1 /*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/spinlock.h>
32 #include <linux/mii.h>
33 #include <linux/ethtool.h>
34 #include <linux/bitops.h>
35 #include <linux/fs.h>
36 #include <linux/platform_device.h>
37 #include <linux/phy.h>
38 #include <linux/of.h>
39 #include <linux/of_mdio.h>
40 #include <linux/of_platform.h>
41 #include <linux/of_gpio.h>
42 #include <linux/of_net.h>
43 #include <linux/pgtable.h>
44
45 #include <linux/vmalloc.h>
46 #include <asm/irq.h>
47 #include <linux/uaccess.h>
48
49 #include "fs_enet.h"
50
51 /*************************************************/
52
53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
54 MODULE_DESCRIPTION("Freescale Ethernet Driver");
55 MODULE_LICENSE("GPL");
56
57 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
58 module_param(fs_enet_debug, int, 0);
59 MODULE_PARM_DESC(fs_enet_debug,
60 "Freescale bitmapped debugging message enable value");
61
62 #define RX_RING_SIZE 32
63 #define TX_RING_SIZE 64
64
65 #ifdef CONFIG_NET_POLL_CONTROLLER
66 static void fs_enet_netpoll(struct net_device *dev);
67 #endif
68
fs_set_multicast_list(struct net_device * dev)69 static void fs_set_multicast_list(struct net_device *dev)
70 {
71 struct fs_enet_private *fep = netdev_priv(dev);
72
73 (*fep->ops->set_multicast_list)(dev);
74 }
75
skb_align(struct sk_buff * skb,int align)76 static void skb_align(struct sk_buff *skb, int align)
77 {
78 int off = ((unsigned long)skb->data) & (align - 1);
79
80 if (off)
81 skb_reserve(skb, align - off);
82 }
83
84 /* NAPI function */
fs_enet_napi(struct napi_struct * napi,int budget)85 static int fs_enet_napi(struct napi_struct *napi, int budget)
86 {
87 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
88 struct net_device *dev = fep->ndev;
89 const struct fs_platform_info *fpi = fep->fpi;
90 cbd_t __iomem *bdp;
91 struct sk_buff *skb, *skbn;
92 int received = 0;
93 u16 pkt_len, sc;
94 int curidx;
95 int dirtyidx, do_wake, do_restart;
96 int tx_left = TX_RING_SIZE;
97
98 spin_lock(&fep->tx_lock);
99 bdp = fep->dirty_tx;
100
101 /* clear status bits for napi*/
102 (*fep->ops->napi_clear_event)(dev);
103
104 do_wake = do_restart = 0;
105 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
106 dirtyidx = bdp - fep->tx_bd_base;
107
108 if (fep->tx_free == fep->tx_ring)
109 break;
110
111 skb = fep->tx_skbuff[dirtyidx];
112
113 /*
114 * Check for errors.
115 */
116 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
117 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
118
119 if (sc & BD_ENET_TX_HB) /* No heartbeat */
120 dev->stats.tx_heartbeat_errors++;
121 if (sc & BD_ENET_TX_LC) /* Late collision */
122 dev->stats.tx_window_errors++;
123 if (sc & BD_ENET_TX_RL) /* Retrans limit */
124 dev->stats.tx_aborted_errors++;
125 if (sc & BD_ENET_TX_UN) /* Underrun */
126 dev->stats.tx_fifo_errors++;
127 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
128 dev->stats.tx_carrier_errors++;
129
130 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
131 dev->stats.tx_errors++;
132 do_restart = 1;
133 }
134 } else
135 dev->stats.tx_packets++;
136
137 if (sc & BD_ENET_TX_READY) {
138 dev_warn(fep->dev,
139 "HEY! Enet xmit interrupt and TX_READY.\n");
140 }
141
142 /*
143 * Deferred means some collisions occurred during transmit,
144 * but we eventually sent the packet OK.
145 */
146 if (sc & BD_ENET_TX_DEF)
147 dev->stats.collisions++;
148
149 /* unmap */
150 if (fep->mapped_as_page[dirtyidx])
151 dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
152 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
153 else
154 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
155 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
156
157 /*
158 * Free the sk buffer associated with this last transmit.
159 */
160 if (skb) {
161 dev_kfree_skb(skb);
162 fep->tx_skbuff[dirtyidx] = NULL;
163 }
164
165 /*
166 * Update pointer to next buffer descriptor to be transmitted.
167 */
168 if ((sc & BD_ENET_TX_WRAP) == 0)
169 bdp++;
170 else
171 bdp = fep->tx_bd_base;
172
173 /*
174 * Since we have freed up a buffer, the ring is no longer
175 * full.
176 */
177 if (++fep->tx_free == MAX_SKB_FRAGS)
178 do_wake = 1;
179 tx_left--;
180 }
181
182 fep->dirty_tx = bdp;
183
184 if (do_restart)
185 (*fep->ops->tx_restart)(dev);
186
187 spin_unlock(&fep->tx_lock);
188
189 if (do_wake)
190 netif_wake_queue(dev);
191
192 /*
193 * First, grab all of the stats for the incoming packet.
194 * These get messed up if we get called due to a busy condition.
195 */
196 bdp = fep->cur_rx;
197
198 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
199 received < budget) {
200 curidx = bdp - fep->rx_bd_base;
201
202 /*
203 * Since we have allocated space to hold a complete frame,
204 * the last indicator should be set.
205 */
206 if ((sc & BD_ENET_RX_LAST) == 0)
207 dev_warn(fep->dev, "rcv is not +last\n");
208
209 /*
210 * Check for errors.
211 */
212 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
213 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
214 dev->stats.rx_errors++;
215 /* Frame too long or too short. */
216 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
217 dev->stats.rx_length_errors++;
218 /* Frame alignment */
219 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
220 dev->stats.rx_frame_errors++;
221 /* CRC Error */
222 if (sc & BD_ENET_RX_CR)
223 dev->stats.rx_crc_errors++;
224 /* FIFO overrun */
225 if (sc & BD_ENET_RX_OV)
226 dev->stats.rx_crc_errors++;
227
228 skbn = fep->rx_skbuff[curidx];
229 } else {
230 skb = fep->rx_skbuff[curidx];
231
232 /*
233 * Process the incoming frame.
234 */
235 dev->stats.rx_packets++;
236 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
237 dev->stats.rx_bytes += pkt_len + 4;
238
239 if (pkt_len <= fpi->rx_copybreak) {
240 /* +2 to make IP header L1 cache aligned */
241 skbn = netdev_alloc_skb(dev, pkt_len + 2);
242 if (skbn != NULL) {
243 skb_reserve(skbn, 2); /* align IP header */
244 skb_copy_from_linear_data(skb,
245 skbn->data, pkt_len);
246 swap(skb, skbn);
247 dma_sync_single_for_cpu(fep->dev,
248 CBDR_BUFADDR(bdp),
249 L1_CACHE_ALIGN(pkt_len),
250 DMA_FROM_DEVICE);
251 }
252 } else {
253 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
254
255 if (skbn) {
256 dma_addr_t dma;
257
258 skb_align(skbn, ENET_RX_ALIGN);
259
260 dma_unmap_single(fep->dev,
261 CBDR_BUFADDR(bdp),
262 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
263 DMA_FROM_DEVICE);
264
265 dma = dma_map_single(fep->dev,
266 skbn->data,
267 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
268 DMA_FROM_DEVICE);
269 CBDW_BUFADDR(bdp, dma);
270 }
271 }
272
273 if (skbn != NULL) {
274 skb_put(skb, pkt_len); /* Make room */
275 skb->protocol = eth_type_trans(skb, dev);
276 received++;
277 netif_receive_skb(skb);
278 } else {
279 dev->stats.rx_dropped++;
280 skbn = skb;
281 }
282 }
283
284 fep->rx_skbuff[curidx] = skbn;
285 CBDW_DATLEN(bdp, 0);
286 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
287
288 /*
289 * Update BD pointer to next entry.
290 */
291 if ((sc & BD_ENET_RX_WRAP) == 0)
292 bdp++;
293 else
294 bdp = fep->rx_bd_base;
295
296 (*fep->ops->rx_bd_done)(dev);
297 }
298
299 fep->cur_rx = bdp;
300
301 if (received < budget && tx_left) {
302 /* done */
303 napi_complete_done(napi, received);
304 (*fep->ops->napi_enable)(dev);
305
306 return received;
307 }
308
309 return budget;
310 }
311
312 /*
313 * The interrupt handler.
314 * This is called from the MPC core interrupt.
315 */
316 static irqreturn_t
fs_enet_interrupt(int irq,void * dev_id)317 fs_enet_interrupt(int irq, void *dev_id)
318 {
319 struct net_device *dev = dev_id;
320 struct fs_enet_private *fep;
321 u32 int_events;
322 u32 int_clr_events;
323 int nr, napi_ok;
324 int handled;
325
326 fep = netdev_priv(dev);
327
328 nr = 0;
329 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
330 nr++;
331
332 int_clr_events = int_events;
333 int_clr_events &= ~fep->ev_napi;
334
335 (*fep->ops->clear_int_events)(dev, int_clr_events);
336
337 if (int_events & fep->ev_err)
338 (*fep->ops->ev_error)(dev, int_events);
339
340 if (int_events & fep->ev) {
341 napi_ok = napi_schedule_prep(&fep->napi);
342
343 (*fep->ops->napi_disable)(dev);
344 (*fep->ops->clear_int_events)(dev, fep->ev_napi);
345
346 /* NOTE: it is possible for FCCs in NAPI mode */
347 /* to submit a spurious interrupt while in poll */
348 if (napi_ok)
349 __napi_schedule(&fep->napi);
350 }
351
352 }
353
354 handled = nr > 0;
355 return IRQ_RETVAL(handled);
356 }
357
fs_init_bds(struct net_device * dev)358 void fs_init_bds(struct net_device *dev)
359 {
360 struct fs_enet_private *fep = netdev_priv(dev);
361 cbd_t __iomem *bdp;
362 struct sk_buff *skb;
363 int i;
364
365 fs_cleanup_bds(dev);
366
367 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
368 fep->tx_free = fep->tx_ring;
369 fep->cur_rx = fep->rx_bd_base;
370
371 /*
372 * Initialize the receive buffer descriptors.
373 */
374 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
375 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
376 if (skb == NULL)
377 break;
378
379 skb_align(skb, ENET_RX_ALIGN);
380 fep->rx_skbuff[i] = skb;
381 CBDW_BUFADDR(bdp,
382 dma_map_single(fep->dev, skb->data,
383 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
384 DMA_FROM_DEVICE));
385 CBDW_DATLEN(bdp, 0); /* zero */
386 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
387 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
388 }
389 /*
390 * if we failed, fillup remainder
391 */
392 for (; i < fep->rx_ring; i++, bdp++) {
393 fep->rx_skbuff[i] = NULL;
394 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
395 }
396
397 /*
398 * ...and the same for transmit.
399 */
400 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
401 fep->tx_skbuff[i] = NULL;
402 CBDW_BUFADDR(bdp, 0);
403 CBDW_DATLEN(bdp, 0);
404 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
405 }
406 }
407
fs_cleanup_bds(struct net_device * dev)408 void fs_cleanup_bds(struct net_device *dev)
409 {
410 struct fs_enet_private *fep = netdev_priv(dev);
411 struct sk_buff *skb;
412 cbd_t __iomem *bdp;
413 int i;
414
415 /*
416 * Reset SKB transmit buffers.
417 */
418 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
419 if ((skb = fep->tx_skbuff[i]) == NULL)
420 continue;
421
422 /* unmap */
423 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
424 skb->len, DMA_TO_DEVICE);
425
426 fep->tx_skbuff[i] = NULL;
427 dev_kfree_skb(skb);
428 }
429
430 /*
431 * Reset SKB receive buffers
432 */
433 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
434 if ((skb = fep->rx_skbuff[i]) == NULL)
435 continue;
436
437 /* unmap */
438 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
439 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
440 DMA_FROM_DEVICE);
441
442 fep->rx_skbuff[i] = NULL;
443
444 dev_kfree_skb(skb);
445 }
446 }
447
448 /**********************************************************************************/
449
450 #ifdef CONFIG_FS_ENET_MPC5121_FEC
451 /*
452 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
453 */
tx_skb_align_workaround(struct net_device * dev,struct sk_buff * skb)454 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
455 struct sk_buff *skb)
456 {
457 struct sk_buff *new_skb;
458
459 if (skb_linearize(skb))
460 return NULL;
461
462 /* Alloc new skb */
463 new_skb = netdev_alloc_skb(dev, skb->len + 4);
464 if (!new_skb)
465 return NULL;
466
467 /* Make sure new skb is properly aligned */
468 skb_align(new_skb, 4);
469
470 /* Copy data to new skb ... */
471 skb_copy_from_linear_data(skb, new_skb->data, skb->len);
472 skb_put(new_skb, skb->len);
473
474 /* ... and free an old one */
475 dev_kfree_skb_any(skb);
476
477 return new_skb;
478 }
479 #endif
480
481 static netdev_tx_t
fs_enet_start_xmit(struct sk_buff * skb,struct net_device * dev)482 fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
483 {
484 struct fs_enet_private *fep = netdev_priv(dev);
485 cbd_t __iomem *bdp;
486 int curidx;
487 u16 sc;
488 int nr_frags;
489 skb_frag_t *frag;
490 int len;
491 #ifdef CONFIG_FS_ENET_MPC5121_FEC
492 int is_aligned = 1;
493 int i;
494
495 if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
496 is_aligned = 0;
497 } else {
498 nr_frags = skb_shinfo(skb)->nr_frags;
499 frag = skb_shinfo(skb)->frags;
500 for (i = 0; i < nr_frags; i++, frag++) {
501 if (!IS_ALIGNED(skb_frag_off(frag), 4)) {
502 is_aligned = 0;
503 break;
504 }
505 }
506 }
507
508 if (!is_aligned) {
509 skb = tx_skb_align_workaround(dev, skb);
510 if (!skb) {
511 /*
512 * We have lost packet due to memory allocation error
513 * in tx_skb_align_workaround(). Hopefully original
514 * skb is still valid, so try transmit it later.
515 */
516 return NETDEV_TX_BUSY;
517 }
518 }
519 #endif
520
521 spin_lock(&fep->tx_lock);
522
523 /*
524 * Fill in a Tx ring entry
525 */
526 bdp = fep->cur_tx;
527
528 nr_frags = skb_shinfo(skb)->nr_frags;
529 if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
530 netif_stop_queue(dev);
531 spin_unlock(&fep->tx_lock);
532
533 /*
534 * Ooops. All transmit buffers are full. Bail out.
535 * This should not happen, since the tx queue should be stopped.
536 */
537 dev_warn(fep->dev, "tx queue full!.\n");
538 return NETDEV_TX_BUSY;
539 }
540
541 curidx = bdp - fep->tx_bd_base;
542
543 len = skb->len;
544 dev->stats.tx_bytes += len;
545 if (nr_frags)
546 len -= skb->data_len;
547 fep->tx_free -= nr_frags + 1;
548 /*
549 * Push the data cache so the CPM does not get stale memory data.
550 */
551 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
552 skb->data, len, DMA_TO_DEVICE));
553 CBDW_DATLEN(bdp, len);
554
555 fep->mapped_as_page[curidx] = 0;
556 frag = skb_shinfo(skb)->frags;
557 while (nr_frags) {
558 CBDC_SC(bdp,
559 BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
560 BD_ENET_TX_TC);
561 CBDS_SC(bdp, BD_ENET_TX_READY);
562
563 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) {
564 bdp++;
565 curidx++;
566 } else {
567 bdp = fep->tx_bd_base;
568 curidx = 0;
569 }
570
571 len = skb_frag_size(frag);
572 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
573 DMA_TO_DEVICE));
574 CBDW_DATLEN(bdp, len);
575
576 fep->tx_skbuff[curidx] = NULL;
577 fep->mapped_as_page[curidx] = 1;
578
579 frag++;
580 nr_frags--;
581 }
582
583 /* Trigger transmission start */
584 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
585 BD_ENET_TX_LAST | BD_ENET_TX_TC;
586
587 /* note that while FEC does not have this bit
588 * it marks it as available for software use
589 * yay for hw reuse :) */
590 if (skb->len <= 60)
591 sc |= BD_ENET_TX_PAD;
592 CBDC_SC(bdp, BD_ENET_TX_STATS);
593 CBDS_SC(bdp, sc);
594
595 /* Save skb pointer. */
596 fep->tx_skbuff[curidx] = skb;
597
598 /* If this was the last BD in the ring, start at the beginning again. */
599 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
600 bdp++;
601 else
602 bdp = fep->tx_bd_base;
603 fep->cur_tx = bdp;
604
605 if (fep->tx_free < MAX_SKB_FRAGS)
606 netif_stop_queue(dev);
607
608 skb_tx_timestamp(skb);
609
610 (*fep->ops->tx_kickstart)(dev);
611
612 spin_unlock(&fep->tx_lock);
613
614 return NETDEV_TX_OK;
615 }
616
fs_timeout_work(struct work_struct * work)617 static void fs_timeout_work(struct work_struct *work)
618 {
619 struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
620 timeout_work);
621 struct net_device *dev = fep->ndev;
622 unsigned long flags;
623 int wake = 0;
624
625 dev->stats.tx_errors++;
626
627 spin_lock_irqsave(&fep->lock, flags);
628
629 if (dev->flags & IFF_UP) {
630 phy_stop(dev->phydev);
631 (*fep->ops->stop)(dev);
632 (*fep->ops->restart)(dev);
633 }
634
635 phy_start(dev->phydev);
636 wake = fep->tx_free >= MAX_SKB_FRAGS &&
637 !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
638 spin_unlock_irqrestore(&fep->lock, flags);
639
640 if (wake)
641 netif_wake_queue(dev);
642 }
643
fs_timeout(struct net_device * dev,unsigned int txqueue)644 static void fs_timeout(struct net_device *dev, unsigned int txqueue)
645 {
646 struct fs_enet_private *fep = netdev_priv(dev);
647
648 schedule_work(&fep->timeout_work);
649 }
650
651 /*-----------------------------------------------------------------------------
652 * generic link-change handler - should be sufficient for most cases
653 *-----------------------------------------------------------------------------*/
generic_adjust_link(struct net_device * dev)654 static void generic_adjust_link(struct net_device *dev)
655 {
656 struct fs_enet_private *fep = netdev_priv(dev);
657 struct phy_device *phydev = dev->phydev;
658 int new_state = 0;
659
660 if (phydev->link) {
661 /* adjust to duplex mode */
662 if (phydev->duplex != fep->oldduplex) {
663 new_state = 1;
664 fep->oldduplex = phydev->duplex;
665 }
666
667 if (phydev->speed != fep->oldspeed) {
668 new_state = 1;
669 fep->oldspeed = phydev->speed;
670 }
671
672 if (!fep->oldlink) {
673 new_state = 1;
674 fep->oldlink = 1;
675 }
676
677 if (new_state)
678 fep->ops->restart(dev);
679 } else if (fep->oldlink) {
680 new_state = 1;
681 fep->oldlink = 0;
682 fep->oldspeed = 0;
683 fep->oldduplex = -1;
684 }
685
686 if (new_state && netif_msg_link(fep))
687 phy_print_status(phydev);
688 }
689
690
fs_adjust_link(struct net_device * dev)691 static void fs_adjust_link(struct net_device *dev)
692 {
693 struct fs_enet_private *fep = netdev_priv(dev);
694 unsigned long flags;
695
696 spin_lock_irqsave(&fep->lock, flags);
697
698 if(fep->ops->adjust_link)
699 fep->ops->adjust_link(dev);
700 else
701 generic_adjust_link(dev);
702
703 spin_unlock_irqrestore(&fep->lock, flags);
704 }
705
fs_init_phy(struct net_device * dev)706 static int fs_init_phy(struct net_device *dev)
707 {
708 struct fs_enet_private *fep = netdev_priv(dev);
709 struct phy_device *phydev;
710 phy_interface_t iface;
711
712 fep->oldlink = 0;
713 fep->oldspeed = 0;
714 fep->oldduplex = -1;
715
716 iface = fep->fpi->use_rmii ?
717 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
718
719 phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
720 iface);
721 if (!phydev) {
722 dev_err(&dev->dev, "Could not attach to PHY\n");
723 return -ENODEV;
724 }
725
726 return 0;
727 }
728
fs_enet_open(struct net_device * dev)729 static int fs_enet_open(struct net_device *dev)
730 {
731 struct fs_enet_private *fep = netdev_priv(dev);
732 int r;
733 int err;
734
735 /* to initialize the fep->cur_rx,... */
736 /* not doing this, will cause a crash in fs_enet_napi */
737 fs_init_bds(fep->ndev);
738
739 napi_enable(&fep->napi);
740
741 /* Install our interrupt handler. */
742 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
743 "fs_enet-mac", dev);
744 if (r != 0) {
745 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
746 napi_disable(&fep->napi);
747 return -EINVAL;
748 }
749
750 err = fs_init_phy(dev);
751 if (err) {
752 free_irq(fep->interrupt, dev);
753 napi_disable(&fep->napi);
754 return err;
755 }
756 phy_start(dev->phydev);
757
758 netif_start_queue(dev);
759
760 return 0;
761 }
762
fs_enet_close(struct net_device * dev)763 static int fs_enet_close(struct net_device *dev)
764 {
765 struct fs_enet_private *fep = netdev_priv(dev);
766 unsigned long flags;
767
768 netif_stop_queue(dev);
769 netif_carrier_off(dev);
770 napi_disable(&fep->napi);
771 cancel_work_sync(&fep->timeout_work);
772 phy_stop(dev->phydev);
773
774 spin_lock_irqsave(&fep->lock, flags);
775 spin_lock(&fep->tx_lock);
776 (*fep->ops->stop)(dev);
777 spin_unlock(&fep->tx_lock);
778 spin_unlock_irqrestore(&fep->lock, flags);
779
780 /* release any irqs */
781 phy_disconnect(dev->phydev);
782 free_irq(fep->interrupt, dev);
783
784 return 0;
785 }
786
787 /*************************************************************************/
788
fs_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)789 static void fs_get_drvinfo(struct net_device *dev,
790 struct ethtool_drvinfo *info)
791 {
792 strscpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
793 }
794
fs_get_regs_len(struct net_device * dev)795 static int fs_get_regs_len(struct net_device *dev)
796 {
797 struct fs_enet_private *fep = netdev_priv(dev);
798
799 return (*fep->ops->get_regs_len)(dev);
800 }
801
fs_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * p)802 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
803 void *p)
804 {
805 struct fs_enet_private *fep = netdev_priv(dev);
806 unsigned long flags;
807 int r, len;
808
809 len = regs->len;
810
811 spin_lock_irqsave(&fep->lock, flags);
812 r = (*fep->ops->get_regs)(dev, p, &len);
813 spin_unlock_irqrestore(&fep->lock, flags);
814
815 if (r == 0)
816 regs->version = 0;
817 }
818
fs_get_msglevel(struct net_device * dev)819 static u32 fs_get_msglevel(struct net_device *dev)
820 {
821 struct fs_enet_private *fep = netdev_priv(dev);
822 return fep->msg_enable;
823 }
824
fs_set_msglevel(struct net_device * dev,u32 value)825 static void fs_set_msglevel(struct net_device *dev, u32 value)
826 {
827 struct fs_enet_private *fep = netdev_priv(dev);
828 fep->msg_enable = value;
829 }
830
fs_get_tunable(struct net_device * dev,const struct ethtool_tunable * tuna,void * data)831 static int fs_get_tunable(struct net_device *dev,
832 const struct ethtool_tunable *tuna, void *data)
833 {
834 struct fs_enet_private *fep = netdev_priv(dev);
835 struct fs_platform_info *fpi = fep->fpi;
836 int ret = 0;
837
838 switch (tuna->id) {
839 case ETHTOOL_RX_COPYBREAK:
840 *(u32 *)data = fpi->rx_copybreak;
841 break;
842 default:
843 ret = -EINVAL;
844 break;
845 }
846
847 return ret;
848 }
849
fs_set_tunable(struct net_device * dev,const struct ethtool_tunable * tuna,const void * data)850 static int fs_set_tunable(struct net_device *dev,
851 const struct ethtool_tunable *tuna, const void *data)
852 {
853 struct fs_enet_private *fep = netdev_priv(dev);
854 struct fs_platform_info *fpi = fep->fpi;
855 int ret = 0;
856
857 switch (tuna->id) {
858 case ETHTOOL_RX_COPYBREAK:
859 fpi->rx_copybreak = *(u32 *)data;
860 break;
861 default:
862 ret = -EINVAL;
863 break;
864 }
865
866 return ret;
867 }
868
869 static const struct ethtool_ops fs_ethtool_ops = {
870 .get_drvinfo = fs_get_drvinfo,
871 .get_regs_len = fs_get_regs_len,
872 .nway_reset = phy_ethtool_nway_reset,
873 .get_link = ethtool_op_get_link,
874 .get_msglevel = fs_get_msglevel,
875 .set_msglevel = fs_set_msglevel,
876 .get_regs = fs_get_regs,
877 .get_ts_info = ethtool_op_get_ts_info,
878 .get_link_ksettings = phy_ethtool_get_link_ksettings,
879 .set_link_ksettings = phy_ethtool_set_link_ksettings,
880 .get_tunable = fs_get_tunable,
881 .set_tunable = fs_set_tunable,
882 };
883
884 /**************************************************************************************/
885
886 #ifdef CONFIG_FS_ENET_HAS_FEC
887 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
888 #else
889 #define IS_FEC(match) 0
890 #endif
891
892 static const struct net_device_ops fs_enet_netdev_ops = {
893 .ndo_open = fs_enet_open,
894 .ndo_stop = fs_enet_close,
895 .ndo_start_xmit = fs_enet_start_xmit,
896 .ndo_tx_timeout = fs_timeout,
897 .ndo_set_rx_mode = fs_set_multicast_list,
898 .ndo_eth_ioctl = phy_do_ioctl_running,
899 .ndo_validate_addr = eth_validate_addr,
900 .ndo_set_mac_address = eth_mac_addr,
901 #ifdef CONFIG_NET_POLL_CONTROLLER
902 .ndo_poll_controller = fs_enet_netpoll,
903 #endif
904 };
905
906 static const struct of_device_id fs_enet_match[];
fs_enet_probe(struct platform_device * ofdev)907 static int fs_enet_probe(struct platform_device *ofdev)
908 {
909 const struct of_device_id *match;
910 struct net_device *ndev;
911 struct fs_enet_private *fep;
912 struct fs_platform_info *fpi;
913 const u32 *data;
914 struct clk *clk;
915 int err;
916 const char *phy_connection_type;
917 int privsize, len, ret = -ENODEV;
918
919 match = of_match_device(fs_enet_match, &ofdev->dev);
920 if (!match)
921 return -EINVAL;
922
923 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
924 if (!fpi)
925 return -ENOMEM;
926
927 if (!IS_FEC(match)) {
928 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
929 if (!data || len != 4)
930 goto out_free_fpi;
931
932 fpi->cp_command = *data;
933 }
934
935 fpi->rx_ring = RX_RING_SIZE;
936 fpi->tx_ring = TX_RING_SIZE;
937 fpi->rx_copybreak = 240;
938 fpi->napi_weight = 17;
939 fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
940 if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
941 err = of_phy_register_fixed_link(ofdev->dev.of_node);
942 if (err)
943 goto out_free_fpi;
944
945 /* In the case of a fixed PHY, the DT node associated
946 * to the PHY is the Ethernet MAC DT node.
947 */
948 fpi->phy_node = of_node_get(ofdev->dev.of_node);
949 }
950
951 if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
952 phy_connection_type = of_get_property(ofdev->dev.of_node,
953 "phy-connection-type", NULL);
954 if (phy_connection_type && !strcmp("rmii", phy_connection_type))
955 fpi->use_rmii = 1;
956 }
957
958 /* make clock lookup non-fatal (the driver is shared among platforms),
959 * but require enable to succeed when a clock was specified/found,
960 * keep a reference to the clock upon successful acquisition
961 */
962 clk = devm_clk_get(&ofdev->dev, "per");
963 if (!IS_ERR(clk)) {
964 ret = clk_prepare_enable(clk);
965 if (ret)
966 goto out_deregister_fixed_link;
967
968 fpi->clk_per = clk;
969 }
970
971 privsize = sizeof(*fep) +
972 sizeof(struct sk_buff **) *
973 (fpi->rx_ring + fpi->tx_ring) +
974 sizeof(char) * fpi->tx_ring;
975
976 ndev = alloc_etherdev(privsize);
977 if (!ndev) {
978 ret = -ENOMEM;
979 goto out_put;
980 }
981
982 SET_NETDEV_DEV(ndev, &ofdev->dev);
983 platform_set_drvdata(ofdev, ndev);
984
985 fep = netdev_priv(ndev);
986 fep->dev = &ofdev->dev;
987 fep->ndev = ndev;
988 fep->fpi = fpi;
989 fep->ops = match->data;
990
991 ret = fep->ops->setup_data(ndev);
992 if (ret)
993 goto out_free_dev;
994
995 fep->rx_skbuff = (struct sk_buff **)&fep[1];
996 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
997 fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
998 fpi->tx_ring);
999
1000 spin_lock_init(&fep->lock);
1001 spin_lock_init(&fep->tx_lock);
1002
1003 of_get_ethdev_address(ofdev->dev.of_node, ndev);
1004
1005 ret = fep->ops->allocate_bd(ndev);
1006 if (ret)
1007 goto out_cleanup_data;
1008
1009 fep->rx_bd_base = fep->ring_base;
1010 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1011
1012 fep->tx_ring = fpi->tx_ring;
1013 fep->rx_ring = fpi->rx_ring;
1014
1015 ndev->netdev_ops = &fs_enet_netdev_ops;
1016 ndev->watchdog_timeo = 2 * HZ;
1017 INIT_WORK(&fep->timeout_work, fs_timeout_work);
1018 netif_napi_add_weight(ndev, &fep->napi, fs_enet_napi,
1019 fpi->napi_weight);
1020
1021 ndev->ethtool_ops = &fs_ethtool_ops;
1022
1023 netif_carrier_off(ndev);
1024
1025 ndev->features |= NETIF_F_SG;
1026
1027 ret = register_netdev(ndev);
1028 if (ret)
1029 goto out_free_bd;
1030
1031 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1032
1033 return 0;
1034
1035 out_free_bd:
1036 fep->ops->free_bd(ndev);
1037 out_cleanup_data:
1038 fep->ops->cleanup_data(ndev);
1039 out_free_dev:
1040 free_netdev(ndev);
1041 out_put:
1042 clk_disable_unprepare(fpi->clk_per);
1043 out_deregister_fixed_link:
1044 of_node_put(fpi->phy_node);
1045 if (of_phy_is_fixed_link(ofdev->dev.of_node))
1046 of_phy_deregister_fixed_link(ofdev->dev.of_node);
1047 out_free_fpi:
1048 kfree(fpi);
1049 return ret;
1050 }
1051
fs_enet_remove(struct platform_device * ofdev)1052 static void fs_enet_remove(struct platform_device *ofdev)
1053 {
1054 struct net_device *ndev = platform_get_drvdata(ofdev);
1055 struct fs_enet_private *fep = netdev_priv(ndev);
1056
1057 unregister_netdev(ndev);
1058
1059 fep->ops->free_bd(ndev);
1060 fep->ops->cleanup_data(ndev);
1061 dev_set_drvdata(fep->dev, NULL);
1062 of_node_put(fep->fpi->phy_node);
1063 clk_disable_unprepare(fep->fpi->clk_per);
1064 if (of_phy_is_fixed_link(ofdev->dev.of_node))
1065 of_phy_deregister_fixed_link(ofdev->dev.of_node);
1066 free_netdev(ndev);
1067 }
1068
1069 static const struct of_device_id fs_enet_match[] = {
1070 #ifdef CONFIG_FS_ENET_HAS_SCC
1071 {
1072 .compatible = "fsl,cpm1-scc-enet",
1073 .data = (void *)&fs_scc_ops,
1074 },
1075 {
1076 .compatible = "fsl,cpm2-scc-enet",
1077 .data = (void *)&fs_scc_ops,
1078 },
1079 #endif
1080 #ifdef CONFIG_FS_ENET_HAS_FCC
1081 {
1082 .compatible = "fsl,cpm2-fcc-enet",
1083 .data = (void *)&fs_fcc_ops,
1084 },
1085 #endif
1086 #ifdef CONFIG_FS_ENET_HAS_FEC
1087 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1088 {
1089 .compatible = "fsl,mpc5121-fec",
1090 .data = (void *)&fs_fec_ops,
1091 },
1092 {
1093 .compatible = "fsl,mpc5125-fec",
1094 .data = (void *)&fs_fec_ops,
1095 },
1096 #else
1097 {
1098 .compatible = "fsl,pq1-fec-enet",
1099 .data = (void *)&fs_fec_ops,
1100 },
1101 #endif
1102 #endif
1103 {}
1104 };
1105 MODULE_DEVICE_TABLE(of, fs_enet_match);
1106
1107 static struct platform_driver fs_enet_driver = {
1108 .driver = {
1109 .name = "fs_enet",
1110 .of_match_table = fs_enet_match,
1111 },
1112 .probe = fs_enet_probe,
1113 .remove_new = fs_enet_remove,
1114 };
1115
1116 #ifdef CONFIG_NET_POLL_CONTROLLER
fs_enet_netpoll(struct net_device * dev)1117 static void fs_enet_netpoll(struct net_device *dev)
1118 {
1119 disable_irq(dev->irq);
1120 fs_enet_interrupt(dev->irq, dev);
1121 enable_irq(dev->irq);
1122 }
1123 #endif
1124
1125 module_platform_driver(fs_enet_driver);
1126