 * link/move the ref to the new place. If we have an orphan
4450 		 * inode, move it and update valid_path. If not, link or move
4451 		 * it depending on the inode mode.
4452 		 */
4453 		if (is_orphan && can_rename) {
4454 			ret = send_rename(sctx, valid_path, cur->full_path);
4455 			if (ret < 0)
4456 				goto out;
4457 			is_orphan = 0;
4458 			ret = fs_path_copy(valid_path, cur->full_path);
4459 			if (ret < 0)
4460 				goto out;
4461 		} else if (can_rename) {
4462 			if (S_ISDIR(sctx->cur_inode_mode)) {
4463 				/*
4464 				 * Dirs can't be linked, so move it. For moved
4465 				 * dirs, we always have one new and one deleted
4466 				 * ref. The deleted ref is ignored later.
4467 				 */
4468 				ret = send_rename(sctx, valid_path,
4469 						  cur->full_path);
4470 				if (!ret)
4471 					ret = fs_path_copy(valid_path,
4472 							   cur->full_path);
4473 				if (ret < 0)
4474 					goto out;
4475 			} else {
4476 				/*
4477 				 * We might have previously orphanized an inode
4478 				 * which is an ancestor of our current inode,
4479 				 * so our reference's full path, which was
4480 				 * computed before any such orphanizations, must
4481 				 * be updated.
4482 				 */
4483 				if (orphanized_dir) {
4484 					ret = update_ref_path(sctx, cur);
4485 					if (ret < 0)
4486 						goto out;
4487 				}
4488 				ret = send_link(sctx, cur->full_path,
4489 						valid_path);
4490 				if (ret < 0)
4491 					goto out;
4492 			}
4493 		}
4494 		ret = dup_ref(cur, &check_dirs);
4495 		if (ret < 0)
4496 			goto out;
4497 	}
4498 
4499 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4500 		/*
4501 		 * Check if we can already rmdir the directory. If not,
4502 		 * orphanize it. For every dir item inside that gets deleted
4503 		 * later, we do this check again and rmdir it then if possible.
4504 		 * See the use of check_dirs for more details.
4505 		 */
4506 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4507 		if (ret < 0)
4508 			goto out;
4509 		if (ret) {
4510 			ret = send_rmdir(sctx, valid_path);
4511 			if (ret < 0)
4512 				goto out;
4513 		} else if (!is_orphan) {
4514 			ret = orphanize_inode(sctx, sctx->cur_ino,
4515 					sctx->cur_inode_gen, valid_path);
4516 			if (ret < 0)
4517 				goto out;
4518 			is_orphan = 1;
4519 		}
4520 
4521 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4522 			ret = dup_ref(cur, &check_dirs);
4523 			if (ret < 0)
4524 				goto out;
4525 		}
4526 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4527 		   !list_empty(&sctx->deleted_refs)) {
4528 		/*
4529 		 * We have a moved dir. Add the old parent to check_dirs
4530 		 */
4531 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4532 				list);
4533 		ret = dup_ref(cur, &check_dirs);
4534 		if (ret < 0)
4535 			goto out;
4536 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4537 		/*
4538 		 * We have a non dir inode. Go through all deleted refs and
4539 		 * unlink them if they were not already overwritten by other
4540 		 * inodes.
4541 		 */
4542 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4543 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4544 					sctx->cur_ino, sctx->cur_inode_gen,
4545 					cur->name, cur->name_len);
4546 			if (ret < 0)
4547 				goto out;
4548 			if (!ret) {
4549 				/*
4550 				 * If we orphanized any ancestor before, we need
4551 				 * to recompute the full path for deleted names,
4552 				 * since any such path was computed before we
4553 				 * processed any references and orphanized any
4554 				 * ancestor inode.
4555 				 */
4556 				if (orphanized_ancestor) {
4557 					ret = update_ref_path(sctx, cur);
4558 					if (ret < 0)
4559 						goto out;
4560 				}
4561 				ret = send_unlink(sctx, cur->full_path);
4562 				if (ret < 0)
4563 					goto out;
4564 			}
4565 			ret = dup_ref(cur, &check_dirs);
4566 			if (ret < 0)
4567 				goto out;
4568 		}
4569 		/*
4570 		 * If the inode is still orphan, unlink the orphan. This may
4571 		 * happen when a previous inode did overwrite the first ref
4572 		 * of this inode and no new refs were added for the current
4573 		 * inode. Unlinking does not mean that the inode is deleted in
4574 		 * all cases. There may still be links to this inode in other
4575 		 * places.
4576 		 */
4577 		if (is_orphan) {
4578 			ret = send_unlink(sctx, valid_path);
4579 			if (ret < 0)
4580 				goto out;
4581 		}
4582 	}
4583 
4584 	/*
4585 	 * We did collect all parent dirs where cur_inode was once located. We
4586 	 * now go through all these dirs and check if they are pending for
4587 	 * deletion and if it's finally possible to perform the rmdir now.
4588 	 * We also update the inode stats of the parent dirs here.
4589 	 */
4590 	list_for_each_entry(cur, &check_dirs, list) {
4591 		/*
4592 		 * In case we had refs into dirs that were not processed yet,
4593 		 * we don't need to do the utime and rmdir logic for these dirs.
4594 		 * The dir will be processed later.
4595 		 */
4596 		if (cur->dir > sctx->cur_ino)
4597 			continue;
4598 
4599 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4600 		if (ret < 0)
4601 			goto out;
4602 
4603 		if (ret == inode_state_did_create ||
4604 		    ret == inode_state_no_change) {
4605 			ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
4606 			if (ret < 0)
4607 				goto out;
4608 		} else if (ret == inode_state_did_delete &&
4609 			   cur->dir != last_dir_ino_rm) {
4610 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen);
4611 			if (ret < 0)
4612 				goto out;
4613 			if (ret) {
4614 				ret = get_cur_path(sctx, cur->dir,
4615 						   cur->dir_gen, valid_path);
4616 				if (ret < 0)
4617 					goto out;
4618 				ret = send_rmdir(sctx, valid_path);
4619 				if (ret < 0)
4620 					goto out;
4621 				last_dir_ino_rm = cur->dir;
4622 			}
4623 		}
4624 	}
4625 
4626 	ret = 0;
4627 
4628 out:
4629 	__free_recorded_refs(&check_dirs);
4630 	free_recorded_refs(sctx);
4631 	fs_path_free(valid_path);
4632 	return ret;
4633 }
4634 
rbtree_ref_comp(const void * k,const struct rb_node * node)4635 static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4636 {
4637 	const struct recorded_ref *data = k;
4638 	const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4639 	int result;
4640 
4641 	if (data->dir > ref->dir)
4642 		return 1;
4643 	if (data->dir < ref->dir)
4644 		return -1;
4645 	if (data->dir_gen > ref->dir_gen)
4646 		return 1;
4647 	if (data->dir_gen < ref->dir_gen)
4648 		return -1;
4649 	if (data->name_len > ref->name_len)
4650 		return 1;
4651 	if (data->name_len < ref->name_len)
4652 		return -1;
4653 	result = strcmp(data->name, ref->name);
4654 	if (result > 0)
4655 		return 1;
4656 	if (result < 0)
4657 		return -1;
4658 	return 0;
4659 }
4660 
rbtree_ref_less(struct rb_node * node,const struct rb_node * parent)4661 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4662 {
4663 	const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4664 
4665 	return rbtree_ref_comp(entry, parent) < 0;
4666 }
4667 
record_ref_in_tree(struct rb_root * root,struct list_head * refs,struct fs_path * name,u64 dir,u64 dir_gen,struct send_ctx * sctx)4668 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4669 			      struct fs_path *name, u64 dir, u64 dir_gen,
4670 			      struct send_ctx *sctx)
4671 {
4672 	int ret = 0;
4673 	struct fs_path *path = NULL;
4674 	struct recorded_ref *ref = NULL;
4675 
4676 	path = fs_path_alloc();
4677 	if (!path) {
4678 		ret = -ENOMEM;
4679 		goto out;
4680 	}
4681 
4682 	ref = recorded_ref_alloc();
4683 	if (!ref) {
4684 		ret = -ENOMEM;
4685 		goto out;
4686 	}
4687 
4688 	ret = get_cur_path(sctx, dir, dir_gen, path);
4689 	if (ret < 0)
4690 		goto out;
4691 	ret = fs_path_add_path(path, name);
4692 	if (ret < 0)
4693 		goto out;
4694 
4695 	ref->dir = dir;
4696 	ref->dir_gen = dir_gen;
4697 	set_ref_path(ref, path);
4698 	list_add_tail(&ref->list, refs);
4699 	rb_add(&ref->node, root, rbtree_ref_less);
4700 	ref->root = root;
4701 out:
4702 	if (ret) {
4703 		if (path && (!ref || !ref->full_path))
4704 			fs_path_free(path);
4705 		recorded_ref_free(ref);
4706 	}
4707 	return ret;
4708 }
4709 
record_new_ref_if_needed(int num,u64 dir,int index,struct fs_path * name,void * ctx)4710 static int record_new_ref_if_needed(int num, u64 dir, int index,
4711 				    struct fs_path *name, void *ctx)
4712 {
4713 	int ret = 0;
4714 	struct send_ctx *sctx = ctx;
4715 	struct rb_node *node = NULL;
4716 	struct recorded_ref data;
4717 	struct recorded_ref *ref;
4718 	u64 dir_gen;
4719 
4720 	ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4721 	if (ret < 0)
4722 		goto out;
4723 
4724 	data.dir = dir;
4725 	data.dir_gen = dir_gen;
4726 	set_ref_path(&data, name);
4727 	node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4728 	if (node) {
4729 		ref = rb_entry(node, struct recorded_ref, node);
4730 		recorded_ref_free(ref);
4731 	} else {
4732 		ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4733 					 &sctx->new_refs, name, dir, dir_gen,
4734 					 sctx);
4735 	}
4736 out:
4737 	return ret;
4738 }
4739 
record_deleted_ref_if_needed(int num,u64 dir,int index,struct fs_path * name,void * ctx)4740 static int record_deleted_ref_if_needed(int num, u64 dir, int index,
4741 					struct fs_path *name, void *ctx)
4742 {
4743 	int ret = 0;
4744 	struct send_ctx *sctx = ctx;
4745 	struct rb_node *node = NULL;
4746 	struct recorded_ref data;
4747 	struct recorded_ref *ref;
4748 	u64 dir_gen;
4749 
4750 	ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4751 	if (ret < 0)
4752 		goto out;
4753 
4754 	data.dir = dir;
4755 	data.dir_gen = dir_gen;
4756 	set_ref_path(&data, name);
4757 	node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4758 	if (node) {
4759 		ref = rb_entry(node, struct recorded_ref, node);
4760 		recorded_ref_free(ref);
4761 	} else {
4762 		ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4763 					 &sctx->deleted_refs, name, dir,
4764 					 dir_gen, sctx);
4765 	}
4766 out:
4767 	return ret;
4768 }
4769 
record_new_ref(struct send_ctx * sctx)4770 static int record_new_ref(struct send_ctx *sctx)
4771 {
4772 	int ret;
4773 
4774 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4775 				sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4776 	if (ret < 0)
4777 		goto out;
4778 	ret = 0;
4779 
4780 out:
4781 	return ret;
4782 }
4783 
record_deleted_ref(struct send_ctx * sctx)4784 static int record_deleted_ref(struct send_ctx *sctx)
4785 {
4786 	int ret;
4787 
4788 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4789 				sctx->cmp_key, 0, record_deleted_ref_if_needed,
4790 				sctx);
4791 	if (ret < 0)
4792 		goto out;
4793 	ret = 0;
4794 
4795 out:
4796 	return ret;
4797 }
4798 
record_changed_ref(struct send_ctx * sctx)4799 static int record_changed_ref(struct send_ctx *sctx)
4800 {
4801 	int ret = 0;
4802 
4803 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4804 			sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4805 	if (ret < 0)
4806 		goto out;
4807 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4808 			sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4809 	if (ret < 0)
4810 		goto out;
4811 	ret = 0;
4812 
4813 out:
4814 	return ret;
4815 }
4816 
4817 /*
4818  * Record and process all refs at once. Needed when an inode changes the
4819  * generation number, which means that it was deleted and recreated.
4820  */
process_all_refs(struct send_ctx * sctx,enum btrfs_compare_tree_result cmd)4821 static int process_all_refs(struct send_ctx *sctx,
4822 			    enum btrfs_compare_tree_result cmd)
4823 {
4824 	int ret = 0;
4825 	int iter_ret = 0;
4826 	struct btrfs_root *root;
4827 	struct btrfs_path *path;
4828 	struct btrfs_key key;
4829 	struct btrfs_key found_key;
4830 	iterate_inode_ref_t cb;
4831 	int pending_move = 0;
4832 
4833 	path = alloc_path_for_send();
4834 	if (!path)
4835 		return -ENOMEM;
4836 
4837 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4838 		root = sctx->send_root;
4839 		cb = record_new_ref_if_needed;
4840 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4841 		root = sctx->parent_root;
4842 		cb = record_deleted_ref_if_needed;
4843 	} else {
4844 		btrfs_err(sctx->send_root->fs_info,
4845 				"Wrong command %d in process_all_refs", cmd);
4846 		ret = -EINVAL;
4847 		goto out;
4848 	}
4849 
4850 	key.objectid = sctx->cmp_key->objectid;
4851 	key.type = BTRFS_INODE_REF_KEY;
4852 	key.offset = 0;
4853 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4854 		if (found_key.objectid != key.objectid ||
4855 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4856 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4857 			break;
4858 
4859 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4860 		if (ret < 0)
4861 			goto out;
4862 	}
4863 	/* Catch error found during iteration */
4864 	if (iter_ret < 0) {
4865 		ret = iter_ret;
4866 		goto out;
4867 	}
4868 	btrfs_release_path(path);
4869 
4870 	/*
4871 	 * We don't actually care about pending_move as we are simply
4872 	 * re-creating this inode and will be rename'ing it into place once we
4873 	 * rename the parent directory.
4874 	 */
4875 	ret = process_recorded_refs(sctx, &pending_move);
4876 out:
4877 	btrfs_free_path(path);
4878 	return ret;
4879 }
4880 
send_set_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len,const char * data,int data_len)4881 static int send_set_xattr(struct send_ctx *sctx,
4882 			  struct fs_path *path,
4883 			  const char *name, int name_len,
4884 			  const char *data, int data_len)
4885 {
4886 	int ret = 0;
4887 
4888 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4889 	if (ret < 0)
4890 		goto out;
4891 
4892 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4893 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4894 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4895 
4896 	ret = send_cmd(sctx);
4897 
4898 tlv_put_failure:
4899 out:
4900 	return ret;
4901 }
4902 
send_remove_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len)4903 static int send_remove_xattr(struct send_ctx *sctx,
4904 			  struct fs_path *path,
4905 			  const char *name, int name_len)
4906 {
4907 	int ret = 0;
4908 
4909 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4910 	if (ret < 0)
4911 		goto out;
4912 
4913 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4914 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4915 
4916 	ret = send_cmd(sctx);
4917 
4918 tlv_put_failure:
4919 out:
4920 	return ret;
4921 }
4922 
__process_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4923 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4924 			       const char *name, int name_len, const char *data,
4925 			       int data_len, void *ctx)
4926 {
4927 	int ret;
4928 	struct send_ctx *sctx = ctx;
4929 	struct fs_path *p;
4930 	struct posix_acl_xattr_header dummy_acl;
4931 
4932 	/* Capabilities are emitted by finish_inode_if_needed */
4933 	if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4934 		return 0;
4935 
4936 	p = fs_path_alloc();
4937 	if (!p)
4938 		return -ENOMEM;
4939 
4940 	/*
4941 	 * This hack is needed because empty acls are stored as zero byte
4942 	 * data in xattrs. Problem with that is, that receiving these zero byte
4943 	 * acls will fail later. To fix this, we send a dummy acl list that
4944 	 * only contains the version number and no entries.
4945 	 */
4946 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4947 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4948 		if (data_len == 0) {
4949 			dummy_acl.a_version =
4950 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4951 			data = (char *)&dummy_acl;
4952 			data_len = sizeof(dummy_acl);
4953 		}
4954 	}
4955 
4956 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4957 	if (ret < 0)
4958 		goto out;
4959 
4960 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4961 
4962 out:
4963 	fs_path_free(p);
4964 	return ret;
4965 }
4966 
__process_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4967 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4968 				   const char *name, int name_len,
4969 				   const char *data, int data_len, void *ctx)
4970 {
4971 	int ret;
4972 	struct send_ctx *sctx = ctx;
4973 	struct fs_path *p;
4974 
4975 	p = fs_path_alloc();
4976 	if (!p)
4977 		return -ENOMEM;
4978 
4979 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4980 	if (ret < 0)
4981 		goto out;
4982 
4983 	ret = send_remove_xattr(sctx, p, name, name_len);
4984 
4985 out:
4986 	fs_path_free(p);
4987 	return ret;
4988 }
4989 
process_new_xattr(struct send_ctx * sctx)4990 static int process_new_xattr(struct send_ctx *sctx)
4991 {
4992 	int ret = 0;
4993 
4994 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4995 			       __process_new_xattr, sctx);
4996 
4997 	return ret;
4998 }
4999 
process_deleted_xattr(struct send_ctx * sctx)5000 static int process_deleted_xattr(struct send_ctx *sctx)
5001 {
5002 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
5003 				__process_deleted_xattr, sctx);
5004 }
5005 
5006 struct find_xattr_ctx {
5007 	const char *name;
5008 	int name_len;
5009 	int found_idx;
5010 	char *found_data;
5011 	int found_data_len;
5012 };
5013 
__find_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * vctx)5014 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
5015 			int name_len, const char *data, int data_len, void *vctx)
5016 {
5017 	struct find_xattr_ctx *ctx = vctx;
5018 
5019 	if (name_len == ctx->name_len &&
5020 	    strncmp(name, ctx->name, name_len) == 0) {
5021 		ctx->found_idx = num;
5022 		ctx->found_data_len = data_len;
5023 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
5024 		if (!ctx->found_data)
5025 			return -ENOMEM;
5026 		return 1;
5027 	}
5028 	return 0;
5029 }
5030 
find_xattr(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,const char * name,int name_len,char ** data,int * data_len)5031 static int find_xattr(struct btrfs_root *root,
5032 		      struct btrfs_path *path,
5033 		      struct btrfs_key *key,
5034 		      const char *name, int name_len,
5035 		      char **data, int *data_len)
5036 {
5037 	int ret;
5038 	struct find_xattr_ctx ctx;
5039 
5040 	ctx.name = name;
5041 	ctx.name_len = name_len;
5042 	ctx.found_idx = -1;
5043 	ctx.found_data = NULL;
5044 	ctx.found_data_len = 0;
5045 
5046 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
5047 	if (ret < 0)
5048 		return ret;
5049 
5050 	if (ctx.found_idx == -1)
5051 		return -ENOENT;
5052 	if (data) {
5053 		*data = ctx.found_data;
5054 		*data_len = ctx.found_data_len;
5055 	} else {
5056 		kfree(ctx.found_data);
5057 	}
5058 	return ctx.found_idx;
5059 }
5060 
5061 
__process_changed_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)5062 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5063 				       const char *name, int name_len,
5064 				       const char *data, int data_len,
5065 				       void *ctx)
5066 {
5067 	int ret;
5068 	struct send_ctx *sctx = ctx;
5069 	char *found_data = NULL;
5070 	int found_data_len  = 0;
5071 
5072 	ret = find_xattr(sctx->parent_root, sctx->right_path,
5073 			 sctx->cmp_key, name, name_len, &found_data,
5074 			 &found_data_len);
5075 	if (ret == -ENOENT) {
5076 		ret = __process_new_xattr(num, di_key, name, name_len, data,
5077 					  data_len, ctx);
5078 	} else if (ret >= 0) {
5079 		if (data_len != found_data_len ||
5080 		    memcmp(data, found_data, data_len)) {
5081 			ret = __process_new_xattr(num, di_key, name, name_len,
5082 						  data, data_len, ctx);
5083 		} else {
5084 			ret = 0;
5085 		}
5086 	}
5087 
5088 	kfree(found_data);
5089 	return ret;
5090 }
5091 
__process_changed_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)5092 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5093 					   const char *name, int name_len,
5094 					   const char *data, int data_len,
5095 					   void *ctx)
5096 {
5097 	int ret;
5098 	struct send_ctx *sctx = ctx;
5099 
5100 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5101 			 name, name_len, NULL, NULL);
5102 	if (ret == -ENOENT)
5103 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5104 					      data_len, ctx);
5105 	else if (ret >= 0)
5106 		ret = 0;
5107 
5108 	return ret;
5109 }
5110 
process_changed_xattr(struct send_ctx * sctx)5111 static int process_changed_xattr(struct send_ctx *sctx)
5112 {
5113 	int ret = 0;
5114 
5115 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5116 			__process_changed_new_xattr, sctx);
5117 	if (ret < 0)
5118 		goto out;
5119 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
5120 			__process_changed_deleted_xattr, sctx);
5121 
5122 out:
5123 	return ret;
5124 }
5125 
process_all_new_xattrs(struct send_ctx * sctx)5126 static int process_all_new_xattrs(struct send_ctx *sctx)
5127 {
5128 	int ret = 0;
5129 	int iter_ret = 0;
5130 	struct btrfs_root *root;
5131 	struct btrfs_path *path;
5132 	struct btrfs_key key;
5133 	struct btrfs_key found_key;
5134 
5135 	path = alloc_path_for_send();
5136 	if (!path)
5137 		return -ENOMEM;
5138 
5139 	root = sctx->send_root;
5140 
5141 	key.objectid = sctx->cmp_key->objectid;
5142 	key.type = BTRFS_XATTR_ITEM_KEY;
5143 	key.offset = 0;
5144 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5145 		if (found_key.objectid != key.objectid ||
5146 		    found_key.type != key.type) {
5147 			ret = 0;
5148 			break;
5149 		}
5150 
5151 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5152 		if (ret < 0)
5153 			break;
5154 	}
5155 	/* Catch error found during iteration */
5156 	if (iter_ret < 0)
5157 		ret = iter_ret;
5158 
5159 	btrfs_free_path(path);
5160 	return ret;
5161 }
5162 
send_verity(struct send_ctx * sctx,struct fs_path * path,struct fsverity_descriptor * desc)5163 static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5164 		       struct fsverity_descriptor *desc)
5165 {
5166 	int ret;
5167 
5168 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5169 	if (ret < 0)
5170 		goto out;
5171 
5172 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5173 	TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5174 			le8_to_cpu(desc->hash_algorithm));
5175 	TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5176 			1U << le8_to_cpu(desc->log_blocksize));
5177 	TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5178 			le8_to_cpu(desc->salt_size));
5179 	TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5180 			le32_to_cpu(desc->sig_size));
5181 
5182 	ret = send_cmd(sctx);
5183 
5184 tlv_put_failure:
5185 out:
5186 	return ret;
5187 }
5188 
process_verity(struct send_ctx * sctx)5189 static int process_verity(struct send_ctx *sctx)
5190 {
5191 	int ret = 0;
5192 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5193 	struct inode *inode;
5194 	struct fs_path *p;
5195 
5196 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, sctx->send_root);
5197 	if (IS_ERR(inode))
5198 		return PTR_ERR(inode);
5199 
5200 	ret = btrfs_get_verity_descriptor(inode, NULL, 0);
5201 	if (ret < 0)
5202 		goto iput;
5203 
5204 	if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5205 		ret = -EMSGSIZE;
5206 		goto iput;
5207 	}
5208 	if (!sctx->verity_descriptor) {
5209 		sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5210 						   GFP_KERNEL);
5211 		if (!sctx->verity_descriptor) {
5212 			ret = -ENOMEM;
5213 			goto iput;
5214 		}
5215 	}
5216 
5217 	ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
5218 	if (ret < 0)
5219 		goto iput;
5220 
5221 	p = fs_path_alloc();
5222 	if (!p) {
5223 		ret = -ENOMEM;
5224 		goto iput;
5225 	}
5226 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5227 	if (ret < 0)
5228 		goto free_path;
5229 
5230 	ret = send_verity(sctx, p, sctx->verity_descriptor);
5231 	if (ret < 0)
5232 		goto free_path;
5233 
5234 free_path:
5235 	fs_path_free(p);
5236 iput:
5237 	iput(inode);
5238 	return ret;
5239 }
5240 
max_send_read_size(const struct send_ctx * sctx)5241 static inline u64 max_send_read_size(const struct send_ctx *sctx)
5242 {
5243 	return sctx->send_max_size - SZ_16K;
5244 }
5245 
put_data_header(struct send_ctx * sctx,u32 len)5246 static int put_data_header(struct send_ctx *sctx, u32 len)
5247 {
5248 	if (WARN_ON_ONCE(sctx->put_data))
5249 		return -EINVAL;
5250 	sctx->put_data = true;
5251 	if (sctx->proto >= 2) {
5252 		/*
5253 		 * Since v2, the data attribute header doesn't include a length,
5254 		 * it is implicitly to the end of the command.
5255 		 */
5256 		if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5257 			return -EOVERFLOW;
5258 		put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5259 		sctx->send_size += sizeof(__le16);
5260 	} else {
5261 		struct btrfs_tlv_header *hdr;
5262 
5263 		if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5264 			return -EOVERFLOW;
5265 		hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5266 		put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5267 		put_unaligned_le16(len, &hdr->tlv_len);
5268 		sctx->send_size += sizeof(*hdr);
5269 	}
5270 	return 0;
5271 }
5272 
put_file_data(struct send_ctx * sctx,u64 offset,u32 len)5273 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5274 {
5275 	struct btrfs_root *root = sctx->send_root;
5276 	struct btrfs_fs_info *fs_info = root->fs_info;
5277 	struct page *page;
5278 	pgoff_t index = offset >> PAGE_SHIFT;
5279 	pgoff_t last_index;
5280 	unsigned pg_offset = offset_in_page(offset);
5281 	int ret;
5282 
5283 	ret = put_data_header(sctx, len);
5284 	if (ret)
5285 		return ret;
5286 
5287 	last_index = (offset + len - 1) >> PAGE_SHIFT;
5288 
5289 	while (index <= last_index) {
5290 		unsigned cur_len = min_t(unsigned, len,
5291 					 PAGE_SIZE - pg_offset);
5292 
5293 		page = find_lock_page(sctx->cur_inode->i_mapping, index);
5294 		if (!page) {
5295 			page_cache_sync_readahead(sctx->cur_inode->i_mapping,
5296 						  &sctx->ra, NULL, index,
5297 						  last_index + 1 - index);
5298 
5299 			page = find_or_create_page(sctx->cur_inode->i_mapping,
5300 						   index, GFP_KERNEL);
5301 			if (!page) {
5302 				ret = -ENOMEM;
5303 				break;
5304 			}
5305 		}
5306 
5307 		if (PageReadahead(page))
5308 			page_cache_async_readahead(sctx->cur_inode->i_mapping,
5309 						   &sctx->ra, NULL, page_folio(page),
5310 						   index, last_index + 1 - index);
5311 
5312 		if (!PageUptodate(page)) {
5313 			btrfs_read_folio(NULL, page_folio(page));
5314 			lock_page(page);
5315 			if (!PageUptodate(page)) {
5316 				unlock_page(page);
5317 				btrfs_err(fs_info,
5318 			"send: IO error at offset %llu for inode %llu root %llu",
5319 					page_offset(page), sctx->cur_ino,
5320 					sctx->send_root->root_key.objectid);
5321 				put_page(page);
5322 				ret = -EIO;
5323 				break;
5324 			}
5325 		}
5326 
5327 		memcpy_from_page(sctx->send_buf + sctx->send_size, page,
5328 				 pg_offset, cur_len);
5329 		unlock_page(page);
5330 		put_page(page);
5331 		index++;
5332 		pg_offset = 0;
5333 		len -= cur_len;
5334 		sctx->send_size += cur_len;
5335 	}
5336 
5337 	return ret;
5338 }
5339 
5340 /*
5341  * Read some bytes from the current inode/file and send a write command to
5342  * user space.
5343  */
send_write(struct send_ctx * sctx,u64 offset,u32 len)5344 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5345 {
5346 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5347 	int ret = 0;
5348 	struct fs_path *p;
5349 
5350 	p = fs_path_alloc();
5351 	if (!p)
5352 		return -ENOMEM;
5353 
5354 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5355 
5356 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5357 	if (ret < 0)
5358 		goto out;
5359 
5360 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5361 	if (ret < 0)
5362 		goto out;
5363 
5364 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5365 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5366 	ret = put_file_data(sctx, offset, len);
5367 	if (ret < 0)
5368 		goto out;
5369 
5370 	ret = send_cmd(sctx);
5371 
5372 tlv_put_failure:
5373 out:
5374 	fs_path_free(p);
5375 	return ret;
5376 }
5377 
5378 /*
5379  * Send a clone command to user space.
5380  */
send_clone(struct send_ctx * sctx,u64 offset,u32 len,struct clone_root * clone_root)5381 static int send_clone(struct send_ctx *sctx,
5382 		      u64 offset, u32 len,
5383 		      struct clone_root *clone_root)
5384 {
5385 	int ret = 0;
5386 	struct fs_path *p;
5387 	u64 gen;
5388 
5389 	btrfs_debug(sctx->send_root->fs_info,
5390 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5391 		    offset, len, clone_root->root->root_key.objectid,
5392 		    clone_root->ino, clone_root->offset);
5393 
5394 	p = fs_path_alloc();
5395 	if (!p)
5396 		return -ENOMEM;
5397 
5398 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5399 	if (ret < 0)
5400 		goto out;
5401 
5402 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5403 	if (ret < 0)
5404 		goto out;
5405 
5406 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5407 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5408 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5409 
5410 	if (clone_root->root == sctx->send_root) {
5411 		ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5412 		if (ret < 0)
5413 			goto out;
5414 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
5415 	} else {
5416 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
5417 	}
5418 	if (ret < 0)
5419 		goto out;
5420 
5421 	/*
5422 	 * If the parent we're using has a received_uuid set then use that as
5423 	 * our clone source as that is what we will look for when doing a
5424 	 * receive.
5425 	 *
5426 	 * This covers the case that we create a snapshot off of a received
5427 	 * subvolume and then use that as the parent and try to receive on a
5428 	 * different host.
5429 	 */
5430 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5431 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5432 			     clone_root->root->root_item.received_uuid);
5433 	else
5434 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5435 			     clone_root->root->root_item.uuid);
5436 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5437 		    btrfs_root_ctransid(&clone_root->root->root_item));
5438 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5439 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5440 			clone_root->offset);
5441 
5442 	ret = send_cmd(sctx);
5443 
5444 tlv_put_failure:
5445 out:
5446 	fs_path_free(p);
5447 	return ret;
5448 }
5449 
5450 /*
5451  * Send an update extent command to user space.
5452  */
send_update_extent(struct send_ctx * sctx,u64 offset,u32 len)5453 static int send_update_extent(struct send_ctx *sctx,
5454 			      u64 offset, u32 len)
5455 {
5456 	int ret = 0;
5457 	struct fs_path *p;
5458 
5459 	p = fs_path_alloc();
5460 	if (!p)
5461 		return -ENOMEM;
5462 
5463 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5464 	if (ret < 0)
5465 		goto out;
5466 
5467 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5468 	if (ret < 0)
5469 		goto out;
5470 
5471 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5472 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5473 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5474 
5475 	ret = send_cmd(sctx);
5476 
5477 tlv_put_failure:
5478 out:
5479 	fs_path_free(p);
5480 	return ret;
5481 }
5482 
send_hole(struct send_ctx * sctx,u64 end)5483 static int send_hole(struct send_ctx *sctx, u64 end)
5484 {
5485 	struct fs_path *p = NULL;
5486 	u64 read_size = max_send_read_size(sctx);
5487 	u64 offset = sctx->cur_inode_last_extent;
5488 	int ret = 0;
5489 
5490 	/*
5491 	 * A hole that starts at EOF or beyond it. Since we do not yet support
5492 	 * fallocate (for extent preallocation and hole punching), sending a
5493 	 * write of zeroes starting at EOF or beyond would later require issuing
5494 	 * a truncate operation which would undo the write and achieve nothing.
5495 	 */
5496 	if (offset >= sctx->cur_inode_size)
5497 		return 0;
5498 
5499 	/*
5500 	 * Don't go beyond the inode's i_size due to prealloc extents that start
5501 	 * after the i_size.
5502 	 */
5503 	end = min_t(u64, end, sctx->cur_inode_size);
5504 
5505 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5506 		return send_update_extent(sctx, offset, end - offset);
5507 
5508 	p = fs_path_alloc();
5509 	if (!p)
5510 		return -ENOMEM;
5511 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5512 	if (ret < 0)
5513 		goto tlv_put_failure;
5514 	while (offset < end) {
5515 		u64 len = min(end - offset, read_size);
5516 
5517 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5518 		if (ret < 0)
5519 			break;
5520 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5521 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5522 		ret = put_data_header(sctx, len);
5523 		if (ret < 0)
5524 			break;
5525 		memset(sctx->send_buf + sctx->send_size, 0, len);
5526 		sctx->send_size += len;
5527 		ret = send_cmd(sctx);
5528 		if (ret < 0)
5529 			break;
5530 		offset += len;
5531 	}
5532 	sctx->cur_inode_next_write_offset = offset;
5533 tlv_put_failure:
5534 	fs_path_free(p);
5535 	return ret;
5536 }
5537 
send_encoded_inline_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5538 static int send_encoded_inline_extent(struct send_ctx *sctx,
5539 				      struct btrfs_path *path, u64 offset,
5540 				      u64 len)
5541 {
5542 	struct btrfs_root *root = sctx->send_root;
5543 	struct btrfs_fs_info *fs_info = root->fs_info;
5544 	struct inode *inode;
5545 	struct fs_path *fspath;
5546 	struct extent_buffer *leaf = path->nodes[0];
5547 	struct btrfs_key key;
5548 	struct btrfs_file_extent_item *ei;
5549 	u64 ram_bytes;
5550 	size_t inline_size;
5551 	int ret;
5552 
5553 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5554 	if (IS_ERR(inode))
5555 		return PTR_ERR(inode);
5556 
5557 	fspath = fs_path_alloc();
5558 	if (!fspath) {
5559 		ret = -ENOMEM;
5560 		goto out;
5561 	}
5562 
5563 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5564 	if (ret < 0)
5565 		goto out;
5566 
5567 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5568 	if (ret < 0)
5569 		goto out;
5570 
5571 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5572 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5573 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5574 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5575 
5576 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5577 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5578 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5579 		    min(key.offset + ram_bytes - offset, len));
5580 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5581 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5582 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5583 				btrfs_file_extent_compression(leaf, ei));
5584 	if (ret < 0)
5585 		goto out;
5586 	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5587 
5588 	ret = put_data_header(sctx, inline_size);
5589 	if (ret < 0)
5590 		goto out;
5591 	read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5592 			   btrfs_file_extent_inline_start(ei), inline_size);
5593 	sctx->send_size += inline_size;
5594 
5595 	ret = send_cmd(sctx);
5596 
5597 tlv_put_failure:
5598 out:
5599 	fs_path_free(fspath);
5600 	iput(inode);
5601 	return ret;
5602 }
5603 
send_encoded_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5604 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5605 			       u64 offset, u64 len)
5606 {
5607 	struct btrfs_root *root = sctx->send_root;
5608 	struct btrfs_fs_info *fs_info = root->fs_info;
5609 	struct inode *inode;
5610 	struct fs_path *fspath;
5611 	struct extent_buffer *leaf = path->nodes[0];
5612 	struct btrfs_key key;
5613 	struct btrfs_file_extent_item *ei;
5614 	u64 disk_bytenr, disk_num_bytes;
5615 	u32 data_offset;
5616 	struct btrfs_cmd_header *hdr;
5617 	u32 crc;
5618 	int ret;
5619 
5620 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5621 	if (IS_ERR(inode))
5622 		return PTR_ERR(inode);
5623 
5624 	fspath = fs_path_alloc();
5625 	if (!fspath) {
5626 		ret = -ENOMEM;
5627 		goto out;
5628 	}
5629 
5630 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5631 	if (ret < 0)
5632 		goto out;
5633 
5634 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5635 	if (ret < 0)
5636 		goto out;
5637 
5638 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5639 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5640 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5641 	disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5642 
5643 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5644 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5645 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5646 		    min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5647 			len));
5648 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5649 		    btrfs_file_extent_ram_bytes(leaf, ei));
5650 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5651 		    offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5652 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5653 				btrfs_file_extent_compression(leaf, ei));
5654 	if (ret < 0)
5655 		goto out;
5656 	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5657 	TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5658 
5659 	ret = put_data_header(sctx, disk_num_bytes);
5660 	if (ret < 0)
5661 		goto out;
5662 
5663 	/*
5664 	 * We want to do I/O directly into the send buffer, so get the next page
5665 	 * boundary in the send buffer. This means that there may be a gap
5666 	 * between the beginning of the command and the file data.
5667 	 */
5668 	data_offset = PAGE_ALIGN(sctx->send_size);
5669 	if (data_offset > sctx->send_max_size ||
5670 	    sctx->send_max_size - data_offset < disk_num_bytes) {
5671 		ret = -EOVERFLOW;
5672 		goto out;
5673 	}
5674 
5675 	/*
5676 	 * Note that send_buf is a mapping of send_buf_pages, so this is really
5677 	 * reading into send_buf.
5678 	 */
5679 	ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset,
5680 						    disk_bytenr, disk_num_bytes,
5681 						    sctx->send_buf_pages +
5682 						    (data_offset >> PAGE_SHIFT));
5683 	if (ret)
5684 		goto out;
5685 
5686 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5687 	hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5688 	hdr->crc = 0;
5689 	crc = btrfs_crc32c(0, sctx->send_buf, sctx->send_size);
5690 	crc = btrfs_crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5691 	hdr->crc = cpu_to_le32(crc);
5692 
5693 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5694 			&sctx->send_off);
5695 	if (!ret) {
5696 		ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5697 				disk_num_bytes, &sctx->send_off);
5698 	}
5699 	sctx->send_size = 0;
5700 	sctx->put_data = false;
5701 
5702 tlv_put_failure:
5703 out:
5704 	fs_path_free(fspath);
5705 	iput(inode);
5706 	return ret;
5707 }
5708 
send_extent_data(struct send_ctx * sctx,struct btrfs_path * path,const u64 offset,const u64 len)5709 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5710 			    const u64 offset, const u64 len)
5711 {
5712 	const u64 end = offset + len;
5713 	struct extent_buffer *leaf = path->nodes[0];
5714 	struct btrfs_file_extent_item *ei;
5715 	u64 read_size = max_send_read_size(sctx);
5716 	u64 sent = 0;
5717 
5718 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5719 		return send_update_extent(sctx, offset, len);
5720 
5721 	ei = btrfs_item_ptr(leaf, path->slots[0],
5722 			    struct btrfs_file_extent_item);
5723 	if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5724 	    btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5725 		bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5726 				  BTRFS_FILE_EXTENT_INLINE);
5727 
5728 		/*
5729 		 * Send the compressed extent unless the compressed data is
5730 		 * larger than the decompressed data. This can happen if we're
5731 		 * not sending the entire extent, either because it has been
5732 		 * partially overwritten/truncated or because this is a part of
5733 		 * the extent that we couldn't clone in clone_range().
5734 		 */
5735 		if (is_inline &&
5736 		    btrfs_file_extent_inline_item_len(leaf,
5737 						      path->slots[0]) <= len) {
5738 			return send_encoded_inline_extent(sctx, path, offset,
5739 							  len);
5740 		} else if (!is_inline &&
5741 			   btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5742 			return send_encoded_extent(sctx, path, offset, len);
5743 		}
5744 	}
5745 
5746 	if (sctx->cur_inode == NULL) {
5747 		struct btrfs_root *root = sctx->send_root;
5748 
5749 		sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root);
5750 		if (IS_ERR(sctx->cur_inode)) {
5751 			int err = PTR_ERR(sctx->cur_inode);
5752 
5753 			sctx->cur_inode = NULL;
5754 			return err;
5755 		}
5756 		memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5757 		file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5758 
5759 		/*
5760 		 * It's very likely there are no pages from this inode in the page
5761 		 * cache, so after reading extents and sending their data, we clean
5762 		 * the page cache to avoid trashing the page cache (adding pressure
5763 		 * to the page cache and forcing eviction of other data more useful
5764 		 * for applications).
5765 		 *
5766 		 * We decide if we should clean the page cache simply by checking
5767 		 * if the inode's mapping nrpages is 0 when we first open it, and
5768 		 * not by using something like filemap_range_has_page() before
5769 		 * reading an extent because when we ask the readahead code to
5770 		 * read a given file range, it may (and almost always does) read
5771 		 * pages from beyond that range (see the documentation for
5772 		 * page_cache_sync_readahead()), so it would not be reliable,
5773 		 * because after reading the first extent future calls to
5774 		 * filemap_range_has_page() would return true because the readahead
5775 		 * on the previous extent resulted in reading pages of the current
5776 		 * extent as well.
5777 		 */
5778 		sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5779 		sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5780 	}
5781 
5782 	while (sent < len) {
5783 		u64 size = min(len - sent, read_size);
5784 		int ret;
5785 
5786 		ret = send_write(sctx, offset + sent, size);
5787 		if (ret < 0)
5788 			return ret;
5789 		sent += size;
5790 	}
5791 
5792 	if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
5793 		/*
5794 		 * Always operate only on ranges that are a multiple of the page
5795 		 * size. This is not only to prevent zeroing parts of a page in
5796 		 * the case of subpage sector size, but also to guarantee we evict
5797 		 * pages, as passing a range that is smaller than page size does
5798 		 * not evict the respective page (only zeroes part of its content).
5799 		 *
5800 		 * Always start from the end offset of the last range cleared.
5801 		 * This is because the readahead code may (and very often does)
5802 		 * reads pages beyond the range we request for readahead. So if
5803 		 * we have an extent layout like this:
5804 		 *
5805 		 *            [ extent A ] [ extent B ] [ extent C ]
5806 		 *
5807 		 * When we ask page_cache_sync_readahead() to read extent A, it
5808 		 * may also trigger reads for pages of extent B. If we are doing
5809 		 * an incremental send and extent B has not changed between the
5810 		 * parent and send snapshots, some or all of its pages may end
5811 		 * up being read and placed in the page cache. So when truncating
5812 		 * the page cache we always start from the end offset of the
5813 		 * previously processed extent up to the end of the current
5814 		 * extent.
5815 		 */
5816 		truncate_inode_pages_range(&sctx->cur_inode->i_data,
5817 					   sctx->page_cache_clear_start,
5818 					   end - 1);
5819 		sctx->page_cache_clear_start = end;
5820 	}
5821 
5822 	return 0;
5823 }
5824 
5825 /*
5826  * Search for a capability xattr related to sctx->cur_ino. If the capability is
5827  * found, call send_set_xattr function to emit it.
5828  *
5829  * Return 0 if there isn't a capability, or when the capability was emitted
5830  * successfully, or < 0 if an error occurred.
5831  */
send_capabilities(struct send_ctx * sctx)5832 static int send_capabilities(struct send_ctx *sctx)
5833 {
5834 	struct fs_path *fspath = NULL;
5835 	struct btrfs_path *path;
5836 	struct btrfs_dir_item *di;
5837 	struct extent_buffer *leaf;
5838 	unsigned long data_ptr;
5839 	char *buf = NULL;
5840 	int buf_len;
5841 	int ret = 0;
5842 
5843 	path = alloc_path_for_send();
5844 	if (!path)
5845 		return -ENOMEM;
5846 
5847 	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5848 				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5849 	if (!di) {
5850 		/* There is no xattr for this inode */
5851 		goto out;
5852 	} else if (IS_ERR(di)) {
5853 		ret = PTR_ERR(di);
5854 		goto out;
5855 	}
5856 
5857 	leaf = path->nodes[0];
5858 	buf_len = btrfs_dir_data_len(leaf, di);
5859 
5860 	fspath = fs_path_alloc();
5861 	buf = kmalloc(buf_len, GFP_KERNEL);
5862 	if (!fspath || !buf) {
5863 		ret = -ENOMEM;
5864 		goto out;
5865 	}
5866 
5867 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5868 	if (ret < 0)
5869 		goto out;
5870 
5871 	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5872 	read_extent_buffer(leaf, buf, data_ptr, buf_len);
5873 
5874 	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5875 			strlen(XATTR_NAME_CAPS), buf, buf_len);
5876 out:
5877 	kfree(buf);
5878 	fs_path_free(fspath);
5879 	btrfs_free_path(path);
5880 	return ret;
5881 }
5882 
clone_range(struct send_ctx * sctx,struct btrfs_path * dst_path,struct clone_root * clone_root,const u64 disk_byte,u64 data_offset,u64 offset,u64 len)5883 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5884 		       struct clone_root *clone_root, const u64 disk_byte,
5885 		       u64 data_offset, u64 offset, u64 len)
5886 {
5887 	struct btrfs_path *path;
5888 	struct btrfs_key key;
5889 	int ret;
5890 	struct btrfs_inode_info info;
5891 	u64 clone_src_i_size = 0;
5892 
5893 	/*
5894 	 * Prevent cloning from a zero offset with a length matching the sector
5895 	 * size because in some scenarios this will make the receiver fail.
5896 	 *
5897 	 * For example, if in the source filesystem the extent at offset 0
5898 	 * has a length of sectorsize and it was written using direct IO, then
5899 	 * it can never be an inline extent (even if compression is enabled).
5900 	 * Then this extent can be cloned in the original filesystem to a non
5901 	 * zero file offset, but it may not be possible to clone in the
5902 	 * destination filesystem because it can be inlined due to compression
5903 	 * on the destination filesystem (as the receiver's write operations are
5904 	 * always done using buffered IO). The same happens when the original
5905 	 * filesystem does not have compression enabled but the destination
5906 	 * filesystem has.
5907 	 */
5908 	if (clone_root->offset == 0 &&
5909 	    len == sctx->send_root->fs_info->sectorsize)
5910 		return send_extent_data(sctx, dst_path, offset, len);
5911 
5912 	path = alloc_path_for_send();
5913 	if (!path)
5914 		return -ENOMEM;
5915 
5916 	/*
5917 	 * There are inodes that have extents that lie behind its i_size. Don't
5918 	 * accept clones from these extents.
5919 	 */
5920 	ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5921 	btrfs_release_path(path);
5922 	if (ret < 0)
5923 		goto out;
5924 	clone_src_i_size = info.size;
5925 
5926 	/*
5927 	 * We can't send a clone operation for the entire range if we find
5928 	 * extent items in the respective range in the source file that
5929 	 * refer to different extents or if we find holes.
5930 	 * So check for that and do a mix of clone and regular write/copy
5931 	 * operations if needed.
5932 	 *
5933 	 * Example:
5934 	 *
5935 	 * mkfs.btrfs -f /dev/sda
5936 	 * mount /dev/sda /mnt
5937 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5938 	 * cp --reflink=always /mnt/foo /mnt/bar
5939 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5940 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5941 	 *
5942 	 * If when we send the snapshot and we are processing file bar (which
5943 	 * has a higher inode number than foo) we blindly send a clone operation
5944 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5945 	 * a file bar that matches the content of file foo - iow, doesn't match
5946 	 * the content from bar in the original filesystem.
5947 	 */
5948 	key.objectid = clone_root->ino;
5949 	key.type = BTRFS_EXTENT_DATA_KEY;
5950 	key.offset = clone_root->offset;
5951 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5952 	if (ret < 0)
5953 		goto out;
5954 	if (ret > 0 && path->slots[0] > 0) {
5955 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5956 		if (key.objectid == clone_root->ino &&
5957 		    key.type == BTRFS_EXTENT_DATA_KEY)
5958 			path->slots[0]--;
5959 	}
5960 
5961 	while (true) {
5962 		struct extent_buffer *leaf = path->nodes[0];
5963 		int slot = path->slots[0];
5964 		struct btrfs_file_extent_item *ei;
5965 		u8 type;
5966 		u64 ext_len;
5967 		u64 clone_len;
5968 		u64 clone_data_offset;
5969 		bool crossed_src_i_size = false;
5970 
5971 		if (slot >= btrfs_header_nritems(leaf)) {
5972 			ret = btrfs_next_leaf(clone_root->root, path);
5973 			if (ret < 0)
5974 				goto out;
5975 			else if (ret > 0)
5976 				break;
5977 			continue;
5978 		}
5979 
5980 		btrfs_item_key_to_cpu(leaf, &key, slot);
5981 
5982 		/*
5983 		 * We might have an implicit trailing hole (NO_HOLES feature
5984 		 * enabled). We deal with it after leaving this loop.
5985 		 */
5986 		if (key.objectid != clone_root->ino ||
5987 		    key.type != BTRFS_EXTENT_DATA_KEY)
5988 			break;
5989 
5990 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5991 		type = btrfs_file_extent_type(leaf, ei);
5992 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5993 			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5994 			ext_len = PAGE_ALIGN(ext_len);
5995 		} else {
5996 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5997 		}
5998 
5999 		if (key.offset + ext_len <= clone_root->offset)
6000 			goto next;
6001 
6002 		if (key.offset > clone_root->offset) {
6003 			/* Implicit hole, NO_HOLES feature enabled. */
6004 			u64 hole_len = key.offset - clone_root->offset;
6005 
6006 			if (hole_len > len)
6007 				hole_len = len;
6008 			ret = send_extent_data(sctx, dst_path, offset,
6009 					       hole_len);
6010 			if (ret < 0)
6011 				goto out;
6012 
6013 			len -= hole_len;
6014 			if (len == 0)
6015 				break;
6016 			offset += hole_len;
6017 			clone_root->offset += hole_len;
6018 			data_offset += hole_len;
6019 		}
6020 
6021 		if (key.offset >= clone_root->offset + len)
6022 			break;
6023 
6024 		if (key.offset >= clone_src_i_size)
6025 			break;
6026 
6027 		if (key.offset + ext_len > clone_src_i_size) {
6028 			ext_len = clone_src_i_size - key.offset;
6029 			crossed_src_i_size = true;
6030 		}
6031 
6032 		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
6033 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
6034 			clone_root->offset = key.offset;
6035 			if (clone_data_offset < data_offset &&
6036 				clone_data_offset + ext_len > data_offset) {
6037 				u64 extent_offset;
6038 
6039 				extent_offset = data_offset - clone_data_offset;
6040 				ext_len -= extent_offset;
6041 				clone_data_offset += extent_offset;
6042 				clone_root->offset += extent_offset;
6043 			}
6044 		}
6045 
6046 		clone_len = min_t(u64, ext_len, len);
6047 
6048 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
6049 		    clone_data_offset == data_offset) {
6050 			const u64 src_end = clone_root->offset + clone_len;
6051 			const u64 sectorsize = SZ_64K;
6052 
6053 			/*
6054 			 * We can't clone the last block, when its size is not
6055 			 * sector size aligned, into the middle of a file. If we
6056 			 * do so, the receiver will get a failure (-EINVAL) when
6057 			 * trying to clone or will silently corrupt the data in
6058 			 * the destination file if it's on a kernel without the
6059 			 * fix introduced by commit ac765f83f1397646
6060 			 * ("Btrfs: fix data corruption due to cloning of eof
6061 			 * block).
6062 			 *
6063 			 * So issue a clone of the aligned down range plus a
6064 			 * regular write for the eof block, if we hit that case.
6065 			 *
6066 			 * Also, we use the maximum possible sector size, 64K,
6067 			 * because we don't know what's the sector size of the
6068 			 * filesystem that receives the stream, so we have to
6069 			 * assume the largest possible sector size.
6070 			 */
6071 			if (src_end == clone_src_i_size &&
6072 			    !IS_ALIGNED(src_end, sectorsize) &&
6073 			    offset + clone_len < sctx->cur_inode_size) {
6074 				u64 slen;
6075 
6076 				slen = ALIGN_DOWN(src_end - clone_root->offset,
6077 						  sectorsize);
6078 				if (slen > 0) {
6079 					ret = send_clone(sctx, offset, slen,
6080 							 clone_root);
6081 					if (ret < 0)
6082 						goto out;
6083 				}
6084 				ret = send_extent_data(sctx, dst_path,
6085 						       offset + slen,
6086 						       clone_len - slen);
6087 			} else {
6088 				ret = send_clone(sctx, offset, clone_len,
6089 						 clone_root);
6090 			}
6091 		} else if (crossed_src_i_size && clone_len < len) {
6092 			/*
6093 			 * If we are at i_size of the clone source inode and we
6094 			 * can not clone from it, terminate the loop. This is
6095 			 * to avoid sending two write operations, one with a
6096 			 * length matching clone_len and the final one after
6097 			 * this loop with a length of len - clone_len.
6098 			 *
6099 			 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6100 			 * was passed to the send ioctl), this helps avoid
6101 			 * sending an encoded write for an offset that is not
6102 			 * sector size aligned, in case the i_size of the source
6103 			 * inode is not sector size aligned. That will make the
6104 			 * receiver fallback to decompression of the data and
6105 			 * writing it using regular buffered IO, therefore while
6106 			 * not incorrect, it's not optimal due decompression and
6107 			 * possible re-compression at the receiver.
6108 			 */
6109 			break;
6110 		} else {
6111 			ret = send_extent_data(sctx, dst_path, offset,
6112 					       clone_len);
6113 		}
6114 
6115 		if (ret < 0)
6116 			goto out;
6117 
6118 		len -= clone_len;
6119 		if (len == 0)
6120 			break;
6121 		offset += clone_len;
6122 		clone_root->offset += clone_len;
6123 
6124 		/*
6125 		 * If we are cloning from the file we are currently processing,
6126 		 * and using the send root as the clone root, we must stop once
6127 		 * the current clone offset reaches the current eof of the file
6128 		 * at the receiver, otherwise we would issue an invalid clone
6129 		 * operation (source range going beyond eof) and cause the
6130 		 * receiver to fail. So if we reach the current eof, bail out
6131 		 * and fallback to a regular write.
6132 		 */
6133 		if (clone_root->root == sctx->send_root &&
6134 		    clone_root->ino == sctx->cur_ino &&
6135 		    clone_root->offset >= sctx->cur_inode_next_write_offset)
6136 			break;
6137 
6138 		data_offset += clone_len;
6139 next:
6140 		path->slots[0]++;
6141 	}
6142 
6143 	if (len > 0)
6144 		ret = send_extent_data(sctx, dst_path, offset, len);
6145 	else
6146 		ret = 0;
6147 out:
6148 	btrfs_free_path(path);
6149 	return ret;
6150 }
6151 
send_write_or_clone(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key,struct clone_root * clone_root)6152 static int send_write_or_clone(struct send_ctx *sctx,
6153 			       struct btrfs_path *path,
6154 			       struct btrfs_key *key,
6155 			       struct clone_root *clone_root)
6156 {
6157 	int ret = 0;
6158 	u64 offset = key->offset;
6159 	u64 end;
6160 	u64 bs = sctx->send_root->fs_info->sectorsize;
6161 	struct btrfs_file_extent_item *ei;
6162 	u64 disk_byte;
6163 	u64 data_offset;
6164 	u64 num_bytes;
6165 	struct btrfs_inode_info info = { 0 };
6166 
6167 	end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6168 	if (offset >= end)
6169 		return 0;
6170 
6171 	num_bytes = end - offset;
6172 
6173 	if (!clone_root)
6174 		goto write_data;
6175 
6176 	if (IS_ALIGNED(end, bs))
6177 		goto clone_data;
6178 
6179 	/*
6180 	 * If the extent end is not aligned, we can clone if the extent ends at
6181 	 * the i_size of the inode and the clone range ends at the i_size of the
6182 	 * source inode, otherwise the clone operation fails with -EINVAL.
6183 	 */
6184 	if (end != sctx->cur_inode_size)
6185 		goto write_data;
6186 
6187 	ret = get_inode_info(clone_root->root, clone_root->ino, &info);
6188 	if (ret < 0)
6189 		return ret;
6190 
6191 	if (clone_root->offset + num_bytes == info.size) {
6192 		/*
6193 		 * The final size of our file matches the end offset, but it may
6194 		 * be that its current size is larger, so we have to truncate it
6195 		 * to any value between the start offset of the range and the
6196 		 * final i_size, otherwise the clone operation is invalid
6197 		 * because it's unaligned and it ends before the current EOF.
6198 		 * We do this truncate to the final i_size when we finish
6199 		 * processing the inode, but it's too late by then. And here we
6200 		 * truncate to the start offset of the range because it's always
6201 		 * sector size aligned while if it were the final i_size it
6202 		 * would result in dirtying part of a page, filling part of a
6203 		 * page with zeroes and then having the clone operation at the
6204 		 * receiver trigger IO and wait for it due to the dirty page.
6205 		 */
6206 		if (sctx->parent_root != NULL) {
6207 			ret = send_truncate(sctx, sctx->cur_ino,
6208 					    sctx->cur_inode_gen, offset);
6209 			if (ret < 0)
6210 				return ret;
6211 		}
6212 		goto clone_data;
6213 	}
6214 
6215 write_data:
6216 	ret = send_extent_data(sctx, path, offset, num_bytes);
6217 	sctx->cur_inode_next_write_offset = end;
6218 	return ret;
6219 
6220 clone_data:
6221 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6222 			    struct btrfs_file_extent_item);
6223 	disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6224 	data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6225 	ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset,
6226 			  num_bytes);
6227 	sctx->cur_inode_next_write_offset = end;
6228 	return ret;
6229 }
6230 
is_extent_unchanged(struct send_ctx * sctx,struct btrfs_path * left_path,struct btrfs_key * ekey)6231 static int is_extent_unchanged(struct send_ctx *sctx,
6232 			       struct btrfs_path *left_path,
6233 			       struct btrfs_key *ekey)
6234 {
6235 	int ret = 0;
6236 	struct btrfs_key key;
6237 	struct btrfs_path *path = NULL;
6238 	struct extent_buffer *eb;
6239 	int slot;
6240 	struct btrfs_key found_key;
6241 	struct btrfs_file_extent_item *ei;
6242 	u64 left_disknr;
6243 	u64 right_disknr;
6244 	u64 left_offset;
6245 	u64 right_offset;
6246 	u64 left_offset_fixed;
6247 	u64 left_len;
6248 	u64 right_len;
6249 	u64 left_gen;
6250 	u64 right_gen;
6251 	u8 left_type;
6252 	u8 right_type;
6253 
6254 	path = alloc_path_for_send();
6255 	if (!path)
6256 		return -ENOMEM;
6257 
6258 	eb = left_path->nodes[0];
6259 	slot = left_path->slots[0];
6260 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6261 	left_type = btrfs_file_extent_type(eb, ei);
6262 
6263 	if (left_type != BTRFS_FILE_EXTENT_REG) {
6264 		ret = 0;
6265 		goto out;
6266 	}
6267 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6268 	left_len = btrfs_file_extent_num_bytes(eb, ei);
6269 	left_offset = btrfs_file_extent_offset(eb, ei);
6270 	left_gen = btrfs_file_extent_generation(eb, ei);
6271 
6272 	/*
6273 	 * Following comments will refer to these graphics. L is the left
6274 	 * extents which we are checking at the moment. 1-8 are the right
6275 	 * extents that we iterate.
6276 	 *
6277 	 *       |-----L-----|
6278 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6279 	 *
6280 	 *       |-----L-----|
6281 	 * |--1--|-2b-|...(same as above)
6282 	 *
6283 	 * Alternative situation. Happens on files where extents got split.
6284 	 *       |-----L-----|
6285 	 * |-----------7-----------|-6-|
6286 	 *
6287 	 * Alternative situation. Happens on files which got larger.
6288 	 *       |-----L-----|
6289 	 * |-8-|
6290 	 * Nothing follows after 8.
6291 	 */
6292 
6293 	key.objectid = ekey->objectid;
6294 	key.type = BTRFS_EXTENT_DATA_KEY;
6295 	key.offset = ekey->offset;
6296 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6297 	if (ret < 0)
6298 		goto out;
6299 	if (ret) {
6300 		ret = 0;
6301 		goto out;
6302 	}
6303 
6304 	/*
6305 	 * Handle special case where the right side has no extents at all.
6306 	 */
6307 	eb = path->nodes[0];
6308 	slot = path->slots[0];
6309 	btrfs_item_key_to_cpu(eb, &found_key, slot);
6310 	if (found_key.objectid != key.objectid ||
6311 	    found_key.type != key.type) {
6312 		/* If we're a hole then just pretend nothing changed */
6313 		ret = (left_disknr) ? 0 : 1;
6314 		goto out;
6315 	}
6316 
6317 	/*
6318 	 * We're now on 2a, 2b or 7.
6319 	 */
6320 	key = found_key;
6321 	while (key.offset < ekey->offset + left_len) {
6322 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6323 		right_type = btrfs_file_extent_type(eb, ei);
6324 		if (right_type != BTRFS_FILE_EXTENT_REG &&
6325 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
6326 			ret = 0;
6327 			goto out;
6328 		}
6329 
6330 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6331 			right_len = btrfs_file_extent_ram_bytes(eb, ei);
6332 			right_len = PAGE_ALIGN(right_len);
6333 		} else {
6334 			right_len = btrfs_file_extent_num_bytes(eb, ei);
6335 		}
6336 
6337 		/*
6338 		 * Are we at extent 8? If yes, we know the extent is changed.
6339 		 * This may only happen on the first iteration.
6340 		 */
6341 		if (found_key.offset + right_len <= ekey->offset) {
6342 			/* If we're a hole just pretend nothing changed */
6343 			ret = (left_disknr) ? 0 : 1;
6344 			goto out;
6345 		}
6346 
6347 		/*
6348 		 * We just wanted to see if when we have an inline extent, what
6349 		 * follows it is a regular extent (wanted to check the above
6350 		 * condition for inline extents too). This should normally not
6351 		 * happen but it's possible for example when we have an inline
6352 		 * compressed extent representing data with a size matching
6353 		 * the page size (currently the same as sector size).
6354 		 */
6355 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6356 			ret = 0;
6357 			goto out;
6358 		}
6359 
6360 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6361 		right_offset = btrfs_file_extent_offset(eb, ei);
6362 		right_gen = btrfs_file_extent_generation(eb, ei);
6363 
6364 		left_offset_fixed = left_offset;
6365 		if (key.offset < ekey->offset) {
6366 			/* Fix the right offset for 2a and 7. */
6367 			right_offset += ekey->offset - key.offset;
6368 		} else {
6369 			/* Fix the left offset for all behind 2a and 2b */
6370 			left_offset_fixed += key.offset - ekey->offset;
6371 		}
6372 
6373 		/*
6374 		 * Check if we have the same extent.
6375 		 */
6376 		if (left_disknr != right_disknr ||
6377 		    left_offset_fixed != right_offset ||
6378 		    left_gen != right_gen) {
6379 			ret = 0;
6380 			goto out;
6381 		}
6382 
6383 		/*
6384 		 * Go to the next extent.
6385 		 */
6386 		ret = btrfs_next_item(sctx->parent_root, path);
6387 		if (ret < 0)
6388 			goto out;
6389 		if (!ret) {
6390 			eb = path->nodes[0];
6391 			slot = path->slots[0];
6392 			btrfs_item_key_to_cpu(eb, &found_key, slot);
6393 		}
6394 		if (ret || found_key.objectid != key.objectid ||
6395 		    found_key.type != key.type) {
6396 			key.offset += right_len;
6397 			break;
6398 		}
6399 		if (found_key.offset != key.offset + right_len) {
6400 			ret = 0;
6401 			goto out;
6402 		}
6403 		key = found_key;
6404 	}
6405 
6406 	/*
6407 	 * We're now behind the left extent (treat as unchanged) or at the end
6408 	 * of the right side (treat as changed).
6409 	 */
6410 	if (key.offset >= ekey->offset + left_len)
6411 		ret = 1;
6412 	else
6413 		ret = 0;
6414 
6415 
6416 out:
6417 	btrfs_free_path(path);
6418 	return ret;
6419 }
6420 
get_last_extent(struct send_ctx * sctx,u64 offset)6421 static int get_last_extent(struct send_ctx *sctx, u64 offset)
6422 {
6423 	struct btrfs_path *path;
6424 	struct btrfs_root *root = sctx->send_root;
6425 	struct btrfs_key key;
6426 	int ret;
6427 
6428 	path = alloc_path_for_send();
6429 	if (!path)
6430 		return -ENOMEM;
6431 
6432 	sctx->cur_inode_last_extent = 0;
6433 
6434 	key.objectid = sctx->cur_ino;
6435 	key.type = BTRFS_EXTENT_DATA_KEY;
6436 	key.offset = offset;
6437 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6438 	if (ret < 0)
6439 		goto out;
6440 	ret = 0;
6441 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6442 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6443 		goto out;
6444 
6445 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6446 out:
6447 	btrfs_free_path(path);
6448 	return ret;
6449 }
6450 
range_is_hole_in_parent(struct send_ctx * sctx,const u64 start,const u64 end)6451 static int range_is_hole_in_parent(struct send_ctx *sctx,
6452 				   const u64 start,
6453 				   const u64 end)
6454 {
6455 	struct btrfs_path *path;
6456 	struct btrfs_key key;
6457 	struct btrfs_root *root = sctx->parent_root;
6458 	u64 search_start = start;
6459 	int ret;
6460 
6461 	path = alloc_path_for_send();
6462 	if (!path)
6463 		return -ENOMEM;
6464 
6465 	key.objectid = sctx->cur_ino;
6466 	key.type = BTRFS_EXTENT_DATA_KEY;
6467 	key.offset = search_start;
6468 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6469 	if (ret < 0)
6470 		goto out;
6471 	if (ret > 0 && path->slots[0] > 0)
6472 		path->slots[0]--;
6473 
6474 	while (search_start < end) {
6475 		struct extent_buffer *leaf = path->nodes[0];
6476 		int slot = path->slots[0];
6477 		struct btrfs_file_extent_item *fi;
6478 		u64 extent_end;
6479 
6480 		if (slot >= btrfs_header_nritems(leaf)) {
6481 			ret = btrfs_next_leaf(root, path);
6482 			if (ret < 0)
6483 				goto out;
6484 			else if (ret > 0)
6485 				break;
6486 			continue;
6487 		}
6488 
6489 		btrfs_item_key_to_cpu(leaf, &key, slot);
6490 		if (key.objectid < sctx->cur_ino ||
6491 		    key.type < BTRFS_EXTENT_DATA_KEY)
6492 			goto next;
6493 		if (key.objectid > sctx->cur_ino ||
6494 		    key.type > BTRFS_EXTENT_DATA_KEY ||
6495 		    key.offset >= end)
6496 			break;
6497 
6498 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6499 		extent_end = btrfs_file_extent_end(path);
6500 		if (extent_end <= start)
6501 			goto next;
6502 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6503 			search_start = extent_end;
6504 			goto next;
6505 		}
6506 		ret = 0;
6507 		goto out;
6508 next:
6509 		path->slots[0]++;
6510 	}
6511 	ret = 1;
6512 out:
6513 	btrfs_free_path(path);
6514 	return ret;
6515 }
6516 
maybe_send_hole(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6517 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6518 			   struct btrfs_key *key)
6519 {
6520 	int ret = 0;
6521 
6522 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6523 		return 0;
6524 
6525 	if (sctx->cur_inode_last_extent == (u64)-1) {
6526 		ret = get_last_extent(sctx, key->offset - 1);
6527 		if (ret)
6528 			return ret;
6529 	}
6530 
6531 	if (path->slots[0] == 0 &&
6532 	    sctx->cur_inode_last_extent < key->offset) {
6533 		/*
6534 		 * We might have skipped entire leafs that contained only
6535 		 * file extent items for our current inode. These leafs have
6536 		 * a generation number smaller (older) than the one in the
6537 		 * current leaf and the leaf our last extent came from, and
6538 		 * are located between these 2 leafs.
6539 		 */
6540 		ret = get_last_extent(sctx, key->offset - 1);
6541 		if (ret)
6542 			return ret;
6543 	}
6544 
6545 	if (sctx->cur_inode_last_extent < key->offset) {
6546 		ret = range_is_hole_in_parent(sctx,
6547 					      sctx->cur_inode_last_extent,
6548 					      key->offset);
6549 		if (ret < 0)
6550 			return ret;
6551 		else if (ret == 0)
6552 			ret = send_hole(sctx, key->offset);
6553 		else
6554 			ret = 0;
6555 	}
6556 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6557 	return ret;
6558 }
6559 
process_extent(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6560 static int process_extent(struct send_ctx *sctx,
6561 			  struct btrfs_path *path,
6562 			  struct btrfs_key *key)
6563 {
6564 	struct clone_root *found_clone = NULL;
6565 	int ret = 0;
6566 
6567 	if (S_ISLNK(sctx->cur_inode_mode))
6568 		return 0;
6569 
6570 	if (sctx->parent_root && !sctx->cur_inode_new) {
6571 		ret = is_extent_unchanged(sctx, path, key);
6572 		if (ret < 0)
6573 			goto out;
6574 		if (ret) {
6575 			ret = 0;
6576 			goto out_hole;
6577 		}
6578 	} else {
6579 		struct btrfs_file_extent_item *ei;
6580 		u8 type;
6581 
6582 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6583 				    struct btrfs_file_extent_item);
6584 		type = btrfs_file_extent_type(path->nodes[0], ei);
6585 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6586 		    type == BTRFS_FILE_EXTENT_REG) {
6587 			/*
6588 			 * The send spec does not have a prealloc command yet,
6589 			 * so just leave a hole for prealloc'ed extents until
6590 			 * we have enough commands queued up to justify rev'ing
6591 			 * the send spec.
6592 			 */
6593 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6594 				ret = 0;
6595 				goto out;
6596 			}
6597 
6598 			/* Have a hole, just skip it. */
6599 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6600 				ret = 0;
6601 				goto out;
6602 			}
6603 		}
6604 	}
6605 
6606 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6607 			sctx->cur_inode_size, &found_clone);
6608 	if (ret != -ENOENT && ret < 0)
6609 		goto out;
6610 
6611 	ret = send_write_or_clone(sctx, path, key, found_clone);
6612 	if (ret)
6613 		goto out;
6614 out_hole:
6615 	ret = maybe_send_hole(sctx, path, key);
6616 out:
6617 	return ret;
6618 }
6619 
process_all_extents(struct send_ctx * sctx)6620 static int process_all_extents(struct send_ctx *sctx)
6621 {
6622 	int ret = 0;
6623 	int iter_ret = 0;
6624 	struct btrfs_root *root;
6625 	struct btrfs_path *path;
6626 	struct btrfs_key key;
6627 	struct btrfs_key found_key;
6628 
6629 	root = sctx->send_root;
6630 	path = alloc_path_for_send();
6631 	if (!path)
6632 		return -ENOMEM;
6633 
6634 	key.objectid = sctx->cmp_key->objectid;
6635 	key.type = BTRFS_EXTENT_DATA_KEY;
6636 	key.offset = 0;
6637 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6638 		if (found_key.objectid != key.objectid ||
6639 		    found_key.type != key.type) {
6640 			ret = 0;
6641 			break;
6642 		}
6643 
6644 		ret = process_extent(sctx, path, &found_key);
6645 		if (ret < 0)
6646 			break;
6647 	}
6648 	/* Catch error found during iteration */
6649 	if (iter_ret < 0)
6650 		ret = iter_ret;
6651 
6652 	btrfs_free_path(path);
6653 	return ret;
6654 }
6655 
process_recorded_refs_if_needed(struct send_ctx * sctx,int at_end,int * pending_move,int * refs_processed)6656 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6657 					   int *pending_move,
6658 					   int *refs_processed)
6659 {
6660 	int ret = 0;
6661 
6662 	if (sctx->cur_ino == 0)
6663 		goto out;
6664 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6665 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6666 		goto out;
6667 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6668 		goto out;
6669 
6670 	ret = process_recorded_refs(sctx, pending_move);
6671 	if (ret < 0)
6672 		goto out;
6673 
6674 	*refs_processed = 1;
6675 out:
6676 	return ret;
6677 }
6678 
finish_inode_if_needed(struct send_ctx * sctx,int at_end)6679 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6680 {
6681 	int ret = 0;
6682 	struct btrfs_inode_info info;
6683 	u64 left_mode;
6684 	u64 left_uid;
6685 	u64 left_gid;
6686 	u64 left_fileattr;
6687 	u64 right_mode;
6688 	u64 right_uid;
6689 	u64 right_gid;
6690 	u64 right_fileattr;
6691 	int need_chmod = 0;
6692 	int need_chown = 0;
6693 	bool need_fileattr = false;
6694 	int need_truncate = 1;
6695 	int pending_move = 0;
6696 	int refs_processed = 0;
6697 
6698 	if (sctx->ignore_cur_inode)
6699 		return 0;
6700 
6701 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6702 					      &refs_processed);
6703 	if (ret < 0)
6704 		goto out;
6705 
6706 	/*
6707 	 * We have processed the refs and thus need to advance send_progress.
6708 	 * Now, calls to get_cur_xxx will take the updated refs of the current
6709 	 * inode into account.
6710 	 *
6711 	 * On the other hand, if our current inode is a directory and couldn't
6712 	 * be moved/renamed because its parent was renamed/moved too and it has
6713 	 * a higher inode number, we can only move/rename our current inode
6714 	 * after we moved/renamed its parent. Therefore in this case operate on
6715 	 * the old path (pre move/rename) of our current inode, and the
6716 	 * move/rename will be performed later.
6717 	 */
6718 	if (refs_processed && !pending_move)
6719 		sctx->send_progress = sctx->cur_ino + 1;
6720 
6721 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6722 		goto out;
6723 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6724 		goto out;
6725 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6726 	if (ret < 0)
6727 		goto out;
6728 	left_mode = info.mode;
6729 	left_uid = info.uid;
6730 	left_gid = info.gid;
6731 	left_fileattr = info.fileattr;
6732 
6733 	if (!sctx->parent_root || sctx->cur_inode_new) {
6734 		need_chown = 1;
6735 		if (!S_ISLNK(sctx->cur_inode_mode))
6736 			need_chmod = 1;
6737 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6738 			need_truncate = 0;
6739 	} else {
6740 		u64 old_size;
6741 
6742 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6743 		if (ret < 0)
6744 			goto out;
6745 		old_size = info.size;
6746 		right_mode = info.mode;
6747 		right_uid = info.uid;
6748 		right_gid = info.gid;
6749 		right_fileattr = info.fileattr;
6750 
6751 		if (left_uid != right_uid || left_gid != right_gid)
6752 			need_chown = 1;
6753 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6754 			need_chmod = 1;
6755 		if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6756 			need_fileattr = true;
6757 		if ((old_size == sctx->cur_inode_size) ||
6758 		    (sctx->cur_inode_size > old_size &&
6759 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6760 			need_truncate = 0;
6761 	}
6762 
6763 	if (S_ISREG(sctx->cur_inode_mode)) {
6764 		if (need_send_hole(sctx)) {
6765 			if (sctx->cur_inode_last_extent == (u64)-1 ||
6766 			    sctx->cur_inode_last_extent <
6767 			    sctx->cur_inode_size) {
6768 				ret = get_last_extent(sctx, (u64)-1);
6769 				if (ret)
6770 					goto out;
6771 			}
6772 			if (sctx->cur_inode_last_extent < sctx->cur_inode_size) {
6773 				ret = range_is_hole_in_parent(sctx,
6774 						      sctx->cur_inode_last_extent,
6775 						      sctx->cur_inode_size);
6776 				if (ret < 0) {
6777 					goto out;
6778 				} else if (ret == 0) {
6779 					ret = send_hole(sctx, sctx->cur_inode_size);
6780 					if (ret < 0)
6781 						goto out;
6782 				} else {
6783 					/* Range is already a hole, skip. */
6784 					ret = 0;
6785 				}
6786 			}
6787 		}
6788 		if (need_truncate) {
6789 			ret = send_truncate(sctx, sctx->cur_ino,
6790 					    sctx->cur_inode_gen,
6791 					    sctx->cur_inode_size);
6792 			if (ret < 0)
6793 				goto out;
6794 		}
6795 	}
6796 
6797 	if (need_chown) {
6798 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6799 				left_uid, left_gid);
6800 		if (ret < 0)
6801 			goto out;
6802 	}
6803 	if (need_chmod) {
6804 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6805 				left_mode);
6806 		if (ret < 0)
6807 			goto out;
6808 	}
6809 	if (need_fileattr) {
6810 		ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6811 				    left_fileattr);
6812 		if (ret < 0)
6813 			goto out;
6814 	}
6815 
6816 	if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6817 	    && sctx->cur_inode_needs_verity) {
6818 		ret = process_verity(sctx);
6819 		if (ret < 0)
6820 			goto out;
6821 	}
6822 
6823 	ret = send_capabilities(sctx);
6824 	if (ret < 0)
6825 		goto out;
6826 
6827 	/*
6828 	 * If other directory inodes depended on our current directory
6829 	 * inode's move/rename, now do their move/rename operations.
6830 	 */
6831 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6832 		ret = apply_children_dir_moves(sctx);
6833 		if (ret)
6834 			goto out;
6835 		/*
6836 		 * Need to send that every time, no matter if it actually
6837 		 * changed between the two trees as we have done changes to
6838 		 * the inode before. If our inode is a directory and it's
6839 		 * waiting to be moved/renamed, we will send its utimes when
6840 		 * it's moved/renamed, therefore we don't need to do it here.
6841 		 */
6842 		sctx->send_progress = sctx->cur_ino + 1;
6843 
6844 		/*
6845 		 * If the current inode is a non-empty directory, delay issuing
6846 		 * the utimes command for it, as it's very likely we have inodes
6847 		 * with an higher number inside it. We want to issue the utimes
6848 		 * command only after adding all dentries to it.
6849 		 */
6850 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0)
6851 			ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6852 		else
6853 			ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6854 
6855 		if (ret < 0)
6856 			goto out;
6857 	}
6858 
6859 out:
6860 	if (!ret)
6861 		ret = trim_dir_utimes_cache(sctx);
6862 
6863 	return ret;
6864 }
6865 
close_current_inode(struct send_ctx * sctx)6866 static void close_current_inode(struct send_ctx *sctx)
6867 {
6868 	u64 i_size;
6869 
6870 	if (sctx->cur_inode == NULL)
6871 		return;
6872 
6873 	i_size = i_size_read(sctx->cur_inode);
6874 
6875 	/*
6876 	 * If we are doing an incremental send, we may have extents between the
6877 	 * last processed extent and the i_size that have not been processed
6878 	 * because they haven't changed but we may have read some of their pages
6879 	 * through readahead, see the comments at send_extent_data().
6880 	 */
6881 	if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6882 		truncate_inode_pages_range(&sctx->cur_inode->i_data,
6883 					   sctx->page_cache_clear_start,
6884 					   round_up(i_size, PAGE_SIZE) - 1);
6885 
6886 	iput(sctx->cur_inode);
6887 	sctx->cur_inode = NULL;
6888 }
6889 
changed_inode(struct send_ctx * sctx,enum btrfs_compare_tree_result result)6890 static int changed_inode(struct send_ctx *sctx,
6891 			 enum btrfs_compare_tree_result result)
6892 {
6893 	int ret = 0;
6894 	struct btrfs_key *key = sctx->cmp_key;
6895 	struct btrfs_inode_item *left_ii = NULL;
6896 	struct btrfs_inode_item *right_ii = NULL;
6897 	u64 left_gen = 0;
6898 	u64 right_gen = 0;
6899 
6900 	close_current_inode(sctx);
6901 
6902 	sctx->cur_ino = key->objectid;
6903 	sctx->cur_inode_new_gen = false;
6904 	sctx->cur_inode_last_extent = (u64)-1;
6905 	sctx->cur_inode_next_write_offset = 0;
6906 	sctx->ignore_cur_inode = false;
6907 
6908 	/*
6909 	 * Set send_progress to current inode. This will tell all get_cur_xxx
6910 	 * functions that the current inode's refs are not updated yet. Later,
6911 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6912 	 */
6913 	sctx->send_progress = sctx->cur_ino;
6914 
6915 	if (result == BTRFS_COMPARE_TREE_NEW ||
6916 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6917 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6918 				sctx->left_path->slots[0],
6919 				struct btrfs_inode_item);
6920 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6921 				left_ii);
6922 	} else {
6923 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6924 				sctx->right_path->slots[0],
6925 				struct btrfs_inode_item);
6926 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6927 				right_ii);
6928 	}
6929 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6930 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6931 				sctx->right_path->slots[0],
6932 				struct btrfs_inode_item);
6933 
6934 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6935 				right_ii);
6936 
6937 		/*
6938 		 * The cur_ino = root dir case is special here. We can't treat
6939 		 * the inode as deleted+reused because it would generate a
6940 		 * stream that tries to delete/mkdir the root dir.
6941 		 */
6942 		if (left_gen != right_gen &&
6943 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6944 			sctx->cur_inode_new_gen = true;
6945 	}
6946 
6947 	/*
6948 	 * Normally we do not find inodes with a link count of zero (orphans)
6949 	 * because the most common case is to create a snapshot and use it
6950 	 * for a send operation. However other less common use cases involve
6951 	 * using a subvolume and send it after turning it to RO mode just
6952 	 * after deleting all hard links of a file while holding an open
6953 	 * file descriptor against it or turning a RO snapshot into RW mode,
6954 	 * keep an open file descriptor against a file, delete it and then
6955 	 * turn the snapshot back to RO mode before using it for a send
6956 	 * operation. The former is what the receiver operation does.
6957 	 * Therefore, if we want to send these snapshots soon after they're
6958 	 * received, we need to handle orphan inodes as well. Moreover, orphans
6959 	 * can appear not only in the send snapshot but also in the parent
6960 	 * snapshot. Here are several cases:
6961 	 *
6962 	 * Case 1: BTRFS_COMPARE_TREE_NEW
6963 	 *       |  send snapshot  | action
6964 	 * --------------------------------
6965 	 * nlink |        0        | ignore
6966 	 *
6967 	 * Case 2: BTRFS_COMPARE_TREE_DELETED
6968 	 *       | parent snapshot | action
6969 	 * ----------------------------------
6970 	 * nlink |        0        | as usual
6971 	 * Note: No unlinks will be sent because there're no paths for it.
6972 	 *
6973 	 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6974 	 *           |       | parent snapshot | send snapshot | action
6975 	 * -----------------------------------------------------------------------
6976 	 * subcase 1 | nlink |        0        |       0       | ignore
6977 	 * subcase 2 | nlink |       >0        |       0       | new_gen(deletion)
6978 	 * subcase 3 | nlink |        0        |      >0       | new_gen(creation)
6979 	 *
6980 	 */
6981 	if (result == BTRFS_COMPARE_TREE_NEW) {
6982 		if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6983 			sctx->ignore_cur_inode = true;
6984 			goto out;
6985 		}
6986 		sctx->cur_inode_gen = left_gen;
6987 		sctx->cur_inode_new = true;
6988 		sctx->cur_inode_deleted = false;
6989 		sctx->cur_inode_size = btrfs_inode_size(
6990 				sctx->left_path->nodes[0], left_ii);
6991 		sctx->cur_inode_mode = btrfs_inode_mode(
6992 				sctx->left_path->nodes[0], left_ii);
6993 		sctx->cur_inode_rdev = btrfs_inode_rdev(
6994 				sctx->left_path->nodes[0], left_ii);
6995 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6996 			ret = send_create_inode_if_needed(sctx);
6997 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6998 		sctx->cur_inode_gen = right_gen;
6999 		sctx->cur_inode_new = false;
7000 		sctx->cur_inode_deleted = true;
7001 		sctx->cur_inode_size = btrfs_inode_size(
7002 				sctx->right_path->nodes[0], right_ii);
7003 		sctx->cur_inode_mode = btrfs_inode_mode(
7004 				sctx->right_path->nodes[0], right_ii);
7005 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
7006 		u32 new_nlinks, old_nlinks;
7007 
7008 		new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
7009 		old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
7010 		if (new_nlinks == 0 && old_nlinks == 0) {
7011 			sctx->ignore_cur_inode = true;
7012 			goto out;
7013 		} else if (new_nlinks == 0 || old_nlinks == 0) {
7014 			sctx->cur_inode_new_gen = 1;
7015 		}
7016 		/*
7017 		 * We need to do some special handling in case the inode was
7018 		 * reported as changed with a changed generation number. This
7019 		 * means that the original inode was deleted and new inode
7020 		 * reused the same inum. So we have to treat the old inode as
7021 		 * deleted and the new one as new.
7022 		 */
7023 		if (sctx->cur_inode_new_gen) {
7024 			/*
7025 			 * First, process the inode as if it was deleted.
7026 			 */
7027 			if (old_nlinks > 0) {
7028 				sctx->cur_inode_gen = right_gen;
7029 				sctx->cur_inode_new = false;
7030 				sctx->cur_inode_deleted = true;
7031 				sctx->cur_inode_size = btrfs_inode_size(
7032 						sctx->right_path->nodes[0], right_ii);
7033 				sctx->cur_inode_mode = btrfs_inode_mode(
7034 						sctx->right_path->nodes[0], right_ii);
7035 				ret = process_all_refs(sctx,
7036 						BTRFS_COMPARE_TREE_DELETED);
7037 				if (ret < 0)
7038 					goto out;
7039 			}
7040 
7041 			/*
7042 			 * Now process the inode as if it was new.
7043 			 */
7044 			if (new_nlinks > 0) {
7045 				sctx->cur_inode_gen = left_gen;
7046 				sctx->cur_inode_new = true;
7047 				sctx->cur_inode_deleted = false;
7048 				sctx->cur_inode_size = btrfs_inode_size(
7049 						sctx->left_path->nodes[0],
7050 						left_ii);
7051 				sctx->cur_inode_mode = btrfs_inode_mode(
7052 						sctx->left_path->nodes[0],
7053 						left_ii);
7054 				sctx->cur_inode_rdev = btrfs_inode_rdev(
7055 						sctx->left_path->nodes[0],
7056 						left_ii);
7057 				ret = send_create_inode_if_needed(sctx);
7058 				if (ret < 0)
7059 					goto out;
7060 
7061 				ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
7062 				if (ret < 0)
7063 					goto out;
7064 				/*
7065 				 * Advance send_progress now as we did not get
7066 				 * into process_recorded_refs_if_needed in the
7067 				 * new_gen case.
7068 				 */
7069 				sctx->send_progress = sctx->cur_ino + 1;
7070 
7071 				/*
7072 				 * Now process all extents and xattrs of the
7073 				 * inode as if they were all new.
7074 				 */
7075 				ret = process_all_extents(sctx);
7076 				if (ret < 0)
7077 					goto out;
7078 				ret = process_all_new_xattrs(sctx);
7079 				if (ret < 0)
7080 					goto out;
7081 			}
7082 		} else {
7083 			sctx->cur_inode_gen = left_gen;
7084 			sctx->cur_inode_new = false;
7085 			sctx->cur_inode_new_gen = false;
7086 			sctx->cur_inode_deleted = false;
7087 			sctx->cur_inode_size = btrfs_inode_size(
7088 					sctx->left_path->nodes[0], left_ii);
7089 			sctx->cur_inode_mode = btrfs_inode_mode(
7090 					sctx->left_path->nodes[0], left_ii);
7091 		}
7092 	}
7093 
7094 out:
7095 	return ret;
7096 }
7097 
7098 /*
7099  * We have to process new refs before deleted refs, but compare_trees gives us
7100  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
7101  * first and later process them in process_recorded_refs.
7102  * For the cur_inode_new_gen case, we skip recording completely because
7103  * changed_inode did already initiate processing of refs. The reason for this is
7104  * that in this case, compare_tree actually compares the refs of 2 different
7105  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7106  * refs of the right tree as deleted and all refs of the left tree as new.
7107  */
changed_ref(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7108 static int changed_ref(struct send_ctx *sctx,
7109 		       enum btrfs_compare_tree_result result)
7110 {
7111 	int ret = 0;
7112 
7113 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
7114 		inconsistent_snapshot_error(sctx, result, "reference");
7115 		return -EIO;
7116 	}
7117 
7118 	if (!sctx->cur_inode_new_gen &&
7119 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7120 		if (result == BTRFS_COMPARE_TREE_NEW)
7121 			ret = record_new_ref(sctx);
7122 		else if (result == BTRFS_COMPARE_TREE_DELETED)
7123 			ret = record_deleted_ref(sctx);
7124 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
7125 			ret = record_changed_ref(sctx);
7126 	}
7127 
7128 	return ret;
7129 }
7130 
7131 /*
7132  * Process new/deleted/changed xattrs. We skip processing in the
7133  * cur_inode_new_gen case because changed_inode did already initiate processing
7134  * of xattrs. The reason is the same as in changed_ref
7135  */
changed_xattr(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7136 static int changed_xattr(struct send_ctx *sctx,
7137 			 enum btrfs_compare_tree_result result)
7138 {
7139 	int ret = 0;
7140 
7141 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
7142 		inconsistent_snapshot_error(sctx, result, "xattr");
7143 		return -EIO;
7144 	}
7145 
7146 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7147 		if (result == BTRFS_COMPARE_TREE_NEW)
7148 			ret = process_new_xattr(sctx);
7149 		else if (result == BTRFS_COMPARE_TREE_DELETED)
7150 			ret = process_deleted_xattr(sctx);
7151 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
7152 			ret = process_changed_xattr(sctx);
7153 	}
7154 
7155 	return ret;
7156 }
7157 
7158 /*
7159  * Process new/deleted/changed extents. We skip processing in the
7160  * cur_inode_new_gen case because changed_inode did already initiate processing
7161  * of extents. The reason is the same as in changed_ref
7162  */
changed_extent(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7163 static int changed_extent(struct send_ctx *sctx,
7164 			  enum btrfs_compare_tree_result result)
7165 {
7166 	int ret = 0;
7167 
7168 	/*
7169 	 * We have found an extent item that changed without the inode item
7170 	 * having changed. This can happen either after relocation (where the
7171 	 * disk_bytenr of an extent item is replaced at
7172 	 * relocation.c:replace_file_extents()) or after deduplication into a
7173 	 * file in both the parent and send snapshots (where an extent item can
7174 	 * get modified or replaced with a new one). Note that deduplication
7175 	 * updates the inode item, but it only changes the iversion (sequence
7176 	 * field in the inode item) of the inode, so if a file is deduplicated
7177 	 * the same amount of times in both the parent and send snapshots, its
7178 	 * iversion becomes the same in both snapshots, whence the inode item is
7179 	 * the same on both snapshots.
7180 	 */
7181 	if (sctx->cur_ino != sctx->cmp_key->objectid)
7182 		return 0;
7183 
7184 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7185 		if (result != BTRFS_COMPARE_TREE_DELETED)
7186 			ret = process_extent(sctx, sctx->left_path,
7187 					sctx->cmp_key);
7188 	}
7189 
7190 	return ret;
7191 }
7192 
changed_verity(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7193 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7194 {
7195 	int ret = 0;
7196 
7197 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7198 		if (result == BTRFS_COMPARE_TREE_NEW)
7199 			sctx->cur_inode_needs_verity = true;
7200 	}
7201 	return ret;
7202 }
7203 
dir_changed(struct send_ctx * sctx,u64 dir)7204 static int dir_changed(struct send_ctx *sctx, u64 dir)
7205 {
7206 	u64 orig_gen, new_gen;
7207 	int ret;
7208 
7209 	ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7210 	if (ret)
7211 		return ret;
7212 
7213 	ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7214 	if (ret)
7215 		return ret;
7216 
7217 	return (orig_gen != new_gen) ? 1 : 0;
7218 }
7219 
compare_refs(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)7220 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7221 			struct btrfs_key *key)
7222 {
7223 	struct btrfs_inode_extref *extref;
7224 	struct extent_buffer *leaf;
7225 	u64 dirid = 0, last_dirid = 0;
7226 	unsigned long ptr;
7227 	u32 item_size;
7228 	u32 cur_offset = 0;
7229 	int ref_name_len;
7230 	int ret = 0;
7231 
7232 	/* Easy case, just check this one dirid */
7233 	if (key->type == BTRFS_INODE_REF_KEY) {
7234 		dirid = key->offset;
7235 
7236 		ret = dir_changed(sctx, dirid);
7237 		goto out;
7238 	}
7239 
7240 	leaf = path->nodes[0];
7241 	item_size = btrfs_item_size(leaf, path->slots[0]);
7242 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7243 	while (cur_offset < item_size) {
7244 		extref = (struct btrfs_inode_extref *)(ptr +
7245 						       cur_offset);
7246 		dirid = btrfs_inode_extref_parent(leaf, extref);
7247 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7248 		cur_offset += ref_name_len + sizeof(*extref);
7249 		if (dirid == last_dirid)
7250 			continue;
7251 		ret = dir_changed(sctx, dirid);
7252 		if (ret)
7253 			break;
7254 		last_dirid = dirid;
7255 	}
7256 out:
7257 	return ret;
7258 }
7259 
7260 /*
7261  * Updates compare related fields in sctx and simply forwards to the actual
7262  * changed_xxx functions.
7263  */
changed_cb(struct btrfs_path * left_path,struct btrfs_path * right_path,struct btrfs_key * key,enum btrfs_compare_tree_result result,struct send_ctx * sctx)7264 static int changed_cb(struct btrfs_path *left_path,
7265 		      struct btrfs_path *right_path,
7266 		      struct btrfs_key *key,
7267 		      enum btrfs_compare_tree_result result,
7268 		      struct send_ctx *sctx)
7269 {
7270 	int ret = 0;
7271 
7272 	/*
7273 	 * We can not hold the commit root semaphore here. This is because in
7274 	 * the case of sending and receiving to the same filesystem, using a
7275 	 * pipe, could result in a deadlock:
7276 	 *
7277 	 * 1) The task running send blocks on the pipe because it's full;
7278 	 *
7279 	 * 2) The task running receive, which is the only consumer of the pipe,
7280 	 *    is waiting for a transaction commit (for example due to a space
7281 	 *    reservation when doing a write or triggering a transaction commit
7282 	 *    when creating a subvolume);
7283 	 *
7284 	 * 3) The transaction is waiting to write lock the commit root semaphore,
7285 	 *    but can not acquire it since it's being held at 1).
7286 	 *
7287 	 * Down this call chain we write to the pipe through kernel_write().
7288 	 * The same type of problem can also happen when sending to a file that
7289 	 * is stored in the same filesystem - when reserving space for a write
7290 	 * into the file, we can trigger a transaction commit.
7291 	 *
7292 	 * Our caller has supplied us with clones of leaves from the send and
7293 	 * parent roots, so we're safe here from a concurrent relocation and
7294 	 * further reallocation of metadata extents while we are here. Below we
7295 	 * also assert that the leaves are clones.
7296 	 */
7297 	lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7298 
7299 	/*
7300 	 * We always have a send root, so left_path is never NULL. We will not
7301 	 * have a leaf when we have reached the end of the send root but have
7302 	 * not yet reached the end of the parent root.
7303 	 */
7304 	if (left_path->nodes[0])
7305 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7306 				&left_path->nodes[0]->bflags));
7307 	/*
7308 	 * When doing a full send we don't have a parent root, so right_path is
7309 	 * NULL. When doing an incremental send, we may have reached the end of
7310 	 * the parent root already, so we don't have a leaf at right_path.
7311 	 */
7312 	if (right_path && right_path->nodes[0])
7313 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7314 				&right_path->nodes[0]->bflags));
7315 
7316 	if (result == BTRFS_COMPARE_TREE_SAME) {
7317 		if (key->type == BTRFS_INODE_REF_KEY ||
7318 		    key->type == BTRFS_INODE_EXTREF_KEY) {
7319 			ret = compare_refs(sctx, left_path, key);
7320 			if (!ret)
7321 				return 0;
7322 			if (ret < 0)
7323 				return ret;
7324 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7325 			return maybe_send_hole(sctx, left_path, key);
7326 		} else {
7327 			return 0;
7328 		}
7329 		result = BTRFS_COMPARE_TREE_CHANGED;
7330 		ret = 0;
7331 	}
7332 
7333 	sctx->left_path = left_path;
7334 	sctx->right_path = right_path;
7335 	sctx->cmp_key = key;
7336 
7337 	ret = finish_inode_if_needed(sctx, 0);
7338 	if (ret < 0)
7339 		goto out;
7340 
7341 	/* Ignore non-FS objects */
7342 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7343 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7344 		goto out;
7345 
7346 	if (key->type == BTRFS_INODE_ITEM_KEY) {
7347 		ret = changed_inode(sctx, result);
7348 	} else if (!sctx->ignore_cur_inode) {
7349 		if (key->type == BTRFS_INODE_REF_KEY ||
7350 		    key->type == BTRFS_INODE_EXTREF_KEY)
7351 			ret = changed_ref(sctx, result);
7352 		else if (key->type == BTRFS_XATTR_ITEM_KEY)
7353 			ret = changed_xattr(sctx, result);
7354 		else if (key->type == BTRFS_EXTENT_DATA_KEY)
7355 			ret = changed_extent(sctx, result);
7356 		else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7357 			 key->offset == 0)
7358 			ret = changed_verity(sctx, result);
7359 	}
7360 
7361 out:
7362 	return ret;
7363 }
7364 
search_key_again(const struct send_ctx * sctx,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key)7365 static int search_key_again(const struct send_ctx *sctx,
7366 			    struct btrfs_root *root,
7367 			    struct btrfs_path *path,
7368 			    const struct btrfs_key *key)
7369 {
7370 	int ret;
7371 
7372 	if (!path->need_commit_sem)
7373 		lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7374 
7375 	/*
7376 	 * Roots used for send operations are readonly and no one can add,
7377 	 * update or remove keys from them, so we should be able to find our
7378 	 * key again. The only exception is deduplication, which can operate on
7379 	 * readonly roots and add, update or remove keys to/from them - but at
7380 	 * the moment we don't allow it to run in parallel with send.
7381 	 */
7382 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7383 	ASSERT(ret <= 0);
7384 	if (ret > 0) {
7385 		btrfs_print_tree(path->nodes[path->lowest_level], false);
7386 		btrfs_err(root->fs_info,
7387 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7388 			  key->objectid, key->type, key->offset,
7389 			  (root == sctx->parent_root ? "parent" : "send"),
7390 			  root->root_key.objectid, path->lowest_level,
7391 			  path->slots[path->lowest_level]);
7392 		return -EUCLEAN;
7393 	}
7394 
7395 	return ret;
7396 }
7397 
full_send_tree(struct send_ctx * sctx)7398 static int full_send_tree(struct send_ctx *sctx)
7399 {
7400 	int ret;
7401 	struct btrfs_root *send_root = sctx->send_root;
7402 	struct btrfs_key key;
7403 	struct btrfs_fs_info *fs_info = send_root->fs_info;
7404 	struct btrfs_path *path;
7405 
7406 	path = alloc_path_for_send();
7407 	if (!path)
7408 		return -ENOMEM;
7409 	path->reada = READA_FORWARD_ALWAYS;
7410 
7411 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7412 	key.type = BTRFS_INODE_ITEM_KEY;
7413 	key.offset = 0;
7414 
7415 	down_read(&fs_info->commit_root_sem);
7416 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7417 	up_read(&fs_info->commit_root_sem);
7418 
7419 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7420 	if (ret < 0)
7421 		goto out;
7422 	if (ret)
7423 		goto out_finish;
7424 
7425 	while (1) {
7426 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7427 
7428 		ret = changed_cb(path, NULL, &key,
7429 				 BTRFS_COMPARE_TREE_NEW, sctx);
7430 		if (ret < 0)
7431 			goto out;
7432 
7433 		down_read(&fs_info->commit_root_sem);
7434 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7435 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7436 			up_read(&fs_info->commit_root_sem);
7437 			/*
7438 			 * A transaction used for relocating a block group was
7439 			 * committed or is about to finish its commit. Release
7440 			 * our path (leaf) and restart the search, so that we
7441 			 * avoid operating on any file extent items that are
7442 			 * stale, with a disk_bytenr that reflects a pre
7443 			 * relocation value. This way we avoid as much as
7444 			 * possible to fallback to regular writes when checking
7445 			 * if we can clone file ranges.
7446 			 */
7447 			btrfs_release_path(path);
7448 			ret = search_key_again(sctx, send_root, path, &key);
7449 			if (ret < 0)
7450 				goto out;
7451 		} else {
7452 			up_read(&fs_info->commit_root_sem);
7453 		}
7454 
7455 		ret = btrfs_next_item(send_root, path);
7456 		if (ret < 0)
7457 			goto out;
7458 		if (ret) {
7459 			ret  = 0;
7460 			break;
7461 		}
7462 	}
7463 
7464 out_finish:
7465 	ret = finish_inode_if_needed(sctx, 1);
7466 
7467 out:
7468 	btrfs_free_path(path);
7469 	return ret;
7470 }
7471 
replace_node_with_clone(struct btrfs_path * path,int level)7472 static int replace_node_with_clone(struct btrfs_path *path, int level)
7473 {
7474 	struct extent_buffer *clone;
7475 
7476 	clone = btrfs_clone_extent_buffer(path->nodes[level]);
7477 	if (!clone)
7478 		return -ENOMEM;
7479 
7480 	free_extent_buffer(path->nodes[level]);
7481 	path->nodes[level] = clone;
7482 
7483 	return 0;
7484 }
7485 
tree_move_down(struct btrfs_path * path,int * level,u64 reada_min_gen)7486 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7487 {
7488 	struct extent_buffer *eb;
7489 	struct extent_buffer *parent = path->nodes[*level];
7490 	int slot = path->slots[*level];
7491 	const int nritems = btrfs_header_nritems(parent);
7492 	u64 reada_max;
7493 	u64 reada_done = 0;
7494 
7495 	lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7496 	ASSERT(*level != 0);
7497 
7498 	eb = btrfs_read_node_slot(parent, slot);
7499 	if (IS_ERR(eb))
7500 		return PTR_ERR(eb);
7501 
7502 	/*
7503 	 * Trigger readahead for the next leaves we will process, so that it is
7504 	 * very likely that when we need them they are already in memory and we
7505 	 * will not block on disk IO. For nodes we only do readahead for one,
7506 	 * since the time window between processing nodes is typically larger.
7507 	 */
7508 	reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7509 
7510 	for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7511 		if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7512 			btrfs_readahead_node_child(parent, slot);
7513 			reada_done += eb->fs_info->nodesize;
7514 		}
7515 	}
7516 
7517 	path->nodes[*level - 1] = eb;
7518 	path->slots[*level - 1] = 0;
7519 	(*level)--;
7520 
7521 	if (*level == 0)
7522 		return replace_node_with_clone(path, 0);
7523 
7524 	return 0;
7525 }
7526 
tree_move_next_or_upnext(struct btrfs_path * path,int * level,int root_level)7527 static int tree_move_next_or_upnext(struct btrfs_path *path,
7528 				    int *level, int root_level)
7529 {
7530 	int ret = 0;
7531 	int nritems;
7532 	nritems = btrfs_header_nritems(path->nodes[*level]);
7533 
7534 	path->slots[*level]++;
7535 
7536 	while (path->slots[*level] >= nritems) {
7537 		if (*level == root_level) {
7538 			path->slots[*level] = nritems - 1;
7539 			return -1;
7540 		}
7541 
7542 		/* move upnext */
7543 		path->slots[*level] = 0;
7544 		free_extent_buffer(path->nodes[*level]);
7545 		path->nodes[*level] = NULL;
7546 		(*level)++;
7547 		path->slots[*level]++;
7548 
7549 		nritems = btrfs_header_nritems(path->nodes[*level]);
7550 		ret = 1;
7551 	}
7552 	return ret;
7553 }
7554 
7555 /*
7556  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7557  * or down.
7558  */
tree_advance(struct btrfs_path * path,int * level,int root_level,int allow_down,struct btrfs_key * key,u64 reada_min_gen)7559 static int tree_advance(struct btrfs_path *path,
7560 			int *level, int root_level,
7561 			int allow_down,
7562 			struct btrfs_key *key,
7563 			u64 reada_min_gen)
7564 {
7565 	int ret;
7566 
7567 	if (*level == 0 || !allow_down) {
7568 		ret = tree_move_next_or_upnext(path, level, root_level);
7569 	} else {
7570 		ret = tree_move_down(path, level, reada_min_gen);
7571 	}
7572 
7573 	/*
7574 	 * Even if we have reached the end of a tree, ret is -1, update the key
7575 	 * anyway, so that in case we need to restart due to a block group
7576 	 * relocation, we can assert that the last key of the root node still
7577 	 * exists in the tree.
7578 	 */
7579 	if (*level == 0)
7580 		btrfs_item_key_to_cpu(path->nodes[*level], key,
7581 				      path->slots[*level]);
7582 	else
7583 		btrfs_node_key_to_cpu(path->nodes[*level], key,
7584 				      path->slots[*level]);
7585 
7586 	return ret;
7587 }
7588 
tree_compare_item(struct btrfs_path * left_path,struct btrfs_path * right_path,char * tmp_buf)7589 static int tree_compare_item(struct btrfs_path *left_path,
7590 			     struct btrfs_path *right_path,
7591 			     char *tmp_buf)
7592 {
7593 	int cmp;
7594 	int len1, len2;
7595 	unsigned long off1, off2;
7596 
7597 	len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7598 	len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7599 	if (len1 != len2)
7600 		return 1;
7601 
7602 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7603 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7604 				right_path->slots[0]);
7605 
7606 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7607 
7608 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7609 	if (cmp)
7610 		return 1;
7611 	return 0;
7612 }
7613 
7614 /*
7615  * A transaction used for relocating a block group was committed or is about to
7616  * finish its commit. Release our paths and restart the search, so that we are
7617  * not using stale extent buffers:
7618  *
7619  * 1) For levels > 0, we are only holding references of extent buffers, without
7620  *    any locks on them, which does not prevent them from having been relocated
7621  *    and reallocated after the last time we released the commit root semaphore.
7622  *    The exception are the root nodes, for which we always have a clone, see
7623  *    the comment at btrfs_compare_trees();
7624  *
7625  * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7626  *    we are safe from the concurrent relocation and reallocation. However they
7627  *    can have file extent items with a pre relocation disk_bytenr value, so we
7628  *    restart the start from the current commit roots and clone the new leaves so
7629  *    that we get the post relocation disk_bytenr values. Not doing so, could
7630  *    make us clone the wrong data in case there are new extents using the old
7631  *    disk_bytenr that happen to be shared.
7632  */
restart_after_relocation(struct btrfs_path * left_path,struct btrfs_path * right_path,const struct btrfs_key * left_key,const struct btrfs_key * right_key,int left_level,int right_level,const struct send_ctx * sctx)7633 static int restart_after_relocation(struct btrfs_path *left_path,
7634 				    struct btrfs_path *right_path,
7635 				    const struct btrfs_key *left_key,
7636 				    const struct btrfs_key *right_key,
7637 				    int left_level,
7638 				    int right_level,
7639 				    const struct send_ctx *sctx)
7640 {
7641 	int root_level;
7642 	int ret;
7643 
7644 	lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7645 
7646 	btrfs_release_path(left_path);
7647 	btrfs_release_path(right_path);
7648 
7649 	/*
7650 	 * Since keys can not be added or removed to/from our roots because they
7651 	 * are readonly and we do not allow deduplication to run in parallel
7652 	 * (which can add, remove or change keys), the layout of the trees should
7653 	 * not change.
7654 	 */
7655 	left_path->lowest_level = left_level;
7656 	ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7657 	if (ret < 0)
7658 		return ret;
7659 
7660 	right_path->lowest_level = right_level;
7661 	ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7662 	if (ret < 0)
7663 		return ret;
7664 
7665 	/*
7666 	 * If the lowest level nodes are leaves, clone them so that they can be
7667 	 * safely used by changed_cb() while not under the protection of the
7668 	 * commit root semaphore, even if relocation and reallocation happens in
7669 	 * parallel.
7670 	 */
7671 	if (left_level == 0) {
7672 		ret = replace_node_with_clone(left_path, 0);
7673 		if (ret < 0)
7674 			return ret;
7675 	}
7676 
7677 	if (right_level == 0) {
7678 		ret = replace_node_with_clone(right_path, 0);
7679 		if (ret < 0)
7680 			return ret;
7681 	}
7682 
7683 	/*
7684 	 * Now clone the root nodes (unless they happen to be the leaves we have
7685 	 * already cloned). This is to protect against concurrent snapshotting of
7686 	 * the send and parent roots (see the comment at btrfs_compare_trees()).
7687 	 */
7688 	root_level = btrfs_header_level(sctx->send_root->commit_root);
7689 	if (root_level > 0) {
7690 		ret = replace_node_with_clone(left_path, root_level);
7691 		if (ret < 0)
7692 			return ret;
7693 	}
7694 
7695 	root_level = btrfs_header_level(sctx->parent_root->commit_root);
7696 	if (root_level > 0) {
7697 		ret = replace_node_with_clone(right_path, root_level);
7698 		if (ret < 0)
7699 			return ret;
7700 	}
7701 
7702 	return 0;
7703 }
7704 
7705 /*
7706  * This function compares two trees and calls the provided callback for
7707  * every changed/new/deleted item it finds.
7708  * If shared tree blocks are encountered, whole subtrees are skipped, making
7709  * the compare pretty fast on snapshotted subvolumes.
7710  *
7711  * This currently works on commit roots only. As commit roots are read only,
7712  * we don't do any locking. The commit roots are protected with transactions.
7713  * Transactions are ended and rejoined when a commit is tried in between.
7714  *
7715  * This function checks for modifications done to the trees while comparing.
7716  * If it detects a change, it aborts immediately.
7717  */
btrfs_compare_trees(struct btrfs_root * left_root,struct btrfs_root * right_root,struct send_ctx * sctx)7718 static int btrfs_compare_trees(struct btrfs_root *left_root,
7719 			struct btrfs_root *right_root, struct send_ctx *sctx)
7720 {
7721 	struct btrfs_fs_info *fs_info = left_root->fs_info;
7722 	int ret;
7723 	int cmp;
7724 	struct btrfs_path *left_path = NULL;
7725 	struct btrfs_path *right_path = NULL;
7726 	struct btrfs_key left_key;
7727 	struct btrfs_key right_key;
7728 	char *tmp_buf = NULL;
7729 	int left_root_level;
7730 	int right_root_level;
7731 	int left_level;
7732 	int right_level;
7733 	int left_end_reached = 0;
7734 	int right_end_reached = 0;
7735 	int advance_left = 0;
7736 	int advance_right = 0;
7737 	u64 left_blockptr;
7738 	u64 right_blockptr;
7739 	u64 left_gen;
7740 	u64 right_gen;
7741 	u64 reada_min_gen;
7742 
7743 	left_path = btrfs_alloc_path();
7744 	if (!left_path) {
7745 		ret = -ENOMEM;
7746 		goto out;
7747 	}
7748 	right_path = btrfs_alloc_path();
7749 	if (!right_path) {
7750 		ret = -ENOMEM;
7751 		goto out;
7752 	}
7753 
7754 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7755 	if (!tmp_buf) {
7756 		ret = -ENOMEM;
7757 		goto out;
7758 	}
7759 
7760 	left_path->search_commit_root = 1;
7761 	left_path->skip_locking = 1;
7762 	right_path->search_commit_root = 1;
7763 	right_path->skip_locking = 1;
7764 
7765 	/*
7766 	 * Strategy: Go to the first items of both trees. Then do
7767 	 *
7768 	 * If both trees are at level 0
7769 	 *   Compare keys of current items
7770 	 *     If left < right treat left item as new, advance left tree
7771 	 *       and repeat
7772 	 *     If left > right treat right item as deleted, advance right tree
7773 	 *       and repeat
7774 	 *     If left == right do deep compare of items, treat as changed if
7775 	 *       needed, advance both trees and repeat
7776 	 * If both trees are at the same level but not at level 0
7777 	 *   Compare keys of current nodes/leafs
7778 	 *     If left < right advance left tree and repeat
7779 	 *     If left > right advance right tree and repeat
7780 	 *     If left == right compare blockptrs of the next nodes/leafs
7781 	 *       If they match advance both trees but stay at the same level
7782 	 *         and repeat
7783 	 *       If they don't match advance both trees while allowing to go
7784 	 *         deeper and repeat
7785 	 * If tree levels are different
7786 	 *   Advance the tree that needs it and repeat
7787 	 *
7788 	 * Advancing a tree means:
7789 	 *   If we are at level 0, try to go to the next slot. If that's not
7790 	 *   possible, go one level up and repeat. Stop when we found a level
7791 	 *   where we could go to the next slot. We may at this point be on a
7792 	 *   node or a leaf.
7793 	 *
7794 	 *   If we are not at level 0 and not on shared tree blocks, go one
7795 	 *   level deeper.
7796 	 *
7797 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
7798 	 *   the right if possible or go up and right.
7799 	 */
7800 
7801 	down_read(&fs_info->commit_root_sem);
7802 	left_level = btrfs_header_level(left_root->commit_root);
7803 	left_root_level = left_level;
7804 	/*
7805 	 * We clone the root node of the send and parent roots to prevent races
7806 	 * with snapshot creation of these roots. Snapshot creation COWs the
7807 	 * root node of a tree, so after the transaction is committed the old
7808 	 * extent can be reallocated while this send operation is still ongoing.
7809 	 * So we clone them, under the commit root semaphore, to be race free.
7810 	 */
7811 	left_path->nodes[left_level] =
7812 			btrfs_clone_extent_buffer(left_root->commit_root);
7813 	if (!left_path->nodes[left_level]) {
7814 		ret = -ENOMEM;
7815 		goto out_unlock;
7816 	}
7817 
7818 	right_level = btrfs_header_level(right_root->commit_root);
7819 	right_root_level = right_level;
7820 	right_path->nodes[right_level] =
7821 			btrfs_clone_extent_buffer(right_root->commit_root);
7822 	if (!right_path->nodes[right_level]) {
7823 		ret = -ENOMEM;
7824 		goto out_unlock;
7825 	}
7826 	/*
7827 	 * Our right root is the parent root, while the left root is the "send"
7828 	 * root. We know that all new nodes/leaves in the left root must have
7829 	 * a generation greater than the right root's generation, so we trigger
7830 	 * readahead for those nodes and leaves of the left root, as we know we
7831 	 * will need to read them at some point.
7832 	 */
7833 	reada_min_gen = btrfs_header_generation(right_root->commit_root);
7834 
7835 	if (left_level == 0)
7836 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
7837 				&left_key, left_path->slots[left_level]);
7838 	else
7839 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
7840 				&left_key, left_path->slots[left_level]);
7841 	if (right_level == 0)
7842 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
7843 				&right_key, right_path->slots[right_level]);
7844 	else
7845 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
7846 				&right_key, right_path->slots[right_level]);
7847 
7848 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7849 
7850 	while (1) {
7851 		if (need_resched() ||
7852 		    rwsem_is_contended(&fs_info->commit_root_sem)) {
7853 			up_read(&fs_info->commit_root_sem);
7854 			cond_resched();
7855 			down_read(&fs_info->commit_root_sem);
7856 		}
7857 
7858 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7859 			ret = restart_after_relocation(left_path, right_path,
7860 						       &left_key, &right_key,
7861 						       left_level, right_level,
7862 						       sctx);
7863 			if (ret < 0)
7864 				goto out_unlock;
7865 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7866 		}
7867 
7868 		if (advance_left && !left_end_reached) {
7869 			ret = tree_advance(left_path, &left_level,
7870 					left_root_level,
7871 					advance_left != ADVANCE_ONLY_NEXT,
7872 					&left_key, reada_min_gen);
7873 			if (ret == -1)
7874 				left_end_reached = ADVANCE;
7875 			else if (ret < 0)
7876 				goto out_unlock;
7877 			advance_left = 0;
7878 		}
7879 		if (advance_right && !right_end_reached) {
7880 			ret = tree_advance(right_path, &right_level,
7881 					right_root_level,
7882 					advance_right != ADVANCE_ONLY_NEXT,
7883 					&right_key, reada_min_gen);
7884 			if (ret == -1)
7885 				right_end_reached = ADVANCE;
7886 			else if (ret < 0)
7887 				goto out_unlock;
7888 			advance_right = 0;
7889 		}
7890 
7891 		if (left_end_reached && right_end_reached) {
7892 			ret = 0;
7893 			goto out_unlock;
7894 		} else if (left_end_reached) {
7895 			if (right_level == 0) {
7896 				up_read(&fs_info->commit_root_sem);
7897 				ret = changed_cb(left_path, right_path,
7898 						&right_key,
7899 						BTRFS_COMPARE_TREE_DELETED,
7900 						sctx);
7901 				if (ret < 0)
7902 					goto out;
7903 				down_read(&fs_info->commit_root_sem);
7904 			}
7905 			advance_right = ADVANCE;
7906 			continue;
7907 		} else if (right_end_reached) {
7908 			if (left_level == 0) {
7909 				up_read(&fs_info->commit_root_sem);
7910 				ret = changed_cb(left_path, right_path,
7911 						&left_key,
7912 						BTRFS_COMPARE_TREE_NEW,
7913 						sctx);
7914 				if (ret < 0)
7915 					goto out;
7916 				down_read(&fs_info->commit_root_sem);
7917 			}
7918 			advance_left = ADVANCE;
7919 			continue;
7920 		}
7921 
7922 		if (left_level == 0 && right_level == 0) {
7923 			up_read(&fs_info->commit_root_sem);
7924 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7925 			if (cmp < 0) {
7926 				ret = changed_cb(left_path, right_path,
7927 						&left_key,
7928 						BTRFS_COMPARE_TREE_NEW,
7929 						sctx);
7930 				advance_left = ADVANCE;
7931 			} else if (cmp > 0) {
7932 				ret = changed_cb(left_path, right_path,
7933 						&right_key,
7934 						BTRFS_COMPARE_TREE_DELETED,
7935 						sctx);
7936 				advance_right = ADVANCE;
7937 			} else {
7938 				enum btrfs_compare_tree_result result;
7939 
7940 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7941 				ret = tree_compare_item(left_path, right_path,
7942 							tmp_buf);
7943 				if (ret)
7944 					result = BTRFS_COMPARE_TREE_CHANGED;
7945 				else
7946 					result = BTRFS_COMPARE_TREE_SAME;
7947 				ret = changed_cb(left_path, right_path,
7948 						 &left_key, result, sctx);
7949 				advance_left = ADVANCE;
7950 				advance_right = ADVANCE;
7951 			}
7952 
7953 			if (ret < 0)
7954 				goto out;
7955 			down_read(&fs_info->commit_root_sem);
7956 		} else if (left_level == right_level) {
7957 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7958 			if (cmp < 0) {
7959 				advance_left = ADVANCE;
7960 			} else if (cmp > 0) {
7961 				advance_right = ADVANCE;
7962 			} else {
7963 				left_blockptr = btrfs_node_blockptr(
7964 						left_path->nodes[left_level],
7965 						left_path->slots[left_level]);
7966 				right_blockptr = btrfs_node_blockptr(
7967 						right_path->nodes[right_level],
7968 						right_path->slots[right_level]);
7969 				left_gen = btrfs_node_ptr_generation(
7970 						left_path->nodes[left_level],
7971 						left_path->slots[left_level]);
7972 				right_gen = btrfs_node_ptr_generation(
7973 						right_path->nodes[right_level],
7974 						right_path->slots[right_level]);
7975 				if (left_blockptr == right_blockptr &&
7976 				    left_gen == right_gen) {
7977 					/*
7978 					 * As we're on a shared block, don't
7979 					 * allow to go deeper.
7980 					 */
7981 					advance_left = ADVANCE_ONLY_NEXT;
7982 					advance_right = ADVANCE_ONLY_NEXT;
7983 				} else {
7984 					advance_left = ADVANCE;
7985 					advance_right = ADVANCE;
7986 				}
7987 			}
7988 		} else if (left_level < right_level) {
7989 			advance_right = ADVANCE;
7990 		} else {
7991 			advance_left = ADVANCE;
7992 		}
7993 	}
7994 
7995 out_unlock:
7996 	up_read(&fs_info->commit_root_sem);
7997 out:
7998 	btrfs_free_path(left_path);
7999 	btrfs_free_path(right_path);
8000 	kvfree(tmp_buf);
8001 	return ret;
8002 }
8003 
send_subvol(struct send_ctx * sctx)8004 static int send_subvol(struct send_ctx *sctx)
8005 {
8006 	int ret;
8007 
8008 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
8009 		ret = send_header(sctx);
8010 		if (ret < 0)
8011 			goto out;
8012 	}
8013 
8014 	ret = send_subvol_begin(sctx);
8015 	if (ret < 0)
8016 		goto out;
8017 
8018 	if (sctx->parent_root) {
8019 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
8020 		if (ret < 0)
8021 			goto out;
8022 		ret = finish_inode_if_needed(sctx, 1);
8023 		if (ret < 0)
8024 			goto out;
8025 	} else {
8026 		ret = full_send_tree(sctx);
8027 		if (ret < 0)
8028 			goto out;
8029 	}
8030 
8031 out:
8032 	free_recorded_refs(sctx);
8033 	return ret;
8034 }
8035 
8036 /*
8037  * If orphan cleanup did remove any orphans from a root, it means the tree
8038  * was modified and therefore the commit root is not the same as the current
8039  * root anymore. This is a problem, because send uses the commit root and
8040  * therefore can see inode items that don't exist in the current root anymore,
8041  * and for example make calls to btrfs_iget, which will do tree lookups based
8042  * on the current root and not on the commit root. Those lookups will fail,
8043  * returning a -ESTALE error, and making send fail with that error. So make
8044  * sure a send does not see any orphans we have just removed, and that it will
8045  * see the same inodes regardless of whether a transaction commit happened
8046  * before it started (meaning that the commit root will be the same as the
8047  * current root) or not.
8048  */
ensure_commit_roots_uptodate(struct send_ctx * sctx)8049 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
8050 {
8051 	int i;
8052 	struct btrfs_trans_handle *trans = NULL;
8053 
8054 again:
8055 	if (sctx->parent_root &&
8056 	    sctx->parent_root->node != sctx->parent_root->commit_root)
8057 		goto commit_trans;
8058 
8059 	for (i = 0; i < sctx->clone_roots_cnt; i++)
8060 		if (sctx->clone_roots[i].root->node !=
8061 		    sctx->clone_roots[i].root->commit_root)
8062 			goto commit_trans;
8063 
8064 	if (trans)
8065 		return btrfs_end_transaction(trans);
8066 
8067 	return 0;
8068 
8069 commit_trans:
8070 	/* Use any root, all fs roots will get their commit roots updated. */
8071 	if (!trans) {
8072 		trans = btrfs_join_transaction(sctx->send_root);
8073 		if (IS_ERR(trans))
8074 			return PTR_ERR(trans);
8075 		goto again;
8076 	}
8077 
8078 	return btrfs_commit_transaction(trans);
8079 }
8080 
8081 /*
8082  * Make sure any existing dellaloc is flushed for any root used by a send
8083  * operation so that we do not miss any data and we do not race with writeback
8084  * finishing and changing a tree while send is using the tree. This could
8085  * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
8086  * a send operation then uses the subvolume.
8087  * After flushing delalloc ensure_commit_roots_uptodate() must be called.
8088  */
flush_delalloc_roots(struct send_ctx * sctx)8089 static int flush_delalloc_roots(struct send_ctx *sctx)
8090 {
8091 	struct btrfs_root *root = sctx->parent_root;
8092 	int ret;
8093 	int i;
8094 
8095 	if (root) {
8096 		ret = btrfs_start_delalloc_snapshot(root, false);
8097 		if (ret)
8098 			return ret;
8099 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
8100 	}
8101 
8102 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
8103 		root = sctx->clone_roots[i].root;
8104 		ret = btrfs_start_delalloc_snapshot(root, false);
8105 		if (ret)
8106 			return ret;
8107 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
8108 	}
8109 
8110 	return 0;
8111 }
8112 
btrfs_root_dec_send_in_progress(struct btrfs_root * root)8113 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8114 {
8115 	spin_lock(&root->root_item_lock);
8116 	root->send_in_progress--;
8117 	/*
8118 	 * Not much left to do, we don't know why it's unbalanced and
8119 	 * can't blindly reset it to 0.
8120 	 */
8121 	if (root->send_in_progress < 0)
8122 		btrfs_err(root->fs_info,
8123 			  "send_in_progress unbalanced %d root %llu",
8124 			  root->send_in_progress, root->root_key.objectid);
8125 	spin_unlock(&root->root_item_lock);
8126 }
8127 
dedupe_in_progress_warn(const struct btrfs_root * root)8128 static void dedupe_in_progress_warn(const struct btrfs_root *root)
8129 {
8130 	btrfs_warn_rl(root->fs_info,
8131 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8132 		      root->root_key.objectid, root->dedupe_in_progress);
8133 }
8134 
btrfs_ioctl_send(struct inode * inode,struct btrfs_ioctl_send_args * arg)8135 long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg)
8136 {
8137 	int ret = 0;
8138 	struct btrfs_root *send_root = BTRFS_I(inode)->root;
8139 	struct btrfs_fs_info *fs_info = send_root->fs_info;
8140 	struct btrfs_root *clone_root;
8141 	struct send_ctx *sctx = NULL;
8142 	u32 i;
8143 	u64 *clone_sources_tmp = NULL;
8144 	int clone_sources_to_rollback = 0;
8145 	size_t alloc_size;
8146 	int sort_clone_roots = 0;
8147 	struct btrfs_lru_cache_entry *entry;
8148 	struct btrfs_lru_cache_entry *tmp;
8149 
8150 	if (!capable(CAP_SYS_ADMIN))
8151 		return -EPERM;
8152 
8153 	/*
8154 	 * The subvolume must remain read-only during send, protect against
8155 	 * making it RW. This also protects against deletion.
8156 	 */
8157 	spin_lock(&send_root->root_item_lock);
8158 	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
8159 		dedupe_in_progress_warn(send_root);
8160 		spin_unlock(&send_root->root_item_lock);
8161 		return -EAGAIN;
8162 	}
8163 	send_root->send_in_progress++;
8164 	spin_unlock(&send_root->root_item_lock);
8165 
8166 	/*
8167 	 * Userspace tools do the checks and warn the user if it's
8168 	 * not RO.
8169 	 */
8170 	if (!btrfs_root_readonly(send_root)) {
8171 		ret = -EPERM;
8172 		goto out;
8173 	}
8174 
8175 	/*
8176 	 * Check that we don't overflow at later allocations, we request
8177 	 * clone_sources_count + 1 items, and compare to unsigned long inside
8178 	 * access_ok. Also set an upper limit for allocation size so this can't
8179 	 * easily exhaust memory. Max number of clone sources is about 200K.
8180 	 */
8181 	if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8182 		ret = -EINVAL;
8183 		goto out;
8184 	}
8185 
8186 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8187 		ret = -EOPNOTSUPP;
8188 		goto out;
8189 	}
8190 
8191 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8192 	if (!sctx) {
8193 		ret = -ENOMEM;
8194 		goto out;
8195 	}
8196 
8197 	INIT_LIST_HEAD(&sctx->new_refs);
8198 	INIT_LIST_HEAD(&sctx->deleted_refs);
8199 
8200 	btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE);
8201 	btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE);
8202 	btrfs_lru_cache_init(&sctx->dir_created_cache,
8203 			     SEND_MAX_DIR_CREATED_CACHE_SIZE);
8204 	/*
8205 	 * This cache is periodically trimmed to a fixed size elsewhere, see
8206 	 * cache_dir_utimes() and trim_dir_utimes_cache().
8207 	 */
8208 	btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0);
8209 
8210 	sctx->pending_dir_moves = RB_ROOT;
8211 	sctx->waiting_dir_moves = RB_ROOT;
8212 	sctx->orphan_dirs = RB_ROOT;
8213 	sctx->rbtree_new_refs = RB_ROOT;
8214 	sctx->rbtree_deleted_refs = RB_ROOT;
8215 
8216 	sctx->flags = arg->flags;
8217 
8218 	if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8219 		if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8220 			ret = -EPROTO;
8221 			goto out;
8222 		}
8223 		/* Zero means "use the highest version" */
8224 		sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8225 	} else {
8226 		sctx->proto = 1;
8227 	}
8228 	if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8229 		ret = -EINVAL;
8230 		goto out;
8231 	}
8232 
8233 	sctx->send_filp = fget(arg->send_fd);
8234 	if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) {
8235 		ret = -EBADF;
8236 		goto out;
8237 	}
8238 
8239 	sctx->send_root = send_root;
8240 	/*
8241 	 * Unlikely but possible, if the subvolume is marked for deletion but
8242 	 * is slow to remove the directory entry, send can still be started
8243 	 */
8244 	if (btrfs_root_dead(sctx->send_root)) {
8245 		ret = -EPERM;
8246 		goto out;
8247 	}
8248 
8249 	sctx->clone_roots_cnt = arg->clone_sources_count;
8250 
8251 	if (sctx->proto >= 2) {
8252 		u32 send_buf_num_pages;
8253 
8254 		sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8255 		sctx->send_buf = vmalloc(sctx->send_max_size);
8256 		if (!sctx->send_buf) {
8257 			ret = -ENOMEM;
8258 			goto out;
8259 		}
8260 		send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8261 		sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8262 					       sizeof(*sctx->send_buf_pages),
8263 					       GFP_KERNEL);
8264 		if (!sctx->send_buf_pages) {
8265 			ret = -ENOMEM;
8266 			goto out;
8267 		}
8268 		for (i = 0; i < send_buf_num_pages; i++) {
8269 			sctx->send_buf_pages[i] =
8270 				vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8271 		}
8272 	} else {
8273 		sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8274 		sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8275 	}
8276 	if (!sctx->send_buf) {
8277 		ret = -ENOMEM;
8278 		goto out;
8279 	}
8280 
8281 	sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1,
8282 				     sizeof(*sctx->clone_roots),
8283 				     GFP_KERNEL);
8284 	if (!sctx->clone_roots) {
8285 		ret = -ENOMEM;
8286 		goto out;
8287 	}
8288 
8289 	alloc_size = array_size(sizeof(*arg->clone_sources),
8290 				arg->clone_sources_count);
8291 
8292 	if (arg->clone_sources_count) {
8293 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8294 		if (!clone_sources_tmp) {
8295 			ret = -ENOMEM;
8296 			goto out;
8297 		}
8298 
8299 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8300 				alloc_size);
8301 		if (ret) {
8302 			ret = -EFAULT;
8303 			goto out;
8304 		}
8305 
8306 		for (i = 0; i < arg->clone_sources_count; i++) {
8307 			clone_root = btrfs_get_fs_root(fs_info,
8308 						clone_sources_tmp[i], true);
8309 			if (IS_ERR(clone_root)) {
8310 				ret = PTR_ERR(clone_root);
8311 				goto out;
8312 			}
8313 			spin_lock(&clone_root->root_item_lock);
8314 			if (!btrfs_root_readonly(clone_root) ||
8315 			    btrfs_root_dead(clone_root)) {
8316 				spin_unlock(&clone_root->root_item_lock);
8317 				btrfs_put_root(clone_root);
8318 				ret = -EPERM;
8319 				goto out;
8320 			}
8321 			if (clone_root->dedupe_in_progress) {
8322 				dedupe_in_progress_warn(clone_root);
8323 				spin_unlock(&clone_root->root_item_lock);
8324 				btrfs_put_root(clone_root);
8325 				ret = -EAGAIN;
8326 				goto out;
8327 			}
8328 			clone_root->send_in_progress++;
8329 			spin_unlock(&clone_root->root_item_lock);
8330 
8331 			sctx->clone_roots[i].root = clone_root;
8332 			clone_sources_to_rollback = i + 1;
8333 		}
8334 		kvfree(clone_sources_tmp);
8335 		clone_sources_tmp = NULL;
8336 	}
8337 
8338 	if (arg->parent_root) {
8339 		sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8340 						      true);
8341 		if (IS_ERR(sctx->parent_root)) {
8342 			ret = PTR_ERR(sctx->parent_root);
8343 			goto out;
8344 		}
8345 
8346 		spin_lock(&sctx->parent_root->root_item_lock);
8347 		sctx->parent_root->send_in_progress++;
8348 		if (!btrfs_root_readonly(sctx->parent_root) ||
8349 				btrfs_root_dead(sctx->parent_root)) {
8350 			spin_unlock(&sctx->parent_root->root_item_lock);
8351 			ret = -EPERM;
8352 			goto out;
8353 		}
8354 		if (sctx->parent_root->dedupe_in_progress) {
8355 			dedupe_in_progress_warn(sctx->parent_root);
8356 			spin_unlock(&sctx->parent_root->root_item_lock);
8357 			ret = -EAGAIN;
8358 			goto out;
8359 		}
8360 		spin_unlock(&sctx->parent_root->root_item_lock);
8361 	}
8362 
8363 	/*
8364 	 * Clones from send_root are allowed, but only if the clone source
8365 	 * is behind the current send position. This is checked while searching
8366 	 * for possible clone sources.
8367 	 */
8368 	sctx->clone_roots[sctx->clone_roots_cnt++].root =
8369 		btrfs_grab_root(sctx->send_root);
8370 
8371 	/* We do a bsearch later */
8372 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
8373 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8374 			NULL);
8375 	sort_clone_roots = 1;
8376 
8377 	ret = flush_delalloc_roots(sctx);
8378 	if (ret)
8379 		goto out;
8380 
8381 	ret = ensure_commit_roots_uptodate(sctx);
8382 	if (ret)
8383 		goto out;
8384 
8385 	ret = send_subvol(sctx);
8386 	if (ret < 0)
8387 		goto out;
8388 
8389 	btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) {
8390 		ret = send_utimes(sctx, entry->key, entry->gen);
8391 		if (ret < 0)
8392 			goto out;
8393 		btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry);
8394 	}
8395 
8396 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8397 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8398 		if (ret < 0)
8399 			goto out;
8400 		ret = send_cmd(sctx);
8401 		if (ret < 0)
8402 			goto out;
8403 	}
8404 
8405 out:
8406 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8407 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8408 		struct rb_node *n;
8409 		struct pending_dir_move *pm;
8410 
8411 		n = rb_first(&sctx->pending_dir_moves);
8412 		pm = rb_entry(n, struct pending_dir_move, node);
8413 		while (!list_empty(&pm->list)) {
8414 			struct pending_dir_move *pm2;
8415 
8416 			pm2 = list_first_entry(&pm->list,
8417 					       struct pending_dir_move, list);
8418 			free_pending_move(sctx, pm2);
8419 		}
8420 		free_pending_move(sctx, pm);
8421 	}
8422 
8423 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8424 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8425 		struct rb_node *n;
8426 		struct waiting_dir_move *dm;
8427 
8428 		n = rb_first(&sctx->waiting_dir_moves);
8429 		dm = rb_entry(n, struct waiting_dir_move, node);
8430 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
8431 		kfree(dm);
8432 	}
8433 
8434 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8435 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8436 		struct rb_node *n;
8437 		struct orphan_dir_info *odi;
8438 
8439 		n = rb_first(&sctx->orphan_dirs);
8440 		odi = rb_entry(n, struct orphan_dir_info, node);
8441 		free_orphan_dir_info(sctx, odi);
8442 	}
8443 
8444 	if (sort_clone_roots) {
8445 		for (i = 0; i < sctx->clone_roots_cnt; i++) {
8446 			btrfs_root_dec_send_in_progress(
8447 					sctx->clone_roots[i].root);
8448 			btrfs_put_root(sctx->clone_roots[i].root);
8449 		}
8450 	} else {
8451 		for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8452 			btrfs_root_dec_send_in_progress(
8453 					sctx->clone_roots[i].root);
8454 			btrfs_put_root(sctx->clone_roots[i].root);
8455 		}
8456 
8457 		btrfs_root_dec_send_in_progress(send_root);
8458 	}
8459 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8460 		btrfs_root_dec_send_in_progress(sctx->parent_root);
8461 		btrfs_put_root(sctx->parent_root);
8462 	}
8463 
8464 	kvfree(clone_sources_tmp);
8465 
8466 	if (sctx) {
8467 		if (sctx->send_filp)
8468 			fput(sctx->send_filp);
8469 
8470 		kvfree(sctx->clone_roots);
8471 		kfree(sctx->send_buf_pages);
8472 		kvfree(sctx->send_buf);
8473 		kvfree(sctx->verity_descriptor);
8474 
8475 		close_current_inode(sctx);
8476 
8477 		btrfs_lru_cache_clear(&sctx->name_cache);
8478 		btrfs_lru_cache_clear(&sctx->backref_cache);
8479 		btrfs_lru_cache_clear(&sctx->dir_created_cache);
8480 		btrfs_lru_cache_clear(&sctx->dir_utimes_cache);
8481 
8482 		kfree(sctx);
8483 	}
8484 
8485 	return ret;
8486 }
8487