1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * FP/SIMD context switching and fault handling
4 *
5 * Copyright (C) 2012 ARM Ltd.
6 * Author: Catalin Marinas <catalin.marinas@arm.com>
7 */
8
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/compiler.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/ctype.h>
19 #include <linux/kernel.h>
20 #include <linux/linkage.h>
21 #include <linux/irqflags.h>
22 #include <linux/init.h>
23 #include <linux/percpu.h>
24 #include <linux/prctl.h>
25 #include <linux/preempt.h>
26 #include <linux/ptrace.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/task_stack.h>
29 #include <linux/signal.h>
30 #include <linux/slab.h>
31 #include <linux/stddef.h>
32 #include <linux/sysctl.h>
33 #include <linux/swab.h>
34
35 #include <asm/esr.h>
36 #include <asm/exception.h>
37 #include <asm/fpsimd.h>
38 #include <asm/cpufeature.h>
39 #include <asm/cputype.h>
40 #include <asm/neon.h>
41 #include <asm/processor.h>
42 #include <asm/simd.h>
43 #include <asm/sigcontext.h>
44 #include <asm/sysreg.h>
45 #include <asm/traps.h>
46 #include <asm/virt.h>
47
48 #define FPEXC_IOF (1 << 0)
49 #define FPEXC_DZF (1 << 1)
50 #define FPEXC_OFF (1 << 2)
51 #define FPEXC_UFF (1 << 3)
52 #define FPEXC_IXF (1 << 4)
53 #define FPEXC_IDF (1 << 7)
54
55 /*
56 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
57 *
58 * In order to reduce the number of times the FPSIMD state is needlessly saved
59 * and restored, we need to keep track of two things:
60 * (a) for each task, we need to remember which CPU was the last one to have
61 * the task's FPSIMD state loaded into its FPSIMD registers;
62 * (b) for each CPU, we need to remember which task's userland FPSIMD state has
63 * been loaded into its FPSIMD registers most recently, or whether it has
64 * been used to perform kernel mode NEON in the meantime.
65 *
66 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
67 * the id of the current CPU every time the state is loaded onto a CPU. For (b),
68 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
69 * address of the userland FPSIMD state of the task that was loaded onto the CPU
70 * the most recently, or NULL if kernel mode NEON has been performed after that.
71 *
72 * With this in place, we no longer have to restore the next FPSIMD state right
73 * when switching between tasks. Instead, we can defer this check to userland
74 * resume, at which time we verify whether the CPU's fpsimd_last_state and the
75 * task's fpsimd_cpu are still mutually in sync. If this is the case, we
76 * can omit the FPSIMD restore.
77 *
78 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
79 * indicate whether or not the userland FPSIMD state of the current task is
80 * present in the registers. The flag is set unless the FPSIMD registers of this
81 * CPU currently contain the most recent userland FPSIMD state of the current
82 * task. If the task is behaving as a VMM, then this is will be managed by
83 * KVM which will clear it to indicate that the vcpu FPSIMD state is currently
84 * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
85 * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
86 * flag the register state as invalid.
87 *
88 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
89 * save the task's FPSIMD context back to task_struct from softirq context.
90 * To prevent this from racing with the manipulation of the task's FPSIMD state
91 * from task context and thereby corrupting the state, it is necessary to
92 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
93 * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
94 * run but prevent them to use FPSIMD.
95 *
96 * For a certain task, the sequence may look something like this:
97 * - the task gets scheduled in; if both the task's fpsimd_cpu field
98 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
99 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
100 * cleared, otherwise it is set;
101 *
102 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
103 * userland FPSIMD state is copied from memory to the registers, the task's
104 * fpsimd_cpu field is set to the id of the current CPU, the current
105 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
106 * TIF_FOREIGN_FPSTATE flag is cleared;
107 *
108 * - the task executes an ordinary syscall; upon return to userland, the
109 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
110 * restored;
111 *
112 * - the task executes a syscall which executes some NEON instructions; this is
113 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
114 * register contents to memory, clears the fpsimd_last_state per-cpu variable
115 * and sets the TIF_FOREIGN_FPSTATE flag;
116 *
117 * - the task gets preempted after kernel_neon_end() is called; as we have not
118 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
119 * whatever is in the FPSIMD registers is not saved to memory, but discarded.
120 */
121
122 DEFINE_PER_CPU(struct cpu_fp_state, fpsimd_last_state);
123
124 __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
125 #ifdef CONFIG_ARM64_SVE
126 [ARM64_VEC_SVE] = {
127 .type = ARM64_VEC_SVE,
128 .name = "SVE",
129 .min_vl = SVE_VL_MIN,
130 .max_vl = SVE_VL_MIN,
131 .max_virtualisable_vl = SVE_VL_MIN,
132 },
133 #endif
134 #ifdef CONFIG_ARM64_SME
135 [ARM64_VEC_SME] = {
136 .type = ARM64_VEC_SME,
137 .name = "SME",
138 },
139 #endif
140 };
141
vec_vl_inherit_flag(enum vec_type type)142 static unsigned int vec_vl_inherit_flag(enum vec_type type)
143 {
144 switch (type) {
145 case ARM64_VEC_SVE:
146 return TIF_SVE_VL_INHERIT;
147 case ARM64_VEC_SME:
148 return TIF_SME_VL_INHERIT;
149 default:
150 WARN_ON_ONCE(1);
151 return 0;
152 }
153 }
154
155 struct vl_config {
156 int __default_vl; /* Default VL for tasks */
157 };
158
159 static struct vl_config vl_config[ARM64_VEC_MAX];
160
get_default_vl(enum vec_type type)161 static inline int get_default_vl(enum vec_type type)
162 {
163 return READ_ONCE(vl_config[type].__default_vl);
164 }
165
166 #ifdef CONFIG_ARM64_SVE
167
get_sve_default_vl(void)168 static inline int get_sve_default_vl(void)
169 {
170 return get_default_vl(ARM64_VEC_SVE);
171 }
172
set_default_vl(enum vec_type type,int val)173 static inline void set_default_vl(enum vec_type type, int val)
174 {
175 WRITE_ONCE(vl_config[type].__default_vl, val);
176 }
177
set_sve_default_vl(int val)178 static inline void set_sve_default_vl(int val)
179 {
180 set_default_vl(ARM64_VEC_SVE, val);
181 }
182
183 static void __percpu *efi_sve_state;
184
185 #else /* ! CONFIG_ARM64_SVE */
186
187 /* Dummy declaration for code that will be optimised out: */
188 extern void __percpu *efi_sve_state;
189
190 #endif /* ! CONFIG_ARM64_SVE */
191
192 #ifdef CONFIG_ARM64_SME
193
get_sme_default_vl(void)194 static int get_sme_default_vl(void)
195 {
196 return get_default_vl(ARM64_VEC_SME);
197 }
198
set_sme_default_vl(int val)199 static void set_sme_default_vl(int val)
200 {
201 set_default_vl(ARM64_VEC_SME, val);
202 }
203
204 static void sme_free(struct task_struct *);
205
206 #else
207
sme_free(struct task_struct * t)208 static inline void sme_free(struct task_struct *t) { }
209
210 #endif
211
212 DEFINE_PER_CPU(bool, fpsimd_context_busy);
213 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
214
215 static void fpsimd_bind_task_to_cpu(void);
216
__get_cpu_fpsimd_context(void)217 static void __get_cpu_fpsimd_context(void)
218 {
219 bool busy = __this_cpu_xchg(fpsimd_context_busy, true);
220
221 WARN_ON(busy);
222 }
223
224 /*
225 * Claim ownership of the CPU FPSIMD context for use by the calling context.
226 *
227 * The caller may freely manipulate the FPSIMD context metadata until
228 * put_cpu_fpsimd_context() is called.
229 *
230 * The double-underscore version must only be called if you know the task
231 * can't be preempted.
232 *
233 * On RT kernels local_bh_disable() is not sufficient because it only
234 * serializes soft interrupt related sections via a local lock, but stays
235 * preemptible. Disabling preemption is the right choice here as bottom
236 * half processing is always in thread context on RT kernels so it
237 * implicitly prevents bottom half processing as well.
238 */
get_cpu_fpsimd_context(void)239 static void get_cpu_fpsimd_context(void)
240 {
241 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
242 local_bh_disable();
243 else
244 preempt_disable();
245 __get_cpu_fpsimd_context();
246 }
247
__put_cpu_fpsimd_context(void)248 static void __put_cpu_fpsimd_context(void)
249 {
250 bool busy = __this_cpu_xchg(fpsimd_context_busy, false);
251
252 WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */
253 }
254
255 /*
256 * Release the CPU FPSIMD context.
257 *
258 * Must be called from a context in which get_cpu_fpsimd_context() was
259 * previously called, with no call to put_cpu_fpsimd_context() in the
260 * meantime.
261 */
put_cpu_fpsimd_context(void)262 static void put_cpu_fpsimd_context(void)
263 {
264 __put_cpu_fpsimd_context();
265 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
266 local_bh_enable();
267 else
268 preempt_enable();
269 }
270
have_cpu_fpsimd_context(void)271 static bool have_cpu_fpsimd_context(void)
272 {
273 return !preemptible() && __this_cpu_read(fpsimd_context_busy);
274 }
275
task_get_vl(const struct task_struct * task,enum vec_type type)276 unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
277 {
278 return task->thread.vl[type];
279 }
280
task_set_vl(struct task_struct * task,enum vec_type type,unsigned long vl)281 void task_set_vl(struct task_struct *task, enum vec_type type,
282 unsigned long vl)
283 {
284 task->thread.vl[type] = vl;
285 }
286
task_get_vl_onexec(const struct task_struct * task,enum vec_type type)287 unsigned int task_get_vl_onexec(const struct task_struct *task,
288 enum vec_type type)
289 {
290 return task->thread.vl_onexec[type];
291 }
292
task_set_vl_onexec(struct task_struct * task,enum vec_type type,unsigned long vl)293 void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
294 unsigned long vl)
295 {
296 task->thread.vl_onexec[type] = vl;
297 }
298
299 /*
300 * TIF_SME controls whether a task can use SME without trapping while
301 * in userspace, when TIF_SME is set then we must have storage
302 * allocated in sve_state and sme_state to store the contents of both ZA
303 * and the SVE registers for both streaming and non-streaming modes.
304 *
305 * If both SVCR.ZA and SVCR.SM are disabled then at any point we
306 * may disable TIF_SME and reenable traps.
307 */
308
309
310 /*
311 * TIF_SVE controls whether a task can use SVE without trapping while
312 * in userspace, and also (together with TIF_SME) the way a task's
313 * FPSIMD/SVE state is stored in thread_struct.
314 *
315 * The kernel uses this flag to track whether a user task is actively
316 * using SVE, and therefore whether full SVE register state needs to
317 * be tracked. If not, the cheaper FPSIMD context handling code can
318 * be used instead of the more costly SVE equivalents.
319 *
320 * * TIF_SVE or SVCR.SM set:
321 *
322 * The task can execute SVE instructions while in userspace without
323 * trapping to the kernel.
324 *
325 * During any syscall, the kernel may optionally clear TIF_SVE and
326 * discard the vector state except for the FPSIMD subset.
327 *
328 * * TIF_SVE clear:
329 *
330 * An attempt by the user task to execute an SVE instruction causes
331 * do_sve_acc() to be called, which does some preparation and then
332 * sets TIF_SVE.
333 *
334 * During any syscall, the kernel may optionally clear TIF_SVE and
335 * discard the vector state except for the FPSIMD subset.
336 *
337 * The data will be stored in one of two formats:
338 *
339 * * FPSIMD only - FP_STATE_FPSIMD:
340 *
341 * When the FPSIMD only state stored task->thread.fp_type is set to
342 * FP_STATE_FPSIMD, the FPSIMD registers V0-V31 are encoded in
343 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
344 * logically zero but not stored anywhere; P0-P15 and FFR are not
345 * stored and have unspecified values from userspace's point of
346 * view. For hygiene purposes, the kernel zeroes them on next use,
347 * but userspace is discouraged from relying on this.
348 *
349 * task->thread.sve_state does not need to be non-NULL, valid or any
350 * particular size: it must not be dereferenced and any data stored
351 * there should be considered stale and not referenced.
352 *
353 * * SVE state - FP_STATE_SVE:
354 *
355 * When the full SVE state is stored task->thread.fp_type is set to
356 * FP_STATE_SVE and Z0-Z31 (incorporating Vn in bits[127:0] or the
357 * corresponding Zn), P0-P15 and FFR are encoded in in
358 * task->thread.sve_state, formatted appropriately for vector
359 * length task->thread.sve_vl or, if SVCR.SM is set,
360 * task->thread.sme_vl. The storage for the vector registers in
361 * task->thread.uw.fpsimd_state should be ignored.
362 *
363 * task->thread.sve_state must point to a valid buffer at least
364 * sve_state_size(task) bytes in size. The data stored in
365 * task->thread.uw.fpsimd_state.vregs should be considered stale
366 * and not referenced.
367 *
368 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
369 * irrespective of whether TIF_SVE is clear or set, since these are
370 * not vector length dependent.
371 */
372
373 /*
374 * Update current's FPSIMD/SVE registers from thread_struct.
375 *
376 * This function should be called only when the FPSIMD/SVE state in
377 * thread_struct is known to be up to date, when preparing to enter
378 * userspace.
379 */
task_fpsimd_load(void)380 static void task_fpsimd_load(void)
381 {
382 bool restore_sve_regs = false;
383 bool restore_ffr;
384
385 WARN_ON(!system_supports_fpsimd());
386 WARN_ON(!have_cpu_fpsimd_context());
387
388 if (system_supports_sve() || system_supports_sme()) {
389 switch (current->thread.fp_type) {
390 case FP_STATE_FPSIMD:
391 /* Stop tracking SVE for this task until next use. */
392 if (test_and_clear_thread_flag(TIF_SVE))
393 sve_user_disable();
394 break;
395 case FP_STATE_SVE:
396 if (!thread_sm_enabled(¤t->thread) &&
397 !WARN_ON_ONCE(!test_and_set_thread_flag(TIF_SVE)))
398 sve_user_enable();
399
400 if (test_thread_flag(TIF_SVE))
401 sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
402
403 restore_sve_regs = true;
404 restore_ffr = true;
405 break;
406 default:
407 /*
408 * This indicates either a bug in
409 * fpsimd_save() or memory corruption, we
410 * should always record an explicit format
411 * when we save. We always at least have the
412 * memory allocated for FPSMID registers so
413 * try that and hope for the best.
414 */
415 WARN_ON_ONCE(1);
416 clear_thread_flag(TIF_SVE);
417 break;
418 }
419 }
420
421 /* Restore SME, override SVE register configuration if needed */
422 if (system_supports_sme()) {
423 unsigned long sme_vl = task_get_sme_vl(current);
424
425 /* Ensure VL is set up for restoring data */
426 if (test_thread_flag(TIF_SME))
427 sme_set_vq(sve_vq_from_vl(sme_vl) - 1);
428
429 write_sysreg_s(current->thread.svcr, SYS_SVCR);
430
431 if (thread_za_enabled(¤t->thread))
432 sme_load_state(current->thread.sme_state,
433 system_supports_sme2());
434
435 if (thread_sm_enabled(¤t->thread))
436 restore_ffr = system_supports_fa64();
437 }
438
439 if (restore_sve_regs) {
440 WARN_ON_ONCE(current->thread.fp_type != FP_STATE_SVE);
441 sve_load_state(sve_pffr(¤t->thread),
442 ¤t->thread.uw.fpsimd_state.fpsr,
443 restore_ffr);
444 } else {
445 WARN_ON_ONCE(current->thread.fp_type != FP_STATE_FPSIMD);
446 fpsimd_load_state(¤t->thread.uw.fpsimd_state);
447 }
448 }
449
450 /*
451 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
452 * date with respect to the CPU registers. Note carefully that the
453 * current context is the context last bound to the CPU stored in
454 * last, if KVM is involved this may be the guest VM context rather
455 * than the host thread for the VM pointed to by current. This means
456 * that we must always reference the state storage via last rather
457 * than via current, if we are saving KVM state then it will have
458 * ensured that the type of registers to save is set in last->to_save.
459 */
fpsimd_save(void)460 static void fpsimd_save(void)
461 {
462 struct cpu_fp_state const *last =
463 this_cpu_ptr(&fpsimd_last_state);
464 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
465 bool save_sve_regs = false;
466 bool save_ffr;
467 unsigned int vl;
468
469 WARN_ON(!system_supports_fpsimd());
470 WARN_ON(!have_cpu_fpsimd_context());
471
472 if (test_thread_flag(TIF_FOREIGN_FPSTATE))
473 return;
474
475 /*
476 * Save SVE state if it is live.
477 *
478 * The syscall ABI discards live SVE state at syscall entry. When
479 * entering a syscall, fpsimd_syscall_enter() sets to_save to
480 * FP_STATE_FPSIMD to allow the SVE state to be lazily discarded until
481 * either new SVE state is loaded+bound or fpsimd_syscall_exit() is
482 * called prior to a return to userspace.
483 */
484 if ((last->to_save == FP_STATE_CURRENT && test_thread_flag(TIF_SVE)) ||
485 last->to_save == FP_STATE_SVE) {
486 save_sve_regs = true;
487 save_ffr = true;
488 vl = last->sve_vl;
489 }
490
491 if (system_supports_sme()) {
492 u64 *svcr = last->svcr;
493
494 *svcr = read_sysreg_s(SYS_SVCR);
495
496 if (*svcr & SVCR_ZA_MASK)
497 sme_save_state(last->sme_state,
498 system_supports_sme2());
499
500 /* If we are in streaming mode override regular SVE. */
501 if (*svcr & SVCR_SM_MASK) {
502 save_sve_regs = true;
503 save_ffr = system_supports_fa64();
504 vl = last->sme_vl;
505 }
506 }
507
508 if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) {
509 /* Get the configured VL from RDVL, will account for SM */
510 if (WARN_ON(sve_get_vl() != vl)) {
511 /*
512 * Can't save the user regs, so current would
513 * re-enter user with corrupt state.
514 * There's no way to recover, so kill it:
515 */
516 force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
517 return;
518 }
519
520 sve_save_state((char *)last->sve_state +
521 sve_ffr_offset(vl),
522 &last->st->fpsr, save_ffr);
523 *last->fp_type = FP_STATE_SVE;
524 } else {
525 fpsimd_save_state(last->st);
526 *last->fp_type = FP_STATE_FPSIMD;
527 }
528 }
529
530 /*
531 * All vector length selection from userspace comes through here.
532 * We're on a slow path, so some sanity-checks are included.
533 * If things go wrong there's a bug somewhere, but try to fall back to a
534 * safe choice.
535 */
find_supported_vector_length(enum vec_type type,unsigned int vl)536 static unsigned int find_supported_vector_length(enum vec_type type,
537 unsigned int vl)
538 {
539 struct vl_info *info = &vl_info[type];
540 int bit;
541 int max_vl = info->max_vl;
542
543 if (WARN_ON(!sve_vl_valid(vl)))
544 vl = info->min_vl;
545
546 if (WARN_ON(!sve_vl_valid(max_vl)))
547 max_vl = info->min_vl;
548
549 if (vl > max_vl)
550 vl = max_vl;
551 if (vl < info->min_vl)
552 vl = info->min_vl;
553
554 bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
555 __vq_to_bit(sve_vq_from_vl(vl)));
556 return sve_vl_from_vq(__bit_to_vq(bit));
557 }
558
559 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
560
vec_proc_do_default_vl(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)561 static int vec_proc_do_default_vl(struct ctl_table *table, int write,
562 void *buffer, size_t *lenp, loff_t *ppos)
563 {
564 struct vl_info *info = table->extra1;
565 enum vec_type type = info->type;
566 int ret;
567 int vl = get_default_vl(type);
568 struct ctl_table tmp_table = {
569 .data = &vl,
570 .maxlen = sizeof(vl),
571 };
572
573 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
574 if (ret || !write)
575 return ret;
576
577 /* Writing -1 has the special meaning "set to max": */
578 if (vl == -1)
579 vl = info->max_vl;
580
581 if (!sve_vl_valid(vl))
582 return -EINVAL;
583
584 set_default_vl(type, find_supported_vector_length(type, vl));
585 return 0;
586 }
587
588 static struct ctl_table sve_default_vl_table[] = {
589 {
590 .procname = "sve_default_vector_length",
591 .mode = 0644,
592 .proc_handler = vec_proc_do_default_vl,
593 .extra1 = &vl_info[ARM64_VEC_SVE],
594 },
595 { }
596 };
597
sve_sysctl_init(void)598 static int __init sve_sysctl_init(void)
599 {
600 if (system_supports_sve())
601 if (!register_sysctl("abi", sve_default_vl_table))
602 return -EINVAL;
603
604 return 0;
605 }
606
607 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
sve_sysctl_init(void)608 static int __init sve_sysctl_init(void) { return 0; }
609 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
610
611 #if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
612 static struct ctl_table sme_default_vl_table[] = {
613 {
614 .procname = "sme_default_vector_length",
615 .mode = 0644,
616 .proc_handler = vec_proc_do_default_vl,
617 .extra1 = &vl_info[ARM64_VEC_SME],
618 },
619 { }
620 };
621
sme_sysctl_init(void)622 static int __init sme_sysctl_init(void)
623 {
624 if (system_supports_sme())
625 if (!register_sysctl("abi", sme_default_vl_table))
626 return -EINVAL;
627
628 return 0;
629 }
630
631 #else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
sme_sysctl_init(void)632 static int __init sme_sysctl_init(void) { return 0; }
633 #endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
634
635 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
636 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
637
638 #ifdef CONFIG_CPU_BIG_ENDIAN
arm64_cpu_to_le128(__uint128_t x)639 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
640 {
641 u64 a = swab64(x);
642 u64 b = swab64(x >> 64);
643
644 return ((__uint128_t)a << 64) | b;
645 }
646 #else
arm64_cpu_to_le128(__uint128_t x)647 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
648 {
649 return x;
650 }
651 #endif
652
653 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
654
__fpsimd_to_sve(void * sst,struct user_fpsimd_state const * fst,unsigned int vq)655 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
656 unsigned int vq)
657 {
658 unsigned int i;
659 __uint128_t *p;
660
661 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
662 p = (__uint128_t *)ZREG(sst, vq, i);
663 *p = arm64_cpu_to_le128(fst->vregs[i]);
664 }
665 }
666
667 /*
668 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
669 * task->thread.sve_state.
670 *
671 * Task can be a non-runnable task, or current. In the latter case,
672 * the caller must have ownership of the cpu FPSIMD context before calling
673 * this function.
674 * task->thread.sve_state must point to at least sve_state_size(task)
675 * bytes of allocated kernel memory.
676 * task->thread.uw.fpsimd_state must be up to date before calling this
677 * function.
678 */
fpsimd_to_sve(struct task_struct * task)679 static void fpsimd_to_sve(struct task_struct *task)
680 {
681 unsigned int vq;
682 void *sst = task->thread.sve_state;
683 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
684
685 if (!system_supports_sve() && !system_supports_sme())
686 return;
687
688 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
689 __fpsimd_to_sve(sst, fst, vq);
690 }
691
692 /*
693 * Transfer the SVE state in task->thread.sve_state to
694 * task->thread.uw.fpsimd_state.
695 *
696 * Task can be a non-runnable task, or current. In the latter case,
697 * the caller must have ownership of the cpu FPSIMD context before calling
698 * this function.
699 * task->thread.sve_state must point to at least sve_state_size(task)
700 * bytes of allocated kernel memory.
701 * task->thread.sve_state must be up to date before calling this function.
702 */
sve_to_fpsimd(struct task_struct * task)703 static void sve_to_fpsimd(struct task_struct *task)
704 {
705 unsigned int vq, vl;
706 void const *sst = task->thread.sve_state;
707 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
708 unsigned int i;
709 __uint128_t const *p;
710
711 if (!system_supports_sve() && !system_supports_sme())
712 return;
713
714 vl = thread_get_cur_vl(&task->thread);
715 vq = sve_vq_from_vl(vl);
716 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
717 p = (__uint128_t const *)ZREG(sst, vq, i);
718 fst->vregs[i] = arm64_le128_to_cpu(*p);
719 }
720 }
721
722 #ifdef CONFIG_ARM64_SVE
723 /*
724 * Call __sve_free() directly only if you know task can't be scheduled
725 * or preempted.
726 */
__sve_free(struct task_struct * task)727 static void __sve_free(struct task_struct *task)
728 {
729 kfree(task->thread.sve_state);
730 task->thread.sve_state = NULL;
731 }
732
sve_free(struct task_struct * task)733 static void sve_free(struct task_struct *task)
734 {
735 WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
736
737 __sve_free(task);
738 }
739
740 /*
741 * Return how many bytes of memory are required to store the full SVE
742 * state for task, given task's currently configured vector length.
743 */
sve_state_size(struct task_struct const * task)744 size_t sve_state_size(struct task_struct const *task)
745 {
746 unsigned int vl = 0;
747
748 if (system_supports_sve())
749 vl = task_get_sve_vl(task);
750 if (system_supports_sme())
751 vl = max(vl, task_get_sme_vl(task));
752
753 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl));
754 }
755
756 /*
757 * Ensure that task->thread.sve_state is allocated and sufficiently large.
758 *
759 * This function should be used only in preparation for replacing
760 * task->thread.sve_state with new data. The memory is always zeroed
761 * here to prevent stale data from showing through: this is done in
762 * the interest of testability and predictability: except in the
763 * do_sve_acc() case, there is no ABI requirement to hide stale data
764 * written previously be task.
765 */
sve_alloc(struct task_struct * task,bool flush)766 void sve_alloc(struct task_struct *task, bool flush)
767 {
768 if (task->thread.sve_state) {
769 if (flush)
770 memset(task->thread.sve_state, 0,
771 sve_state_size(task));
772 return;
773 }
774
775 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */
776 task->thread.sve_state =
777 kzalloc(sve_state_size(task), GFP_KERNEL);
778 }
779
780
781 /*
782 * Force the FPSIMD state shared with SVE to be updated in the SVE state
783 * even if the SVE state is the current active state.
784 *
785 * This should only be called by ptrace. task must be non-runnable.
786 * task->thread.sve_state must point to at least sve_state_size(task)
787 * bytes of allocated kernel memory.
788 */
fpsimd_force_sync_to_sve(struct task_struct * task)789 void fpsimd_force_sync_to_sve(struct task_struct *task)
790 {
791 fpsimd_to_sve(task);
792 }
793
794 /*
795 * Ensure that task->thread.sve_state is up to date with respect to
796 * the user task, irrespective of when SVE is in use or not.
797 *
798 * This should only be called by ptrace. task must be non-runnable.
799 * task->thread.sve_state must point to at least sve_state_size(task)
800 * bytes of allocated kernel memory.
801 */
fpsimd_sync_to_sve(struct task_struct * task)802 void fpsimd_sync_to_sve(struct task_struct *task)
803 {
804 if (!test_tsk_thread_flag(task, TIF_SVE) &&
805 !thread_sm_enabled(&task->thread))
806 fpsimd_to_sve(task);
807 }
808
809 /*
810 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
811 * the user task, irrespective of whether SVE is in use or not.
812 *
813 * This should only be called by ptrace. task must be non-runnable.
814 * task->thread.sve_state must point to at least sve_state_size(task)
815 * bytes of allocated kernel memory.
816 */
sve_sync_to_fpsimd(struct task_struct * task)817 void sve_sync_to_fpsimd(struct task_struct *task)
818 {
819 if (task->thread.fp_type == FP_STATE_SVE)
820 sve_to_fpsimd(task);
821 }
822
823 /*
824 * Ensure that task->thread.sve_state is up to date with respect to
825 * the task->thread.uw.fpsimd_state.
826 *
827 * This should only be called by ptrace to merge new FPSIMD register
828 * values into a task for which SVE is currently active.
829 * task must be non-runnable.
830 * task->thread.sve_state must point to at least sve_state_size(task)
831 * bytes of allocated kernel memory.
832 * task->thread.uw.fpsimd_state must already have been initialised with
833 * the new FPSIMD register values to be merged in.
834 */
sve_sync_from_fpsimd_zeropad(struct task_struct * task)835 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
836 {
837 unsigned int vq;
838 void *sst = task->thread.sve_state;
839 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
840
841 if (!test_tsk_thread_flag(task, TIF_SVE) &&
842 !thread_sm_enabled(&task->thread))
843 return;
844
845 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
846
847 memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
848 __fpsimd_to_sve(sst, fst, vq);
849 }
850
vec_set_vector_length(struct task_struct * task,enum vec_type type,unsigned long vl,unsigned long flags)851 int vec_set_vector_length(struct task_struct *task, enum vec_type type,
852 unsigned long vl, unsigned long flags)
853 {
854 bool free_sme = false;
855
856 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
857 PR_SVE_SET_VL_ONEXEC))
858 return -EINVAL;
859
860 if (!sve_vl_valid(vl))
861 return -EINVAL;
862
863 /*
864 * Clamp to the maximum vector length that VL-agnostic code
865 * can work with. A flag may be assigned in the future to
866 * allow setting of larger vector lengths without confusing
867 * older software.
868 */
869 if (vl > VL_ARCH_MAX)
870 vl = VL_ARCH_MAX;
871
872 vl = find_supported_vector_length(type, vl);
873
874 if (flags & (PR_SVE_VL_INHERIT |
875 PR_SVE_SET_VL_ONEXEC))
876 task_set_vl_onexec(task, type, vl);
877 else
878 /* Reset VL to system default on next exec: */
879 task_set_vl_onexec(task, type, 0);
880
881 /* Only actually set the VL if not deferred: */
882 if (flags & PR_SVE_SET_VL_ONEXEC)
883 goto out;
884
885 if (vl == task_get_vl(task, type))
886 goto out;
887
888 /*
889 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
890 * write any live register state back to task_struct, and convert to a
891 * regular FPSIMD thread.
892 */
893 if (task == current) {
894 get_cpu_fpsimd_context();
895
896 fpsimd_save();
897 }
898
899 fpsimd_flush_task_state(task);
900 if (test_and_clear_tsk_thread_flag(task, TIF_SVE) ||
901 thread_sm_enabled(&task->thread)) {
902 sve_to_fpsimd(task);
903 task->thread.fp_type = FP_STATE_FPSIMD;
904 }
905
906 if (system_supports_sme()) {
907 if (type == ARM64_VEC_SME ||
908 !(task->thread.svcr & (SVCR_SM_MASK | SVCR_ZA_MASK))) {
909 /*
910 * We are changing the SME VL or weren't using
911 * SME anyway, discard the state and force a
912 * reallocation.
913 */
914 task->thread.svcr &= ~(SVCR_SM_MASK |
915 SVCR_ZA_MASK);
916 clear_tsk_thread_flag(task, TIF_SME);
917 free_sme = true;
918 }
919 }
920
921 if (task == current)
922 put_cpu_fpsimd_context();
923
924 task_set_vl(task, type, vl);
925
926 /*
927 * Free the changed states if they are not in use, SME will be
928 * reallocated to the correct size on next use and we just
929 * allocate SVE now in case it is needed for use in streaming
930 * mode.
931 */
932 if (system_supports_sve()) {
933 sve_free(task);
934 sve_alloc(task, true);
935 }
936
937 if (free_sme)
938 sme_free(task);
939
940 out:
941 update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
942 flags & PR_SVE_VL_INHERIT);
943
944 return 0;
945 }
946
947 /*
948 * Encode the current vector length and flags for return.
949 * This is only required for prctl(): ptrace has separate fields.
950 * SVE and SME use the same bits for _ONEXEC and _INHERIT.
951 *
952 * flags are as for vec_set_vector_length().
953 */
vec_prctl_status(enum vec_type type,unsigned long flags)954 static int vec_prctl_status(enum vec_type type, unsigned long flags)
955 {
956 int ret;
957
958 if (flags & PR_SVE_SET_VL_ONEXEC)
959 ret = task_get_vl_onexec(current, type);
960 else
961 ret = task_get_vl(current, type);
962
963 if (test_thread_flag(vec_vl_inherit_flag(type)))
964 ret |= PR_SVE_VL_INHERIT;
965
966 return ret;
967 }
968
969 /* PR_SVE_SET_VL */
sve_set_current_vl(unsigned long arg)970 int sve_set_current_vl(unsigned long arg)
971 {
972 unsigned long vl, flags;
973 int ret;
974
975 vl = arg & PR_SVE_VL_LEN_MASK;
976 flags = arg & ~vl;
977
978 if (!system_supports_sve() || is_compat_task())
979 return -EINVAL;
980
981 ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags);
982 if (ret)
983 return ret;
984
985 return vec_prctl_status(ARM64_VEC_SVE, flags);
986 }
987
988 /* PR_SVE_GET_VL */
sve_get_current_vl(void)989 int sve_get_current_vl(void)
990 {
991 if (!system_supports_sve() || is_compat_task())
992 return -EINVAL;
993
994 return vec_prctl_status(ARM64_VEC_SVE, 0);
995 }
996
997 #ifdef CONFIG_ARM64_SME
998 /* PR_SME_SET_VL */
sme_set_current_vl(unsigned long arg)999 int sme_set_current_vl(unsigned long arg)
1000 {
1001 unsigned long vl, flags;
1002 int ret;
1003
1004 vl = arg & PR_SME_VL_LEN_MASK;
1005 flags = arg & ~vl;
1006
1007 if (!system_supports_sme() || is_compat_task())
1008 return -EINVAL;
1009
1010 ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags);
1011 if (ret)
1012 return ret;
1013
1014 return vec_prctl_status(ARM64_VEC_SME, flags);
1015 }
1016
1017 /* PR_SME_GET_VL */
sme_get_current_vl(void)1018 int sme_get_current_vl(void)
1019 {
1020 if (!system_supports_sme() || is_compat_task())
1021 return -EINVAL;
1022
1023 return vec_prctl_status(ARM64_VEC_SME, 0);
1024 }
1025 #endif /* CONFIG_ARM64_SME */
1026
vec_probe_vqs(struct vl_info * info,DECLARE_BITMAP (map,SVE_VQ_MAX))1027 static void vec_probe_vqs(struct vl_info *info,
1028 DECLARE_BITMAP(map, SVE_VQ_MAX))
1029 {
1030 unsigned int vq, vl;
1031
1032 bitmap_zero(map, SVE_VQ_MAX);
1033
1034 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
1035 write_vl(info->type, vq - 1); /* self-syncing */
1036
1037 switch (info->type) {
1038 case ARM64_VEC_SVE:
1039 vl = sve_get_vl();
1040 break;
1041 case ARM64_VEC_SME:
1042 vl = sme_get_vl();
1043 break;
1044 default:
1045 vl = 0;
1046 break;
1047 }
1048
1049 /* Minimum VL identified? */
1050 if (sve_vq_from_vl(vl) > vq)
1051 break;
1052
1053 vq = sve_vq_from_vl(vl); /* skip intervening lengths */
1054 set_bit(__vq_to_bit(vq), map);
1055 }
1056 }
1057
1058 /*
1059 * Initialise the set of known supported VQs for the boot CPU.
1060 * This is called during kernel boot, before secondary CPUs are brought up.
1061 */
vec_init_vq_map(enum vec_type type)1062 void __init vec_init_vq_map(enum vec_type type)
1063 {
1064 struct vl_info *info = &vl_info[type];
1065 vec_probe_vqs(info, info->vq_map);
1066 bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
1067 }
1068
1069 /*
1070 * If we haven't committed to the set of supported VQs yet, filter out
1071 * those not supported by the current CPU.
1072 * This function is called during the bring-up of early secondary CPUs only.
1073 */
vec_update_vq_map(enum vec_type type)1074 void vec_update_vq_map(enum vec_type type)
1075 {
1076 struct vl_info *info = &vl_info[type];
1077 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1078
1079 vec_probe_vqs(info, tmp_map);
1080 bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
1081 bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
1082 SVE_VQ_MAX);
1083 }
1084
1085 /*
1086 * Check whether the current CPU supports all VQs in the committed set.
1087 * This function is called during the bring-up of late secondary CPUs only.
1088 */
vec_verify_vq_map(enum vec_type type)1089 int vec_verify_vq_map(enum vec_type type)
1090 {
1091 struct vl_info *info = &vl_info[type];
1092 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1093 unsigned long b;
1094
1095 vec_probe_vqs(info, tmp_map);
1096
1097 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1098 if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
1099 pr_warn("%s: cpu%d: Required vector length(s) missing\n",
1100 info->name, smp_processor_id());
1101 return -EINVAL;
1102 }
1103
1104 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
1105 return 0;
1106
1107 /*
1108 * For KVM, it is necessary to ensure that this CPU doesn't
1109 * support any vector length that guests may have probed as
1110 * unsupported.
1111 */
1112
1113 /* Recover the set of supported VQs: */
1114 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1115 /* Find VQs supported that are not globally supported: */
1116 bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
1117
1118 /* Find the lowest such VQ, if any: */
1119 b = find_last_bit(tmp_map, SVE_VQ_MAX);
1120 if (b >= SVE_VQ_MAX)
1121 return 0; /* no mismatches */
1122
1123 /*
1124 * Mismatches above sve_max_virtualisable_vl are fine, since
1125 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
1126 */
1127 if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
1128 pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
1129 info->name, smp_processor_id());
1130 return -EINVAL;
1131 }
1132
1133 return 0;
1134 }
1135
sve_efi_setup(void)1136 static void __init sve_efi_setup(void)
1137 {
1138 int max_vl = 0;
1139 int i;
1140
1141 if (!IS_ENABLED(CONFIG_EFI))
1142 return;
1143
1144 for (i = 0; i < ARRAY_SIZE(vl_info); i++)
1145 max_vl = max(vl_info[i].max_vl, max_vl);
1146
1147 /*
1148 * alloc_percpu() warns and prints a backtrace if this goes wrong.
1149 * This is evidence of a crippled system and we are returning void,
1150 * so no attempt is made to handle this situation here.
1151 */
1152 if (!sve_vl_valid(max_vl))
1153 goto fail;
1154
1155 efi_sve_state = __alloc_percpu(
1156 SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), SVE_VQ_BYTES);
1157 if (!efi_sve_state)
1158 goto fail;
1159
1160 return;
1161
1162 fail:
1163 panic("Cannot allocate percpu memory for EFI SVE save/restore");
1164 }
1165
1166 /*
1167 * Enable SVE for EL1.
1168 * Intended for use by the cpufeatures code during CPU boot.
1169 */
sve_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)1170 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1171 {
1172 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
1173 isb();
1174 }
1175
1176 /*
1177 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
1178 * vector length.
1179 *
1180 * Use only if SVE is present.
1181 * This function clobbers the SVE vector length.
1182 */
read_zcr_features(void)1183 u64 read_zcr_features(void)
1184 {
1185 /*
1186 * Set the maximum possible VL, and write zeroes to all other
1187 * bits to see if they stick.
1188 */
1189 sve_kernel_enable(NULL);
1190 write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
1191
1192 /* Return LEN value that would be written to get the maximum VL */
1193 return sve_vq_from_vl(sve_get_vl()) - 1;
1194 }
1195
sve_setup(void)1196 void __init sve_setup(void)
1197 {
1198 struct vl_info *info = &vl_info[ARM64_VEC_SVE];
1199 u64 zcr;
1200 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1201 unsigned long b;
1202
1203 if (!system_supports_sve())
1204 return;
1205
1206 /*
1207 * The SVE architecture mandates support for 128-bit vectors,
1208 * so sve_vq_map must have at least SVE_VQ_MIN set.
1209 * If something went wrong, at least try to patch it up:
1210 */
1211 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
1212 set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
1213
1214 zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1215 info->max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
1216
1217 /*
1218 * Sanity-check that the max VL we determined through CPU features
1219 * corresponds properly to sve_vq_map. If not, do our best:
1220 */
1221 if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SVE,
1222 info->max_vl)))
1223 info->max_vl = find_supported_vector_length(ARM64_VEC_SVE,
1224 info->max_vl);
1225
1226 /*
1227 * For the default VL, pick the maximum supported value <= 64.
1228 * VL == 64 is guaranteed not to grow the signal frame.
1229 */
1230 set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
1231
1232 bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
1233 SVE_VQ_MAX);
1234
1235 b = find_last_bit(tmp_map, SVE_VQ_MAX);
1236 if (b >= SVE_VQ_MAX)
1237 /* No non-virtualisable VLs found */
1238 info->max_virtualisable_vl = SVE_VQ_MAX;
1239 else if (WARN_ON(b == SVE_VQ_MAX - 1))
1240 /* No virtualisable VLs? This is architecturally forbidden. */
1241 info->max_virtualisable_vl = SVE_VQ_MIN;
1242 else /* b + 1 < SVE_VQ_MAX */
1243 info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
1244
1245 if (info->max_virtualisable_vl > info->max_vl)
1246 info->max_virtualisable_vl = info->max_vl;
1247
1248 pr_info("%s: maximum available vector length %u bytes per vector\n",
1249 info->name, info->max_vl);
1250 pr_info("%s: default vector length %u bytes per vector\n",
1251 info->name, get_sve_default_vl());
1252
1253 /* KVM decides whether to support mismatched systems. Just warn here: */
1254 if (sve_max_virtualisable_vl() < sve_max_vl())
1255 pr_warn("%s: unvirtualisable vector lengths present\n",
1256 info->name);
1257
1258 sve_efi_setup();
1259 }
1260
1261 /*
1262 * Called from the put_task_struct() path, which cannot get here
1263 * unless dead_task is really dead and not schedulable.
1264 */
fpsimd_release_task(struct task_struct * dead_task)1265 void fpsimd_release_task(struct task_struct *dead_task)
1266 {
1267 __sve_free(dead_task);
1268 sme_free(dead_task);
1269 }
1270
1271 #endif /* CONFIG_ARM64_SVE */
1272
1273 #ifdef CONFIG_ARM64_SME
1274
1275 /*
1276 * Ensure that task->thread.sme_state is allocated and sufficiently large.
1277 *
1278 * This function should be used only in preparation for replacing
1279 * task->thread.sme_state with new data. The memory is always zeroed
1280 * here to prevent stale data from showing through: this is done in
1281 * the interest of testability and predictability, the architecture
1282 * guarantees that when ZA is enabled it will be zeroed.
1283 */
sme_alloc(struct task_struct * task,bool flush)1284 void sme_alloc(struct task_struct *task, bool flush)
1285 {
1286 if (task->thread.sme_state) {
1287 if (flush)
1288 memset(task->thread.sme_state, 0,
1289 sme_state_size(task));
1290 return;
1291 }
1292
1293 /* This could potentially be up to 64K. */
1294 task->thread.sme_state =
1295 kzalloc(sme_state_size(task), GFP_KERNEL);
1296 }
1297
sme_free(struct task_struct * task)1298 static void sme_free(struct task_struct *task)
1299 {
1300 kfree(task->thread.sme_state);
1301 task->thread.sme_state = NULL;
1302 }
1303
sme_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)1304 void sme_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1305 {
1306 /* Set priority for all PEs to architecturally defined minimum */
1307 write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
1308 SYS_SMPRI_EL1);
1309
1310 /* Allow SME in kernel */
1311 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
1312 isb();
1313
1314 /* Allow EL0 to access TPIDR2 */
1315 write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
1316 isb();
1317 }
1318
1319 /*
1320 * This must be called after sme_kernel_enable(), we rely on the
1321 * feature table being sorted to ensure this.
1322 */
sme2_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)1323 void sme2_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1324 {
1325 /* Allow use of ZT0 */
1326 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_EZT0_MASK,
1327 SYS_SMCR_EL1);
1328 }
1329
1330 /*
1331 * This must be called after sme_kernel_enable(), we rely on the
1332 * feature table being sorted to ensure this.
1333 */
fa64_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)1334 void fa64_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1335 {
1336 /* Allow use of FA64 */
1337 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
1338 SYS_SMCR_EL1);
1339 }
1340
1341 /*
1342 * Read the pseudo-SMCR used by cpufeatures to identify the supported
1343 * vector length.
1344 *
1345 * Use only if SME is present.
1346 * This function clobbers the SME vector length.
1347 */
read_smcr_features(void)1348 u64 read_smcr_features(void)
1349 {
1350 sme_kernel_enable(NULL);
1351
1352 /*
1353 * Set the maximum possible VL.
1354 */
1355 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_LEN_MASK,
1356 SYS_SMCR_EL1);
1357
1358 /* Return LEN value that would be written to get the maximum VL */
1359 return sve_vq_from_vl(sme_get_vl()) - 1;
1360 }
1361
sme_setup(void)1362 void __init sme_setup(void)
1363 {
1364 struct vl_info *info = &vl_info[ARM64_VEC_SME];
1365 u64 smcr;
1366 int min_bit;
1367
1368 if (!system_supports_sme())
1369 return;
1370
1371 /*
1372 * SME doesn't require any particular vector length be
1373 * supported but it does require at least one. We should have
1374 * disabled the feature entirely while bringing up CPUs but
1375 * let's double check here.
1376 */
1377 WARN_ON(bitmap_empty(info->vq_map, SVE_VQ_MAX));
1378
1379 min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
1380 info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
1381
1382 smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
1383 info->max_vl = sve_vl_from_vq((smcr & SMCR_ELx_LEN_MASK) + 1);
1384
1385 /*
1386 * Sanity-check that the max VL we determined through CPU features
1387 * corresponds properly to sme_vq_map. If not, do our best:
1388 */
1389 if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SME,
1390 info->max_vl)))
1391 info->max_vl = find_supported_vector_length(ARM64_VEC_SME,
1392 info->max_vl);
1393
1394 WARN_ON(info->min_vl > info->max_vl);
1395
1396 /*
1397 * For the default VL, pick the maximum supported value <= 32
1398 * (256 bits) if there is one since this is guaranteed not to
1399 * grow the signal frame when in streaming mode, otherwise the
1400 * minimum available VL will be used.
1401 */
1402 set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32));
1403
1404 pr_info("SME: minimum available vector length %u bytes per vector\n",
1405 info->min_vl);
1406 pr_info("SME: maximum available vector length %u bytes per vector\n",
1407 info->max_vl);
1408 pr_info("SME: default vector length %u bytes per vector\n",
1409 get_sme_default_vl());
1410 }
1411
sme_suspend_exit(void)1412 void sme_suspend_exit(void)
1413 {
1414 u64 smcr = 0;
1415
1416 if (!system_supports_sme())
1417 return;
1418
1419 if (system_supports_fa64())
1420 smcr |= SMCR_ELx_FA64;
1421 if (system_supports_sme2())
1422 smcr |= SMCR_ELx_EZT0;
1423
1424 write_sysreg_s(smcr, SYS_SMCR_EL1);
1425 write_sysreg_s(0, SYS_SMPRI_EL1);
1426 }
1427
1428 #endif /* CONFIG_ARM64_SME */
1429
sve_init_regs(void)1430 static void sve_init_regs(void)
1431 {
1432 /*
1433 * Convert the FPSIMD state to SVE, zeroing all the state that
1434 * is not shared with FPSIMD. If (as is likely) the current
1435 * state is live in the registers then do this there and
1436 * update our metadata for the current task including
1437 * disabling the trap, otherwise update our in-memory copy.
1438 * We are guaranteed to not be in streaming mode, we can only
1439 * take a SVE trap when not in streaming mode and we can't be
1440 * in streaming mode when taking a SME trap.
1441 */
1442 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1443 unsigned long vq_minus_one =
1444 sve_vq_from_vl(task_get_sve_vl(current)) - 1;
1445 sve_set_vq(vq_minus_one);
1446 sve_flush_live(true, vq_minus_one);
1447 fpsimd_bind_task_to_cpu();
1448 } else {
1449 fpsimd_to_sve(current);
1450 current->thread.fp_type = FP_STATE_SVE;
1451 fpsimd_flush_task_state(current);
1452 }
1453 }
1454
1455 /*
1456 * Trapped SVE access
1457 *
1458 * Storage is allocated for the full SVE state, the current FPSIMD
1459 * register contents are migrated across, and the access trap is
1460 * disabled.
1461 *
1462 * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
1463 * would have disabled the SVE access trap for userspace during
1464 * ret_to_user, making an SVE access trap impossible in that case.
1465 */
do_sve_acc(unsigned long esr,struct pt_regs * regs)1466 void do_sve_acc(unsigned long esr, struct pt_regs *regs)
1467 {
1468 /* Even if we chose not to use SVE, the hardware could still trap: */
1469 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
1470 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1471 return;
1472 }
1473
1474 sve_alloc(current, true);
1475 if (!current->thread.sve_state) {
1476 force_sig(SIGKILL);
1477 return;
1478 }
1479
1480 get_cpu_fpsimd_context();
1481
1482 if (test_and_set_thread_flag(TIF_SVE))
1483 WARN_ON(1); /* SVE access shouldn't have trapped */
1484
1485 /*
1486 * Even if the task can have used streaming mode we can only
1487 * generate SVE access traps in normal SVE mode and
1488 * transitioning out of streaming mode may discard any
1489 * streaming mode state. Always clear the high bits to avoid
1490 * any potential errors tracking what is properly initialised.
1491 */
1492 sve_init_regs();
1493
1494 put_cpu_fpsimd_context();
1495 }
1496
1497 /*
1498 * Trapped SME access
1499 *
1500 * Storage is allocated for the full SVE and SME state, the current
1501 * FPSIMD register contents are migrated to SVE if SVE is not already
1502 * active, and the access trap is disabled.
1503 *
1504 * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state()
1505 * would have disabled the SME access trap for userspace during
1506 * ret_to_user, making an SME access trap impossible in that case.
1507 */
do_sme_acc(unsigned long esr,struct pt_regs * regs)1508 void do_sme_acc(unsigned long esr, struct pt_regs *regs)
1509 {
1510 /* Even if we chose not to use SME, the hardware could still trap: */
1511 if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) {
1512 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1513 return;
1514 }
1515
1516 /*
1517 * If this not a trap due to SME being disabled then something
1518 * is being used in the wrong mode, report as SIGILL.
1519 */
1520 if (ESR_ELx_SME_ISS_SMTC(esr) != ESR_ELx_SME_ISS_SMTC_SME_DISABLED) {
1521 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1522 return;
1523 }
1524
1525 sve_alloc(current, false);
1526 sme_alloc(current, true);
1527 if (!current->thread.sve_state || !current->thread.sme_state) {
1528 force_sig(SIGKILL);
1529 return;
1530 }
1531
1532 get_cpu_fpsimd_context();
1533
1534 /* With TIF_SME userspace shouldn't generate any traps */
1535 if (test_and_set_thread_flag(TIF_SME))
1536 WARN_ON(1);
1537
1538 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1539 unsigned long vq_minus_one =
1540 sve_vq_from_vl(task_get_sme_vl(current)) - 1;
1541 sme_set_vq(vq_minus_one);
1542
1543 fpsimd_bind_task_to_cpu();
1544 } else {
1545 fpsimd_flush_task_state(current);
1546 }
1547
1548 put_cpu_fpsimd_context();
1549 }
1550
1551 /*
1552 * Trapped FP/ASIMD access.
1553 */
do_fpsimd_acc(unsigned long esr,struct pt_regs * regs)1554 void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
1555 {
1556 /* TODO: implement lazy context saving/restoring */
1557 WARN_ON(1);
1558 }
1559
1560 /*
1561 * Raise a SIGFPE for the current process.
1562 */
do_fpsimd_exc(unsigned long esr,struct pt_regs * regs)1563 void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
1564 {
1565 unsigned int si_code = FPE_FLTUNK;
1566
1567 if (esr & ESR_ELx_FP_EXC_TFV) {
1568 if (esr & FPEXC_IOF)
1569 si_code = FPE_FLTINV;
1570 else if (esr & FPEXC_DZF)
1571 si_code = FPE_FLTDIV;
1572 else if (esr & FPEXC_OFF)
1573 si_code = FPE_FLTOVF;
1574 else if (esr & FPEXC_UFF)
1575 si_code = FPE_FLTUND;
1576 else if (esr & FPEXC_IXF)
1577 si_code = FPE_FLTRES;
1578 }
1579
1580 send_sig_fault(SIGFPE, si_code,
1581 (void __user *)instruction_pointer(regs),
1582 current);
1583 }
1584
fpsimd_thread_switch(struct task_struct * next)1585 void fpsimd_thread_switch(struct task_struct *next)
1586 {
1587 bool wrong_task, wrong_cpu;
1588
1589 if (!system_supports_fpsimd())
1590 return;
1591
1592 __get_cpu_fpsimd_context();
1593
1594 /* Save unsaved fpsimd state, if any: */
1595 fpsimd_save();
1596
1597 /*
1598 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1599 * state. For kernel threads, FPSIMD registers are never loaded
1600 * and wrong_task and wrong_cpu will always be true.
1601 */
1602 wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1603 &next->thread.uw.fpsimd_state;
1604 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1605
1606 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1607 wrong_task || wrong_cpu);
1608
1609 __put_cpu_fpsimd_context();
1610 }
1611
fpsimd_flush_thread_vl(enum vec_type type)1612 static void fpsimd_flush_thread_vl(enum vec_type type)
1613 {
1614 int vl, supported_vl;
1615
1616 /*
1617 * Reset the task vector length as required. This is where we
1618 * ensure that all user tasks have a valid vector length
1619 * configured: no kernel task can become a user task without
1620 * an exec and hence a call to this function. By the time the
1621 * first call to this function is made, all early hardware
1622 * probing is complete, so __sve_default_vl should be valid.
1623 * If a bug causes this to go wrong, we make some noise and
1624 * try to fudge thread.sve_vl to a safe value here.
1625 */
1626 vl = task_get_vl_onexec(current, type);
1627 if (!vl)
1628 vl = get_default_vl(type);
1629
1630 if (WARN_ON(!sve_vl_valid(vl)))
1631 vl = vl_info[type].min_vl;
1632
1633 supported_vl = find_supported_vector_length(type, vl);
1634 if (WARN_ON(supported_vl != vl))
1635 vl = supported_vl;
1636
1637 task_set_vl(current, type, vl);
1638
1639 /*
1640 * If the task is not set to inherit, ensure that the vector
1641 * length will be reset by a subsequent exec:
1642 */
1643 if (!test_thread_flag(vec_vl_inherit_flag(type)))
1644 task_set_vl_onexec(current, type, 0);
1645 }
1646
fpsimd_flush_thread(void)1647 void fpsimd_flush_thread(void)
1648 {
1649 void *sve_state = NULL;
1650 void *sme_state = NULL;
1651
1652 if (!system_supports_fpsimd())
1653 return;
1654
1655 get_cpu_fpsimd_context();
1656
1657 fpsimd_flush_task_state(current);
1658 memset(¤t->thread.uw.fpsimd_state, 0,
1659 sizeof(current->thread.uw.fpsimd_state));
1660
1661 if (system_supports_sve()) {
1662 clear_thread_flag(TIF_SVE);
1663
1664 /* Defer kfree() while in atomic context */
1665 sve_state = current->thread.sve_state;
1666 current->thread.sve_state = NULL;
1667
1668 fpsimd_flush_thread_vl(ARM64_VEC_SVE);
1669 }
1670
1671 if (system_supports_sme()) {
1672 clear_thread_flag(TIF_SME);
1673
1674 /* Defer kfree() while in atomic context */
1675 sme_state = current->thread.sme_state;
1676 current->thread.sme_state = NULL;
1677
1678 fpsimd_flush_thread_vl(ARM64_VEC_SME);
1679 current->thread.svcr = 0;
1680 }
1681
1682 current->thread.fp_type = FP_STATE_FPSIMD;
1683
1684 put_cpu_fpsimd_context();
1685 kfree(sve_state);
1686 kfree(sme_state);
1687 }
1688
1689 /*
1690 * Save the userland FPSIMD state of 'current' to memory, but only if the state
1691 * currently held in the registers does in fact belong to 'current'
1692 */
fpsimd_preserve_current_state(void)1693 void fpsimd_preserve_current_state(void)
1694 {
1695 if (!system_supports_fpsimd())
1696 return;
1697
1698 get_cpu_fpsimd_context();
1699 fpsimd_save();
1700 put_cpu_fpsimd_context();
1701 }
1702
1703 /*
1704 * Like fpsimd_preserve_current_state(), but ensure that
1705 * current->thread.uw.fpsimd_state is updated so that it can be copied to
1706 * the signal frame.
1707 */
fpsimd_signal_preserve_current_state(void)1708 void fpsimd_signal_preserve_current_state(void)
1709 {
1710 fpsimd_preserve_current_state();
1711 if (current->thread.fp_type == FP_STATE_SVE)
1712 sve_to_fpsimd(current);
1713 }
1714
1715 /*
1716 * Associate current's FPSIMD context with this cpu
1717 * The caller must have ownership of the cpu FPSIMD context before calling
1718 * this function.
1719 */
fpsimd_bind_task_to_cpu(void)1720 static void fpsimd_bind_task_to_cpu(void)
1721 {
1722 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1723
1724 WARN_ON(!system_supports_fpsimd());
1725 last->st = ¤t->thread.uw.fpsimd_state;
1726 last->sve_state = current->thread.sve_state;
1727 last->sme_state = current->thread.sme_state;
1728 last->sve_vl = task_get_sve_vl(current);
1729 last->sme_vl = task_get_sme_vl(current);
1730 last->svcr = ¤t->thread.svcr;
1731 last->fp_type = ¤t->thread.fp_type;
1732 last->to_save = FP_STATE_CURRENT;
1733 current->thread.fpsimd_cpu = smp_processor_id();
1734
1735 /*
1736 * Toggle SVE and SME trapping for userspace if needed, these
1737 * are serialsied by ret_to_user().
1738 */
1739 if (system_supports_sme()) {
1740 if (test_thread_flag(TIF_SME))
1741 sme_user_enable();
1742 else
1743 sme_user_disable();
1744 }
1745
1746 if (system_supports_sve()) {
1747 if (test_thread_flag(TIF_SVE))
1748 sve_user_enable();
1749 else
1750 sve_user_disable();
1751 }
1752 }
1753
fpsimd_bind_state_to_cpu(struct cpu_fp_state * state)1754 void fpsimd_bind_state_to_cpu(struct cpu_fp_state *state)
1755 {
1756 struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1757
1758 WARN_ON(!system_supports_fpsimd());
1759 WARN_ON(!in_softirq() && !irqs_disabled());
1760
1761 *last = *state;
1762 }
1763
1764 /*
1765 * Load the userland FPSIMD state of 'current' from memory, but only if the
1766 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1767 * state of 'current'. This is called when we are preparing to return to
1768 * userspace to ensure that userspace sees a good register state.
1769 */
fpsimd_restore_current_state(void)1770 void fpsimd_restore_current_state(void)
1771 {
1772 /*
1773 * For the tasks that were created before we detected the absence of
1774 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(),
1775 * e.g, init. This could be then inherited by the children processes.
1776 * If we later detect that the system doesn't support FP/SIMD,
1777 * we must clear the flag for all the tasks to indicate that the
1778 * FPSTATE is clean (as we can't have one) to avoid looping for ever in
1779 * do_notify_resume().
1780 */
1781 if (!system_supports_fpsimd()) {
1782 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1783 return;
1784 }
1785
1786 get_cpu_fpsimd_context();
1787
1788 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1789 task_fpsimd_load();
1790 fpsimd_bind_task_to_cpu();
1791 }
1792
1793 put_cpu_fpsimd_context();
1794 }
1795
1796 /*
1797 * Load an updated userland FPSIMD state for 'current' from memory and set the
1798 * flag that indicates that the FPSIMD register contents are the most recent
1799 * FPSIMD state of 'current'. This is used by the signal code to restore the
1800 * register state when returning from a signal handler in FPSIMD only cases,
1801 * any SVE context will be discarded.
1802 */
fpsimd_update_current_state(struct user_fpsimd_state const * state)1803 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1804 {
1805 if (WARN_ON(!system_supports_fpsimd()))
1806 return;
1807
1808 get_cpu_fpsimd_context();
1809
1810 current->thread.uw.fpsimd_state = *state;
1811 if (current->thread.fp_type == FP_STATE_SVE)
1812 fpsimd_to_sve(current);
1813
1814 task_fpsimd_load();
1815 fpsimd_bind_task_to_cpu();
1816
1817 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1818
1819 put_cpu_fpsimd_context();
1820 }
1821
1822 /*
1823 * Invalidate live CPU copies of task t's FPSIMD state
1824 *
1825 * This function may be called with preemption enabled. The barrier()
1826 * ensures that the assignment to fpsimd_cpu is visible to any
1827 * preemption/softirq that could race with set_tsk_thread_flag(), so
1828 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1829 *
1830 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1831 * subsequent code.
1832 */
fpsimd_flush_task_state(struct task_struct * t)1833 void fpsimd_flush_task_state(struct task_struct *t)
1834 {
1835 t->thread.fpsimd_cpu = NR_CPUS;
1836 /*
1837 * If we don't support fpsimd, bail out after we have
1838 * reset the fpsimd_cpu for this task and clear the
1839 * FPSTATE.
1840 */
1841 if (!system_supports_fpsimd())
1842 return;
1843 barrier();
1844 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1845
1846 barrier();
1847 }
1848
1849 /*
1850 * Invalidate any task's FPSIMD state that is present on this cpu.
1851 * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1852 * before calling this function.
1853 */
fpsimd_flush_cpu_state(void)1854 static void fpsimd_flush_cpu_state(void)
1855 {
1856 WARN_ON(!system_supports_fpsimd());
1857 __this_cpu_write(fpsimd_last_state.st, NULL);
1858
1859 /*
1860 * Leaving streaming mode enabled will cause issues for any kernel
1861 * NEON and leaving streaming mode or ZA enabled may increase power
1862 * consumption.
1863 */
1864 if (system_supports_sme())
1865 sme_smstop();
1866
1867 set_thread_flag(TIF_FOREIGN_FPSTATE);
1868 }
1869
1870 /*
1871 * Save the FPSIMD state to memory and invalidate cpu view.
1872 * This function must be called with preemption disabled.
1873 */
fpsimd_save_and_flush_cpu_state(void)1874 void fpsimd_save_and_flush_cpu_state(void)
1875 {
1876 if (!system_supports_fpsimd())
1877 return;
1878 WARN_ON(preemptible());
1879 __get_cpu_fpsimd_context();
1880 fpsimd_save();
1881 fpsimd_flush_cpu_state();
1882 __put_cpu_fpsimd_context();
1883 }
1884
1885 #ifdef CONFIG_KERNEL_MODE_NEON
1886
1887 /*
1888 * Kernel-side NEON support functions
1889 */
1890
1891 /*
1892 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1893 * context
1894 *
1895 * Must not be called unless may_use_simd() returns true.
1896 * Task context in the FPSIMD registers is saved back to memory as necessary.
1897 *
1898 * A matching call to kernel_neon_end() must be made before returning from the
1899 * calling context.
1900 *
1901 * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1902 * called.
1903 */
kernel_neon_begin(void)1904 void kernel_neon_begin(void)
1905 {
1906 if (WARN_ON(!system_supports_fpsimd()))
1907 return;
1908
1909 BUG_ON(!may_use_simd());
1910
1911 get_cpu_fpsimd_context();
1912
1913 /* Save unsaved fpsimd state, if any: */
1914 fpsimd_save();
1915
1916 /* Invalidate any task state remaining in the fpsimd regs: */
1917 fpsimd_flush_cpu_state();
1918 }
1919 EXPORT_SYMBOL_GPL(kernel_neon_begin);
1920
1921 /*
1922 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1923 *
1924 * Must be called from a context in which kernel_neon_begin() was previously
1925 * called, with no call to kernel_neon_end() in the meantime.
1926 *
1927 * The caller must not use the FPSIMD registers after this function is called,
1928 * unless kernel_neon_begin() is called again in the meantime.
1929 */
kernel_neon_end(void)1930 void kernel_neon_end(void)
1931 {
1932 if (!system_supports_fpsimd())
1933 return;
1934
1935 put_cpu_fpsimd_context();
1936 }
1937 EXPORT_SYMBOL_GPL(kernel_neon_end);
1938
1939 #ifdef CONFIG_EFI
1940
1941 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1942 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1943 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1944 static DEFINE_PER_CPU(bool, efi_sm_state);
1945
1946 /*
1947 * EFI runtime services support functions
1948 *
1949 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1950 * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1951 * is always used rather than being an optional accelerator.
1952 *
1953 * These functions provide the necessary support for ensuring FPSIMD
1954 * save/restore in the contexts from which EFI is used.
1955 *
1956 * Do not use them for any other purpose -- if tempted to do so, you are
1957 * either doing something wrong or you need to propose some refactoring.
1958 */
1959
1960 /*
1961 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1962 */
__efi_fpsimd_begin(void)1963 void __efi_fpsimd_begin(void)
1964 {
1965 if (!system_supports_fpsimd())
1966 return;
1967
1968 WARN_ON(preemptible());
1969
1970 if (may_use_simd()) {
1971 kernel_neon_begin();
1972 } else {
1973 /*
1974 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1975 * preserving:
1976 */
1977 if (system_supports_sve() && likely(efi_sve_state)) {
1978 char *sve_state = this_cpu_ptr(efi_sve_state);
1979 bool ffr = true;
1980 u64 svcr;
1981
1982 __this_cpu_write(efi_sve_state_used, true);
1983
1984 if (system_supports_sme()) {
1985 svcr = read_sysreg_s(SYS_SVCR);
1986
1987 __this_cpu_write(efi_sm_state,
1988 svcr & SVCR_SM_MASK);
1989
1990 /*
1991 * Unless we have FA64 FFR does not
1992 * exist in streaming mode.
1993 */
1994 if (!system_supports_fa64())
1995 ffr = !(svcr & SVCR_SM_MASK);
1996 }
1997
1998 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()),
1999 &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
2000 ffr);
2001
2002 if (system_supports_sme())
2003 sysreg_clear_set_s(SYS_SVCR,
2004 SVCR_SM_MASK, 0);
2005
2006 } else {
2007 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
2008 }
2009
2010 __this_cpu_write(efi_fpsimd_state_used, true);
2011 }
2012 }
2013
2014 /*
2015 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
2016 */
__efi_fpsimd_end(void)2017 void __efi_fpsimd_end(void)
2018 {
2019 if (!system_supports_fpsimd())
2020 return;
2021
2022 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
2023 kernel_neon_end();
2024 } else {
2025 if (system_supports_sve() &&
2026 likely(__this_cpu_read(efi_sve_state_used))) {
2027 char const *sve_state = this_cpu_ptr(efi_sve_state);
2028 bool ffr = true;
2029
2030 /*
2031 * Restore streaming mode; EFI calls are
2032 * normal function calls so should not return in
2033 * streaming mode.
2034 */
2035 if (system_supports_sme()) {
2036 if (__this_cpu_read(efi_sm_state)) {
2037 sysreg_clear_set_s(SYS_SVCR,
2038 0,
2039 SVCR_SM_MASK);
2040
2041 /*
2042 * Unless we have FA64 FFR does not
2043 * exist in streaming mode.
2044 */
2045 if (!system_supports_fa64())
2046 ffr = false;
2047 }
2048 }
2049
2050 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()),
2051 &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
2052 ffr);
2053
2054 __this_cpu_write(efi_sve_state_used, false);
2055 } else {
2056 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
2057 }
2058 }
2059 }
2060
2061 #endif /* CONFIG_EFI */
2062
2063 #endif /* CONFIG_KERNEL_MODE_NEON */
2064
2065 #ifdef CONFIG_CPU_PM
fpsimd_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)2066 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
2067 unsigned long cmd, void *v)
2068 {
2069 switch (cmd) {
2070 case CPU_PM_ENTER:
2071 fpsimd_save_and_flush_cpu_state();
2072 break;
2073 case CPU_PM_EXIT:
2074 break;
2075 case CPU_PM_ENTER_FAILED:
2076 default:
2077 return NOTIFY_DONE;
2078 }
2079 return NOTIFY_OK;
2080 }
2081
2082 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
2083 .notifier_call = fpsimd_cpu_pm_notifier,
2084 };
2085
fpsimd_pm_init(void)2086 static void __init fpsimd_pm_init(void)
2087 {
2088 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
2089 }
2090
2091 #else
fpsimd_pm_init(void)2092 static inline void fpsimd_pm_init(void) { }
2093 #endif /* CONFIG_CPU_PM */
2094
2095 #ifdef CONFIG_HOTPLUG_CPU
fpsimd_cpu_dead(unsigned int cpu)2096 static int fpsimd_cpu_dead(unsigned int cpu)
2097 {
2098 per_cpu(fpsimd_last_state.st, cpu) = NULL;
2099 return 0;
2100 }
2101
fpsimd_hotplug_init(void)2102 static inline void fpsimd_hotplug_init(void)
2103 {
2104 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
2105 NULL, fpsimd_cpu_dead);
2106 }
2107
2108 #else
fpsimd_hotplug_init(void)2109 static inline void fpsimd_hotplug_init(void) { }
2110 #endif
2111
2112 /*
2113 * FP/SIMD support code initialisation.
2114 */
fpsimd_init(void)2115 static int __init fpsimd_init(void)
2116 {
2117 if (cpu_have_named_feature(FP)) {
2118 fpsimd_pm_init();
2119 fpsimd_hotplug_init();
2120 } else {
2121 pr_notice("Floating-point is not implemented\n");
2122 }
2123
2124 if (!cpu_have_named_feature(ASIMD))
2125 pr_notice("Advanced SIMD is not implemented\n");
2126
2127
2128 sve_sysctl_init();
2129 sme_sysctl_init();
2130
2131 return 0;
2132 }
2133 core_initcall(fpsimd_init);
2134