xref: /openbmc/linux/drivers/iio/gyro/mpu3050-core.c (revision 1ac731c529cd4d6adbce134754b51ff7d822b145)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * MPU3050 gyroscope driver
4   *
5   * Copyright (C) 2016 Linaro Ltd.
6   * Author: Linus Walleij <linus.walleij@linaro.org>
7   *
8   * Based on the input subsystem driver, Copyright (C) 2011 Wistron Co.Ltd
9   * Joseph Lai <joseph_lai@wistron.com> and trimmed down by
10   * Alan Cox <alan@linux.intel.com> in turn based on bma023.c.
11   * Device behaviour based on a misc driver posted by Nathan Royer in 2011.
12   *
13   * TODO: add support for setting up the low pass 3dB frequency.
14   */
15  
16  #include <linux/bitfield.h>
17  #include <linux/bitops.h>
18  #include <linux/delay.h>
19  #include <linux/err.h>
20  #include <linux/iio/buffer.h>
21  #include <linux/iio/iio.h>
22  #include <linux/iio/sysfs.h>
23  #include <linux/iio/trigger.h>
24  #include <linux/iio/trigger_consumer.h>
25  #include <linux/iio/triggered_buffer.h>
26  #include <linux/interrupt.h>
27  #include <linux/module.h>
28  #include <linux/pm_runtime.h>
29  #include <linux/property.h>
30  #include <linux/random.h>
31  #include <linux/slab.h>
32  
33  #include "mpu3050.h"
34  
35  #define MPU3050_CHIP_ID		0x68
36  #define MPU3050_CHIP_ID_MASK	0x7E
37  
38  /*
39   * Register map: anything suffixed *_H is a big-endian high byte and always
40   * followed by the corresponding low byte (*_L) even though these are not
41   * explicitly included in the register definitions.
42   */
43  #define MPU3050_CHIP_ID_REG	0x00
44  #define MPU3050_PRODUCT_ID_REG	0x01
45  #define MPU3050_XG_OFFS_TC	0x05
46  #define MPU3050_YG_OFFS_TC	0x08
47  #define MPU3050_ZG_OFFS_TC	0x0B
48  #define MPU3050_X_OFFS_USR_H	0x0C
49  #define MPU3050_Y_OFFS_USR_H	0x0E
50  #define MPU3050_Z_OFFS_USR_H	0x10
51  #define MPU3050_FIFO_EN		0x12
52  #define MPU3050_AUX_VDDIO	0x13
53  #define MPU3050_SLV_ADDR	0x14
54  #define MPU3050_SMPLRT_DIV	0x15
55  #define MPU3050_DLPF_FS_SYNC	0x16
56  #define MPU3050_INT_CFG		0x17
57  #define MPU3050_AUX_ADDR	0x18
58  #define MPU3050_INT_STATUS	0x1A
59  #define MPU3050_TEMP_H		0x1B
60  #define MPU3050_XOUT_H		0x1D
61  #define MPU3050_YOUT_H		0x1F
62  #define MPU3050_ZOUT_H		0x21
63  #define MPU3050_DMP_CFG1	0x35
64  #define MPU3050_DMP_CFG2	0x36
65  #define MPU3050_BANK_SEL	0x37
66  #define MPU3050_MEM_START_ADDR	0x38
67  #define MPU3050_MEM_R_W		0x39
68  #define MPU3050_FIFO_COUNT_H	0x3A
69  #define MPU3050_FIFO_R		0x3C
70  #define MPU3050_USR_CTRL	0x3D
71  #define MPU3050_PWR_MGM		0x3E
72  
73  /* MPU memory bank read options */
74  #define MPU3050_MEM_PRFTCH	BIT(5)
75  #define MPU3050_MEM_USER_BANK	BIT(4)
76  /* Bits 8-11 select memory bank */
77  #define MPU3050_MEM_RAM_BANK_0	0
78  #define MPU3050_MEM_RAM_BANK_1	1
79  #define MPU3050_MEM_RAM_BANK_2	2
80  #define MPU3050_MEM_RAM_BANK_3	3
81  #define MPU3050_MEM_OTP_BANK_0	4
82  
83  #define MPU3050_AXIS_REGS(axis) (MPU3050_XOUT_H + (axis * 2))
84  
85  /* Register bits */
86  
87  /* FIFO Enable */
88  #define MPU3050_FIFO_EN_FOOTER		BIT(0)
89  #define MPU3050_FIFO_EN_AUX_ZOUT	BIT(1)
90  #define MPU3050_FIFO_EN_AUX_YOUT	BIT(2)
91  #define MPU3050_FIFO_EN_AUX_XOUT	BIT(3)
92  #define MPU3050_FIFO_EN_GYRO_ZOUT	BIT(4)
93  #define MPU3050_FIFO_EN_GYRO_YOUT	BIT(5)
94  #define MPU3050_FIFO_EN_GYRO_XOUT	BIT(6)
95  #define MPU3050_FIFO_EN_TEMP_OUT	BIT(7)
96  
97  /*
98   * Digital Low Pass filter (DLPF)
99   * Full Scale (FS)
100   * and Synchronization
101   */
102  #define MPU3050_EXT_SYNC_NONE		0x00
103  #define MPU3050_EXT_SYNC_TEMP		0x20
104  #define MPU3050_EXT_SYNC_GYROX		0x40
105  #define MPU3050_EXT_SYNC_GYROY		0x60
106  #define MPU3050_EXT_SYNC_GYROZ		0x80
107  #define MPU3050_EXT_SYNC_ACCELX	0xA0
108  #define MPU3050_EXT_SYNC_ACCELY	0xC0
109  #define MPU3050_EXT_SYNC_ACCELZ	0xE0
110  #define MPU3050_EXT_SYNC_MASK		0xE0
111  #define MPU3050_EXT_SYNC_SHIFT		5
112  
113  #define MPU3050_FS_250DPS		0x00
114  #define MPU3050_FS_500DPS		0x08
115  #define MPU3050_FS_1000DPS		0x10
116  #define MPU3050_FS_2000DPS		0x18
117  #define MPU3050_FS_MASK			0x18
118  #define MPU3050_FS_SHIFT		3
119  
120  #define MPU3050_DLPF_CFG_256HZ_NOLPF2	0x00
121  #define MPU3050_DLPF_CFG_188HZ		0x01
122  #define MPU3050_DLPF_CFG_98HZ		0x02
123  #define MPU3050_DLPF_CFG_42HZ		0x03
124  #define MPU3050_DLPF_CFG_20HZ		0x04
125  #define MPU3050_DLPF_CFG_10HZ		0x05
126  #define MPU3050_DLPF_CFG_5HZ		0x06
127  #define MPU3050_DLPF_CFG_2100HZ_NOLPF	0x07
128  #define MPU3050_DLPF_CFG_MASK		0x07
129  #define MPU3050_DLPF_CFG_SHIFT		0
130  
131  /* Interrupt config */
132  #define MPU3050_INT_RAW_RDY_EN		BIT(0)
133  #define MPU3050_INT_DMP_DONE_EN		BIT(1)
134  #define MPU3050_INT_MPU_RDY_EN		BIT(2)
135  #define MPU3050_INT_ANYRD_2CLEAR	BIT(4)
136  #define MPU3050_INT_LATCH_EN		BIT(5)
137  #define MPU3050_INT_OPEN		BIT(6)
138  #define MPU3050_INT_ACTL		BIT(7)
139  /* Interrupt status */
140  #define MPU3050_INT_STATUS_RAW_RDY	BIT(0)
141  #define MPU3050_INT_STATUS_DMP_DONE	BIT(1)
142  #define MPU3050_INT_STATUS_MPU_RDY	BIT(2)
143  #define MPU3050_INT_STATUS_FIFO_OVFLW	BIT(7)
144  /* USR_CTRL */
145  #define MPU3050_USR_CTRL_FIFO_EN	BIT(6)
146  #define MPU3050_USR_CTRL_AUX_IF_EN	BIT(5)
147  #define MPU3050_USR_CTRL_AUX_IF_RST	BIT(3)
148  #define MPU3050_USR_CTRL_FIFO_RST	BIT(1)
149  #define MPU3050_USR_CTRL_GYRO_RST	BIT(0)
150  /* PWR_MGM */
151  #define MPU3050_PWR_MGM_PLL_X		0x01
152  #define MPU3050_PWR_MGM_PLL_Y		0x02
153  #define MPU3050_PWR_MGM_PLL_Z		0x03
154  #define MPU3050_PWR_MGM_CLKSEL_MASK	0x07
155  #define MPU3050_PWR_MGM_STBY_ZG		BIT(3)
156  #define MPU3050_PWR_MGM_STBY_YG		BIT(4)
157  #define MPU3050_PWR_MGM_STBY_XG		BIT(5)
158  #define MPU3050_PWR_MGM_SLEEP		BIT(6)
159  #define MPU3050_PWR_MGM_RESET		BIT(7)
160  #define MPU3050_PWR_MGM_MASK		0xff
161  
162  /*
163   * Fullscale precision is (for finest precision) +/- 250 deg/s, so the full
164   * scale is actually 500 deg/s. All 16 bits are then used to cover this scale,
165   * in two's complement.
166   */
167  static unsigned int mpu3050_fs_precision[] = {
168  	IIO_DEGREE_TO_RAD(250),
169  	IIO_DEGREE_TO_RAD(500),
170  	IIO_DEGREE_TO_RAD(1000),
171  	IIO_DEGREE_TO_RAD(2000)
172  };
173  
174  /*
175   * Regulator names
176   */
177  static const char mpu3050_reg_vdd[] = "vdd";
178  static const char mpu3050_reg_vlogic[] = "vlogic";
179  
mpu3050_get_freq(struct mpu3050 * mpu3050)180  static unsigned int mpu3050_get_freq(struct mpu3050 *mpu3050)
181  {
182  	unsigned int freq;
183  
184  	if (mpu3050->lpf == MPU3050_DLPF_CFG_256HZ_NOLPF2)
185  		freq = 8000;
186  	else
187  		freq = 1000;
188  	freq /= (mpu3050->divisor + 1);
189  
190  	return freq;
191  }
192  
mpu3050_start_sampling(struct mpu3050 * mpu3050)193  static int mpu3050_start_sampling(struct mpu3050 *mpu3050)
194  {
195  	__be16 raw_val[3];
196  	int ret;
197  	int i;
198  
199  	/* Reset */
200  	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
201  				 MPU3050_PWR_MGM_RESET, MPU3050_PWR_MGM_RESET);
202  	if (ret)
203  		return ret;
204  
205  	/* Turn on the Z-axis PLL */
206  	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
207  				 MPU3050_PWR_MGM_CLKSEL_MASK,
208  				 MPU3050_PWR_MGM_PLL_Z);
209  	if (ret)
210  		return ret;
211  
212  	/* Write calibration offset registers */
213  	for (i = 0; i < 3; i++)
214  		raw_val[i] = cpu_to_be16(mpu3050->calibration[i]);
215  
216  	ret = regmap_bulk_write(mpu3050->map, MPU3050_X_OFFS_USR_H, raw_val,
217  				sizeof(raw_val));
218  	if (ret)
219  		return ret;
220  
221  	/* Set low pass filter (sample rate), sync and full scale */
222  	ret = regmap_write(mpu3050->map, MPU3050_DLPF_FS_SYNC,
223  			   MPU3050_EXT_SYNC_NONE << MPU3050_EXT_SYNC_SHIFT |
224  			   mpu3050->fullscale << MPU3050_FS_SHIFT |
225  			   mpu3050->lpf << MPU3050_DLPF_CFG_SHIFT);
226  	if (ret)
227  		return ret;
228  
229  	/* Set up sampling frequency */
230  	ret = regmap_write(mpu3050->map, MPU3050_SMPLRT_DIV, mpu3050->divisor);
231  	if (ret)
232  		return ret;
233  
234  	/*
235  	 * Max 50 ms start-up time after setting DLPF_FS_SYNC
236  	 * according to the data sheet, then wait for the next sample
237  	 * at this frequency T = 1000/f ms.
238  	 */
239  	msleep(50 + 1000 / mpu3050_get_freq(mpu3050));
240  
241  	return 0;
242  }
243  
mpu3050_set_8khz_samplerate(struct mpu3050 * mpu3050)244  static int mpu3050_set_8khz_samplerate(struct mpu3050 *mpu3050)
245  {
246  	int ret;
247  	u8 divisor;
248  	enum mpu3050_lpf lpf;
249  
250  	lpf = mpu3050->lpf;
251  	divisor = mpu3050->divisor;
252  
253  	mpu3050->lpf = LPF_256_HZ_NOLPF; /* 8 kHz base frequency */
254  	mpu3050->divisor = 0; /* Divide by 1 */
255  	ret = mpu3050_start_sampling(mpu3050);
256  
257  	mpu3050->lpf = lpf;
258  	mpu3050->divisor = divisor;
259  
260  	return ret;
261  }
262  
mpu3050_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)263  static int mpu3050_read_raw(struct iio_dev *indio_dev,
264  			    struct iio_chan_spec const *chan,
265  			    int *val, int *val2,
266  			    long mask)
267  {
268  	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
269  	int ret;
270  	__be16 raw_val;
271  
272  	switch (mask) {
273  	case IIO_CHAN_INFO_OFFSET:
274  		switch (chan->type) {
275  		case IIO_TEMP:
276  			/*
277  			 * The temperature scaling is (x+23000)/280 Celsius
278  			 * for the "best fit straight line" temperature range
279  			 * of -30C..85C.  The 23000 includes room temperature
280  			 * offset of +35C, 280 is the precision scale and x is
281  			 * the 16-bit signed integer reported by hardware.
282  			 *
283  			 * Temperature value itself represents temperature of
284  			 * the sensor die.
285  			 */
286  			*val = 23000;
287  			return IIO_VAL_INT;
288  		default:
289  			return -EINVAL;
290  		}
291  	case IIO_CHAN_INFO_CALIBBIAS:
292  		switch (chan->type) {
293  		case IIO_ANGL_VEL:
294  			*val = mpu3050->calibration[chan->scan_index-1];
295  			return IIO_VAL_INT;
296  		default:
297  			return -EINVAL;
298  		}
299  	case IIO_CHAN_INFO_SAMP_FREQ:
300  		*val = mpu3050_get_freq(mpu3050);
301  		return IIO_VAL_INT;
302  	case IIO_CHAN_INFO_SCALE:
303  		switch (chan->type) {
304  		case IIO_TEMP:
305  			/* Millidegrees, see about temperature scaling above */
306  			*val = 1000;
307  			*val2 = 280;
308  			return IIO_VAL_FRACTIONAL;
309  		case IIO_ANGL_VEL:
310  			/*
311  			 * Convert to the corresponding full scale in
312  			 * radians. All 16 bits are used with sign to
313  			 * span the available scale: to account for the one
314  			 * missing value if we multiply by 1/S16_MAX, instead
315  			 * multiply with 2/U16_MAX.
316  			 */
317  			*val = mpu3050_fs_precision[mpu3050->fullscale] * 2;
318  			*val2 = U16_MAX;
319  			return IIO_VAL_FRACTIONAL;
320  		default:
321  			return -EINVAL;
322  		}
323  	case IIO_CHAN_INFO_RAW:
324  		/* Resume device */
325  		pm_runtime_get_sync(mpu3050->dev);
326  		mutex_lock(&mpu3050->lock);
327  
328  		ret = mpu3050_set_8khz_samplerate(mpu3050);
329  		if (ret)
330  			goto out_read_raw_unlock;
331  
332  		switch (chan->type) {
333  		case IIO_TEMP:
334  			ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H,
335  					       &raw_val, sizeof(raw_val));
336  			if (ret) {
337  				dev_err(mpu3050->dev,
338  					"error reading temperature\n");
339  				goto out_read_raw_unlock;
340  			}
341  
342  			*val = (s16)be16_to_cpu(raw_val);
343  			ret = IIO_VAL_INT;
344  
345  			goto out_read_raw_unlock;
346  		case IIO_ANGL_VEL:
347  			ret = regmap_bulk_read(mpu3050->map,
348  				       MPU3050_AXIS_REGS(chan->scan_index-1),
349  				       &raw_val,
350  				       sizeof(raw_val));
351  			if (ret) {
352  				dev_err(mpu3050->dev,
353  					"error reading axis data\n");
354  				goto out_read_raw_unlock;
355  			}
356  
357  			*val = be16_to_cpu(raw_val);
358  			ret = IIO_VAL_INT;
359  
360  			goto out_read_raw_unlock;
361  		default:
362  			ret = -EINVAL;
363  			goto out_read_raw_unlock;
364  		}
365  	default:
366  		break;
367  	}
368  
369  	return -EINVAL;
370  
371  out_read_raw_unlock:
372  	mutex_unlock(&mpu3050->lock);
373  	pm_runtime_mark_last_busy(mpu3050->dev);
374  	pm_runtime_put_autosuspend(mpu3050->dev);
375  
376  	return ret;
377  }
378  
mpu3050_write_raw(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int val,int val2,long mask)379  static int mpu3050_write_raw(struct iio_dev *indio_dev,
380  			     const struct iio_chan_spec *chan,
381  			     int val, int val2, long mask)
382  {
383  	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
384  	/*
385  	 * Couldn't figure out a way to precalculate these at compile time.
386  	 */
387  	unsigned int fs250 =
388  		DIV_ROUND_CLOSEST(mpu3050_fs_precision[0] * 1000000 * 2,
389  				  U16_MAX);
390  	unsigned int fs500 =
391  		DIV_ROUND_CLOSEST(mpu3050_fs_precision[1] * 1000000 * 2,
392  				  U16_MAX);
393  	unsigned int fs1000 =
394  		DIV_ROUND_CLOSEST(mpu3050_fs_precision[2] * 1000000 * 2,
395  				  U16_MAX);
396  	unsigned int fs2000 =
397  		DIV_ROUND_CLOSEST(mpu3050_fs_precision[3] * 1000000 * 2,
398  				  U16_MAX);
399  
400  	switch (mask) {
401  	case IIO_CHAN_INFO_CALIBBIAS:
402  		if (chan->type != IIO_ANGL_VEL)
403  			return -EINVAL;
404  		mpu3050->calibration[chan->scan_index-1] = val;
405  		return 0;
406  	case IIO_CHAN_INFO_SAMP_FREQ:
407  		/*
408  		 * The max samplerate is 8000 Hz, the minimum
409  		 * 1000 / 256 ~= 4 Hz
410  		 */
411  		if (val < 4 || val > 8000)
412  			return -EINVAL;
413  
414  		/*
415  		 * Above 1000 Hz we must turn off the digital low pass filter
416  		 * so we get a base frequency of 8kHz to the divider
417  		 */
418  		if (val > 1000) {
419  			mpu3050->lpf = LPF_256_HZ_NOLPF;
420  			mpu3050->divisor = DIV_ROUND_CLOSEST(8000, val) - 1;
421  			return 0;
422  		}
423  
424  		mpu3050->lpf = LPF_188_HZ;
425  		mpu3050->divisor = DIV_ROUND_CLOSEST(1000, val) - 1;
426  		return 0;
427  	case IIO_CHAN_INFO_SCALE:
428  		if (chan->type != IIO_ANGL_VEL)
429  			return -EINVAL;
430  		/*
431  		 * We support +/-250, +/-500, +/-1000 and +/2000 deg/s
432  		 * which means we need to round to the closest radians
433  		 * which will be roughly +/-4.3, +/-8.7, +/-17.5, +/-35
434  		 * rad/s. The scale is then for the 16 bits used to cover
435  		 * it 2/(2^16) of that.
436  		 */
437  
438  		/* Just too large, set the max range */
439  		if (val != 0) {
440  			mpu3050->fullscale = FS_2000_DPS;
441  			return 0;
442  		}
443  
444  		/*
445  		 * Now we're dealing with fractions below zero in millirad/s
446  		 * do some integer interpolation and match with the closest
447  		 * fullscale in the table.
448  		 */
449  		if (val2 <= fs250 ||
450  		    val2 < ((fs500 + fs250) / 2))
451  			mpu3050->fullscale = FS_250_DPS;
452  		else if (val2 <= fs500 ||
453  			 val2 < ((fs1000 + fs500) / 2))
454  			mpu3050->fullscale = FS_500_DPS;
455  		else if (val2 <= fs1000 ||
456  			 val2 < ((fs2000 + fs1000) / 2))
457  			mpu3050->fullscale = FS_1000_DPS;
458  		else
459  			/* Catch-all */
460  			mpu3050->fullscale = FS_2000_DPS;
461  		return 0;
462  	default:
463  		break;
464  	}
465  
466  	return -EINVAL;
467  }
468  
mpu3050_trigger_handler(int irq,void * p)469  static irqreturn_t mpu3050_trigger_handler(int irq, void *p)
470  {
471  	const struct iio_poll_func *pf = p;
472  	struct iio_dev *indio_dev = pf->indio_dev;
473  	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
474  	int ret;
475  	struct {
476  		__be16 chans[4];
477  		s64 timestamp __aligned(8);
478  	} scan;
479  	s64 timestamp;
480  	unsigned int datums_from_fifo = 0;
481  
482  	/*
483  	 * If we're using the hardware trigger, get the precise timestamp from
484  	 * the top half of the threaded IRQ handler. Otherwise get the
485  	 * timestamp here so it will be close in time to the actual values
486  	 * read from the registers.
487  	 */
488  	if (iio_trigger_using_own(indio_dev))
489  		timestamp = mpu3050->hw_timestamp;
490  	else
491  		timestamp = iio_get_time_ns(indio_dev);
492  
493  	mutex_lock(&mpu3050->lock);
494  
495  	/* Using the hardware IRQ trigger? Check the buffer then. */
496  	if (mpu3050->hw_irq_trigger) {
497  		__be16 raw_fifocnt;
498  		u16 fifocnt;
499  		/* X, Y, Z + temperature */
500  		unsigned int bytes_per_datum = 8;
501  		bool fifo_overflow = false;
502  
503  		ret = regmap_bulk_read(mpu3050->map,
504  				       MPU3050_FIFO_COUNT_H,
505  				       &raw_fifocnt,
506  				       sizeof(raw_fifocnt));
507  		if (ret)
508  			goto out_trigger_unlock;
509  		fifocnt = be16_to_cpu(raw_fifocnt);
510  
511  		if (fifocnt == 512) {
512  			dev_info(mpu3050->dev,
513  				 "FIFO overflow! Emptying and resetting FIFO\n");
514  			fifo_overflow = true;
515  			/* Reset and enable the FIFO */
516  			ret = regmap_update_bits(mpu3050->map,
517  						 MPU3050_USR_CTRL,
518  						 MPU3050_USR_CTRL_FIFO_EN |
519  						 MPU3050_USR_CTRL_FIFO_RST,
520  						 MPU3050_USR_CTRL_FIFO_EN |
521  						 MPU3050_USR_CTRL_FIFO_RST);
522  			if (ret) {
523  				dev_info(mpu3050->dev, "error resetting FIFO\n");
524  				goto out_trigger_unlock;
525  			}
526  			mpu3050->pending_fifo_footer = false;
527  		}
528  
529  		if (fifocnt)
530  			dev_dbg(mpu3050->dev,
531  				"%d bytes in the FIFO\n",
532  				fifocnt);
533  
534  		while (!fifo_overflow && fifocnt > bytes_per_datum) {
535  			unsigned int toread;
536  			unsigned int offset;
537  			__be16 fifo_values[5];
538  
539  			/*
540  			 * If there is a FIFO footer in the pipe, first clear
541  			 * that out. This follows the complex algorithm in the
542  			 * datasheet that states that you may never leave the
543  			 * FIFO empty after the first reading: you have to
544  			 * always leave two footer bytes in it. The footer is
545  			 * in practice just two zero bytes.
546  			 */
547  			if (mpu3050->pending_fifo_footer) {
548  				toread = bytes_per_datum + 2;
549  				offset = 0;
550  			} else {
551  				toread = bytes_per_datum;
552  				offset = 1;
553  				/* Put in some dummy value */
554  				fifo_values[0] = cpu_to_be16(0xAAAA);
555  			}
556  
557  			ret = regmap_bulk_read(mpu3050->map,
558  					       MPU3050_FIFO_R,
559  					       &fifo_values[offset],
560  					       toread);
561  			if (ret)
562  				goto out_trigger_unlock;
563  
564  			dev_dbg(mpu3050->dev,
565  				"%04x %04x %04x %04x %04x\n",
566  				fifo_values[0],
567  				fifo_values[1],
568  				fifo_values[2],
569  				fifo_values[3],
570  				fifo_values[4]);
571  
572  			/* Index past the footer (fifo_values[0]) and push */
573  			iio_push_to_buffers_with_ts_unaligned(indio_dev,
574  							      &fifo_values[1],
575  							      sizeof(__be16) * 4,
576  							      timestamp);
577  
578  			fifocnt -= toread;
579  			datums_from_fifo++;
580  			mpu3050->pending_fifo_footer = true;
581  
582  			/*
583  			 * If we're emptying the FIFO, just make sure to
584  			 * check if something new appeared.
585  			 */
586  			if (fifocnt < bytes_per_datum) {
587  				ret = regmap_bulk_read(mpu3050->map,
588  						       MPU3050_FIFO_COUNT_H,
589  						       &raw_fifocnt,
590  						       sizeof(raw_fifocnt));
591  				if (ret)
592  					goto out_trigger_unlock;
593  				fifocnt = be16_to_cpu(raw_fifocnt);
594  			}
595  
596  			if (fifocnt < bytes_per_datum)
597  				dev_dbg(mpu3050->dev,
598  					"%d bytes left in the FIFO\n",
599  					fifocnt);
600  
601  			/*
602  			 * At this point, the timestamp that triggered the
603  			 * hardware interrupt is no longer valid for what
604  			 * we are reading (the interrupt likely fired for
605  			 * the value on the top of the FIFO), so set the
606  			 * timestamp to zero and let userspace deal with it.
607  			 */
608  			timestamp = 0;
609  		}
610  	}
611  
612  	/*
613  	 * If we picked some datums from the FIFO that's enough, else
614  	 * fall through and just read from the current value registers.
615  	 * This happens in two cases:
616  	 *
617  	 * - We are using some other trigger (external, like an HRTimer)
618  	 *   than the sensor's own sample generator. In this case the
619  	 *   sensor is just set to the max sampling frequency and we give
620  	 *   the trigger a copy of the latest value every time we get here.
621  	 *
622  	 * - The hardware trigger is active but unused and we actually use
623  	 *   another trigger which calls here with a frequency higher
624  	 *   than what the device provides data. We will then just read
625  	 *   duplicate values directly from the hardware registers.
626  	 */
627  	if (datums_from_fifo) {
628  		dev_dbg(mpu3050->dev,
629  			"read %d datums from the FIFO\n",
630  			datums_from_fifo);
631  		goto out_trigger_unlock;
632  	}
633  
634  	ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H, scan.chans,
635  			       sizeof(scan.chans));
636  	if (ret) {
637  		dev_err(mpu3050->dev,
638  			"error reading axis data\n");
639  		goto out_trigger_unlock;
640  	}
641  
642  	iio_push_to_buffers_with_timestamp(indio_dev, &scan, timestamp);
643  
644  out_trigger_unlock:
645  	mutex_unlock(&mpu3050->lock);
646  	iio_trigger_notify_done(indio_dev->trig);
647  
648  	return IRQ_HANDLED;
649  }
650  
mpu3050_buffer_preenable(struct iio_dev * indio_dev)651  static int mpu3050_buffer_preenable(struct iio_dev *indio_dev)
652  {
653  	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
654  
655  	pm_runtime_get_sync(mpu3050->dev);
656  
657  	/* Unless we have OUR trigger active, run at full speed */
658  	if (!mpu3050->hw_irq_trigger)
659  		return mpu3050_set_8khz_samplerate(mpu3050);
660  
661  	return 0;
662  }
663  
mpu3050_buffer_postdisable(struct iio_dev * indio_dev)664  static int mpu3050_buffer_postdisable(struct iio_dev *indio_dev)
665  {
666  	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
667  
668  	pm_runtime_mark_last_busy(mpu3050->dev);
669  	pm_runtime_put_autosuspend(mpu3050->dev);
670  
671  	return 0;
672  }
673  
674  static const struct iio_buffer_setup_ops mpu3050_buffer_setup_ops = {
675  	.preenable = mpu3050_buffer_preenable,
676  	.postdisable = mpu3050_buffer_postdisable,
677  };
678  
679  static const struct iio_mount_matrix *
mpu3050_get_mount_matrix(const struct iio_dev * indio_dev,const struct iio_chan_spec * chan)680  mpu3050_get_mount_matrix(const struct iio_dev *indio_dev,
681  			 const struct iio_chan_spec *chan)
682  {
683  	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
684  
685  	return &mpu3050->orientation;
686  }
687  
688  static const struct iio_chan_spec_ext_info mpu3050_ext_info[] = {
689  	IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, mpu3050_get_mount_matrix),
690  	{ },
691  };
692  
693  #define MPU3050_AXIS_CHANNEL(axis, index)				\
694  	{								\
695  		.type = IIO_ANGL_VEL,					\
696  		.modified = 1,						\
697  		.channel2 = IIO_MOD_##axis,				\
698  		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
699  			BIT(IIO_CHAN_INFO_CALIBBIAS),			\
700  		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),	\
701  		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
702  		.ext_info = mpu3050_ext_info,				\
703  		.scan_index = index,					\
704  		.scan_type = {						\
705  			.sign = 's',					\
706  			.realbits = 16,					\
707  			.storagebits = 16,				\
708  			.endianness = IIO_BE,				\
709  		},							\
710  	}
711  
712  static const struct iio_chan_spec mpu3050_channels[] = {
713  	{
714  		.type = IIO_TEMP,
715  		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
716  				      BIT(IIO_CHAN_INFO_SCALE) |
717  				      BIT(IIO_CHAN_INFO_OFFSET),
718  		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
719  		.scan_index = 0,
720  		.scan_type = {
721  			.sign = 's',
722  			.realbits = 16,
723  			.storagebits = 16,
724  			.endianness = IIO_BE,
725  		},
726  	},
727  	MPU3050_AXIS_CHANNEL(X, 1),
728  	MPU3050_AXIS_CHANNEL(Y, 2),
729  	MPU3050_AXIS_CHANNEL(Z, 3),
730  	IIO_CHAN_SOFT_TIMESTAMP(4),
731  };
732  
733  /* Four channels apart from timestamp, scan mask = 0x0f */
734  static const unsigned long mpu3050_scan_masks[] = { 0xf, 0 };
735  
736  /*
737   * These are just the hardcoded factors resulting from the more elaborate
738   * calculations done with fractions in the scale raw get/set functions.
739   */
740  static IIO_CONST_ATTR(anglevel_scale_available,
741  		      "0.000122070 "
742  		      "0.000274658 "
743  		      "0.000518798 "
744  		      "0.001068115");
745  
746  static struct attribute *mpu3050_attributes[] = {
747  	&iio_const_attr_anglevel_scale_available.dev_attr.attr,
748  	NULL,
749  };
750  
751  static const struct attribute_group mpu3050_attribute_group = {
752  	.attrs = mpu3050_attributes,
753  };
754  
755  static const struct iio_info mpu3050_info = {
756  	.read_raw = mpu3050_read_raw,
757  	.write_raw = mpu3050_write_raw,
758  	.attrs = &mpu3050_attribute_group,
759  };
760  
761  /**
762   * mpu3050_read_mem() - read MPU-3050 internal memory
763   * @mpu3050: device to read from
764   * @bank: target bank
765   * @addr: target address
766   * @len: number of bytes
767   * @buf: the buffer to store the read bytes in
768   */
mpu3050_read_mem(struct mpu3050 * mpu3050,u8 bank,u8 addr,u8 len,u8 * buf)769  static int mpu3050_read_mem(struct mpu3050 *mpu3050,
770  			    u8 bank,
771  			    u8 addr,
772  			    u8 len,
773  			    u8 *buf)
774  {
775  	int ret;
776  
777  	ret = regmap_write(mpu3050->map,
778  			   MPU3050_BANK_SEL,
779  			   bank);
780  	if (ret)
781  		return ret;
782  
783  	ret = regmap_write(mpu3050->map,
784  			   MPU3050_MEM_START_ADDR,
785  			   addr);
786  	if (ret)
787  		return ret;
788  
789  	return regmap_bulk_read(mpu3050->map,
790  				MPU3050_MEM_R_W,
791  				buf,
792  				len);
793  }
794  
mpu3050_hw_init(struct mpu3050 * mpu3050)795  static int mpu3050_hw_init(struct mpu3050 *mpu3050)
796  {
797  	int ret;
798  	__le64 otp_le;
799  	u64 otp;
800  
801  	/* Reset */
802  	ret = regmap_update_bits(mpu3050->map,
803  				 MPU3050_PWR_MGM,
804  				 MPU3050_PWR_MGM_RESET,
805  				 MPU3050_PWR_MGM_RESET);
806  	if (ret)
807  		return ret;
808  
809  	/* Turn on the PLL */
810  	ret = regmap_update_bits(mpu3050->map,
811  				 MPU3050_PWR_MGM,
812  				 MPU3050_PWR_MGM_CLKSEL_MASK,
813  				 MPU3050_PWR_MGM_PLL_Z);
814  	if (ret)
815  		return ret;
816  
817  	/* Disable IRQs */
818  	ret = regmap_write(mpu3050->map,
819  			   MPU3050_INT_CFG,
820  			   0);
821  	if (ret)
822  		return ret;
823  
824  	/* Read out the 8 bytes of OTP (one-time-programmable) memory */
825  	ret = mpu3050_read_mem(mpu3050,
826  			       (MPU3050_MEM_PRFTCH |
827  				MPU3050_MEM_USER_BANK |
828  				MPU3050_MEM_OTP_BANK_0),
829  			       0,
830  			       sizeof(otp_le),
831  			       (u8 *)&otp_le);
832  	if (ret)
833  		return ret;
834  
835  	/* This is device-unique data so it goes into the entropy pool */
836  	add_device_randomness(&otp_le, sizeof(otp_le));
837  
838  	otp = le64_to_cpu(otp_le);
839  
840  	dev_info(mpu3050->dev,
841  		 "die ID: %04llX, wafer ID: %02llX, A lot ID: %04llX, "
842  		 "W lot ID: %03llX, WP ID: %01llX, rev ID: %02llX\n",
843  		 /* Die ID, bits 0-12 */
844  		 FIELD_GET(GENMASK_ULL(12, 0), otp),
845  		 /* Wafer ID, bits 13-17 */
846  		 FIELD_GET(GENMASK_ULL(17, 13), otp),
847  		 /* A lot ID, bits 18-33 */
848  		 FIELD_GET(GENMASK_ULL(33, 18), otp),
849  		 /* W lot ID, bits 34-45 */
850  		 FIELD_GET(GENMASK_ULL(45, 34), otp),
851  		 /* WP ID, bits 47-49 */
852  		 FIELD_GET(GENMASK_ULL(49, 47), otp),
853  		 /* rev ID, bits 50-55 */
854  		 FIELD_GET(GENMASK_ULL(55, 50), otp));
855  
856  	return 0;
857  }
858  
mpu3050_power_up(struct mpu3050 * mpu3050)859  static int mpu3050_power_up(struct mpu3050 *mpu3050)
860  {
861  	int ret;
862  
863  	ret = regulator_bulk_enable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
864  	if (ret) {
865  		dev_err(mpu3050->dev, "cannot enable regulators\n");
866  		return ret;
867  	}
868  	/*
869  	 * 20-100 ms start-up time for register read/write according to
870  	 * the datasheet, be on the safe side and wait 200 ms.
871  	 */
872  	msleep(200);
873  
874  	/* Take device out of sleep mode */
875  	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
876  				 MPU3050_PWR_MGM_SLEEP, 0);
877  	if (ret) {
878  		regulator_bulk_disable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
879  		dev_err(mpu3050->dev, "error setting power mode\n");
880  		return ret;
881  	}
882  	usleep_range(10000, 20000);
883  
884  	return 0;
885  }
886  
mpu3050_power_down(struct mpu3050 * mpu3050)887  static int mpu3050_power_down(struct mpu3050 *mpu3050)
888  {
889  	int ret;
890  
891  	/*
892  	 * Put MPU-3050 into sleep mode before cutting regulators.
893  	 * This is important, because we may not be the sole user
894  	 * of the regulator so the power may stay on after this, and
895  	 * then we would be wasting power unless we go to sleep mode
896  	 * first.
897  	 */
898  	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
899  				 MPU3050_PWR_MGM_SLEEP, MPU3050_PWR_MGM_SLEEP);
900  	if (ret)
901  		dev_err(mpu3050->dev, "error putting to sleep\n");
902  
903  	ret = regulator_bulk_disable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
904  	if (ret)
905  		dev_err(mpu3050->dev, "error disabling regulators\n");
906  
907  	return 0;
908  }
909  
mpu3050_irq_handler(int irq,void * p)910  static irqreturn_t mpu3050_irq_handler(int irq, void *p)
911  {
912  	struct iio_trigger *trig = p;
913  	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
914  	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
915  
916  	if (!mpu3050->hw_irq_trigger)
917  		return IRQ_NONE;
918  
919  	/* Get the time stamp as close in time as possible */
920  	mpu3050->hw_timestamp = iio_get_time_ns(indio_dev);
921  
922  	return IRQ_WAKE_THREAD;
923  }
924  
mpu3050_irq_thread(int irq,void * p)925  static irqreturn_t mpu3050_irq_thread(int irq, void *p)
926  {
927  	struct iio_trigger *trig = p;
928  	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
929  	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
930  	unsigned int val;
931  	int ret;
932  
933  	/* ACK IRQ and check if it was from us */
934  	ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
935  	if (ret) {
936  		dev_err(mpu3050->dev, "error reading IRQ status\n");
937  		return IRQ_HANDLED;
938  	}
939  	if (!(val & MPU3050_INT_STATUS_RAW_RDY))
940  		return IRQ_NONE;
941  
942  	iio_trigger_poll_nested(p);
943  
944  	return IRQ_HANDLED;
945  }
946  
947  /**
948   * mpu3050_drdy_trigger_set_state() - set data ready interrupt state
949   * @trig: trigger instance
950   * @enable: true if trigger should be enabled, false to disable
951   */
mpu3050_drdy_trigger_set_state(struct iio_trigger * trig,bool enable)952  static int mpu3050_drdy_trigger_set_state(struct iio_trigger *trig,
953  					  bool enable)
954  {
955  	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
956  	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
957  	unsigned int val;
958  	int ret;
959  
960  	/* Disabling trigger: disable interrupt and return */
961  	if (!enable) {
962  		/* Disable all interrupts */
963  		ret = regmap_write(mpu3050->map,
964  				   MPU3050_INT_CFG,
965  				   0);
966  		if (ret)
967  			dev_err(mpu3050->dev, "error disabling IRQ\n");
968  
969  		/* Clear IRQ flag */
970  		ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
971  		if (ret)
972  			dev_err(mpu3050->dev, "error clearing IRQ status\n");
973  
974  		/* Disable all things in the FIFO and reset it */
975  		ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
976  		if (ret)
977  			dev_err(mpu3050->dev, "error disabling FIFO\n");
978  
979  		ret = regmap_write(mpu3050->map, MPU3050_USR_CTRL,
980  				   MPU3050_USR_CTRL_FIFO_RST);
981  		if (ret)
982  			dev_err(mpu3050->dev, "error resetting FIFO\n");
983  
984  		pm_runtime_mark_last_busy(mpu3050->dev);
985  		pm_runtime_put_autosuspend(mpu3050->dev);
986  		mpu3050->hw_irq_trigger = false;
987  
988  		return 0;
989  	} else {
990  		/* Else we're enabling the trigger from this point */
991  		pm_runtime_get_sync(mpu3050->dev);
992  		mpu3050->hw_irq_trigger = true;
993  
994  		/* Disable all things in the FIFO */
995  		ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
996  		if (ret)
997  			return ret;
998  
999  		/* Reset and enable the FIFO */
1000  		ret = regmap_update_bits(mpu3050->map, MPU3050_USR_CTRL,
1001  					 MPU3050_USR_CTRL_FIFO_EN |
1002  					 MPU3050_USR_CTRL_FIFO_RST,
1003  					 MPU3050_USR_CTRL_FIFO_EN |
1004  					 MPU3050_USR_CTRL_FIFO_RST);
1005  		if (ret)
1006  			return ret;
1007  
1008  		mpu3050->pending_fifo_footer = false;
1009  
1010  		/* Turn on the FIFO for temp+X+Y+Z */
1011  		ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN,
1012  				   MPU3050_FIFO_EN_TEMP_OUT |
1013  				   MPU3050_FIFO_EN_GYRO_XOUT |
1014  				   MPU3050_FIFO_EN_GYRO_YOUT |
1015  				   MPU3050_FIFO_EN_GYRO_ZOUT |
1016  				   MPU3050_FIFO_EN_FOOTER);
1017  		if (ret)
1018  			return ret;
1019  
1020  		/* Configure the sample engine */
1021  		ret = mpu3050_start_sampling(mpu3050);
1022  		if (ret)
1023  			return ret;
1024  
1025  		/* Clear IRQ flag */
1026  		ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
1027  		if (ret)
1028  			dev_err(mpu3050->dev, "error clearing IRQ status\n");
1029  
1030  		/* Give us interrupts whenever there is new data ready */
1031  		val = MPU3050_INT_RAW_RDY_EN;
1032  
1033  		if (mpu3050->irq_actl)
1034  			val |= MPU3050_INT_ACTL;
1035  		if (mpu3050->irq_latch)
1036  			val |= MPU3050_INT_LATCH_EN;
1037  		if (mpu3050->irq_opendrain)
1038  			val |= MPU3050_INT_OPEN;
1039  
1040  		ret = regmap_write(mpu3050->map, MPU3050_INT_CFG, val);
1041  		if (ret)
1042  			return ret;
1043  	}
1044  
1045  	return 0;
1046  }
1047  
1048  static const struct iio_trigger_ops mpu3050_trigger_ops = {
1049  	.set_trigger_state = mpu3050_drdy_trigger_set_state,
1050  };
1051  
mpu3050_trigger_probe(struct iio_dev * indio_dev,int irq)1052  static int mpu3050_trigger_probe(struct iio_dev *indio_dev, int irq)
1053  {
1054  	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1055  	struct device *dev = mpu3050->dev;
1056  	unsigned long irq_trig;
1057  	int ret;
1058  
1059  	mpu3050->trig = devm_iio_trigger_alloc(&indio_dev->dev,
1060  					       "%s-dev%d",
1061  					       indio_dev->name,
1062  					       iio_device_id(indio_dev));
1063  	if (!mpu3050->trig)
1064  		return -ENOMEM;
1065  
1066  	/* Check if IRQ is open drain */
1067  	mpu3050->irq_opendrain = device_property_read_bool(dev, "drive-open-drain");
1068  
1069  	irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
1070  	/*
1071  	 * Configure the interrupt generator hardware to supply whatever
1072  	 * the interrupt is configured for, edges low/high level low/high,
1073  	 * we can provide it all.
1074  	 */
1075  	switch (irq_trig) {
1076  	case IRQF_TRIGGER_RISING:
1077  		dev_info(&indio_dev->dev,
1078  			 "pulse interrupts on the rising edge\n");
1079  		break;
1080  	case IRQF_TRIGGER_FALLING:
1081  		mpu3050->irq_actl = true;
1082  		dev_info(&indio_dev->dev,
1083  			 "pulse interrupts on the falling edge\n");
1084  		break;
1085  	case IRQF_TRIGGER_HIGH:
1086  		mpu3050->irq_latch = true;
1087  		dev_info(&indio_dev->dev,
1088  			 "interrupts active high level\n");
1089  		/*
1090  		 * With level IRQs, we mask the IRQ until it is processed,
1091  		 * but with edge IRQs (pulses) we can queue several interrupts
1092  		 * in the top half.
1093  		 */
1094  		irq_trig |= IRQF_ONESHOT;
1095  		break;
1096  	case IRQF_TRIGGER_LOW:
1097  		mpu3050->irq_latch = true;
1098  		mpu3050->irq_actl = true;
1099  		irq_trig |= IRQF_ONESHOT;
1100  		dev_info(&indio_dev->dev,
1101  			 "interrupts active low level\n");
1102  		break;
1103  	default:
1104  		/* This is the most preferred mode, if possible */
1105  		dev_err(&indio_dev->dev,
1106  			"unsupported IRQ trigger specified (%lx), enforce "
1107  			"rising edge\n", irq_trig);
1108  		irq_trig = IRQF_TRIGGER_RISING;
1109  		break;
1110  	}
1111  
1112  	/* An open drain line can be shared with several devices */
1113  	if (mpu3050->irq_opendrain)
1114  		irq_trig |= IRQF_SHARED;
1115  
1116  	ret = request_threaded_irq(irq,
1117  				   mpu3050_irq_handler,
1118  				   mpu3050_irq_thread,
1119  				   irq_trig,
1120  				   mpu3050->trig->name,
1121  				   mpu3050->trig);
1122  	if (ret) {
1123  		dev_err(dev, "can't get IRQ %d, error %d\n", irq, ret);
1124  		return ret;
1125  	}
1126  
1127  	mpu3050->irq = irq;
1128  	mpu3050->trig->dev.parent = dev;
1129  	mpu3050->trig->ops = &mpu3050_trigger_ops;
1130  	iio_trigger_set_drvdata(mpu3050->trig, indio_dev);
1131  
1132  	ret = iio_trigger_register(mpu3050->trig);
1133  	if (ret)
1134  		return ret;
1135  
1136  	indio_dev->trig = iio_trigger_get(mpu3050->trig);
1137  
1138  	return 0;
1139  }
1140  
mpu3050_common_probe(struct device * dev,struct regmap * map,int irq,const char * name)1141  int mpu3050_common_probe(struct device *dev,
1142  			 struct regmap *map,
1143  			 int irq,
1144  			 const char *name)
1145  {
1146  	struct iio_dev *indio_dev;
1147  	struct mpu3050 *mpu3050;
1148  	unsigned int val;
1149  	int ret;
1150  
1151  	indio_dev = devm_iio_device_alloc(dev, sizeof(*mpu3050));
1152  	if (!indio_dev)
1153  		return -ENOMEM;
1154  	mpu3050 = iio_priv(indio_dev);
1155  
1156  	mpu3050->dev = dev;
1157  	mpu3050->map = map;
1158  	mutex_init(&mpu3050->lock);
1159  	/* Default fullscale: 2000 degrees per second */
1160  	mpu3050->fullscale = FS_2000_DPS;
1161  	/* 1 kHz, divide by 100, default frequency = 10 Hz */
1162  	mpu3050->lpf = MPU3050_DLPF_CFG_188HZ;
1163  	mpu3050->divisor = 99;
1164  
1165  	/* Read the mounting matrix, if present */
1166  	ret = iio_read_mount_matrix(dev, &mpu3050->orientation);
1167  	if (ret)
1168  		return ret;
1169  
1170  	/* Fetch and turn on regulators */
1171  	mpu3050->regs[0].supply = mpu3050_reg_vdd;
1172  	mpu3050->regs[1].supply = mpu3050_reg_vlogic;
1173  	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(mpu3050->regs),
1174  				      mpu3050->regs);
1175  	if (ret) {
1176  		dev_err(dev, "Cannot get regulators\n");
1177  		return ret;
1178  	}
1179  
1180  	ret = mpu3050_power_up(mpu3050);
1181  	if (ret)
1182  		return ret;
1183  
1184  	ret = regmap_read(map, MPU3050_CHIP_ID_REG, &val);
1185  	if (ret) {
1186  		dev_err(dev, "could not read device ID\n");
1187  		ret = -ENODEV;
1188  
1189  		goto err_power_down;
1190  	}
1191  
1192  	if ((val & MPU3050_CHIP_ID_MASK) != MPU3050_CHIP_ID) {
1193  		dev_err(dev, "unsupported chip id %02x\n",
1194  				(u8)(val & MPU3050_CHIP_ID_MASK));
1195  		ret = -ENODEV;
1196  		goto err_power_down;
1197  	}
1198  
1199  	ret = regmap_read(map, MPU3050_PRODUCT_ID_REG, &val);
1200  	if (ret) {
1201  		dev_err(dev, "could not read device ID\n");
1202  		ret = -ENODEV;
1203  
1204  		goto err_power_down;
1205  	}
1206  	dev_info(dev, "found MPU-3050 part no: %d, version: %d\n",
1207  		 ((val >> 4) & 0xf), (val & 0xf));
1208  
1209  	ret = mpu3050_hw_init(mpu3050);
1210  	if (ret)
1211  		goto err_power_down;
1212  
1213  	indio_dev->channels = mpu3050_channels;
1214  	indio_dev->num_channels = ARRAY_SIZE(mpu3050_channels);
1215  	indio_dev->info = &mpu3050_info;
1216  	indio_dev->available_scan_masks = mpu3050_scan_masks;
1217  	indio_dev->modes = INDIO_DIRECT_MODE;
1218  	indio_dev->name = name;
1219  
1220  	ret = iio_triggered_buffer_setup(indio_dev, iio_pollfunc_store_time,
1221  					 mpu3050_trigger_handler,
1222  					 &mpu3050_buffer_setup_ops);
1223  	if (ret) {
1224  		dev_err(dev, "triggered buffer setup failed\n");
1225  		goto err_power_down;
1226  	}
1227  
1228  	ret = iio_device_register(indio_dev);
1229  	if (ret) {
1230  		dev_err(dev, "device register failed\n");
1231  		goto err_cleanup_buffer;
1232  	}
1233  
1234  	dev_set_drvdata(dev, indio_dev);
1235  
1236  	/* Check if we have an assigned IRQ to use as trigger */
1237  	if (irq) {
1238  		ret = mpu3050_trigger_probe(indio_dev, irq);
1239  		if (ret)
1240  			dev_err(dev, "failed to register trigger\n");
1241  	}
1242  
1243  	/* Enable runtime PM */
1244  	pm_runtime_get_noresume(dev);
1245  	pm_runtime_set_active(dev);
1246  	pm_runtime_enable(dev);
1247  	/*
1248  	 * Set autosuspend to two orders of magnitude larger than the
1249  	 * start-up time. 100ms start-up time means 10000ms autosuspend,
1250  	 * i.e. 10 seconds.
1251  	 */
1252  	pm_runtime_set_autosuspend_delay(dev, 10000);
1253  	pm_runtime_use_autosuspend(dev);
1254  	pm_runtime_put(dev);
1255  
1256  	return 0;
1257  
1258  err_cleanup_buffer:
1259  	iio_triggered_buffer_cleanup(indio_dev);
1260  err_power_down:
1261  	mpu3050_power_down(mpu3050);
1262  
1263  	return ret;
1264  }
1265  
mpu3050_common_remove(struct device * dev)1266  void mpu3050_common_remove(struct device *dev)
1267  {
1268  	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1269  	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1270  
1271  	pm_runtime_get_sync(dev);
1272  	pm_runtime_put_noidle(dev);
1273  	pm_runtime_disable(dev);
1274  	iio_triggered_buffer_cleanup(indio_dev);
1275  	if (mpu3050->irq)
1276  		free_irq(mpu3050->irq, mpu3050);
1277  	iio_device_unregister(indio_dev);
1278  	mpu3050_power_down(mpu3050);
1279  }
1280  
mpu3050_runtime_suspend(struct device * dev)1281  static int mpu3050_runtime_suspend(struct device *dev)
1282  {
1283  	return mpu3050_power_down(iio_priv(dev_get_drvdata(dev)));
1284  }
1285  
mpu3050_runtime_resume(struct device * dev)1286  static int mpu3050_runtime_resume(struct device *dev)
1287  {
1288  	return mpu3050_power_up(iio_priv(dev_get_drvdata(dev)));
1289  }
1290  
1291  DEFINE_RUNTIME_DEV_PM_OPS(mpu3050_dev_pm_ops, mpu3050_runtime_suspend,
1292  			  mpu3050_runtime_resume, NULL);
1293  MODULE_AUTHOR("Linus Walleij");
1294  MODULE_DESCRIPTION("MPU3050 gyroscope driver");
1295  MODULE_LICENSE("GPL");
1296