1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2023 MediaTek Inc.
4  * Author: Xiaoyong Lu <xiaoyong.lu@mediatek.com>
5  */
6 
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <media/videobuf2-dma-contig.h>
10 
11 #include "../mtk_vcodec_dec.h"
12 #include "../../common/mtk_vcodec_intr.h"
13 #include "../vdec_drv_base.h"
14 #include "../vdec_drv_if.h"
15 #include "../vdec_vpu_if.h"
16 
17 #define AV1_MAX_FRAME_BUF_COUNT		(V4L2_AV1_TOTAL_REFS_PER_FRAME + 1)
18 #define AV1_TILE_BUF_SIZE		64
19 #define AV1_SCALE_SUBPEL_BITS		10
20 #define AV1_REF_SCALE_SHIFT		14
21 #define AV1_REF_NO_SCALE		BIT(AV1_REF_SCALE_SHIFT)
22 #define AV1_REF_INVALID_SCALE		-1
23 #define AV1_CDF_TABLE_BUFFER_SIZE	16384
24 #define AV1_PRIMARY_REF_NONE		7
25 
26 #define AV1_INVALID_IDX			-1
27 
28 #define AV1_DIV_ROUND_UP_POW2(value, n)			\
29 ({							\
30 	typeof(n) _n  = n;				\
31 	typeof(value) _value = value;			\
32 	(_value + (BIT(_n) >> 1)) >> _n;		\
33 })
34 
35 #define AV1_DIV_ROUND_UP_POW2_SIGNED(value, n)				\
36 ({									\
37 	typeof(n) _n_  = n;						\
38 	typeof(value) _value_ = value;					\
39 	(((_value_) < 0) ? -AV1_DIV_ROUND_UP_POW2(-(_value_), (_n_))	\
40 		: AV1_DIV_ROUND_UP_POW2((_value_), (_n_)));		\
41 })
42 
43 #define BIT_FLAG(x, bit)		(!!((x)->flags & (bit)))
44 #define SEGMENTATION_FLAG(x, name)	(!!((x)->flags & V4L2_AV1_SEGMENTATION_FLAG_##name))
45 #define QUANT_FLAG(x, name)		(!!((x)->flags & V4L2_AV1_QUANTIZATION_FLAG_##name))
46 #define SEQUENCE_FLAG(x, name)		(!!((x)->flags & V4L2_AV1_SEQUENCE_FLAG_##name))
47 #define FH_FLAG(x, name)		(!!((x)->flags & V4L2_AV1_FRAME_FLAG_##name))
48 
49 #define MINQ 0
50 #define MAXQ 255
51 
52 #define DIV_LUT_PREC_BITS 14
53 #define DIV_LUT_BITS 8
54 #define DIV_LUT_NUM BIT(DIV_LUT_BITS)
55 #define WARP_PARAM_REDUCE_BITS 6
56 #define WARPEDMODEL_PREC_BITS 16
57 
58 #define SEG_LVL_ALT_Q 0
59 #define SECONDARY_FILTER_STRENGTH_NUM_BITS 2
60 
61 static const short div_lut[DIV_LUT_NUM + 1] = {
62 	16384, 16320, 16257, 16194, 16132, 16070, 16009, 15948, 15888, 15828, 15768,
63 	15709, 15650, 15592, 15534, 15477, 15420, 15364, 15308, 15252, 15197, 15142,
64 	15087, 15033, 14980, 14926, 14873, 14821, 14769, 14717, 14665, 14614, 14564,
65 	14513, 14463, 14413, 14364, 14315, 14266, 14218, 14170, 14122, 14075, 14028,
66 	13981, 13935, 13888, 13843, 13797, 13752, 13707, 13662, 13618, 13574, 13530,
67 	13487, 13443, 13400, 13358, 13315, 13273, 13231, 13190, 13148, 13107, 13066,
68 	13026, 12985, 12945, 12906, 12866, 12827, 12788, 12749, 12710, 12672, 12633,
69 	12596, 12558, 12520, 12483, 12446, 12409, 12373, 12336, 12300, 12264, 12228,
70 	12193, 12157, 12122, 12087, 12053, 12018, 11984, 11950, 11916, 11882, 11848,
71 	11815, 11782, 11749, 11716, 11683, 11651, 11619, 11586, 11555, 11523, 11491,
72 	11460, 11429, 11398, 11367, 11336, 11305, 11275, 11245, 11215, 11185, 11155,
73 	11125, 11096, 11067, 11038, 11009, 10980, 10951, 10923, 10894, 10866, 10838,
74 	10810, 10782, 10755, 10727, 10700, 10673, 10645, 10618, 10592, 10565, 10538,
75 	10512, 10486, 10460, 10434, 10408, 10382, 10356, 10331, 10305, 10280, 10255,
76 	10230, 10205, 10180, 10156, 10131, 10107, 10082, 10058, 10034, 10010, 9986,
77 	9963,  9939,  9916,  9892,  9869,  9846,  9823,  9800,  9777,  9754,  9732,
78 	9709,  9687,  9664,  9642,  9620,  9598,  9576,  9554,  9533,  9511,  9489,
79 	9468,  9447,  9425,  9404,  9383,  9362,  9341,  9321,  9300,  9279,  9259,
80 	9239,  9218,  9198,  9178,  9158,  9138,  9118,  9098,  9079,  9059,  9039,
81 	9020,  9001,  8981,  8962,  8943,  8924,  8905,  8886,  8867,  8849,  8830,
82 	8812,  8793,  8775,  8756,  8738,  8720,  8702,  8684,  8666,  8648,  8630,
83 	8613,  8595,  8577,  8560,  8542,  8525,  8508,  8490,  8473,  8456,  8439,
84 	8422,  8405,  8389,  8372,  8355,  8339,  8322,  8306,  8289,  8273,  8257,
85 	8240,  8224,  8208,  8192,
86 };
87 
88 /**
89  * struct vdec_av1_slice_init_vsi - VSI used to initialize instance
90  * @architecture:	architecture type
91  * @reserved:		reserved
92  * @core_vsi:		for core vsi
93  * @cdf_table_addr:	cdf table addr
94  * @cdf_table_size:	cdf table size
95  * @iq_table_addr:	iq table addr
96  * @iq_table_size:	iq table size
97  * @vsi_size:		share vsi structure size
98  */
99 struct vdec_av1_slice_init_vsi {
100 	u32 architecture;
101 	u32 reserved;
102 	u64 core_vsi;
103 	u64 cdf_table_addr;
104 	u32 cdf_table_size;
105 	u64 iq_table_addr;
106 	u32 iq_table_size;
107 	u32 vsi_size;
108 };
109 
110 /**
111  * struct vdec_av1_slice_mem - memory address and size
112  * @buf:		dma_addr padding
113  * @dma_addr:		buffer address
114  * @size:		buffer size
115  * @dma_addr_end:	buffer end address
116  * @padding:		for padding
117  */
118 struct vdec_av1_slice_mem {
119 	union {
120 		u64 buf;
121 		dma_addr_t dma_addr;
122 	};
123 	union {
124 		size_t size;
125 		dma_addr_t dma_addr_end;
126 		u64 padding;
127 	};
128 };
129 
130 /**
131  * struct vdec_av1_slice_state - decoding state
132  * @err                   : err type for decode
133  * @full                  : transcoded buffer is full or not
134  * @timeout               : decode timeout or not
135  * @perf                  : performance enable
136  * @crc                   : hw checksum
137  * @out_size              : hw output size
138  */
139 struct vdec_av1_slice_state {
140 	int err;
141 	u32 full;
142 	u32 timeout;
143 	u32 perf;
144 	u32 crc[16];
145 	u32 out_size;
146 };
147 
148 /*
149  * enum vdec_av1_slice_resolution_level - resolution level
150  */
151 enum vdec_av1_slice_resolution_level {
152 	AV1_RES_NONE,
153 	AV1_RES_FHD,
154 	AV1_RES_4K,
155 	AV1_RES_8K,
156 };
157 
158 /*
159  * enum vdec_av1_slice_frame_type - av1 frame type
160  */
161 enum vdec_av1_slice_frame_type {
162 	AV1_KEY_FRAME = 0,
163 	AV1_INTER_FRAME,
164 	AV1_INTRA_ONLY_FRAME,
165 	AV1_SWITCH_FRAME,
166 	AV1_FRAME_TYPES,
167 };
168 
169 /*
170  * enum vdec_av1_slice_reference_mode - reference mode type
171  */
172 enum vdec_av1_slice_reference_mode {
173 	AV1_SINGLE_REFERENCE = 0,
174 	AV1_COMPOUND_REFERENCE,
175 	AV1_REFERENCE_MODE_SELECT,
176 	AV1_REFERENCE_MODES,
177 };
178 
179 /**
180  * struct vdec_av1_slice_tile_group - info for each tile
181  * @num_tiles:			tile number
182  * @tile_size:			input size for each tile
183  * @tile_start_offset:		tile offset to input buffer
184  */
185 struct vdec_av1_slice_tile_group {
186 	u32 num_tiles;
187 	u32 tile_size[V4L2_AV1_MAX_TILE_COUNT];
188 	u32 tile_start_offset[V4L2_AV1_MAX_TILE_COUNT];
189 };
190 
191 /**
192  * struct vdec_av1_slice_scale_factors - scale info for each ref frame
193  * @is_scaled:  frame is scaled or not
194  * @x_scale:    frame width scale coefficient
195  * @y_scale:    frame height scale coefficient
196  * @x_step:     width step for x_scale
197  * @y_step:     height step for y_scale
198  */
199 struct vdec_av1_slice_scale_factors {
200 	u8 is_scaled;
201 	int x_scale;
202 	int y_scale;
203 	int x_step;
204 	int y_step;
205 };
206 
207 /**
208  * struct vdec_av1_slice_frame_refs - ref frame info
209  * @ref_fb_idx:         ref slot index
210  * @ref_map_idx:        ref frame index
211  * @scale_factors:      scale factors for each ref frame
212  */
213 struct vdec_av1_slice_frame_refs {
214 	int ref_fb_idx;
215 	int ref_map_idx;
216 	struct vdec_av1_slice_scale_factors scale_factors;
217 };
218 
219 /**
220  * struct vdec_av1_slice_gm - AV1 Global Motion parameters
221  * @wmtype:     The type of global motion transform used
222  * @wmmat:      gm_params
223  * @alpha:      alpha info
224  * @beta:       beta info
225  * @gamma:      gamma info
226  * @delta:      delta info
227  * @invalid:    is invalid or not
228  */
229 struct vdec_av1_slice_gm {
230 	int wmtype;
231 	int wmmat[8];
232 	short alpha;
233 	short beta;
234 	short gamma;
235 	short delta;
236 	char invalid;
237 };
238 
239 /**
240  * struct vdec_av1_slice_sm - AV1 Skip Mode parameters
241  * @skip_mode_allowed:  Skip Mode is allowed or not
242  * @skip_mode_present:  specified that the skip_mode will be present or not
243  * @skip_mode_frame:    specifies the frames to use for compound prediction
244  */
245 struct vdec_av1_slice_sm {
246 	u8 skip_mode_allowed;
247 	u8 skip_mode_present;
248 	int skip_mode_frame[2];
249 };
250 
251 /**
252  * struct vdec_av1_slice_seg - AV1 Segmentation params
253  * @segmentation_enabled:        this frame makes use of the segmentation tool or not
254  * @segmentation_update_map:     segmentation map are updated during the decoding frame
255  * @segmentation_temporal_update:segmentation map are coded relative the existing segmentaion map
256  * @segmentation_update_data:    new parameters are about to be specified for each segment
257  * @feature_data:                specifies the feature data for a segment feature
258  * @feature_enabled_mask:        the corresponding feature value is coded or not.
259  * @segid_preskip:               segment id will be read before the skip syntax element.
260  * @last_active_segid:           the highest numbered segment id that has some enabled feature
261  */
262 struct vdec_av1_slice_seg {
263 	u8 segmentation_enabled;
264 	u8 segmentation_update_map;
265 	u8 segmentation_temporal_update;
266 	u8 segmentation_update_data;
267 	int feature_data[V4L2_AV1_MAX_SEGMENTS][V4L2_AV1_SEG_LVL_MAX];
268 	u16 feature_enabled_mask[V4L2_AV1_MAX_SEGMENTS];
269 	int segid_preskip;
270 	int last_active_segid;
271 };
272 
273 /**
274  * struct vdec_av1_slice_delta_q_lf - AV1 Loop Filter delta parameters
275  * @delta_q_present:    specified whether quantizer index delta values are present
276  * @delta_q_res:        specifies the left shift which should be applied to decoded quantizer index
277  * @delta_lf_present:   specifies whether loop filter delta values are present
278  * @delta_lf_res:       specifies the left shift which should be applied to decoded
279  *                      loop filter delta values
280  * @delta_lf_multi:     specifies that separate loop filter deltas are sent for horizontal
281  *                      luma edges,vertical luma edges,the u edges, and the v edges.
282  */
283 struct vdec_av1_slice_delta_q_lf {
284 	u8 delta_q_present;
285 	u8 delta_q_res;
286 	u8 delta_lf_present;
287 	u8 delta_lf_res;
288 	u8 delta_lf_multi;
289 };
290 
291 /**
292  * struct vdec_av1_slice_quantization - AV1 Quantization params
293  * @base_q_idx:         indicates the base frame qindex. This is used for Y AC
294  *                      coefficients and as the base value for the other quantizers.
295  * @qindex:             qindex
296  * @delta_qydc:         indicates the Y DC quantizer relative to base_q_idx
297  * @delta_qudc:         indicates the U DC quantizer relative to base_q_idx.
298  * @delta_quac:         indicates the U AC quantizer relative to base_q_idx
299  * @delta_qvdc:         indicates the V DC quantizer relative to base_q_idx
300  * @delta_qvac:         indicates the V AC quantizer relative to base_q_idx
301  * @using_qmatrix:      specifies that the quantizer matrix will be used to
302  *                      compute quantizers
303  * @qm_y:               specifies the level in the quantizer matrix that should
304  *                      be used for luma plane decoding
305  * @qm_u:               specifies the level in the quantizer matrix that should
306  *                      be used for chroma U plane decoding.
307  * @qm_v:               specifies the level in the quantizer matrix that should be
308  *                      used for chroma V plane decoding
309  */
310 struct vdec_av1_slice_quantization {
311 	int base_q_idx;
312 	int qindex[V4L2_AV1_MAX_SEGMENTS];
313 	int delta_qydc;
314 	int delta_qudc;
315 	int delta_quac;
316 	int delta_qvdc;
317 	int delta_qvac;
318 	u8 using_qmatrix;
319 	u8 qm_y;
320 	u8 qm_u;
321 	u8 qm_v;
322 };
323 
324 /**
325  * struct vdec_av1_slice_lr - AV1 Loop Restauration parameters
326  * @use_lr:                     whether to use loop restoration
327  * @use_chroma_lr:              whether to use chroma loop restoration
328  * @frame_restoration_type:     specifies the type of restoration used for each plane
329  * @loop_restoration_size:      pecifies the size of loop restoration units in units
330  *                              of samples in the current plane
331  */
332 struct vdec_av1_slice_lr {
333 	u8 use_lr;
334 	u8 use_chroma_lr;
335 	u8 frame_restoration_type[V4L2_AV1_NUM_PLANES_MAX];
336 	u32 loop_restoration_size[V4L2_AV1_NUM_PLANES_MAX];
337 };
338 
339 /**
340  * struct vdec_av1_slice_loop_filter - AV1 Loop filter parameters
341  * @loop_filter_level:          an array containing loop filter strength values.
342  * @loop_filter_ref_deltas:     contains the adjustment needed for the filter
343  *                              level based on the chosen reference frame
344  * @loop_filter_mode_deltas:    contains the adjustment needed for the filter
345  *                              level based on the chosen mode
346  * @loop_filter_sharpness:      indicates the sharpness level. The loop_filter_level
347  *                              and loop_filter_sharpness together determine when
348  *                              a block edge is filtered, and by how much the
349  *                              filtering can change the sample values
350  * @loop_filter_delta_enabled:  filetr level depends on the mode and reference
351  *                              frame used to predict a block
352  */
353 struct vdec_av1_slice_loop_filter {
354 	u8 loop_filter_level[4];
355 	int loop_filter_ref_deltas[V4L2_AV1_TOTAL_REFS_PER_FRAME];
356 	int loop_filter_mode_deltas[2];
357 	u8 loop_filter_sharpness;
358 	u8 loop_filter_delta_enabled;
359 };
360 
361 /**
362  * struct vdec_av1_slice_cdef - AV1 CDEF parameters
363  * @cdef_damping:       controls the amount of damping in the deringing filter
364  * @cdef_y_strength:    specifies the strength of the primary filter and secondary filter
365  * @cdef_uv_strength:   specifies the strength of the primary filter and secondary filter
366  * @cdef_bits:          specifies the number of bits needed to specify which
367  *                      CDEF filter to apply
368  */
369 struct vdec_av1_slice_cdef {
370 	u8 cdef_damping;
371 	u8 cdef_y_strength[8];
372 	u8 cdef_uv_strength[8];
373 	u8 cdef_bits;
374 };
375 
376 /**
377  * struct vdec_av1_slice_mfmv - AV1 mfmv parameters
378  * @mfmv_valid_ref:     mfmv_valid_ref
379  * @mfmv_dir:           mfmv_dir
380  * @mfmv_ref_to_cur:    mfmv_ref_to_cur
381  * @mfmv_ref_frame_idx: mfmv_ref_frame_idx
382  * @mfmv_count:         mfmv_count
383  */
384 struct vdec_av1_slice_mfmv {
385 	u32 mfmv_valid_ref[3];
386 	u32 mfmv_dir[3];
387 	int mfmv_ref_to_cur[3];
388 	int mfmv_ref_frame_idx[3];
389 	int mfmv_count;
390 };
391 
392 /**
393  * struct vdec_av1_slice_tile - AV1 Tile info
394  * @tile_cols:                  specifies the number of tiles across the frame
395  * @tile_rows:                  pecifies the number of tiles down the frame
396  * @mi_col_starts:              an array specifying the start column
397  * @mi_row_starts:              an array specifying the start row
398  * @context_update_tile_id:     specifies which tile to use for the CDF update
399  * @uniform_tile_spacing_flag:  tiles are uniformly spaced across the frame
400  *                              or the tile sizes are coded
401  */
402 struct vdec_av1_slice_tile {
403 	u8 tile_cols;
404 	u8 tile_rows;
405 	int mi_col_starts[V4L2_AV1_MAX_TILE_COLS + 1];
406 	int mi_row_starts[V4L2_AV1_MAX_TILE_ROWS + 1];
407 	u8 context_update_tile_id;
408 	u8 uniform_tile_spacing_flag;
409 };
410 
411 /**
412  * struct vdec_av1_slice_uncompressed_header - Represents an AV1 Frame Header OBU
413  * @use_ref_frame_mvs:          use_ref_frame_mvs flag
414  * @order_hint:                 specifies OrderHintBits least significant bits of the expected
415  * @gm:                         global motion param
416  * @upscaled_width:             the upscaled width
417  * @frame_width:                frame's width
418  * @frame_height:               frame's height
419  * @reduced_tx_set:             frame is restricted to a reduced subset of the full
420  *                              set of transform types
421  * @tx_mode:                    specifies how the transform size is determined
422  * @uniform_tile_spacing_flag:  tiles are uniformly spaced across the frame
423  *                              or the tile sizes are coded
424  * @interpolation_filter:       specifies the filter selection used for performing inter prediction
425  * @allow_warped_motion:        motion_mode may be present or not
426  * @is_motion_mode_switchable : euqlt to 0 specifies that only the SIMPLE motion mode will be used
427  * @reference_mode :            frame reference mode selected
428  * @allow_high_precision_mv:    specifies that motion vectors are specified to
429  *                              quarter pel precision or to eighth pel precision
430  * @allow_intra_bc:             ubducates that intra block copy may be used in this frame
431  * @force_integer_mv:           specifies motion vectors will always be integers or
432  *                              can contain fractional bits
433  * @allow_screen_content_tools: intra blocks may use palette encoding
434  * @error_resilient_mode:       error resislent mode is enable/disable
435  * @frame_type:                 specifies the AV1 frame type
436  * @primary_ref_frame:          specifies which reference frame contains the CDF values
437  *                              and other state that should be loaded at the start of the frame
438  *                              slots will be updated with the current frame after it is decoded
439  * @disable_frame_end_update_cdf:indicates the end of frame CDF update is disable or enable
440  * @disable_cdf_update:         specified whether the CDF update in the symbol
441  *                              decoding process should be disables
442  * @skip_mode:                  av1 skip mode parameters
443  * @seg:                        av1 segmentaon parameters
444  * @delta_q_lf:                 av1 delta loop fileter
445  * @quant:                      av1 Quantization params
446  * @lr:                         av1 Loop Restauration parameters
447  * @superres_denom:             the denominator for the upscaling ratio
448  * @loop_filter:                av1 Loop filter parameters
449  * @cdef:                       av1 CDEF parameters
450  * @mfmv:                       av1 mfmv parameters
451  * @tile:                       av1 Tile info
452  * @frame_is_intra:             intra frame
453  * @loss_less_array:            loss less array
454  * @coded_loss_less:            coded lsss less
455  * @mi_rows:                    size of mi unit in rows
456  * @mi_cols:                    size of mi unit in cols
457  */
458 struct vdec_av1_slice_uncompressed_header {
459 	u8 use_ref_frame_mvs;
460 	int order_hint;
461 	struct vdec_av1_slice_gm gm[V4L2_AV1_TOTAL_REFS_PER_FRAME];
462 	u32 upscaled_width;
463 	u32 frame_width;
464 	u32 frame_height;
465 	u8 reduced_tx_set;
466 	u8 tx_mode;
467 	u8 uniform_tile_spacing_flag;
468 	u8 interpolation_filter;
469 	u8 allow_warped_motion;
470 	u8 is_motion_mode_switchable;
471 	u8 reference_mode;
472 	u8 allow_high_precision_mv;
473 	u8 allow_intra_bc;
474 	u8 force_integer_mv;
475 	u8 allow_screen_content_tools;
476 	u8 error_resilient_mode;
477 	u8 frame_type;
478 	u8 primary_ref_frame;
479 	u8 disable_frame_end_update_cdf;
480 	u32 disable_cdf_update;
481 	struct vdec_av1_slice_sm skip_mode;
482 	struct vdec_av1_slice_seg seg;
483 	struct vdec_av1_slice_delta_q_lf delta_q_lf;
484 	struct vdec_av1_slice_quantization quant;
485 	struct vdec_av1_slice_lr lr;
486 	u32 superres_denom;
487 	struct vdec_av1_slice_loop_filter loop_filter;
488 	struct vdec_av1_slice_cdef cdef;
489 	struct vdec_av1_slice_mfmv mfmv;
490 	struct vdec_av1_slice_tile tile;
491 	u8 frame_is_intra;
492 	u8 loss_less_array[V4L2_AV1_MAX_SEGMENTS];
493 	u8 coded_loss_less;
494 	u32 mi_rows;
495 	u32 mi_cols;
496 };
497 
498 /**
499  * struct vdec_av1_slice_seq_header - Represents an AV1 Sequence OBU
500  * @bitdepth:                   the bitdepth to use for the sequence
501  * @enable_superres:            specifies whether the use_superres syntax element may be present
502  * @enable_filter_intra:        specifies the use_filter_intra syntax element may be present
503  * @enable_intra_edge_filter:   whether the intra edge filtering process should be enabled
504  * @enable_interintra_compound: specifies the mode info fo rinter blocks may
505  *                              contain the syntax element interintra
506  * @enable_masked_compound:     specifies the mode info fo rinter blocks may
507  *                              contain the syntax element compound_type
508  * @enable_dual_filter:         the inter prediction filter type may be specified independently
509  * @enable_jnt_comp:            distance weights process may be used for inter prediction
510  * @mono_chrome:                indicates the video does not contain U and V color planes
511  * @enable_order_hint:          tools based on the values of order hints may be used
512  * @order_hint_bits:            the number of bits used for the order_hint field at each frame
513  * @use_128x128_superblock:     indicates superblocks contain 128*128 luma samples
514  * @subsampling_x:              the chroma subsamling format
515  * @subsampling_y:              the chroma subsamling format
516  * @max_frame_width:            the maximum frame width for the frames represented by sequence
517  * @max_frame_height:           the maximum frame height for the frames represented by sequence
518  */
519 struct vdec_av1_slice_seq_header {
520 	u8 bitdepth;
521 	u8 enable_superres;
522 	u8 enable_filter_intra;
523 	u8 enable_intra_edge_filter;
524 	u8 enable_interintra_compound;
525 	u8 enable_masked_compound;
526 	u8 enable_dual_filter;
527 	u8 enable_jnt_comp;
528 	u8 mono_chrome;
529 	u8 enable_order_hint;
530 	u8 order_hint_bits;
531 	u8 use_128x128_superblock;
532 	u8 subsampling_x;
533 	u8 subsampling_y;
534 	u32 max_frame_width;
535 	u32 max_frame_height;
536 };
537 
538 /**
539  * struct vdec_av1_slice_frame - Represents current Frame info
540  * @uh:                         uncompressed header info
541  * @seq:                        sequence header info
542  * @large_scale_tile:           is large scale mode
543  * @cur_ts:                     current frame timestamp
544  * @prev_fb_idx:                prev slot id
545  * @ref_frame_sign_bias:        arrays for ref_frame sign bias
546  * @order_hints:                arrays for ref_frame order hint
547  * @ref_frame_valid:            arrays for valid ref_frame
548  * @ref_frame_map:              map to slot frame info
549  * @frame_refs:                 ref_frame info
550  */
551 struct vdec_av1_slice_frame {
552 	struct vdec_av1_slice_uncompressed_header uh;
553 	struct vdec_av1_slice_seq_header seq;
554 	u8 large_scale_tile;
555 	u64 cur_ts;
556 	int prev_fb_idx;
557 	u8 ref_frame_sign_bias[V4L2_AV1_TOTAL_REFS_PER_FRAME];
558 	u32 order_hints[V4L2_AV1_REFS_PER_FRAME];
559 	u32 ref_frame_valid[V4L2_AV1_REFS_PER_FRAME];
560 	int ref_frame_map[V4L2_AV1_TOTAL_REFS_PER_FRAME];
561 	struct vdec_av1_slice_frame_refs frame_refs[V4L2_AV1_REFS_PER_FRAME];
562 };
563 
564 /**
565  * struct vdec_av1_slice_work_buffer - work buffer for lat
566  * @mv_addr:    mv buffer memory info
567  * @cdf_addr:   cdf buffer memory info
568  * @segid_addr: segid buffer memory info
569  */
570 struct vdec_av1_slice_work_buffer {
571 	struct vdec_av1_slice_mem mv_addr;
572 	struct vdec_av1_slice_mem cdf_addr;
573 	struct vdec_av1_slice_mem segid_addr;
574 };
575 
576 /**
577  * struct vdec_av1_slice_frame_info - frame info for each slot
578  * @frame_type:         frame type
579  * @frame_is_intra:     is intra frame
580  * @order_hint:         order hint
581  * @order_hints:        referece frame order hint
582  * @upscaled_width:     upscale width
583  * @pic_pitch:          buffer pitch
584  * @frame_width:        frane width
585  * @frame_height:       frame height
586  * @mi_rows:            rows in mode info
587  * @mi_cols:            cols in mode info
588  * @ref_count:          mark to reference frame counts
589  */
590 struct vdec_av1_slice_frame_info {
591 	u8 frame_type;
592 	u8 frame_is_intra;
593 	int order_hint;
594 	u32 order_hints[V4L2_AV1_REFS_PER_FRAME];
595 	u32 upscaled_width;
596 	u32 pic_pitch;
597 	u32 frame_width;
598 	u32 frame_height;
599 	u32 mi_rows;
600 	u32 mi_cols;
601 	int ref_count;
602 };
603 
604 /**
605  * struct vdec_av1_slice_slot - slot info that needs to be saved in the global instance
606  * @frame_info: frame info for each slot
607  * @timestamp:  time stamp info
608  */
609 struct vdec_av1_slice_slot {
610 	struct vdec_av1_slice_frame_info frame_info[AV1_MAX_FRAME_BUF_COUNT];
611 	u64 timestamp[AV1_MAX_FRAME_BUF_COUNT];
612 };
613 
614 /**
615  * struct vdec_av1_slice_fb - frame buffer for decoding
616  * @y:  current y buffer address info
617  * @c:  current c buffer address info
618  */
619 struct vdec_av1_slice_fb {
620 	struct vdec_av1_slice_mem y;
621 	struct vdec_av1_slice_mem c;
622 };
623 
624 /**
625  * struct vdec_av1_slice_vsi - exchange frame information between Main CPU and MicroP
626  * @bs:			input buffer info
627  * @work_buffer:	working buffe for hw
628  * @cdf_table:		cdf_table buffer
629  * @cdf_tmp:		cdf temp buffer
630  * @rd_mv:		mv buffer for lat output , core input
631  * @ube:		ube buffer
632  * @trans:		transcoded buffer
633  * @err_map:		err map buffer
634  * @row_info:		row info buffer
635  * @fb:			current y/c buffer
636  * @ref:		ref y/c buffer
637  * @iq_table:		iq table buffer
638  * @tile:		tile buffer
639  * @slots:		slots info for each frame
640  * @slot_id:		current frame slot id
641  * @frame:		current frame info
642  * @state:		status after decode done
643  * @cur_lst_tile_id:	tile id for large scale
644  */
645 struct vdec_av1_slice_vsi {
646 	/* lat */
647 	struct vdec_av1_slice_mem bs;
648 	struct vdec_av1_slice_work_buffer work_buffer[AV1_MAX_FRAME_BUF_COUNT];
649 	struct vdec_av1_slice_mem cdf_table;
650 	struct vdec_av1_slice_mem cdf_tmp;
651 	/* LAT stage's output, Core stage's input */
652 	struct vdec_av1_slice_mem rd_mv;
653 	struct vdec_av1_slice_mem ube;
654 	struct vdec_av1_slice_mem trans;
655 	struct vdec_av1_slice_mem err_map;
656 	struct vdec_av1_slice_mem row_info;
657 	/* core */
658 	struct vdec_av1_slice_fb fb;
659 	struct vdec_av1_slice_fb ref[V4L2_AV1_REFS_PER_FRAME];
660 	struct vdec_av1_slice_mem iq_table;
661 	/* lat and core share*/
662 	struct vdec_av1_slice_mem tile;
663 	struct vdec_av1_slice_slot slots;
664 	s8 slot_id;
665 	struct vdec_av1_slice_frame frame;
666 	struct vdec_av1_slice_state state;
667 	u32 cur_lst_tile_id;
668 };
669 
670 /**
671  * struct vdec_av1_slice_pfc - per-frame context that contains a local vsi.
672  *                             pass it from lat to core
673  * @vsi:        local vsi. copy to/from remote vsi before/after decoding
674  * @ref_idx:    reference buffer timestamp
675  * @seq:        picture sequence
676  */
677 struct vdec_av1_slice_pfc {
678 	struct vdec_av1_slice_vsi vsi;
679 	u64 ref_idx[V4L2_AV1_REFS_PER_FRAME];
680 	int seq;
681 };
682 
683 /**
684  * struct vdec_av1_slice_instance - represent one av1 instance
685  * @ctx:                pointer to codec's context
686  * @vpu:                VPU instance
687  * @iq_table:           iq table buffer
688  * @cdf_table:          cdf table buffer
689  * @mv:                 mv working buffer
690  * @cdf:                cdf working buffer
691  * @seg:                segmentation working buffer
692  * @cdf_temp:           cdf temp buffer
693  * @tile:               tile buffer
694  * @slots:              slots info
695  * @tile_group:         tile_group entry
696  * @level:              level of current resolution
697  * @width:              width of last picture
698  * @height:             height of last picture
699  * @frame_type:         frame_type of last picture
700  * @irq_enabled:        irq to Main CPU or MicroP
701  * @inneracing_mode:    is inneracing mode
702  * @init_vsi:           vsi used for initialized AV1 instance
703  * @vsi:                vsi used for decoding/flush ...
704  * @core_vsi:           vsi used for Core stage
705  * @seq:                global picture sequence
706  */
707 struct vdec_av1_slice_instance {
708 	struct mtk_vcodec_dec_ctx *ctx;
709 	struct vdec_vpu_inst vpu;
710 
711 	struct mtk_vcodec_mem iq_table;
712 	struct mtk_vcodec_mem cdf_table;
713 
714 	struct mtk_vcodec_mem mv[AV1_MAX_FRAME_BUF_COUNT];
715 	struct mtk_vcodec_mem cdf[AV1_MAX_FRAME_BUF_COUNT];
716 	struct mtk_vcodec_mem seg[AV1_MAX_FRAME_BUF_COUNT];
717 	struct mtk_vcodec_mem cdf_temp;
718 	struct mtk_vcodec_mem tile;
719 	struct vdec_av1_slice_slot slots;
720 	struct vdec_av1_slice_tile_group tile_group;
721 
722 	/* for resolution change and get_pic_info */
723 	enum vdec_av1_slice_resolution_level level;
724 	u32 width;
725 	u32 height;
726 
727 	u32 frame_type;
728 	u32 irq_enabled;
729 	u32 inneracing_mode;
730 
731 	/* MicroP vsi */
732 	union {
733 		struct vdec_av1_slice_init_vsi *init_vsi;
734 		struct vdec_av1_slice_vsi *vsi;
735 	};
736 	struct vdec_av1_slice_vsi *core_vsi;
737 	int seq;
738 };
739 
740 static int vdec_av1_slice_core_decode(struct vdec_lat_buf *lat_buf);
741 
vdec_av1_slice_get_msb(u32 n)742 static inline int vdec_av1_slice_get_msb(u32 n)
743 {
744 	if (n == 0)
745 		return 0;
746 	return 31 ^ __builtin_clz(n);
747 }
748 
vdec_av1_slice_need_scale(u32 ref_width,u32 ref_height,u32 this_width,u32 this_height)749 static inline bool vdec_av1_slice_need_scale(u32 ref_width, u32 ref_height,
750 					     u32 this_width, u32 this_height)
751 {
752 	return ((this_width << 1) >= ref_width) &&
753 		((this_height << 1) >= ref_height) &&
754 		(this_width <= (ref_width << 4)) &&
755 		(this_height <= (ref_height << 4));
756 }
757 
vdec_av1_get_ctrl_ptr(struct mtk_vcodec_dec_ctx * ctx,int id)758 static void *vdec_av1_get_ctrl_ptr(struct mtk_vcodec_dec_ctx *ctx, int id)
759 {
760 	struct v4l2_ctrl *ctrl = v4l2_ctrl_find(&ctx->ctrl_hdl, id);
761 
762 	if (!ctrl)
763 		return ERR_PTR(-EINVAL);
764 
765 	return ctrl->p_cur.p;
766 }
767 
vdec_av1_slice_init_cdf_table(struct vdec_av1_slice_instance * instance)768 static int vdec_av1_slice_init_cdf_table(struct vdec_av1_slice_instance *instance)
769 {
770 	u8 *remote_cdf_table;
771 	struct mtk_vcodec_dec_ctx *ctx;
772 	struct vdec_av1_slice_init_vsi *vsi;
773 	int ret;
774 
775 	ctx = instance->ctx;
776 	vsi = instance->vpu.vsi;
777 	remote_cdf_table = mtk_vcodec_fw_map_dm_addr(ctx->dev->fw_handler,
778 						     (u32)vsi->cdf_table_addr);
779 	if (IS_ERR(remote_cdf_table)) {
780 		mtk_vdec_err(ctx, "failed to map cdf table\n");
781 		return PTR_ERR(remote_cdf_table);
782 	}
783 
784 	mtk_vdec_debug(ctx, "map cdf table to 0x%p\n", remote_cdf_table);
785 
786 	if (instance->cdf_table.va)
787 		mtk_vcodec_mem_free(ctx, &instance->cdf_table);
788 	instance->cdf_table.size = vsi->cdf_table_size;
789 
790 	ret = mtk_vcodec_mem_alloc(ctx, &instance->cdf_table);
791 	if (ret)
792 		return ret;
793 
794 	memcpy(instance->cdf_table.va, remote_cdf_table, vsi->cdf_table_size);
795 
796 	return 0;
797 }
798 
vdec_av1_slice_init_iq_table(struct vdec_av1_slice_instance * instance)799 static int vdec_av1_slice_init_iq_table(struct vdec_av1_slice_instance *instance)
800 {
801 	u8 *remote_iq_table;
802 	struct mtk_vcodec_dec_ctx *ctx;
803 	struct vdec_av1_slice_init_vsi *vsi;
804 	int ret;
805 
806 	ctx = instance->ctx;
807 	vsi = instance->vpu.vsi;
808 	remote_iq_table = mtk_vcodec_fw_map_dm_addr(ctx->dev->fw_handler,
809 						    (u32)vsi->iq_table_addr);
810 	if (IS_ERR(remote_iq_table)) {
811 		mtk_vdec_err(ctx, "failed to map iq table\n");
812 		return PTR_ERR(remote_iq_table);
813 	}
814 
815 	mtk_vdec_debug(ctx, "map iq table to 0x%p\n", remote_iq_table);
816 
817 	if (instance->iq_table.va)
818 		mtk_vcodec_mem_free(ctx, &instance->iq_table);
819 	instance->iq_table.size = vsi->iq_table_size;
820 
821 	ret = mtk_vcodec_mem_alloc(ctx, &instance->iq_table);
822 	if (ret)
823 		return ret;
824 
825 	memcpy(instance->iq_table.va, remote_iq_table, vsi->iq_table_size);
826 
827 	return 0;
828 }
829 
vdec_av1_slice_get_new_slot(struct vdec_av1_slice_vsi * vsi)830 static int vdec_av1_slice_get_new_slot(struct vdec_av1_slice_vsi *vsi)
831 {
832 	struct vdec_av1_slice_slot *slots = &vsi->slots;
833 	int new_slot_idx = AV1_INVALID_IDX;
834 	int i;
835 
836 	for (i = 0; i < AV1_MAX_FRAME_BUF_COUNT; i++) {
837 		if (slots->frame_info[i].ref_count == 0) {
838 			new_slot_idx = i;
839 			break;
840 		}
841 	}
842 
843 	if (new_slot_idx != AV1_INVALID_IDX) {
844 		slots->frame_info[new_slot_idx].ref_count++;
845 		slots->timestamp[new_slot_idx] = vsi->frame.cur_ts;
846 	}
847 
848 	return new_slot_idx;
849 }
850 
vdec_av1_slice_clear_fb(struct vdec_av1_slice_frame_info * frame_info)851 static inline void vdec_av1_slice_clear_fb(struct vdec_av1_slice_frame_info *frame_info)
852 {
853 	memset((void *)frame_info, 0, sizeof(struct vdec_av1_slice_frame_info));
854 }
855 
vdec_av1_slice_decrease_ref_count(struct vdec_av1_slice_slot * slots,int fb_idx)856 static void vdec_av1_slice_decrease_ref_count(struct vdec_av1_slice_slot *slots, int fb_idx)
857 {
858 	struct vdec_av1_slice_frame_info *frame_info = slots->frame_info;
859 
860 	frame_info[fb_idx].ref_count--;
861 	if (frame_info[fb_idx].ref_count < 0) {
862 		frame_info[fb_idx].ref_count = 0;
863 		pr_err(MTK_DBG_V4L2_STR "av1_error: %s() fb_idx %d decrease ref_count error\n",
864 		       __func__, fb_idx);
865 	}
866 
867 	vdec_av1_slice_clear_fb(&frame_info[fb_idx]);
868 }
869 
vdec_av1_slice_cleanup_slots(struct vdec_av1_slice_slot * slots,struct vdec_av1_slice_frame * frame,struct v4l2_ctrl_av1_frame * ctrl_fh)870 static void vdec_av1_slice_cleanup_slots(struct vdec_av1_slice_slot *slots,
871 					 struct vdec_av1_slice_frame *frame,
872 					 struct v4l2_ctrl_av1_frame *ctrl_fh)
873 {
874 	int slot_id, ref_id;
875 
876 	for (ref_id = 0; ref_id < V4L2_AV1_TOTAL_REFS_PER_FRAME; ref_id++)
877 		frame->ref_frame_map[ref_id] = AV1_INVALID_IDX;
878 
879 	for (slot_id = 0; slot_id < AV1_MAX_FRAME_BUF_COUNT; slot_id++) {
880 		u64 timestamp = slots->timestamp[slot_id];
881 		bool ref_used = false;
882 
883 		/* ignored unused slots */
884 		if (slots->frame_info[slot_id].ref_count == 0)
885 			continue;
886 
887 		for (ref_id = 0; ref_id < V4L2_AV1_TOTAL_REFS_PER_FRAME; ref_id++) {
888 			if (ctrl_fh->reference_frame_ts[ref_id] == timestamp) {
889 				frame->ref_frame_map[ref_id] = slot_id;
890 				ref_used = true;
891 			}
892 		}
893 
894 		if (!ref_used)
895 			vdec_av1_slice_decrease_ref_count(slots, slot_id);
896 	}
897 }
898 
vdec_av1_slice_setup_slot(struct vdec_av1_slice_instance * instance,struct vdec_av1_slice_vsi * vsi,struct v4l2_ctrl_av1_frame * ctrl_fh)899 static void vdec_av1_slice_setup_slot(struct vdec_av1_slice_instance *instance,
900 				      struct vdec_av1_slice_vsi *vsi,
901 				      struct v4l2_ctrl_av1_frame *ctrl_fh)
902 {
903 	struct vdec_av1_slice_frame_info *cur_frame_info;
904 	struct vdec_av1_slice_uncompressed_header *uh = &vsi->frame.uh;
905 	int ref_id;
906 
907 	memcpy(&vsi->slots, &instance->slots, sizeof(instance->slots));
908 	vdec_av1_slice_cleanup_slots(&vsi->slots, &vsi->frame, ctrl_fh);
909 	vsi->slot_id = vdec_av1_slice_get_new_slot(vsi);
910 
911 	if (vsi->slot_id == AV1_INVALID_IDX) {
912 		mtk_v4l2_vdec_err(instance->ctx, "warning:av1 get invalid index slot\n");
913 		vsi->slot_id = 0;
914 	}
915 	cur_frame_info = &vsi->slots.frame_info[vsi->slot_id];
916 	cur_frame_info->frame_type = uh->frame_type;
917 	cur_frame_info->frame_is_intra = ((uh->frame_type == AV1_INTRA_ONLY_FRAME) ||
918 					  (uh->frame_type == AV1_KEY_FRAME));
919 	cur_frame_info->order_hint = uh->order_hint;
920 	cur_frame_info->upscaled_width = uh->upscaled_width;
921 	cur_frame_info->pic_pitch = 0;
922 	cur_frame_info->frame_width = uh->frame_width;
923 	cur_frame_info->frame_height = uh->frame_height;
924 	cur_frame_info->mi_cols = ((uh->frame_width + 7) >> 3) << 1;
925 	cur_frame_info->mi_rows = ((uh->frame_height + 7) >> 3) << 1;
926 
927 	/* ensure current frame is properly mapped if referenced */
928 	for (ref_id = 0; ref_id < V4L2_AV1_TOTAL_REFS_PER_FRAME; ref_id++) {
929 		u64 timestamp = vsi->slots.timestamp[vsi->slot_id];
930 
931 		if (ctrl_fh->reference_frame_ts[ref_id] == timestamp)
932 			vsi->frame.ref_frame_map[ref_id] = vsi->slot_id;
933 	}
934 }
935 
vdec_av1_slice_alloc_working_buffer(struct vdec_av1_slice_instance * instance,struct vdec_av1_slice_vsi * vsi)936 static int vdec_av1_slice_alloc_working_buffer(struct vdec_av1_slice_instance *instance,
937 					       struct vdec_av1_slice_vsi *vsi)
938 {
939 	struct mtk_vcodec_dec_ctx *ctx = instance->ctx;
940 	enum vdec_av1_slice_resolution_level level;
941 	u32 max_sb_w, max_sb_h, max_w, max_h, w, h;
942 	int i, ret;
943 
944 	w = vsi->frame.uh.frame_width;
945 	h = vsi->frame.uh.frame_height;
946 
947 	if (w > VCODEC_DEC_4K_CODED_WIDTH || h > VCODEC_DEC_4K_CODED_HEIGHT)
948 		/* 8K */
949 		return -EINVAL;
950 
951 	if (w > MTK_VDEC_MAX_W || h > MTK_VDEC_MAX_H) {
952 		/* 4K */
953 		level = AV1_RES_4K;
954 		max_w = VCODEC_DEC_4K_CODED_WIDTH;
955 		max_h = VCODEC_DEC_4K_CODED_HEIGHT;
956 	} else {
957 		/* FHD */
958 		level = AV1_RES_FHD;
959 		max_w = MTK_VDEC_MAX_W;
960 		max_h = MTK_VDEC_MAX_H;
961 	}
962 
963 	if (level == instance->level)
964 		return 0;
965 
966 	mtk_vdec_debug(ctx, "resolution level changed from %u to %u, %ux%u",
967 		       instance->level, level, w, h);
968 
969 	max_sb_w = DIV_ROUND_UP(max_w, 128);
970 	max_sb_h = DIV_ROUND_UP(max_h, 128);
971 
972 	for (i = 0; i < AV1_MAX_FRAME_BUF_COUNT; i++) {
973 		if (instance->mv[i].va)
974 			mtk_vcodec_mem_free(ctx, &instance->mv[i]);
975 		instance->mv[i].size = max_sb_w * max_sb_h * SZ_1K;
976 		ret = mtk_vcodec_mem_alloc(ctx, &instance->mv[i]);
977 		if (ret)
978 			goto err;
979 
980 		if (instance->seg[i].va)
981 			mtk_vcodec_mem_free(ctx, &instance->seg[i]);
982 		instance->seg[i].size = max_sb_w * max_sb_h * 512;
983 		ret = mtk_vcodec_mem_alloc(ctx, &instance->seg[i]);
984 		if (ret)
985 			goto err;
986 
987 		if (instance->cdf[i].va)
988 			mtk_vcodec_mem_free(ctx, &instance->cdf[i]);
989 		instance->cdf[i].size = AV1_CDF_TABLE_BUFFER_SIZE;
990 		ret = mtk_vcodec_mem_alloc(ctx, &instance->cdf[i]);
991 		if (ret)
992 			goto err;
993 	}
994 
995 	if (!instance->cdf_temp.va) {
996 		instance->cdf_temp.size = (SZ_1K * 16 * 100);
997 		ret = mtk_vcodec_mem_alloc(ctx, &instance->cdf_temp);
998 		if (ret)
999 			goto err;
1000 		vsi->cdf_tmp.buf = instance->cdf_temp.dma_addr;
1001 		vsi->cdf_tmp.size = instance->cdf_temp.size;
1002 	}
1003 
1004 	if (instance->tile.va)
1005 		mtk_vcodec_mem_free(ctx, &instance->tile);
1006 
1007 	instance->tile.size = AV1_TILE_BUF_SIZE * V4L2_AV1_MAX_TILE_COUNT;
1008 	ret = mtk_vcodec_mem_alloc(ctx, &instance->tile);
1009 	if (ret)
1010 		goto err;
1011 
1012 	instance->level = level;
1013 	return 0;
1014 
1015 err:
1016 	instance->level = AV1_RES_NONE;
1017 	return ret;
1018 }
1019 
vdec_av1_slice_free_working_buffer(struct vdec_av1_slice_instance * instance)1020 static void vdec_av1_slice_free_working_buffer(struct vdec_av1_slice_instance *instance)
1021 {
1022 	struct mtk_vcodec_dec_ctx *ctx = instance->ctx;
1023 	int i;
1024 
1025 	for (i = 0; i < ARRAY_SIZE(instance->mv); i++)
1026 		if (instance->mv[i].va)
1027 			mtk_vcodec_mem_free(ctx, &instance->mv[i]);
1028 
1029 	for (i = 0; i < ARRAY_SIZE(instance->seg); i++)
1030 		if (instance->seg[i].va)
1031 			mtk_vcodec_mem_free(ctx, &instance->seg[i]);
1032 
1033 	for (i = 0; i < ARRAY_SIZE(instance->cdf); i++)
1034 		if (instance->cdf[i].va)
1035 			mtk_vcodec_mem_free(ctx, &instance->cdf[i]);
1036 
1037 
1038 	if (instance->tile.va)
1039 		mtk_vcodec_mem_free(ctx, &instance->tile);
1040 	if (instance->cdf_temp.va)
1041 		mtk_vcodec_mem_free(ctx, &instance->cdf_temp);
1042 	if (instance->cdf_table.va)
1043 		mtk_vcodec_mem_free(ctx, &instance->cdf_table);
1044 	if (instance->iq_table.va)
1045 		mtk_vcodec_mem_free(ctx, &instance->iq_table);
1046 
1047 	instance->level = AV1_RES_NONE;
1048 }
1049 
vdec_av1_slice_vsi_from_remote(struct vdec_av1_slice_vsi * vsi,struct vdec_av1_slice_vsi * remote_vsi)1050 static inline void vdec_av1_slice_vsi_from_remote(struct vdec_av1_slice_vsi *vsi,
1051 						  struct vdec_av1_slice_vsi *remote_vsi)
1052 {
1053 	memcpy(&vsi->trans, &remote_vsi->trans, sizeof(vsi->trans));
1054 	memcpy(&vsi->state, &remote_vsi->state, sizeof(vsi->state));
1055 }
1056 
vdec_av1_slice_vsi_to_remote(struct vdec_av1_slice_vsi * vsi,struct vdec_av1_slice_vsi * remote_vsi)1057 static inline void vdec_av1_slice_vsi_to_remote(struct vdec_av1_slice_vsi *vsi,
1058 						struct vdec_av1_slice_vsi *remote_vsi)
1059 {
1060 	memcpy(remote_vsi, vsi, sizeof(*vsi));
1061 }
1062 
vdec_av1_slice_setup_lat_from_src_buf(struct vdec_av1_slice_instance * instance,struct vdec_av1_slice_vsi * vsi,struct vdec_lat_buf * lat_buf)1063 static int vdec_av1_slice_setup_lat_from_src_buf(struct vdec_av1_slice_instance *instance,
1064 						 struct vdec_av1_slice_vsi *vsi,
1065 						 struct vdec_lat_buf *lat_buf)
1066 {
1067 	struct vb2_v4l2_buffer *src;
1068 	struct vb2_v4l2_buffer *dst;
1069 
1070 	src = v4l2_m2m_next_src_buf(instance->ctx->m2m_ctx);
1071 	if (!src)
1072 		return -EINVAL;
1073 
1074 	lat_buf->src_buf_req = src->vb2_buf.req_obj.req;
1075 	dst = &lat_buf->ts_info;
1076 	v4l2_m2m_buf_copy_metadata(src, dst, true);
1077 	vsi->frame.cur_ts = dst->vb2_buf.timestamp;
1078 
1079 	return 0;
1080 }
1081 
vdec_av1_slice_resolve_divisor_32(u32 D,short * shift)1082 static short vdec_av1_slice_resolve_divisor_32(u32 D, short *shift)
1083 {
1084 	int f;
1085 	int e;
1086 
1087 	*shift = vdec_av1_slice_get_msb(D);
1088 	/* e is obtained from D after resetting the most significant 1 bit. */
1089 	e = D - ((u32)1 << *shift);
1090 	/* Get the most significant DIV_LUT_BITS (8) bits of e into f */
1091 	if (*shift > DIV_LUT_BITS)
1092 		f = AV1_DIV_ROUND_UP_POW2(e, *shift - DIV_LUT_BITS);
1093 	else
1094 		f = e << (DIV_LUT_BITS - *shift);
1095 	if (f > DIV_LUT_NUM)
1096 		return -1;
1097 	*shift += DIV_LUT_PREC_BITS;
1098 	/* Use f as lookup into the precomputed table of multipliers */
1099 	return div_lut[f];
1100 }
1101 
vdec_av1_slice_get_shear_params(struct vdec_av1_slice_gm * gm_params)1102 static void vdec_av1_slice_get_shear_params(struct vdec_av1_slice_gm *gm_params)
1103 {
1104 	const int *mat = gm_params->wmmat;
1105 	short shift;
1106 	short y;
1107 	long long gv, dv;
1108 
1109 	if (gm_params->wmmat[2] <= 0)
1110 		return;
1111 
1112 	gm_params->alpha = clamp_val(mat[2] - (1 << WARPEDMODEL_PREC_BITS), S16_MIN, S16_MAX);
1113 	gm_params->beta = clamp_val(mat[3], S16_MIN, S16_MAX);
1114 
1115 	y = vdec_av1_slice_resolve_divisor_32(abs(mat[2]), &shift) * (mat[2] < 0 ? -1 : 1);
1116 
1117 	gv = ((long long)mat[4] * (1 << WARPEDMODEL_PREC_BITS)) * y;
1118 	gm_params->gamma = clamp_val((int)AV1_DIV_ROUND_UP_POW2_SIGNED(gv, shift),
1119 				     S16_MIN, S16_MAX);
1120 
1121 	dv = ((long long)mat[3] * mat[4]) * y;
1122 	gm_params->delta = clamp_val(mat[5] - (int)AV1_DIV_ROUND_UP_POW2_SIGNED(dv, shift) -
1123 				     (1 << WARPEDMODEL_PREC_BITS), S16_MIN, S16_MAX);
1124 
1125 	gm_params->alpha = AV1_DIV_ROUND_UP_POW2_SIGNED(gm_params->alpha, WARP_PARAM_REDUCE_BITS) *
1126 							(1 << WARP_PARAM_REDUCE_BITS);
1127 	gm_params->beta = AV1_DIV_ROUND_UP_POW2_SIGNED(gm_params->beta, WARP_PARAM_REDUCE_BITS) *
1128 						       (1 << WARP_PARAM_REDUCE_BITS);
1129 	gm_params->gamma = AV1_DIV_ROUND_UP_POW2_SIGNED(gm_params->gamma, WARP_PARAM_REDUCE_BITS) *
1130 							(1 << WARP_PARAM_REDUCE_BITS);
1131 	gm_params->delta = AV1_DIV_ROUND_UP_POW2_SIGNED(gm_params->delta, WARP_PARAM_REDUCE_BITS) *
1132 							(1 << WARP_PARAM_REDUCE_BITS);
1133 }
1134 
vdec_av1_slice_setup_gm(struct vdec_av1_slice_gm * gm,struct v4l2_av1_global_motion * ctrl_gm)1135 static void vdec_av1_slice_setup_gm(struct vdec_av1_slice_gm *gm,
1136 				    struct v4l2_av1_global_motion *ctrl_gm)
1137 {
1138 	u32 i, j;
1139 
1140 	for (i = 0; i < V4L2_AV1_TOTAL_REFS_PER_FRAME; i++) {
1141 		gm[i].wmtype = ctrl_gm->type[i];
1142 		for (j = 0; j < 6; j++)
1143 			gm[i].wmmat[j] = ctrl_gm->params[i][j];
1144 
1145 		gm[i].invalid = !!(ctrl_gm->invalid & BIT(i));
1146 		gm[i].alpha = 0;
1147 		gm[i].beta = 0;
1148 		gm[i].gamma = 0;
1149 		gm[i].delta = 0;
1150 		if (gm[i].wmtype <= V4L2_AV1_WARP_MODEL_AFFINE)
1151 			vdec_av1_slice_get_shear_params(&gm[i]);
1152 	}
1153 }
1154 
vdec_av1_slice_setup_seg(struct vdec_av1_slice_seg * seg,struct v4l2_av1_segmentation * ctrl_seg)1155 static void vdec_av1_slice_setup_seg(struct vdec_av1_slice_seg *seg,
1156 				     struct v4l2_av1_segmentation *ctrl_seg)
1157 {
1158 	u32 i, j;
1159 
1160 	seg->segmentation_enabled = SEGMENTATION_FLAG(ctrl_seg, ENABLED);
1161 	seg->segmentation_update_map = SEGMENTATION_FLAG(ctrl_seg, UPDATE_MAP);
1162 	seg->segmentation_temporal_update = SEGMENTATION_FLAG(ctrl_seg, TEMPORAL_UPDATE);
1163 	seg->segmentation_update_data = SEGMENTATION_FLAG(ctrl_seg, UPDATE_DATA);
1164 	seg->segid_preskip = SEGMENTATION_FLAG(ctrl_seg, SEG_ID_PRE_SKIP);
1165 	seg->last_active_segid = ctrl_seg->last_active_seg_id;
1166 
1167 	for (i = 0; i < V4L2_AV1_MAX_SEGMENTS; i++) {
1168 		seg->feature_enabled_mask[i] = ctrl_seg->feature_enabled[i];
1169 		for (j = 0; j < V4L2_AV1_SEG_LVL_MAX; j++)
1170 			seg->feature_data[i][j] = ctrl_seg->feature_data[i][j];
1171 	}
1172 }
1173 
vdec_av1_slice_setup_quant(struct vdec_av1_slice_quantization * quant,struct v4l2_av1_quantization * ctrl_quant)1174 static void vdec_av1_slice_setup_quant(struct vdec_av1_slice_quantization *quant,
1175 				       struct v4l2_av1_quantization *ctrl_quant)
1176 {
1177 	quant->base_q_idx = ctrl_quant->base_q_idx;
1178 	quant->delta_qydc = ctrl_quant->delta_q_y_dc;
1179 	quant->delta_qudc = ctrl_quant->delta_q_u_dc;
1180 	quant->delta_quac = ctrl_quant->delta_q_u_ac;
1181 	quant->delta_qvdc = ctrl_quant->delta_q_v_dc;
1182 	quant->delta_qvac = ctrl_quant->delta_q_v_ac;
1183 	quant->qm_y = ctrl_quant->qm_y;
1184 	quant->qm_u = ctrl_quant->qm_u;
1185 	quant->qm_v = ctrl_quant->qm_v;
1186 	quant->using_qmatrix = QUANT_FLAG(ctrl_quant, USING_QMATRIX);
1187 }
1188 
vdec_av1_slice_get_qindex(struct vdec_av1_slice_uncompressed_header * uh,int segmentation_id)1189 static int vdec_av1_slice_get_qindex(struct vdec_av1_slice_uncompressed_header *uh,
1190 				     int segmentation_id)
1191 {
1192 	struct vdec_av1_slice_seg *seg = &uh->seg;
1193 	struct vdec_av1_slice_quantization *quant = &uh->quant;
1194 	int data = 0, qindex = 0;
1195 
1196 	if (seg->segmentation_enabled &&
1197 	    (seg->feature_enabled_mask[segmentation_id] & BIT(SEG_LVL_ALT_Q))) {
1198 		data = seg->feature_data[segmentation_id][SEG_LVL_ALT_Q];
1199 		qindex = quant->base_q_idx + data;
1200 		return clamp_val(qindex, 0, MAXQ);
1201 	}
1202 
1203 	return quant->base_q_idx;
1204 }
1205 
vdec_av1_slice_setup_lr(struct vdec_av1_slice_lr * lr,struct v4l2_av1_loop_restoration * ctrl_lr)1206 static void vdec_av1_slice_setup_lr(struct vdec_av1_slice_lr *lr,
1207 				    struct v4l2_av1_loop_restoration  *ctrl_lr)
1208 {
1209 	int i;
1210 
1211 	lr->use_lr = 0;
1212 	lr->use_chroma_lr = 0;
1213 	for (i = 0; i < V4L2_AV1_NUM_PLANES_MAX; i++) {
1214 		lr->frame_restoration_type[i] = ctrl_lr->frame_restoration_type[i];
1215 		lr->loop_restoration_size[i] = ctrl_lr->loop_restoration_size[i];
1216 		if (lr->frame_restoration_type[i]) {
1217 			lr->use_lr = 1;
1218 			if (i > 0)
1219 				lr->use_chroma_lr = 1;
1220 		}
1221 	}
1222 }
1223 
vdec_av1_slice_setup_lf(struct vdec_av1_slice_loop_filter * lf,struct v4l2_av1_loop_filter * ctrl_lf)1224 static void vdec_av1_slice_setup_lf(struct vdec_av1_slice_loop_filter *lf,
1225 				    struct v4l2_av1_loop_filter *ctrl_lf)
1226 {
1227 	int i;
1228 
1229 	for (i = 0; i < ARRAY_SIZE(lf->loop_filter_level); i++)
1230 		lf->loop_filter_level[i] = ctrl_lf->level[i];
1231 
1232 	for (i = 0; i < V4L2_AV1_TOTAL_REFS_PER_FRAME; i++)
1233 		lf->loop_filter_ref_deltas[i] = ctrl_lf->ref_deltas[i];
1234 
1235 	for (i = 0; i < ARRAY_SIZE(lf->loop_filter_mode_deltas); i++)
1236 		lf->loop_filter_mode_deltas[i] = ctrl_lf->mode_deltas[i];
1237 
1238 	lf->loop_filter_sharpness = ctrl_lf->sharpness;
1239 	lf->loop_filter_delta_enabled =
1240 		   BIT_FLAG(ctrl_lf, V4L2_AV1_LOOP_FILTER_FLAG_DELTA_ENABLED);
1241 }
1242 
vdec_av1_slice_setup_cdef(struct vdec_av1_slice_cdef * cdef,struct v4l2_av1_cdef * ctrl_cdef)1243 static void vdec_av1_slice_setup_cdef(struct vdec_av1_slice_cdef *cdef,
1244 				      struct v4l2_av1_cdef *ctrl_cdef)
1245 {
1246 	int i;
1247 
1248 	cdef->cdef_damping = ctrl_cdef->damping_minus_3 + 3;
1249 	cdef->cdef_bits = ctrl_cdef->bits;
1250 
1251 	for (i = 0; i < V4L2_AV1_CDEF_MAX; i++) {
1252 		if (ctrl_cdef->y_sec_strength[i] == 4)
1253 			ctrl_cdef->y_sec_strength[i] -= 1;
1254 
1255 		if (ctrl_cdef->uv_sec_strength[i] == 4)
1256 			ctrl_cdef->uv_sec_strength[i] -= 1;
1257 
1258 		cdef->cdef_y_strength[i] =
1259 			ctrl_cdef->y_pri_strength[i] << SECONDARY_FILTER_STRENGTH_NUM_BITS |
1260 			ctrl_cdef->y_sec_strength[i];
1261 		cdef->cdef_uv_strength[i] =
1262 			ctrl_cdef->uv_pri_strength[i] << SECONDARY_FILTER_STRENGTH_NUM_BITS |
1263 			ctrl_cdef->uv_sec_strength[i];
1264 	}
1265 }
1266 
vdec_av1_slice_setup_seq(struct vdec_av1_slice_seq_header * seq,struct v4l2_ctrl_av1_sequence * ctrl_seq)1267 static void vdec_av1_slice_setup_seq(struct vdec_av1_slice_seq_header *seq,
1268 				     struct v4l2_ctrl_av1_sequence *ctrl_seq)
1269 {
1270 	seq->bitdepth = ctrl_seq->bit_depth;
1271 	seq->max_frame_width = ctrl_seq->max_frame_width_minus_1 + 1;
1272 	seq->max_frame_height = ctrl_seq->max_frame_height_minus_1 + 1;
1273 	seq->enable_superres = SEQUENCE_FLAG(ctrl_seq, ENABLE_SUPERRES);
1274 	seq->enable_filter_intra = SEQUENCE_FLAG(ctrl_seq, ENABLE_FILTER_INTRA);
1275 	seq->enable_intra_edge_filter = SEQUENCE_FLAG(ctrl_seq, ENABLE_INTRA_EDGE_FILTER);
1276 	seq->enable_interintra_compound = SEQUENCE_FLAG(ctrl_seq, ENABLE_INTERINTRA_COMPOUND);
1277 	seq->enable_masked_compound = SEQUENCE_FLAG(ctrl_seq, ENABLE_MASKED_COMPOUND);
1278 	seq->enable_dual_filter = SEQUENCE_FLAG(ctrl_seq, ENABLE_DUAL_FILTER);
1279 	seq->enable_jnt_comp = SEQUENCE_FLAG(ctrl_seq, ENABLE_JNT_COMP);
1280 	seq->mono_chrome = SEQUENCE_FLAG(ctrl_seq, MONO_CHROME);
1281 	seq->enable_order_hint = SEQUENCE_FLAG(ctrl_seq, ENABLE_ORDER_HINT);
1282 	seq->order_hint_bits = ctrl_seq->order_hint_bits;
1283 	seq->use_128x128_superblock = SEQUENCE_FLAG(ctrl_seq, USE_128X128_SUPERBLOCK);
1284 	seq->subsampling_x = SEQUENCE_FLAG(ctrl_seq, SUBSAMPLING_X);
1285 	seq->subsampling_y = SEQUENCE_FLAG(ctrl_seq, SUBSAMPLING_Y);
1286 }
1287 
vdec_av1_slice_setup_tile(struct vdec_av1_slice_frame * frame,struct v4l2_av1_tile_info * ctrl_tile)1288 static void vdec_av1_slice_setup_tile(struct vdec_av1_slice_frame *frame,
1289 				      struct v4l2_av1_tile_info *ctrl_tile)
1290 {
1291 	struct vdec_av1_slice_seq_header *seq = &frame->seq;
1292 	struct vdec_av1_slice_tile *tile = &frame->uh.tile;
1293 	u32 mib_size_log2 = seq->use_128x128_superblock ? 5 : 4;
1294 	int i;
1295 
1296 	tile->tile_cols = ctrl_tile->tile_cols;
1297 	tile->tile_rows = ctrl_tile->tile_rows;
1298 	tile->context_update_tile_id = ctrl_tile->context_update_tile_id;
1299 	tile->uniform_tile_spacing_flag =
1300 		BIT_FLAG(ctrl_tile, V4L2_AV1_TILE_INFO_FLAG_UNIFORM_TILE_SPACING);
1301 
1302 	for (i = 0; i < tile->tile_cols + 1; i++)
1303 		tile->mi_col_starts[i] =
1304 			ALIGN(ctrl_tile->mi_col_starts[i], BIT(mib_size_log2)) >> mib_size_log2;
1305 
1306 	for (i = 0; i < tile->tile_rows + 1; i++)
1307 		tile->mi_row_starts[i] =
1308 			ALIGN(ctrl_tile->mi_row_starts[i], BIT(mib_size_log2)) >> mib_size_log2;
1309 }
1310 
vdec_av1_slice_setup_uh(struct vdec_av1_slice_instance * instance,struct vdec_av1_slice_frame * frame,struct v4l2_ctrl_av1_frame * ctrl_fh)1311 static void vdec_av1_slice_setup_uh(struct vdec_av1_slice_instance *instance,
1312 				    struct vdec_av1_slice_frame *frame,
1313 				    struct v4l2_ctrl_av1_frame *ctrl_fh)
1314 {
1315 	struct vdec_av1_slice_uncompressed_header *uh = &frame->uh;
1316 	int i;
1317 
1318 	uh->use_ref_frame_mvs = FH_FLAG(ctrl_fh, USE_REF_FRAME_MVS);
1319 	uh->order_hint = ctrl_fh->order_hint;
1320 	vdec_av1_slice_setup_gm(uh->gm, &ctrl_fh->global_motion);
1321 	uh->upscaled_width = ctrl_fh->upscaled_width;
1322 	uh->frame_width = ctrl_fh->frame_width_minus_1 + 1;
1323 	uh->frame_height = ctrl_fh->frame_height_minus_1 + 1;
1324 	uh->mi_cols = ((uh->frame_width + 7) >> 3) << 1;
1325 	uh->mi_rows = ((uh->frame_height + 7) >> 3) << 1;
1326 	uh->reduced_tx_set = FH_FLAG(ctrl_fh, REDUCED_TX_SET);
1327 	uh->tx_mode = ctrl_fh->tx_mode;
1328 	uh->uniform_tile_spacing_flag =
1329 		BIT_FLAG(&ctrl_fh->tile_info, V4L2_AV1_TILE_INFO_FLAG_UNIFORM_TILE_SPACING);
1330 	uh->interpolation_filter = ctrl_fh->interpolation_filter;
1331 	uh->allow_warped_motion = FH_FLAG(ctrl_fh, ALLOW_WARPED_MOTION);
1332 	uh->is_motion_mode_switchable = FH_FLAG(ctrl_fh, IS_MOTION_MODE_SWITCHABLE);
1333 	uh->frame_type = ctrl_fh->frame_type;
1334 	uh->frame_is_intra = (uh->frame_type == V4L2_AV1_INTRA_ONLY_FRAME ||
1335 			      uh->frame_type == V4L2_AV1_KEY_FRAME);
1336 
1337 	if (!uh->frame_is_intra && FH_FLAG(ctrl_fh, REFERENCE_SELECT))
1338 		uh->reference_mode = AV1_REFERENCE_MODE_SELECT;
1339 	else
1340 		uh->reference_mode = AV1_SINGLE_REFERENCE;
1341 
1342 	uh->allow_high_precision_mv = FH_FLAG(ctrl_fh, ALLOW_HIGH_PRECISION_MV);
1343 	uh->allow_intra_bc = FH_FLAG(ctrl_fh, ALLOW_INTRABC);
1344 	uh->force_integer_mv = FH_FLAG(ctrl_fh, FORCE_INTEGER_MV);
1345 	uh->allow_screen_content_tools = FH_FLAG(ctrl_fh, ALLOW_SCREEN_CONTENT_TOOLS);
1346 	uh->error_resilient_mode = FH_FLAG(ctrl_fh, ERROR_RESILIENT_MODE);
1347 	uh->primary_ref_frame = ctrl_fh->primary_ref_frame;
1348 	uh->disable_frame_end_update_cdf =
1349 			FH_FLAG(ctrl_fh, DISABLE_FRAME_END_UPDATE_CDF);
1350 	uh->disable_cdf_update = FH_FLAG(ctrl_fh, DISABLE_CDF_UPDATE);
1351 	uh->skip_mode.skip_mode_present = FH_FLAG(ctrl_fh, SKIP_MODE_PRESENT);
1352 	uh->skip_mode.skip_mode_frame[0] =
1353 		ctrl_fh->skip_mode_frame[0] - V4L2_AV1_REF_LAST_FRAME;
1354 	uh->skip_mode.skip_mode_frame[1] =
1355 		ctrl_fh->skip_mode_frame[1] - V4L2_AV1_REF_LAST_FRAME;
1356 	uh->skip_mode.skip_mode_allowed = ctrl_fh->skip_mode_frame[0] ? 1 : 0;
1357 
1358 	vdec_av1_slice_setup_seg(&uh->seg, &ctrl_fh->segmentation);
1359 	uh->delta_q_lf.delta_q_present = QUANT_FLAG(&ctrl_fh->quantization, DELTA_Q_PRESENT);
1360 	uh->delta_q_lf.delta_q_res = 1 << ctrl_fh->quantization.delta_q_res;
1361 	uh->delta_q_lf.delta_lf_present =
1362 		BIT_FLAG(&ctrl_fh->loop_filter, V4L2_AV1_LOOP_FILTER_FLAG_DELTA_LF_PRESENT);
1363 	uh->delta_q_lf.delta_lf_res = ctrl_fh->loop_filter.delta_lf_res;
1364 	uh->delta_q_lf.delta_lf_multi =
1365 		BIT_FLAG(&ctrl_fh->loop_filter, V4L2_AV1_LOOP_FILTER_FLAG_DELTA_LF_MULTI);
1366 	vdec_av1_slice_setup_quant(&uh->quant, &ctrl_fh->quantization);
1367 
1368 	uh->coded_loss_less = 1;
1369 	for (i = 0; i < V4L2_AV1_MAX_SEGMENTS; i++) {
1370 		uh->quant.qindex[i] = vdec_av1_slice_get_qindex(uh, i);
1371 		uh->loss_less_array[i] =
1372 			(uh->quant.qindex[i] == 0 && uh->quant.delta_qydc == 0 &&
1373 			uh->quant.delta_quac == 0 && uh->quant.delta_qudc == 0 &&
1374 			uh->quant.delta_qvac == 0 && uh->quant.delta_qvdc == 0);
1375 
1376 		if (!uh->loss_less_array[i])
1377 			uh->coded_loss_less = 0;
1378 	}
1379 
1380 	vdec_av1_slice_setup_lr(&uh->lr, &ctrl_fh->loop_restoration);
1381 	uh->superres_denom = ctrl_fh->superres_denom;
1382 	vdec_av1_slice_setup_lf(&uh->loop_filter, &ctrl_fh->loop_filter);
1383 	vdec_av1_slice_setup_cdef(&uh->cdef, &ctrl_fh->cdef);
1384 	vdec_av1_slice_setup_tile(frame, &ctrl_fh->tile_info);
1385 }
1386 
vdec_av1_slice_setup_tile_group(struct vdec_av1_slice_instance * instance,struct vdec_av1_slice_vsi * vsi)1387 static int vdec_av1_slice_setup_tile_group(struct vdec_av1_slice_instance *instance,
1388 					   struct vdec_av1_slice_vsi *vsi)
1389 {
1390 	struct v4l2_ctrl_av1_tile_group_entry *ctrl_tge;
1391 	struct vdec_av1_slice_tile_group *tile_group = &instance->tile_group;
1392 	struct vdec_av1_slice_uncompressed_header *uh = &vsi->frame.uh;
1393 	struct vdec_av1_slice_tile *tile = &uh->tile;
1394 	struct v4l2_ctrl *ctrl;
1395 	u32 tge_size;
1396 	int i;
1397 
1398 	ctrl = v4l2_ctrl_find(&instance->ctx->ctrl_hdl, V4L2_CID_STATELESS_AV1_TILE_GROUP_ENTRY);
1399 	if (!ctrl)
1400 		return -EINVAL;
1401 
1402 	tge_size = ctrl->elems;
1403 	ctrl_tge = (struct v4l2_ctrl_av1_tile_group_entry *)ctrl->p_cur.p;
1404 
1405 	tile_group->num_tiles = tile->tile_cols * tile->tile_rows;
1406 
1407 	if (tile_group->num_tiles != tge_size ||
1408 	    tile_group->num_tiles > V4L2_AV1_MAX_TILE_COUNT) {
1409 		mtk_vdec_err(instance->ctx, "invalid tge_size %d, tile_num:%d\n",
1410 			     tge_size, tile_group->num_tiles);
1411 		return -EINVAL;
1412 	}
1413 
1414 	for (i = 0; i < tge_size; i++) {
1415 		if (i != ctrl_tge[i].tile_row * vsi->frame.uh.tile.tile_cols +
1416 		    ctrl_tge[i].tile_col) {
1417 			mtk_vdec_err(instance->ctx, "invalid tge info %d, %d %d %d\n",
1418 				     i, ctrl_tge[i].tile_row, ctrl_tge[i].tile_col,
1419 				     vsi->frame.uh.tile.tile_rows);
1420 			return -EINVAL;
1421 		}
1422 		tile_group->tile_size[i] = ctrl_tge[i].tile_size;
1423 		tile_group->tile_start_offset[i] = ctrl_tge[i].tile_offset;
1424 	}
1425 
1426 	return 0;
1427 }
1428 
vdec_av1_slice_setup_state(struct vdec_av1_slice_vsi * vsi)1429 static inline void vdec_av1_slice_setup_state(struct vdec_av1_slice_vsi *vsi)
1430 {
1431 	memset(&vsi->state, 0, sizeof(vsi->state));
1432 }
1433 
vdec_av1_slice_setup_scale_factors(struct vdec_av1_slice_frame_refs * frame_ref,struct vdec_av1_slice_frame_info * ref_frame_info,struct vdec_av1_slice_uncompressed_header * uh)1434 static void vdec_av1_slice_setup_scale_factors(struct vdec_av1_slice_frame_refs *frame_ref,
1435 					       struct vdec_av1_slice_frame_info *ref_frame_info,
1436 					       struct vdec_av1_slice_uncompressed_header *uh)
1437 {
1438 	struct vdec_av1_slice_scale_factors *scale_factors = &frame_ref->scale_factors;
1439 	u32 ref_upscaled_width = ref_frame_info->upscaled_width;
1440 	u32 ref_frame_height = ref_frame_info->frame_height;
1441 	u32 frame_width = uh->frame_width;
1442 	u32 frame_height = uh->frame_height;
1443 
1444 	if (!vdec_av1_slice_need_scale(ref_upscaled_width, ref_frame_height,
1445 				       frame_width, frame_height)) {
1446 		scale_factors->x_scale = -1;
1447 		scale_factors->y_scale = -1;
1448 		scale_factors->is_scaled = 0;
1449 		return;
1450 	}
1451 
1452 	scale_factors->x_scale =
1453 		((ref_upscaled_width << AV1_REF_SCALE_SHIFT) + (frame_width >> 1)) / frame_width;
1454 	scale_factors->y_scale =
1455 		((ref_frame_height << AV1_REF_SCALE_SHIFT) + (frame_height >> 1)) / frame_height;
1456 	scale_factors->is_scaled =
1457 		(scale_factors->x_scale != AV1_REF_INVALID_SCALE) &&
1458 		(scale_factors->y_scale != AV1_REF_INVALID_SCALE) &&
1459 		(scale_factors->x_scale != AV1_REF_NO_SCALE ||
1460 		 scale_factors->y_scale != AV1_REF_NO_SCALE);
1461 	scale_factors->x_step =
1462 		AV1_DIV_ROUND_UP_POW2(scale_factors->x_scale,
1463 				      AV1_REF_SCALE_SHIFT - AV1_SCALE_SUBPEL_BITS);
1464 	scale_factors->y_step =
1465 		AV1_DIV_ROUND_UP_POW2(scale_factors->y_scale,
1466 				      AV1_REF_SCALE_SHIFT - AV1_SCALE_SUBPEL_BITS);
1467 }
1468 
vdec_av1_slice_get_sign_bias(int a,int b,u8 enable_order_hint,u8 order_hint_bits)1469 static unsigned char vdec_av1_slice_get_sign_bias(int a,
1470 						  int b,
1471 						  u8 enable_order_hint,
1472 						  u8 order_hint_bits)
1473 {
1474 	int diff = 0;
1475 	int m = 0;
1476 	unsigned char result = 0;
1477 
1478 	if (!enable_order_hint)
1479 		return 0;
1480 
1481 	diff = a - b;
1482 	m = 1 << (order_hint_bits - 1);
1483 	diff = (diff & (m - 1)) - (diff & m);
1484 
1485 	if (diff > 0)
1486 		result = 1;
1487 
1488 	return result;
1489 }
1490 
vdec_av1_slice_setup_ref(struct vdec_av1_slice_pfc * pfc,struct v4l2_ctrl_av1_frame * ctrl_fh)1491 static void vdec_av1_slice_setup_ref(struct vdec_av1_slice_pfc *pfc,
1492 				     struct v4l2_ctrl_av1_frame *ctrl_fh)
1493 {
1494 	struct vdec_av1_slice_vsi *vsi = &pfc->vsi;
1495 	struct vdec_av1_slice_frame *frame = &vsi->frame;
1496 	struct vdec_av1_slice_slot *slots = &vsi->slots;
1497 	struct vdec_av1_slice_uncompressed_header *uh = &frame->uh;
1498 	struct vdec_av1_slice_seq_header *seq = &frame->seq;
1499 	struct vdec_av1_slice_frame_info *cur_frame_info =
1500 		&slots->frame_info[vsi->slot_id];
1501 	struct vdec_av1_slice_frame_info *frame_info;
1502 	int i, slot_id;
1503 
1504 	if (uh->frame_is_intra)
1505 		return;
1506 
1507 	for (i = 0; i < V4L2_AV1_REFS_PER_FRAME; i++) {
1508 		int ref_idx = ctrl_fh->ref_frame_idx[i];
1509 
1510 		pfc->ref_idx[i] = ctrl_fh->reference_frame_ts[ref_idx];
1511 		slot_id = frame->ref_frame_map[ref_idx];
1512 		frame_info = &slots->frame_info[slot_id];
1513 		if (slot_id == AV1_INVALID_IDX) {
1514 			pr_err(MTK_DBG_V4L2_STR "cannot match reference[%d] 0x%llx\n", i,
1515 			       ctrl_fh->reference_frame_ts[ref_idx]);
1516 			frame->order_hints[i] = 0;
1517 			frame->ref_frame_valid[i] = 0;
1518 			continue;
1519 		}
1520 
1521 		frame->frame_refs[i].ref_fb_idx = slot_id;
1522 		vdec_av1_slice_setup_scale_factors(&frame->frame_refs[i],
1523 						   frame_info, uh);
1524 		if (!seq->enable_order_hint)
1525 			frame->ref_frame_sign_bias[i + 1] = 0;
1526 		else
1527 			frame->ref_frame_sign_bias[i + 1] =
1528 				vdec_av1_slice_get_sign_bias(frame_info->order_hint,
1529 							     uh->order_hint,
1530 							     seq->enable_order_hint,
1531 							     seq->order_hint_bits);
1532 
1533 		frame->order_hints[i] = ctrl_fh->order_hints[i + 1];
1534 		cur_frame_info->order_hints[i] = frame->order_hints[i];
1535 		frame->ref_frame_valid[i] = 1;
1536 	}
1537 }
1538 
vdec_av1_slice_get_previous(struct vdec_av1_slice_vsi * vsi)1539 static void vdec_av1_slice_get_previous(struct vdec_av1_slice_vsi *vsi)
1540 {
1541 	struct vdec_av1_slice_frame *frame = &vsi->frame;
1542 
1543 	if (frame->uh.primary_ref_frame == AV1_PRIMARY_REF_NONE)
1544 		frame->prev_fb_idx = AV1_INVALID_IDX;
1545 	else
1546 		frame->prev_fb_idx = frame->frame_refs[frame->uh.primary_ref_frame].ref_fb_idx;
1547 }
1548 
vdec_av1_slice_setup_operating_mode(struct vdec_av1_slice_instance * instance,struct vdec_av1_slice_frame * frame)1549 static inline void vdec_av1_slice_setup_operating_mode(struct vdec_av1_slice_instance *instance,
1550 						       struct vdec_av1_slice_frame *frame)
1551 {
1552 	frame->large_scale_tile = 0;
1553 }
1554 
vdec_av1_slice_setup_pfc(struct vdec_av1_slice_instance * instance,struct vdec_av1_slice_pfc * pfc)1555 static int vdec_av1_slice_setup_pfc(struct vdec_av1_slice_instance *instance,
1556 				    struct vdec_av1_slice_pfc *pfc)
1557 {
1558 	struct v4l2_ctrl_av1_frame *ctrl_fh;
1559 	struct v4l2_ctrl_av1_sequence *ctrl_seq;
1560 	struct vdec_av1_slice_vsi *vsi = &pfc->vsi;
1561 	int ret = 0;
1562 
1563 	/* frame header */
1564 	ctrl_fh = (struct v4l2_ctrl_av1_frame *)
1565 		  vdec_av1_get_ctrl_ptr(instance->ctx,
1566 					V4L2_CID_STATELESS_AV1_FRAME);
1567 	if (IS_ERR(ctrl_fh))
1568 		return PTR_ERR(ctrl_fh);
1569 
1570 	ctrl_seq = (struct v4l2_ctrl_av1_sequence *)
1571 		   vdec_av1_get_ctrl_ptr(instance->ctx,
1572 					 V4L2_CID_STATELESS_AV1_SEQUENCE);
1573 	if (IS_ERR(ctrl_seq))
1574 		return PTR_ERR(ctrl_seq);
1575 
1576 	/* setup vsi information */
1577 	vdec_av1_slice_setup_seq(&vsi->frame.seq, ctrl_seq);
1578 	vdec_av1_slice_setup_uh(instance, &vsi->frame, ctrl_fh);
1579 	vdec_av1_slice_setup_operating_mode(instance, &vsi->frame);
1580 
1581 	vdec_av1_slice_setup_state(vsi);
1582 	vdec_av1_slice_setup_slot(instance, vsi, ctrl_fh);
1583 	vdec_av1_slice_setup_ref(pfc, ctrl_fh);
1584 	vdec_av1_slice_get_previous(vsi);
1585 
1586 	pfc->seq = instance->seq;
1587 	instance->seq++;
1588 
1589 	return ret;
1590 }
1591 
vdec_av1_slice_setup_lat_buffer(struct vdec_av1_slice_instance * instance,struct vdec_av1_slice_vsi * vsi,struct mtk_vcodec_mem * bs,struct vdec_lat_buf * lat_buf)1592 static void vdec_av1_slice_setup_lat_buffer(struct vdec_av1_slice_instance *instance,
1593 					    struct vdec_av1_slice_vsi *vsi,
1594 					    struct mtk_vcodec_mem *bs,
1595 					    struct vdec_lat_buf *lat_buf)
1596 {
1597 	struct vdec_av1_slice_work_buffer *work_buffer;
1598 	int i;
1599 
1600 	vsi->bs.dma_addr = bs->dma_addr;
1601 	vsi->bs.size = bs->size;
1602 
1603 	vsi->ube.dma_addr = lat_buf->ctx->msg_queue.wdma_addr.dma_addr;
1604 	vsi->ube.size = lat_buf->ctx->msg_queue.wdma_addr.size;
1605 	vsi->trans.dma_addr = lat_buf->ctx->msg_queue.wdma_wptr_addr;
1606 	/* used to store trans end */
1607 	vsi->trans.dma_addr_end = lat_buf->ctx->msg_queue.wdma_rptr_addr;
1608 	vsi->err_map.dma_addr = lat_buf->wdma_err_addr.dma_addr;
1609 	vsi->err_map.size = lat_buf->wdma_err_addr.size;
1610 	vsi->rd_mv.dma_addr = lat_buf->rd_mv_addr.dma_addr;
1611 	vsi->rd_mv.size = lat_buf->rd_mv_addr.size;
1612 
1613 	vsi->row_info.buf = 0;
1614 	vsi->row_info.size = 0;
1615 
1616 	work_buffer = vsi->work_buffer;
1617 
1618 	for (i = 0; i < AV1_MAX_FRAME_BUF_COUNT; i++) {
1619 		work_buffer[i].mv_addr.buf = instance->mv[i].dma_addr;
1620 		work_buffer[i].mv_addr.size = instance->mv[i].size;
1621 		work_buffer[i].segid_addr.buf = instance->seg[i].dma_addr;
1622 		work_buffer[i].segid_addr.size = instance->seg[i].size;
1623 		work_buffer[i].cdf_addr.buf = instance->cdf[i].dma_addr;
1624 		work_buffer[i].cdf_addr.size = instance->cdf[i].size;
1625 	}
1626 
1627 	vsi->cdf_tmp.buf = instance->cdf_temp.dma_addr;
1628 	vsi->cdf_tmp.size = instance->cdf_temp.size;
1629 
1630 	vsi->tile.buf = instance->tile.dma_addr;
1631 	vsi->tile.size = instance->tile.size;
1632 	memcpy(lat_buf->tile_addr.va, instance->tile.va, 64 * instance->tile_group.num_tiles);
1633 
1634 	vsi->cdf_table.buf = instance->cdf_table.dma_addr;
1635 	vsi->cdf_table.size = instance->cdf_table.size;
1636 	vsi->iq_table.buf = instance->iq_table.dma_addr;
1637 	vsi->iq_table.size = instance->iq_table.size;
1638 }
1639 
vdec_av1_slice_setup_seg_buffer(struct vdec_av1_slice_instance * instance,struct vdec_av1_slice_vsi * vsi)1640 static void vdec_av1_slice_setup_seg_buffer(struct vdec_av1_slice_instance *instance,
1641 					    struct vdec_av1_slice_vsi *vsi)
1642 {
1643 	struct vdec_av1_slice_uncompressed_header *uh = &vsi->frame.uh;
1644 	struct mtk_vcodec_mem *buf;
1645 
1646 	/* reset segment buffer */
1647 	if (uh->primary_ref_frame == AV1_PRIMARY_REF_NONE || !uh->seg.segmentation_enabled) {
1648 		mtk_vdec_debug(instance->ctx, "reset seg %d\n", vsi->slot_id);
1649 		if (vsi->slot_id != AV1_INVALID_IDX) {
1650 			buf = &instance->seg[vsi->slot_id];
1651 			memset(buf->va, 0, buf->size);
1652 		}
1653 	}
1654 }
1655 
vdec_av1_slice_setup_tile_buffer(struct vdec_av1_slice_instance * instance,struct vdec_av1_slice_vsi * vsi,struct mtk_vcodec_mem * bs)1656 static void vdec_av1_slice_setup_tile_buffer(struct vdec_av1_slice_instance *instance,
1657 					     struct vdec_av1_slice_vsi *vsi,
1658 					     struct mtk_vcodec_mem *bs)
1659 {
1660 	struct vdec_av1_slice_tile_group *tile_group = &instance->tile_group;
1661 	struct vdec_av1_slice_uncompressed_header *uh = &vsi->frame.uh;
1662 	struct vdec_av1_slice_tile *tile = &uh->tile;
1663 	u32 tile_num, tile_row, tile_col;
1664 	u32 allow_update_cdf = 0;
1665 	u32 sb_boundary_x_m1 = 0, sb_boundary_y_m1 = 0;
1666 	int tile_info_base;
1667 	u64 tile_buf_pa;
1668 	u32 *tile_info_buf = instance->tile.va;
1669 	u64 pa = (u64)bs->dma_addr;
1670 
1671 	if (uh->disable_cdf_update == 0)
1672 		allow_update_cdf = 1;
1673 
1674 	for (tile_num = 0; tile_num < tile_group->num_tiles; tile_num++) {
1675 		/* each uint32 takes place of 4 bytes */
1676 		tile_info_base = (AV1_TILE_BUF_SIZE * tile_num) >> 2;
1677 		tile_row = tile_num / tile->tile_cols;
1678 		tile_col = tile_num % tile->tile_cols;
1679 		tile_info_buf[tile_info_base + 0] = (tile_group->tile_size[tile_num] << 3);
1680 		tile_buf_pa = pa + tile_group->tile_start_offset[tile_num];
1681 
1682 		/* save av1 tile high 4bits(bit 32-35) address in lower 4 bits position
1683 		 * and clear original for hw requirement.
1684 		 */
1685 		tile_info_buf[tile_info_base + 1] = (tile_buf_pa & 0xFFFFFFF0ull) |
1686 			((tile_buf_pa & 0xF00000000ull) >> 32);
1687 		tile_info_buf[tile_info_base + 2] = (tile_buf_pa & 0xFull) << 3;
1688 
1689 		sb_boundary_x_m1 =
1690 			(tile->mi_col_starts[tile_col + 1] - tile->mi_col_starts[tile_col] - 1) &
1691 			0x3f;
1692 		sb_boundary_y_m1 =
1693 			(tile->mi_row_starts[tile_row + 1] - tile->mi_row_starts[tile_row] - 1) &
1694 			0x1ff;
1695 
1696 		tile_info_buf[tile_info_base + 3] = (sb_boundary_y_m1 << 7) | sb_boundary_x_m1;
1697 		tile_info_buf[tile_info_base + 4] = ((allow_update_cdf << 18) | (1 << 16));
1698 
1699 		if (tile_num == tile->context_update_tile_id &&
1700 		    uh->disable_frame_end_update_cdf == 0)
1701 			tile_info_buf[tile_info_base + 4] |= (1 << 17);
1702 
1703 		mtk_vdec_debug(instance->ctx, "// tile buf %d pos(%dx%d) offset 0x%x\n",
1704 			       tile_num, tile_row, tile_col, tile_info_base);
1705 		mtk_vdec_debug(instance->ctx, "// %08x %08x %08x %08x\n",
1706 			       tile_info_buf[tile_info_base + 0],
1707 			       tile_info_buf[tile_info_base + 1],
1708 			       tile_info_buf[tile_info_base + 2],
1709 			       tile_info_buf[tile_info_base + 3]);
1710 		mtk_vdec_debug(instance->ctx, "// %08x %08x %08x %08x\n",
1711 			       tile_info_buf[tile_info_base + 4],
1712 			       tile_info_buf[tile_info_base + 5],
1713 			       tile_info_buf[tile_info_base + 6],
1714 			       tile_info_buf[tile_info_base + 7]);
1715 	}
1716 }
1717 
vdec_av1_slice_setup_lat(struct vdec_av1_slice_instance * instance,struct mtk_vcodec_mem * bs,struct vdec_lat_buf * lat_buf,struct vdec_av1_slice_pfc * pfc)1718 static int vdec_av1_slice_setup_lat(struct vdec_av1_slice_instance *instance,
1719 				    struct mtk_vcodec_mem *bs,
1720 				    struct vdec_lat_buf *lat_buf,
1721 				    struct vdec_av1_slice_pfc *pfc)
1722 {
1723 	struct vdec_av1_slice_vsi *vsi = &pfc->vsi;
1724 	int ret;
1725 
1726 	ret = vdec_av1_slice_setup_lat_from_src_buf(instance, vsi, lat_buf);
1727 	if (ret)
1728 		return ret;
1729 
1730 	ret = vdec_av1_slice_setup_pfc(instance, pfc);
1731 	if (ret)
1732 		return ret;
1733 
1734 	ret = vdec_av1_slice_setup_tile_group(instance, vsi);
1735 	if (ret)
1736 		return ret;
1737 
1738 	ret = vdec_av1_slice_alloc_working_buffer(instance, vsi);
1739 	if (ret)
1740 		return ret;
1741 
1742 	vdec_av1_slice_setup_seg_buffer(instance, vsi);
1743 	vdec_av1_slice_setup_tile_buffer(instance, vsi, bs);
1744 	vdec_av1_slice_setup_lat_buffer(instance, vsi, bs, lat_buf);
1745 
1746 	return 0;
1747 }
1748 
vdec_av1_slice_update_lat(struct vdec_av1_slice_instance * instance,struct vdec_lat_buf * lat_buf,struct vdec_av1_slice_pfc * pfc)1749 static int vdec_av1_slice_update_lat(struct vdec_av1_slice_instance *instance,
1750 				     struct vdec_lat_buf *lat_buf,
1751 				     struct vdec_av1_slice_pfc *pfc)
1752 {
1753 	struct vdec_av1_slice_vsi *vsi;
1754 
1755 	vsi = &pfc->vsi;
1756 	mtk_vdec_debug(instance->ctx, "frame %u LAT CRC 0x%08x, output size is %d\n",
1757 		       pfc->seq, vsi->state.crc[0], vsi->state.out_size);
1758 
1759 	/* buffer full, need to re-decode */
1760 	if (vsi->state.full) {
1761 		/* buffer not enough */
1762 		if (vsi->trans.dma_addr_end - vsi->trans.dma_addr == vsi->ube.size)
1763 			return -ENOMEM;
1764 		return -EAGAIN;
1765 	}
1766 
1767 	instance->width = vsi->frame.uh.upscaled_width;
1768 	instance->height = vsi->frame.uh.frame_height;
1769 	instance->frame_type = vsi->frame.uh.frame_type;
1770 
1771 	return 0;
1772 }
1773 
vdec_av1_slice_setup_core_to_dst_buf(struct vdec_av1_slice_instance * instance,struct vdec_lat_buf * lat_buf)1774 static int vdec_av1_slice_setup_core_to_dst_buf(struct vdec_av1_slice_instance *instance,
1775 						struct vdec_lat_buf *lat_buf)
1776 {
1777 	struct vb2_v4l2_buffer *dst;
1778 
1779 	dst = v4l2_m2m_next_dst_buf(instance->ctx->m2m_ctx);
1780 	if (!dst)
1781 		return -EINVAL;
1782 
1783 	v4l2_m2m_buf_copy_metadata(&lat_buf->ts_info, dst, true);
1784 
1785 	return 0;
1786 }
1787 
vdec_av1_slice_setup_core_buffer(struct vdec_av1_slice_instance * instance,struct vdec_av1_slice_pfc * pfc,struct vdec_av1_slice_vsi * vsi,struct vdec_fb * fb,struct vdec_lat_buf * lat_buf)1788 static int vdec_av1_slice_setup_core_buffer(struct vdec_av1_slice_instance *instance,
1789 					    struct vdec_av1_slice_pfc *pfc,
1790 					    struct vdec_av1_slice_vsi *vsi,
1791 					    struct vdec_fb *fb,
1792 					    struct vdec_lat_buf *lat_buf)
1793 {
1794 	struct vb2_buffer *vb;
1795 	struct vb2_queue *vq;
1796 	int w, h, plane, size;
1797 	int i;
1798 
1799 	plane = instance->ctx->q_data[MTK_Q_DATA_DST].fmt->num_planes;
1800 	w = vsi->frame.uh.upscaled_width;
1801 	h = vsi->frame.uh.frame_height;
1802 	size = ALIGN(w, VCODEC_DEC_ALIGNED_64) * ALIGN(h, VCODEC_DEC_ALIGNED_64);
1803 
1804 	/* frame buffer */
1805 	vsi->fb.y.dma_addr = fb->base_y.dma_addr;
1806 	if (plane == 1)
1807 		vsi->fb.c.dma_addr = fb->base_y.dma_addr + size;
1808 	else
1809 		vsi->fb.c.dma_addr = fb->base_c.dma_addr;
1810 
1811 	/* reference buffers */
1812 	vq = v4l2_m2m_get_vq(instance->ctx->m2m_ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE);
1813 	if (!vq)
1814 		return -EINVAL;
1815 
1816 	/* get current output buffer */
1817 	vb = &v4l2_m2m_next_dst_buf(instance->ctx->m2m_ctx)->vb2_buf;
1818 	if (!vb)
1819 		return -EINVAL;
1820 
1821 	/* get buffer address from vb2buf */
1822 	for (i = 0; i < V4L2_AV1_REFS_PER_FRAME; i++) {
1823 		struct vdec_av1_slice_fb *vref = &vsi->ref[i];
1824 
1825 		vb = vb2_find_buffer(vq, pfc->ref_idx[i]);
1826 		if (!vb) {
1827 			memset(vref, 0, sizeof(*vref));
1828 			continue;
1829 		}
1830 
1831 		vref->y.dma_addr = vb2_dma_contig_plane_dma_addr(vb, 0);
1832 		if (plane == 1)
1833 			vref->c.dma_addr = vref->y.dma_addr + size;
1834 		else
1835 			vref->c.dma_addr = vb2_dma_contig_plane_dma_addr(vb, 1);
1836 	}
1837 	vsi->tile.dma_addr = lat_buf->tile_addr.dma_addr;
1838 	vsi->tile.size = lat_buf->tile_addr.size;
1839 
1840 	return 0;
1841 }
1842 
vdec_av1_slice_setup_core(struct vdec_av1_slice_instance * instance,struct vdec_fb * fb,struct vdec_lat_buf * lat_buf,struct vdec_av1_slice_pfc * pfc)1843 static int vdec_av1_slice_setup_core(struct vdec_av1_slice_instance *instance,
1844 				     struct vdec_fb *fb,
1845 				     struct vdec_lat_buf *lat_buf,
1846 				     struct vdec_av1_slice_pfc *pfc)
1847 {
1848 	struct vdec_av1_slice_vsi *vsi = &pfc->vsi;
1849 	int ret;
1850 
1851 	ret = vdec_av1_slice_setup_core_to_dst_buf(instance, lat_buf);
1852 	if (ret)
1853 		return ret;
1854 
1855 	ret = vdec_av1_slice_setup_core_buffer(instance, pfc, vsi, fb, lat_buf);
1856 	if (ret)
1857 		return ret;
1858 
1859 	return 0;
1860 }
1861 
vdec_av1_slice_update_core(struct vdec_av1_slice_instance * instance,struct vdec_lat_buf * lat_buf,struct vdec_av1_slice_pfc * pfc)1862 static int vdec_av1_slice_update_core(struct vdec_av1_slice_instance *instance,
1863 				      struct vdec_lat_buf *lat_buf,
1864 				      struct vdec_av1_slice_pfc *pfc)
1865 {
1866 	struct vdec_av1_slice_vsi *vsi = instance->core_vsi;
1867 
1868 	mtk_vdec_debug(instance->ctx, "frame %u Y_CRC %08x %08x %08x %08x\n",
1869 		       pfc->seq, vsi->state.crc[0], vsi->state.crc[1],
1870 		       vsi->state.crc[2], vsi->state.crc[3]);
1871 	mtk_vdec_debug(instance->ctx, "frame %u C_CRC %08x %08x %08x %08x\n",
1872 		       pfc->seq, vsi->state.crc[8], vsi->state.crc[9],
1873 		       vsi->state.crc[10], vsi->state.crc[11]);
1874 
1875 	return 0;
1876 }
1877 
vdec_av1_slice_init(struct mtk_vcodec_dec_ctx * ctx)1878 static int vdec_av1_slice_init(struct mtk_vcodec_dec_ctx *ctx)
1879 {
1880 	struct vdec_av1_slice_instance *instance;
1881 	struct vdec_av1_slice_init_vsi *vsi;
1882 	int ret;
1883 
1884 	instance = kzalloc(sizeof(*instance), GFP_KERNEL);
1885 	if (!instance)
1886 		return -ENOMEM;
1887 
1888 	instance->ctx = ctx;
1889 	instance->vpu.id = SCP_IPI_VDEC_LAT;
1890 	instance->vpu.core_id = SCP_IPI_VDEC_CORE;
1891 	instance->vpu.ctx = ctx;
1892 	instance->vpu.codec_type = ctx->current_codec;
1893 
1894 	ret = vpu_dec_init(&instance->vpu);
1895 	if (ret) {
1896 		mtk_vdec_err(ctx, "failed to init vpu dec, ret %d\n", ret);
1897 		goto error_vpu_init;
1898 	}
1899 
1900 	/* init vsi and global flags */
1901 	vsi = instance->vpu.vsi;
1902 	if (!vsi) {
1903 		mtk_vdec_err(ctx, "failed to get AV1 vsi\n");
1904 		ret = -EINVAL;
1905 		goto error_vsi;
1906 	}
1907 	instance->init_vsi = vsi;
1908 	instance->core_vsi = mtk_vcodec_fw_map_dm_addr(ctx->dev->fw_handler, (u32)vsi->core_vsi);
1909 
1910 	if (!instance->core_vsi) {
1911 		mtk_vdec_err(ctx, "failed to get AV1 core vsi\n");
1912 		ret = -EINVAL;
1913 		goto error_vsi;
1914 	}
1915 
1916 	if (vsi->vsi_size != sizeof(struct vdec_av1_slice_vsi))
1917 		mtk_vdec_err(ctx, "remote vsi size 0x%x mismatch! expected: 0x%zx\n",
1918 			     vsi->vsi_size, sizeof(struct vdec_av1_slice_vsi));
1919 
1920 	instance->irq_enabled = 1;
1921 	instance->inneracing_mode = IS_VDEC_INNER_RACING(instance->ctx->dev->dec_capability);
1922 
1923 	mtk_vdec_debug(ctx, "vsi 0x%p core_vsi 0x%llx 0x%p, inneracing_mode %d\n",
1924 		       vsi, vsi->core_vsi, instance->core_vsi, instance->inneracing_mode);
1925 
1926 	ret = vdec_av1_slice_init_cdf_table(instance);
1927 	if (ret)
1928 		goto error_vsi;
1929 
1930 	ret = vdec_av1_slice_init_iq_table(instance);
1931 	if (ret)
1932 		goto error_vsi;
1933 
1934 	ctx->drv_handle = instance;
1935 
1936 	return 0;
1937 error_vsi:
1938 	vpu_dec_deinit(&instance->vpu);
1939 error_vpu_init:
1940 	kfree(instance);
1941 
1942 	return ret;
1943 }
1944 
vdec_av1_slice_deinit(void * h_vdec)1945 static void vdec_av1_slice_deinit(void *h_vdec)
1946 {
1947 	struct vdec_av1_slice_instance *instance = h_vdec;
1948 
1949 	if (!instance)
1950 		return;
1951 	mtk_vdec_debug(instance->ctx, "h_vdec 0x%p\n", h_vdec);
1952 	vpu_dec_deinit(&instance->vpu);
1953 	vdec_av1_slice_free_working_buffer(instance);
1954 	vdec_msg_queue_deinit(&instance->ctx->msg_queue, instance->ctx);
1955 	kfree(instance);
1956 }
1957 
vdec_av1_slice_flush(void * h_vdec,struct mtk_vcodec_mem * bs,struct vdec_fb * fb,bool * res_chg)1958 static int vdec_av1_slice_flush(void *h_vdec, struct mtk_vcodec_mem *bs,
1959 				struct vdec_fb *fb, bool *res_chg)
1960 {
1961 	struct vdec_av1_slice_instance *instance = h_vdec;
1962 	int i;
1963 
1964 	mtk_vdec_debug(instance->ctx, "flush ...\n");
1965 
1966 	vdec_msg_queue_wait_lat_buf_full(&instance->ctx->msg_queue);
1967 
1968 	for (i = 0; i < AV1_MAX_FRAME_BUF_COUNT; i++)
1969 		vdec_av1_slice_clear_fb(&instance->slots.frame_info[i]);
1970 
1971 	return vpu_dec_reset(&instance->vpu);
1972 }
1973 
vdec_av1_slice_get_pic_info(struct vdec_av1_slice_instance * instance)1974 static void vdec_av1_slice_get_pic_info(struct vdec_av1_slice_instance *instance)
1975 {
1976 	struct mtk_vcodec_dec_ctx *ctx = instance->ctx;
1977 	u32 data[3];
1978 
1979 	mtk_vdec_debug(ctx, "w %u h %u\n", ctx->picinfo.pic_w, ctx->picinfo.pic_h);
1980 
1981 	data[0] = ctx->picinfo.pic_w;
1982 	data[1] = ctx->picinfo.pic_h;
1983 	data[2] = ctx->capture_fourcc;
1984 	vpu_dec_get_param(&instance->vpu, data, 3, GET_PARAM_PIC_INFO);
1985 
1986 	ctx->picinfo.buf_w = ALIGN(ctx->picinfo.pic_w, VCODEC_DEC_ALIGNED_64);
1987 	ctx->picinfo.buf_h = ALIGN(ctx->picinfo.pic_h, VCODEC_DEC_ALIGNED_64);
1988 	ctx->picinfo.fb_sz[0] = instance->vpu.fb_sz[0];
1989 	ctx->picinfo.fb_sz[1] = instance->vpu.fb_sz[1];
1990 }
1991 
vdec_av1_slice_get_dpb_size(struct vdec_av1_slice_instance * instance,u32 * dpb_sz)1992 static inline void vdec_av1_slice_get_dpb_size(struct vdec_av1_slice_instance *instance,
1993 					       u32 *dpb_sz)
1994 {
1995 	/* refer av1 specification */
1996 	*dpb_sz = V4L2_AV1_TOTAL_REFS_PER_FRAME + 1;
1997 }
1998 
vdec_av1_slice_get_crop_info(struct vdec_av1_slice_instance * instance,struct v4l2_rect * cr)1999 static void vdec_av1_slice_get_crop_info(struct vdec_av1_slice_instance *instance,
2000 					 struct v4l2_rect *cr)
2001 {
2002 	struct mtk_vcodec_dec_ctx *ctx = instance->ctx;
2003 
2004 	cr->left = 0;
2005 	cr->top = 0;
2006 	cr->width = ctx->picinfo.pic_w;
2007 	cr->height = ctx->picinfo.pic_h;
2008 
2009 	mtk_vdec_debug(ctx, "l=%d, t=%d, w=%d, h=%d\n",
2010 		       cr->left, cr->top, cr->width, cr->height);
2011 }
2012 
vdec_av1_slice_get_param(void * h_vdec,enum vdec_get_param_type type,void * out)2013 static int vdec_av1_slice_get_param(void *h_vdec, enum vdec_get_param_type type, void *out)
2014 {
2015 	struct vdec_av1_slice_instance *instance = h_vdec;
2016 
2017 	switch (type) {
2018 	case GET_PARAM_PIC_INFO:
2019 		vdec_av1_slice_get_pic_info(instance);
2020 		break;
2021 	case GET_PARAM_DPB_SIZE:
2022 		vdec_av1_slice_get_dpb_size(instance, out);
2023 		break;
2024 	case GET_PARAM_CROP_INFO:
2025 		vdec_av1_slice_get_crop_info(instance, out);
2026 		break;
2027 	default:
2028 		mtk_vdec_err(instance->ctx, "invalid get parameter type=%d\n", type);
2029 		return -EINVAL;
2030 	}
2031 
2032 	return 0;
2033 }
2034 
vdec_av1_slice_lat_decode(void * h_vdec,struct mtk_vcodec_mem * bs,struct vdec_fb * fb,bool * res_chg)2035 static int vdec_av1_slice_lat_decode(void *h_vdec, struct mtk_vcodec_mem *bs,
2036 				     struct vdec_fb *fb, bool *res_chg)
2037 {
2038 	struct vdec_av1_slice_instance *instance = h_vdec;
2039 	struct vdec_lat_buf *lat_buf;
2040 	struct vdec_av1_slice_pfc *pfc;
2041 	struct vdec_av1_slice_vsi *vsi;
2042 	struct mtk_vcodec_dec_ctx *ctx;
2043 	int ret;
2044 
2045 	if (!instance || !instance->ctx)
2046 		return -EINVAL;
2047 
2048 	ctx = instance->ctx;
2049 	/* init msgQ for the first time */
2050 	if (vdec_msg_queue_init(&ctx->msg_queue, ctx,
2051 				vdec_av1_slice_core_decode, sizeof(*pfc))) {
2052 		mtk_vdec_err(ctx, "failed to init AV1 msg queue\n");
2053 		return -ENOMEM;
2054 	}
2055 
2056 	/* bs NULL means flush decoder */
2057 	if (!bs)
2058 		return vdec_av1_slice_flush(h_vdec, bs, fb, res_chg);
2059 
2060 	lat_buf = vdec_msg_queue_dqbuf(&ctx->msg_queue.lat_ctx);
2061 	if (!lat_buf) {
2062 		mtk_vdec_err(ctx, "failed to get AV1 lat buf\n");
2063 		return -EAGAIN;
2064 	}
2065 	pfc = (struct vdec_av1_slice_pfc *)lat_buf->private_data;
2066 	if (!pfc) {
2067 		ret = -EINVAL;
2068 		goto err_free_fb_out;
2069 	}
2070 	vsi = &pfc->vsi;
2071 
2072 	ret = vdec_av1_slice_setup_lat(instance, bs, lat_buf, pfc);
2073 	if (ret) {
2074 		mtk_vdec_err(ctx, "failed to setup AV1 lat ret %d\n", ret);
2075 		goto err_free_fb_out;
2076 	}
2077 
2078 	vdec_av1_slice_vsi_to_remote(vsi, instance->vsi);
2079 	ret = vpu_dec_start(&instance->vpu, NULL, 0);
2080 	if (ret) {
2081 		mtk_vdec_err(ctx, "failed to dec AV1 ret %d\n", ret);
2082 		goto err_free_fb_out;
2083 	}
2084 	if (instance->inneracing_mode)
2085 		vdec_msg_queue_qbuf(&ctx->msg_queue.core_ctx, lat_buf);
2086 
2087 	if (instance->irq_enabled) {
2088 		ret = mtk_vcodec_wait_for_done_ctx(ctx, MTK_INST_IRQ_RECEIVED,
2089 						   WAIT_INTR_TIMEOUT_MS,
2090 						   MTK_VDEC_LAT0);
2091 		/* update remote vsi if decode timeout */
2092 		if (ret) {
2093 			mtk_vdec_err(ctx, "AV1 Frame %d decode timeout %d\n", pfc->seq, ret);
2094 			WRITE_ONCE(instance->vsi->state.timeout, 1);
2095 		}
2096 		vpu_dec_end(&instance->vpu);
2097 	}
2098 
2099 	vdec_av1_slice_vsi_from_remote(vsi, instance->vsi);
2100 	ret = vdec_av1_slice_update_lat(instance, lat_buf, pfc);
2101 
2102 	/* LAT trans full, re-decode */
2103 	if (ret == -EAGAIN) {
2104 		mtk_vdec_err(ctx, "AV1 Frame %d trans full\n", pfc->seq);
2105 		if (!instance->inneracing_mode)
2106 			vdec_msg_queue_qbuf(&ctx->msg_queue.lat_ctx, lat_buf);
2107 		return 0;
2108 	}
2109 
2110 	/* LAT trans full, no more UBE or decode timeout */
2111 	if (ret == -ENOMEM || vsi->state.timeout) {
2112 		mtk_vdec_err(ctx, "AV1 Frame %d insufficient buffer or timeout\n", pfc->seq);
2113 		if (!instance->inneracing_mode)
2114 			vdec_msg_queue_qbuf(&ctx->msg_queue.lat_ctx, lat_buf);
2115 		return -EBUSY;
2116 	}
2117 	vsi->trans.dma_addr_end += ctx->msg_queue.wdma_addr.dma_addr;
2118 	mtk_vdec_debug(ctx, "lat dma 1 0x%pad 0x%pad\n",
2119 		       &pfc->vsi.trans.dma_addr, &pfc->vsi.trans.dma_addr_end);
2120 
2121 	vdec_msg_queue_update_ube_wptr(&ctx->msg_queue, vsi->trans.dma_addr_end);
2122 
2123 	if (!instance->inneracing_mode)
2124 		vdec_msg_queue_qbuf(&ctx->msg_queue.core_ctx, lat_buf);
2125 	memcpy(&instance->slots, &vsi->slots, sizeof(instance->slots));
2126 
2127 	return 0;
2128 
2129 err_free_fb_out:
2130 	vdec_msg_queue_qbuf(&ctx->msg_queue.lat_ctx, lat_buf);
2131 
2132 	if (pfc)
2133 		mtk_vdec_err(ctx, "slice dec number: %d err: %d", pfc->seq, ret);
2134 
2135 	return ret;
2136 }
2137 
vdec_av1_slice_core_decode(struct vdec_lat_buf * lat_buf)2138 static int vdec_av1_slice_core_decode(struct vdec_lat_buf *lat_buf)
2139 {
2140 	struct vdec_av1_slice_instance *instance;
2141 	struct vdec_av1_slice_pfc *pfc;
2142 	struct mtk_vcodec_dec_ctx *ctx = NULL;
2143 	struct vdec_fb *fb = NULL;
2144 	int ret = -EINVAL;
2145 
2146 	if (!lat_buf)
2147 		return -EINVAL;
2148 
2149 	pfc = lat_buf->private_data;
2150 	ctx = lat_buf->ctx;
2151 	if (!pfc || !ctx)
2152 		return -EINVAL;
2153 
2154 	instance = ctx->drv_handle;
2155 	if (!instance)
2156 		goto err;
2157 
2158 	fb = ctx->dev->vdec_pdata->get_cap_buffer(ctx);
2159 	if (!fb) {
2160 		ret = -EBUSY;
2161 		goto err;
2162 	}
2163 
2164 	ret = vdec_av1_slice_setup_core(instance, fb, lat_buf, pfc);
2165 	if (ret) {
2166 		mtk_vdec_err(ctx, "vdec_av1_slice_setup_core\n");
2167 		goto err;
2168 	}
2169 	vdec_av1_slice_vsi_to_remote(&pfc->vsi, instance->core_vsi);
2170 	ret = vpu_dec_core(&instance->vpu);
2171 	if (ret) {
2172 		mtk_vdec_err(ctx, "vpu_dec_core\n");
2173 		goto err;
2174 	}
2175 
2176 	if (instance->irq_enabled) {
2177 		ret = mtk_vcodec_wait_for_done_ctx(ctx, MTK_INST_IRQ_RECEIVED,
2178 						   WAIT_INTR_TIMEOUT_MS,
2179 						   MTK_VDEC_CORE);
2180 		/* update remote vsi if decode timeout */
2181 		if (ret) {
2182 			mtk_vdec_err(ctx, "AV1 frame %d core timeout\n", pfc->seq);
2183 			WRITE_ONCE(instance->vsi->state.timeout, 1);
2184 		}
2185 		vpu_dec_core_end(&instance->vpu);
2186 	}
2187 
2188 	ret = vdec_av1_slice_update_core(instance, lat_buf, pfc);
2189 	if (ret) {
2190 		mtk_vdec_err(ctx, "vdec_av1_slice_update_core\n");
2191 		goto err;
2192 	}
2193 
2194 	mtk_vdec_debug(ctx, "core dma_addr_end 0x%pad\n",
2195 		       &instance->core_vsi->trans.dma_addr_end);
2196 	vdec_msg_queue_update_ube_rptr(&ctx->msg_queue, instance->core_vsi->trans.dma_addr_end);
2197 
2198 	ctx->dev->vdec_pdata->cap_to_disp(ctx, 0, lat_buf->src_buf_req);
2199 
2200 	return 0;
2201 
2202 err:
2203 	/* always update read pointer */
2204 	vdec_msg_queue_update_ube_rptr(&ctx->msg_queue, pfc->vsi.trans.dma_addr_end);
2205 
2206 	if (fb)
2207 		ctx->dev->vdec_pdata->cap_to_disp(ctx, 1, lat_buf->src_buf_req);
2208 
2209 	return ret;
2210 }
2211 
2212 const struct vdec_common_if vdec_av1_slice_lat_if = {
2213 	.init		= vdec_av1_slice_init,
2214 	.decode		= vdec_av1_slice_lat_decode,
2215 	.get_param	= vdec_av1_slice_get_param,
2216 	.deinit		= vdec_av1_slice_deinit,
2217 };
2218