xref: /openbmc/linux/arch/arm64/kernel/fpsimd.c (revision 44ad3baf1cca483e418b6aadf2d3994f69e0f16a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * FP/SIMD context switching and fault handling
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  * Author: Catalin Marinas <catalin.marinas@arm.com>
7  */
8 
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/compiler.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/ctype.h>
19 #include <linux/kernel.h>
20 #include <linux/linkage.h>
21 #include <linux/irqflags.h>
22 #include <linux/init.h>
23 #include <linux/percpu.h>
24 #include <linux/prctl.h>
25 #include <linux/preempt.h>
26 #include <linux/ptrace.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/task_stack.h>
29 #include <linux/signal.h>
30 #include <linux/slab.h>
31 #include <linux/stddef.h>
32 #include <linux/sysctl.h>
33 #include <linux/swab.h>
34 
35 #include <asm/esr.h>
36 #include <asm/exception.h>
37 #include <asm/fpsimd.h>
38 #include <asm/cpufeature.h>
39 #include <asm/cputype.h>
40 #include <asm/neon.h>
41 #include <asm/processor.h>
42 #include <asm/simd.h>
43 #include <asm/sigcontext.h>
44 #include <asm/sysreg.h>
45 #include <asm/traps.h>
46 #include <asm/virt.h>
47 
48 #define FPEXC_IOF	(1 << 0)
49 #define FPEXC_DZF	(1 << 1)
50 #define FPEXC_OFF	(1 << 2)
51 #define FPEXC_UFF	(1 << 3)
52 #define FPEXC_IXF	(1 << 4)
53 #define FPEXC_IDF	(1 << 7)
54 
55 /*
56  * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
57  *
58  * In order to reduce the number of times the FPSIMD state is needlessly saved
59  * and restored, we need to keep track of two things:
60  * (a) for each task, we need to remember which CPU was the last one to have
61  *     the task's FPSIMD state loaded into its FPSIMD registers;
62  * (b) for each CPU, we need to remember which task's userland FPSIMD state has
63  *     been loaded into its FPSIMD registers most recently, or whether it has
64  *     been used to perform kernel mode NEON in the meantime.
65  *
66  * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
67  * the id of the current CPU every time the state is loaded onto a CPU. For (b),
68  * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
69  * address of the userland FPSIMD state of the task that was loaded onto the CPU
70  * the most recently, or NULL if kernel mode NEON has been performed after that.
71  *
72  * With this in place, we no longer have to restore the next FPSIMD state right
73  * when switching between tasks. Instead, we can defer this check to userland
74  * resume, at which time we verify whether the CPU's fpsimd_last_state and the
75  * task's fpsimd_cpu are still mutually in sync. If this is the case, we
76  * can omit the FPSIMD restore.
77  *
78  * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
79  * indicate whether or not the userland FPSIMD state of the current task is
80  * present in the registers. The flag is set unless the FPSIMD registers of this
81  * CPU currently contain the most recent userland FPSIMD state of the current
82  * task. If the task is behaving as a VMM, then this is will be managed by
83  * KVM which will clear it to indicate that the vcpu FPSIMD state is currently
84  * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
85  * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
86  * flag the register state as invalid.
87  *
88  * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
89  * save the task's FPSIMD context back to task_struct from softirq context.
90  * To prevent this from racing with the manipulation of the task's FPSIMD state
91  * from task context and thereby corrupting the state, it is necessary to
92  * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
93  * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
94  * run but prevent them to use FPSIMD.
95  *
96  * For a certain task, the sequence may look something like this:
97  * - the task gets scheduled in; if both the task's fpsimd_cpu field
98  *   contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
99  *   variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
100  *   cleared, otherwise it is set;
101  *
102  * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
103  *   userland FPSIMD state is copied from memory to the registers, the task's
104  *   fpsimd_cpu field is set to the id of the current CPU, the current
105  *   CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
106  *   TIF_FOREIGN_FPSTATE flag is cleared;
107  *
108  * - the task executes an ordinary syscall; upon return to userland, the
109  *   TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
110  *   restored;
111  *
112  * - the task executes a syscall which executes some NEON instructions; this is
113  *   preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
114  *   register contents to memory, clears the fpsimd_last_state per-cpu variable
115  *   and sets the TIF_FOREIGN_FPSTATE flag;
116  *
117  * - the task gets preempted after kernel_neon_end() is called; as we have not
118  *   returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
119  *   whatever is in the FPSIMD registers is not saved to memory, but discarded.
120  */
121 
122 DEFINE_PER_CPU(struct cpu_fp_state, fpsimd_last_state);
123 
124 __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
125 #ifdef CONFIG_ARM64_SVE
126 	[ARM64_VEC_SVE] = {
127 		.type			= ARM64_VEC_SVE,
128 		.name			= "SVE",
129 		.min_vl			= SVE_VL_MIN,
130 		.max_vl			= SVE_VL_MIN,
131 		.max_virtualisable_vl	= SVE_VL_MIN,
132 	},
133 #endif
134 #ifdef CONFIG_ARM64_SME
135 	[ARM64_VEC_SME] = {
136 		.type			= ARM64_VEC_SME,
137 		.name			= "SME",
138 	},
139 #endif
140 };
141 
vec_vl_inherit_flag(enum vec_type type)142 static unsigned int vec_vl_inherit_flag(enum vec_type type)
143 {
144 	switch (type) {
145 	case ARM64_VEC_SVE:
146 		return TIF_SVE_VL_INHERIT;
147 	case ARM64_VEC_SME:
148 		return TIF_SME_VL_INHERIT;
149 	default:
150 		WARN_ON_ONCE(1);
151 		return 0;
152 	}
153 }
154 
155 struct vl_config {
156 	int __default_vl;		/* Default VL for tasks */
157 };
158 
159 static struct vl_config vl_config[ARM64_VEC_MAX];
160 
get_default_vl(enum vec_type type)161 static inline int get_default_vl(enum vec_type type)
162 {
163 	return READ_ONCE(vl_config[type].__default_vl);
164 }
165 
166 #ifdef CONFIG_ARM64_SVE
167 
get_sve_default_vl(void)168 static inline int get_sve_default_vl(void)
169 {
170 	return get_default_vl(ARM64_VEC_SVE);
171 }
172 
set_default_vl(enum vec_type type,int val)173 static inline void set_default_vl(enum vec_type type, int val)
174 {
175 	WRITE_ONCE(vl_config[type].__default_vl, val);
176 }
177 
set_sve_default_vl(int val)178 static inline void set_sve_default_vl(int val)
179 {
180 	set_default_vl(ARM64_VEC_SVE, val);
181 }
182 
183 static void __percpu *efi_sve_state;
184 
185 #else /* ! CONFIG_ARM64_SVE */
186 
187 /* Dummy declaration for code that will be optimised out: */
188 extern void __percpu *efi_sve_state;
189 
190 #endif /* ! CONFIG_ARM64_SVE */
191 
192 #ifdef CONFIG_ARM64_SME
193 
get_sme_default_vl(void)194 static int get_sme_default_vl(void)
195 {
196 	return get_default_vl(ARM64_VEC_SME);
197 }
198 
set_sme_default_vl(int val)199 static void set_sme_default_vl(int val)
200 {
201 	set_default_vl(ARM64_VEC_SME, val);
202 }
203 
204 static void sme_free(struct task_struct *);
205 
206 #else
207 
sme_free(struct task_struct * t)208 static inline void sme_free(struct task_struct *t) { }
209 
210 #endif
211 
212 DEFINE_PER_CPU(bool, fpsimd_context_busy);
213 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
214 
215 static void fpsimd_bind_task_to_cpu(void);
216 
__get_cpu_fpsimd_context(void)217 static void __get_cpu_fpsimd_context(void)
218 {
219 	bool busy = __this_cpu_xchg(fpsimd_context_busy, true);
220 
221 	WARN_ON(busy);
222 }
223 
224 /*
225  * Claim ownership of the CPU FPSIMD context for use by the calling context.
226  *
227  * The caller may freely manipulate the FPSIMD context metadata until
228  * put_cpu_fpsimd_context() is called.
229  *
230  * The double-underscore version must only be called if you know the task
231  * can't be preempted.
232  *
233  * On RT kernels local_bh_disable() is not sufficient because it only
234  * serializes soft interrupt related sections via a local lock, but stays
235  * preemptible. Disabling preemption is the right choice here as bottom
236  * half processing is always in thread context on RT kernels so it
237  * implicitly prevents bottom half processing as well.
238  */
get_cpu_fpsimd_context(void)239 static void get_cpu_fpsimd_context(void)
240 {
241 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
242 		local_bh_disable();
243 	else
244 		preempt_disable();
245 	__get_cpu_fpsimd_context();
246 }
247 
__put_cpu_fpsimd_context(void)248 static void __put_cpu_fpsimd_context(void)
249 {
250 	bool busy = __this_cpu_xchg(fpsimd_context_busy, false);
251 
252 	WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */
253 }
254 
255 /*
256  * Release the CPU FPSIMD context.
257  *
258  * Must be called from a context in which get_cpu_fpsimd_context() was
259  * previously called, with no call to put_cpu_fpsimd_context() in the
260  * meantime.
261  */
put_cpu_fpsimd_context(void)262 static void put_cpu_fpsimd_context(void)
263 {
264 	__put_cpu_fpsimd_context();
265 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
266 		local_bh_enable();
267 	else
268 		preempt_enable();
269 }
270 
have_cpu_fpsimd_context(void)271 static bool have_cpu_fpsimd_context(void)
272 {
273 	return !preemptible() && __this_cpu_read(fpsimd_context_busy);
274 }
275 
task_get_vl(const struct task_struct * task,enum vec_type type)276 unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
277 {
278 	return task->thread.vl[type];
279 }
280 
task_set_vl(struct task_struct * task,enum vec_type type,unsigned long vl)281 void task_set_vl(struct task_struct *task, enum vec_type type,
282 		 unsigned long vl)
283 {
284 	task->thread.vl[type] = vl;
285 }
286 
task_get_vl_onexec(const struct task_struct * task,enum vec_type type)287 unsigned int task_get_vl_onexec(const struct task_struct *task,
288 				enum vec_type type)
289 {
290 	return task->thread.vl_onexec[type];
291 }
292 
task_set_vl_onexec(struct task_struct * task,enum vec_type type,unsigned long vl)293 void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
294 			unsigned long vl)
295 {
296 	task->thread.vl_onexec[type] = vl;
297 }
298 
299 /*
300  * TIF_SME controls whether a task can use SME without trapping while
301  * in userspace, when TIF_SME is set then we must have storage
302  * allocated in sve_state and sme_state to store the contents of both ZA
303  * and the SVE registers for both streaming and non-streaming modes.
304  *
305  * If both SVCR.ZA and SVCR.SM are disabled then at any point we
306  * may disable TIF_SME and reenable traps.
307  */
308 
309 
310 /*
311  * TIF_SVE controls whether a task can use SVE without trapping while
312  * in userspace, and also (together with TIF_SME) the way a task's
313  * FPSIMD/SVE state is stored in thread_struct.
314  *
315  * The kernel uses this flag to track whether a user task is actively
316  * using SVE, and therefore whether full SVE register state needs to
317  * be tracked.  If not, the cheaper FPSIMD context handling code can
318  * be used instead of the more costly SVE equivalents.
319  *
320  *  * TIF_SVE or SVCR.SM set:
321  *
322  *    The task can execute SVE instructions while in userspace without
323  *    trapping to the kernel.
324  *
325  *    During any syscall, the kernel may optionally clear TIF_SVE and
326  *    discard the vector state except for the FPSIMD subset.
327  *
328  *  * TIF_SVE clear:
329  *
330  *    An attempt by the user task to execute an SVE instruction causes
331  *    do_sve_acc() to be called, which does some preparation and then
332  *    sets TIF_SVE.
333  *
334  * During any syscall, the kernel may optionally clear TIF_SVE and
335  * discard the vector state except for the FPSIMD subset.
336  *
337  * The data will be stored in one of two formats:
338  *
339  *  * FPSIMD only - FP_STATE_FPSIMD:
340  *
341  *    When the FPSIMD only state stored task->thread.fp_type is set to
342  *    FP_STATE_FPSIMD, the FPSIMD registers V0-V31 are encoded in
343  *    task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
344  *    logically zero but not stored anywhere; P0-P15 and FFR are not
345  *    stored and have unspecified values from userspace's point of
346  *    view.  For hygiene purposes, the kernel zeroes them on next use,
347  *    but userspace is discouraged from relying on this.
348  *
349  *    task->thread.sve_state does not need to be non-NULL, valid or any
350  *    particular size: it must not be dereferenced and any data stored
351  *    there should be considered stale and not referenced.
352  *
353  *  * SVE state - FP_STATE_SVE:
354  *
355  *    When the full SVE state is stored task->thread.fp_type is set to
356  *    FP_STATE_SVE and Z0-Z31 (incorporating Vn in bits[127:0] or the
357  *    corresponding Zn), P0-P15 and FFR are encoded in in
358  *    task->thread.sve_state, formatted appropriately for vector
359  *    length task->thread.sve_vl or, if SVCR.SM is set,
360  *    task->thread.sme_vl. The storage for the vector registers in
361  *    task->thread.uw.fpsimd_state should be ignored.
362  *
363  *    task->thread.sve_state must point to a valid buffer at least
364  *    sve_state_size(task) bytes in size. The data stored in
365  *    task->thread.uw.fpsimd_state.vregs should be considered stale
366  *    and not referenced.
367  *
368  *  * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
369  *    irrespective of whether TIF_SVE is clear or set, since these are
370  *    not vector length dependent.
371  */
372 
373 /*
374  * Update current's FPSIMD/SVE registers from thread_struct.
375  *
376  * This function should be called only when the FPSIMD/SVE state in
377  * thread_struct is known to be up to date, when preparing to enter
378  * userspace.
379  */
task_fpsimd_load(void)380 static void task_fpsimd_load(void)
381 {
382 	bool restore_sve_regs = false;
383 	bool restore_ffr;
384 
385 	WARN_ON(!system_supports_fpsimd());
386 	WARN_ON(!have_cpu_fpsimd_context());
387 
388 	if (system_supports_sve() || system_supports_sme()) {
389 		switch (current->thread.fp_type) {
390 		case FP_STATE_FPSIMD:
391 			/* Stop tracking SVE for this task until next use. */
392 			if (test_and_clear_thread_flag(TIF_SVE))
393 				sve_user_disable();
394 			break;
395 		case FP_STATE_SVE:
396 			if (!thread_sm_enabled(&current->thread) &&
397 			    !WARN_ON_ONCE(!test_and_set_thread_flag(TIF_SVE)))
398 				sve_user_enable();
399 
400 			if (test_thread_flag(TIF_SVE))
401 				sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
402 
403 			restore_sve_regs = true;
404 			restore_ffr = true;
405 			break;
406 		default:
407 			/*
408 			 * This indicates either a bug in
409 			 * fpsimd_save() or memory corruption, we
410 			 * should always record an explicit format
411 			 * when we save. We always at least have the
412 			 * memory allocated for FPSMID registers so
413 			 * try that and hope for the best.
414 			 */
415 			WARN_ON_ONCE(1);
416 			clear_thread_flag(TIF_SVE);
417 			break;
418 		}
419 	}
420 
421 	/* Restore SME, override SVE register configuration if needed */
422 	if (system_supports_sme()) {
423 		unsigned long sme_vl = task_get_sme_vl(current);
424 
425 		/* Ensure VL is set up for restoring data */
426 		if (test_thread_flag(TIF_SME))
427 			sme_set_vq(sve_vq_from_vl(sme_vl) - 1);
428 
429 		write_sysreg_s(current->thread.svcr, SYS_SVCR);
430 
431 		if (thread_za_enabled(&current->thread))
432 			sme_load_state(current->thread.sme_state,
433 				       system_supports_sme2());
434 
435 		if (thread_sm_enabled(&current->thread))
436 			restore_ffr = system_supports_fa64();
437 	}
438 
439 	if (restore_sve_regs) {
440 		WARN_ON_ONCE(current->thread.fp_type != FP_STATE_SVE);
441 		sve_load_state(sve_pffr(&current->thread),
442 			       &current->thread.uw.fpsimd_state.fpsr,
443 			       restore_ffr);
444 	} else {
445 		WARN_ON_ONCE(current->thread.fp_type != FP_STATE_FPSIMD);
446 		fpsimd_load_state(&current->thread.uw.fpsimd_state);
447 	}
448 }
449 
450 /*
451  * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
452  * date with respect to the CPU registers. Note carefully that the
453  * current context is the context last bound to the CPU stored in
454  * last, if KVM is involved this may be the guest VM context rather
455  * than the host thread for the VM pointed to by current. This means
456  * that we must always reference the state storage via last rather
457  * than via current, if we are saving KVM state then it will have
458  * ensured that the type of registers to save is set in last->to_save.
459  */
fpsimd_save(void)460 static void fpsimd_save(void)
461 {
462 	struct cpu_fp_state const *last =
463 		this_cpu_ptr(&fpsimd_last_state);
464 	/* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
465 	bool save_sve_regs = false;
466 	bool save_ffr;
467 	unsigned int vl;
468 
469 	WARN_ON(!system_supports_fpsimd());
470 	WARN_ON(!have_cpu_fpsimd_context());
471 
472 	if (test_thread_flag(TIF_FOREIGN_FPSTATE))
473 		return;
474 
475 	/*
476 	 * Save SVE state if it is live.
477 	 *
478 	 * The syscall ABI discards live SVE state at syscall entry. When
479 	 * entering a syscall, fpsimd_syscall_enter() sets to_save to
480 	 * FP_STATE_FPSIMD to allow the SVE state to be lazily discarded until
481 	 * either new SVE state is loaded+bound or fpsimd_syscall_exit() is
482 	 * called prior to a return to userspace.
483 	 */
484 	if ((last->to_save == FP_STATE_CURRENT && test_thread_flag(TIF_SVE)) ||
485 	    last->to_save == FP_STATE_SVE) {
486 		save_sve_regs = true;
487 		save_ffr = true;
488 		vl = last->sve_vl;
489 	}
490 
491 	if (system_supports_sme()) {
492 		u64 *svcr = last->svcr;
493 
494 		*svcr = read_sysreg_s(SYS_SVCR);
495 
496 		if (*svcr & SVCR_ZA_MASK)
497 			sme_save_state(last->sme_state,
498 				       system_supports_sme2());
499 
500 		/* If we are in streaming mode override regular SVE. */
501 		if (*svcr & SVCR_SM_MASK) {
502 			save_sve_regs = true;
503 			save_ffr = system_supports_fa64();
504 			vl = last->sme_vl;
505 		}
506 	}
507 
508 	if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) {
509 		/* Get the configured VL from RDVL, will account for SM */
510 		if (WARN_ON(sve_get_vl() != vl)) {
511 			/*
512 			 * Can't save the user regs, so current would
513 			 * re-enter user with corrupt state.
514 			 * There's no way to recover, so kill it:
515 			 */
516 			force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
517 			return;
518 		}
519 
520 		sve_save_state((char *)last->sve_state +
521 					sve_ffr_offset(vl),
522 			       &last->st->fpsr, save_ffr);
523 		*last->fp_type = FP_STATE_SVE;
524 	} else {
525 		fpsimd_save_state(last->st);
526 		*last->fp_type = FP_STATE_FPSIMD;
527 	}
528 }
529 
530 /*
531  * All vector length selection from userspace comes through here.
532  * We're on a slow path, so some sanity-checks are included.
533  * If things go wrong there's a bug somewhere, but try to fall back to a
534  * safe choice.
535  */
find_supported_vector_length(enum vec_type type,unsigned int vl)536 static unsigned int find_supported_vector_length(enum vec_type type,
537 						 unsigned int vl)
538 {
539 	struct vl_info *info = &vl_info[type];
540 	int bit;
541 	int max_vl = info->max_vl;
542 
543 	if (WARN_ON(!sve_vl_valid(vl)))
544 		vl = info->min_vl;
545 
546 	if (WARN_ON(!sve_vl_valid(max_vl)))
547 		max_vl = info->min_vl;
548 
549 	if (vl > max_vl)
550 		vl = max_vl;
551 	if (vl < info->min_vl)
552 		vl = info->min_vl;
553 
554 	bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
555 			    __vq_to_bit(sve_vq_from_vl(vl)));
556 	return sve_vl_from_vq(__bit_to_vq(bit));
557 }
558 
559 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
560 
vec_proc_do_default_vl(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)561 static int vec_proc_do_default_vl(struct ctl_table *table, int write,
562 				  void *buffer, size_t *lenp, loff_t *ppos)
563 {
564 	struct vl_info *info = table->extra1;
565 	enum vec_type type = info->type;
566 	int ret;
567 	int vl = get_default_vl(type);
568 	struct ctl_table tmp_table = {
569 		.data = &vl,
570 		.maxlen = sizeof(vl),
571 	};
572 
573 	ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
574 	if (ret || !write)
575 		return ret;
576 
577 	/* Writing -1 has the special meaning "set to max": */
578 	if (vl == -1)
579 		vl = info->max_vl;
580 
581 	if (!sve_vl_valid(vl))
582 		return -EINVAL;
583 
584 	set_default_vl(type, find_supported_vector_length(type, vl));
585 	return 0;
586 }
587 
588 static struct ctl_table sve_default_vl_table[] = {
589 	{
590 		.procname	= "sve_default_vector_length",
591 		.mode		= 0644,
592 		.proc_handler	= vec_proc_do_default_vl,
593 		.extra1		= &vl_info[ARM64_VEC_SVE],
594 	},
595 	{ }
596 };
597 
sve_sysctl_init(void)598 static int __init sve_sysctl_init(void)
599 {
600 	if (system_supports_sve())
601 		if (!register_sysctl("abi", sve_default_vl_table))
602 			return -EINVAL;
603 
604 	return 0;
605 }
606 
607 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
sve_sysctl_init(void)608 static int __init sve_sysctl_init(void) { return 0; }
609 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
610 
611 #if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
612 static struct ctl_table sme_default_vl_table[] = {
613 	{
614 		.procname	= "sme_default_vector_length",
615 		.mode		= 0644,
616 		.proc_handler	= vec_proc_do_default_vl,
617 		.extra1		= &vl_info[ARM64_VEC_SME],
618 	},
619 	{ }
620 };
621 
sme_sysctl_init(void)622 static int __init sme_sysctl_init(void)
623 {
624 	if (system_supports_sme())
625 		if (!register_sysctl("abi", sme_default_vl_table))
626 			return -EINVAL;
627 
628 	return 0;
629 }
630 
631 #else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
sme_sysctl_init(void)632 static int __init sme_sysctl_init(void) { return 0; }
633 #endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
634 
635 #define ZREG(sve_state, vq, n) ((char *)(sve_state) +		\
636 	(SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
637 
638 #ifdef CONFIG_CPU_BIG_ENDIAN
arm64_cpu_to_le128(__uint128_t x)639 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
640 {
641 	u64 a = swab64(x);
642 	u64 b = swab64(x >> 64);
643 
644 	return ((__uint128_t)a << 64) | b;
645 }
646 #else
arm64_cpu_to_le128(__uint128_t x)647 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
648 {
649 	return x;
650 }
651 #endif
652 
653 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
654 
__fpsimd_to_sve(void * sst,struct user_fpsimd_state const * fst,unsigned int vq)655 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
656 			    unsigned int vq)
657 {
658 	unsigned int i;
659 	__uint128_t *p;
660 
661 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
662 		p = (__uint128_t *)ZREG(sst, vq, i);
663 		*p = arm64_cpu_to_le128(fst->vregs[i]);
664 	}
665 }
666 
667 /*
668  * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
669  * task->thread.sve_state.
670  *
671  * Task can be a non-runnable task, or current.  In the latter case,
672  * the caller must have ownership of the cpu FPSIMD context before calling
673  * this function.
674  * task->thread.sve_state must point to at least sve_state_size(task)
675  * bytes of allocated kernel memory.
676  * task->thread.uw.fpsimd_state must be up to date before calling this
677  * function.
678  */
fpsimd_to_sve(struct task_struct * task)679 static void fpsimd_to_sve(struct task_struct *task)
680 {
681 	unsigned int vq;
682 	void *sst = task->thread.sve_state;
683 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
684 
685 	if (!system_supports_sve() && !system_supports_sme())
686 		return;
687 
688 	vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
689 	__fpsimd_to_sve(sst, fst, vq);
690 }
691 
692 /*
693  * Transfer the SVE state in task->thread.sve_state to
694  * task->thread.uw.fpsimd_state.
695  *
696  * Task can be a non-runnable task, or current.  In the latter case,
697  * the caller must have ownership of the cpu FPSIMD context before calling
698  * this function.
699  * task->thread.sve_state must point to at least sve_state_size(task)
700  * bytes of allocated kernel memory.
701  * task->thread.sve_state must be up to date before calling this function.
702  */
sve_to_fpsimd(struct task_struct * task)703 static void sve_to_fpsimd(struct task_struct *task)
704 {
705 	unsigned int vq, vl;
706 	void const *sst = task->thread.sve_state;
707 	struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
708 	unsigned int i;
709 	__uint128_t const *p;
710 
711 	if (!system_supports_sve() && !system_supports_sme())
712 		return;
713 
714 	vl = thread_get_cur_vl(&task->thread);
715 	vq = sve_vq_from_vl(vl);
716 	for (i = 0; i < SVE_NUM_ZREGS; ++i) {
717 		p = (__uint128_t const *)ZREG(sst, vq, i);
718 		fst->vregs[i] = arm64_le128_to_cpu(*p);
719 	}
720 }
721 
722 #ifdef CONFIG_ARM64_SVE
723 /*
724  * Call __sve_free() directly only if you know task can't be scheduled
725  * or preempted.
726  */
__sve_free(struct task_struct * task)727 static void __sve_free(struct task_struct *task)
728 {
729 	kfree(task->thread.sve_state);
730 	task->thread.sve_state = NULL;
731 }
732 
sve_free(struct task_struct * task)733 static void sve_free(struct task_struct *task)
734 {
735 	WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
736 
737 	__sve_free(task);
738 }
739 
740 /*
741  * Return how many bytes of memory are required to store the full SVE
742  * state for task, given task's currently configured vector length.
743  */
sve_state_size(struct task_struct const * task)744 size_t sve_state_size(struct task_struct const *task)
745 {
746 	unsigned int vl = 0;
747 
748 	if (system_supports_sve())
749 		vl = task_get_sve_vl(task);
750 	if (system_supports_sme())
751 		vl = max(vl, task_get_sme_vl(task));
752 
753 	return SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl));
754 }
755 
756 /*
757  * Ensure that task->thread.sve_state is allocated and sufficiently large.
758  *
759  * This function should be used only in preparation for replacing
760  * task->thread.sve_state with new data.  The memory is always zeroed
761  * here to prevent stale data from showing through: this is done in
762  * the interest of testability and predictability: except in the
763  * do_sve_acc() case, there is no ABI requirement to hide stale data
764  * written previously be task.
765  */
sve_alloc(struct task_struct * task,bool flush)766 void sve_alloc(struct task_struct *task, bool flush)
767 {
768 	if (task->thread.sve_state) {
769 		if (flush)
770 			memset(task->thread.sve_state, 0,
771 			       sve_state_size(task));
772 		return;
773 	}
774 
775 	/* This is a small allocation (maximum ~8KB) and Should Not Fail. */
776 	task->thread.sve_state =
777 		kzalloc(sve_state_size(task), GFP_KERNEL);
778 }
779 
780 
781 /*
782  * Force the FPSIMD state shared with SVE to be updated in the SVE state
783  * even if the SVE state is the current active state.
784  *
785  * This should only be called by ptrace.  task must be non-runnable.
786  * task->thread.sve_state must point to at least sve_state_size(task)
787  * bytes of allocated kernel memory.
788  */
fpsimd_force_sync_to_sve(struct task_struct * task)789 void fpsimd_force_sync_to_sve(struct task_struct *task)
790 {
791 	fpsimd_to_sve(task);
792 }
793 
794 /*
795  * Ensure that task->thread.sve_state is up to date with respect to
796  * the user task, irrespective of when SVE is in use or not.
797  *
798  * This should only be called by ptrace.  task must be non-runnable.
799  * task->thread.sve_state must point to at least sve_state_size(task)
800  * bytes of allocated kernel memory.
801  */
fpsimd_sync_to_sve(struct task_struct * task)802 void fpsimd_sync_to_sve(struct task_struct *task)
803 {
804 	if (!test_tsk_thread_flag(task, TIF_SVE) &&
805 	    !thread_sm_enabled(&task->thread))
806 		fpsimd_to_sve(task);
807 }
808 
809 /*
810  * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
811  * the user task, irrespective of whether SVE is in use or not.
812  *
813  * This should only be called by ptrace.  task must be non-runnable.
814  * task->thread.sve_state must point to at least sve_state_size(task)
815  * bytes of allocated kernel memory.
816  */
sve_sync_to_fpsimd(struct task_struct * task)817 void sve_sync_to_fpsimd(struct task_struct *task)
818 {
819 	if (task->thread.fp_type == FP_STATE_SVE)
820 		sve_to_fpsimd(task);
821 }
822 
823 /*
824  * Ensure that task->thread.sve_state is up to date with respect to
825  * the task->thread.uw.fpsimd_state.
826  *
827  * This should only be called by ptrace to merge new FPSIMD register
828  * values into a task for which SVE is currently active.
829  * task must be non-runnable.
830  * task->thread.sve_state must point to at least sve_state_size(task)
831  * bytes of allocated kernel memory.
832  * task->thread.uw.fpsimd_state must already have been initialised with
833  * the new FPSIMD register values to be merged in.
834  */
sve_sync_from_fpsimd_zeropad(struct task_struct * task)835 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
836 {
837 	unsigned int vq;
838 	void *sst = task->thread.sve_state;
839 	struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
840 
841 	if (!test_tsk_thread_flag(task, TIF_SVE) &&
842 	    !thread_sm_enabled(&task->thread))
843 		return;
844 
845 	vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
846 
847 	memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
848 	__fpsimd_to_sve(sst, fst, vq);
849 }
850 
vec_set_vector_length(struct task_struct * task,enum vec_type type,unsigned long vl,unsigned long flags)851 int vec_set_vector_length(struct task_struct *task, enum vec_type type,
852 			  unsigned long vl, unsigned long flags)
853 {
854 	bool free_sme = false;
855 
856 	if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
857 				     PR_SVE_SET_VL_ONEXEC))
858 		return -EINVAL;
859 
860 	if (!sve_vl_valid(vl))
861 		return -EINVAL;
862 
863 	/*
864 	 * Clamp to the maximum vector length that VL-agnostic code
865 	 * can work with.  A flag may be assigned in the future to
866 	 * allow setting of larger vector lengths without confusing
867 	 * older software.
868 	 */
869 	if (vl > VL_ARCH_MAX)
870 		vl = VL_ARCH_MAX;
871 
872 	vl = find_supported_vector_length(type, vl);
873 
874 	if (flags & (PR_SVE_VL_INHERIT |
875 		     PR_SVE_SET_VL_ONEXEC))
876 		task_set_vl_onexec(task, type, vl);
877 	else
878 		/* Reset VL to system default on next exec: */
879 		task_set_vl_onexec(task, type, 0);
880 
881 	/* Only actually set the VL if not deferred: */
882 	if (flags & PR_SVE_SET_VL_ONEXEC)
883 		goto out;
884 
885 	if (vl == task_get_vl(task, type))
886 		goto out;
887 
888 	/*
889 	 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
890 	 * write any live register state back to task_struct, and convert to a
891 	 * regular FPSIMD thread.
892 	 */
893 	if (task == current) {
894 		get_cpu_fpsimd_context();
895 
896 		fpsimd_save();
897 	}
898 
899 	fpsimd_flush_task_state(task);
900 	if (test_and_clear_tsk_thread_flag(task, TIF_SVE) ||
901 	    thread_sm_enabled(&task->thread)) {
902 		sve_to_fpsimd(task);
903 		task->thread.fp_type = FP_STATE_FPSIMD;
904 	}
905 
906 	if (system_supports_sme()) {
907 		if (type == ARM64_VEC_SME ||
908 		    !(task->thread.svcr & (SVCR_SM_MASK | SVCR_ZA_MASK))) {
909 			/*
910 			 * We are changing the SME VL or weren't using
911 			 * SME anyway, discard the state and force a
912 			 * reallocation.
913 			 */
914 			task->thread.svcr &= ~(SVCR_SM_MASK |
915 					       SVCR_ZA_MASK);
916 			clear_tsk_thread_flag(task, TIF_SME);
917 			free_sme = true;
918 		}
919 	}
920 
921 	if (task == current)
922 		put_cpu_fpsimd_context();
923 
924 	task_set_vl(task, type, vl);
925 
926 	/*
927 	 * Free the changed states if they are not in use, SME will be
928 	 * reallocated to the correct size on next use and we just
929 	 * allocate SVE now in case it is needed for use in streaming
930 	 * mode.
931 	 */
932 	if (system_supports_sve()) {
933 		sve_free(task);
934 		sve_alloc(task, true);
935 	}
936 
937 	if (free_sme)
938 		sme_free(task);
939 
940 out:
941 	update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
942 			       flags & PR_SVE_VL_INHERIT);
943 
944 	return 0;
945 }
946 
947 /*
948  * Encode the current vector length and flags for return.
949  * This is only required for prctl(): ptrace has separate fields.
950  * SVE and SME use the same bits for _ONEXEC and _INHERIT.
951  *
952  * flags are as for vec_set_vector_length().
953  */
vec_prctl_status(enum vec_type type,unsigned long flags)954 static int vec_prctl_status(enum vec_type type, unsigned long flags)
955 {
956 	int ret;
957 
958 	if (flags & PR_SVE_SET_VL_ONEXEC)
959 		ret = task_get_vl_onexec(current, type);
960 	else
961 		ret = task_get_vl(current, type);
962 
963 	if (test_thread_flag(vec_vl_inherit_flag(type)))
964 		ret |= PR_SVE_VL_INHERIT;
965 
966 	return ret;
967 }
968 
969 /* PR_SVE_SET_VL */
sve_set_current_vl(unsigned long arg)970 int sve_set_current_vl(unsigned long arg)
971 {
972 	unsigned long vl, flags;
973 	int ret;
974 
975 	vl = arg & PR_SVE_VL_LEN_MASK;
976 	flags = arg & ~vl;
977 
978 	if (!system_supports_sve() || is_compat_task())
979 		return -EINVAL;
980 
981 	ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags);
982 	if (ret)
983 		return ret;
984 
985 	return vec_prctl_status(ARM64_VEC_SVE, flags);
986 }
987 
988 /* PR_SVE_GET_VL */
sve_get_current_vl(void)989 int sve_get_current_vl(void)
990 {
991 	if (!system_supports_sve() || is_compat_task())
992 		return -EINVAL;
993 
994 	return vec_prctl_status(ARM64_VEC_SVE, 0);
995 }
996 
997 #ifdef CONFIG_ARM64_SME
998 /* PR_SME_SET_VL */
sme_set_current_vl(unsigned long arg)999 int sme_set_current_vl(unsigned long arg)
1000 {
1001 	unsigned long vl, flags;
1002 	int ret;
1003 
1004 	vl = arg & PR_SME_VL_LEN_MASK;
1005 	flags = arg & ~vl;
1006 
1007 	if (!system_supports_sme() || is_compat_task())
1008 		return -EINVAL;
1009 
1010 	ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags);
1011 	if (ret)
1012 		return ret;
1013 
1014 	return vec_prctl_status(ARM64_VEC_SME, flags);
1015 }
1016 
1017 /* PR_SME_GET_VL */
sme_get_current_vl(void)1018 int sme_get_current_vl(void)
1019 {
1020 	if (!system_supports_sme() || is_compat_task())
1021 		return -EINVAL;
1022 
1023 	return vec_prctl_status(ARM64_VEC_SME, 0);
1024 }
1025 #endif /* CONFIG_ARM64_SME */
1026 
vec_probe_vqs(struct vl_info * info,DECLARE_BITMAP (map,SVE_VQ_MAX))1027 static void vec_probe_vqs(struct vl_info *info,
1028 			  DECLARE_BITMAP(map, SVE_VQ_MAX))
1029 {
1030 	unsigned int vq, vl;
1031 
1032 	bitmap_zero(map, SVE_VQ_MAX);
1033 
1034 	for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
1035 		write_vl(info->type, vq - 1); /* self-syncing */
1036 
1037 		switch (info->type) {
1038 		case ARM64_VEC_SVE:
1039 			vl = sve_get_vl();
1040 			break;
1041 		case ARM64_VEC_SME:
1042 			vl = sme_get_vl();
1043 			break;
1044 		default:
1045 			vl = 0;
1046 			break;
1047 		}
1048 
1049 		/* Minimum VL identified? */
1050 		if (sve_vq_from_vl(vl) > vq)
1051 			break;
1052 
1053 		vq = sve_vq_from_vl(vl); /* skip intervening lengths */
1054 		set_bit(__vq_to_bit(vq), map);
1055 	}
1056 }
1057 
1058 /*
1059  * Initialise the set of known supported VQs for the boot CPU.
1060  * This is called during kernel boot, before secondary CPUs are brought up.
1061  */
vec_init_vq_map(enum vec_type type)1062 void __init vec_init_vq_map(enum vec_type type)
1063 {
1064 	struct vl_info *info = &vl_info[type];
1065 	vec_probe_vqs(info, info->vq_map);
1066 	bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
1067 }
1068 
1069 /*
1070  * If we haven't committed to the set of supported VQs yet, filter out
1071  * those not supported by the current CPU.
1072  * This function is called during the bring-up of early secondary CPUs only.
1073  */
vec_update_vq_map(enum vec_type type)1074 void vec_update_vq_map(enum vec_type type)
1075 {
1076 	struct vl_info *info = &vl_info[type];
1077 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1078 
1079 	vec_probe_vqs(info, tmp_map);
1080 	bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
1081 	bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
1082 		  SVE_VQ_MAX);
1083 }
1084 
1085 /*
1086  * Check whether the current CPU supports all VQs in the committed set.
1087  * This function is called during the bring-up of late secondary CPUs only.
1088  */
vec_verify_vq_map(enum vec_type type)1089 int vec_verify_vq_map(enum vec_type type)
1090 {
1091 	struct vl_info *info = &vl_info[type];
1092 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1093 	unsigned long b;
1094 
1095 	vec_probe_vqs(info, tmp_map);
1096 
1097 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1098 	if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
1099 		pr_warn("%s: cpu%d: Required vector length(s) missing\n",
1100 			info->name, smp_processor_id());
1101 		return -EINVAL;
1102 	}
1103 
1104 	if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
1105 		return 0;
1106 
1107 	/*
1108 	 * For KVM, it is necessary to ensure that this CPU doesn't
1109 	 * support any vector length that guests may have probed as
1110 	 * unsupported.
1111 	 */
1112 
1113 	/* Recover the set of supported VQs: */
1114 	bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1115 	/* Find VQs supported that are not globally supported: */
1116 	bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
1117 
1118 	/* Find the lowest such VQ, if any: */
1119 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
1120 	if (b >= SVE_VQ_MAX)
1121 		return 0; /* no mismatches */
1122 
1123 	/*
1124 	 * Mismatches above sve_max_virtualisable_vl are fine, since
1125 	 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
1126 	 */
1127 	if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
1128 		pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
1129 			info->name, smp_processor_id());
1130 		return -EINVAL;
1131 	}
1132 
1133 	return 0;
1134 }
1135 
sve_efi_setup(void)1136 static void __init sve_efi_setup(void)
1137 {
1138 	int max_vl = 0;
1139 	int i;
1140 
1141 	if (!IS_ENABLED(CONFIG_EFI))
1142 		return;
1143 
1144 	for (i = 0; i < ARRAY_SIZE(vl_info); i++)
1145 		max_vl = max(vl_info[i].max_vl, max_vl);
1146 
1147 	/*
1148 	 * alloc_percpu() warns and prints a backtrace if this goes wrong.
1149 	 * This is evidence of a crippled system and we are returning void,
1150 	 * so no attempt is made to handle this situation here.
1151 	 */
1152 	if (!sve_vl_valid(max_vl))
1153 		goto fail;
1154 
1155 	efi_sve_state = __alloc_percpu(
1156 		SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), SVE_VQ_BYTES);
1157 	if (!efi_sve_state)
1158 		goto fail;
1159 
1160 	return;
1161 
1162 fail:
1163 	panic("Cannot allocate percpu memory for EFI SVE save/restore");
1164 }
1165 
1166 /*
1167  * Enable SVE for EL1.
1168  * Intended for use by the cpufeatures code during CPU boot.
1169  */
sve_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)1170 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1171 {
1172 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
1173 	isb();
1174 }
1175 
1176 /*
1177  * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
1178  * vector length.
1179  *
1180  * Use only if SVE is present.
1181  * This function clobbers the SVE vector length.
1182  */
read_zcr_features(void)1183 u64 read_zcr_features(void)
1184 {
1185 	/*
1186 	 * Set the maximum possible VL, and write zeroes to all other
1187 	 * bits to see if they stick.
1188 	 */
1189 	sve_kernel_enable(NULL);
1190 	write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
1191 
1192 	/* Return LEN value that would be written to get the maximum VL */
1193 	return sve_vq_from_vl(sve_get_vl()) - 1;
1194 }
1195 
sve_setup(void)1196 void __init sve_setup(void)
1197 {
1198 	struct vl_info *info = &vl_info[ARM64_VEC_SVE];
1199 	u64 zcr;
1200 	DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1201 	unsigned long b;
1202 
1203 	if (!system_supports_sve())
1204 		return;
1205 
1206 	/*
1207 	 * The SVE architecture mandates support for 128-bit vectors,
1208 	 * so sve_vq_map must have at least SVE_VQ_MIN set.
1209 	 * If something went wrong, at least try to patch it up:
1210 	 */
1211 	if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
1212 		set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
1213 
1214 	zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1215 	info->max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
1216 
1217 	/*
1218 	 * Sanity-check that the max VL we determined through CPU features
1219 	 * corresponds properly to sve_vq_map.  If not, do our best:
1220 	 */
1221 	if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SVE,
1222 								 info->max_vl)))
1223 		info->max_vl = find_supported_vector_length(ARM64_VEC_SVE,
1224 							    info->max_vl);
1225 
1226 	/*
1227 	 * For the default VL, pick the maximum supported value <= 64.
1228 	 * VL == 64 is guaranteed not to grow the signal frame.
1229 	 */
1230 	set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
1231 
1232 	bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
1233 		      SVE_VQ_MAX);
1234 
1235 	b = find_last_bit(tmp_map, SVE_VQ_MAX);
1236 	if (b >= SVE_VQ_MAX)
1237 		/* No non-virtualisable VLs found */
1238 		info->max_virtualisable_vl = SVE_VQ_MAX;
1239 	else if (WARN_ON(b == SVE_VQ_MAX - 1))
1240 		/* No virtualisable VLs?  This is architecturally forbidden. */
1241 		info->max_virtualisable_vl = SVE_VQ_MIN;
1242 	else /* b + 1 < SVE_VQ_MAX */
1243 		info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
1244 
1245 	if (info->max_virtualisable_vl > info->max_vl)
1246 		info->max_virtualisable_vl = info->max_vl;
1247 
1248 	pr_info("%s: maximum available vector length %u bytes per vector\n",
1249 		info->name, info->max_vl);
1250 	pr_info("%s: default vector length %u bytes per vector\n",
1251 		info->name, get_sve_default_vl());
1252 
1253 	/* KVM decides whether to support mismatched systems. Just warn here: */
1254 	if (sve_max_virtualisable_vl() < sve_max_vl())
1255 		pr_warn("%s: unvirtualisable vector lengths present\n",
1256 			info->name);
1257 
1258 	sve_efi_setup();
1259 }
1260 
1261 /*
1262  * Called from the put_task_struct() path, which cannot get here
1263  * unless dead_task is really dead and not schedulable.
1264  */
fpsimd_release_task(struct task_struct * dead_task)1265 void fpsimd_release_task(struct task_struct *dead_task)
1266 {
1267 	__sve_free(dead_task);
1268 	sme_free(dead_task);
1269 }
1270 
1271 #endif /* CONFIG_ARM64_SVE */
1272 
1273 #ifdef CONFIG_ARM64_SME
1274 
1275 /*
1276  * Ensure that task->thread.sme_state is allocated and sufficiently large.
1277  *
1278  * This function should be used only in preparation for replacing
1279  * task->thread.sme_state with new data.  The memory is always zeroed
1280  * here to prevent stale data from showing through: this is done in
1281  * the interest of testability and predictability, the architecture
1282  * guarantees that when ZA is enabled it will be zeroed.
1283  */
sme_alloc(struct task_struct * task,bool flush)1284 void sme_alloc(struct task_struct *task, bool flush)
1285 {
1286 	if (task->thread.sme_state) {
1287 		if (flush)
1288 			memset(task->thread.sme_state, 0,
1289 			       sme_state_size(task));
1290 		return;
1291 	}
1292 
1293 	/* This could potentially be up to 64K. */
1294 	task->thread.sme_state =
1295 		kzalloc(sme_state_size(task), GFP_KERNEL);
1296 }
1297 
sme_free(struct task_struct * task)1298 static void sme_free(struct task_struct *task)
1299 {
1300 	kfree(task->thread.sme_state);
1301 	task->thread.sme_state = NULL;
1302 }
1303 
sme_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)1304 void sme_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1305 {
1306 	/* Set priority for all PEs to architecturally defined minimum */
1307 	write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
1308 		       SYS_SMPRI_EL1);
1309 
1310 	/* Allow SME in kernel */
1311 	write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
1312 	isb();
1313 
1314 	/* Allow EL0 to access TPIDR2 */
1315 	write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
1316 	isb();
1317 }
1318 
1319 /*
1320  * This must be called after sme_kernel_enable(), we rely on the
1321  * feature table being sorted to ensure this.
1322  */
sme2_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)1323 void sme2_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1324 {
1325 	/* Allow use of ZT0 */
1326 	write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_EZT0_MASK,
1327 		       SYS_SMCR_EL1);
1328 }
1329 
1330 /*
1331  * This must be called after sme_kernel_enable(), we rely on the
1332  * feature table being sorted to ensure this.
1333  */
fa64_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)1334 void fa64_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1335 {
1336 	/* Allow use of FA64 */
1337 	write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
1338 		       SYS_SMCR_EL1);
1339 }
1340 
1341 /*
1342  * Read the pseudo-SMCR used by cpufeatures to identify the supported
1343  * vector length.
1344  *
1345  * Use only if SME is present.
1346  * This function clobbers the SME vector length.
1347  */
read_smcr_features(void)1348 u64 read_smcr_features(void)
1349 {
1350 	sme_kernel_enable(NULL);
1351 
1352 	/*
1353 	 * Set the maximum possible VL.
1354 	 */
1355 	write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_LEN_MASK,
1356 		       SYS_SMCR_EL1);
1357 
1358 	/* Return LEN value that would be written to get the maximum VL */
1359 	return sve_vq_from_vl(sme_get_vl()) - 1;
1360 }
1361 
sme_setup(void)1362 void __init sme_setup(void)
1363 {
1364 	struct vl_info *info = &vl_info[ARM64_VEC_SME];
1365 	u64 smcr;
1366 	int min_bit;
1367 
1368 	if (!system_supports_sme())
1369 		return;
1370 
1371 	/*
1372 	 * SME doesn't require any particular vector length be
1373 	 * supported but it does require at least one.  We should have
1374 	 * disabled the feature entirely while bringing up CPUs but
1375 	 * let's double check here.
1376 	 */
1377 	WARN_ON(bitmap_empty(info->vq_map, SVE_VQ_MAX));
1378 
1379 	min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
1380 	info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
1381 
1382 	smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
1383 	info->max_vl = sve_vl_from_vq((smcr & SMCR_ELx_LEN_MASK) + 1);
1384 
1385 	/*
1386 	 * Sanity-check that the max VL we determined through CPU features
1387 	 * corresponds properly to sme_vq_map.  If not, do our best:
1388 	 */
1389 	if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SME,
1390 								 info->max_vl)))
1391 		info->max_vl = find_supported_vector_length(ARM64_VEC_SME,
1392 							    info->max_vl);
1393 
1394 	WARN_ON(info->min_vl > info->max_vl);
1395 
1396 	/*
1397 	 * For the default VL, pick the maximum supported value <= 32
1398 	 * (256 bits) if there is one since this is guaranteed not to
1399 	 * grow the signal frame when in streaming mode, otherwise the
1400 	 * minimum available VL will be used.
1401 	 */
1402 	set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32));
1403 
1404 	pr_info("SME: minimum available vector length %u bytes per vector\n",
1405 		info->min_vl);
1406 	pr_info("SME: maximum available vector length %u bytes per vector\n",
1407 		info->max_vl);
1408 	pr_info("SME: default vector length %u bytes per vector\n",
1409 		get_sme_default_vl());
1410 }
1411 
sme_suspend_exit(void)1412 void sme_suspend_exit(void)
1413 {
1414 	u64 smcr = 0;
1415 
1416 	if (!system_supports_sme())
1417 		return;
1418 
1419 	if (system_supports_fa64())
1420 		smcr |= SMCR_ELx_FA64;
1421 	if (system_supports_sme2())
1422 		smcr |= SMCR_ELx_EZT0;
1423 
1424 	write_sysreg_s(smcr, SYS_SMCR_EL1);
1425 	write_sysreg_s(0, SYS_SMPRI_EL1);
1426 }
1427 
1428 #endif /* CONFIG_ARM64_SME */
1429 
sve_init_regs(void)1430 static void sve_init_regs(void)
1431 {
1432 	/*
1433 	 * Convert the FPSIMD state to SVE, zeroing all the state that
1434 	 * is not shared with FPSIMD. If (as is likely) the current
1435 	 * state is live in the registers then do this there and
1436 	 * update our metadata for the current task including
1437 	 * disabling the trap, otherwise update our in-memory copy.
1438 	 * We are guaranteed to not be in streaming mode, we can only
1439 	 * take a SVE trap when not in streaming mode and we can't be
1440 	 * in streaming mode when taking a SME trap.
1441 	 */
1442 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1443 		unsigned long vq_minus_one =
1444 			sve_vq_from_vl(task_get_sve_vl(current)) - 1;
1445 		sve_set_vq(vq_minus_one);
1446 		sve_flush_live(true, vq_minus_one);
1447 		fpsimd_bind_task_to_cpu();
1448 	} else {
1449 		fpsimd_to_sve(current);
1450 		current->thread.fp_type = FP_STATE_SVE;
1451 		fpsimd_flush_task_state(current);
1452 	}
1453 }
1454 
1455 /*
1456  * Trapped SVE access
1457  *
1458  * Storage is allocated for the full SVE state, the current FPSIMD
1459  * register contents are migrated across, and the access trap is
1460  * disabled.
1461  *
1462  * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
1463  * would have disabled the SVE access trap for userspace during
1464  * ret_to_user, making an SVE access trap impossible in that case.
1465  */
do_sve_acc(unsigned long esr,struct pt_regs * regs)1466 void do_sve_acc(unsigned long esr, struct pt_regs *regs)
1467 {
1468 	/* Even if we chose not to use SVE, the hardware could still trap: */
1469 	if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
1470 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1471 		return;
1472 	}
1473 
1474 	sve_alloc(current, true);
1475 	if (!current->thread.sve_state) {
1476 		force_sig(SIGKILL);
1477 		return;
1478 	}
1479 
1480 	get_cpu_fpsimd_context();
1481 
1482 	if (test_and_set_thread_flag(TIF_SVE))
1483 		WARN_ON(1); /* SVE access shouldn't have trapped */
1484 
1485 	/*
1486 	 * Even if the task can have used streaming mode we can only
1487 	 * generate SVE access traps in normal SVE mode and
1488 	 * transitioning out of streaming mode may discard any
1489 	 * streaming mode state.  Always clear the high bits to avoid
1490 	 * any potential errors tracking what is properly initialised.
1491 	 */
1492 	sve_init_regs();
1493 
1494 	put_cpu_fpsimd_context();
1495 }
1496 
1497 /*
1498  * Trapped SME access
1499  *
1500  * Storage is allocated for the full SVE and SME state, the current
1501  * FPSIMD register contents are migrated to SVE if SVE is not already
1502  * active, and the access trap is disabled.
1503  *
1504  * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state()
1505  * would have disabled the SME access trap for userspace during
1506  * ret_to_user, making an SME access trap impossible in that case.
1507  */
do_sme_acc(unsigned long esr,struct pt_regs * regs)1508 void do_sme_acc(unsigned long esr, struct pt_regs *regs)
1509 {
1510 	/* Even if we chose not to use SME, the hardware could still trap: */
1511 	if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) {
1512 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1513 		return;
1514 	}
1515 
1516 	/*
1517 	 * If this not a trap due to SME being disabled then something
1518 	 * is being used in the wrong mode, report as SIGILL.
1519 	 */
1520 	if (ESR_ELx_SME_ISS_SMTC(esr) != ESR_ELx_SME_ISS_SMTC_SME_DISABLED) {
1521 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1522 		return;
1523 	}
1524 
1525 	sve_alloc(current, false);
1526 	sme_alloc(current, true);
1527 	if (!current->thread.sve_state || !current->thread.sme_state) {
1528 		force_sig(SIGKILL);
1529 		return;
1530 	}
1531 
1532 	get_cpu_fpsimd_context();
1533 
1534 	/* With TIF_SME userspace shouldn't generate any traps */
1535 	if (test_and_set_thread_flag(TIF_SME))
1536 		WARN_ON(1);
1537 
1538 	if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1539 		unsigned long vq_minus_one =
1540 			sve_vq_from_vl(task_get_sme_vl(current)) - 1;
1541 		sme_set_vq(vq_minus_one);
1542 
1543 		fpsimd_bind_task_to_cpu();
1544 	} else {
1545 		fpsimd_flush_task_state(current);
1546 	}
1547 
1548 	put_cpu_fpsimd_context();
1549 }
1550 
1551 /*
1552  * Trapped FP/ASIMD access.
1553  */
do_fpsimd_acc(unsigned long esr,struct pt_regs * regs)1554 void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
1555 {
1556 	/* TODO: implement lazy context saving/restoring */
1557 	WARN_ON(1);
1558 }
1559 
1560 /*
1561  * Raise a SIGFPE for the current process.
1562  */
do_fpsimd_exc(unsigned long esr,struct pt_regs * regs)1563 void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
1564 {
1565 	unsigned int si_code = FPE_FLTUNK;
1566 
1567 	if (esr & ESR_ELx_FP_EXC_TFV) {
1568 		if (esr & FPEXC_IOF)
1569 			si_code = FPE_FLTINV;
1570 		else if (esr & FPEXC_DZF)
1571 			si_code = FPE_FLTDIV;
1572 		else if (esr & FPEXC_OFF)
1573 			si_code = FPE_FLTOVF;
1574 		else if (esr & FPEXC_UFF)
1575 			si_code = FPE_FLTUND;
1576 		else if (esr & FPEXC_IXF)
1577 			si_code = FPE_FLTRES;
1578 	}
1579 
1580 	send_sig_fault(SIGFPE, si_code,
1581 		       (void __user *)instruction_pointer(regs),
1582 		       current);
1583 }
1584 
fpsimd_thread_switch(struct task_struct * next)1585 void fpsimd_thread_switch(struct task_struct *next)
1586 {
1587 	bool wrong_task, wrong_cpu;
1588 
1589 	if (!system_supports_fpsimd())
1590 		return;
1591 
1592 	__get_cpu_fpsimd_context();
1593 
1594 	/* Save unsaved fpsimd state, if any: */
1595 	fpsimd_save();
1596 
1597 	/*
1598 	 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1599 	 * state.  For kernel threads, FPSIMD registers are never loaded
1600 	 * and wrong_task and wrong_cpu will always be true.
1601 	 */
1602 	wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1603 					&next->thread.uw.fpsimd_state;
1604 	wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1605 
1606 	update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1607 			       wrong_task || wrong_cpu);
1608 
1609 	__put_cpu_fpsimd_context();
1610 }
1611 
fpsimd_flush_thread_vl(enum vec_type type)1612 static void fpsimd_flush_thread_vl(enum vec_type type)
1613 {
1614 	int vl, supported_vl;
1615 
1616 	/*
1617 	 * Reset the task vector length as required.  This is where we
1618 	 * ensure that all user tasks have a valid vector length
1619 	 * configured: no kernel task can become a user task without
1620 	 * an exec and hence a call to this function.  By the time the
1621 	 * first call to this function is made, all early hardware
1622 	 * probing is complete, so __sve_default_vl should be valid.
1623 	 * If a bug causes this to go wrong, we make some noise and
1624 	 * try to fudge thread.sve_vl to a safe value here.
1625 	 */
1626 	vl = task_get_vl_onexec(current, type);
1627 	if (!vl)
1628 		vl = get_default_vl(type);
1629 
1630 	if (WARN_ON(!sve_vl_valid(vl)))
1631 		vl = vl_info[type].min_vl;
1632 
1633 	supported_vl = find_supported_vector_length(type, vl);
1634 	if (WARN_ON(supported_vl != vl))
1635 		vl = supported_vl;
1636 
1637 	task_set_vl(current, type, vl);
1638 
1639 	/*
1640 	 * If the task is not set to inherit, ensure that the vector
1641 	 * length will be reset by a subsequent exec:
1642 	 */
1643 	if (!test_thread_flag(vec_vl_inherit_flag(type)))
1644 		task_set_vl_onexec(current, type, 0);
1645 }
1646 
fpsimd_flush_thread(void)1647 void fpsimd_flush_thread(void)
1648 {
1649 	void *sve_state = NULL;
1650 	void *sme_state = NULL;
1651 
1652 	if (!system_supports_fpsimd())
1653 		return;
1654 
1655 	get_cpu_fpsimd_context();
1656 
1657 	fpsimd_flush_task_state(current);
1658 	memset(&current->thread.uw.fpsimd_state, 0,
1659 	       sizeof(current->thread.uw.fpsimd_state));
1660 
1661 	if (system_supports_sve()) {
1662 		clear_thread_flag(TIF_SVE);
1663 
1664 		/* Defer kfree() while in atomic context */
1665 		sve_state = current->thread.sve_state;
1666 		current->thread.sve_state = NULL;
1667 
1668 		fpsimd_flush_thread_vl(ARM64_VEC_SVE);
1669 	}
1670 
1671 	if (system_supports_sme()) {
1672 		clear_thread_flag(TIF_SME);
1673 
1674 		/* Defer kfree() while in atomic context */
1675 		sme_state = current->thread.sme_state;
1676 		current->thread.sme_state = NULL;
1677 
1678 		fpsimd_flush_thread_vl(ARM64_VEC_SME);
1679 		current->thread.svcr = 0;
1680 	}
1681 
1682 	current->thread.fp_type = FP_STATE_FPSIMD;
1683 
1684 	put_cpu_fpsimd_context();
1685 	kfree(sve_state);
1686 	kfree(sme_state);
1687 }
1688 
1689 /*
1690  * Save the userland FPSIMD state of 'current' to memory, but only if the state
1691  * currently held in the registers does in fact belong to 'current'
1692  */
fpsimd_preserve_current_state(void)1693 void fpsimd_preserve_current_state(void)
1694 {
1695 	if (!system_supports_fpsimd())
1696 		return;
1697 
1698 	get_cpu_fpsimd_context();
1699 	fpsimd_save();
1700 	put_cpu_fpsimd_context();
1701 }
1702 
1703 /*
1704  * Like fpsimd_preserve_current_state(), but ensure that
1705  * current->thread.uw.fpsimd_state is updated so that it can be copied to
1706  * the signal frame.
1707  */
fpsimd_signal_preserve_current_state(void)1708 void fpsimd_signal_preserve_current_state(void)
1709 {
1710 	fpsimd_preserve_current_state();
1711 	if (current->thread.fp_type == FP_STATE_SVE)
1712 		sve_to_fpsimd(current);
1713 }
1714 
1715 /*
1716  * Associate current's FPSIMD context with this cpu
1717  * The caller must have ownership of the cpu FPSIMD context before calling
1718  * this function.
1719  */
fpsimd_bind_task_to_cpu(void)1720 static void fpsimd_bind_task_to_cpu(void)
1721 {
1722 	struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1723 
1724 	WARN_ON(!system_supports_fpsimd());
1725 	last->st = &current->thread.uw.fpsimd_state;
1726 	last->sve_state = current->thread.sve_state;
1727 	last->sme_state = current->thread.sme_state;
1728 	last->sve_vl = task_get_sve_vl(current);
1729 	last->sme_vl = task_get_sme_vl(current);
1730 	last->svcr = &current->thread.svcr;
1731 	last->fp_type = &current->thread.fp_type;
1732 	last->to_save = FP_STATE_CURRENT;
1733 	current->thread.fpsimd_cpu = smp_processor_id();
1734 
1735 	/*
1736 	 * Toggle SVE and SME trapping for userspace if needed, these
1737 	 * are serialsied by ret_to_user().
1738 	 */
1739 	if (system_supports_sme()) {
1740 		if (test_thread_flag(TIF_SME))
1741 			sme_user_enable();
1742 		else
1743 			sme_user_disable();
1744 	}
1745 
1746 	if (system_supports_sve()) {
1747 		if (test_thread_flag(TIF_SVE))
1748 			sve_user_enable();
1749 		else
1750 			sve_user_disable();
1751 	}
1752 }
1753 
fpsimd_bind_state_to_cpu(struct cpu_fp_state * state)1754 void fpsimd_bind_state_to_cpu(struct cpu_fp_state *state)
1755 {
1756 	struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
1757 
1758 	WARN_ON(!system_supports_fpsimd());
1759 	WARN_ON(!in_softirq() && !irqs_disabled());
1760 
1761 	*last = *state;
1762 }
1763 
1764 /*
1765  * Load the userland FPSIMD state of 'current' from memory, but only if the
1766  * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1767  * state of 'current'.  This is called when we are preparing to return to
1768  * userspace to ensure that userspace sees a good register state.
1769  */
fpsimd_restore_current_state(void)1770 void fpsimd_restore_current_state(void)
1771 {
1772 	/*
1773 	 * For the tasks that were created before we detected the absence of
1774 	 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(),
1775 	 * e.g, init. This could be then inherited by the children processes.
1776 	 * If we later detect that the system doesn't support FP/SIMD,
1777 	 * we must clear the flag for  all the tasks to indicate that the
1778 	 * FPSTATE is clean (as we can't have one) to avoid looping for ever in
1779 	 * do_notify_resume().
1780 	 */
1781 	if (!system_supports_fpsimd()) {
1782 		clear_thread_flag(TIF_FOREIGN_FPSTATE);
1783 		return;
1784 	}
1785 
1786 	get_cpu_fpsimd_context();
1787 
1788 	if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1789 		task_fpsimd_load();
1790 		fpsimd_bind_task_to_cpu();
1791 	}
1792 
1793 	put_cpu_fpsimd_context();
1794 }
1795 
1796 /*
1797  * Load an updated userland FPSIMD state for 'current' from memory and set the
1798  * flag that indicates that the FPSIMD register contents are the most recent
1799  * FPSIMD state of 'current'. This is used by the signal code to restore the
1800  * register state when returning from a signal handler in FPSIMD only cases,
1801  * any SVE context will be discarded.
1802  */
fpsimd_update_current_state(struct user_fpsimd_state const * state)1803 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1804 {
1805 	if (WARN_ON(!system_supports_fpsimd()))
1806 		return;
1807 
1808 	get_cpu_fpsimd_context();
1809 
1810 	current->thread.uw.fpsimd_state = *state;
1811 	if (current->thread.fp_type == FP_STATE_SVE)
1812 		fpsimd_to_sve(current);
1813 
1814 	task_fpsimd_load();
1815 	fpsimd_bind_task_to_cpu();
1816 
1817 	clear_thread_flag(TIF_FOREIGN_FPSTATE);
1818 
1819 	put_cpu_fpsimd_context();
1820 }
1821 
1822 /*
1823  * Invalidate live CPU copies of task t's FPSIMD state
1824  *
1825  * This function may be called with preemption enabled.  The barrier()
1826  * ensures that the assignment to fpsimd_cpu is visible to any
1827  * preemption/softirq that could race with set_tsk_thread_flag(), so
1828  * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1829  *
1830  * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1831  * subsequent code.
1832  */
fpsimd_flush_task_state(struct task_struct * t)1833 void fpsimd_flush_task_state(struct task_struct *t)
1834 {
1835 	t->thread.fpsimd_cpu = NR_CPUS;
1836 	/*
1837 	 * If we don't support fpsimd, bail out after we have
1838 	 * reset the fpsimd_cpu for this task and clear the
1839 	 * FPSTATE.
1840 	 */
1841 	if (!system_supports_fpsimd())
1842 		return;
1843 	barrier();
1844 	set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1845 
1846 	barrier();
1847 }
1848 
1849 /*
1850  * Invalidate any task's FPSIMD state that is present on this cpu.
1851  * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1852  * before calling this function.
1853  */
fpsimd_flush_cpu_state(void)1854 static void fpsimd_flush_cpu_state(void)
1855 {
1856 	WARN_ON(!system_supports_fpsimd());
1857 	__this_cpu_write(fpsimd_last_state.st, NULL);
1858 
1859 	/*
1860 	 * Leaving streaming mode enabled will cause issues for any kernel
1861 	 * NEON and leaving streaming mode or ZA enabled may increase power
1862 	 * consumption.
1863 	 */
1864 	if (system_supports_sme())
1865 		sme_smstop();
1866 
1867 	set_thread_flag(TIF_FOREIGN_FPSTATE);
1868 }
1869 
1870 /*
1871  * Save the FPSIMD state to memory and invalidate cpu view.
1872  * This function must be called with preemption disabled.
1873  */
fpsimd_save_and_flush_cpu_state(void)1874 void fpsimd_save_and_flush_cpu_state(void)
1875 {
1876 	if (!system_supports_fpsimd())
1877 		return;
1878 	WARN_ON(preemptible());
1879 	__get_cpu_fpsimd_context();
1880 	fpsimd_save();
1881 	fpsimd_flush_cpu_state();
1882 	__put_cpu_fpsimd_context();
1883 }
1884 
1885 #ifdef CONFIG_KERNEL_MODE_NEON
1886 
1887 /*
1888  * Kernel-side NEON support functions
1889  */
1890 
1891 /*
1892  * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1893  * context
1894  *
1895  * Must not be called unless may_use_simd() returns true.
1896  * Task context in the FPSIMD registers is saved back to memory as necessary.
1897  *
1898  * A matching call to kernel_neon_end() must be made before returning from the
1899  * calling context.
1900  *
1901  * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1902  * called.
1903  */
kernel_neon_begin(void)1904 void kernel_neon_begin(void)
1905 {
1906 	if (WARN_ON(!system_supports_fpsimd()))
1907 		return;
1908 
1909 	BUG_ON(!may_use_simd());
1910 
1911 	get_cpu_fpsimd_context();
1912 
1913 	/* Save unsaved fpsimd state, if any: */
1914 	fpsimd_save();
1915 
1916 	/* Invalidate any task state remaining in the fpsimd regs: */
1917 	fpsimd_flush_cpu_state();
1918 }
1919 EXPORT_SYMBOL_GPL(kernel_neon_begin);
1920 
1921 /*
1922  * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1923  *
1924  * Must be called from a context in which kernel_neon_begin() was previously
1925  * called, with no call to kernel_neon_end() in the meantime.
1926  *
1927  * The caller must not use the FPSIMD registers after this function is called,
1928  * unless kernel_neon_begin() is called again in the meantime.
1929  */
kernel_neon_end(void)1930 void kernel_neon_end(void)
1931 {
1932 	if (!system_supports_fpsimd())
1933 		return;
1934 
1935 	put_cpu_fpsimd_context();
1936 }
1937 EXPORT_SYMBOL_GPL(kernel_neon_end);
1938 
1939 #ifdef CONFIG_EFI
1940 
1941 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1942 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1943 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1944 static DEFINE_PER_CPU(bool, efi_sm_state);
1945 
1946 /*
1947  * EFI runtime services support functions
1948  *
1949  * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1950  * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1951  * is always used rather than being an optional accelerator.
1952  *
1953  * These functions provide the necessary support for ensuring FPSIMD
1954  * save/restore in the contexts from which EFI is used.
1955  *
1956  * Do not use them for any other purpose -- if tempted to do so, you are
1957  * either doing something wrong or you need to propose some refactoring.
1958  */
1959 
1960 /*
1961  * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1962  */
__efi_fpsimd_begin(void)1963 void __efi_fpsimd_begin(void)
1964 {
1965 	if (!system_supports_fpsimd())
1966 		return;
1967 
1968 	WARN_ON(preemptible());
1969 
1970 	if (may_use_simd()) {
1971 		kernel_neon_begin();
1972 	} else {
1973 		/*
1974 		 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1975 		 * preserving:
1976 		 */
1977 		if (system_supports_sve() && likely(efi_sve_state)) {
1978 			char *sve_state = this_cpu_ptr(efi_sve_state);
1979 			bool ffr = true;
1980 			u64 svcr;
1981 
1982 			__this_cpu_write(efi_sve_state_used, true);
1983 
1984 			if (system_supports_sme()) {
1985 				svcr = read_sysreg_s(SYS_SVCR);
1986 
1987 				__this_cpu_write(efi_sm_state,
1988 						 svcr & SVCR_SM_MASK);
1989 
1990 				/*
1991 				 * Unless we have FA64 FFR does not
1992 				 * exist in streaming mode.
1993 				 */
1994 				if (!system_supports_fa64())
1995 					ffr = !(svcr & SVCR_SM_MASK);
1996 			}
1997 
1998 			sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()),
1999 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
2000 				       ffr);
2001 
2002 			if (system_supports_sme())
2003 				sysreg_clear_set_s(SYS_SVCR,
2004 						   SVCR_SM_MASK, 0);
2005 
2006 		} else {
2007 			fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
2008 		}
2009 
2010 		__this_cpu_write(efi_fpsimd_state_used, true);
2011 	}
2012 }
2013 
2014 /*
2015  * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
2016  */
__efi_fpsimd_end(void)2017 void __efi_fpsimd_end(void)
2018 {
2019 	if (!system_supports_fpsimd())
2020 		return;
2021 
2022 	if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
2023 		kernel_neon_end();
2024 	} else {
2025 		if (system_supports_sve() &&
2026 		    likely(__this_cpu_read(efi_sve_state_used))) {
2027 			char const *sve_state = this_cpu_ptr(efi_sve_state);
2028 			bool ffr = true;
2029 
2030 			/*
2031 			 * Restore streaming mode; EFI calls are
2032 			 * normal function calls so should not return in
2033 			 * streaming mode.
2034 			 */
2035 			if (system_supports_sme()) {
2036 				if (__this_cpu_read(efi_sm_state)) {
2037 					sysreg_clear_set_s(SYS_SVCR,
2038 							   0,
2039 							   SVCR_SM_MASK);
2040 
2041 					/*
2042 					 * Unless we have FA64 FFR does not
2043 					 * exist in streaming mode.
2044 					 */
2045 					if (!system_supports_fa64())
2046 						ffr = false;
2047 				}
2048 			}
2049 
2050 			sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()),
2051 				       &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
2052 				       ffr);
2053 
2054 			__this_cpu_write(efi_sve_state_used, false);
2055 		} else {
2056 			fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
2057 		}
2058 	}
2059 }
2060 
2061 #endif /* CONFIG_EFI */
2062 
2063 #endif /* CONFIG_KERNEL_MODE_NEON */
2064 
2065 #ifdef CONFIG_CPU_PM
fpsimd_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)2066 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
2067 				  unsigned long cmd, void *v)
2068 {
2069 	switch (cmd) {
2070 	case CPU_PM_ENTER:
2071 		fpsimd_save_and_flush_cpu_state();
2072 		break;
2073 	case CPU_PM_EXIT:
2074 		break;
2075 	case CPU_PM_ENTER_FAILED:
2076 	default:
2077 		return NOTIFY_DONE;
2078 	}
2079 	return NOTIFY_OK;
2080 }
2081 
2082 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
2083 	.notifier_call = fpsimd_cpu_pm_notifier,
2084 };
2085 
fpsimd_pm_init(void)2086 static void __init fpsimd_pm_init(void)
2087 {
2088 	cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
2089 }
2090 
2091 #else
fpsimd_pm_init(void)2092 static inline void fpsimd_pm_init(void) { }
2093 #endif /* CONFIG_CPU_PM */
2094 
2095 #ifdef CONFIG_HOTPLUG_CPU
fpsimd_cpu_dead(unsigned int cpu)2096 static int fpsimd_cpu_dead(unsigned int cpu)
2097 {
2098 	per_cpu(fpsimd_last_state.st, cpu) = NULL;
2099 	return 0;
2100 }
2101 
fpsimd_hotplug_init(void)2102 static inline void fpsimd_hotplug_init(void)
2103 {
2104 	cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
2105 				  NULL, fpsimd_cpu_dead);
2106 }
2107 
2108 #else
fpsimd_hotplug_init(void)2109 static inline void fpsimd_hotplug_init(void) { }
2110 #endif
2111 
2112 /*
2113  * FP/SIMD support code initialisation.
2114  */
fpsimd_init(void)2115 static int __init fpsimd_init(void)
2116 {
2117 	if (cpu_have_named_feature(FP)) {
2118 		fpsimd_pm_init();
2119 		fpsimd_hotplug_init();
2120 	} else {
2121 		pr_notice("Floating-point is not implemented\n");
2122 	}
2123 
2124 	if (!cpu_have_named_feature(ASIMD))
2125 		pr_notice("Advanced SIMD is not implemented\n");
2126 
2127 
2128 	sve_sysctl_init();
2129 	sme_sysctl_init();
2130 
2131 	return 0;
2132 }
2133 core_initcall(fpsimd_init);
2134