xref: /openbmc/qemu/target/arm/helper.c (revision f030e96d)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "cpu-features.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/timer.h"
18 #include "qemu/bitops.h"
19 #include "qemu/crc32c.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/exec-all.h"
22 #include <zlib.h> /* For crc32 */
23 #include "hw/irq.h"
24 #include "sysemu/cpu-timers.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/tcg.h"
27 #include "qapi/error.h"
28 #include "qemu/guest-random.h"
29 #ifdef CONFIG_TCG
30 #include "semihosting/common-semi.h"
31 #endif
32 #include "cpregs.h"
33 
34 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
35 
36 static void switch_mode(CPUARMState *env, int mode);
37 
raw_read(CPUARMState * env,const ARMCPRegInfo * ri)38 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
39 {
40     assert(ri->fieldoffset);
41     if (cpreg_field_is_64bit(ri)) {
42         return CPREG_FIELD64(env, ri);
43     } else {
44         return CPREG_FIELD32(env, ri);
45     }
46 }
47 
raw_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)48 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
49 {
50     assert(ri->fieldoffset);
51     if (cpreg_field_is_64bit(ri)) {
52         CPREG_FIELD64(env, ri) = value;
53     } else {
54         CPREG_FIELD32(env, ri) = value;
55     }
56 }
57 
raw_ptr(CPUARMState * env,const ARMCPRegInfo * ri)58 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
59 {
60     return (char *)env + ri->fieldoffset;
61 }
62 
read_raw_cp_reg(CPUARMState * env,const ARMCPRegInfo * ri)63 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
64 {
65     /* Raw read of a coprocessor register (as needed for migration, etc). */
66     if (ri->type & ARM_CP_CONST) {
67         return ri->resetvalue;
68     } else if (ri->raw_readfn) {
69         return ri->raw_readfn(env, ri);
70     } else if (ri->readfn) {
71         return ri->readfn(env, ri);
72     } else {
73         return raw_read(env, ri);
74     }
75 }
76 
write_raw_cp_reg(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t v)77 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
78                              uint64_t v)
79 {
80     /*
81      * Raw write of a coprocessor register (as needed for migration, etc).
82      * Note that constant registers are treated as write-ignored; the
83      * caller should check for success by whether a readback gives the
84      * value written.
85      */
86     if (ri->type & ARM_CP_CONST) {
87         return;
88     } else if (ri->raw_writefn) {
89         ri->raw_writefn(env, ri, v);
90     } else if (ri->writefn) {
91         ri->writefn(env, ri, v);
92     } else {
93         raw_write(env, ri, v);
94     }
95 }
96 
raw_accessors_invalid(const ARMCPRegInfo * ri)97 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
98 {
99    /*
100     * Return true if the regdef would cause an assertion if you called
101     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
102     * program bug for it not to have the NO_RAW flag).
103     * NB that returning false here doesn't necessarily mean that calling
104     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
105     * read/write access functions which are safe for raw use" from "has
106     * read/write access functions which have side effects but has forgotten
107     * to provide raw access functions".
108     * The tests here line up with the conditions in read/write_raw_cp_reg()
109     * and assertions in raw_read()/raw_write().
110     */
111     if ((ri->type & ARM_CP_CONST) ||
112         ri->fieldoffset ||
113         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
114         return false;
115     }
116     return true;
117 }
118 
write_cpustate_to_list(ARMCPU * cpu,bool kvm_sync)119 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
120 {
121     /* Write the coprocessor state from cpu->env to the (index,value) list. */
122     int i;
123     bool ok = true;
124 
125     for (i = 0; i < cpu->cpreg_array_len; i++) {
126         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
127         const ARMCPRegInfo *ri;
128         uint64_t newval;
129 
130         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
131         if (!ri) {
132             ok = false;
133             continue;
134         }
135         if (ri->type & ARM_CP_NO_RAW) {
136             continue;
137         }
138 
139         newval = read_raw_cp_reg(&cpu->env, ri);
140         if (kvm_sync) {
141             /*
142              * Only sync if the previous list->cpustate sync succeeded.
143              * Rather than tracking the success/failure state for every
144              * item in the list, we just recheck "does the raw write we must
145              * have made in write_list_to_cpustate() read back OK" here.
146              */
147             uint64_t oldval = cpu->cpreg_values[i];
148 
149             if (oldval == newval) {
150                 continue;
151             }
152 
153             write_raw_cp_reg(&cpu->env, ri, oldval);
154             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
155                 continue;
156             }
157 
158             write_raw_cp_reg(&cpu->env, ri, newval);
159         }
160         cpu->cpreg_values[i] = newval;
161     }
162     return ok;
163 }
164 
write_list_to_cpustate(ARMCPU * cpu)165 bool write_list_to_cpustate(ARMCPU *cpu)
166 {
167     int i;
168     bool ok = true;
169 
170     for (i = 0; i < cpu->cpreg_array_len; i++) {
171         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
172         uint64_t v = cpu->cpreg_values[i];
173         const ARMCPRegInfo *ri;
174 
175         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
176         if (!ri) {
177             ok = false;
178             continue;
179         }
180         if (ri->type & ARM_CP_NO_RAW) {
181             continue;
182         }
183         /*
184          * Write value and confirm it reads back as written
185          * (to catch read-only registers and partially read-only
186          * registers where the incoming migration value doesn't match)
187          */
188         write_raw_cp_reg(&cpu->env, ri, v);
189         if (read_raw_cp_reg(&cpu->env, ri) != v) {
190             ok = false;
191         }
192     }
193     return ok;
194 }
195 
add_cpreg_to_list(gpointer key,gpointer opaque)196 static void add_cpreg_to_list(gpointer key, gpointer opaque)
197 {
198     ARMCPU *cpu = opaque;
199     uint32_t regidx = (uintptr_t)key;
200     const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
201 
202     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
203         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
204         /* The value array need not be initialized at this point */
205         cpu->cpreg_array_len++;
206     }
207 }
208 
count_cpreg(gpointer key,gpointer opaque)209 static void count_cpreg(gpointer key, gpointer opaque)
210 {
211     ARMCPU *cpu = opaque;
212     const ARMCPRegInfo *ri;
213 
214     ri = g_hash_table_lookup(cpu->cp_regs, key);
215 
216     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
217         cpu->cpreg_array_len++;
218     }
219 }
220 
cpreg_key_compare(gconstpointer a,gconstpointer b)221 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
222 {
223     uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
224     uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
225 
226     if (aidx > bidx) {
227         return 1;
228     }
229     if (aidx < bidx) {
230         return -1;
231     }
232     return 0;
233 }
234 
init_cpreg_list(ARMCPU * cpu)235 void init_cpreg_list(ARMCPU *cpu)
236 {
237     /*
238      * Initialise the cpreg_tuples[] array based on the cp_regs hash.
239      * Note that we require cpreg_tuples[] to be sorted by key ID.
240      */
241     GList *keys;
242     int arraylen;
243 
244     keys = g_hash_table_get_keys(cpu->cp_regs);
245     keys = g_list_sort(keys, cpreg_key_compare);
246 
247     cpu->cpreg_array_len = 0;
248 
249     g_list_foreach(keys, count_cpreg, cpu);
250 
251     arraylen = cpu->cpreg_array_len;
252     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
253     cpu->cpreg_values = g_new(uint64_t, arraylen);
254     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
255     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
256     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
257     cpu->cpreg_array_len = 0;
258 
259     g_list_foreach(keys, add_cpreg_to_list, cpu);
260 
261     assert(cpu->cpreg_array_len == arraylen);
262 
263     g_list_free(keys);
264 }
265 
266 /*
267  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
268  */
access_el3_aa32ns(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)269 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
270                                         const ARMCPRegInfo *ri,
271                                         bool isread)
272 {
273     if (!is_a64(env) && arm_current_el(env) == 3 &&
274         arm_is_secure_below_el3(env)) {
275         return CP_ACCESS_TRAP_UNCATEGORIZED;
276     }
277     return CP_ACCESS_OK;
278 }
279 
280 /*
281  * Some secure-only AArch32 registers trap to EL3 if used from
282  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
283  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
284  * We assume that the .access field is set to PL1_RW.
285  */
access_trap_aa32s_el1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)286 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
287                                             const ARMCPRegInfo *ri,
288                                             bool isread)
289 {
290     if (arm_current_el(env) == 3) {
291         return CP_ACCESS_OK;
292     }
293     if (arm_is_secure_below_el3(env)) {
294         if (env->cp15.scr_el3 & SCR_EEL2) {
295             return CP_ACCESS_TRAP_EL2;
296         }
297         return CP_ACCESS_TRAP_EL3;
298     }
299     /* This will be EL1 NS and EL2 NS, which just UNDEF */
300     return CP_ACCESS_TRAP_UNCATEGORIZED;
301 }
302 
303 /*
304  * Check for traps to performance monitor registers, which are controlled
305  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
306  */
access_tpm(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)307 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
308                                  bool isread)
309 {
310     int el = arm_current_el(env);
311     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
312 
313     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
314         return CP_ACCESS_TRAP_EL2;
315     }
316     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
317         return CP_ACCESS_TRAP_EL3;
318     }
319     return CP_ACCESS_OK;
320 }
321 
322 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
access_tvm_trvm(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)323 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
324                                bool isread)
325 {
326     if (arm_current_el(env) == 1) {
327         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
328         if (arm_hcr_el2_eff(env) & trap) {
329             return CP_ACCESS_TRAP_EL2;
330         }
331     }
332     return CP_ACCESS_OK;
333 }
334 
335 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
access_tsw(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)336 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
337                                  bool isread)
338 {
339     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
340         return CP_ACCESS_TRAP_EL2;
341     }
342     return CP_ACCESS_OK;
343 }
344 
345 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
access_tacr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)346 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
347                                   bool isread)
348 {
349     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
350         return CP_ACCESS_TRAP_EL2;
351     }
352     return CP_ACCESS_OK;
353 }
354 
355 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
access_ttlb(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)356 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
357                                   bool isread)
358 {
359     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
360         return CP_ACCESS_TRAP_EL2;
361     }
362     return CP_ACCESS_OK;
363 }
364 
365 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
access_ttlbis(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)366 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
367                                     bool isread)
368 {
369     if (arm_current_el(env) == 1 &&
370         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
371         return CP_ACCESS_TRAP_EL2;
372     }
373     return CP_ACCESS_OK;
374 }
375 
376 #ifdef TARGET_AARCH64
377 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
access_ttlbos(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)378 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
379                                     bool isread)
380 {
381     if (arm_current_el(env) == 1 &&
382         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
383         return CP_ACCESS_TRAP_EL2;
384     }
385     return CP_ACCESS_OK;
386 }
387 #endif
388 
dacr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)389 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
390 {
391     ARMCPU *cpu = env_archcpu(env);
392 
393     raw_write(env, ri, value);
394     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
395 }
396 
fcse_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)397 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
398 {
399     ARMCPU *cpu = env_archcpu(env);
400 
401     if (raw_read(env, ri) != value) {
402         /*
403          * Unlike real hardware the qemu TLB uses virtual addresses,
404          * not modified virtual addresses, so this causes a TLB flush.
405          */
406         tlb_flush(CPU(cpu));
407         raw_write(env, ri, value);
408     }
409 }
410 
contextidr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)411 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
412                              uint64_t value)
413 {
414     ARMCPU *cpu = env_archcpu(env);
415 
416     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
417         && !extended_addresses_enabled(env)) {
418         /*
419          * For VMSA (when not using the LPAE long descriptor page table
420          * format) this register includes the ASID, so do a TLB flush.
421          * For PMSA it is purely a process ID and no action is needed.
422          */
423         tlb_flush(CPU(cpu));
424     }
425     raw_write(env, ri, value);
426 }
427 
alle1_tlbmask(CPUARMState * env)428 static int alle1_tlbmask(CPUARMState *env)
429 {
430     /*
431      * Note that the 'ALL' scope must invalidate both stage 1 and
432      * stage 2 translations, whereas most other scopes only invalidate
433      * stage 1 translations.
434      */
435     return (ARMMMUIdxBit_E10_1 |
436             ARMMMUIdxBit_E10_1_PAN |
437             ARMMMUIdxBit_E10_0 |
438             ARMMMUIdxBit_Stage2 |
439             ARMMMUIdxBit_Stage2_S);
440 }
441 
442 
443 /* IS variants of TLB operations must affect all cores */
tlbiall_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)444 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
445                              uint64_t value)
446 {
447     CPUState *cs = env_cpu(env);
448 
449     tlb_flush_all_cpus_synced(cs);
450 }
451 
tlbiasid_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)452 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
453                              uint64_t value)
454 {
455     CPUState *cs = env_cpu(env);
456 
457     tlb_flush_all_cpus_synced(cs);
458 }
459 
tlbimva_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)460 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
461                              uint64_t value)
462 {
463     CPUState *cs = env_cpu(env);
464 
465     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
466 }
467 
tlbimvaa_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)468 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
469                              uint64_t value)
470 {
471     CPUState *cs = env_cpu(env);
472 
473     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
474 }
475 
476 /*
477  * Non-IS variants of TLB operations are upgraded to
478  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
479  * force broadcast of these operations.
480  */
tlb_force_broadcast(CPUARMState * env)481 static bool tlb_force_broadcast(CPUARMState *env)
482 {
483     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
484 }
485 
tlbiall_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)486 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
487                           uint64_t value)
488 {
489     /* Invalidate all (TLBIALL) */
490     CPUState *cs = env_cpu(env);
491 
492     if (tlb_force_broadcast(env)) {
493         tlb_flush_all_cpus_synced(cs);
494     } else {
495         tlb_flush(cs);
496     }
497 }
498 
tlbimva_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)499 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
500                           uint64_t value)
501 {
502     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
503     CPUState *cs = env_cpu(env);
504 
505     value &= TARGET_PAGE_MASK;
506     if (tlb_force_broadcast(env)) {
507         tlb_flush_page_all_cpus_synced(cs, value);
508     } else {
509         tlb_flush_page(cs, value);
510     }
511 }
512 
tlbiasid_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)513 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
514                            uint64_t value)
515 {
516     /* Invalidate by ASID (TLBIASID) */
517     CPUState *cs = env_cpu(env);
518 
519     if (tlb_force_broadcast(env)) {
520         tlb_flush_all_cpus_synced(cs);
521     } else {
522         tlb_flush(cs);
523     }
524 }
525 
tlbimvaa_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
527                            uint64_t value)
528 {
529     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
530     CPUState *cs = env_cpu(env);
531 
532     value &= TARGET_PAGE_MASK;
533     if (tlb_force_broadcast(env)) {
534         tlb_flush_page_all_cpus_synced(cs, value);
535     } else {
536         tlb_flush_page(cs, value);
537     }
538 }
539 
tlbiall_nsnh_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)540 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
541                                uint64_t value)
542 {
543     CPUState *cs = env_cpu(env);
544 
545     tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
546 }
547 
tlbiall_nsnh_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)548 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
549                                   uint64_t value)
550 {
551     CPUState *cs = env_cpu(env);
552 
553     tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
554 }
555 
556 
tlbiall_hyp_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)557 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
558                               uint64_t value)
559 {
560     CPUState *cs = env_cpu(env);
561 
562     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
563 }
564 
tlbiall_hyp_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)565 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
566                                  uint64_t value)
567 {
568     CPUState *cs = env_cpu(env);
569 
570     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
571 }
572 
tlbimva_hyp_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)573 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
574                               uint64_t value)
575 {
576     CPUState *cs = env_cpu(env);
577     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
578 
579     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
580 }
581 
tlbimva_hyp_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)582 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
583                                  uint64_t value)
584 {
585     CPUState *cs = env_cpu(env);
586     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
587 
588     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
589                                              ARMMMUIdxBit_E2);
590 }
591 
tlbiipas2_hyp_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)592 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
593                                 uint64_t value)
594 {
595     CPUState *cs = env_cpu(env);
596     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
597 
598     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
599 }
600 
tlbiipas2is_hyp_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)601 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
602                                 uint64_t value)
603 {
604     CPUState *cs = env_cpu(env);
605     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
606 
607     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
608 }
609 
610 static const ARMCPRegInfo cp_reginfo[] = {
611     /*
612      * Define the secure and non-secure FCSE identifier CP registers
613      * separately because there is no secure bank in V8 (no _EL3).  This allows
614      * the secure register to be properly reset and migrated. There is also no
615      * v8 EL1 version of the register so the non-secure instance stands alone.
616      */
617     { .name = "FCSEIDR",
618       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
619       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
620       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
621       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
622     { .name = "FCSEIDR_S",
623       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
624       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
625       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
626       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
627     /*
628      * Define the secure and non-secure context identifier CP registers
629      * separately because there is no secure bank in V8 (no _EL3).  This allows
630      * the secure register to be properly reset and migrated.  In the
631      * non-secure case, the 32-bit register will have reset and migration
632      * disabled during registration as it is handled by the 64-bit instance.
633      */
634     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
635       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
636       .access = PL1_RW, .accessfn = access_tvm_trvm,
637       .fgt = FGT_CONTEXTIDR_EL1,
638       .secure = ARM_CP_SECSTATE_NS,
639       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
640       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
641     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
642       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
643       .access = PL1_RW, .accessfn = access_tvm_trvm,
644       .secure = ARM_CP_SECSTATE_S,
645       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
646       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
647 };
648 
649 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
650     /*
651      * NB: Some of these registers exist in v8 but with more precise
652      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
653      */
654     /* MMU Domain access control / MPU write buffer control */
655     { .name = "DACR",
656       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
657       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
658       .writefn = dacr_write, .raw_writefn = raw_write,
659       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
660                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
661     /*
662      * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
663      * For v6 and v5, these mappings are overly broad.
664      */
665     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
666       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
667     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
668       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
669     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
670       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
671     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
672       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
673     /* Cache maintenance ops; some of this space may be overridden later. */
674     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
675       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
676       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
677 };
678 
679 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
680     /*
681      * Not all pre-v6 cores implemented this WFI, so this is slightly
682      * over-broad.
683      */
684     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
685       .access = PL1_W, .type = ARM_CP_WFI },
686 };
687 
688 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
689     /*
690      * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
691      * is UNPREDICTABLE; we choose to NOP as most implementations do).
692      */
693     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
694       .access = PL1_W, .type = ARM_CP_WFI },
695     /*
696      * L1 cache lockdown. Not architectural in v6 and earlier but in practice
697      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
698      * OMAPCP will override this space.
699      */
700     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
701       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
702       .resetvalue = 0 },
703     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
704       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
705       .resetvalue = 0 },
706     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
707     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
708       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
709       .resetvalue = 0 },
710     /*
711      * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
712      * implementing it as RAZ means the "debug architecture version" bits
713      * will read as a reserved value, which should cause Linux to not try
714      * to use the debug hardware.
715      */
716     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
717       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
718     /*
719      * MMU TLB control. Note that the wildcarding means we cover not just
720      * the unified TLB ops but also the dside/iside/inner-shareable variants.
721      */
722     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
723       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
724       .type = ARM_CP_NO_RAW },
725     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
726       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
727       .type = ARM_CP_NO_RAW },
728     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
729       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
730       .type = ARM_CP_NO_RAW },
731     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
732       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
733       .type = ARM_CP_NO_RAW },
734     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
735       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
736     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
737       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
738 };
739 
cpacr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)740 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
741                         uint64_t value)
742 {
743     uint32_t mask = 0;
744 
745     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
746     if (!arm_feature(env, ARM_FEATURE_V8)) {
747         /*
748          * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
749          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
750          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
751          */
752         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
753             /* VFP coprocessor: cp10 & cp11 [23:20] */
754             mask |= R_CPACR_ASEDIS_MASK |
755                     R_CPACR_D32DIS_MASK |
756                     R_CPACR_CP11_MASK |
757                     R_CPACR_CP10_MASK;
758 
759             if (!arm_feature(env, ARM_FEATURE_NEON)) {
760                 /* ASEDIS [31] bit is RAO/WI */
761                 value |= R_CPACR_ASEDIS_MASK;
762             }
763 
764             /*
765              * VFPv3 and upwards with NEON implement 32 double precision
766              * registers (D0-D31).
767              */
768             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
769                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
770                 value |= R_CPACR_D32DIS_MASK;
771             }
772         }
773         value &= mask;
774     }
775 
776     /*
777      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
778      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
779      */
780     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
781         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
782         mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
783         value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
784     }
785 
786     env->cp15.cpacr_el1 = value;
787 }
788 
cpacr_read(CPUARMState * env,const ARMCPRegInfo * ri)789 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
790 {
791     /*
792      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
793      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
794      */
795     uint64_t value = env->cp15.cpacr_el1;
796 
797     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
798         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
799         value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
800     }
801     return value;
802 }
803 
804 
cpacr_reset(CPUARMState * env,const ARMCPRegInfo * ri)805 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
806 {
807     /*
808      * Call cpacr_write() so that we reset with the correct RAO bits set
809      * for our CPU features.
810      */
811     cpacr_write(env, ri, 0);
812 }
813 
cpacr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)814 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
815                                    bool isread)
816 {
817     if (arm_feature(env, ARM_FEATURE_V8)) {
818         /* Check if CPACR accesses are to be trapped to EL2 */
819         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
820             FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
821             return CP_ACCESS_TRAP_EL2;
822         /* Check if CPACR accesses are to be trapped to EL3 */
823         } else if (arm_current_el(env) < 3 &&
824                    FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
825             return CP_ACCESS_TRAP_EL3;
826         }
827     }
828 
829     return CP_ACCESS_OK;
830 }
831 
cptr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)832 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
833                                   bool isread)
834 {
835     /* Check if CPTR accesses are set to trap to EL3 */
836     if (arm_current_el(env) == 2 &&
837         FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
838         return CP_ACCESS_TRAP_EL3;
839     }
840 
841     return CP_ACCESS_OK;
842 }
843 
844 static const ARMCPRegInfo v6_cp_reginfo[] = {
845     /* prefetch by MVA in v6, NOP in v7 */
846     { .name = "MVA_prefetch",
847       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
848       .access = PL1_W, .type = ARM_CP_NOP },
849     /*
850      * We need to break the TB after ISB to execute self-modifying code
851      * correctly and also to take any pending interrupts immediately.
852      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
853      */
854     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
855       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
856     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
857       .access = PL0_W, .type = ARM_CP_NOP },
858     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
859       .access = PL0_W, .type = ARM_CP_NOP },
860     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
861       .access = PL1_RW, .accessfn = access_tvm_trvm,
862       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
863                              offsetof(CPUARMState, cp15.ifar_ns) },
864       .resetvalue = 0, },
865     /*
866      * Watchpoint Fault Address Register : should actually only be present
867      * for 1136, 1176, 11MPCore.
868      */
869     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
870       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
871     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
872       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
873       .fgt = FGT_CPACR_EL1,
874       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
875       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
876 };
877 
878 typedef struct pm_event {
879     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
880     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
881     bool (*supported)(CPUARMState *);
882     /*
883      * Retrieve the current count of the underlying event. The programmed
884      * counters hold a difference from the return value from this function
885      */
886     uint64_t (*get_count)(CPUARMState *);
887     /*
888      * Return how many nanoseconds it will take (at a minimum) for count events
889      * to occur. A negative value indicates the counter will never overflow, or
890      * that the counter has otherwise arranged for the overflow bit to be set
891      * and the PMU interrupt to be raised on overflow.
892      */
893     int64_t (*ns_per_count)(uint64_t);
894 } pm_event;
895 
event_always_supported(CPUARMState * env)896 static bool event_always_supported(CPUARMState *env)
897 {
898     return true;
899 }
900 
swinc_get_count(CPUARMState * env)901 static uint64_t swinc_get_count(CPUARMState *env)
902 {
903     /*
904      * SW_INCR events are written directly to the pmevcntr's by writes to
905      * PMSWINC, so there is no underlying count maintained by the PMU itself
906      */
907     return 0;
908 }
909 
swinc_ns_per(uint64_t ignored)910 static int64_t swinc_ns_per(uint64_t ignored)
911 {
912     return -1;
913 }
914 
915 /*
916  * Return the underlying cycle count for the PMU cycle counters. If we're in
917  * usermode, simply return 0.
918  */
cycles_get_count(CPUARMState * env)919 static uint64_t cycles_get_count(CPUARMState *env)
920 {
921 #ifndef CONFIG_USER_ONLY
922     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
923                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
924 #else
925     return cpu_get_host_ticks();
926 #endif
927 }
928 
929 #ifndef CONFIG_USER_ONLY
cycles_ns_per(uint64_t cycles)930 static int64_t cycles_ns_per(uint64_t cycles)
931 {
932     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
933 }
934 
instructions_supported(CPUARMState * env)935 static bool instructions_supported(CPUARMState *env)
936 {
937     return icount_enabled() == 1; /* Precise instruction counting */
938 }
939 
instructions_get_count(CPUARMState * env)940 static uint64_t instructions_get_count(CPUARMState *env)
941 {
942     return (uint64_t)icount_get_raw();
943 }
944 
instructions_ns_per(uint64_t icount)945 static int64_t instructions_ns_per(uint64_t icount)
946 {
947     return icount_to_ns((int64_t)icount);
948 }
949 #endif
950 
pmuv3p1_events_supported(CPUARMState * env)951 static bool pmuv3p1_events_supported(CPUARMState *env)
952 {
953     /* For events which are supported in any v8.1 PMU */
954     return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
955 }
956 
pmuv3p4_events_supported(CPUARMState * env)957 static bool pmuv3p4_events_supported(CPUARMState *env)
958 {
959     /* For events which are supported in any v8.1 PMU */
960     return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
961 }
962 
zero_event_get_count(CPUARMState * env)963 static uint64_t zero_event_get_count(CPUARMState *env)
964 {
965     /* For events which on QEMU never fire, so their count is always zero */
966     return 0;
967 }
968 
zero_event_ns_per(uint64_t cycles)969 static int64_t zero_event_ns_per(uint64_t cycles)
970 {
971     /* An event which never fires can never overflow */
972     return -1;
973 }
974 
975 static const pm_event pm_events[] = {
976     { .number = 0x000, /* SW_INCR */
977       .supported = event_always_supported,
978       .get_count = swinc_get_count,
979       .ns_per_count = swinc_ns_per,
980     },
981 #ifndef CONFIG_USER_ONLY
982     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
983       .supported = instructions_supported,
984       .get_count = instructions_get_count,
985       .ns_per_count = instructions_ns_per,
986     },
987     { .number = 0x011, /* CPU_CYCLES, Cycle */
988       .supported = event_always_supported,
989       .get_count = cycles_get_count,
990       .ns_per_count = cycles_ns_per,
991     },
992 #endif
993     { .number = 0x023, /* STALL_FRONTEND */
994       .supported = pmuv3p1_events_supported,
995       .get_count = zero_event_get_count,
996       .ns_per_count = zero_event_ns_per,
997     },
998     { .number = 0x024, /* STALL_BACKEND */
999       .supported = pmuv3p1_events_supported,
1000       .get_count = zero_event_get_count,
1001       .ns_per_count = zero_event_ns_per,
1002     },
1003     { .number = 0x03c, /* STALL */
1004       .supported = pmuv3p4_events_supported,
1005       .get_count = zero_event_get_count,
1006       .ns_per_count = zero_event_ns_per,
1007     },
1008 };
1009 
1010 /*
1011  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1012  * events (i.e. the statistical profiling extension), this implementation
1013  * should first be updated to something sparse instead of the current
1014  * supported_event_map[] array.
1015  */
1016 #define MAX_EVENT_ID 0x3c
1017 #define UNSUPPORTED_EVENT UINT16_MAX
1018 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1019 
1020 /*
1021  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1022  * of ARM event numbers to indices in our pm_events array.
1023  *
1024  * Note: Events in the 0x40XX range are not currently supported.
1025  */
pmu_init(ARMCPU * cpu)1026 void pmu_init(ARMCPU *cpu)
1027 {
1028     unsigned int i;
1029 
1030     /*
1031      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1032      * events to them
1033      */
1034     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1035         supported_event_map[i] = UNSUPPORTED_EVENT;
1036     }
1037     cpu->pmceid0 = 0;
1038     cpu->pmceid1 = 0;
1039 
1040     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1041         const pm_event *cnt = &pm_events[i];
1042         assert(cnt->number <= MAX_EVENT_ID);
1043         /* We do not currently support events in the 0x40xx range */
1044         assert(cnt->number <= 0x3f);
1045 
1046         if (cnt->supported(&cpu->env)) {
1047             supported_event_map[cnt->number] = i;
1048             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1049             if (cnt->number & 0x20) {
1050                 cpu->pmceid1 |= event_mask;
1051             } else {
1052                 cpu->pmceid0 |= event_mask;
1053             }
1054         }
1055     }
1056 }
1057 
1058 /*
1059  * Check at runtime whether a PMU event is supported for the current machine
1060  */
event_supported(uint16_t number)1061 static bool event_supported(uint16_t number)
1062 {
1063     if (number > MAX_EVENT_ID) {
1064         return false;
1065     }
1066     return supported_event_map[number] != UNSUPPORTED_EVENT;
1067 }
1068 
pmreg_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1069 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1070                                    bool isread)
1071 {
1072     /*
1073      * Performance monitor registers user accessibility is controlled
1074      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1075      * trapping to EL2 or EL3 for other accesses.
1076      */
1077     int el = arm_current_el(env);
1078     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1079 
1080     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1081         return CP_ACCESS_TRAP;
1082     }
1083     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1084         return CP_ACCESS_TRAP_EL2;
1085     }
1086     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1087         return CP_ACCESS_TRAP_EL3;
1088     }
1089 
1090     return CP_ACCESS_OK;
1091 }
1092 
pmreg_access_xevcntr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1093 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1094                                            const ARMCPRegInfo *ri,
1095                                            bool isread)
1096 {
1097     /* ER: event counter read trap control */
1098     if (arm_feature(env, ARM_FEATURE_V8)
1099         && arm_current_el(env) == 0
1100         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1101         && isread) {
1102         return CP_ACCESS_OK;
1103     }
1104 
1105     return pmreg_access(env, ri, isread);
1106 }
1107 
pmreg_access_swinc(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1108 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1109                                          const ARMCPRegInfo *ri,
1110                                          bool isread)
1111 {
1112     /* SW: software increment write trap control */
1113     if (arm_feature(env, ARM_FEATURE_V8)
1114         && arm_current_el(env) == 0
1115         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1116         && !isread) {
1117         return CP_ACCESS_OK;
1118     }
1119 
1120     return pmreg_access(env, ri, isread);
1121 }
1122 
pmreg_access_selr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1123 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1124                                         const ARMCPRegInfo *ri,
1125                                         bool isread)
1126 {
1127     /* ER: event counter read trap control */
1128     if (arm_feature(env, ARM_FEATURE_V8)
1129         && arm_current_el(env) == 0
1130         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1131         return CP_ACCESS_OK;
1132     }
1133 
1134     return pmreg_access(env, ri, isread);
1135 }
1136 
pmreg_access_ccntr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1137 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1138                                          const ARMCPRegInfo *ri,
1139                                          bool isread)
1140 {
1141     /* CR: cycle counter read trap control */
1142     if (arm_feature(env, ARM_FEATURE_V8)
1143         && arm_current_el(env) == 0
1144         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1145         && isread) {
1146         return CP_ACCESS_OK;
1147     }
1148 
1149     return pmreg_access(env, ri, isread);
1150 }
1151 
1152 /*
1153  * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1154  * We use these to decide whether we need to wrap a write to MDCR_EL2
1155  * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1156  */
1157 #define MDCR_EL2_PMU_ENABLE_BITS \
1158     (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1159 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1160 
1161 /*
1162  * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1163  * the current EL, security state, and register configuration.
1164  */
pmu_counter_enabled(CPUARMState * env,uint8_t counter)1165 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1166 {
1167     uint64_t filter;
1168     bool e, p, u, nsk, nsu, nsh, m;
1169     bool enabled, prohibited = false, filtered;
1170     bool secure = arm_is_secure(env);
1171     int el = arm_current_el(env);
1172     uint64_t mdcr_el2;
1173     uint8_t hpmn;
1174 
1175     /*
1176      * We might be called for M-profile cores where MDCR_EL2 doesn't
1177      * exist and arm_mdcr_el2_eff() will assert, so this early-exit check
1178      * must be before we read that value.
1179      */
1180     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1181         return false;
1182     }
1183 
1184     mdcr_el2 = arm_mdcr_el2_eff(env);
1185     hpmn = mdcr_el2 & MDCR_HPMN;
1186 
1187     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1188             (counter < hpmn || counter == 31)) {
1189         e = env->cp15.c9_pmcr & PMCRE;
1190     } else {
1191         e = mdcr_el2 & MDCR_HPME;
1192     }
1193     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1194 
1195     /* Is event counting prohibited? */
1196     if (el == 2 && (counter < hpmn || counter == 31)) {
1197         prohibited = mdcr_el2 & MDCR_HPMD;
1198     }
1199     if (secure) {
1200         prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1201     }
1202 
1203     if (counter == 31) {
1204         /*
1205          * The cycle counter defaults to running. PMCR.DP says "disable
1206          * the cycle counter when event counting is prohibited".
1207          * Some MDCR bits disable the cycle counter specifically.
1208          */
1209         prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1210         if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1211             if (secure) {
1212                 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1213             }
1214             if (el == 2) {
1215                 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1216             }
1217         }
1218     }
1219 
1220     if (counter == 31) {
1221         filter = env->cp15.pmccfiltr_el0;
1222     } else {
1223         filter = env->cp15.c14_pmevtyper[counter];
1224     }
1225 
1226     p   = filter & PMXEVTYPER_P;
1227     u   = filter & PMXEVTYPER_U;
1228     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1229     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1230     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1231     m   = arm_el_is_aa64(env, 1) &&
1232               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1233 
1234     if (el == 0) {
1235         filtered = secure ? u : u != nsu;
1236     } else if (el == 1) {
1237         filtered = secure ? p : p != nsk;
1238     } else if (el == 2) {
1239         filtered = !nsh;
1240     } else { /* EL3 */
1241         filtered = m != p;
1242     }
1243 
1244     if (counter != 31) {
1245         /*
1246          * If not checking PMCCNTR, ensure the counter is setup to an event we
1247          * support
1248          */
1249         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1250         if (!event_supported(event)) {
1251             return false;
1252         }
1253     }
1254 
1255     return enabled && !prohibited && !filtered;
1256 }
1257 
pmu_update_irq(CPUARMState * env)1258 static void pmu_update_irq(CPUARMState *env)
1259 {
1260     ARMCPU *cpu = env_archcpu(env);
1261     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1262             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1263 }
1264 
pmccntr_clockdiv_enabled(CPUARMState * env)1265 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1266 {
1267     /*
1268      * Return true if the clock divider is enabled and the cycle counter
1269      * is supposed to tick only once every 64 clock cycles. This is
1270      * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1271      * (64-bit) cycle counter PMCR.D has no effect.
1272      */
1273     return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1274 }
1275 
pmevcntr_is_64_bit(CPUARMState * env,int counter)1276 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1277 {
1278     /* Return true if the specified event counter is configured to be 64 bit */
1279 
1280     /* This isn't intended to be used with the cycle counter */
1281     assert(counter < 31);
1282 
1283     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1284         return false;
1285     }
1286 
1287     if (arm_feature(env, ARM_FEATURE_EL2)) {
1288         /*
1289          * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1290          * current security state, so we don't use arm_mdcr_el2_eff() here.
1291          */
1292         bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1293         int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1294 
1295         if (counter >= hpmn) {
1296             return hlp;
1297         }
1298     }
1299     return env->cp15.c9_pmcr & PMCRLP;
1300 }
1301 
1302 /*
1303  * Ensure c15_ccnt is the guest-visible count so that operations such as
1304  * enabling/disabling the counter or filtering, modifying the count itself,
1305  * etc. can be done logically. This is essentially a no-op if the counter is
1306  * not enabled at the time of the call.
1307  */
pmccntr_op_start(CPUARMState * env)1308 static void pmccntr_op_start(CPUARMState *env)
1309 {
1310     uint64_t cycles = cycles_get_count(env);
1311 
1312     if (pmu_counter_enabled(env, 31)) {
1313         uint64_t eff_cycles = cycles;
1314         if (pmccntr_clockdiv_enabled(env)) {
1315             eff_cycles /= 64;
1316         }
1317 
1318         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1319 
1320         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1321                                  1ull << 63 : 1ull << 31;
1322         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1323             env->cp15.c9_pmovsr |= (1ULL << 31);
1324             pmu_update_irq(env);
1325         }
1326 
1327         env->cp15.c15_ccnt = new_pmccntr;
1328     }
1329     env->cp15.c15_ccnt_delta = cycles;
1330 }
1331 
1332 /*
1333  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1334  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1335  * pmccntr_op_start.
1336  */
pmccntr_op_finish(CPUARMState * env)1337 static void pmccntr_op_finish(CPUARMState *env)
1338 {
1339     if (pmu_counter_enabled(env, 31)) {
1340 #ifndef CONFIG_USER_ONLY
1341         /* Calculate when the counter will next overflow */
1342         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1343         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1344             remaining_cycles = (uint32_t)remaining_cycles;
1345         }
1346         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1347 
1348         if (overflow_in > 0) {
1349             int64_t overflow_at;
1350 
1351             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1352                                  overflow_in, &overflow_at)) {
1353                 ARMCPU *cpu = env_archcpu(env);
1354                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1355             }
1356         }
1357 #endif
1358 
1359         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1360         if (pmccntr_clockdiv_enabled(env)) {
1361             prev_cycles /= 64;
1362         }
1363         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1364     }
1365 }
1366 
pmevcntr_op_start(CPUARMState * env,uint8_t counter)1367 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1368 {
1369 
1370     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1371     uint64_t count = 0;
1372     if (event_supported(event)) {
1373         uint16_t event_idx = supported_event_map[event];
1374         count = pm_events[event_idx].get_count(env);
1375     }
1376 
1377     if (pmu_counter_enabled(env, counter)) {
1378         uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1379         uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1380             1ULL << 63 : 1ULL << 31;
1381 
1382         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1383             env->cp15.c9_pmovsr |= (1 << counter);
1384             pmu_update_irq(env);
1385         }
1386         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1387     }
1388     env->cp15.c14_pmevcntr_delta[counter] = count;
1389 }
1390 
pmevcntr_op_finish(CPUARMState * env,uint8_t counter)1391 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1392 {
1393     if (pmu_counter_enabled(env, counter)) {
1394 #ifndef CONFIG_USER_ONLY
1395         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1396         uint16_t event_idx = supported_event_map[event];
1397         uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1398         int64_t overflow_in;
1399 
1400         if (!pmevcntr_is_64_bit(env, counter)) {
1401             delta = (uint32_t)delta;
1402         }
1403         overflow_in = pm_events[event_idx].ns_per_count(delta);
1404 
1405         if (overflow_in > 0) {
1406             int64_t overflow_at;
1407 
1408             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1409                                  overflow_in, &overflow_at)) {
1410                 ARMCPU *cpu = env_archcpu(env);
1411                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1412             }
1413         }
1414 #endif
1415 
1416         env->cp15.c14_pmevcntr_delta[counter] -=
1417             env->cp15.c14_pmevcntr[counter];
1418     }
1419 }
1420 
pmu_op_start(CPUARMState * env)1421 void pmu_op_start(CPUARMState *env)
1422 {
1423     unsigned int i;
1424     pmccntr_op_start(env);
1425     for (i = 0; i < pmu_num_counters(env); i++) {
1426         pmevcntr_op_start(env, i);
1427     }
1428 }
1429 
pmu_op_finish(CPUARMState * env)1430 void pmu_op_finish(CPUARMState *env)
1431 {
1432     unsigned int i;
1433     pmccntr_op_finish(env);
1434     for (i = 0; i < pmu_num_counters(env); i++) {
1435         pmevcntr_op_finish(env, i);
1436     }
1437 }
1438 
pmu_pre_el_change(ARMCPU * cpu,void * ignored)1439 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1440 {
1441     pmu_op_start(&cpu->env);
1442 }
1443 
pmu_post_el_change(ARMCPU * cpu,void * ignored)1444 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1445 {
1446     pmu_op_finish(&cpu->env);
1447 }
1448 
arm_pmu_timer_cb(void * opaque)1449 void arm_pmu_timer_cb(void *opaque)
1450 {
1451     ARMCPU *cpu = opaque;
1452 
1453     /*
1454      * Update all the counter values based on the current underlying counts,
1455      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1456      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1457      * counter may expire.
1458      */
1459     pmu_op_start(&cpu->env);
1460     pmu_op_finish(&cpu->env);
1461 }
1462 
pmcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1463 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1464                        uint64_t value)
1465 {
1466     pmu_op_start(env);
1467 
1468     if (value & PMCRC) {
1469         /* The counter has been reset */
1470         env->cp15.c15_ccnt = 0;
1471     }
1472 
1473     if (value & PMCRP) {
1474         unsigned int i;
1475         for (i = 0; i < pmu_num_counters(env); i++) {
1476             env->cp15.c14_pmevcntr[i] = 0;
1477         }
1478     }
1479 
1480     env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1481     env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1482 
1483     pmu_op_finish(env);
1484 }
1485 
pmswinc_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1486 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1487                           uint64_t value)
1488 {
1489     unsigned int i;
1490     uint64_t overflow_mask, new_pmswinc;
1491 
1492     for (i = 0; i < pmu_num_counters(env); i++) {
1493         /* Increment a counter's count iff: */
1494         if ((value & (1 << i)) && /* counter's bit is set */
1495                 /* counter is enabled and not filtered */
1496                 pmu_counter_enabled(env, i) &&
1497                 /* counter is SW_INCR */
1498                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1499             pmevcntr_op_start(env, i);
1500 
1501             /*
1502              * Detect if this write causes an overflow since we can't predict
1503              * PMSWINC overflows like we can for other events
1504              */
1505             new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1506 
1507             overflow_mask = pmevcntr_is_64_bit(env, i) ?
1508                 1ULL << 63 : 1ULL << 31;
1509 
1510             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1511                 env->cp15.c9_pmovsr |= (1 << i);
1512                 pmu_update_irq(env);
1513             }
1514 
1515             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1516 
1517             pmevcntr_op_finish(env, i);
1518         }
1519     }
1520 }
1521 
pmccntr_read(CPUARMState * env,const ARMCPRegInfo * ri)1522 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1523 {
1524     uint64_t ret;
1525     pmccntr_op_start(env);
1526     ret = env->cp15.c15_ccnt;
1527     pmccntr_op_finish(env);
1528     return ret;
1529 }
1530 
pmselr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1531 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1532                          uint64_t value)
1533 {
1534     /*
1535      * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1536      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1537      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1538      * accessed.
1539      */
1540     env->cp15.c9_pmselr = value & 0x1f;
1541 }
1542 
pmccntr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1543 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1544                         uint64_t value)
1545 {
1546     pmccntr_op_start(env);
1547     env->cp15.c15_ccnt = value;
1548     pmccntr_op_finish(env);
1549 }
1550 
pmccntr_write32(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1551 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1552                             uint64_t value)
1553 {
1554     uint64_t cur_val = pmccntr_read(env, NULL);
1555 
1556     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1557 }
1558 
pmccfiltr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1559 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1560                             uint64_t value)
1561 {
1562     pmccntr_op_start(env);
1563     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1564     pmccntr_op_finish(env);
1565 }
1566 
pmccfiltr_write_a32(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1567 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1568                             uint64_t value)
1569 {
1570     pmccntr_op_start(env);
1571     /* M is not accessible from AArch32 */
1572     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1573         (value & PMCCFILTR);
1574     pmccntr_op_finish(env);
1575 }
1576 
pmccfiltr_read_a32(CPUARMState * env,const ARMCPRegInfo * ri)1577 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1578 {
1579     /* M is not visible in AArch32 */
1580     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1581 }
1582 
pmcntenset_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1583 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1584                             uint64_t value)
1585 {
1586     pmu_op_start(env);
1587     value &= pmu_counter_mask(env);
1588     env->cp15.c9_pmcnten |= value;
1589     pmu_op_finish(env);
1590 }
1591 
pmcntenclr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1592 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1593                              uint64_t value)
1594 {
1595     pmu_op_start(env);
1596     value &= pmu_counter_mask(env);
1597     env->cp15.c9_pmcnten &= ~value;
1598     pmu_op_finish(env);
1599 }
1600 
pmovsr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1601 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1602                          uint64_t value)
1603 {
1604     value &= pmu_counter_mask(env);
1605     env->cp15.c9_pmovsr &= ~value;
1606     pmu_update_irq(env);
1607 }
1608 
pmovsset_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1609 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1610                          uint64_t value)
1611 {
1612     value &= pmu_counter_mask(env);
1613     env->cp15.c9_pmovsr |= value;
1614     pmu_update_irq(env);
1615 }
1616 
pmevtyper_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value,const uint8_t counter)1617 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1618                              uint64_t value, const uint8_t counter)
1619 {
1620     if (counter == 31) {
1621         pmccfiltr_write(env, ri, value);
1622     } else if (counter < pmu_num_counters(env)) {
1623         pmevcntr_op_start(env, counter);
1624 
1625         /*
1626          * If this counter's event type is changing, store the current
1627          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1628          * pmevcntr_op_finish has the correct baseline when it converts back to
1629          * a delta.
1630          */
1631         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1632             PMXEVTYPER_EVTCOUNT;
1633         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1634         if (old_event != new_event) {
1635             uint64_t count = 0;
1636             if (event_supported(new_event)) {
1637                 uint16_t event_idx = supported_event_map[new_event];
1638                 count = pm_events[event_idx].get_count(env);
1639             }
1640             env->cp15.c14_pmevcntr_delta[counter] = count;
1641         }
1642 
1643         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1644         pmevcntr_op_finish(env, counter);
1645     }
1646     /*
1647      * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1648      * PMSELR value is equal to or greater than the number of implemented
1649      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1650      */
1651 }
1652 
pmevtyper_read(CPUARMState * env,const ARMCPRegInfo * ri,const uint8_t counter)1653 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1654                                const uint8_t counter)
1655 {
1656     if (counter == 31) {
1657         return env->cp15.pmccfiltr_el0;
1658     } else if (counter < pmu_num_counters(env)) {
1659         return env->cp15.c14_pmevtyper[counter];
1660     } else {
1661       /*
1662        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1663        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1664        */
1665         return 0;
1666     }
1667 }
1668 
pmevtyper_writefn(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1669 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1670                               uint64_t value)
1671 {
1672     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1673     pmevtyper_write(env, ri, value, counter);
1674 }
1675 
pmevtyper_rawwrite(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1676 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1677                                uint64_t value)
1678 {
1679     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1680     env->cp15.c14_pmevtyper[counter] = value;
1681 
1682     /*
1683      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1684      * pmu_op_finish calls when loading saved state for a migration. Because
1685      * we're potentially updating the type of event here, the value written to
1686      * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
1687      * different counter type. Therefore, we need to set this value to the
1688      * current count for the counter type we're writing so that pmu_op_finish
1689      * has the correct count for its calculation.
1690      */
1691     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1692     if (event_supported(event)) {
1693         uint16_t event_idx = supported_event_map[event];
1694         env->cp15.c14_pmevcntr_delta[counter] =
1695             pm_events[event_idx].get_count(env);
1696     }
1697 }
1698 
pmevtyper_readfn(CPUARMState * env,const ARMCPRegInfo * ri)1699 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1700 {
1701     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1702     return pmevtyper_read(env, ri, counter);
1703 }
1704 
pmxevtyper_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1705 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1706                              uint64_t value)
1707 {
1708     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1709 }
1710 
pmxevtyper_read(CPUARMState * env,const ARMCPRegInfo * ri)1711 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1712 {
1713     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1714 }
1715 
pmevcntr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value,uint8_t counter)1716 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1717                              uint64_t value, uint8_t counter)
1718 {
1719     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1720         /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1721         value &= MAKE_64BIT_MASK(0, 32);
1722     }
1723     if (counter < pmu_num_counters(env)) {
1724         pmevcntr_op_start(env, counter);
1725         env->cp15.c14_pmevcntr[counter] = value;
1726         pmevcntr_op_finish(env, counter);
1727     }
1728     /*
1729      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1730      * are CONSTRAINED UNPREDICTABLE.
1731      */
1732 }
1733 
pmevcntr_read(CPUARMState * env,const ARMCPRegInfo * ri,uint8_t counter)1734 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1735                               uint8_t counter)
1736 {
1737     if (counter < pmu_num_counters(env)) {
1738         uint64_t ret;
1739         pmevcntr_op_start(env, counter);
1740         ret = env->cp15.c14_pmevcntr[counter];
1741         pmevcntr_op_finish(env, counter);
1742         if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1743             /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1744             ret &= MAKE_64BIT_MASK(0, 32);
1745         }
1746         return ret;
1747     } else {
1748       /*
1749        * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1750        * are CONSTRAINED UNPREDICTABLE.
1751        */
1752         return 0;
1753     }
1754 }
1755 
pmevcntr_writefn(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1756 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1757                              uint64_t value)
1758 {
1759     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1760     pmevcntr_write(env, ri, value, counter);
1761 }
1762 
pmevcntr_readfn(CPUARMState * env,const ARMCPRegInfo * ri)1763 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1764 {
1765     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1766     return pmevcntr_read(env, ri, counter);
1767 }
1768 
pmevcntr_rawwrite(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1769 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1770                              uint64_t value)
1771 {
1772     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1773     assert(counter < pmu_num_counters(env));
1774     env->cp15.c14_pmevcntr[counter] = value;
1775     pmevcntr_write(env, ri, value, counter);
1776 }
1777 
pmevcntr_rawread(CPUARMState * env,const ARMCPRegInfo * ri)1778 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1779 {
1780     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1781     assert(counter < pmu_num_counters(env));
1782     return env->cp15.c14_pmevcntr[counter];
1783 }
1784 
pmxevcntr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1785 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1786                              uint64_t value)
1787 {
1788     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1789 }
1790 
pmxevcntr_read(CPUARMState * env,const ARMCPRegInfo * ri)1791 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1792 {
1793     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1794 }
1795 
pmuserenr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1796 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1797                             uint64_t value)
1798 {
1799     if (arm_feature(env, ARM_FEATURE_V8)) {
1800         env->cp15.c9_pmuserenr = value & 0xf;
1801     } else {
1802         env->cp15.c9_pmuserenr = value & 1;
1803     }
1804 }
1805 
pmintenset_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1806 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807                              uint64_t value)
1808 {
1809     /* We have no event counters so only the C bit can be changed */
1810     value &= pmu_counter_mask(env);
1811     env->cp15.c9_pminten |= value;
1812     pmu_update_irq(env);
1813 }
1814 
pmintenclr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1815 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1816                              uint64_t value)
1817 {
1818     value &= pmu_counter_mask(env);
1819     env->cp15.c9_pminten &= ~value;
1820     pmu_update_irq(env);
1821 }
1822 
vbar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1823 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1824                        uint64_t value)
1825 {
1826     /*
1827      * Note that even though the AArch64 view of this register has bits
1828      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1829      * architectural requirements for bits which are RES0 only in some
1830      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1831      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1832      */
1833     raw_write(env, ri, value & ~0x1FULL);
1834 }
1835 
scr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1836 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1837 {
1838     /* Begin with base v8.0 state.  */
1839     uint64_t valid_mask = 0x3fff;
1840     ARMCPU *cpu = env_archcpu(env);
1841     uint64_t changed;
1842 
1843     /*
1844      * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1845      * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1846      * Instead, choose the format based on the mode of EL3.
1847      */
1848     if (arm_el_is_aa64(env, 3)) {
1849         value |= SCR_FW | SCR_AW;      /* RES1 */
1850         valid_mask &= ~SCR_NET;        /* RES0 */
1851 
1852         if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1853             !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1854             value |= SCR_RW;           /* RAO/WI */
1855         }
1856         if (cpu_isar_feature(aa64_ras, cpu)) {
1857             valid_mask |= SCR_TERR;
1858         }
1859         if (cpu_isar_feature(aa64_lor, cpu)) {
1860             valid_mask |= SCR_TLOR;
1861         }
1862         if (cpu_isar_feature(aa64_pauth, cpu)) {
1863             valid_mask |= SCR_API | SCR_APK;
1864         }
1865         if (cpu_isar_feature(aa64_sel2, cpu)) {
1866             valid_mask |= SCR_EEL2;
1867         } else if (cpu_isar_feature(aa64_rme, cpu)) {
1868             /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1869             value |= SCR_NS;
1870         }
1871         if (cpu_isar_feature(aa64_mte, cpu)) {
1872             valid_mask |= SCR_ATA;
1873         }
1874         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1875             valid_mask |= SCR_ENSCXT;
1876         }
1877         if (cpu_isar_feature(aa64_doublefault, cpu)) {
1878             valid_mask |= SCR_EASE | SCR_NMEA;
1879         }
1880         if (cpu_isar_feature(aa64_sme, cpu)) {
1881             valid_mask |= SCR_ENTP2;
1882         }
1883         if (cpu_isar_feature(aa64_hcx, cpu)) {
1884             valid_mask |= SCR_HXEN;
1885         }
1886         if (cpu_isar_feature(aa64_fgt, cpu)) {
1887             valid_mask |= SCR_FGTEN;
1888         }
1889         if (cpu_isar_feature(aa64_rme, cpu)) {
1890             valid_mask |= SCR_NSE | SCR_GPF;
1891         }
1892     } else {
1893         valid_mask &= ~(SCR_RW | SCR_ST);
1894         if (cpu_isar_feature(aa32_ras, cpu)) {
1895             valid_mask |= SCR_TERR;
1896         }
1897     }
1898 
1899     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1900         valid_mask &= ~SCR_HCE;
1901 
1902         /*
1903          * On ARMv7, SMD (or SCD as it is called in v7) is only
1904          * supported if EL2 exists. The bit is UNK/SBZP when
1905          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1906          * when EL2 is unavailable.
1907          * On ARMv8, this bit is always available.
1908          */
1909         if (arm_feature(env, ARM_FEATURE_V7) &&
1910             !arm_feature(env, ARM_FEATURE_V8)) {
1911             valid_mask &= ~SCR_SMD;
1912         }
1913     }
1914 
1915     /* Clear all-context RES0 bits.  */
1916     value &= valid_mask;
1917     changed = env->cp15.scr_el3 ^ value;
1918     env->cp15.scr_el3 = value;
1919 
1920     /*
1921      * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1922      * we must invalidate all TLBs below EL3.
1923      */
1924     if (changed & (SCR_NS | SCR_NSE)) {
1925         tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1926                                            ARMMMUIdxBit_E20_0 |
1927                                            ARMMMUIdxBit_E10_1 |
1928                                            ARMMMUIdxBit_E20_2 |
1929                                            ARMMMUIdxBit_E10_1_PAN |
1930                                            ARMMMUIdxBit_E20_2_PAN |
1931                                            ARMMMUIdxBit_E2));
1932     }
1933 }
1934 
scr_reset(CPUARMState * env,const ARMCPRegInfo * ri)1935 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1936 {
1937     /*
1938      * scr_write will set the RES1 bits on an AArch64-only CPU.
1939      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1940      */
1941     scr_write(env, ri, 0);
1942 }
1943 
access_tid4(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1944 static CPAccessResult access_tid4(CPUARMState *env,
1945                                   const ARMCPRegInfo *ri,
1946                                   bool isread)
1947 {
1948     if (arm_current_el(env) == 1 &&
1949         (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1950         return CP_ACCESS_TRAP_EL2;
1951     }
1952 
1953     return CP_ACCESS_OK;
1954 }
1955 
ccsidr_read(CPUARMState * env,const ARMCPRegInfo * ri)1956 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1957 {
1958     ARMCPU *cpu = env_archcpu(env);
1959 
1960     /*
1961      * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1962      * bank
1963      */
1964     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1965                                         ri->secure & ARM_CP_SECSTATE_S);
1966 
1967     return cpu->ccsidr[index];
1968 }
1969 
csselr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1970 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1971                          uint64_t value)
1972 {
1973     raw_write(env, ri, value & 0xf);
1974 }
1975 
isr_read(CPUARMState * env,const ARMCPRegInfo * ri)1976 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1977 {
1978     CPUState *cs = env_cpu(env);
1979     bool el1 = arm_current_el(env) == 1;
1980     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1981     uint64_t ret = 0;
1982 
1983     if (hcr_el2 & HCR_IMO) {
1984         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1985             ret |= CPSR_I;
1986         }
1987     } else {
1988         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1989             ret |= CPSR_I;
1990         }
1991     }
1992 
1993     if (hcr_el2 & HCR_FMO) {
1994         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1995             ret |= CPSR_F;
1996         }
1997     } else {
1998         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1999             ret |= CPSR_F;
2000         }
2001     }
2002 
2003     if (hcr_el2 & HCR_AMO) {
2004         if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
2005             ret |= CPSR_A;
2006         }
2007     }
2008 
2009     return ret;
2010 }
2011 
access_aa64_tid1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2012 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2013                                        bool isread)
2014 {
2015     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2016         return CP_ACCESS_TRAP_EL2;
2017     }
2018 
2019     return CP_ACCESS_OK;
2020 }
2021 
access_aa32_tid1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2022 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2023                                        bool isread)
2024 {
2025     if (arm_feature(env, ARM_FEATURE_V8)) {
2026         return access_aa64_tid1(env, ri, isread);
2027     }
2028 
2029     return CP_ACCESS_OK;
2030 }
2031 
2032 static const ARMCPRegInfo v7_cp_reginfo[] = {
2033     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2034     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2035       .access = PL1_W, .type = ARM_CP_NOP },
2036     /*
2037      * Performance monitors are implementation defined in v7,
2038      * but with an ARM recommended set of registers, which we
2039      * follow.
2040      *
2041      * Performance registers fall into three categories:
2042      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2043      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2044      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2045      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2046      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2047      */
2048     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2049       .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2050       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2051       .writefn = pmcntenset_write,
2052       .accessfn = pmreg_access,
2053       .fgt = FGT_PMCNTEN,
2054       .raw_writefn = raw_write },
2055     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2056       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2057       .access = PL0_RW, .accessfn = pmreg_access,
2058       .fgt = FGT_PMCNTEN,
2059       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2060       .writefn = pmcntenset_write, .raw_writefn = raw_write },
2061     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2062       .access = PL0_RW,
2063       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2064       .accessfn = pmreg_access,
2065       .fgt = FGT_PMCNTEN,
2066       .writefn = pmcntenclr_write,
2067       .type = ARM_CP_ALIAS | ARM_CP_IO },
2068     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2069       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2070       .access = PL0_RW, .accessfn = pmreg_access,
2071       .fgt = FGT_PMCNTEN,
2072       .type = ARM_CP_ALIAS | ARM_CP_IO,
2073       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2074       .writefn = pmcntenclr_write },
2075     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2076       .access = PL0_RW, .type = ARM_CP_IO,
2077       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2078       .accessfn = pmreg_access,
2079       .fgt = FGT_PMOVS,
2080       .writefn = pmovsr_write,
2081       .raw_writefn = raw_write },
2082     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2083       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2084       .access = PL0_RW, .accessfn = pmreg_access,
2085       .fgt = FGT_PMOVS,
2086       .type = ARM_CP_ALIAS | ARM_CP_IO,
2087       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2088       .writefn = pmovsr_write,
2089       .raw_writefn = raw_write },
2090     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2091       .access = PL0_W, .accessfn = pmreg_access_swinc,
2092       .fgt = FGT_PMSWINC_EL0,
2093       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2094       .writefn = pmswinc_write },
2095     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2096       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2097       .access = PL0_W, .accessfn = pmreg_access_swinc,
2098       .fgt = FGT_PMSWINC_EL0,
2099       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2100       .writefn = pmswinc_write },
2101     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2102       .access = PL0_RW, .type = ARM_CP_ALIAS,
2103       .fgt = FGT_PMSELR_EL0,
2104       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2105       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2106       .raw_writefn = raw_write},
2107     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2108       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2109       .access = PL0_RW, .accessfn = pmreg_access_selr,
2110       .fgt = FGT_PMSELR_EL0,
2111       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2112       .writefn = pmselr_write, .raw_writefn = raw_write, },
2113     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2114       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2115       .fgt = FGT_PMCCNTR_EL0,
2116       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2117       .accessfn = pmreg_access_ccntr },
2118     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2119       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2120       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2121       .fgt = FGT_PMCCNTR_EL0,
2122       .type = ARM_CP_IO,
2123       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2124       .readfn = pmccntr_read, .writefn = pmccntr_write,
2125       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2126     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2127       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2128       .access = PL0_RW, .accessfn = pmreg_access,
2129       .fgt = FGT_PMCCFILTR_EL0,
2130       .type = ARM_CP_ALIAS | ARM_CP_IO,
2131       .resetvalue = 0, },
2132     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2133       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2134       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2135       .access = PL0_RW, .accessfn = pmreg_access,
2136       .fgt = FGT_PMCCFILTR_EL0,
2137       .type = ARM_CP_IO,
2138       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2139       .resetvalue = 0, },
2140     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2141       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2142       .accessfn = pmreg_access,
2143       .fgt = FGT_PMEVTYPERN_EL0,
2144       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2145     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2146       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2147       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2148       .accessfn = pmreg_access,
2149       .fgt = FGT_PMEVTYPERN_EL0,
2150       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2151     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2152       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2153       .accessfn = pmreg_access_xevcntr,
2154       .fgt = FGT_PMEVCNTRN_EL0,
2155       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2156     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2157       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2158       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2159       .accessfn = pmreg_access_xevcntr,
2160       .fgt = FGT_PMEVCNTRN_EL0,
2161       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2162     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2163       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2164       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2165       .resetvalue = 0,
2166       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2167     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2168       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2169       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2170       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2171       .resetvalue = 0,
2172       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2173     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2174       .access = PL1_RW, .accessfn = access_tpm,
2175       .fgt = FGT_PMINTEN,
2176       .type = ARM_CP_ALIAS | ARM_CP_IO,
2177       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2178       .resetvalue = 0,
2179       .writefn = pmintenset_write, .raw_writefn = raw_write },
2180     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2181       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2182       .access = PL1_RW, .accessfn = access_tpm,
2183       .fgt = FGT_PMINTEN,
2184       .type = ARM_CP_IO,
2185       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2186       .writefn = pmintenset_write, .raw_writefn = raw_write,
2187       .resetvalue = 0x0 },
2188     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2189       .access = PL1_RW, .accessfn = access_tpm,
2190       .fgt = FGT_PMINTEN,
2191       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2192       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2193       .writefn = pmintenclr_write, },
2194     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2195       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2196       .access = PL1_RW, .accessfn = access_tpm,
2197       .fgt = FGT_PMINTEN,
2198       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2199       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2200       .writefn = pmintenclr_write },
2201     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2202       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2203       .access = PL1_R,
2204       .accessfn = access_tid4,
2205       .fgt = FGT_CCSIDR_EL1,
2206       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2207     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2208       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2209       .access = PL1_RW,
2210       .accessfn = access_tid4,
2211       .fgt = FGT_CSSELR_EL1,
2212       .writefn = csselr_write, .resetvalue = 0,
2213       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2214                              offsetof(CPUARMState, cp15.csselr_ns) } },
2215     /*
2216      * Auxiliary ID register: this actually has an IMPDEF value but for now
2217      * just RAZ for all cores:
2218      */
2219     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2220       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2221       .access = PL1_R, .type = ARM_CP_CONST,
2222       .accessfn = access_aa64_tid1,
2223       .fgt = FGT_AIDR_EL1,
2224       .resetvalue = 0 },
2225     /*
2226      * Auxiliary fault status registers: these also are IMPDEF, and we
2227      * choose to RAZ/WI for all cores.
2228      */
2229     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2230       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2231       .access = PL1_RW, .accessfn = access_tvm_trvm,
2232       .fgt = FGT_AFSR0_EL1,
2233       .type = ARM_CP_CONST, .resetvalue = 0 },
2234     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2235       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2236       .access = PL1_RW, .accessfn = access_tvm_trvm,
2237       .fgt = FGT_AFSR1_EL1,
2238       .type = ARM_CP_CONST, .resetvalue = 0 },
2239     /*
2240      * MAIR can just read-as-written because we don't implement caches
2241      * and so don't need to care about memory attributes.
2242      */
2243     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2244       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2245       .access = PL1_RW, .accessfn = access_tvm_trvm,
2246       .fgt = FGT_MAIR_EL1,
2247       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2248       .resetvalue = 0 },
2249     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2250       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2251       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2252       .resetvalue = 0 },
2253     /*
2254      * For non-long-descriptor page tables these are PRRR and NMRR;
2255      * regardless they still act as reads-as-written for QEMU.
2256      */
2257      /*
2258       * MAIR0/1 are defined separately from their 64-bit counterpart which
2259       * allows them to assign the correct fieldoffset based on the endianness
2260       * handled in the field definitions.
2261       */
2262     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2263       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2264       .access = PL1_RW, .accessfn = access_tvm_trvm,
2265       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2266                              offsetof(CPUARMState, cp15.mair0_ns) },
2267       .resetfn = arm_cp_reset_ignore },
2268     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2269       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2270       .access = PL1_RW, .accessfn = access_tvm_trvm,
2271       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2272                              offsetof(CPUARMState, cp15.mair1_ns) },
2273       .resetfn = arm_cp_reset_ignore },
2274     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2275       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2276       .fgt = FGT_ISR_EL1,
2277       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2278     /* 32 bit ITLB invalidates */
2279     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2280       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2281       .writefn = tlbiall_write },
2282     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2283       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2284       .writefn = tlbimva_write },
2285     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2286       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2287       .writefn = tlbiasid_write },
2288     /* 32 bit DTLB invalidates */
2289     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2290       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2291       .writefn = tlbiall_write },
2292     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2293       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2294       .writefn = tlbimva_write },
2295     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2296       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2297       .writefn = tlbiasid_write },
2298     /* 32 bit TLB invalidates */
2299     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2300       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2301       .writefn = tlbiall_write },
2302     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2303       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2304       .writefn = tlbimva_write },
2305     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2306       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2307       .writefn = tlbiasid_write },
2308     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2309       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2310       .writefn = tlbimvaa_write },
2311 };
2312 
2313 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2314     /* 32 bit TLB invalidates, Inner Shareable */
2315     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2316       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2317       .writefn = tlbiall_is_write },
2318     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2319       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2320       .writefn = tlbimva_is_write },
2321     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2322       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2323       .writefn = tlbiasid_is_write },
2324     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2325       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2326       .writefn = tlbimvaa_is_write },
2327 };
2328 
2329 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2330     /* PMOVSSET is not implemented in v7 before v7ve */
2331     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2332       .access = PL0_RW, .accessfn = pmreg_access,
2333       .fgt = FGT_PMOVS,
2334       .type = ARM_CP_ALIAS | ARM_CP_IO,
2335       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2336       .writefn = pmovsset_write,
2337       .raw_writefn = raw_write },
2338     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2339       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2340       .access = PL0_RW, .accessfn = pmreg_access,
2341       .fgt = FGT_PMOVS,
2342       .type = ARM_CP_ALIAS | ARM_CP_IO,
2343       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2344       .writefn = pmovsset_write,
2345       .raw_writefn = raw_write },
2346 };
2347 
teecr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2348 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2349                         uint64_t value)
2350 {
2351     value &= 1;
2352     env->teecr = value;
2353 }
2354 
teecr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2355 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2356                                    bool isread)
2357 {
2358     /*
2359      * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2360      * at all, so we don't need to check whether we're v8A.
2361      */
2362     if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2363         (env->cp15.hstr_el2 & HSTR_TTEE)) {
2364         return CP_ACCESS_TRAP_EL2;
2365     }
2366     return CP_ACCESS_OK;
2367 }
2368 
teehbr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2369 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2370                                     bool isread)
2371 {
2372     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2373         return CP_ACCESS_TRAP;
2374     }
2375     return teecr_access(env, ri, isread);
2376 }
2377 
2378 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2379     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2380       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2381       .resetvalue = 0,
2382       .writefn = teecr_write, .accessfn = teecr_access },
2383     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2384       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2385       .accessfn = teehbr_access, .resetvalue = 0 },
2386 };
2387 
2388 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2389     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2390       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2391       .access = PL0_RW,
2392       .fgt = FGT_TPIDR_EL0,
2393       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2394     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2395       .access = PL0_RW,
2396       .fgt = FGT_TPIDR_EL0,
2397       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2398                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2399       .resetfn = arm_cp_reset_ignore },
2400     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2401       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2402       .access = PL0_R | PL1_W,
2403       .fgt = FGT_TPIDRRO_EL0,
2404       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2405       .resetvalue = 0},
2406     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2407       .access = PL0_R | PL1_W,
2408       .fgt = FGT_TPIDRRO_EL0,
2409       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2410                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2411       .resetfn = arm_cp_reset_ignore },
2412     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2413       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2414       .access = PL1_RW,
2415       .fgt = FGT_TPIDR_EL1,
2416       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2417     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2418       .access = PL1_RW,
2419       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2420                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2421       .resetvalue = 0 },
2422 };
2423 
2424 #ifndef CONFIG_USER_ONLY
2425 
gt_cntfrq_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2426 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2427                                        bool isread)
2428 {
2429     /*
2430      * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2431      * Writable only at the highest implemented exception level.
2432      */
2433     int el = arm_current_el(env);
2434     uint64_t hcr;
2435     uint32_t cntkctl;
2436 
2437     switch (el) {
2438     case 0:
2439         hcr = arm_hcr_el2_eff(env);
2440         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2441             cntkctl = env->cp15.cnthctl_el2;
2442         } else {
2443             cntkctl = env->cp15.c14_cntkctl;
2444         }
2445         if (!extract32(cntkctl, 0, 2)) {
2446             return CP_ACCESS_TRAP;
2447         }
2448         break;
2449     case 1:
2450         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2451             arm_is_secure_below_el3(env)) {
2452             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2453             return CP_ACCESS_TRAP_UNCATEGORIZED;
2454         }
2455         break;
2456     case 2:
2457     case 3:
2458         break;
2459     }
2460 
2461     if (!isread && el < arm_highest_el(env)) {
2462         return CP_ACCESS_TRAP_UNCATEGORIZED;
2463     }
2464 
2465     return CP_ACCESS_OK;
2466 }
2467 
gt_counter_access(CPUARMState * env,int timeridx,bool isread)2468 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2469                                         bool isread)
2470 {
2471     unsigned int cur_el = arm_current_el(env);
2472     bool has_el2 = arm_is_el2_enabled(env);
2473     uint64_t hcr = arm_hcr_el2_eff(env);
2474 
2475     switch (cur_el) {
2476     case 0:
2477         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2478         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2479             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2480                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2481         }
2482 
2483         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2484         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2485             return CP_ACCESS_TRAP;
2486         }
2487         /* fall through */
2488     case 1:
2489         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2490         if (has_el2 && timeridx == GTIMER_PHYS &&
2491             (hcr & HCR_E2H
2492              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2493              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2494             return CP_ACCESS_TRAP_EL2;
2495         }
2496         break;
2497     }
2498     return CP_ACCESS_OK;
2499 }
2500 
gt_timer_access(CPUARMState * env,int timeridx,bool isread)2501 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2502                                       bool isread)
2503 {
2504     unsigned int cur_el = arm_current_el(env);
2505     bool has_el2 = arm_is_el2_enabled(env);
2506     uint64_t hcr = arm_hcr_el2_eff(env);
2507 
2508     switch (cur_el) {
2509     case 0:
2510         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2511             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2512             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2513                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2514         }
2515 
2516         /*
2517          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2518          * EL0 if EL0[PV]TEN is zero.
2519          */
2520         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2521             return CP_ACCESS_TRAP;
2522         }
2523         /* fall through */
2524 
2525     case 1:
2526         if (has_el2 && timeridx == GTIMER_PHYS) {
2527             if (hcr & HCR_E2H) {
2528                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2529                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2530                     return CP_ACCESS_TRAP_EL2;
2531                 }
2532             } else {
2533                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2534                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2535                     return CP_ACCESS_TRAP_EL2;
2536                 }
2537             }
2538         }
2539         break;
2540     }
2541     return CP_ACCESS_OK;
2542 }
2543 
gt_pct_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2544 static CPAccessResult gt_pct_access(CPUARMState *env,
2545                                     const ARMCPRegInfo *ri,
2546                                     bool isread)
2547 {
2548     return gt_counter_access(env, GTIMER_PHYS, isread);
2549 }
2550 
gt_vct_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2551 static CPAccessResult gt_vct_access(CPUARMState *env,
2552                                     const ARMCPRegInfo *ri,
2553                                     bool isread)
2554 {
2555     return gt_counter_access(env, GTIMER_VIRT, isread);
2556 }
2557 
gt_ptimer_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2558 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2559                                        bool isread)
2560 {
2561     return gt_timer_access(env, GTIMER_PHYS, isread);
2562 }
2563 
gt_vtimer_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2564 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2565                                        bool isread)
2566 {
2567     return gt_timer_access(env, GTIMER_VIRT, isread);
2568 }
2569 
gt_stimer_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2570 static CPAccessResult gt_stimer_access(CPUARMState *env,
2571                                        const ARMCPRegInfo *ri,
2572                                        bool isread)
2573 {
2574     /*
2575      * The AArch64 register view of the secure physical timer is
2576      * always accessible from EL3, and configurably accessible from
2577      * Secure EL1.
2578      */
2579     switch (arm_current_el(env)) {
2580     case 1:
2581         if (!arm_is_secure(env)) {
2582             return CP_ACCESS_TRAP;
2583         }
2584         if (!(env->cp15.scr_el3 & SCR_ST)) {
2585             return CP_ACCESS_TRAP_EL3;
2586         }
2587         return CP_ACCESS_OK;
2588     case 0:
2589     case 2:
2590         return CP_ACCESS_TRAP;
2591     case 3:
2592         return CP_ACCESS_OK;
2593     default:
2594         g_assert_not_reached();
2595     }
2596 }
2597 
gt_get_countervalue(CPUARMState * env)2598 static uint64_t gt_get_countervalue(CPUARMState *env)
2599 {
2600     ARMCPU *cpu = env_archcpu(env);
2601 
2602     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2603 }
2604 
gt_update_irq(ARMCPU * cpu,int timeridx)2605 static void gt_update_irq(ARMCPU *cpu, int timeridx)
2606 {
2607     CPUARMState *env = &cpu->env;
2608     uint64_t cnthctl = env->cp15.cnthctl_el2;
2609     ARMSecuritySpace ss = arm_security_space(env);
2610     /* ISTATUS && !IMASK */
2611     int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
2612 
2613     /*
2614      * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
2615      * It is RES0 in Secure and NonSecure state.
2616      */
2617     if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
2618         ((timeridx == GTIMER_VIRT && (cnthctl & CNTHCTL_CNTVMASK)) ||
2619          (timeridx == GTIMER_PHYS && (cnthctl & CNTHCTL_CNTPMASK)))) {
2620         irqstate = 0;
2621     }
2622 
2623     qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2624     trace_arm_gt_update_irq(timeridx, irqstate);
2625 }
2626 
gt_rme_post_el_change(ARMCPU * cpu,void * ignored)2627 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
2628 {
2629     /*
2630      * Changing security state between Root and Secure/NonSecure, which may
2631      * happen when switching EL, can change the effective value of CNTHCTL_EL2
2632      * mask bits. Update the IRQ state accordingly.
2633      */
2634     gt_update_irq(cpu, GTIMER_VIRT);
2635     gt_update_irq(cpu, GTIMER_PHYS);
2636 }
2637 
gt_recalc_timer(ARMCPU * cpu,int timeridx)2638 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2639 {
2640     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2641 
2642     if (gt->ctl & 1) {
2643         /*
2644          * Timer enabled: calculate and set current ISTATUS, irq, and
2645          * reset timer to when ISTATUS next has to change
2646          */
2647         uint64_t offset = timeridx == GTIMER_VIRT ?
2648                                       cpu->env.cp15.cntvoff_el2 : 0;
2649         uint64_t count = gt_get_countervalue(&cpu->env);
2650         /* Note that this must be unsigned 64 bit arithmetic: */
2651         int istatus = count - offset >= gt->cval;
2652         uint64_t nexttick;
2653 
2654         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2655 
2656         if (istatus) {
2657             /*
2658              * Next transition is when (count - offset) rolls back over to 0.
2659              * If offset > count then this is when count == offset;
2660              * if offset <= count then this is when count == offset + 2^64
2661              * For the latter case we set nexttick to an "as far in future
2662              * as possible" value and let the code below handle it.
2663              */
2664             if (offset > count) {
2665                 nexttick = offset;
2666             } else {
2667                 nexttick = UINT64_MAX;
2668             }
2669         } else {
2670             /*
2671              * Next transition is when (count - offset) == cval, i.e.
2672              * when count == (cval + offset).
2673              * If that would overflow, then again we set up the next interrupt
2674              * for "as far in the future as possible" for the code below.
2675              */
2676             if (uadd64_overflow(gt->cval, offset, &nexttick)) {
2677                 nexttick = UINT64_MAX;
2678             }
2679         }
2680         /*
2681          * Note that the desired next expiry time might be beyond the
2682          * signed-64-bit range of a QEMUTimer -- in this case we just
2683          * set the timer for as far in the future as possible. When the
2684          * timer expires we will reset the timer for any remaining period.
2685          */
2686         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2687             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2688         } else {
2689             timer_mod(cpu->gt_timer[timeridx], nexttick);
2690         }
2691         trace_arm_gt_recalc(timeridx, nexttick);
2692     } else {
2693         /* Timer disabled: ISTATUS and timer output always clear */
2694         gt->ctl &= ~4;
2695         timer_del(cpu->gt_timer[timeridx]);
2696         trace_arm_gt_recalc_disabled(timeridx);
2697     }
2698     gt_update_irq(cpu, timeridx);
2699 }
2700 
gt_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx)2701 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2702                            int timeridx)
2703 {
2704     ARMCPU *cpu = env_archcpu(env);
2705 
2706     timer_del(cpu->gt_timer[timeridx]);
2707 }
2708 
gt_cnt_read(CPUARMState * env,const ARMCPRegInfo * ri)2709 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2710 {
2711     return gt_get_countervalue(env);
2712 }
2713 
gt_virt_cnt_offset(CPUARMState * env)2714 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2715 {
2716     uint64_t hcr;
2717 
2718     switch (arm_current_el(env)) {
2719     case 2:
2720         hcr = arm_hcr_el2_eff(env);
2721         if (hcr & HCR_E2H) {
2722             return 0;
2723         }
2724         break;
2725     case 0:
2726         hcr = arm_hcr_el2_eff(env);
2727         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2728             return 0;
2729         }
2730         break;
2731     }
2732 
2733     return env->cp15.cntvoff_el2;
2734 }
2735 
gt_virt_cnt_read(CPUARMState * env,const ARMCPRegInfo * ri)2736 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2737 {
2738     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2739 }
2740 
gt_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx,uint64_t value)2741 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2742                           int timeridx,
2743                           uint64_t value)
2744 {
2745     trace_arm_gt_cval_write(timeridx, value);
2746     env->cp15.c14_timer[timeridx].cval = value;
2747     gt_recalc_timer(env_archcpu(env), timeridx);
2748 }
2749 
gt_tval_read(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx)2750 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2751                              int timeridx)
2752 {
2753     uint64_t offset = 0;
2754 
2755     switch (timeridx) {
2756     case GTIMER_VIRT:
2757     case GTIMER_HYPVIRT:
2758         offset = gt_virt_cnt_offset(env);
2759         break;
2760     }
2761 
2762     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2763                       (gt_get_countervalue(env) - offset));
2764 }
2765 
gt_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx,uint64_t value)2766 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2767                           int timeridx,
2768                           uint64_t value)
2769 {
2770     uint64_t offset = 0;
2771 
2772     switch (timeridx) {
2773     case GTIMER_VIRT:
2774     case GTIMER_HYPVIRT:
2775         offset = gt_virt_cnt_offset(env);
2776         break;
2777     }
2778 
2779     trace_arm_gt_tval_write(timeridx, value);
2780     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2781                                          sextract64(value, 0, 32);
2782     gt_recalc_timer(env_archcpu(env), timeridx);
2783 }
2784 
gt_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx,uint64_t value)2785 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2786                          int timeridx,
2787                          uint64_t value)
2788 {
2789     ARMCPU *cpu = env_archcpu(env);
2790     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2791 
2792     trace_arm_gt_ctl_write(timeridx, value);
2793     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2794     if ((oldval ^ value) & 1) {
2795         /* Enable toggled */
2796         gt_recalc_timer(cpu, timeridx);
2797     } else if ((oldval ^ value) & 2) {
2798         /*
2799          * IMASK toggled: don't need to recalculate,
2800          * just set the interrupt line based on ISTATUS
2801          */
2802         trace_arm_gt_imask_toggle(timeridx);
2803         gt_update_irq(cpu, timeridx);
2804     }
2805 }
2806 
gt_phys_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)2807 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2808 {
2809     gt_timer_reset(env, ri, GTIMER_PHYS);
2810 }
2811 
gt_phys_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2812 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2813                                uint64_t value)
2814 {
2815     gt_cval_write(env, ri, GTIMER_PHYS, value);
2816 }
2817 
gt_phys_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)2818 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2819 {
2820     return gt_tval_read(env, ri, GTIMER_PHYS);
2821 }
2822 
gt_phys_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2823 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2824                                uint64_t value)
2825 {
2826     gt_tval_write(env, ri, GTIMER_PHYS, value);
2827 }
2828 
gt_phys_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2829 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2830                               uint64_t value)
2831 {
2832     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2833 }
2834 
gt_phys_redir_timeridx(CPUARMState * env)2835 static int gt_phys_redir_timeridx(CPUARMState *env)
2836 {
2837     switch (arm_mmu_idx(env)) {
2838     case ARMMMUIdx_E20_0:
2839     case ARMMMUIdx_E20_2:
2840     case ARMMMUIdx_E20_2_PAN:
2841         return GTIMER_HYP;
2842     default:
2843         return GTIMER_PHYS;
2844     }
2845 }
2846 
gt_virt_redir_timeridx(CPUARMState * env)2847 static int gt_virt_redir_timeridx(CPUARMState *env)
2848 {
2849     switch (arm_mmu_idx(env)) {
2850     case ARMMMUIdx_E20_0:
2851     case ARMMMUIdx_E20_2:
2852     case ARMMMUIdx_E20_2_PAN:
2853         return GTIMER_HYPVIRT;
2854     default:
2855         return GTIMER_VIRT;
2856     }
2857 }
2858 
gt_phys_redir_cval_read(CPUARMState * env,const ARMCPRegInfo * ri)2859 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2860                                         const ARMCPRegInfo *ri)
2861 {
2862     int timeridx = gt_phys_redir_timeridx(env);
2863     return env->cp15.c14_timer[timeridx].cval;
2864 }
2865 
gt_phys_redir_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2866 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2867                                      uint64_t value)
2868 {
2869     int timeridx = gt_phys_redir_timeridx(env);
2870     gt_cval_write(env, ri, timeridx, value);
2871 }
2872 
gt_phys_redir_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)2873 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2874                                         const ARMCPRegInfo *ri)
2875 {
2876     int timeridx = gt_phys_redir_timeridx(env);
2877     return gt_tval_read(env, ri, timeridx);
2878 }
2879 
gt_phys_redir_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2880 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2881                                      uint64_t value)
2882 {
2883     int timeridx = gt_phys_redir_timeridx(env);
2884     gt_tval_write(env, ri, timeridx, value);
2885 }
2886 
gt_phys_redir_ctl_read(CPUARMState * env,const ARMCPRegInfo * ri)2887 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2888                                        const ARMCPRegInfo *ri)
2889 {
2890     int timeridx = gt_phys_redir_timeridx(env);
2891     return env->cp15.c14_timer[timeridx].ctl;
2892 }
2893 
gt_phys_redir_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2894 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2895                                     uint64_t value)
2896 {
2897     int timeridx = gt_phys_redir_timeridx(env);
2898     gt_ctl_write(env, ri, timeridx, value);
2899 }
2900 
gt_virt_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)2901 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2902 {
2903     gt_timer_reset(env, ri, GTIMER_VIRT);
2904 }
2905 
gt_virt_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2906 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2907                                uint64_t value)
2908 {
2909     gt_cval_write(env, ri, GTIMER_VIRT, value);
2910 }
2911 
gt_virt_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)2912 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2913 {
2914     return gt_tval_read(env, ri, GTIMER_VIRT);
2915 }
2916 
gt_virt_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2917 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2918                                uint64_t value)
2919 {
2920     gt_tval_write(env, ri, GTIMER_VIRT, value);
2921 }
2922 
gt_virt_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2923 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2924                               uint64_t value)
2925 {
2926     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2927 }
2928 
gt_cnthctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2929 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2930                              uint64_t value)
2931 {
2932     ARMCPU *cpu = env_archcpu(env);
2933     uint32_t oldval = env->cp15.cnthctl_el2;
2934 
2935     raw_write(env, ri, value);
2936 
2937     if ((oldval ^ value) & CNTHCTL_CNTVMASK) {
2938         gt_update_irq(cpu, GTIMER_VIRT);
2939     } else if ((oldval ^ value) & CNTHCTL_CNTPMASK) {
2940         gt_update_irq(cpu, GTIMER_PHYS);
2941     }
2942 }
2943 
gt_cntvoff_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2944 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2945                               uint64_t value)
2946 {
2947     ARMCPU *cpu = env_archcpu(env);
2948 
2949     trace_arm_gt_cntvoff_write(value);
2950     raw_write(env, ri, value);
2951     gt_recalc_timer(cpu, GTIMER_VIRT);
2952 }
2953 
gt_virt_redir_cval_read(CPUARMState * env,const ARMCPRegInfo * ri)2954 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2955                                         const ARMCPRegInfo *ri)
2956 {
2957     int timeridx = gt_virt_redir_timeridx(env);
2958     return env->cp15.c14_timer[timeridx].cval;
2959 }
2960 
gt_virt_redir_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2961 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2962                                      uint64_t value)
2963 {
2964     int timeridx = gt_virt_redir_timeridx(env);
2965     gt_cval_write(env, ri, timeridx, value);
2966 }
2967 
gt_virt_redir_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)2968 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2969                                         const ARMCPRegInfo *ri)
2970 {
2971     int timeridx = gt_virt_redir_timeridx(env);
2972     return gt_tval_read(env, ri, timeridx);
2973 }
2974 
gt_virt_redir_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2975 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2976                                      uint64_t value)
2977 {
2978     int timeridx = gt_virt_redir_timeridx(env);
2979     gt_tval_write(env, ri, timeridx, value);
2980 }
2981 
gt_virt_redir_ctl_read(CPUARMState * env,const ARMCPRegInfo * ri)2982 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2983                                        const ARMCPRegInfo *ri)
2984 {
2985     int timeridx = gt_virt_redir_timeridx(env);
2986     return env->cp15.c14_timer[timeridx].ctl;
2987 }
2988 
gt_virt_redir_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2989 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2990                                     uint64_t value)
2991 {
2992     int timeridx = gt_virt_redir_timeridx(env);
2993     gt_ctl_write(env, ri, timeridx, value);
2994 }
2995 
gt_hyp_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)2996 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2997 {
2998     gt_timer_reset(env, ri, GTIMER_HYP);
2999 }
3000 
gt_hyp_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3001 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3002                               uint64_t value)
3003 {
3004     gt_cval_write(env, ri, GTIMER_HYP, value);
3005 }
3006 
gt_hyp_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)3007 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3008 {
3009     return gt_tval_read(env, ri, GTIMER_HYP);
3010 }
3011 
gt_hyp_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3012 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3013                               uint64_t value)
3014 {
3015     gt_tval_write(env, ri, GTIMER_HYP, value);
3016 }
3017 
gt_hyp_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3018 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3019                               uint64_t value)
3020 {
3021     gt_ctl_write(env, ri, GTIMER_HYP, value);
3022 }
3023 
gt_sec_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)3024 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3025 {
3026     gt_timer_reset(env, ri, GTIMER_SEC);
3027 }
3028 
gt_sec_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3029 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3030                               uint64_t value)
3031 {
3032     gt_cval_write(env, ri, GTIMER_SEC, value);
3033 }
3034 
gt_sec_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)3035 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3036 {
3037     return gt_tval_read(env, ri, GTIMER_SEC);
3038 }
3039 
gt_sec_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3040 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3041                               uint64_t value)
3042 {
3043     gt_tval_write(env, ri, GTIMER_SEC, value);
3044 }
3045 
gt_sec_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3046 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3047                               uint64_t value)
3048 {
3049     gt_ctl_write(env, ri, GTIMER_SEC, value);
3050 }
3051 
gt_hv_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)3052 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3053 {
3054     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3055 }
3056 
gt_hv_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3057 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3058                              uint64_t value)
3059 {
3060     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3061 }
3062 
gt_hv_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)3063 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3064 {
3065     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3066 }
3067 
gt_hv_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3068 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3069                              uint64_t value)
3070 {
3071     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3072 }
3073 
gt_hv_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3074 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3075                             uint64_t value)
3076 {
3077     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3078 }
3079 
arm_gt_ptimer_cb(void * opaque)3080 void arm_gt_ptimer_cb(void *opaque)
3081 {
3082     ARMCPU *cpu = opaque;
3083 
3084     gt_recalc_timer(cpu, GTIMER_PHYS);
3085 }
3086 
arm_gt_vtimer_cb(void * opaque)3087 void arm_gt_vtimer_cb(void *opaque)
3088 {
3089     ARMCPU *cpu = opaque;
3090 
3091     gt_recalc_timer(cpu, GTIMER_VIRT);
3092 }
3093 
arm_gt_htimer_cb(void * opaque)3094 void arm_gt_htimer_cb(void *opaque)
3095 {
3096     ARMCPU *cpu = opaque;
3097 
3098     gt_recalc_timer(cpu, GTIMER_HYP);
3099 }
3100 
arm_gt_stimer_cb(void * opaque)3101 void arm_gt_stimer_cb(void *opaque)
3102 {
3103     ARMCPU *cpu = opaque;
3104 
3105     gt_recalc_timer(cpu, GTIMER_SEC);
3106 }
3107 
arm_gt_hvtimer_cb(void * opaque)3108 void arm_gt_hvtimer_cb(void *opaque)
3109 {
3110     ARMCPU *cpu = opaque;
3111 
3112     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3113 }
3114 
arm_gt_cntfrq_reset(CPUARMState * env,const ARMCPRegInfo * opaque)3115 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3116 {
3117     ARMCPU *cpu = env_archcpu(env);
3118 
3119     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3120 }
3121 
3122 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3123     /*
3124      * Note that CNTFRQ is purely reads-as-written for the benefit
3125      * of software; writing it doesn't actually change the timer frequency.
3126      * Our reset value matches the fixed frequency we implement the timer at.
3127      */
3128     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3129       .type = ARM_CP_ALIAS,
3130       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3131       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3132     },
3133     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3134       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3135       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3136       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3137       .resetfn = arm_gt_cntfrq_reset,
3138     },
3139     /* overall control: mostly access permissions */
3140     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3141       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3142       .access = PL1_RW,
3143       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3144       .resetvalue = 0,
3145     },
3146     /* per-timer control */
3147     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3148       .secure = ARM_CP_SECSTATE_NS,
3149       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3150       .accessfn = gt_ptimer_access,
3151       .fieldoffset = offsetoflow32(CPUARMState,
3152                                    cp15.c14_timer[GTIMER_PHYS].ctl),
3153       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3154       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3155     },
3156     { .name = "CNTP_CTL_S",
3157       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3158       .secure = ARM_CP_SECSTATE_S,
3159       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3160       .accessfn = gt_ptimer_access,
3161       .fieldoffset = offsetoflow32(CPUARMState,
3162                                    cp15.c14_timer[GTIMER_SEC].ctl),
3163       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3164     },
3165     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3166       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3167       .type = ARM_CP_IO, .access = PL0_RW,
3168       .accessfn = gt_ptimer_access,
3169       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3170       .resetvalue = 0,
3171       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3172       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3173     },
3174     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3175       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3176       .accessfn = gt_vtimer_access,
3177       .fieldoffset = offsetoflow32(CPUARMState,
3178                                    cp15.c14_timer[GTIMER_VIRT].ctl),
3179       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3180       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3181     },
3182     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3183       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3184       .type = ARM_CP_IO, .access = PL0_RW,
3185       .accessfn = gt_vtimer_access,
3186       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3187       .resetvalue = 0,
3188       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3189       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3190     },
3191     /* TimerValue views: a 32 bit downcounting view of the underlying state */
3192     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3193       .secure = ARM_CP_SECSTATE_NS,
3194       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3195       .accessfn = gt_ptimer_access,
3196       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3197     },
3198     { .name = "CNTP_TVAL_S",
3199       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3200       .secure = ARM_CP_SECSTATE_S,
3201       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3202       .accessfn = gt_ptimer_access,
3203       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3204     },
3205     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3206       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3207       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3208       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3209       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3210     },
3211     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3212       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3213       .accessfn = gt_vtimer_access,
3214       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3215     },
3216     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3217       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3218       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3219       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3220       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3221     },
3222     /* The counter itself */
3223     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3224       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3225       .accessfn = gt_pct_access,
3226       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3227     },
3228     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3229       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3230       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3231       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3232     },
3233     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3234       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3235       .accessfn = gt_vct_access,
3236       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3237     },
3238     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3239       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3240       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3241       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3242     },
3243     /* Comparison value, indicating when the timer goes off */
3244     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3245       .secure = ARM_CP_SECSTATE_NS,
3246       .access = PL0_RW,
3247       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3248       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3249       .accessfn = gt_ptimer_access,
3250       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3251       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3252     },
3253     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3254       .secure = ARM_CP_SECSTATE_S,
3255       .access = PL0_RW,
3256       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3257       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3258       .accessfn = gt_ptimer_access,
3259       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3260     },
3261     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3262       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3263       .access = PL0_RW,
3264       .type = ARM_CP_IO,
3265       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3266       .resetvalue = 0, .accessfn = gt_ptimer_access,
3267       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3268       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3269     },
3270     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3271       .access = PL0_RW,
3272       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3273       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3274       .accessfn = gt_vtimer_access,
3275       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3276       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3277     },
3278     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3279       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3280       .access = PL0_RW,
3281       .type = ARM_CP_IO,
3282       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3283       .resetvalue = 0, .accessfn = gt_vtimer_access,
3284       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3285       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3286     },
3287     /*
3288      * Secure timer -- this is actually restricted to only EL3
3289      * and configurably Secure-EL1 via the accessfn.
3290      */
3291     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3292       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3293       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3294       .accessfn = gt_stimer_access,
3295       .readfn = gt_sec_tval_read,
3296       .writefn = gt_sec_tval_write,
3297       .resetfn = gt_sec_timer_reset,
3298     },
3299     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3300       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3301       .type = ARM_CP_IO, .access = PL1_RW,
3302       .accessfn = gt_stimer_access,
3303       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3304       .resetvalue = 0,
3305       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3306     },
3307     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3308       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3309       .type = ARM_CP_IO, .access = PL1_RW,
3310       .accessfn = gt_stimer_access,
3311       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3312       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3313     },
3314 };
3315 
e2h_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3316 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3317                                  bool isread)
3318 {
3319     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3320         return CP_ACCESS_TRAP;
3321     }
3322     return CP_ACCESS_OK;
3323 }
3324 
3325 #else
3326 
3327 /*
3328  * In user-mode most of the generic timer registers are inaccessible
3329  * however modern kernels (4.12+) allow access to cntvct_el0
3330  */
3331 
gt_virt_cnt_read(CPUARMState * env,const ARMCPRegInfo * ri)3332 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3333 {
3334     ARMCPU *cpu = env_archcpu(env);
3335 
3336     /*
3337      * Currently we have no support for QEMUTimer in linux-user so we
3338      * can't call gt_get_countervalue(env), instead we directly
3339      * call the lower level functions.
3340      */
3341     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3342 }
3343 
3344 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3345     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3346       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3347       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3348       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3349       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3350     },
3351     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3352       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3353       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3354       .readfn = gt_virt_cnt_read,
3355     },
3356 };
3357 
3358 #endif
3359 
par_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3360 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3361 {
3362     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3363         raw_write(env, ri, value);
3364     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3365         raw_write(env, ri, value & 0xfffff6ff);
3366     } else {
3367         raw_write(env, ri, value & 0xfffff1ff);
3368     }
3369 }
3370 
3371 #ifndef CONFIG_USER_ONLY
3372 /* get_phys_addr() isn't present for user-mode-only targets */
3373 
ats_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3374 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3375                                  bool isread)
3376 {
3377     if (ri->opc2 & 4) {
3378         /*
3379          * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3380          * Secure EL1 (which can only happen if EL3 is AArch64).
3381          * They are simply UNDEF if executed from NS EL1.
3382          * They function normally from EL2 or EL3.
3383          */
3384         if (arm_current_el(env) == 1) {
3385             if (arm_is_secure_below_el3(env)) {
3386                 if (env->cp15.scr_el3 & SCR_EEL2) {
3387                     return CP_ACCESS_TRAP_EL2;
3388                 }
3389                 return CP_ACCESS_TRAP_EL3;
3390             }
3391             return CP_ACCESS_TRAP_UNCATEGORIZED;
3392         }
3393     }
3394     return CP_ACCESS_OK;
3395 }
3396 
3397 #ifdef CONFIG_TCG
par_el1_shareability(GetPhysAddrResult * res)3398 static int par_el1_shareability(GetPhysAddrResult *res)
3399 {
3400     /*
3401      * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
3402      * memory -- see pseudocode PAREncodeShareability().
3403      */
3404     if (((res->cacheattrs.attrs & 0xf0) == 0) ||
3405         res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
3406         return 2;
3407     }
3408     return res->cacheattrs.shareability;
3409 }
3410 
do_ats_write(CPUARMState * env,uint64_t value,MMUAccessType access_type,ARMMMUIdx mmu_idx,ARMSecuritySpace ss)3411 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3412                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
3413                              ARMSecuritySpace ss)
3414 {
3415     bool ret;
3416     uint64_t par64;
3417     bool format64 = false;
3418     ARMMMUFaultInfo fi = {};
3419     GetPhysAddrResult res = {};
3420 
3421     /*
3422      * I_MXTJT: Granule protection checks are not performed on the final address
3423      * of a successful translation.
3424      */
3425     ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss,
3426                                          &res, &fi);
3427 
3428     /*
3429      * ATS operations only do S1 or S1+S2 translations, so we never
3430      * have to deal with the ARMCacheAttrs format for S2 only.
3431      */
3432     assert(!res.cacheattrs.is_s2_format);
3433 
3434     if (ret) {
3435         /*
3436          * Some kinds of translation fault must cause exceptions rather
3437          * than being reported in the PAR.
3438          */
3439         int current_el = arm_current_el(env);
3440         int target_el;
3441         uint32_t syn, fsr, fsc;
3442         bool take_exc = false;
3443 
3444         if (fi.s1ptw && current_el == 1
3445             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3446             /*
3447              * Synchronous stage 2 fault on an access made as part of the
3448              * translation table walk for AT S1E0* or AT S1E1* insn
3449              * executed from NS EL1. If this is a synchronous external abort
3450              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3451              * to EL3. Otherwise the fault is taken as an exception to EL2,
3452              * and HPFAR_EL2 holds the faulting IPA.
3453              */
3454             if (fi.type == ARMFault_SyncExternalOnWalk &&
3455                 (env->cp15.scr_el3 & SCR_EA)) {
3456                 target_el = 3;
3457             } else {
3458                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3459                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3460                     env->cp15.hpfar_el2 |= HPFAR_NS;
3461                 }
3462                 target_el = 2;
3463             }
3464             take_exc = true;
3465         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3466             /*
3467              * Synchronous external aborts during a translation table walk
3468              * are taken as Data Abort exceptions.
3469              */
3470             if (fi.stage2) {
3471                 if (current_el == 3) {
3472                     target_el = 3;
3473                 } else {
3474                     target_el = 2;
3475                 }
3476             } else {
3477                 target_el = exception_target_el(env);
3478             }
3479             take_exc = true;
3480         }
3481 
3482         if (take_exc) {
3483             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3484             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3485                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3486                 fsr = arm_fi_to_lfsc(&fi);
3487                 fsc = extract32(fsr, 0, 6);
3488             } else {
3489                 fsr = arm_fi_to_sfsc(&fi);
3490                 fsc = 0x3f;
3491             }
3492             /*
3493              * Report exception with ESR indicating a fault due to a
3494              * translation table walk for a cache maintenance instruction.
3495              */
3496             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3497                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3498             env->exception.vaddress = value;
3499             env->exception.fsr = fsr;
3500             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3501         }
3502     }
3503 
3504     if (is_a64(env)) {
3505         format64 = true;
3506     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3507         /*
3508          * ATS1Cxx:
3509          * * TTBCR.EAE determines whether the result is returned using the
3510          *   32-bit or the 64-bit PAR format
3511          * * Instructions executed in Hyp mode always use the 64bit format
3512          *
3513          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3514          * * The Non-secure TTBCR.EAE bit is set to 1
3515          * * The implementation includes EL2, and the value of HCR.VM is 1
3516          *
3517          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3518          *
3519          * ATS1Hx always uses the 64bit format.
3520          */
3521         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3522 
3523         if (arm_feature(env, ARM_FEATURE_EL2)) {
3524             if (mmu_idx == ARMMMUIdx_E10_0 ||
3525                 mmu_idx == ARMMMUIdx_E10_1 ||
3526                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3527                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3528             } else {
3529                 format64 |= arm_current_el(env) == 2;
3530             }
3531         }
3532     }
3533 
3534     if (format64) {
3535         /* Create a 64-bit PAR */
3536         par64 = (1 << 11); /* LPAE bit always set */
3537         if (!ret) {
3538             par64 |= res.f.phys_addr & ~0xfffULL;
3539             if (!res.f.attrs.secure) {
3540                 par64 |= (1 << 9); /* NS */
3541             }
3542             par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3543             par64 |= par_el1_shareability(&res) << 7; /* SH */
3544         } else {
3545             uint32_t fsr = arm_fi_to_lfsc(&fi);
3546 
3547             par64 |= 1; /* F */
3548             par64 |= (fsr & 0x3f) << 1; /* FS */
3549             if (fi.stage2) {
3550                 par64 |= (1 << 9); /* S */
3551             }
3552             if (fi.s1ptw) {
3553                 par64 |= (1 << 8); /* PTW */
3554             }
3555         }
3556     } else {
3557         /*
3558          * fsr is a DFSR/IFSR value for the short descriptor
3559          * translation table format (with WnR always clear).
3560          * Convert it to a 32-bit PAR.
3561          */
3562         if (!ret) {
3563             /* We do not set any attribute bits in the PAR */
3564             if (res.f.lg_page_size == 24
3565                 && arm_feature(env, ARM_FEATURE_V7)) {
3566                 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3567             } else {
3568                 par64 = res.f.phys_addr & 0xfffff000;
3569             }
3570             if (!res.f.attrs.secure) {
3571                 par64 |= (1 << 9); /* NS */
3572             }
3573         } else {
3574             uint32_t fsr = arm_fi_to_sfsc(&fi);
3575 
3576             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3577                     ((fsr & 0xf) << 1) | 1;
3578         }
3579     }
3580     return par64;
3581 }
3582 #endif /* CONFIG_TCG */
3583 
ats_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3584 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3585 {
3586 #ifdef CONFIG_TCG
3587     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3588     uint64_t par64;
3589     ARMMMUIdx mmu_idx;
3590     int el = arm_current_el(env);
3591     ARMSecuritySpace ss = arm_security_space(env);
3592 
3593     switch (ri->opc2 & 6) {
3594     case 0:
3595         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3596         switch (el) {
3597         case 3:
3598             mmu_idx = ARMMMUIdx_E3;
3599             break;
3600         case 2:
3601             g_assert(ss != ARMSS_Secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3602             /* fall through */
3603         case 1:
3604             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3605                 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3606             } else {
3607                 mmu_idx = ARMMMUIdx_Stage1_E1;
3608             }
3609             break;
3610         default:
3611             g_assert_not_reached();
3612         }
3613         break;
3614     case 2:
3615         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3616         switch (el) {
3617         case 3:
3618             mmu_idx = ARMMMUIdx_E10_0;
3619             break;
3620         case 2:
3621             g_assert(ss != ARMSS_Secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3622             mmu_idx = ARMMMUIdx_Stage1_E0;
3623             break;
3624         case 1:
3625             mmu_idx = ARMMMUIdx_Stage1_E0;
3626             break;
3627         default:
3628             g_assert_not_reached();
3629         }
3630         break;
3631     case 4:
3632         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3633         mmu_idx = ARMMMUIdx_E10_1;
3634         ss = ARMSS_NonSecure;
3635         break;
3636     case 6:
3637         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3638         mmu_idx = ARMMMUIdx_E10_0;
3639         ss = ARMSS_NonSecure;
3640         break;
3641     default:
3642         g_assert_not_reached();
3643     }
3644 
3645     par64 = do_ats_write(env, value, access_type, mmu_idx, ss);
3646 
3647     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3648 #else
3649     /* Handled by hardware accelerator. */
3650     g_assert_not_reached();
3651 #endif /* CONFIG_TCG */
3652 }
3653 
ats1h_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3654 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3655                         uint64_t value)
3656 {
3657 #ifdef CONFIG_TCG
3658     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3659     uint64_t par64;
3660 
3661     /* There is no SecureEL2 for AArch32. */
3662     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2,
3663                          ARMSS_NonSecure);
3664 
3665     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3666 #else
3667     /* Handled by hardware accelerator. */
3668     g_assert_not_reached();
3669 #endif /* CONFIG_TCG */
3670 }
3671 
at_e012_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3672 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri,
3673                                      bool isread)
3674 {
3675     /*
3676      * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level
3677      * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can
3678      * only happen when executing at EL3 because that combination also causes an
3679      * illegal exception return. We don't need to check FEAT_RME either, because
3680      * scr_write() ensures that the NSE bit is not set otherwise.
3681      */
3682     if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) {
3683         return CP_ACCESS_TRAP;
3684     }
3685     return CP_ACCESS_OK;
3686 }
3687 
at_s1e2_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3688 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3689                                      bool isread)
3690 {
3691     if (arm_current_el(env) == 3 &&
3692         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3693         return CP_ACCESS_TRAP;
3694     }
3695     return at_e012_access(env, ri, isread);
3696 }
3697 
ats_write64(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3698 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3699                         uint64_t value)
3700 {
3701 #ifdef CONFIG_TCG
3702     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3703     ARMMMUIdx mmu_idx;
3704     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3705     bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3706 
3707     switch (ri->opc2 & 6) {
3708     case 0:
3709         switch (ri->opc1) {
3710         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3711             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3712                 mmu_idx = regime_e20 ?
3713                           ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3714             } else {
3715                 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3716             }
3717             break;
3718         case 4: /* AT S1E2R, AT S1E2W */
3719             mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3720             break;
3721         case 6: /* AT S1E3R, AT S1E3W */
3722             mmu_idx = ARMMMUIdx_E3;
3723             break;
3724         default:
3725             g_assert_not_reached();
3726         }
3727         break;
3728     case 2: /* AT S1E0R, AT S1E0W */
3729         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3730         break;
3731     case 4: /* AT S12E1R, AT S12E1W */
3732         mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3733         break;
3734     case 6: /* AT S12E0R, AT S12E0W */
3735         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3736         break;
3737     default:
3738         g_assert_not_reached();
3739     }
3740 
3741     env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3742                                        mmu_idx, arm_security_space(env));
3743 #else
3744     /* Handled by hardware accelerator. */
3745     g_assert_not_reached();
3746 #endif /* CONFIG_TCG */
3747 }
3748 #endif
3749 
3750 /* Return basic MPU access permission bits.  */
simple_mpu_ap_bits(uint32_t val)3751 static uint32_t simple_mpu_ap_bits(uint32_t val)
3752 {
3753     uint32_t ret;
3754     uint32_t mask;
3755     int i;
3756     ret = 0;
3757     mask = 3;
3758     for (i = 0; i < 16; i += 2) {
3759         ret |= (val >> i) & mask;
3760         mask <<= 2;
3761     }
3762     return ret;
3763 }
3764 
3765 /* Pad basic MPU access permission bits to extended format.  */
extended_mpu_ap_bits(uint32_t val)3766 static uint32_t extended_mpu_ap_bits(uint32_t val)
3767 {
3768     uint32_t ret;
3769     uint32_t mask;
3770     int i;
3771     ret = 0;
3772     mask = 3;
3773     for (i = 0; i < 16; i += 2) {
3774         ret |= (val & mask) << i;
3775         mask <<= 2;
3776     }
3777     return ret;
3778 }
3779 
pmsav5_data_ap_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3780 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3781                                  uint64_t value)
3782 {
3783     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3784 }
3785 
pmsav5_data_ap_read(CPUARMState * env,const ARMCPRegInfo * ri)3786 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3787 {
3788     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3789 }
3790 
pmsav5_insn_ap_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3791 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3792                                  uint64_t value)
3793 {
3794     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3795 }
3796 
pmsav5_insn_ap_read(CPUARMState * env,const ARMCPRegInfo * ri)3797 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3798 {
3799     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3800 }
3801 
pmsav7_read(CPUARMState * env,const ARMCPRegInfo * ri)3802 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3803 {
3804     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3805 
3806     if (!u32p) {
3807         return 0;
3808     }
3809 
3810     u32p += env->pmsav7.rnr[M_REG_NS];
3811     return *u32p;
3812 }
3813 
pmsav7_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3814 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3815                          uint64_t value)
3816 {
3817     ARMCPU *cpu = env_archcpu(env);
3818     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3819 
3820     if (!u32p) {
3821         return;
3822     }
3823 
3824     u32p += env->pmsav7.rnr[M_REG_NS];
3825     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3826     *u32p = value;
3827 }
3828 
pmsav7_rgnr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3829 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3830                               uint64_t value)
3831 {
3832     ARMCPU *cpu = env_archcpu(env);
3833     uint32_t nrgs = cpu->pmsav7_dregion;
3834 
3835     if (value >= nrgs) {
3836         qemu_log_mask(LOG_GUEST_ERROR,
3837                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3838                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3839         return;
3840     }
3841 
3842     raw_write(env, ri, value);
3843 }
3844 
prbar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3845 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3846                           uint64_t value)
3847 {
3848     ARMCPU *cpu = env_archcpu(env);
3849 
3850     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3851     env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3852 }
3853 
prbar_read(CPUARMState * env,const ARMCPRegInfo * ri)3854 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3855 {
3856     return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3857 }
3858 
prlar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3859 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3860                           uint64_t value)
3861 {
3862     ARMCPU *cpu = env_archcpu(env);
3863 
3864     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3865     env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3866 }
3867 
prlar_read(CPUARMState * env,const ARMCPRegInfo * ri)3868 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3869 {
3870     return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3871 }
3872 
prselr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3873 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3874                            uint64_t value)
3875 {
3876     ARMCPU *cpu = env_archcpu(env);
3877 
3878     /*
3879      * Ignore writes that would select not implemented region.
3880      * This is architecturally UNPREDICTABLE.
3881      */
3882     if (value >= cpu->pmsav7_dregion) {
3883         return;
3884     }
3885 
3886     env->pmsav7.rnr[M_REG_NS] = value;
3887 }
3888 
hprbar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3889 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3890                           uint64_t value)
3891 {
3892     ARMCPU *cpu = env_archcpu(env);
3893 
3894     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3895     env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3896 }
3897 
hprbar_read(CPUARMState * env,const ARMCPRegInfo * ri)3898 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3899 {
3900     return env->pmsav8.hprbar[env->pmsav8.hprselr];
3901 }
3902 
hprlar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3903 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3904                           uint64_t value)
3905 {
3906     ARMCPU *cpu = env_archcpu(env);
3907 
3908     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3909     env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3910 }
3911 
hprlar_read(CPUARMState * env,const ARMCPRegInfo * ri)3912 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3913 {
3914     return env->pmsav8.hprlar[env->pmsav8.hprselr];
3915 }
3916 
hprenr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3917 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3918                           uint64_t value)
3919 {
3920     uint32_t n;
3921     uint32_t bit;
3922     ARMCPU *cpu = env_archcpu(env);
3923 
3924     /* Ignore writes to unimplemented regions */
3925     int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3926     value &= MAKE_64BIT_MASK(0, rmax);
3927 
3928     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3929 
3930     /* Register alias is only valid for first 32 indexes */
3931     for (n = 0; n < rmax; ++n) {
3932         bit = extract32(value, n, 1);
3933         env->pmsav8.hprlar[n] = deposit32(
3934                     env->pmsav8.hprlar[n], 0, 1, bit);
3935     }
3936 }
3937 
hprenr_read(CPUARMState * env,const ARMCPRegInfo * ri)3938 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3939 {
3940     uint32_t n;
3941     uint32_t result = 0x0;
3942     ARMCPU *cpu = env_archcpu(env);
3943 
3944     /* Register alias is only valid for first 32 indexes */
3945     for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3946         if (env->pmsav8.hprlar[n] & 0x1) {
3947             result |= (0x1 << n);
3948         }
3949     }
3950     return result;
3951 }
3952 
hprselr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3953 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3954                            uint64_t value)
3955 {
3956     ARMCPU *cpu = env_archcpu(env);
3957 
3958     /*
3959      * Ignore writes that would select not implemented region.
3960      * This is architecturally UNPREDICTABLE.
3961      */
3962     if (value >= cpu->pmsav8r_hdregion) {
3963         return;
3964     }
3965 
3966     env->pmsav8.hprselr = value;
3967 }
3968 
pmsav8r_regn_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3969 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
3970                           uint64_t value)
3971 {
3972     ARMCPU *cpu = env_archcpu(env);
3973     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3974                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3975 
3976     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3977 
3978     if (ri->opc1 & 4) {
3979         if (index >= cpu->pmsav8r_hdregion) {
3980             return;
3981         }
3982         if (ri->opc2 & 0x1) {
3983             env->pmsav8.hprlar[index] = value;
3984         } else {
3985             env->pmsav8.hprbar[index] = value;
3986         }
3987     } else {
3988         if (index >= cpu->pmsav7_dregion) {
3989             return;
3990         }
3991         if (ri->opc2 & 0x1) {
3992             env->pmsav8.rlar[M_REG_NS][index] = value;
3993         } else {
3994             env->pmsav8.rbar[M_REG_NS][index] = value;
3995         }
3996     }
3997 }
3998 
pmsav8r_regn_read(CPUARMState * env,const ARMCPRegInfo * ri)3999 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
4000 {
4001     ARMCPU *cpu = env_archcpu(env);
4002     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4003                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4004 
4005     if (ri->opc1 & 4) {
4006         if (index >= cpu->pmsav8r_hdregion) {
4007             return 0x0;
4008         }
4009         if (ri->opc2 & 0x1) {
4010             return env->pmsav8.hprlar[index];
4011         } else {
4012             return env->pmsav8.hprbar[index];
4013         }
4014     } else {
4015         if (index >= cpu->pmsav7_dregion) {
4016             return 0x0;
4017         }
4018         if (ri->opc2 & 0x1) {
4019             return env->pmsav8.rlar[M_REG_NS][index];
4020         } else {
4021             return env->pmsav8.rbar[M_REG_NS][index];
4022         }
4023     }
4024 }
4025 
4026 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
4027     { .name = "PRBAR",
4028       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
4029       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4030       .accessfn = access_tvm_trvm,
4031       .readfn = prbar_read, .writefn = prbar_write },
4032     { .name = "PRLAR",
4033       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
4034       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4035       .accessfn = access_tvm_trvm,
4036       .readfn = prlar_read, .writefn = prlar_write },
4037     { .name = "PRSELR", .resetvalue = 0,
4038       .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
4039       .access = PL1_RW, .accessfn = access_tvm_trvm,
4040       .writefn = prselr_write,
4041       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
4042     { .name = "HPRBAR", .resetvalue = 0,
4043       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
4044       .access = PL2_RW, .type = ARM_CP_NO_RAW,
4045       .readfn = hprbar_read, .writefn = hprbar_write },
4046     { .name = "HPRLAR",
4047       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
4048       .access = PL2_RW, .type = ARM_CP_NO_RAW,
4049       .readfn = hprlar_read, .writefn = hprlar_write },
4050     { .name = "HPRSELR", .resetvalue = 0,
4051       .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
4052       .access = PL2_RW,
4053       .writefn = hprselr_write,
4054       .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
4055     { .name = "HPRENR",
4056       .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
4057       .access = PL2_RW, .type = ARM_CP_NO_RAW,
4058       .readfn = hprenr_read, .writefn = hprenr_write },
4059 };
4060 
4061 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
4062     /*
4063      * Reset for all these registers is handled in arm_cpu_reset(),
4064      * because the PMSAv7 is also used by M-profile CPUs, which do
4065      * not register cpregs but still need the state to be reset.
4066      */
4067     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
4068       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4069       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4070       .readfn = pmsav7_read, .writefn = pmsav7_write,
4071       .resetfn = arm_cp_reset_ignore },
4072     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4073       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4074       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4075       .readfn = pmsav7_read, .writefn = pmsav7_write,
4076       .resetfn = arm_cp_reset_ignore },
4077     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4078       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4079       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4080       .readfn = pmsav7_read, .writefn = pmsav7_write,
4081       .resetfn = arm_cp_reset_ignore },
4082     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4083       .access = PL1_RW,
4084       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4085       .writefn = pmsav7_rgnr_write,
4086       .resetfn = arm_cp_reset_ignore },
4087 };
4088 
4089 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4090     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4091       .access = PL1_RW, .type = ARM_CP_ALIAS,
4092       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4093       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4094     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4095       .access = PL1_RW, .type = ARM_CP_ALIAS,
4096       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4097       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4098     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4099       .access = PL1_RW,
4100       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4101       .resetvalue = 0, },
4102     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4103       .access = PL1_RW,
4104       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4105       .resetvalue = 0, },
4106     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4107       .access = PL1_RW,
4108       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4109     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4110       .access = PL1_RW,
4111       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4112     /* Protection region base and size registers */
4113     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4114       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4115       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4116     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4117       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4118       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4119     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4120       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4121       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4122     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4123       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4124       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4125     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4126       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4127       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4128     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4129       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4130       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4131     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4132       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4133       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4134     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4135       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4136       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4137 };
4138 
vmsa_ttbcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4139 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4140                              uint64_t value)
4141 {
4142     ARMCPU *cpu = env_archcpu(env);
4143 
4144     if (!arm_feature(env, ARM_FEATURE_V8)) {
4145         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4146             /*
4147              * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4148              * using Long-descriptor translation table format
4149              */
4150             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4151         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4152             /*
4153              * In an implementation that includes the Security Extensions
4154              * TTBCR has additional fields PD0 [4] and PD1 [5] for
4155              * Short-descriptor translation table format.
4156              */
4157             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4158         } else {
4159             value &= TTBCR_N;
4160         }
4161     }
4162 
4163     if (arm_feature(env, ARM_FEATURE_LPAE)) {
4164         /*
4165          * With LPAE the TTBCR could result in a change of ASID
4166          * via the TTBCR.A1 bit, so do a TLB flush.
4167          */
4168         tlb_flush(CPU(cpu));
4169     }
4170     raw_write(env, ri, value);
4171 }
4172 
vmsa_tcr_el12_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4173 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4174                                uint64_t value)
4175 {
4176     ARMCPU *cpu = env_archcpu(env);
4177 
4178     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4179     tlb_flush(CPU(cpu));
4180     raw_write(env, ri, value);
4181 }
4182 
vmsa_ttbr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4183 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4184                             uint64_t value)
4185 {
4186     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
4187     if (cpreg_field_is_64bit(ri) &&
4188         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4189         ARMCPU *cpu = env_archcpu(env);
4190         tlb_flush(CPU(cpu));
4191     }
4192     raw_write(env, ri, value);
4193 }
4194 
vmsa_tcr_ttbr_el2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4195 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4196                                     uint64_t value)
4197 {
4198     /*
4199      * If we are running with E2&0 regime, then an ASID is active.
4200      * Flush if that might be changing.  Note we're not checking
4201      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4202      * holds the active ASID, only checking the field that might.
4203      */
4204     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4205         (arm_hcr_el2_eff(env) & HCR_E2H)) {
4206         uint16_t mask = ARMMMUIdxBit_E20_2 |
4207                         ARMMMUIdxBit_E20_2_PAN |
4208                         ARMMMUIdxBit_E20_0;
4209         tlb_flush_by_mmuidx(env_cpu(env), mask);
4210     }
4211     raw_write(env, ri, value);
4212 }
4213 
vttbr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4214 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4215                         uint64_t value)
4216 {
4217     ARMCPU *cpu = env_archcpu(env);
4218     CPUState *cs = CPU(cpu);
4219 
4220     /*
4221      * A change in VMID to the stage2 page table (Stage2) invalidates
4222      * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4223      */
4224     if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4225         tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4226     }
4227     raw_write(env, ri, value);
4228 }
4229 
4230 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4231     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4232       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4233       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4234                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4235     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4236       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4237       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4238                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4239     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4240       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4241       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4242                              offsetof(CPUARMState, cp15.dfar_ns) } },
4243     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4244       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4245       .access = PL1_RW, .accessfn = access_tvm_trvm,
4246       .fgt = FGT_FAR_EL1,
4247       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4248       .resetvalue = 0, },
4249 };
4250 
4251 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4252     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4253       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4254       .access = PL1_RW, .accessfn = access_tvm_trvm,
4255       .fgt = FGT_ESR_EL1,
4256       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4257     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4258       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4259       .access = PL1_RW, .accessfn = access_tvm_trvm,
4260       .fgt = FGT_TTBR0_EL1,
4261       .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4262       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4263                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
4264     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4265       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4266       .access = PL1_RW, .accessfn = access_tvm_trvm,
4267       .fgt = FGT_TTBR1_EL1,
4268       .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4269       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4270                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
4271     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4272       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4273       .access = PL1_RW, .accessfn = access_tvm_trvm,
4274       .fgt = FGT_TCR_EL1,
4275       .writefn = vmsa_tcr_el12_write,
4276       .raw_writefn = raw_write,
4277       .resetvalue = 0,
4278       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4279     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4280       .access = PL1_RW, .accessfn = access_tvm_trvm,
4281       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4282       .raw_writefn = raw_write,
4283       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4284                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4285 };
4286 
4287 /*
4288  * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4289  * qemu tlbs nor adjusting cached masks.
4290  */
4291 static const ARMCPRegInfo ttbcr2_reginfo = {
4292     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4293     .access = PL1_RW, .accessfn = access_tvm_trvm,
4294     .type = ARM_CP_ALIAS,
4295     .bank_fieldoffsets = {
4296         offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4297         offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4298     },
4299 };
4300 
omap_ticonfig_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4301 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4302                                 uint64_t value)
4303 {
4304     env->cp15.c15_ticonfig = value & 0xe7;
4305     /* The OS_TYPE bit in this register changes the reported CPUID! */
4306     env->cp15.c0_cpuid = (value & (1 << 5)) ?
4307         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4308 }
4309 
omap_threadid_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4310 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4311                                 uint64_t value)
4312 {
4313     env->cp15.c15_threadid = value & 0xffff;
4314 }
4315 
omap_wfi_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4316 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4317                            uint64_t value)
4318 {
4319     /* Wait-for-interrupt (deprecated) */
4320     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4321 }
4322 
omap_cachemaint_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4323 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4324                                   uint64_t value)
4325 {
4326     /*
4327      * On OMAP there are registers indicating the max/min index of dcache lines
4328      * containing a dirty line; cache flush operations have to reset these.
4329      */
4330     env->cp15.c15_i_max = 0x000;
4331     env->cp15.c15_i_min = 0xff0;
4332 }
4333 
4334 static const ARMCPRegInfo omap_cp_reginfo[] = {
4335     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4336       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4337       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4338       .resetvalue = 0, },
4339     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4340       .access = PL1_RW, .type = ARM_CP_NOP },
4341     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4342       .access = PL1_RW,
4343       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4344       .writefn = omap_ticonfig_write },
4345     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4346       .access = PL1_RW,
4347       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4348     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4349       .access = PL1_RW, .resetvalue = 0xff0,
4350       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4351     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4352       .access = PL1_RW,
4353       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4354       .writefn = omap_threadid_write },
4355     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4356       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4357       .type = ARM_CP_NO_RAW,
4358       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4359     /*
4360      * TODO: Peripheral port remap register:
4361      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4362      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4363      * when MMU is off.
4364      */
4365     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4366       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4367       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4368       .writefn = omap_cachemaint_write },
4369     { .name = "C9", .cp = 15, .crn = 9,
4370       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4371       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4372 };
4373 
xscale_cpar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4374 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4375                               uint64_t value)
4376 {
4377     env->cp15.c15_cpar = value & 0x3fff;
4378 }
4379 
4380 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4381     { .name = "XSCALE_CPAR",
4382       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4383       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4384       .writefn = xscale_cpar_write, },
4385     { .name = "XSCALE_AUXCR",
4386       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4387       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4388       .resetvalue = 0, },
4389     /*
4390      * XScale specific cache-lockdown: since we have no cache we NOP these
4391      * and hope the guest does not really rely on cache behaviour.
4392      */
4393     { .name = "XSCALE_LOCK_ICACHE_LINE",
4394       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4395       .access = PL1_W, .type = ARM_CP_NOP },
4396     { .name = "XSCALE_UNLOCK_ICACHE",
4397       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4398       .access = PL1_W, .type = ARM_CP_NOP },
4399     { .name = "XSCALE_DCACHE_LOCK",
4400       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4401       .access = PL1_RW, .type = ARM_CP_NOP },
4402     { .name = "XSCALE_UNLOCK_DCACHE",
4403       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4404       .access = PL1_W, .type = ARM_CP_NOP },
4405 };
4406 
4407 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4408     /*
4409      * RAZ/WI the whole crn=15 space, when we don't have a more specific
4410      * implementation of this implementation-defined space.
4411      * Ideally this should eventually disappear in favour of actually
4412      * implementing the correct behaviour for all cores.
4413      */
4414     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4415       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4416       .access = PL1_RW,
4417       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4418       .resetvalue = 0 },
4419 };
4420 
4421 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4422     /* Cache status: RAZ because we have no cache so it's always clean */
4423     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4424       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4425       .resetvalue = 0 },
4426 };
4427 
4428 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4429     /* We never have a block transfer operation in progress */
4430     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4431       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4432       .resetvalue = 0 },
4433     /* The cache ops themselves: these all NOP for QEMU */
4434     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4435       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4436     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4437       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4438     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4439       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4440     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4441       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4442     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4443       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4444     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4445       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4446 };
4447 
4448 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4449     /*
4450      * The cache test-and-clean instructions always return (1 << 30)
4451      * to indicate that there are no dirty cache lines.
4452      */
4453     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4454       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4455       .resetvalue = (1 << 30) },
4456     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4457       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4458       .resetvalue = (1 << 30) },
4459 };
4460 
4461 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4462     /* Ignore ReadBuffer accesses */
4463     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4464       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4465       .access = PL1_RW, .resetvalue = 0,
4466       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4467 };
4468 
midr_read(CPUARMState * env,const ARMCPRegInfo * ri)4469 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4470 {
4471     unsigned int cur_el = arm_current_el(env);
4472 
4473     if (arm_is_el2_enabled(env) && cur_el == 1) {
4474         return env->cp15.vpidr_el2;
4475     }
4476     return raw_read(env, ri);
4477 }
4478 
mpidr_read_val(CPUARMState * env)4479 static uint64_t mpidr_read_val(CPUARMState *env)
4480 {
4481     ARMCPU *cpu = env_archcpu(env);
4482     uint64_t mpidr = cpu->mp_affinity;
4483 
4484     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4485         mpidr |= (1U << 31);
4486         /*
4487          * Cores which are uniprocessor (non-coherent)
4488          * but still implement the MP extensions set
4489          * bit 30. (For instance, Cortex-R5).
4490          */
4491         if (cpu->mp_is_up) {
4492             mpidr |= (1u << 30);
4493         }
4494     }
4495     return mpidr;
4496 }
4497 
mpidr_read(CPUARMState * env,const ARMCPRegInfo * ri)4498 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4499 {
4500     unsigned int cur_el = arm_current_el(env);
4501 
4502     if (arm_is_el2_enabled(env) && cur_el == 1) {
4503         return env->cp15.vmpidr_el2;
4504     }
4505     return mpidr_read_val(env);
4506 }
4507 
4508 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4509     /* NOP AMAIR0/1 */
4510     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4511       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4512       .access = PL1_RW, .accessfn = access_tvm_trvm,
4513       .fgt = FGT_AMAIR_EL1,
4514       .type = ARM_CP_CONST, .resetvalue = 0 },
4515     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4516     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4517       .access = PL1_RW, .accessfn = access_tvm_trvm,
4518       .type = ARM_CP_CONST, .resetvalue = 0 },
4519     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4520       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4521       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4522                              offsetof(CPUARMState, cp15.par_ns)} },
4523     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4524       .access = PL1_RW, .accessfn = access_tvm_trvm,
4525       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4526       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4527                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4528       .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4529     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4530       .access = PL1_RW, .accessfn = access_tvm_trvm,
4531       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4532       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4533                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4534       .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4535 };
4536 
aa64_fpcr_read(CPUARMState * env,const ARMCPRegInfo * ri)4537 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4538 {
4539     return vfp_get_fpcr(env);
4540 }
4541 
aa64_fpcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4542 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4543                             uint64_t value)
4544 {
4545     vfp_set_fpcr(env, value);
4546 }
4547 
aa64_fpsr_read(CPUARMState * env,const ARMCPRegInfo * ri)4548 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4549 {
4550     return vfp_get_fpsr(env);
4551 }
4552 
aa64_fpsr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4553 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4554                             uint64_t value)
4555 {
4556     vfp_set_fpsr(env, value);
4557 }
4558 
aa64_daif_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4559 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4560                                        bool isread)
4561 {
4562     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4563         return CP_ACCESS_TRAP;
4564     }
4565     return CP_ACCESS_OK;
4566 }
4567 
aa64_daif_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4568 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4569                             uint64_t value)
4570 {
4571     env->daif = value & PSTATE_DAIF;
4572 }
4573 
aa64_pan_read(CPUARMState * env,const ARMCPRegInfo * ri)4574 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4575 {
4576     return env->pstate & PSTATE_PAN;
4577 }
4578 
aa64_pan_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4579 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4580                            uint64_t value)
4581 {
4582     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4583 }
4584 
4585 static const ARMCPRegInfo pan_reginfo = {
4586     .name = "PAN", .state = ARM_CP_STATE_AA64,
4587     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4588     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4589     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4590 };
4591 
aa64_uao_read(CPUARMState * env,const ARMCPRegInfo * ri)4592 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4593 {
4594     return env->pstate & PSTATE_UAO;
4595 }
4596 
aa64_uao_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4597 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4598                            uint64_t value)
4599 {
4600     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4601 }
4602 
4603 static const ARMCPRegInfo uao_reginfo = {
4604     .name = "UAO", .state = ARM_CP_STATE_AA64,
4605     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4606     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4607     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4608 };
4609 
aa64_dit_read(CPUARMState * env,const ARMCPRegInfo * ri)4610 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4611 {
4612     return env->pstate & PSTATE_DIT;
4613 }
4614 
aa64_dit_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4615 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4616                            uint64_t value)
4617 {
4618     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4619 }
4620 
4621 static const ARMCPRegInfo dit_reginfo = {
4622     .name = "DIT", .state = ARM_CP_STATE_AA64,
4623     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4624     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4625     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4626 };
4627 
aa64_ssbs_read(CPUARMState * env,const ARMCPRegInfo * ri)4628 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4629 {
4630     return env->pstate & PSTATE_SSBS;
4631 }
4632 
aa64_ssbs_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4633 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4634                            uint64_t value)
4635 {
4636     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4637 }
4638 
4639 static const ARMCPRegInfo ssbs_reginfo = {
4640     .name = "SSBS", .state = ARM_CP_STATE_AA64,
4641     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4642     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4643     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4644 };
4645 
aa64_cacheop_poc_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4646 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4647                                               const ARMCPRegInfo *ri,
4648                                               bool isread)
4649 {
4650     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4651     switch (arm_current_el(env)) {
4652     case 0:
4653         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4654         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4655             return CP_ACCESS_TRAP;
4656         }
4657         /* fall through */
4658     case 1:
4659         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4660         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4661             return CP_ACCESS_TRAP_EL2;
4662         }
4663         break;
4664     }
4665     return CP_ACCESS_OK;
4666 }
4667 
do_cacheop_pou_access(CPUARMState * env,uint64_t hcrflags)4668 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4669 {
4670     /* Cache invalidate/clean to Point of Unification... */
4671     switch (arm_current_el(env)) {
4672     case 0:
4673         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4674         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4675             return CP_ACCESS_TRAP;
4676         }
4677         /* fall through */
4678     case 1:
4679         /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set.  */
4680         if (arm_hcr_el2_eff(env) & hcrflags) {
4681             return CP_ACCESS_TRAP_EL2;
4682         }
4683         break;
4684     }
4685     return CP_ACCESS_OK;
4686 }
4687 
access_ticab(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4688 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4689                                    bool isread)
4690 {
4691     return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4692 }
4693 
access_tocu(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4694 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4695                                   bool isread)
4696 {
4697     return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4698 }
4699 
4700 /*
4701  * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4702  * Page D4-1736 (DDI0487A.b)
4703  */
4704 
vae1_tlbmask(CPUARMState * env)4705 static int vae1_tlbmask(CPUARMState *env)
4706 {
4707     uint64_t hcr = arm_hcr_el2_eff(env);
4708     uint16_t mask;
4709 
4710     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4711         mask = ARMMMUIdxBit_E20_2 |
4712                ARMMMUIdxBit_E20_2_PAN |
4713                ARMMMUIdxBit_E20_0;
4714     } else {
4715         mask = ARMMMUIdxBit_E10_1 |
4716                ARMMMUIdxBit_E10_1_PAN |
4717                ARMMMUIdxBit_E10_0;
4718     }
4719     return mask;
4720 }
4721 
vae2_tlbmask(CPUARMState * env)4722 static int vae2_tlbmask(CPUARMState *env)
4723 {
4724     uint64_t hcr = arm_hcr_el2_eff(env);
4725     uint16_t mask;
4726 
4727     if (hcr & HCR_E2H) {
4728         mask = ARMMMUIdxBit_E20_2 |
4729                ARMMMUIdxBit_E20_2_PAN |
4730                ARMMMUIdxBit_E20_0;
4731     } else {
4732         mask = ARMMMUIdxBit_E2;
4733     }
4734     return mask;
4735 }
4736 
4737 /* Return 56 if TBI is enabled, 64 otherwise. */
tlbbits_for_regime(CPUARMState * env,ARMMMUIdx mmu_idx,uint64_t addr)4738 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4739                               uint64_t addr)
4740 {
4741     uint64_t tcr = regime_tcr(env, mmu_idx);
4742     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4743     int select = extract64(addr, 55, 1);
4744 
4745     return (tbi >> select) & 1 ? 56 : 64;
4746 }
4747 
vae1_tlbbits(CPUARMState * env,uint64_t addr)4748 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4749 {
4750     uint64_t hcr = arm_hcr_el2_eff(env);
4751     ARMMMUIdx mmu_idx;
4752 
4753     /* Only the regime of the mmu_idx below is significant. */
4754     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4755         mmu_idx = ARMMMUIdx_E20_0;
4756     } else {
4757         mmu_idx = ARMMMUIdx_E10_0;
4758     }
4759 
4760     return tlbbits_for_regime(env, mmu_idx, addr);
4761 }
4762 
vae2_tlbbits(CPUARMState * env,uint64_t addr)4763 static int vae2_tlbbits(CPUARMState *env, uint64_t addr)
4764 {
4765     uint64_t hcr = arm_hcr_el2_eff(env);
4766     ARMMMUIdx mmu_idx;
4767 
4768     /*
4769      * Only the regime of the mmu_idx below is significant.
4770      * Regime EL2&0 has two ranges with separate TBI configuration, while EL2
4771      * only has one.
4772      */
4773     if (hcr & HCR_E2H) {
4774         mmu_idx = ARMMMUIdx_E20_2;
4775     } else {
4776         mmu_idx = ARMMMUIdx_E2;
4777     }
4778 
4779     return tlbbits_for_regime(env, mmu_idx, addr);
4780 }
4781 
tlbi_aa64_vmalle1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4782 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4783                                       uint64_t value)
4784 {
4785     CPUState *cs = env_cpu(env);
4786     int mask = vae1_tlbmask(env);
4787 
4788     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4789 }
4790 
tlbi_aa64_vmalle1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4791 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4792                                     uint64_t value)
4793 {
4794     CPUState *cs = env_cpu(env);
4795     int mask = vae1_tlbmask(env);
4796 
4797     if (tlb_force_broadcast(env)) {
4798         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4799     } else {
4800         tlb_flush_by_mmuidx(cs, mask);
4801     }
4802 }
4803 
e2_tlbmask(CPUARMState * env)4804 static int e2_tlbmask(CPUARMState *env)
4805 {
4806     return (ARMMMUIdxBit_E20_0 |
4807             ARMMMUIdxBit_E20_2 |
4808             ARMMMUIdxBit_E20_2_PAN |
4809             ARMMMUIdxBit_E2);
4810 }
4811 
tlbi_aa64_alle1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4812 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4813                                   uint64_t value)
4814 {
4815     CPUState *cs = env_cpu(env);
4816     int mask = alle1_tlbmask(env);
4817 
4818     tlb_flush_by_mmuidx(cs, mask);
4819 }
4820 
tlbi_aa64_alle2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4821 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4822                                   uint64_t value)
4823 {
4824     CPUState *cs = env_cpu(env);
4825     int mask = e2_tlbmask(env);
4826 
4827     tlb_flush_by_mmuidx(cs, mask);
4828 }
4829 
tlbi_aa64_alle3_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4830 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4831                                   uint64_t value)
4832 {
4833     ARMCPU *cpu = env_archcpu(env);
4834     CPUState *cs = CPU(cpu);
4835 
4836     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
4837 }
4838 
tlbi_aa64_alle1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4839 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4840                                     uint64_t value)
4841 {
4842     CPUState *cs = env_cpu(env);
4843     int mask = alle1_tlbmask(env);
4844 
4845     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4846 }
4847 
tlbi_aa64_alle2is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4848 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4849                                     uint64_t value)
4850 {
4851     CPUState *cs = env_cpu(env);
4852     int mask = e2_tlbmask(env);
4853 
4854     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4855 }
4856 
tlbi_aa64_alle3is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4857 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4858                                     uint64_t value)
4859 {
4860     CPUState *cs = env_cpu(env);
4861 
4862     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
4863 }
4864 
tlbi_aa64_vae2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4865 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4866                                  uint64_t value)
4867 {
4868     /*
4869      * Invalidate by VA, EL2
4870      * Currently handles both VAE2 and VALE2, since we don't support
4871      * flush-last-level-only.
4872      */
4873     CPUState *cs = env_cpu(env);
4874     int mask = vae2_tlbmask(env);
4875     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4876     int bits = vae2_tlbbits(env, pageaddr);
4877 
4878     tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4879 }
4880 
tlbi_aa64_vae3_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4881 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4882                                  uint64_t value)
4883 {
4884     /*
4885      * Invalidate by VA, EL3
4886      * Currently handles both VAE3 and VALE3, since we don't support
4887      * flush-last-level-only.
4888      */
4889     ARMCPU *cpu = env_archcpu(env);
4890     CPUState *cs = CPU(cpu);
4891     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4892 
4893     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
4894 }
4895 
tlbi_aa64_vae1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4896 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4897                                    uint64_t value)
4898 {
4899     CPUState *cs = env_cpu(env);
4900     int mask = vae1_tlbmask(env);
4901     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4902     int bits = vae1_tlbbits(env, pageaddr);
4903 
4904     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4905 }
4906 
tlbi_aa64_vae1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4907 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4908                                  uint64_t value)
4909 {
4910     /*
4911      * Invalidate by VA, EL1&0 (AArch64 version).
4912      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4913      * since we don't support flush-for-specific-ASID-only or
4914      * flush-last-level-only.
4915      */
4916     CPUState *cs = env_cpu(env);
4917     int mask = vae1_tlbmask(env);
4918     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4919     int bits = vae1_tlbbits(env, pageaddr);
4920 
4921     if (tlb_force_broadcast(env)) {
4922         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4923     } else {
4924         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4925     }
4926 }
4927 
tlbi_aa64_vae2is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4928 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4929                                    uint64_t value)
4930 {
4931     CPUState *cs = env_cpu(env);
4932     int mask = vae2_tlbmask(env);
4933     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4934     int bits = vae2_tlbbits(env, pageaddr);
4935 
4936     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4937 }
4938 
tlbi_aa64_vae3is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4939 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4940                                    uint64_t value)
4941 {
4942     CPUState *cs = env_cpu(env);
4943     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4944     int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
4945 
4946     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4947                                                   ARMMMUIdxBit_E3, bits);
4948 }
4949 
ipas2e1_tlbmask(CPUARMState * env,int64_t value)4950 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
4951 {
4952     /*
4953      * The MSB of value is the NS field, which only applies if SEL2
4954      * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
4955      */
4956     return (value >= 0
4957             && cpu_isar_feature(aa64_sel2, env_archcpu(env))
4958             && arm_is_secure_below_el3(env)
4959             ? ARMMMUIdxBit_Stage2_S
4960             : ARMMMUIdxBit_Stage2);
4961 }
4962 
tlbi_aa64_ipas2e1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4963 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4964                                     uint64_t value)
4965 {
4966     CPUState *cs = env_cpu(env);
4967     int mask = ipas2e1_tlbmask(env, value);
4968     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4969 
4970     if (tlb_force_broadcast(env)) {
4971         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4972     } else {
4973         tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4974     }
4975 }
4976 
tlbi_aa64_ipas2e1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4977 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4978                                       uint64_t value)
4979 {
4980     CPUState *cs = env_cpu(env);
4981     int mask = ipas2e1_tlbmask(env, value);
4982     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4983 
4984     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4985 }
4986 
4987 #ifdef TARGET_AARCH64
4988 typedef struct {
4989     uint64_t base;
4990     uint64_t length;
4991 } TLBIRange;
4992 
tlbi_range_tg_to_gran_size(int tg)4993 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
4994 {
4995     /*
4996      * Note that the TLBI range TG field encoding differs from both
4997      * TG0 and TG1 encodings.
4998      */
4999     switch (tg) {
5000     case 1:
5001         return Gran4K;
5002     case 2:
5003         return Gran16K;
5004     case 3:
5005         return Gran64K;
5006     default:
5007         return GranInvalid;
5008     }
5009 }
5010 
tlbi_aa64_get_range(CPUARMState * env,ARMMMUIdx mmuidx,uint64_t value)5011 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
5012                                      uint64_t value)
5013 {
5014     unsigned int page_size_granule, page_shift, num, scale, exponent;
5015     /* Extract one bit to represent the va selector in use. */
5016     uint64_t select = sextract64(value, 36, 1);
5017     ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
5018     TLBIRange ret = { };
5019     ARMGranuleSize gran;
5020 
5021     page_size_granule = extract64(value, 46, 2);
5022     gran = tlbi_range_tg_to_gran_size(page_size_granule);
5023 
5024     /* The granule encoded in value must match the granule in use. */
5025     if (gran != param.gran) {
5026         qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
5027                       page_size_granule);
5028         return ret;
5029     }
5030 
5031     page_shift = arm_granule_bits(gran);
5032     num = extract64(value, 39, 5);
5033     scale = extract64(value, 44, 2);
5034     exponent = (5 * scale) + 1;
5035 
5036     ret.length = (num + 1) << (exponent + page_shift);
5037 
5038     if (param.select) {
5039         ret.base = sextract64(value, 0, 37);
5040     } else {
5041         ret.base = extract64(value, 0, 37);
5042     }
5043     if (param.ds) {
5044         /*
5045          * With DS=1, BaseADDR is always shifted 16 so that it is able
5046          * to address all 52 va bits.  The input address is perforce
5047          * aligned on a 64k boundary regardless of translation granule.
5048          */
5049         page_shift = 16;
5050     }
5051     ret.base <<= page_shift;
5052 
5053     return ret;
5054 }
5055 
do_rvae_write(CPUARMState * env,uint64_t value,int idxmap,bool synced)5056 static void do_rvae_write(CPUARMState *env, uint64_t value,
5057                           int idxmap, bool synced)
5058 {
5059     ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
5060     TLBIRange range;
5061     int bits;
5062 
5063     range = tlbi_aa64_get_range(env, one_idx, value);
5064     bits = tlbbits_for_regime(env, one_idx, range.base);
5065 
5066     if (synced) {
5067         tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
5068                                                   range.base,
5069                                                   range.length,
5070                                                   idxmap,
5071                                                   bits);
5072     } else {
5073         tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
5074                                   range.length, idxmap, bits);
5075     }
5076 }
5077 
tlbi_aa64_rvae1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5078 static void tlbi_aa64_rvae1_write(CPUARMState *env,
5079                                   const ARMCPRegInfo *ri,
5080                                   uint64_t value)
5081 {
5082     /*
5083      * Invalidate by VA range, EL1&0.
5084      * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
5085      * since we don't support flush-for-specific-ASID-only or
5086      * flush-last-level-only.
5087      */
5088 
5089     do_rvae_write(env, value, vae1_tlbmask(env),
5090                   tlb_force_broadcast(env));
5091 }
5092 
tlbi_aa64_rvae1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5093 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
5094                                     const ARMCPRegInfo *ri,
5095                                     uint64_t value)
5096 {
5097     /*
5098      * Invalidate by VA range, Inner/Outer Shareable EL1&0.
5099      * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
5100      * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
5101      * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
5102      * shareable specific flushes.
5103      */
5104 
5105     do_rvae_write(env, value, vae1_tlbmask(env), true);
5106 }
5107 
tlbi_aa64_rvae2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5108 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5109                                   const ARMCPRegInfo *ri,
5110                                   uint64_t value)
5111 {
5112     /*
5113      * Invalidate by VA range, EL2.
5114      * Currently handles all of RVAE2 and RVALE2,
5115      * since we don't support flush-for-specific-ASID-only or
5116      * flush-last-level-only.
5117      */
5118 
5119     do_rvae_write(env, value, vae2_tlbmask(env),
5120                   tlb_force_broadcast(env));
5121 
5122 
5123 }
5124 
tlbi_aa64_rvae2is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5125 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5126                                     const ARMCPRegInfo *ri,
5127                                     uint64_t value)
5128 {
5129     /*
5130      * Invalidate by VA range, Inner/Outer Shareable, EL2.
5131      * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5132      * since we don't support flush-for-specific-ASID-only,
5133      * flush-last-level-only or inner/outer shareable specific flushes.
5134      */
5135 
5136     do_rvae_write(env, value, vae2_tlbmask(env), true);
5137 
5138 }
5139 
tlbi_aa64_rvae3_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5140 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5141                                   const ARMCPRegInfo *ri,
5142                                   uint64_t value)
5143 {
5144     /*
5145      * Invalidate by VA range, EL3.
5146      * Currently handles all of RVAE3 and RVALE3,
5147      * since we don't support flush-for-specific-ASID-only or
5148      * flush-last-level-only.
5149      */
5150 
5151     do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5152 }
5153 
tlbi_aa64_rvae3is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5154 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5155                                     const ARMCPRegInfo *ri,
5156                                     uint64_t value)
5157 {
5158     /*
5159      * Invalidate by VA range, EL3, Inner/Outer Shareable.
5160      * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5161      * since we don't support flush-for-specific-ASID-only,
5162      * flush-last-level-only or inner/outer specific flushes.
5163      */
5164 
5165     do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5166 }
5167 
tlbi_aa64_ripas2e1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5168 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5169                                      uint64_t value)
5170 {
5171     do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5172                   tlb_force_broadcast(env));
5173 }
5174 
tlbi_aa64_ripas2e1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5175 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5176                                        const ARMCPRegInfo *ri,
5177                                        uint64_t value)
5178 {
5179     do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5180 }
5181 #endif
5182 
aa64_zva_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5183 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5184                                       bool isread)
5185 {
5186     int cur_el = arm_current_el(env);
5187 
5188     if (cur_el < 2) {
5189         uint64_t hcr = arm_hcr_el2_eff(env);
5190 
5191         if (cur_el == 0) {
5192             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5193                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5194                     return CP_ACCESS_TRAP_EL2;
5195                 }
5196             } else {
5197                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5198                     return CP_ACCESS_TRAP;
5199                 }
5200                 if (hcr & HCR_TDZ) {
5201                     return CP_ACCESS_TRAP_EL2;
5202                 }
5203             }
5204         } else if (hcr & HCR_TDZ) {
5205             return CP_ACCESS_TRAP_EL2;
5206         }
5207     }
5208     return CP_ACCESS_OK;
5209 }
5210 
aa64_dczid_read(CPUARMState * env,const ARMCPRegInfo * ri)5211 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5212 {
5213     ARMCPU *cpu = env_archcpu(env);
5214     int dzp_bit = 1 << 4;
5215 
5216     /* DZP indicates whether DC ZVA access is allowed */
5217     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5218         dzp_bit = 0;
5219     }
5220     return cpu->dcz_blocksize | dzp_bit;
5221 }
5222 
sp_el0_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5223 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5224                                     bool isread)
5225 {
5226     if (!(env->pstate & PSTATE_SP)) {
5227         /*
5228          * Access to SP_EL0 is undefined if it's being used as
5229          * the stack pointer.
5230          */
5231         return CP_ACCESS_TRAP_UNCATEGORIZED;
5232     }
5233     return CP_ACCESS_OK;
5234 }
5235 
spsel_read(CPUARMState * env,const ARMCPRegInfo * ri)5236 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5237 {
5238     return env->pstate & PSTATE_SP;
5239 }
5240 
spsel_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t val)5241 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5242 {
5243     update_spsel(env, val);
5244 }
5245 
sctlr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5246 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5247                         uint64_t value)
5248 {
5249     ARMCPU *cpu = env_archcpu(env);
5250 
5251     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5252         /* M bit is RAZ/WI for PMSA with no MPU implemented */
5253         value &= ~SCTLR_M;
5254     }
5255 
5256     /* ??? Lots of these bits are not implemented.  */
5257 
5258     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5259         if (ri->opc1 == 6) { /* SCTLR_EL3 */
5260             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5261         } else {
5262             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5263                        SCTLR_ATA0 | SCTLR_ATA);
5264         }
5265     }
5266 
5267     if (raw_read(env, ri) == value) {
5268         /*
5269          * Skip the TLB flush if nothing actually changed; Linux likes
5270          * to do a lot of pointless SCTLR writes.
5271          */
5272         return;
5273     }
5274 
5275     raw_write(env, ri, value);
5276 
5277     /* This may enable/disable the MMU, so do a TLB flush.  */
5278     tlb_flush(CPU(cpu));
5279 
5280     if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5281         /*
5282          * Normally we would always end the TB on an SCTLR write; see the
5283          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5284          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5285          * of hflags from the translator, so do it here.
5286          */
5287         arm_rebuild_hflags(env);
5288     }
5289 }
5290 
mdcr_el3_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5291 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5292                            uint64_t value)
5293 {
5294     /*
5295      * Some MDCR_EL3 bits affect whether PMU counters are running:
5296      * if we are trying to change any of those then we must
5297      * bracket this update with PMU start/finish calls.
5298      */
5299     bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5300 
5301     if (pmu_op) {
5302         pmu_op_start(env);
5303     }
5304     env->cp15.mdcr_el3 = value;
5305     if (pmu_op) {
5306         pmu_op_finish(env);
5307     }
5308 }
5309 
sdcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5310 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5311                        uint64_t value)
5312 {
5313     /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5314     mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5315 }
5316 
mdcr_el2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5317 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5318                            uint64_t value)
5319 {
5320     /*
5321      * Some MDCR_EL2 bits affect whether PMU counters are running:
5322      * if we are trying to change any of those then we must
5323      * bracket this update with PMU start/finish calls.
5324      */
5325     bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5326 
5327     if (pmu_op) {
5328         pmu_op_start(env);
5329     }
5330     env->cp15.mdcr_el2 = value;
5331     if (pmu_op) {
5332         pmu_op_finish(env);
5333     }
5334 }
5335 
5336 #ifdef CONFIG_USER_ONLY
5337 /*
5338  * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
5339  * code to get around W^X restrictions, where one region is writable and the
5340  * other is executable.
5341  *
5342  * Since the executable region is never written to we cannot detect code
5343  * changes when running in user mode, and rely on the emulated JIT telling us
5344  * that the code has changed by executing this instruction.
5345  */
ic_ivau_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5346 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
5347                           uint64_t value)
5348 {
5349     uint64_t icache_line_mask, start_address, end_address;
5350     const ARMCPU *cpu;
5351 
5352     cpu = env_archcpu(env);
5353 
5354     icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
5355     start_address = value & ~icache_line_mask;
5356     end_address = value | icache_line_mask;
5357 
5358     mmap_lock();
5359 
5360     tb_invalidate_phys_range(start_address, end_address);
5361 
5362     mmap_unlock();
5363 }
5364 #endif
5365 
5366 static const ARMCPRegInfo v8_cp_reginfo[] = {
5367     /*
5368      * Minimal set of EL0-visible registers. This will need to be expanded
5369      * significantly for system emulation of AArch64 CPUs.
5370      */
5371     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5372       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5373       .access = PL0_RW, .type = ARM_CP_NZCV },
5374     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5375       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5376       .type = ARM_CP_NO_RAW,
5377       .access = PL0_RW, .accessfn = aa64_daif_access,
5378       .fieldoffset = offsetof(CPUARMState, daif),
5379       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5380     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5381       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5382       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5383       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5384     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5385       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5386       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5387       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5388     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5389       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5390       .access = PL0_R, .type = ARM_CP_NO_RAW,
5391       .fgt = FGT_DCZID_EL0,
5392       .readfn = aa64_dczid_read },
5393     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5394       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5395       .access = PL0_W, .type = ARM_CP_DC_ZVA,
5396 #ifndef CONFIG_USER_ONLY
5397       /* Avoid overhead of an access check that always passes in user-mode */
5398       .accessfn = aa64_zva_access,
5399       .fgt = FGT_DCZVA,
5400 #endif
5401     },
5402     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5403       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5404       .access = PL1_R, .type = ARM_CP_CURRENTEL },
5405     /*
5406      * Instruction cache ops. All of these except `IC IVAU` NOP because we
5407      * don't emulate caches.
5408      */
5409     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5410       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5411       .access = PL1_W, .type = ARM_CP_NOP,
5412       .fgt = FGT_ICIALLUIS,
5413       .accessfn = access_ticab },
5414     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5415       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5416       .access = PL1_W, .type = ARM_CP_NOP,
5417       .fgt = FGT_ICIALLU,
5418       .accessfn = access_tocu },
5419     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5420       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5421       .access = PL0_W,
5422       .fgt = FGT_ICIVAU,
5423       .accessfn = access_tocu,
5424 #ifdef CONFIG_USER_ONLY
5425       .type = ARM_CP_NO_RAW,
5426       .writefn = ic_ivau_write
5427 #else
5428       .type = ARM_CP_NOP
5429 #endif
5430     },
5431     /* Cache ops: all NOPs since we don't emulate caches */
5432     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5433       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5434       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5435       .fgt = FGT_DCIVAC,
5436       .type = ARM_CP_NOP },
5437     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5438       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5439       .fgt = FGT_DCISW,
5440       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5441     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5442       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5443       .access = PL0_W, .type = ARM_CP_NOP,
5444       .fgt = FGT_DCCVAC,
5445       .accessfn = aa64_cacheop_poc_access },
5446     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5447       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5448       .fgt = FGT_DCCSW,
5449       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5450     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5451       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5452       .access = PL0_W, .type = ARM_CP_NOP,
5453       .fgt = FGT_DCCVAU,
5454       .accessfn = access_tocu },
5455     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5456       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5457       .access = PL0_W, .type = ARM_CP_NOP,
5458       .fgt = FGT_DCCIVAC,
5459       .accessfn = aa64_cacheop_poc_access },
5460     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5461       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5462       .fgt = FGT_DCCISW,
5463       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5464     /* TLBI operations */
5465     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5466       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5467       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5468       .fgt = FGT_TLBIVMALLE1IS,
5469       .writefn = tlbi_aa64_vmalle1is_write },
5470     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5471       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5472       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5473       .fgt = FGT_TLBIVAE1IS,
5474       .writefn = tlbi_aa64_vae1is_write },
5475     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5476       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5477       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5478       .fgt = FGT_TLBIASIDE1IS,
5479       .writefn = tlbi_aa64_vmalle1is_write },
5480     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5481       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5482       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5483       .fgt = FGT_TLBIVAAE1IS,
5484       .writefn = tlbi_aa64_vae1is_write },
5485     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5486       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5487       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5488       .fgt = FGT_TLBIVALE1IS,
5489       .writefn = tlbi_aa64_vae1is_write },
5490     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5491       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5492       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5493       .fgt = FGT_TLBIVAALE1IS,
5494       .writefn = tlbi_aa64_vae1is_write },
5495     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5496       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5497       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5498       .fgt = FGT_TLBIVMALLE1,
5499       .writefn = tlbi_aa64_vmalle1_write },
5500     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5501       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5502       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5503       .fgt = FGT_TLBIVAE1,
5504       .writefn = tlbi_aa64_vae1_write },
5505     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5506       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5507       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5508       .fgt = FGT_TLBIASIDE1,
5509       .writefn = tlbi_aa64_vmalle1_write },
5510     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5511       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5512       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5513       .fgt = FGT_TLBIVAAE1,
5514       .writefn = tlbi_aa64_vae1_write },
5515     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5516       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5517       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5518       .fgt = FGT_TLBIVALE1,
5519       .writefn = tlbi_aa64_vae1_write },
5520     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5521       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5522       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5523       .fgt = FGT_TLBIVAALE1,
5524       .writefn = tlbi_aa64_vae1_write },
5525     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5526       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5527       .access = PL2_W, .type = ARM_CP_NO_RAW,
5528       .writefn = tlbi_aa64_ipas2e1is_write },
5529     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5530       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5531       .access = PL2_W, .type = ARM_CP_NO_RAW,
5532       .writefn = tlbi_aa64_ipas2e1is_write },
5533     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5534       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5535       .access = PL2_W, .type = ARM_CP_NO_RAW,
5536       .writefn = tlbi_aa64_alle1is_write },
5537     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5538       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5539       .access = PL2_W, .type = ARM_CP_NO_RAW,
5540       .writefn = tlbi_aa64_alle1is_write },
5541     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5542       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5543       .access = PL2_W, .type = ARM_CP_NO_RAW,
5544       .writefn = tlbi_aa64_ipas2e1_write },
5545     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5546       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5547       .access = PL2_W, .type = ARM_CP_NO_RAW,
5548       .writefn = tlbi_aa64_ipas2e1_write },
5549     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5550       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5551       .access = PL2_W, .type = ARM_CP_NO_RAW,
5552       .writefn = tlbi_aa64_alle1_write },
5553     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5554       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5555       .access = PL2_W, .type = ARM_CP_NO_RAW,
5556       .writefn = tlbi_aa64_alle1is_write },
5557 #ifndef CONFIG_USER_ONLY
5558     /* 64 bit address translation operations */
5559     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5560       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5561       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5562       .fgt = FGT_ATS1E1R,
5563       .accessfn = at_e012_access, .writefn = ats_write64 },
5564     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5565       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5566       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5567       .fgt = FGT_ATS1E1W,
5568       .accessfn = at_e012_access, .writefn = ats_write64 },
5569     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5570       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5571       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5572       .fgt = FGT_ATS1E0R,
5573       .accessfn = at_e012_access, .writefn = ats_write64 },
5574     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5575       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5576       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5577       .fgt = FGT_ATS1E0W,
5578       .accessfn = at_e012_access, .writefn = ats_write64 },
5579     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5580       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5581       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5582       .accessfn = at_e012_access, .writefn = ats_write64 },
5583     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5584       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5585       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5586       .accessfn = at_e012_access, .writefn = ats_write64 },
5587     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5588       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5589       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5590       .accessfn = at_e012_access, .writefn = ats_write64 },
5591     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5592       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5593       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5594       .accessfn = at_e012_access, .writefn = ats_write64 },
5595     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5596     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5597       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5598       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5599       .writefn = ats_write64 },
5600     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5601       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5602       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5603       .writefn = ats_write64 },
5604     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5605       .type = ARM_CP_ALIAS,
5606       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5607       .access = PL1_RW, .resetvalue = 0,
5608       .fgt = FGT_PAR_EL1,
5609       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5610       .writefn = par_write },
5611 #endif
5612     /* TLB invalidate last level of translation table walk */
5613     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5614       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5615       .writefn = tlbimva_is_write },
5616     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5617       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5618       .writefn = tlbimvaa_is_write },
5619     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5620       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5621       .writefn = tlbimva_write },
5622     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5623       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5624       .writefn = tlbimvaa_write },
5625     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5626       .type = ARM_CP_NO_RAW, .access = PL2_W,
5627       .writefn = tlbimva_hyp_write },
5628     { .name = "TLBIMVALHIS",
5629       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5630       .type = ARM_CP_NO_RAW, .access = PL2_W,
5631       .writefn = tlbimva_hyp_is_write },
5632     { .name = "TLBIIPAS2",
5633       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5634       .type = ARM_CP_NO_RAW, .access = PL2_W,
5635       .writefn = tlbiipas2_hyp_write },
5636     { .name = "TLBIIPAS2IS",
5637       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5638       .type = ARM_CP_NO_RAW, .access = PL2_W,
5639       .writefn = tlbiipas2is_hyp_write },
5640     { .name = "TLBIIPAS2L",
5641       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5642       .type = ARM_CP_NO_RAW, .access = PL2_W,
5643       .writefn = tlbiipas2_hyp_write },
5644     { .name = "TLBIIPAS2LIS",
5645       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5646       .type = ARM_CP_NO_RAW, .access = PL2_W,
5647       .writefn = tlbiipas2is_hyp_write },
5648     /* 32 bit cache operations */
5649     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5650       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5651     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5652       .type = ARM_CP_NOP, .access = PL1_W },
5653     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5654       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5655     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5656       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5657     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5658       .type = ARM_CP_NOP, .access = PL1_W },
5659     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5660       .type = ARM_CP_NOP, .access = PL1_W },
5661     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5662       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5663     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5664       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5665     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5666       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5667     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5668       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5669     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5670       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5671     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5672       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5673     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5674       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5675     /* MMU Domain access control / MPU write buffer control */
5676     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5677       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5678       .writefn = dacr_write, .raw_writefn = raw_write,
5679       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5680                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5681     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5682       .type = ARM_CP_ALIAS,
5683       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5684       .access = PL1_RW,
5685       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5686     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5687       .type = ARM_CP_ALIAS,
5688       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5689       .access = PL1_RW,
5690       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5691     /*
5692      * We rely on the access checks not allowing the guest to write to the
5693      * state field when SPSel indicates that it's being used as the stack
5694      * pointer.
5695      */
5696     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5697       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5698       .access = PL1_RW, .accessfn = sp_el0_access,
5699       .type = ARM_CP_ALIAS,
5700       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5701     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5702       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5703       .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5704       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5705     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5706       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5707       .type = ARM_CP_NO_RAW,
5708       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5709     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5710       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5711       .access = PL2_RW,
5712       .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5713       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5714     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5715       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5716       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5717       .writefn = dacr_write, .raw_writefn = raw_write,
5718       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5719     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5720       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5721       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5722       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5723     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5724       .type = ARM_CP_ALIAS,
5725       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5726       .access = PL2_RW,
5727       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5728     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5729       .type = ARM_CP_ALIAS,
5730       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5731       .access = PL2_RW,
5732       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5733     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5734       .type = ARM_CP_ALIAS,
5735       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5736       .access = PL2_RW,
5737       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5738     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5739       .type = ARM_CP_ALIAS,
5740       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5741       .access = PL2_RW,
5742       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5743     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5744       .type = ARM_CP_IO,
5745       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5746       .resetvalue = 0,
5747       .access = PL3_RW,
5748       .writefn = mdcr_el3_write,
5749       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5750     { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5751       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5752       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5753       .writefn = sdcr_write,
5754       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5755 };
5756 
do_hcr_write(CPUARMState * env,uint64_t value,uint64_t valid_mask)5757 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5758 {
5759     ARMCPU *cpu = env_archcpu(env);
5760 
5761     if (arm_feature(env, ARM_FEATURE_V8)) {
5762         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5763     } else {
5764         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5765     }
5766 
5767     if (arm_feature(env, ARM_FEATURE_EL3)) {
5768         valid_mask &= ~HCR_HCD;
5769     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5770         /*
5771          * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5772          * However, if we're using the SMC PSCI conduit then QEMU is
5773          * effectively acting like EL3 firmware and so the guest at
5774          * EL2 should retain the ability to prevent EL1 from being
5775          * able to make SMC calls into the ersatz firmware, so in
5776          * that case HCR.TSC should be read/write.
5777          */
5778         valid_mask &= ~HCR_TSC;
5779     }
5780 
5781     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5782         if (cpu_isar_feature(aa64_vh, cpu)) {
5783             valid_mask |= HCR_E2H;
5784         }
5785         if (cpu_isar_feature(aa64_ras, cpu)) {
5786             valid_mask |= HCR_TERR | HCR_TEA;
5787         }
5788         if (cpu_isar_feature(aa64_lor, cpu)) {
5789             valid_mask |= HCR_TLOR;
5790         }
5791         if (cpu_isar_feature(aa64_pauth, cpu)) {
5792             valid_mask |= HCR_API | HCR_APK;
5793         }
5794         if (cpu_isar_feature(aa64_mte, cpu)) {
5795             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5796         }
5797         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5798             valid_mask |= HCR_ENSCXT;
5799         }
5800         if (cpu_isar_feature(aa64_fwb, cpu)) {
5801             valid_mask |= HCR_FWB;
5802         }
5803         if (cpu_isar_feature(aa64_rme, cpu)) {
5804             valid_mask |= HCR_GPF;
5805         }
5806     }
5807 
5808     if (cpu_isar_feature(any_evt, cpu)) {
5809         valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5810     } else if (cpu_isar_feature(any_half_evt, cpu)) {
5811         valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5812     }
5813 
5814     /* Clear RES0 bits.  */
5815     value &= valid_mask;
5816 
5817     /*
5818      * These bits change the MMU setup:
5819      * HCR_VM enables stage 2 translation
5820      * HCR_PTW forbids certain page-table setups
5821      * HCR_DC disables stage1 and enables stage2 translation
5822      * HCR_DCT enables tagging on (disabled) stage1 translation
5823      * HCR_FWB changes the interpretation of stage2 descriptor bits
5824      */
5825     if ((env->cp15.hcr_el2 ^ value) &
5826         (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
5827         tlb_flush(CPU(cpu));
5828     }
5829     env->cp15.hcr_el2 = value;
5830 
5831     /*
5832      * Updates to VI and VF require us to update the status of
5833      * virtual interrupts, which are the logical OR of these bits
5834      * and the state of the input lines from the GIC. (This requires
5835      * that we have the iothread lock, which is done by marking the
5836      * reginfo structs as ARM_CP_IO.)
5837      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5838      * possible for it to be taken immediately, because VIRQ and
5839      * VFIQ are masked unless running at EL0 or EL1, and HCR
5840      * can only be written at EL2.
5841      */
5842     g_assert(qemu_mutex_iothread_locked());
5843     arm_cpu_update_virq(cpu);
5844     arm_cpu_update_vfiq(cpu);
5845     arm_cpu_update_vserr(cpu);
5846 }
5847 
hcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5848 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5849 {
5850     do_hcr_write(env, value, 0);
5851 }
5852 
hcr_writehigh(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5853 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5854                           uint64_t value)
5855 {
5856     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5857     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5858     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5859 }
5860 
hcr_writelow(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5861 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5862                          uint64_t value)
5863 {
5864     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5865     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5866     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5867 }
5868 
5869 /*
5870  * Return the effective value of HCR_EL2, at the given security state.
5871  * Bits that are not included here:
5872  * RW       (read from SCR_EL3.RW as needed)
5873  */
arm_hcr_el2_eff_secstate(CPUARMState * env,ARMSecuritySpace space)5874 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
5875 {
5876     uint64_t ret = env->cp15.hcr_el2;
5877 
5878     assert(space != ARMSS_Root);
5879 
5880     if (!arm_is_el2_enabled_secstate(env, space)) {
5881         /*
5882          * "This register has no effect if EL2 is not enabled in the
5883          * current Security state".  This is ARMv8.4-SecEL2 speak for
5884          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5885          *
5886          * Prior to that, the language was "In an implementation that
5887          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5888          * as if this field is 0 for all purposes other than a direct
5889          * read or write access of HCR_EL2".  With lots of enumeration
5890          * on a per-field basis.  In current QEMU, this is condition
5891          * is arm_is_secure_below_el3.
5892          *
5893          * Since the v8.4 language applies to the entire register, and
5894          * appears to be backward compatible, use that.
5895          */
5896         return 0;
5897     }
5898 
5899     /*
5900      * For a cpu that supports both aarch64 and aarch32, we can set bits
5901      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5902      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5903      */
5904     if (!arm_el_is_aa64(env, 2)) {
5905         uint64_t aa32_valid;
5906 
5907         /*
5908          * These bits are up-to-date as of ARMv8.6.
5909          * For HCR, it's easiest to list just the 2 bits that are invalid.
5910          * For HCR2, list those that are valid.
5911          */
5912         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5913         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5914                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5915         ret &= aa32_valid;
5916     }
5917 
5918     if (ret & HCR_TGE) {
5919         /* These bits are up-to-date as of ARMv8.6.  */
5920         if (ret & HCR_E2H) {
5921             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5922                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5923                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5924                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5925                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5926                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5927         } else {
5928             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5929         }
5930         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5931                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5932                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5933                  HCR_TLOR);
5934     }
5935 
5936     return ret;
5937 }
5938 
arm_hcr_el2_eff(CPUARMState * env)5939 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5940 {
5941     if (arm_feature(env, ARM_FEATURE_M)) {
5942         return 0;
5943     }
5944     return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
5945 }
5946 
5947 /*
5948  * Corresponds to ARM pseudocode function ELIsInHost().
5949  */
el_is_in_host(CPUARMState * env,int el)5950 bool el_is_in_host(CPUARMState *env, int el)
5951 {
5952     uint64_t mask;
5953 
5954     /*
5955      * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5956      * Perform the simplest bit tests first, and validate EL2 afterward.
5957      */
5958     if (el & 1) {
5959         return false; /* EL1 or EL3 */
5960     }
5961 
5962     /*
5963      * Note that hcr_write() checks isar_feature_aa64_vh(),
5964      * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5965      */
5966     mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5967     if ((env->cp15.hcr_el2 & mask) != mask) {
5968         return false;
5969     }
5970 
5971     /* TGE and/or E2H set: double check those bits are currently legal. */
5972     return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5973 }
5974 
hcrx_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5975 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5976                        uint64_t value)
5977 {
5978     uint64_t valid_mask = 0;
5979 
5980     /* FEAT_MOPS adds MSCEn and MCE2 */
5981     if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
5982         valid_mask |= HCRX_MSCEN | HCRX_MCE2;
5983     }
5984 
5985     /* Clear RES0 bits.  */
5986     env->cp15.hcrx_el2 = value & valid_mask;
5987 }
5988 
access_hxen(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5989 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5990                                   bool isread)
5991 {
5992     if (arm_current_el(env) < 3
5993         && arm_feature(env, ARM_FEATURE_EL3)
5994         && !(env->cp15.scr_el3 & SCR_HXEN)) {
5995         return CP_ACCESS_TRAP_EL3;
5996     }
5997     return CP_ACCESS_OK;
5998 }
5999 
6000 static const ARMCPRegInfo hcrx_el2_reginfo = {
6001     .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
6002     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
6003     .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
6004     .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
6005 };
6006 
6007 /* Return the effective value of HCRX_EL2.  */
arm_hcrx_el2_eff(CPUARMState * env)6008 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
6009 {
6010     /*
6011      * The bits in this register behave as 0 for all purposes other than
6012      * direct reads of the register if SCR_EL3.HXEn is 0.
6013      * If EL2 is not enabled in the current security state, then the
6014      * bit may behave as if 0, or as if 1, depending on the bit.
6015      * For the moment, we treat the EL2-disabled case as taking
6016      * priority over the HXEn-disabled case. This is true for the only
6017      * bit for a feature which we implement where the answer is different
6018      * for the two cases (MSCEn for FEAT_MOPS).
6019      * This may need to be revisited for future bits.
6020      */
6021     if (!arm_is_el2_enabled(env)) {
6022         uint64_t hcrx = 0;
6023         if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6024             /* MSCEn behaves as 1 if EL2 is not enabled */
6025             hcrx |= HCRX_MSCEN;
6026         }
6027         return hcrx;
6028     }
6029     if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) {
6030         return 0;
6031     }
6032     return env->cp15.hcrx_el2;
6033 }
6034 
cptr_el2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6035 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
6036                            uint64_t value)
6037 {
6038     /*
6039      * For A-profile AArch32 EL3, if NSACR.CP10
6040      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6041      */
6042     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6043         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6044         uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6045         value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
6046     }
6047     env->cp15.cptr_el[2] = value;
6048 }
6049 
cptr_el2_read(CPUARMState * env,const ARMCPRegInfo * ri)6050 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6051 {
6052     /*
6053      * For A-profile AArch32 EL3, if NSACR.CP10
6054      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6055      */
6056     uint64_t value = env->cp15.cptr_el[2];
6057 
6058     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6059         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6060         value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6061     }
6062     return value;
6063 }
6064 
6065 static const ARMCPRegInfo el2_cp_reginfo[] = {
6066     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
6067       .type = ARM_CP_IO,
6068       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6069       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6070       .writefn = hcr_write, .raw_writefn = raw_write },
6071     { .name = "HCR", .state = ARM_CP_STATE_AA32,
6072       .type = ARM_CP_ALIAS | ARM_CP_IO,
6073       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6074       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6075       .writefn = hcr_writelow },
6076     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
6077       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
6078       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6079     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
6080       .type = ARM_CP_ALIAS,
6081       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
6082       .access = PL2_RW,
6083       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
6084     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
6085       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
6086       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
6087     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
6088       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
6089       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
6090     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
6091       .type = ARM_CP_ALIAS,
6092       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
6093       .access = PL2_RW,
6094       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
6095     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
6096       .type = ARM_CP_ALIAS,
6097       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
6098       .access = PL2_RW,
6099       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
6100     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
6101       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
6102       .access = PL2_RW, .writefn = vbar_write,
6103       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
6104       .resetvalue = 0 },
6105     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
6106       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
6107       .access = PL3_RW, .type = ARM_CP_ALIAS,
6108       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
6109     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
6110       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
6111       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
6112       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
6113       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
6114     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
6115       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
6116       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
6117       .resetvalue = 0 },
6118     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
6119       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
6120       .access = PL2_RW, .type = ARM_CP_ALIAS,
6121       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
6122     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
6123       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
6124       .access = PL2_RW, .type = ARM_CP_CONST,
6125       .resetvalue = 0 },
6126     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
6127     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
6128       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
6129       .access = PL2_RW, .type = ARM_CP_CONST,
6130       .resetvalue = 0 },
6131     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
6132       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
6133       .access = PL2_RW, .type = ARM_CP_CONST,
6134       .resetvalue = 0 },
6135     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
6136       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
6137       .access = PL2_RW, .type = ARM_CP_CONST,
6138       .resetvalue = 0 },
6139     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
6140       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6141       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
6142       .raw_writefn = raw_write,
6143       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
6144     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
6145       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6146       .type = ARM_CP_ALIAS,
6147       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6148       .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
6149     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
6150       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6151       .access = PL2_RW,
6152       /* no .writefn needed as this can't cause an ASID change */
6153       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
6154     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
6155       .cp = 15, .opc1 = 6, .crm = 2,
6156       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6157       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6158       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6159       .writefn = vttbr_write, .raw_writefn = raw_write },
6160     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6161       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6162       .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
6163       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6164     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6165       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6166       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6167       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6168     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6169       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6170       .access = PL2_RW, .resetvalue = 0,
6171       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6172     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6173       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6174       .access = PL2_RW, .resetvalue = 0,
6175       .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
6176       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6177     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6178       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6179       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6180     { .name = "TLBIALLNSNH",
6181       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6182       .type = ARM_CP_NO_RAW, .access = PL2_W,
6183       .writefn = tlbiall_nsnh_write },
6184     { .name = "TLBIALLNSNHIS",
6185       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6186       .type = ARM_CP_NO_RAW, .access = PL2_W,
6187       .writefn = tlbiall_nsnh_is_write },
6188     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6189       .type = ARM_CP_NO_RAW, .access = PL2_W,
6190       .writefn = tlbiall_hyp_write },
6191     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6192       .type = ARM_CP_NO_RAW, .access = PL2_W,
6193       .writefn = tlbiall_hyp_is_write },
6194     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6195       .type = ARM_CP_NO_RAW, .access = PL2_W,
6196       .writefn = tlbimva_hyp_write },
6197     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6198       .type = ARM_CP_NO_RAW, .access = PL2_W,
6199       .writefn = tlbimva_hyp_is_write },
6200     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6201       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6202       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6203       .writefn = tlbi_aa64_alle2_write },
6204     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6205       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6206       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6207       .writefn = tlbi_aa64_vae2_write },
6208     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6209       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6210       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6211       .writefn = tlbi_aa64_vae2_write },
6212     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6213       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6214       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6215       .writefn = tlbi_aa64_alle2is_write },
6216     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6217       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6218       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6219       .writefn = tlbi_aa64_vae2is_write },
6220     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6221       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6222       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6223       .writefn = tlbi_aa64_vae2is_write },
6224 #ifndef CONFIG_USER_ONLY
6225     /*
6226      * Unlike the other EL2-related AT operations, these must
6227      * UNDEF from EL3 if EL2 is not implemented, which is why we
6228      * define them here rather than with the rest of the AT ops.
6229      */
6230     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6231       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6232       .access = PL2_W, .accessfn = at_s1e2_access,
6233       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6234       .writefn = ats_write64 },
6235     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6236       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6237       .access = PL2_W, .accessfn = at_s1e2_access,
6238       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6239       .writefn = ats_write64 },
6240     /*
6241      * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6242      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6243      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6244      * to behave as if SCR.NS was 1.
6245      */
6246     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6247       .access = PL2_W,
6248       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6249     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6250       .access = PL2_W,
6251       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6252     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6253       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6254       /*
6255        * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6256        * reset values as IMPDEF. We choose to reset to 3 to comply with
6257        * both ARMv7 and ARMv8.
6258        */
6259       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
6260       .writefn = gt_cnthctl_write, .raw_writefn = raw_write,
6261       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6262     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6263       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6264       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6265       .writefn = gt_cntvoff_write,
6266       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6267     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6268       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6269       .writefn = gt_cntvoff_write,
6270       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6271     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6272       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6273       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6274       .type = ARM_CP_IO, .access = PL2_RW,
6275       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6276     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6277       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6278       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6279       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6280     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6281       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6282       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6283       .resetfn = gt_hyp_timer_reset,
6284       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6285     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6286       .type = ARM_CP_IO,
6287       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6288       .access = PL2_RW,
6289       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6290       .resetvalue = 0,
6291       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6292 #endif
6293     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6294       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6295       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6296       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6297     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6298       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6299       .access = PL2_RW,
6300       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6301     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6302       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6303       .access = PL2_RW,
6304       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6305 };
6306 
6307 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6308     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6309       .type = ARM_CP_ALIAS | ARM_CP_IO,
6310       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6311       .access = PL2_RW,
6312       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6313       .writefn = hcr_writehigh },
6314 };
6315 
sel2_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6316 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6317                                   bool isread)
6318 {
6319     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6320         return CP_ACCESS_OK;
6321     }
6322     return CP_ACCESS_TRAP_UNCATEGORIZED;
6323 }
6324 
6325 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6326     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6327       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6328       .access = PL2_RW, .accessfn = sel2_access,
6329       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6330     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6331       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6332       .access = PL2_RW, .accessfn = sel2_access,
6333       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6334 };
6335 
nsacr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6336 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6337                                    bool isread)
6338 {
6339     /*
6340      * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6341      * At Secure EL1 it traps to EL3 or EL2.
6342      */
6343     if (arm_current_el(env) == 3) {
6344         return CP_ACCESS_OK;
6345     }
6346     if (arm_is_secure_below_el3(env)) {
6347         if (env->cp15.scr_el3 & SCR_EEL2) {
6348             return CP_ACCESS_TRAP_EL2;
6349         }
6350         return CP_ACCESS_TRAP_EL3;
6351     }
6352     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6353     if (isread) {
6354         return CP_ACCESS_OK;
6355     }
6356     return CP_ACCESS_TRAP_UNCATEGORIZED;
6357 }
6358 
6359 static const ARMCPRegInfo el3_cp_reginfo[] = {
6360     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6361       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6362       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6363       .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
6364     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6365       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6366       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6367       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6368       .writefn = scr_write, .raw_writefn = raw_write },
6369     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6370       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6371       .access = PL3_RW, .resetvalue = 0,
6372       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6373     { .name = "SDER",
6374       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6375       .access = PL3_RW, .resetvalue = 0,
6376       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6377     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6378       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6379       .writefn = vbar_write, .resetvalue = 0,
6380       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6381     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6382       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6383       .access = PL3_RW, .resetvalue = 0,
6384       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6385     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6386       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6387       .access = PL3_RW,
6388       /* no .writefn needed as this can't cause an ASID change */
6389       .resetvalue = 0,
6390       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6391     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6392       .type = ARM_CP_ALIAS,
6393       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6394       .access = PL3_RW,
6395       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6396     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6397       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6398       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6399     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6400       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6401       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6402     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6403       .type = ARM_CP_ALIAS,
6404       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6405       .access = PL3_RW,
6406       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6407     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6408       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6409       .access = PL3_RW, .writefn = vbar_write,
6410       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6411       .resetvalue = 0 },
6412     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6413       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6414       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6415       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6416     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6417       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6418       .access = PL3_RW, .resetvalue = 0,
6419       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6420     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6421       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6422       .access = PL3_RW, .type = ARM_CP_CONST,
6423       .resetvalue = 0 },
6424     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6425       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6426       .access = PL3_RW, .type = ARM_CP_CONST,
6427       .resetvalue = 0 },
6428     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6429       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6430       .access = PL3_RW, .type = ARM_CP_CONST,
6431       .resetvalue = 0 },
6432     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6433       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6434       .access = PL3_W, .type = ARM_CP_NO_RAW,
6435       .writefn = tlbi_aa64_alle3is_write },
6436     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6437       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6438       .access = PL3_W, .type = ARM_CP_NO_RAW,
6439       .writefn = tlbi_aa64_vae3is_write },
6440     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6441       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6442       .access = PL3_W, .type = ARM_CP_NO_RAW,
6443       .writefn = tlbi_aa64_vae3is_write },
6444     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6445       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6446       .access = PL3_W, .type = ARM_CP_NO_RAW,
6447       .writefn = tlbi_aa64_alle3_write },
6448     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6449       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6450       .access = PL3_W, .type = ARM_CP_NO_RAW,
6451       .writefn = tlbi_aa64_vae3_write },
6452     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6453       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6454       .access = PL3_W, .type = ARM_CP_NO_RAW,
6455       .writefn = tlbi_aa64_vae3_write },
6456 };
6457 
6458 #ifndef CONFIG_USER_ONLY
6459 /* Test if system register redirection is to occur in the current state.  */
redirect_for_e2h(CPUARMState * env)6460 static bool redirect_for_e2h(CPUARMState *env)
6461 {
6462     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6463 }
6464 
el2_e2h_read(CPUARMState * env,const ARMCPRegInfo * ri)6465 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6466 {
6467     CPReadFn *readfn;
6468 
6469     if (redirect_for_e2h(env)) {
6470         /* Switch to the saved EL2 version of the register.  */
6471         ri = ri->opaque;
6472         readfn = ri->readfn;
6473     } else {
6474         readfn = ri->orig_readfn;
6475     }
6476     if (readfn == NULL) {
6477         readfn = raw_read;
6478     }
6479     return readfn(env, ri);
6480 }
6481 
el2_e2h_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6482 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6483                           uint64_t value)
6484 {
6485     CPWriteFn *writefn;
6486 
6487     if (redirect_for_e2h(env)) {
6488         /* Switch to the saved EL2 version of the register.  */
6489         ri = ri->opaque;
6490         writefn = ri->writefn;
6491     } else {
6492         writefn = ri->orig_writefn;
6493     }
6494     if (writefn == NULL) {
6495         writefn = raw_write;
6496     }
6497     writefn(env, ri, value);
6498 }
6499 
define_arm_vh_e2h_redirects_aliases(ARMCPU * cpu)6500 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6501 {
6502     struct E2HAlias {
6503         uint32_t src_key, dst_key, new_key;
6504         const char *src_name, *dst_name, *new_name;
6505         bool (*feature)(const ARMISARegisters *id);
6506     };
6507 
6508 #define K(op0, op1, crn, crm, op2) \
6509     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6510 
6511     static const struct E2HAlias aliases[] = {
6512         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
6513           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6514         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
6515           "CPACR", "CPTR_EL2", "CPACR_EL12" },
6516         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
6517           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6518         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
6519           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6520         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
6521           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6522         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
6523           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6524         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
6525           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6526         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
6527           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6528         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
6529           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6530         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
6531           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6532         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
6533           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6534         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6535           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6536         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6537           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6538         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6539           "VBAR", "VBAR_EL2", "VBAR_EL12" },
6540         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6541           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6542         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6543           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6544 
6545         /*
6546          * Note that redirection of ZCR is mentioned in the description
6547          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6548          * not in the summary table.
6549          */
6550         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
6551           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6552         { K(3, 0,  1, 2, 6), K(3, 4,  1, 2, 6), K(3, 5, 1, 2, 6),
6553           "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6554 
6555         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
6556           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6557 
6558         { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6559           "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6560           isar_feature_aa64_scxtnum },
6561 
6562         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6563         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6564     };
6565 #undef K
6566 
6567     size_t i;
6568 
6569     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6570         const struct E2HAlias *a = &aliases[i];
6571         ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6572         bool ok;
6573 
6574         if (a->feature && !a->feature(&cpu->isar)) {
6575             continue;
6576         }
6577 
6578         src_reg = g_hash_table_lookup(cpu->cp_regs,
6579                                       (gpointer)(uintptr_t)a->src_key);
6580         dst_reg = g_hash_table_lookup(cpu->cp_regs,
6581                                       (gpointer)(uintptr_t)a->dst_key);
6582         g_assert(src_reg != NULL);
6583         g_assert(dst_reg != NULL);
6584 
6585         /* Cross-compare names to detect typos in the keys.  */
6586         g_assert(strcmp(src_reg->name, a->src_name) == 0);
6587         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6588 
6589         /* None of the core system registers use opaque; we will.  */
6590         g_assert(src_reg->opaque == NULL);
6591 
6592         /* Create alias before redirection so we dup the right data. */
6593         new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6594 
6595         new_reg->name = a->new_name;
6596         new_reg->type |= ARM_CP_ALIAS;
6597         /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
6598         new_reg->access &= PL2_RW | PL3_RW;
6599 
6600         ok = g_hash_table_insert(cpu->cp_regs,
6601                                  (gpointer)(uintptr_t)a->new_key, new_reg);
6602         g_assert(ok);
6603 
6604         src_reg->opaque = dst_reg;
6605         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6606         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6607         if (!src_reg->raw_readfn) {
6608             src_reg->raw_readfn = raw_read;
6609         }
6610         if (!src_reg->raw_writefn) {
6611             src_reg->raw_writefn = raw_write;
6612         }
6613         src_reg->readfn = el2_e2h_read;
6614         src_reg->writefn = el2_e2h_write;
6615     }
6616 }
6617 #endif
6618 
ctr_el0_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6619 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6620                                      bool isread)
6621 {
6622     int cur_el = arm_current_el(env);
6623 
6624     if (cur_el < 2) {
6625         uint64_t hcr = arm_hcr_el2_eff(env);
6626 
6627         if (cur_el == 0) {
6628             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6629                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6630                     return CP_ACCESS_TRAP_EL2;
6631                 }
6632             } else {
6633                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6634                     return CP_ACCESS_TRAP;
6635                 }
6636                 if (hcr & HCR_TID2) {
6637                     return CP_ACCESS_TRAP_EL2;
6638                 }
6639             }
6640         } else if (hcr & HCR_TID2) {
6641             return CP_ACCESS_TRAP_EL2;
6642         }
6643     }
6644 
6645     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6646         return CP_ACCESS_TRAP_EL2;
6647     }
6648 
6649     return CP_ACCESS_OK;
6650 }
6651 
6652 /*
6653  * Check for traps to RAS registers, which are controlled
6654  * by HCR_EL2.TERR and SCR_EL3.TERR.
6655  */
access_terr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6656 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6657                                   bool isread)
6658 {
6659     int el = arm_current_el(env);
6660 
6661     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6662         return CP_ACCESS_TRAP_EL2;
6663     }
6664     if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6665         return CP_ACCESS_TRAP_EL3;
6666     }
6667     return CP_ACCESS_OK;
6668 }
6669 
disr_read(CPUARMState * env,const ARMCPRegInfo * ri)6670 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6671 {
6672     int el = arm_current_el(env);
6673 
6674     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6675         return env->cp15.vdisr_el2;
6676     }
6677     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6678         return 0; /* RAZ/WI */
6679     }
6680     return env->cp15.disr_el1;
6681 }
6682 
disr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t val)6683 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6684 {
6685     int el = arm_current_el(env);
6686 
6687     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6688         env->cp15.vdisr_el2 = val;
6689         return;
6690     }
6691     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6692         return; /* RAZ/WI */
6693     }
6694     env->cp15.disr_el1 = val;
6695 }
6696 
6697 /*
6698  * Minimal RAS implementation with no Error Records.
6699  * Which means that all of the Error Record registers:
6700  *   ERXADDR_EL1
6701  *   ERXCTLR_EL1
6702  *   ERXFR_EL1
6703  *   ERXMISC0_EL1
6704  *   ERXMISC1_EL1
6705  *   ERXMISC2_EL1
6706  *   ERXMISC3_EL1
6707  *   ERXPFGCDN_EL1  (RASv1p1)
6708  *   ERXPFGCTL_EL1  (RASv1p1)
6709  *   ERXPFGF_EL1    (RASv1p1)
6710  *   ERXSTATUS_EL1
6711  * and
6712  *   ERRSELR_EL1
6713  * may generate UNDEFINED, which is the effect we get by not
6714  * listing them at all.
6715  *
6716  * These registers have fine-grained trap bits, but UNDEF-to-EL1
6717  * is higher priority than FGT-to-EL2 so we do not need to list them
6718  * in order to check for an FGT.
6719  */
6720 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6721     { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6722       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6723       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6724       .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6725     { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6726       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6727       .access = PL1_R, .accessfn = access_terr,
6728       .fgt = FGT_ERRIDR_EL1,
6729       .type = ARM_CP_CONST, .resetvalue = 0 },
6730     { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6731       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6732       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6733     { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6734       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6735       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6736 };
6737 
6738 /*
6739  * Return the exception level to which exceptions should be taken
6740  * via SVEAccessTrap.  This excludes the check for whether the exception
6741  * should be routed through AArch64.AdvSIMDFPAccessTrap.  That can easily
6742  * be found by testing 0 < fp_exception_el < sve_exception_el.
6743  *
6744  * C.f. the ARM pseudocode function CheckSVEEnabled.  Note that the
6745  * pseudocode does *not* separate out the FP trap checks, but has them
6746  * all in one function.
6747  */
sve_exception_el(CPUARMState * env,int el)6748 int sve_exception_el(CPUARMState *env, int el)
6749 {
6750 #ifndef CONFIG_USER_ONLY
6751     if (el <= 1 && !el_is_in_host(env, el)) {
6752         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6753         case 1:
6754             if (el != 0) {
6755                 break;
6756             }
6757             /* fall through */
6758         case 0:
6759         case 2:
6760             return 1;
6761         }
6762     }
6763 
6764     if (el <= 2 && arm_is_el2_enabled(env)) {
6765         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6766         if (env->cp15.hcr_el2 & HCR_E2H) {
6767             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6768             case 1:
6769                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6770                     break;
6771                 }
6772                 /* fall through */
6773             case 0:
6774             case 2:
6775                 return 2;
6776             }
6777         } else {
6778             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6779                 return 2;
6780             }
6781         }
6782     }
6783 
6784     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6785     if (arm_feature(env, ARM_FEATURE_EL3)
6786         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6787         return 3;
6788     }
6789 #endif
6790     return 0;
6791 }
6792 
6793 /*
6794  * Return the exception level to which exceptions should be taken for SME.
6795  * C.f. the ARM pseudocode function CheckSMEAccess.
6796  */
sme_exception_el(CPUARMState * env,int el)6797 int sme_exception_el(CPUARMState *env, int el)
6798 {
6799 #ifndef CONFIG_USER_ONLY
6800     if (el <= 1 && !el_is_in_host(env, el)) {
6801         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6802         case 1:
6803             if (el != 0) {
6804                 break;
6805             }
6806             /* fall through */
6807         case 0:
6808         case 2:
6809             return 1;
6810         }
6811     }
6812 
6813     if (el <= 2 && arm_is_el2_enabled(env)) {
6814         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6815         if (env->cp15.hcr_el2 & HCR_E2H) {
6816             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6817             case 1:
6818                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6819                     break;
6820                 }
6821                 /* fall through */
6822             case 0:
6823             case 2:
6824                 return 2;
6825             }
6826         } else {
6827             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6828                 return 2;
6829             }
6830         }
6831     }
6832 
6833     /* CPTR_EL3.  Since ESM is negative we must check for EL3.  */
6834     if (arm_feature(env, ARM_FEATURE_EL3)
6835         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6836         return 3;
6837     }
6838 #endif
6839     return 0;
6840 }
6841 
6842 /*
6843  * Given that SVE is enabled, return the vector length for EL.
6844  */
sve_vqm1_for_el_sm(CPUARMState * env,int el,bool sm)6845 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
6846 {
6847     ARMCPU *cpu = env_archcpu(env);
6848     uint64_t *cr = env->vfp.zcr_el;
6849     uint32_t map = cpu->sve_vq.map;
6850     uint32_t len = ARM_MAX_VQ - 1;
6851 
6852     if (sm) {
6853         cr = env->vfp.smcr_el;
6854         map = cpu->sme_vq.map;
6855     }
6856 
6857     if (el <= 1 && !el_is_in_host(env, el)) {
6858         len = MIN(len, 0xf & (uint32_t)cr[1]);
6859     }
6860     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6861         len = MIN(len, 0xf & (uint32_t)cr[2]);
6862     }
6863     if (arm_feature(env, ARM_FEATURE_EL3)) {
6864         len = MIN(len, 0xf & (uint32_t)cr[3]);
6865     }
6866 
6867     map &= MAKE_64BIT_MASK(0, len + 1);
6868     if (map != 0) {
6869         return 31 - clz32(map);
6870     }
6871 
6872     /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6873     assert(sm);
6874     return ctz32(cpu->sme_vq.map);
6875 }
6876 
sve_vqm1_for_el(CPUARMState * env,int el)6877 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6878 {
6879     return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
6880 }
6881 
zcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6882 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6883                       uint64_t value)
6884 {
6885     int cur_el = arm_current_el(env);
6886     int old_len = sve_vqm1_for_el(env, cur_el);
6887     int new_len;
6888 
6889     /* Bits other than [3:0] are RAZ/WI.  */
6890     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6891     raw_write(env, ri, value & 0xf);
6892 
6893     /*
6894      * Because we arrived here, we know both FP and SVE are enabled;
6895      * otherwise we would have trapped access to the ZCR_ELn register.
6896      */
6897     new_len = sve_vqm1_for_el(env, cur_el);
6898     if (new_len < old_len) {
6899         aarch64_sve_narrow_vq(env, new_len + 1);
6900     }
6901 }
6902 
6903 static const ARMCPRegInfo zcr_reginfo[] = {
6904     { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6905       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6906       .access = PL1_RW, .type = ARM_CP_SVE,
6907       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6908       .writefn = zcr_write, .raw_writefn = raw_write },
6909     { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6910       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6911       .access = PL2_RW, .type = ARM_CP_SVE,
6912       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6913       .writefn = zcr_write, .raw_writefn = raw_write },
6914     { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6915       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6916       .access = PL3_RW, .type = ARM_CP_SVE,
6917       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6918       .writefn = zcr_write, .raw_writefn = raw_write },
6919 };
6920 
6921 #ifdef TARGET_AARCH64
access_tpidr2(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6922 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6923                                     bool isread)
6924 {
6925     int el = arm_current_el(env);
6926 
6927     if (el == 0) {
6928         uint64_t sctlr = arm_sctlr(env, el);
6929         if (!(sctlr & SCTLR_EnTP2)) {
6930             return CP_ACCESS_TRAP;
6931         }
6932     }
6933     /* TODO: FEAT_FGT */
6934     if (el < 3
6935         && arm_feature(env, ARM_FEATURE_EL3)
6936         && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6937         return CP_ACCESS_TRAP_EL3;
6938     }
6939     return CP_ACCESS_OK;
6940 }
6941 
access_esm(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6942 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
6943                                  bool isread)
6944 {
6945     /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
6946     if (arm_current_el(env) < 3
6947         && arm_feature(env, ARM_FEATURE_EL3)
6948         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6949         return CP_ACCESS_TRAP_EL3;
6950     }
6951     return CP_ACCESS_OK;
6952 }
6953 
6954 /* ResetSVEState */
arm_reset_sve_state(CPUARMState * env)6955 static void arm_reset_sve_state(CPUARMState *env)
6956 {
6957     memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
6958     /* Recall that FFR is stored as pregs[16]. */
6959     memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
6960     vfp_set_fpcr(env, 0x0800009f);
6961 }
6962 
aarch64_set_svcr(CPUARMState * env,uint64_t new,uint64_t mask)6963 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
6964 {
6965     uint64_t change = (env->svcr ^ new) & mask;
6966 
6967     if (change == 0) {
6968         return;
6969     }
6970     env->svcr ^= change;
6971 
6972     if (change & R_SVCR_SM_MASK) {
6973         arm_reset_sve_state(env);
6974     }
6975 
6976     /*
6977      * ResetSMEState.
6978      *
6979      * SetPSTATE_ZA zeros on enable and disable.  We can zero this only
6980      * on enable: while disabled, the storage is inaccessible and the
6981      * value does not matter.  We're not saving the storage in vmstate
6982      * when disabled either.
6983      */
6984     if (change & new & R_SVCR_ZA_MASK) {
6985         memset(env->zarray, 0, sizeof(env->zarray));
6986     }
6987 
6988     if (tcg_enabled()) {
6989         arm_rebuild_hflags(env);
6990     }
6991 }
6992 
svcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6993 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6994                        uint64_t value)
6995 {
6996     aarch64_set_svcr(env, value, -1);
6997 }
6998 
smcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6999 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7000                        uint64_t value)
7001 {
7002     int cur_el = arm_current_el(env);
7003     int old_len = sve_vqm1_for_el(env, cur_el);
7004     int new_len;
7005 
7006     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
7007     value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
7008     raw_write(env, ri, value);
7009 
7010     /*
7011      * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
7012      * when SVL is widened (old values kept, or zeros).  Choose to keep the
7013      * current values for simplicity.  But for QEMU internals, we must still
7014      * apply the narrower SVL to the Zregs and Pregs -- see the comment
7015      * above aarch64_sve_narrow_vq.
7016      */
7017     new_len = sve_vqm1_for_el(env, cur_el);
7018     if (new_len < old_len) {
7019         aarch64_sve_narrow_vq(env, new_len + 1);
7020     }
7021 }
7022 
7023 static const ARMCPRegInfo sme_reginfo[] = {
7024     { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
7025       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
7026       .access = PL0_RW, .accessfn = access_tpidr2,
7027       .fgt = FGT_NTPIDR2_EL0,
7028       .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
7029     { .name = "SVCR", .state = ARM_CP_STATE_AA64,
7030       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
7031       .access = PL0_RW, .type = ARM_CP_SME,
7032       .fieldoffset = offsetof(CPUARMState, svcr),
7033       .writefn = svcr_write, .raw_writefn = raw_write },
7034     { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
7035       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
7036       .access = PL1_RW, .type = ARM_CP_SME,
7037       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
7038       .writefn = smcr_write, .raw_writefn = raw_write },
7039     { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
7040       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
7041       .access = PL2_RW, .type = ARM_CP_SME,
7042       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
7043       .writefn = smcr_write, .raw_writefn = raw_write },
7044     { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
7045       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
7046       .access = PL3_RW, .type = ARM_CP_SME,
7047       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
7048       .writefn = smcr_write, .raw_writefn = raw_write },
7049     { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
7050       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
7051       .access = PL1_R, .accessfn = access_aa64_tid1,
7052       /*
7053        * IMPLEMENTOR = 0 (software)
7054        * REVISION    = 0 (implementation defined)
7055        * SMPS        = 0 (no streaming execution priority in QEMU)
7056        * AFFINITY    = 0 (streaming sve mode not shared with other PEs)
7057        */
7058       .type = ARM_CP_CONST, .resetvalue = 0, },
7059     /*
7060      * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
7061      */
7062     { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
7063       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
7064       .access = PL1_RW, .accessfn = access_esm,
7065       .fgt = FGT_NSMPRI_EL1,
7066       .type = ARM_CP_CONST, .resetvalue = 0 },
7067     { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
7068       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
7069       .access = PL2_RW, .accessfn = access_esm,
7070       .type = ARM_CP_CONST, .resetvalue = 0 },
7071 };
7072 
tlbi_aa64_paall_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7073 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
7074                                   uint64_t value)
7075 {
7076     CPUState *cs = env_cpu(env);
7077 
7078     tlb_flush(cs);
7079 }
7080 
gpccr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7081 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7082                         uint64_t value)
7083 {
7084     /* L0GPTSZ is RO; other bits not mentioned are RES0. */
7085     uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
7086         R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
7087         R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
7088 
7089     env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
7090 }
7091 
gpccr_reset(CPUARMState * env,const ARMCPRegInfo * ri)7092 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
7093 {
7094     env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
7095                                      env_archcpu(env)->reset_l0gptsz);
7096 }
7097 
tlbi_aa64_paallos_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7098 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
7099                                     uint64_t value)
7100 {
7101     CPUState *cs = env_cpu(env);
7102 
7103     tlb_flush_all_cpus_synced(cs);
7104 }
7105 
7106 static const ARMCPRegInfo rme_reginfo[] = {
7107     { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
7108       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
7109       .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
7110       .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
7111     { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
7112       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
7113       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
7114     { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
7115       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
7116       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
7117     { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
7118       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
7119       .access = PL3_W, .type = ARM_CP_NO_RAW,
7120       .writefn = tlbi_aa64_paall_write },
7121     { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
7122       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
7123       .access = PL3_W, .type = ARM_CP_NO_RAW,
7124       .writefn = tlbi_aa64_paallos_write },
7125     /*
7126      * QEMU does not have a way to invalidate by physical address, thus
7127      * invalidating a range of physical addresses is accomplished by
7128      * flushing all tlb entries in the outer shareable domain,
7129      * just like PAALLOS.
7130      */
7131     { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
7132       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
7133       .access = PL3_W, .type = ARM_CP_NO_RAW,
7134       .writefn = tlbi_aa64_paallos_write },
7135     { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
7136       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
7137       .access = PL3_W, .type = ARM_CP_NO_RAW,
7138       .writefn = tlbi_aa64_paallos_write },
7139     { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
7140       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
7141       .access = PL3_W, .type = ARM_CP_NOP },
7142 };
7143 
7144 static const ARMCPRegInfo rme_mte_reginfo[] = {
7145     { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
7146       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
7147       .access = PL3_W, .type = ARM_CP_NOP },
7148 };
7149 #endif /* TARGET_AARCH64 */
7150 
define_pmu_regs(ARMCPU * cpu)7151 static void define_pmu_regs(ARMCPU *cpu)
7152 {
7153     /*
7154      * v7 performance monitor control register: same implementor
7155      * field as main ID register, and we implement four counters in
7156      * addition to the cycle count register.
7157      */
7158     unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7159     ARMCPRegInfo pmcr = {
7160         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7161         .access = PL0_RW,
7162         .fgt = FGT_PMCR_EL0,
7163         .type = ARM_CP_IO | ARM_CP_ALIAS,
7164         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7165         .accessfn = pmreg_access, .writefn = pmcr_write,
7166         .raw_writefn = raw_write,
7167     };
7168     ARMCPRegInfo pmcr64 = {
7169         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7170         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7171         .access = PL0_RW, .accessfn = pmreg_access,
7172         .fgt = FGT_PMCR_EL0,
7173         .type = ARM_CP_IO,
7174         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7175         .resetvalue = cpu->isar.reset_pmcr_el0,
7176         .writefn = pmcr_write, .raw_writefn = raw_write,
7177     };
7178 
7179     define_one_arm_cp_reg(cpu, &pmcr);
7180     define_one_arm_cp_reg(cpu, &pmcr64);
7181     for (i = 0; i < pmcrn; i++) {
7182         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7183         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7184         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7185         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7186         ARMCPRegInfo pmev_regs[] = {
7187             { .name = pmevcntr_name, .cp = 15, .crn = 14,
7188               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7189               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7190               .fgt = FGT_PMEVCNTRN_EL0,
7191               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7192               .accessfn = pmreg_access_xevcntr },
7193             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7194               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7195               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7196               .type = ARM_CP_IO,
7197               .fgt = FGT_PMEVCNTRN_EL0,
7198               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7199               .raw_readfn = pmevcntr_rawread,
7200               .raw_writefn = pmevcntr_rawwrite },
7201             { .name = pmevtyper_name, .cp = 15, .crn = 14,
7202               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7203               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7204               .fgt = FGT_PMEVTYPERN_EL0,
7205               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7206               .accessfn = pmreg_access },
7207             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7208               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7209               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7210               .fgt = FGT_PMEVTYPERN_EL0,
7211               .type = ARM_CP_IO,
7212               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7213               .raw_writefn = pmevtyper_rawwrite },
7214         };
7215         define_arm_cp_regs(cpu, pmev_regs);
7216         g_free(pmevcntr_name);
7217         g_free(pmevcntr_el0_name);
7218         g_free(pmevtyper_name);
7219         g_free(pmevtyper_el0_name);
7220     }
7221     if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7222         ARMCPRegInfo v81_pmu_regs[] = {
7223             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7224               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7225               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7226               .fgt = FGT_PMCEIDN_EL0,
7227               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7228             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7229               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7230               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7231               .fgt = FGT_PMCEIDN_EL0,
7232               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7233         };
7234         define_arm_cp_regs(cpu, v81_pmu_regs);
7235     }
7236     if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7237         static const ARMCPRegInfo v84_pmmir = {
7238             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7239             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7240             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7241             .fgt = FGT_PMMIR_EL1,
7242             .resetvalue = 0
7243         };
7244         define_one_arm_cp_reg(cpu, &v84_pmmir);
7245     }
7246 }
7247 
7248 #ifndef CONFIG_USER_ONLY
7249 /*
7250  * We don't know until after realize whether there's a GICv3
7251  * attached, and that is what registers the gicv3 sysregs.
7252  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7253  * at runtime.
7254  */
id_pfr1_read(CPUARMState * env,const ARMCPRegInfo * ri)7255 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7256 {
7257     ARMCPU *cpu = env_archcpu(env);
7258     uint64_t pfr1 = cpu->isar.id_pfr1;
7259 
7260     if (env->gicv3state) {
7261         pfr1 |= 1 << 28;
7262     }
7263     return pfr1;
7264 }
7265 
id_aa64pfr0_read(CPUARMState * env,const ARMCPRegInfo * ri)7266 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7267 {
7268     ARMCPU *cpu = env_archcpu(env);
7269     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7270 
7271     if (env->gicv3state) {
7272         pfr0 |= 1 << 24;
7273     }
7274     return pfr0;
7275 }
7276 #endif
7277 
7278 /*
7279  * Shared logic between LORID and the rest of the LOR* registers.
7280  * Secure state exclusion has already been dealt with.
7281  */
access_lor_ns(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7282 static CPAccessResult access_lor_ns(CPUARMState *env,
7283                                     const ARMCPRegInfo *ri, bool isread)
7284 {
7285     int el = arm_current_el(env);
7286 
7287     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7288         return CP_ACCESS_TRAP_EL2;
7289     }
7290     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7291         return CP_ACCESS_TRAP_EL3;
7292     }
7293     return CP_ACCESS_OK;
7294 }
7295 
access_lor_other(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7296 static CPAccessResult access_lor_other(CPUARMState *env,
7297                                        const ARMCPRegInfo *ri, bool isread)
7298 {
7299     if (arm_is_secure_below_el3(env)) {
7300         /* Access denied in secure mode.  */
7301         return CP_ACCESS_TRAP;
7302     }
7303     return access_lor_ns(env, ri, isread);
7304 }
7305 
7306 /*
7307  * A trivial implementation of ARMv8.1-LOR leaves all of these
7308  * registers fixed at 0, which indicates that there are zero
7309  * supported Limited Ordering regions.
7310  */
7311 static const ARMCPRegInfo lor_reginfo[] = {
7312     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7313       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7314       .access = PL1_RW, .accessfn = access_lor_other,
7315       .fgt = FGT_LORSA_EL1,
7316       .type = ARM_CP_CONST, .resetvalue = 0 },
7317     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7318       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7319       .access = PL1_RW, .accessfn = access_lor_other,
7320       .fgt = FGT_LOREA_EL1,
7321       .type = ARM_CP_CONST, .resetvalue = 0 },
7322     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7323       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7324       .access = PL1_RW, .accessfn = access_lor_other,
7325       .fgt = FGT_LORN_EL1,
7326       .type = ARM_CP_CONST, .resetvalue = 0 },
7327     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7328       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7329       .access = PL1_RW, .accessfn = access_lor_other,
7330       .fgt = FGT_LORC_EL1,
7331       .type = ARM_CP_CONST, .resetvalue = 0 },
7332     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7333       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7334       .access = PL1_R, .accessfn = access_lor_ns,
7335       .fgt = FGT_LORID_EL1,
7336       .type = ARM_CP_CONST, .resetvalue = 0 },
7337 };
7338 
7339 #ifdef TARGET_AARCH64
access_pauth(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7340 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7341                                    bool isread)
7342 {
7343     int el = arm_current_el(env);
7344 
7345     if (el < 2 &&
7346         arm_is_el2_enabled(env) &&
7347         !(arm_hcr_el2_eff(env) & HCR_APK)) {
7348         return CP_ACCESS_TRAP_EL2;
7349     }
7350     if (el < 3 &&
7351         arm_feature(env, ARM_FEATURE_EL3) &&
7352         !(env->cp15.scr_el3 & SCR_APK)) {
7353         return CP_ACCESS_TRAP_EL3;
7354     }
7355     return CP_ACCESS_OK;
7356 }
7357 
7358 static const ARMCPRegInfo pauth_reginfo[] = {
7359     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7360       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7361       .access = PL1_RW, .accessfn = access_pauth,
7362       .fgt = FGT_APDAKEY,
7363       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7364     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7365       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7366       .access = PL1_RW, .accessfn = access_pauth,
7367       .fgt = FGT_APDAKEY,
7368       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7369     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7370       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7371       .access = PL1_RW, .accessfn = access_pauth,
7372       .fgt = FGT_APDBKEY,
7373       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7374     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7375       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7376       .access = PL1_RW, .accessfn = access_pauth,
7377       .fgt = FGT_APDBKEY,
7378       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7379     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7380       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7381       .access = PL1_RW, .accessfn = access_pauth,
7382       .fgt = FGT_APGAKEY,
7383       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7384     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7385       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7386       .access = PL1_RW, .accessfn = access_pauth,
7387       .fgt = FGT_APGAKEY,
7388       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7389     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7390       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7391       .access = PL1_RW, .accessfn = access_pauth,
7392       .fgt = FGT_APIAKEY,
7393       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7394     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7395       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7396       .access = PL1_RW, .accessfn = access_pauth,
7397       .fgt = FGT_APIAKEY,
7398       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7399     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7400       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7401       .access = PL1_RW, .accessfn = access_pauth,
7402       .fgt = FGT_APIBKEY,
7403       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7404     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7405       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7406       .access = PL1_RW, .accessfn = access_pauth,
7407       .fgt = FGT_APIBKEY,
7408       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7409 };
7410 
7411 static const ARMCPRegInfo tlbirange_reginfo[] = {
7412     { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7413       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7414       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7415       .fgt = FGT_TLBIRVAE1IS,
7416       .writefn = tlbi_aa64_rvae1is_write },
7417     { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7418       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7419       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7420       .fgt = FGT_TLBIRVAAE1IS,
7421       .writefn = tlbi_aa64_rvae1is_write },
7422    { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7423       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7424       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7425       .fgt = FGT_TLBIRVALE1IS,
7426       .writefn = tlbi_aa64_rvae1is_write },
7427     { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7428       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7429       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7430       .fgt = FGT_TLBIRVAALE1IS,
7431       .writefn = tlbi_aa64_rvae1is_write },
7432     { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7433       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7434       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7435       .fgt = FGT_TLBIRVAE1OS,
7436       .writefn = tlbi_aa64_rvae1is_write },
7437     { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7438       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7439       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7440       .fgt = FGT_TLBIRVAAE1OS,
7441       .writefn = tlbi_aa64_rvae1is_write },
7442    { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7443       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7444       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7445       .fgt = FGT_TLBIRVALE1OS,
7446       .writefn = tlbi_aa64_rvae1is_write },
7447     { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7448       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7449       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7450       .fgt = FGT_TLBIRVAALE1OS,
7451       .writefn = tlbi_aa64_rvae1is_write },
7452     { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7453       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7454       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7455       .fgt = FGT_TLBIRVAE1,
7456       .writefn = tlbi_aa64_rvae1_write },
7457     { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7458       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7459       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7460       .fgt = FGT_TLBIRVAAE1,
7461       .writefn = tlbi_aa64_rvae1_write },
7462    { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7463       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7464       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7465       .fgt = FGT_TLBIRVALE1,
7466       .writefn = tlbi_aa64_rvae1_write },
7467     { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7468       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7469       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7470       .fgt = FGT_TLBIRVAALE1,
7471       .writefn = tlbi_aa64_rvae1_write },
7472     { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7473       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7474       .access = PL2_W, .type = ARM_CP_NO_RAW,
7475       .writefn = tlbi_aa64_ripas2e1is_write },
7476     { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7477       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7478       .access = PL2_W, .type = ARM_CP_NO_RAW,
7479       .writefn = tlbi_aa64_ripas2e1is_write },
7480     { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7481       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7482       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7483       .writefn = tlbi_aa64_rvae2is_write },
7484    { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7485       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7486       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7487       .writefn = tlbi_aa64_rvae2is_write },
7488     { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7489       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7490       .access = PL2_W, .type = ARM_CP_NO_RAW,
7491       .writefn = tlbi_aa64_ripas2e1_write },
7492     { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7493       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7494       .access = PL2_W, .type = ARM_CP_NO_RAW,
7495       .writefn = tlbi_aa64_ripas2e1_write },
7496    { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7497       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7498       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7499       .writefn = tlbi_aa64_rvae2is_write },
7500    { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7501       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7502       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7503       .writefn = tlbi_aa64_rvae2is_write },
7504     { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7505       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7506       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7507       .writefn = tlbi_aa64_rvae2_write },
7508    { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7509       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7510       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7511       .writefn = tlbi_aa64_rvae2_write },
7512    { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7513       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7514       .access = PL3_W, .type = ARM_CP_NO_RAW,
7515       .writefn = tlbi_aa64_rvae3is_write },
7516    { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7517       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7518       .access = PL3_W, .type = ARM_CP_NO_RAW,
7519       .writefn = tlbi_aa64_rvae3is_write },
7520    { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7521       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7522       .access = PL3_W, .type = ARM_CP_NO_RAW,
7523       .writefn = tlbi_aa64_rvae3is_write },
7524    { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7525       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7526       .access = PL3_W, .type = ARM_CP_NO_RAW,
7527       .writefn = tlbi_aa64_rvae3is_write },
7528    { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7529       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7530       .access = PL3_W, .type = ARM_CP_NO_RAW,
7531       .writefn = tlbi_aa64_rvae3_write },
7532    { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7533       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7534       .access = PL3_W, .type = ARM_CP_NO_RAW,
7535       .writefn = tlbi_aa64_rvae3_write },
7536 };
7537 
7538 static const ARMCPRegInfo tlbios_reginfo[] = {
7539     { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7540       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7541       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7542       .fgt = FGT_TLBIVMALLE1OS,
7543       .writefn = tlbi_aa64_vmalle1is_write },
7544     { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7545       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7546       .fgt = FGT_TLBIVAE1OS,
7547       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7548       .writefn = tlbi_aa64_vae1is_write },
7549     { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7550       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7551       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7552       .fgt = FGT_TLBIASIDE1OS,
7553       .writefn = tlbi_aa64_vmalle1is_write },
7554     { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7555       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7556       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7557       .fgt = FGT_TLBIVAAE1OS,
7558       .writefn = tlbi_aa64_vae1is_write },
7559     { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7560       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7561       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7562       .fgt = FGT_TLBIVALE1OS,
7563       .writefn = tlbi_aa64_vae1is_write },
7564     { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7565       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7566       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7567       .fgt = FGT_TLBIVAALE1OS,
7568       .writefn = tlbi_aa64_vae1is_write },
7569     { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7570       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7571       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7572       .writefn = tlbi_aa64_alle2is_write },
7573     { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7574       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7575       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7576       .writefn = tlbi_aa64_vae2is_write },
7577    { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7578       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7579       .access = PL2_W, .type = ARM_CP_NO_RAW,
7580       .writefn = tlbi_aa64_alle1is_write },
7581     { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7582       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7583       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7584       .writefn = tlbi_aa64_vae2is_write },
7585     { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7586       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7587       .access = PL2_W, .type = ARM_CP_NO_RAW,
7588       .writefn = tlbi_aa64_alle1is_write },
7589     { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7590       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7591       .access = PL2_W, .type = ARM_CP_NOP },
7592     { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7593       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7594       .access = PL2_W, .type = ARM_CP_NOP },
7595     { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7596       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7597       .access = PL2_W, .type = ARM_CP_NOP },
7598     { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7599       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7600       .access = PL2_W, .type = ARM_CP_NOP },
7601     { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7602       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7603       .access = PL3_W, .type = ARM_CP_NO_RAW,
7604       .writefn = tlbi_aa64_alle3is_write },
7605     { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7606       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7607       .access = PL3_W, .type = ARM_CP_NO_RAW,
7608       .writefn = tlbi_aa64_vae3is_write },
7609     { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7610       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7611       .access = PL3_W, .type = ARM_CP_NO_RAW,
7612       .writefn = tlbi_aa64_vae3is_write },
7613 };
7614 
rndr_readfn(CPUARMState * env,const ARMCPRegInfo * ri)7615 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7616 {
7617     Error *err = NULL;
7618     uint64_t ret;
7619 
7620     /* Success sets NZCV = 0000.  */
7621     env->NF = env->CF = env->VF = 0, env->ZF = 1;
7622 
7623     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7624         /*
7625          * ??? Failed, for unknown reasons in the crypto subsystem.
7626          * The best we can do is log the reason and return the
7627          * timed-out indication to the guest.  There is no reason
7628          * we know to expect this failure to be transitory, so the
7629          * guest may well hang retrying the operation.
7630          */
7631         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7632                       ri->name, error_get_pretty(err));
7633         error_free(err);
7634 
7635         env->ZF = 0; /* NZCF = 0100 */
7636         return 0;
7637     }
7638     return ret;
7639 }
7640 
7641 /* We do not support re-seeding, so the two registers operate the same.  */
7642 static const ARMCPRegInfo rndr_reginfo[] = {
7643     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7644       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7645       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7646       .access = PL0_R, .readfn = rndr_readfn },
7647     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7648       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7649       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7650       .access = PL0_R, .readfn = rndr_readfn },
7651 };
7652 
dccvap_writefn(CPUARMState * env,const ARMCPRegInfo * opaque,uint64_t value)7653 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7654                           uint64_t value)
7655 {
7656     ARMCPU *cpu = env_archcpu(env);
7657     /* CTR_EL0 System register -> DminLine, bits [19:16] */
7658     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7659     uint64_t vaddr_in = (uint64_t) value;
7660     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7661     void *haddr;
7662     int mem_idx = cpu_mmu_index(env, false);
7663 
7664     /* This won't be crossing page boundaries */
7665     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7666     if (haddr) {
7667 #ifndef CONFIG_USER_ONLY
7668 
7669         ram_addr_t offset;
7670         MemoryRegion *mr;
7671 
7672         /* RCU lock is already being held */
7673         mr = memory_region_from_host(haddr, &offset);
7674 
7675         if (mr) {
7676             memory_region_writeback(mr, offset, dline_size);
7677         }
7678 #endif /*CONFIG_USER_ONLY*/
7679     }
7680 }
7681 
7682 static const ARMCPRegInfo dcpop_reg[] = {
7683     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7684       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7685       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7686       .fgt = FGT_DCCVAP,
7687       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7688 };
7689 
7690 static const ARMCPRegInfo dcpodp_reg[] = {
7691     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7692       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7693       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7694       .fgt = FGT_DCCVADP,
7695       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7696 };
7697 
access_aa64_tid5(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7698 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7699                                        bool isread)
7700 {
7701     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7702         return CP_ACCESS_TRAP_EL2;
7703     }
7704 
7705     return CP_ACCESS_OK;
7706 }
7707 
access_mte(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7708 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7709                                  bool isread)
7710 {
7711     int el = arm_current_el(env);
7712 
7713     if (el < 2 && arm_is_el2_enabled(env)) {
7714         uint64_t hcr = arm_hcr_el2_eff(env);
7715         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7716             return CP_ACCESS_TRAP_EL2;
7717         }
7718     }
7719     if (el < 3 &&
7720         arm_feature(env, ARM_FEATURE_EL3) &&
7721         !(env->cp15.scr_el3 & SCR_ATA)) {
7722         return CP_ACCESS_TRAP_EL3;
7723     }
7724     return CP_ACCESS_OK;
7725 }
7726 
tco_read(CPUARMState * env,const ARMCPRegInfo * ri)7727 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7728 {
7729     return env->pstate & PSTATE_TCO;
7730 }
7731 
tco_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t val)7732 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7733 {
7734     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7735 }
7736 
7737 static const ARMCPRegInfo mte_reginfo[] = {
7738     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7739       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7740       .access = PL1_RW, .accessfn = access_mte,
7741       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7742     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7743       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7744       .access = PL1_RW, .accessfn = access_mte,
7745       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7746     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7747       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7748       .access = PL2_RW, .accessfn = access_mte,
7749       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7750     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7751       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7752       .access = PL3_RW,
7753       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7754     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7755       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7756       .access = PL1_RW, .accessfn = access_mte,
7757       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7758     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7759       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7760       .access = PL1_RW, .accessfn = access_mte,
7761       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7762     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7763       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7764       .type = ARM_CP_NO_RAW,
7765       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7766     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7767       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7768       .type = ARM_CP_NOP, .access = PL1_W,
7769       .fgt = FGT_DCIVAC,
7770       .accessfn = aa64_cacheop_poc_access },
7771     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7772       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7773       .fgt = FGT_DCISW,
7774       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7775     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7776       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7777       .type = ARM_CP_NOP, .access = PL1_W,
7778       .fgt = FGT_DCIVAC,
7779       .accessfn = aa64_cacheop_poc_access },
7780     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7781       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7782       .fgt = FGT_DCISW,
7783       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7784     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7785       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7786       .fgt = FGT_DCCSW,
7787       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7788     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7789       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7790       .fgt = FGT_DCCSW,
7791       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7792     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7793       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7794       .fgt = FGT_DCCISW,
7795       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7796     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7797       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7798       .fgt = FGT_DCCISW,
7799       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7800 };
7801 
7802 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7803     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7804       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7805       .type = ARM_CP_CONST, .access = PL0_RW, },
7806 };
7807 
7808 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7809     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7810       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7811       .type = ARM_CP_NOP, .access = PL0_W,
7812       .fgt = FGT_DCCVAC,
7813       .accessfn = aa64_cacheop_poc_access },
7814     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7815       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7816       .type = ARM_CP_NOP, .access = PL0_W,
7817       .fgt = FGT_DCCVAC,
7818       .accessfn = aa64_cacheop_poc_access },
7819     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7820       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7821       .type = ARM_CP_NOP, .access = PL0_W,
7822       .fgt = FGT_DCCVAP,
7823       .accessfn = aa64_cacheop_poc_access },
7824     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7825       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7826       .type = ARM_CP_NOP, .access = PL0_W,
7827       .fgt = FGT_DCCVAP,
7828       .accessfn = aa64_cacheop_poc_access },
7829     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7830       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7831       .type = ARM_CP_NOP, .access = PL0_W,
7832       .fgt = FGT_DCCVADP,
7833       .accessfn = aa64_cacheop_poc_access },
7834     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7835       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7836       .type = ARM_CP_NOP, .access = PL0_W,
7837       .fgt = FGT_DCCVADP,
7838       .accessfn = aa64_cacheop_poc_access },
7839     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7840       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7841       .type = ARM_CP_NOP, .access = PL0_W,
7842       .fgt = FGT_DCCIVAC,
7843       .accessfn = aa64_cacheop_poc_access },
7844     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7845       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7846       .type = ARM_CP_NOP, .access = PL0_W,
7847       .fgt = FGT_DCCIVAC,
7848       .accessfn = aa64_cacheop_poc_access },
7849     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7850       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7851       .access = PL0_W, .type = ARM_CP_DC_GVA,
7852 #ifndef CONFIG_USER_ONLY
7853       /* Avoid overhead of an access check that always passes in user-mode */
7854       .accessfn = aa64_zva_access,
7855       .fgt = FGT_DCZVA,
7856 #endif
7857     },
7858     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7859       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7860       .access = PL0_W, .type = ARM_CP_DC_GZVA,
7861 #ifndef CONFIG_USER_ONLY
7862       /* Avoid overhead of an access check that always passes in user-mode */
7863       .accessfn = aa64_zva_access,
7864       .fgt = FGT_DCZVA,
7865 #endif
7866     },
7867 };
7868 
access_scxtnum(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7869 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7870                                      bool isread)
7871 {
7872     uint64_t hcr = arm_hcr_el2_eff(env);
7873     int el = arm_current_el(env);
7874 
7875     if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7876         if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7877             if (hcr & HCR_TGE) {
7878                 return CP_ACCESS_TRAP_EL2;
7879             }
7880             return CP_ACCESS_TRAP;
7881         }
7882     } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7883         return CP_ACCESS_TRAP_EL2;
7884     }
7885     if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7886         return CP_ACCESS_TRAP_EL2;
7887     }
7888     if (el < 3
7889         && arm_feature(env, ARM_FEATURE_EL3)
7890         && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7891         return CP_ACCESS_TRAP_EL3;
7892     }
7893     return CP_ACCESS_OK;
7894 }
7895 
7896 static const ARMCPRegInfo scxtnum_reginfo[] = {
7897     { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7898       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7899       .access = PL0_RW, .accessfn = access_scxtnum,
7900       .fgt = FGT_SCXTNUM_EL0,
7901       .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7902     { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7903       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7904       .access = PL1_RW, .accessfn = access_scxtnum,
7905       .fgt = FGT_SCXTNUM_EL1,
7906       .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7907     { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7908       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7909       .access = PL2_RW, .accessfn = access_scxtnum,
7910       .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7911     { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7912       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7913       .access = PL3_RW,
7914       .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7915 };
7916 
access_fgt(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7917 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
7918                                  bool isread)
7919 {
7920     if (arm_current_el(env) == 2 &&
7921         arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
7922         return CP_ACCESS_TRAP_EL3;
7923     }
7924     return CP_ACCESS_OK;
7925 }
7926 
7927 static const ARMCPRegInfo fgt_reginfo[] = {
7928     { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7929       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
7930       .access = PL2_RW, .accessfn = access_fgt,
7931       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
7932     { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7933       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
7934       .access = PL2_RW, .accessfn = access_fgt,
7935       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
7936     { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7937       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
7938       .access = PL2_RW, .accessfn = access_fgt,
7939       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
7940     { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7941       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
7942       .access = PL2_RW, .accessfn = access_fgt,
7943       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
7944     { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
7945       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
7946       .access = PL2_RW, .accessfn = access_fgt,
7947       .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
7948 };
7949 #endif /* TARGET_AARCH64 */
7950 
access_predinv(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7951 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7952                                      bool isread)
7953 {
7954     int el = arm_current_el(env);
7955 
7956     if (el == 0) {
7957         uint64_t sctlr = arm_sctlr(env, el);
7958         if (!(sctlr & SCTLR_EnRCTX)) {
7959             return CP_ACCESS_TRAP;
7960         }
7961     } else if (el == 1) {
7962         uint64_t hcr = arm_hcr_el2_eff(env);
7963         if (hcr & HCR_NV) {
7964             return CP_ACCESS_TRAP_EL2;
7965         }
7966     }
7967     return CP_ACCESS_OK;
7968 }
7969 
7970 static const ARMCPRegInfo predinv_reginfo[] = {
7971     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7972       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7973       .fgt = FGT_CFPRCTX,
7974       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7975     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7976       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7977       .fgt = FGT_DVPRCTX,
7978       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7979     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7980       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7981       .fgt = FGT_CPPRCTX,
7982       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7983     /*
7984      * Note the AArch32 opcodes have a different OPC1.
7985      */
7986     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7987       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7988       .fgt = FGT_CFPRCTX,
7989       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7990     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7991       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7992       .fgt = FGT_DVPRCTX,
7993       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7994     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7995       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7996       .fgt = FGT_CPPRCTX,
7997       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7998 };
7999 
ccsidr2_read(CPUARMState * env,const ARMCPRegInfo * ri)8000 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
8001 {
8002     /* Read the high 32 bits of the current CCSIDR */
8003     return extract64(ccsidr_read(env, ri), 32, 32);
8004 }
8005 
8006 static const ARMCPRegInfo ccsidr2_reginfo[] = {
8007     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
8008       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
8009       .access = PL1_R,
8010       .accessfn = access_tid4,
8011       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
8012 };
8013 
access_aa64_tid3(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8014 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8015                                        bool isread)
8016 {
8017     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
8018         return CP_ACCESS_TRAP_EL2;
8019     }
8020 
8021     return CP_ACCESS_OK;
8022 }
8023 
access_aa32_tid3(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8024 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8025                                        bool isread)
8026 {
8027     if (arm_feature(env, ARM_FEATURE_V8)) {
8028         return access_aa64_tid3(env, ri, isread);
8029     }
8030 
8031     return CP_ACCESS_OK;
8032 }
8033 
access_jazelle(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8034 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
8035                                      bool isread)
8036 {
8037     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
8038         return CP_ACCESS_TRAP_EL2;
8039     }
8040 
8041     return CP_ACCESS_OK;
8042 }
8043 
access_joscr_jmcr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8044 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
8045                                         const ARMCPRegInfo *ri, bool isread)
8046 {
8047     /*
8048      * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
8049      * in v7A, not in v8A.
8050      */
8051     if (!arm_feature(env, ARM_FEATURE_V8) &&
8052         arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
8053         (env->cp15.hstr_el2 & HSTR_TJDBX)) {
8054         return CP_ACCESS_TRAP_EL2;
8055     }
8056     return CP_ACCESS_OK;
8057 }
8058 
8059 static const ARMCPRegInfo jazelle_regs[] = {
8060     { .name = "JIDR",
8061       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
8062       .access = PL1_R, .accessfn = access_jazelle,
8063       .type = ARM_CP_CONST, .resetvalue = 0 },
8064     { .name = "JOSCR",
8065       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
8066       .accessfn = access_joscr_jmcr,
8067       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8068     { .name = "JMCR",
8069       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
8070       .accessfn = access_joscr_jmcr,
8071       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8072 };
8073 
8074 static const ARMCPRegInfo contextidr_el2 = {
8075     .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
8076     .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
8077     .access = PL2_RW,
8078     .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
8079 };
8080 
8081 static const ARMCPRegInfo vhe_reginfo[] = {
8082     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
8083       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
8084       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
8085       .raw_writefn = raw_write,
8086       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
8087 #ifndef CONFIG_USER_ONLY
8088     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
8089       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
8090       .fieldoffset =
8091         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
8092       .type = ARM_CP_IO, .access = PL2_RW,
8093       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
8094     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
8095       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
8096       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
8097       .resetfn = gt_hv_timer_reset,
8098       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
8099     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
8100       .type = ARM_CP_IO,
8101       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
8102       .access = PL2_RW,
8103       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
8104       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
8105     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
8106       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
8107       .type = ARM_CP_IO | ARM_CP_ALIAS,
8108       .access = PL2_RW, .accessfn = e2h_access,
8109       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
8110       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
8111     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
8112       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
8113       .type = ARM_CP_IO | ARM_CP_ALIAS,
8114       .access = PL2_RW, .accessfn = e2h_access,
8115       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
8116       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
8117     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8118       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
8119       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8120       .access = PL2_RW, .accessfn = e2h_access,
8121       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
8122     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8123       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
8124       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8125       .access = PL2_RW, .accessfn = e2h_access,
8126       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
8127     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8128       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
8129       .type = ARM_CP_IO | ARM_CP_ALIAS,
8130       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
8131       .access = PL2_RW, .accessfn = e2h_access,
8132       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
8133     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8134       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
8135       .type = ARM_CP_IO | ARM_CP_ALIAS,
8136       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
8137       .access = PL2_RW, .accessfn = e2h_access,
8138       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
8139 #endif
8140 };
8141 
8142 #ifndef CONFIG_USER_ONLY
8143 static const ARMCPRegInfo ats1e1_reginfo[] = {
8144     { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
8145       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8146       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8147       .fgt = FGT_ATS1E1RP,
8148       .accessfn = at_e012_access, .writefn = ats_write64 },
8149     { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
8150       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8151       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8152       .fgt = FGT_ATS1E1WP,
8153       .accessfn = at_e012_access, .writefn = ats_write64 },
8154 };
8155 
8156 static const ARMCPRegInfo ats1cp_reginfo[] = {
8157     { .name = "ATS1CPRP",
8158       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8159       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8160       .writefn = ats_write },
8161     { .name = "ATS1CPWP",
8162       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8163       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8164       .writefn = ats_write },
8165 };
8166 #endif
8167 
8168 /*
8169  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8170  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8171  * is non-zero, which is never for ARMv7, optionally in ARMv8
8172  * and mandatorily for ARMv8.2 and up.
8173  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8174  * implementation is RAZ/WI we can ignore this detail, as we
8175  * do for ACTLR.
8176  */
8177 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8178     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8179       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8180       .access = PL1_RW, .accessfn = access_tacr,
8181       .type = ARM_CP_CONST, .resetvalue = 0 },
8182     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8183       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8184       .access = PL2_RW, .type = ARM_CP_CONST,
8185       .resetvalue = 0 },
8186 };
8187 
register_cp_regs_for_features(ARMCPU * cpu)8188 void register_cp_regs_for_features(ARMCPU *cpu)
8189 {
8190     /* Register all the coprocessor registers based on feature bits */
8191     CPUARMState *env = &cpu->env;
8192     if (arm_feature(env, ARM_FEATURE_M)) {
8193         /* M profile has no coprocessor registers */
8194         return;
8195     }
8196 
8197     define_arm_cp_regs(cpu, cp_reginfo);
8198     if (!arm_feature(env, ARM_FEATURE_V8)) {
8199         /*
8200          * Must go early as it is full of wildcards that may be
8201          * overridden by later definitions.
8202          */
8203         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8204     }
8205 
8206     if (arm_feature(env, ARM_FEATURE_V6)) {
8207         /* The ID registers all have impdef reset values */
8208         ARMCPRegInfo v6_idregs[] = {
8209             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8210               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8211               .access = PL1_R, .type = ARM_CP_CONST,
8212               .accessfn = access_aa32_tid3,
8213               .resetvalue = cpu->isar.id_pfr0 },
8214             /*
8215              * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8216              * the value of the GIC field until after we define these regs.
8217              */
8218             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8219               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8220               .access = PL1_R, .type = ARM_CP_NO_RAW,
8221               .accessfn = access_aa32_tid3,
8222 #ifdef CONFIG_USER_ONLY
8223               .type = ARM_CP_CONST,
8224               .resetvalue = cpu->isar.id_pfr1,
8225 #else
8226               .type = ARM_CP_NO_RAW,
8227               .accessfn = access_aa32_tid3,
8228               .readfn = id_pfr1_read,
8229               .writefn = arm_cp_write_ignore
8230 #endif
8231             },
8232             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8233               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8234               .access = PL1_R, .type = ARM_CP_CONST,
8235               .accessfn = access_aa32_tid3,
8236               .resetvalue = cpu->isar.id_dfr0 },
8237             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8238               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8239               .access = PL1_R, .type = ARM_CP_CONST,
8240               .accessfn = access_aa32_tid3,
8241               .resetvalue = cpu->id_afr0 },
8242             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8243               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8244               .access = PL1_R, .type = ARM_CP_CONST,
8245               .accessfn = access_aa32_tid3,
8246               .resetvalue = cpu->isar.id_mmfr0 },
8247             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8248               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8249               .access = PL1_R, .type = ARM_CP_CONST,
8250               .accessfn = access_aa32_tid3,
8251               .resetvalue = cpu->isar.id_mmfr1 },
8252             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8253               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8254               .access = PL1_R, .type = ARM_CP_CONST,
8255               .accessfn = access_aa32_tid3,
8256               .resetvalue = cpu->isar.id_mmfr2 },
8257             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8258               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8259               .access = PL1_R, .type = ARM_CP_CONST,
8260               .accessfn = access_aa32_tid3,
8261               .resetvalue = cpu->isar.id_mmfr3 },
8262             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8263               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8264               .access = PL1_R, .type = ARM_CP_CONST,
8265               .accessfn = access_aa32_tid3,
8266               .resetvalue = cpu->isar.id_isar0 },
8267             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8268               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8269               .access = PL1_R, .type = ARM_CP_CONST,
8270               .accessfn = access_aa32_tid3,
8271               .resetvalue = cpu->isar.id_isar1 },
8272             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8273               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8274               .access = PL1_R, .type = ARM_CP_CONST,
8275               .accessfn = access_aa32_tid3,
8276               .resetvalue = cpu->isar.id_isar2 },
8277             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8278               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8279               .access = PL1_R, .type = ARM_CP_CONST,
8280               .accessfn = access_aa32_tid3,
8281               .resetvalue = cpu->isar.id_isar3 },
8282             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8283               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8284               .access = PL1_R, .type = ARM_CP_CONST,
8285               .accessfn = access_aa32_tid3,
8286               .resetvalue = cpu->isar.id_isar4 },
8287             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8288               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8289               .access = PL1_R, .type = ARM_CP_CONST,
8290               .accessfn = access_aa32_tid3,
8291               .resetvalue = cpu->isar.id_isar5 },
8292             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8293               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8294               .access = PL1_R, .type = ARM_CP_CONST,
8295               .accessfn = access_aa32_tid3,
8296               .resetvalue = cpu->isar.id_mmfr4 },
8297             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8298               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8299               .access = PL1_R, .type = ARM_CP_CONST,
8300               .accessfn = access_aa32_tid3,
8301               .resetvalue = cpu->isar.id_isar6 },
8302         };
8303         define_arm_cp_regs(cpu, v6_idregs);
8304         define_arm_cp_regs(cpu, v6_cp_reginfo);
8305     } else {
8306         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8307     }
8308     if (arm_feature(env, ARM_FEATURE_V6K)) {
8309         define_arm_cp_regs(cpu, v6k_cp_reginfo);
8310     }
8311     if (arm_feature(env, ARM_FEATURE_V7MP) &&
8312         !arm_feature(env, ARM_FEATURE_PMSA)) {
8313         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8314     }
8315     if (arm_feature(env, ARM_FEATURE_V7VE)) {
8316         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8317     }
8318     if (arm_feature(env, ARM_FEATURE_V7)) {
8319         ARMCPRegInfo clidr = {
8320             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8321             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8322             .access = PL1_R, .type = ARM_CP_CONST,
8323             .accessfn = access_tid4,
8324             .fgt = FGT_CLIDR_EL1,
8325             .resetvalue = cpu->clidr
8326         };
8327         define_one_arm_cp_reg(cpu, &clidr);
8328         define_arm_cp_regs(cpu, v7_cp_reginfo);
8329         define_debug_regs(cpu);
8330         define_pmu_regs(cpu);
8331     } else {
8332         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8333     }
8334     if (arm_feature(env, ARM_FEATURE_V8)) {
8335         /*
8336          * v8 ID registers, which all have impdef reset values.
8337          * Note that within the ID register ranges the unused slots
8338          * must all RAZ, not UNDEF; future architecture versions may
8339          * define new registers here.
8340          * ID registers which are AArch64 views of the AArch32 ID registers
8341          * which already existed in v6 and v7 are handled elsewhere,
8342          * in v6_idregs[].
8343          */
8344         int i;
8345         ARMCPRegInfo v8_idregs[] = {
8346             /*
8347              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8348              * emulation because we don't know the right value for the
8349              * GIC field until after we define these regs.
8350              */
8351             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8352               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8353               .access = PL1_R,
8354 #ifdef CONFIG_USER_ONLY
8355               .type = ARM_CP_CONST,
8356               .resetvalue = cpu->isar.id_aa64pfr0
8357 #else
8358               .type = ARM_CP_NO_RAW,
8359               .accessfn = access_aa64_tid3,
8360               .readfn = id_aa64pfr0_read,
8361               .writefn = arm_cp_write_ignore
8362 #endif
8363             },
8364             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8365               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8366               .access = PL1_R, .type = ARM_CP_CONST,
8367               .accessfn = access_aa64_tid3,
8368               .resetvalue = cpu->isar.id_aa64pfr1},
8369             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8370               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8371               .access = PL1_R, .type = ARM_CP_CONST,
8372               .accessfn = access_aa64_tid3,
8373               .resetvalue = 0 },
8374             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8375               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8376               .access = PL1_R, .type = ARM_CP_CONST,
8377               .accessfn = access_aa64_tid3,
8378               .resetvalue = 0 },
8379             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8380               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8381               .access = PL1_R, .type = ARM_CP_CONST,
8382               .accessfn = access_aa64_tid3,
8383               .resetvalue = cpu->isar.id_aa64zfr0 },
8384             { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8385               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8386               .access = PL1_R, .type = ARM_CP_CONST,
8387               .accessfn = access_aa64_tid3,
8388               .resetvalue = cpu->isar.id_aa64smfr0 },
8389             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8390               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8391               .access = PL1_R, .type = ARM_CP_CONST,
8392               .accessfn = access_aa64_tid3,
8393               .resetvalue = 0 },
8394             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8395               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8396               .access = PL1_R, .type = ARM_CP_CONST,
8397               .accessfn = access_aa64_tid3,
8398               .resetvalue = 0 },
8399             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8400               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8401               .access = PL1_R, .type = ARM_CP_CONST,
8402               .accessfn = access_aa64_tid3,
8403               .resetvalue = cpu->isar.id_aa64dfr0 },
8404             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8405               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8406               .access = PL1_R, .type = ARM_CP_CONST,
8407               .accessfn = access_aa64_tid3,
8408               .resetvalue = cpu->isar.id_aa64dfr1 },
8409             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8410               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8411               .access = PL1_R, .type = ARM_CP_CONST,
8412               .accessfn = access_aa64_tid3,
8413               .resetvalue = 0 },
8414             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8415               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8416               .access = PL1_R, .type = ARM_CP_CONST,
8417               .accessfn = access_aa64_tid3,
8418               .resetvalue = 0 },
8419             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8420               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8421               .access = PL1_R, .type = ARM_CP_CONST,
8422               .accessfn = access_aa64_tid3,
8423               .resetvalue = cpu->id_aa64afr0 },
8424             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8425               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8426               .access = PL1_R, .type = ARM_CP_CONST,
8427               .accessfn = access_aa64_tid3,
8428               .resetvalue = cpu->id_aa64afr1 },
8429             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8430               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8431               .access = PL1_R, .type = ARM_CP_CONST,
8432               .accessfn = access_aa64_tid3,
8433               .resetvalue = 0 },
8434             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8435               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8436               .access = PL1_R, .type = ARM_CP_CONST,
8437               .accessfn = access_aa64_tid3,
8438               .resetvalue = 0 },
8439             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8440               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8441               .access = PL1_R, .type = ARM_CP_CONST,
8442               .accessfn = access_aa64_tid3,
8443               .resetvalue = cpu->isar.id_aa64isar0 },
8444             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8445               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8446               .access = PL1_R, .type = ARM_CP_CONST,
8447               .accessfn = access_aa64_tid3,
8448               .resetvalue = cpu->isar.id_aa64isar1 },
8449             { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64,
8450               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8451               .access = PL1_R, .type = ARM_CP_CONST,
8452               .accessfn = access_aa64_tid3,
8453               .resetvalue = cpu->isar.id_aa64isar2 },
8454             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8455               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8456               .access = PL1_R, .type = ARM_CP_CONST,
8457               .accessfn = access_aa64_tid3,
8458               .resetvalue = 0 },
8459             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8460               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8461               .access = PL1_R, .type = ARM_CP_CONST,
8462               .accessfn = access_aa64_tid3,
8463               .resetvalue = 0 },
8464             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8465               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8466               .access = PL1_R, .type = ARM_CP_CONST,
8467               .accessfn = access_aa64_tid3,
8468               .resetvalue = 0 },
8469             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8470               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8471               .access = PL1_R, .type = ARM_CP_CONST,
8472               .accessfn = access_aa64_tid3,
8473               .resetvalue = 0 },
8474             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8475               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8476               .access = PL1_R, .type = ARM_CP_CONST,
8477               .accessfn = access_aa64_tid3,
8478               .resetvalue = 0 },
8479             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8480               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8481               .access = PL1_R, .type = ARM_CP_CONST,
8482               .accessfn = access_aa64_tid3,
8483               .resetvalue = cpu->isar.id_aa64mmfr0 },
8484             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8485               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8486               .access = PL1_R, .type = ARM_CP_CONST,
8487               .accessfn = access_aa64_tid3,
8488               .resetvalue = cpu->isar.id_aa64mmfr1 },
8489             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8490               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8491               .access = PL1_R, .type = ARM_CP_CONST,
8492               .accessfn = access_aa64_tid3,
8493               .resetvalue = cpu->isar.id_aa64mmfr2 },
8494             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8495               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8496               .access = PL1_R, .type = ARM_CP_CONST,
8497               .accessfn = access_aa64_tid3,
8498               .resetvalue = 0 },
8499             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8500               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8501               .access = PL1_R, .type = ARM_CP_CONST,
8502               .accessfn = access_aa64_tid3,
8503               .resetvalue = 0 },
8504             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8505               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8506               .access = PL1_R, .type = ARM_CP_CONST,
8507               .accessfn = access_aa64_tid3,
8508               .resetvalue = 0 },
8509             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8510               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8511               .access = PL1_R, .type = ARM_CP_CONST,
8512               .accessfn = access_aa64_tid3,
8513               .resetvalue = 0 },
8514             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8515               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8516               .access = PL1_R, .type = ARM_CP_CONST,
8517               .accessfn = access_aa64_tid3,
8518               .resetvalue = 0 },
8519             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8520               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8521               .access = PL1_R, .type = ARM_CP_CONST,
8522               .accessfn = access_aa64_tid3,
8523               .resetvalue = cpu->isar.mvfr0 },
8524             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8525               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8526               .access = PL1_R, .type = ARM_CP_CONST,
8527               .accessfn = access_aa64_tid3,
8528               .resetvalue = cpu->isar.mvfr1 },
8529             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8530               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8531               .access = PL1_R, .type = ARM_CP_CONST,
8532               .accessfn = access_aa64_tid3,
8533               .resetvalue = cpu->isar.mvfr2 },
8534             /*
8535              * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8536              * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8537              * as RAZ, since it is in the "reserved for future ID
8538              * registers, RAZ" part of the AArch32 encoding space.
8539              */
8540             { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8541               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8542               .access = PL1_R, .type = ARM_CP_CONST,
8543               .accessfn = access_aa64_tid3,
8544               .resetvalue = 0 },
8545             { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8546               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8547               .access = PL1_R, .type = ARM_CP_CONST,
8548               .accessfn = access_aa64_tid3,
8549               .resetvalue = 0 },
8550             { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8551               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8552               .access = PL1_R, .type = ARM_CP_CONST,
8553               .accessfn = access_aa64_tid3,
8554               .resetvalue = 0 },
8555             /*
8556              * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8557              * they're also RAZ for AArch64, and in v8 are gradually
8558              * being filled with AArch64-view-of-AArch32-ID-register
8559              * for new ID registers.
8560              */
8561             { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8562               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8563               .access = PL1_R, .type = ARM_CP_CONST,
8564               .accessfn = access_aa64_tid3,
8565               .resetvalue = 0 },
8566             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8567               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8568               .access = PL1_R, .type = ARM_CP_CONST,
8569               .accessfn = access_aa64_tid3,
8570               .resetvalue = cpu->isar.id_pfr2 },
8571             { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8572               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8573               .access = PL1_R, .type = ARM_CP_CONST,
8574               .accessfn = access_aa64_tid3,
8575               .resetvalue = cpu->isar.id_dfr1 },
8576             { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8577               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8578               .access = PL1_R, .type = ARM_CP_CONST,
8579               .accessfn = access_aa64_tid3,
8580               .resetvalue = cpu->isar.id_mmfr5 },
8581             { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8582               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8583               .access = PL1_R, .type = ARM_CP_CONST,
8584               .accessfn = access_aa64_tid3,
8585               .resetvalue = 0 },
8586             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8587               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8588               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8589               .fgt = FGT_PMCEIDN_EL0,
8590               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8591             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8592               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8593               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8594               .fgt = FGT_PMCEIDN_EL0,
8595               .resetvalue = cpu->pmceid0 },
8596             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8597               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8598               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8599               .fgt = FGT_PMCEIDN_EL0,
8600               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8601             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8602               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8603               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8604               .fgt = FGT_PMCEIDN_EL0,
8605               .resetvalue = cpu->pmceid1 },
8606         };
8607 #ifdef CONFIG_USER_ONLY
8608         static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8609             { .name = "ID_AA64PFR0_EL1",
8610               .exported_bits = R_ID_AA64PFR0_FP_MASK |
8611                                R_ID_AA64PFR0_ADVSIMD_MASK |
8612                                R_ID_AA64PFR0_SVE_MASK |
8613                                R_ID_AA64PFR0_DIT_MASK,
8614               .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8615                             (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8616             { .name = "ID_AA64PFR1_EL1",
8617               .exported_bits = R_ID_AA64PFR1_BT_MASK |
8618                                R_ID_AA64PFR1_SSBS_MASK |
8619                                R_ID_AA64PFR1_MTE_MASK |
8620                                R_ID_AA64PFR1_SME_MASK },
8621             { .name = "ID_AA64PFR*_EL1_RESERVED",
8622               .is_glob = true },
8623             { .name = "ID_AA64ZFR0_EL1",
8624               .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8625                                R_ID_AA64ZFR0_AES_MASK |
8626                                R_ID_AA64ZFR0_BITPERM_MASK |
8627                                R_ID_AA64ZFR0_BFLOAT16_MASK |
8628                                R_ID_AA64ZFR0_SHA3_MASK |
8629                                R_ID_AA64ZFR0_SM4_MASK |
8630                                R_ID_AA64ZFR0_I8MM_MASK |
8631                                R_ID_AA64ZFR0_F32MM_MASK |
8632                                R_ID_AA64ZFR0_F64MM_MASK },
8633             { .name = "ID_AA64SMFR0_EL1",
8634               .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8635                                R_ID_AA64SMFR0_BI32I32_MASK |
8636                                R_ID_AA64SMFR0_B16F32_MASK |
8637                                R_ID_AA64SMFR0_F16F32_MASK |
8638                                R_ID_AA64SMFR0_I8I32_MASK |
8639                                R_ID_AA64SMFR0_F16F16_MASK |
8640                                R_ID_AA64SMFR0_B16B16_MASK |
8641                                R_ID_AA64SMFR0_I16I32_MASK |
8642                                R_ID_AA64SMFR0_F64F64_MASK |
8643                                R_ID_AA64SMFR0_I16I64_MASK |
8644                                R_ID_AA64SMFR0_SMEVER_MASK |
8645                                R_ID_AA64SMFR0_FA64_MASK },
8646             { .name = "ID_AA64MMFR0_EL1",
8647               .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8648               .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8649                             (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8650             { .name = "ID_AA64MMFR1_EL1",
8651               .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8652             { .name = "ID_AA64MMFR2_EL1",
8653               .exported_bits = R_ID_AA64MMFR2_AT_MASK },
8654             { .name = "ID_AA64MMFR*_EL1_RESERVED",
8655               .is_glob = true },
8656             { .name = "ID_AA64DFR0_EL1",
8657               .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8658             { .name = "ID_AA64DFR1_EL1" },
8659             { .name = "ID_AA64DFR*_EL1_RESERVED",
8660               .is_glob = true },
8661             { .name = "ID_AA64AFR*",
8662               .is_glob = true },
8663             { .name = "ID_AA64ISAR0_EL1",
8664               .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8665                                R_ID_AA64ISAR0_SHA1_MASK |
8666                                R_ID_AA64ISAR0_SHA2_MASK |
8667                                R_ID_AA64ISAR0_CRC32_MASK |
8668                                R_ID_AA64ISAR0_ATOMIC_MASK |
8669                                R_ID_AA64ISAR0_RDM_MASK |
8670                                R_ID_AA64ISAR0_SHA3_MASK |
8671                                R_ID_AA64ISAR0_SM3_MASK |
8672                                R_ID_AA64ISAR0_SM4_MASK |
8673                                R_ID_AA64ISAR0_DP_MASK |
8674                                R_ID_AA64ISAR0_FHM_MASK |
8675                                R_ID_AA64ISAR0_TS_MASK |
8676                                R_ID_AA64ISAR0_RNDR_MASK },
8677             { .name = "ID_AA64ISAR1_EL1",
8678               .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8679                                R_ID_AA64ISAR1_APA_MASK |
8680                                R_ID_AA64ISAR1_API_MASK |
8681                                R_ID_AA64ISAR1_JSCVT_MASK |
8682                                R_ID_AA64ISAR1_FCMA_MASK |
8683                                R_ID_AA64ISAR1_LRCPC_MASK |
8684                                R_ID_AA64ISAR1_GPA_MASK |
8685                                R_ID_AA64ISAR1_GPI_MASK |
8686                                R_ID_AA64ISAR1_FRINTTS_MASK |
8687                                R_ID_AA64ISAR1_SB_MASK |
8688                                R_ID_AA64ISAR1_BF16_MASK |
8689                                R_ID_AA64ISAR1_DGH_MASK |
8690                                R_ID_AA64ISAR1_I8MM_MASK },
8691             { .name = "ID_AA64ISAR2_EL1",
8692               .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8693                                R_ID_AA64ISAR2_RPRES_MASK |
8694                                R_ID_AA64ISAR2_GPA3_MASK |
8695                                R_ID_AA64ISAR2_APA3_MASK |
8696                                R_ID_AA64ISAR2_MOPS_MASK |
8697                                R_ID_AA64ISAR2_BC_MASK |
8698                                R_ID_AA64ISAR2_RPRFM_MASK |
8699                                R_ID_AA64ISAR2_CSSC_MASK },
8700             { .name = "ID_AA64ISAR*_EL1_RESERVED",
8701               .is_glob = true },
8702         };
8703         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8704 #endif
8705         /*
8706          * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL.
8707          * TODO: For RMR, a write with bit 1 set should do something with
8708          * cpu_reset(). In the meantime, "the bit is strictly a request",
8709          * so we are in spec just ignoring writes.
8710          */
8711         if (!arm_feature(env, ARM_FEATURE_EL3) &&
8712             !arm_feature(env, ARM_FEATURE_EL2)) {
8713             ARMCPRegInfo el1_reset_regs[] = {
8714                 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8715                   .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8716                   .access = PL1_R,
8717                   .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8718                 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH,
8719                   .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
8720                   .access = PL1_RW, .type = ARM_CP_CONST,
8721                   .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }
8722             };
8723             define_arm_cp_regs(cpu, el1_reset_regs);
8724         }
8725         define_arm_cp_regs(cpu, v8_idregs);
8726         define_arm_cp_regs(cpu, v8_cp_reginfo);
8727 
8728         for (i = 4; i < 16; i++) {
8729             /*
8730              * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
8731              * For pre-v8 cores there are RAZ patterns for these in
8732              * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
8733              * v8 extends the "must RAZ" part of the ID register space
8734              * to also cover c0, 0, c{8-15}, {0-7}.
8735              * These are STATE_AA32 because in the AArch64 sysreg space
8736              * c4-c7 is where the AArch64 ID registers live (and we've
8737              * already defined those in v8_idregs[]), and c8-c15 are not
8738              * "must RAZ" for AArch64.
8739              */
8740             g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
8741             ARMCPRegInfo v8_aa32_raz_idregs = {
8742                 .name = name,
8743                 .state = ARM_CP_STATE_AA32,
8744                 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
8745                 .access = PL1_R, .type = ARM_CP_CONST,
8746                 .accessfn = access_aa64_tid3,
8747                 .resetvalue = 0 };
8748             define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
8749         }
8750     }
8751 
8752     /*
8753      * Register the base EL2 cpregs.
8754      * Pre v8, these registers are implemented only as part of the
8755      * Virtualization Extensions (EL2 present).  Beginning with v8,
8756      * if EL2 is missing but EL3 is enabled, mostly these become
8757      * RES0 from EL3, with some specific exceptions.
8758      */
8759     if (arm_feature(env, ARM_FEATURE_EL2)
8760         || (arm_feature(env, ARM_FEATURE_EL3)
8761             && arm_feature(env, ARM_FEATURE_V8))) {
8762         uint64_t vmpidr_def = mpidr_read_val(env);
8763         ARMCPRegInfo vpidr_regs[] = {
8764             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8765               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8766               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8767               .resetvalue = cpu->midr,
8768               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8769               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8770             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8771               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8772               .access = PL2_RW, .resetvalue = cpu->midr,
8773               .type = ARM_CP_EL3_NO_EL2_C_NZ,
8774               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8775             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8776               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8777               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8778               .resetvalue = vmpidr_def,
8779               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8780               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8781             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8782               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8783               .access = PL2_RW, .resetvalue = vmpidr_def,
8784               .type = ARM_CP_EL3_NO_EL2_C_NZ,
8785               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8786         };
8787         /*
8788          * The only field of MDCR_EL2 that has a defined architectural reset
8789          * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
8790          */
8791         ARMCPRegInfo mdcr_el2 = {
8792             .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
8793             .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
8794             .writefn = mdcr_el2_write,
8795             .access = PL2_RW, .resetvalue = pmu_num_counters(env),
8796             .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
8797         };
8798         define_one_arm_cp_reg(cpu, &mdcr_el2);
8799         define_arm_cp_regs(cpu, vpidr_regs);
8800         define_arm_cp_regs(cpu, el2_cp_reginfo);
8801         if (arm_feature(env, ARM_FEATURE_V8)) {
8802             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8803         }
8804         if (cpu_isar_feature(aa64_sel2, cpu)) {
8805             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8806         }
8807         /*
8808          * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL.
8809          * See commentary near RMR_EL1.
8810          */
8811         if (!arm_feature(env, ARM_FEATURE_EL3)) {
8812             static const ARMCPRegInfo el2_reset_regs[] = {
8813                 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8814                   .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8815                   .access = PL2_R,
8816                   .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8817                 { .name = "RVBAR", .type = ARM_CP_ALIAS,
8818                   .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8819                   .access = PL2_R,
8820                   .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8821                 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64,
8822                   .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2,
8823                   .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
8824             };
8825             define_arm_cp_regs(cpu, el2_reset_regs);
8826         }
8827     }
8828 
8829     /* Register the base EL3 cpregs. */
8830     if (arm_feature(env, ARM_FEATURE_EL3)) {
8831         define_arm_cp_regs(cpu, el3_cp_reginfo);
8832         ARMCPRegInfo el3_regs[] = {
8833             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8834               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8835               .access = PL3_R,
8836               .fieldoffset = offsetof(CPUARMState, cp15.rvbar), },
8837             { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64,
8838               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2,
8839               .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
8840             { .name = "RMR", .state = ARM_CP_STATE_AA32,
8841               .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
8842               .access = PL3_RW, .type = ARM_CP_CONST,
8843               .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) },
8844             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8845               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8846               .access = PL3_RW,
8847               .raw_writefn = raw_write, .writefn = sctlr_write,
8848               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8849               .resetvalue = cpu->reset_sctlr },
8850         };
8851 
8852         define_arm_cp_regs(cpu, el3_regs);
8853     }
8854     /*
8855      * The behaviour of NSACR is sufficiently various that we don't
8856      * try to describe it in a single reginfo:
8857      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
8858      *     reads as constant 0xc00 from NS EL1 and NS EL2
8859      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8860      *  if v7 without EL3, register doesn't exist
8861      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8862      */
8863     if (arm_feature(env, ARM_FEATURE_EL3)) {
8864         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8865             static const ARMCPRegInfo nsacr = {
8866                 .name = "NSACR", .type = ARM_CP_CONST,
8867                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8868                 .access = PL1_RW, .accessfn = nsacr_access,
8869                 .resetvalue = 0xc00
8870             };
8871             define_one_arm_cp_reg(cpu, &nsacr);
8872         } else {
8873             static const ARMCPRegInfo nsacr = {
8874                 .name = "NSACR",
8875                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8876                 .access = PL3_RW | PL1_R,
8877                 .resetvalue = 0,
8878                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8879             };
8880             define_one_arm_cp_reg(cpu, &nsacr);
8881         }
8882     } else {
8883         if (arm_feature(env, ARM_FEATURE_V8)) {
8884             static const ARMCPRegInfo nsacr = {
8885                 .name = "NSACR", .type = ARM_CP_CONST,
8886                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8887                 .access = PL1_R,
8888                 .resetvalue = 0xc00
8889             };
8890             define_one_arm_cp_reg(cpu, &nsacr);
8891         }
8892     }
8893 
8894     if (arm_feature(env, ARM_FEATURE_PMSA)) {
8895         if (arm_feature(env, ARM_FEATURE_V6)) {
8896             /* PMSAv6 not implemented */
8897             assert(arm_feature(env, ARM_FEATURE_V7));
8898             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8899             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8900         } else {
8901             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8902         }
8903     } else {
8904         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8905         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8906         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
8907         if (cpu_isar_feature(aa32_hpd, cpu)) {
8908             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8909         }
8910     }
8911     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8912         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8913     }
8914     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8915         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8916     }
8917     if (arm_feature(env, ARM_FEATURE_VAPA)) {
8918         ARMCPRegInfo vapa_cp_reginfo[] = {
8919             { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
8920               .access = PL1_RW, .resetvalue = 0,
8921               .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
8922                                      offsetoflow32(CPUARMState, cp15.par_ns) },
8923               .writefn = par_write},
8924 #ifndef CONFIG_USER_ONLY
8925             /* This underdecoding is safe because the reginfo is NO_RAW. */
8926             { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
8927               .access = PL1_W, .accessfn = ats_access,
8928               .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
8929 #endif
8930         };
8931 
8932         /*
8933          * When LPAE exists this 32-bit PAR register is an alias of the
8934          * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[]
8935          */
8936         if (arm_feature(env, ARM_FEATURE_LPAE)) {
8937             vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB;
8938         }
8939         define_arm_cp_regs(cpu, vapa_cp_reginfo);
8940     }
8941     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8942         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8943     }
8944     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8945         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8946     }
8947     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8948         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8949     }
8950     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8951         define_arm_cp_regs(cpu, omap_cp_reginfo);
8952     }
8953     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8954         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8955     }
8956     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8957         define_arm_cp_regs(cpu, xscale_cp_reginfo);
8958     }
8959     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8960         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8961     }
8962     if (arm_feature(env, ARM_FEATURE_LPAE)) {
8963         define_arm_cp_regs(cpu, lpae_cp_reginfo);
8964     }
8965     if (cpu_isar_feature(aa32_jazelle, cpu)) {
8966         define_arm_cp_regs(cpu, jazelle_regs);
8967     }
8968     /*
8969      * Slightly awkwardly, the OMAP and StrongARM cores need all of
8970      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8971      * be read-only (ie write causes UNDEF exception).
8972      */
8973     {
8974         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8975             /*
8976              * Pre-v8 MIDR space.
8977              * Note that the MIDR isn't a simple constant register because
8978              * of the TI925 behaviour where writes to another register can
8979              * cause the MIDR value to change.
8980              *
8981              * Unimplemented registers in the c15 0 0 0 space default to
8982              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8983              * and friends override accordingly.
8984              */
8985             { .name = "MIDR",
8986               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8987               .access = PL1_R, .resetvalue = cpu->midr,
8988               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8989               .readfn = midr_read,
8990               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8991               .type = ARM_CP_OVERRIDE },
8992             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8993             { .name = "DUMMY",
8994               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8995               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8996             { .name = "DUMMY",
8997               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8998               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8999             { .name = "DUMMY",
9000               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
9001               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9002             { .name = "DUMMY",
9003               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
9004               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9005             { .name = "DUMMY",
9006               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
9007               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9008         };
9009         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
9010             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
9011               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
9012               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
9013               .fgt = FGT_MIDR_EL1,
9014               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9015               .readfn = midr_read },
9016             /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
9017             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
9018               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
9019               .access = PL1_R, .resetvalue = cpu->midr },
9020             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
9021               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
9022               .access = PL1_R,
9023               .accessfn = access_aa64_tid1,
9024               .fgt = FGT_REVIDR_EL1,
9025               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
9026         };
9027         ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
9028             .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB,
9029             .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9030             .access = PL1_R, .resetvalue = cpu->midr
9031         };
9032         ARMCPRegInfo id_cp_reginfo[] = {
9033             /* These are common to v8 and pre-v8 */
9034             { .name = "CTR",
9035               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
9036               .access = PL1_R, .accessfn = ctr_el0_access,
9037               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9038             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
9039               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
9040               .access = PL0_R, .accessfn = ctr_el0_access,
9041               .fgt = FGT_CTR_EL0,
9042               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9043             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
9044             { .name = "TCMTR",
9045               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
9046               .access = PL1_R,
9047               .accessfn = access_aa32_tid1,
9048               .type = ARM_CP_CONST, .resetvalue = 0 },
9049         };
9050         /* TLBTR is specific to VMSA */
9051         ARMCPRegInfo id_tlbtr_reginfo = {
9052               .name = "TLBTR",
9053               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
9054               .access = PL1_R,
9055               .accessfn = access_aa32_tid1,
9056               .type = ARM_CP_CONST, .resetvalue = 0,
9057         };
9058         /* MPUIR is specific to PMSA V6+ */
9059         ARMCPRegInfo id_mpuir_reginfo = {
9060               .name = "MPUIR",
9061               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9062               .access = PL1_R, .type = ARM_CP_CONST,
9063               .resetvalue = cpu->pmsav7_dregion << 8
9064         };
9065         /* HMPUIR is specific to PMSA V8 */
9066         ARMCPRegInfo id_hmpuir_reginfo = {
9067             .name = "HMPUIR",
9068             .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
9069             .access = PL2_R, .type = ARM_CP_CONST,
9070             .resetvalue = cpu->pmsav8r_hdregion
9071         };
9072         static const ARMCPRegInfo crn0_wi_reginfo = {
9073             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
9074             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
9075             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
9076         };
9077 #ifdef CONFIG_USER_ONLY
9078         static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
9079             { .name = "MIDR_EL1",
9080               .exported_bits = R_MIDR_EL1_REVISION_MASK |
9081                                R_MIDR_EL1_PARTNUM_MASK |
9082                                R_MIDR_EL1_ARCHITECTURE_MASK |
9083                                R_MIDR_EL1_VARIANT_MASK |
9084                                R_MIDR_EL1_IMPLEMENTER_MASK },
9085             { .name = "REVIDR_EL1" },
9086         };
9087         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
9088 #endif
9089         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
9090             arm_feature(env, ARM_FEATURE_STRONGARM)) {
9091             size_t i;
9092             /*
9093              * Register the blanket "writes ignored" value first to cover the
9094              * whole space. Then update the specific ID registers to allow write
9095              * access, so that they ignore writes rather than causing them to
9096              * UNDEF.
9097              */
9098             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
9099             for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
9100                 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
9101             }
9102             for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
9103                 id_cp_reginfo[i].access = PL1_RW;
9104             }
9105             id_mpuir_reginfo.access = PL1_RW;
9106             id_tlbtr_reginfo.access = PL1_RW;
9107         }
9108         if (arm_feature(env, ARM_FEATURE_V8)) {
9109             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
9110             if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9111                 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
9112             }
9113         } else {
9114             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
9115         }
9116         define_arm_cp_regs(cpu, id_cp_reginfo);
9117         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9118             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
9119         } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
9120                    arm_feature(env, ARM_FEATURE_V8)) {
9121             uint32_t i = 0;
9122             char *tmp_string;
9123 
9124             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9125             define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
9126             define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
9127 
9128             /* Register alias is only valid for first 32 indexes */
9129             for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
9130                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9131                 uint8_t opc1 = extract32(i, 4, 1);
9132                 uint8_t opc2 = extract32(i, 0, 1) << 2;
9133 
9134                 tmp_string = g_strdup_printf("PRBAR%u", i);
9135                 ARMCPRegInfo tmp_prbarn_reginfo = {
9136                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9137                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9138                     .access = PL1_RW, .resetvalue = 0,
9139                     .accessfn = access_tvm_trvm,
9140                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9141                 };
9142                 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
9143                 g_free(tmp_string);
9144 
9145                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9146                 tmp_string = g_strdup_printf("PRLAR%u", i);
9147                 ARMCPRegInfo tmp_prlarn_reginfo = {
9148                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9149                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9150                     .access = PL1_RW, .resetvalue = 0,
9151                     .accessfn = access_tvm_trvm,
9152                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9153                 };
9154                 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
9155                 g_free(tmp_string);
9156             }
9157 
9158             /* Register alias is only valid for first 32 indexes */
9159             for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
9160                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9161                 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
9162                 uint8_t opc2 = extract32(i, 0, 1) << 2;
9163 
9164                 tmp_string = g_strdup_printf("HPRBAR%u", i);
9165                 ARMCPRegInfo tmp_hprbarn_reginfo = {
9166                     .name = tmp_string,
9167                     .type = ARM_CP_NO_RAW,
9168                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9169                     .access = PL2_RW, .resetvalue = 0,
9170                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9171                 };
9172                 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
9173                 g_free(tmp_string);
9174 
9175                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9176                 tmp_string = g_strdup_printf("HPRLAR%u", i);
9177                 ARMCPRegInfo tmp_hprlarn_reginfo = {
9178                     .name = tmp_string,
9179                     .type = ARM_CP_NO_RAW,
9180                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9181                     .access = PL2_RW, .resetvalue = 0,
9182                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9183                 };
9184                 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
9185                 g_free(tmp_string);
9186             }
9187         } else if (arm_feature(env, ARM_FEATURE_V7)) {
9188             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9189         }
9190     }
9191 
9192     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
9193         ARMCPRegInfo mpidr_cp_reginfo[] = {
9194             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
9195               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
9196               .fgt = FGT_MPIDR_EL1,
9197               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
9198         };
9199 #ifdef CONFIG_USER_ONLY
9200         static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
9201             { .name = "MPIDR_EL1",
9202               .fixed_bits = 0x0000000080000000 },
9203         };
9204         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9205 #endif
9206         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9207     }
9208 
9209     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9210         ARMCPRegInfo auxcr_reginfo[] = {
9211             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9212               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9213               .access = PL1_RW, .accessfn = access_tacr,
9214               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9215             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9216               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9217               .access = PL2_RW, .type = ARM_CP_CONST,
9218               .resetvalue = 0 },
9219             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9220               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9221               .access = PL3_RW, .type = ARM_CP_CONST,
9222               .resetvalue = 0 },
9223         };
9224         define_arm_cp_regs(cpu, auxcr_reginfo);
9225         if (cpu_isar_feature(aa32_ac2, cpu)) {
9226             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9227         }
9228     }
9229 
9230     if (arm_feature(env, ARM_FEATURE_CBAR)) {
9231         /*
9232          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9233          * There are two flavours:
9234          *  (1) older 32-bit only cores have a simple 32-bit CBAR
9235          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9236          *      32-bit register visible to AArch32 at a different encoding
9237          *      to the "flavour 1" register and with the bits rearranged to
9238          *      be able to squash a 64-bit address into the 32-bit view.
9239          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9240          * in future if we support AArch32-only configs of some of the
9241          * AArch64 cores we might need to add a specific feature flag
9242          * to indicate cores with "flavour 2" CBAR.
9243          */
9244         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9245             /* 32 bit view is [31:18] 0...0 [43:32]. */
9246             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9247                 | extract64(cpu->reset_cbar, 32, 12);
9248             ARMCPRegInfo cbar_reginfo[] = {
9249                 { .name = "CBAR",
9250                   .type = ARM_CP_CONST,
9251                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9252                   .access = PL1_R, .resetvalue = cbar32 },
9253                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9254                   .type = ARM_CP_CONST,
9255                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
9256                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
9257             };
9258             /* We don't implement a r/w 64 bit CBAR currently */
9259             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9260             define_arm_cp_regs(cpu, cbar_reginfo);
9261         } else {
9262             ARMCPRegInfo cbar = {
9263                 .name = "CBAR",
9264                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
9265                 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
9266                 .fieldoffset = offsetof(CPUARMState,
9267                                         cp15.c15_config_base_address)
9268             };
9269             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9270                 cbar.access = PL1_R;
9271                 cbar.fieldoffset = 0;
9272                 cbar.type = ARM_CP_CONST;
9273             }
9274             define_one_arm_cp_reg(cpu, &cbar);
9275         }
9276     }
9277 
9278     if (arm_feature(env, ARM_FEATURE_VBAR)) {
9279         static const ARMCPRegInfo vbar_cp_reginfo[] = {
9280             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9281               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9282               .access = PL1_RW, .writefn = vbar_write,
9283               .fgt = FGT_VBAR_EL1,
9284               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9285                                      offsetof(CPUARMState, cp15.vbar_ns) },
9286               .resetvalue = 0 },
9287         };
9288         define_arm_cp_regs(cpu, vbar_cp_reginfo);
9289     }
9290 
9291     /* Generic registers whose values depend on the implementation */
9292     {
9293         ARMCPRegInfo sctlr = {
9294             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9295             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9296             .access = PL1_RW, .accessfn = access_tvm_trvm,
9297             .fgt = FGT_SCTLR_EL1,
9298             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9299                                    offsetof(CPUARMState, cp15.sctlr_ns) },
9300             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9301             .raw_writefn = raw_write,
9302         };
9303         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9304             /*
9305              * Normally we would always end the TB on an SCTLR write, but Linux
9306              * arch/arm/mach-pxa/sleep.S expects two instructions following
9307              * an MMU enable to execute from cache.  Imitate this behaviour.
9308              */
9309             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9310         }
9311         define_one_arm_cp_reg(cpu, &sctlr);
9312 
9313         if (arm_feature(env, ARM_FEATURE_PMSA) &&
9314             arm_feature(env, ARM_FEATURE_V8)) {
9315             ARMCPRegInfo vsctlr = {
9316                 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9317                 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9318                 .access = PL2_RW, .resetvalue = 0x0,
9319                 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9320             };
9321             define_one_arm_cp_reg(cpu, &vsctlr);
9322         }
9323     }
9324 
9325     if (cpu_isar_feature(aa64_lor, cpu)) {
9326         define_arm_cp_regs(cpu, lor_reginfo);
9327     }
9328     if (cpu_isar_feature(aa64_pan, cpu)) {
9329         define_one_arm_cp_reg(cpu, &pan_reginfo);
9330     }
9331 #ifndef CONFIG_USER_ONLY
9332     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9333         define_arm_cp_regs(cpu, ats1e1_reginfo);
9334     }
9335     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9336         define_arm_cp_regs(cpu, ats1cp_reginfo);
9337     }
9338 #endif
9339     if (cpu_isar_feature(aa64_uao, cpu)) {
9340         define_one_arm_cp_reg(cpu, &uao_reginfo);
9341     }
9342 
9343     if (cpu_isar_feature(aa64_dit, cpu)) {
9344         define_one_arm_cp_reg(cpu, &dit_reginfo);
9345     }
9346     if (cpu_isar_feature(aa64_ssbs, cpu)) {
9347         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9348     }
9349     if (cpu_isar_feature(any_ras, cpu)) {
9350         define_arm_cp_regs(cpu, minimal_ras_reginfo);
9351     }
9352 
9353     if (cpu_isar_feature(aa64_vh, cpu) ||
9354         cpu_isar_feature(aa64_debugv8p2, cpu)) {
9355         define_one_arm_cp_reg(cpu, &contextidr_el2);
9356     }
9357     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9358         define_arm_cp_regs(cpu, vhe_reginfo);
9359     }
9360 
9361     if (cpu_isar_feature(aa64_sve, cpu)) {
9362         define_arm_cp_regs(cpu, zcr_reginfo);
9363     }
9364 
9365     if (cpu_isar_feature(aa64_hcx, cpu)) {
9366         define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9367     }
9368 
9369 #ifdef TARGET_AARCH64
9370     if (cpu_isar_feature(aa64_sme, cpu)) {
9371         define_arm_cp_regs(cpu, sme_reginfo);
9372     }
9373     if (cpu_isar_feature(aa64_pauth, cpu)) {
9374         define_arm_cp_regs(cpu, pauth_reginfo);
9375     }
9376     if (cpu_isar_feature(aa64_rndr, cpu)) {
9377         define_arm_cp_regs(cpu, rndr_reginfo);
9378     }
9379     if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9380         define_arm_cp_regs(cpu, tlbirange_reginfo);
9381     }
9382     if (cpu_isar_feature(aa64_tlbios, cpu)) {
9383         define_arm_cp_regs(cpu, tlbios_reginfo);
9384     }
9385     /* Data Cache clean instructions up to PoP */
9386     if (cpu_isar_feature(aa64_dcpop, cpu)) {
9387         define_one_arm_cp_reg(cpu, dcpop_reg);
9388 
9389         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9390             define_one_arm_cp_reg(cpu, dcpodp_reg);
9391         }
9392     }
9393 
9394     /*
9395      * If full MTE is enabled, add all of the system registers.
9396      * If only "instructions available at EL0" are enabled,
9397      * then define only a RAZ/WI version of PSTATE.TCO.
9398      */
9399     if (cpu_isar_feature(aa64_mte, cpu)) {
9400         ARMCPRegInfo gmid_reginfo = {
9401             .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
9402             .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
9403             .access = PL1_R, .accessfn = access_aa64_tid5,
9404             .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize,
9405         };
9406         define_one_arm_cp_reg(cpu, &gmid_reginfo);
9407         define_arm_cp_regs(cpu, mte_reginfo);
9408         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9409     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9410         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9411         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9412     }
9413 
9414     if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9415         define_arm_cp_regs(cpu, scxtnum_reginfo);
9416     }
9417 
9418     if (cpu_isar_feature(aa64_fgt, cpu)) {
9419         define_arm_cp_regs(cpu, fgt_reginfo);
9420     }
9421 
9422     if (cpu_isar_feature(aa64_rme, cpu)) {
9423         define_arm_cp_regs(cpu, rme_reginfo);
9424         if (cpu_isar_feature(aa64_mte, cpu)) {
9425             define_arm_cp_regs(cpu, rme_mte_reginfo);
9426         }
9427     }
9428 #endif
9429 
9430     if (cpu_isar_feature(any_predinv, cpu)) {
9431         define_arm_cp_regs(cpu, predinv_reginfo);
9432     }
9433 
9434     if (cpu_isar_feature(any_ccidx, cpu)) {
9435         define_arm_cp_regs(cpu, ccsidr2_reginfo);
9436     }
9437 
9438 #ifndef CONFIG_USER_ONLY
9439     /*
9440      * Register redirections and aliases must be done last,
9441      * after the registers from the other extensions have been defined.
9442      */
9443     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9444         define_arm_vh_e2h_redirects_aliases(cpu);
9445     }
9446 #endif
9447 }
9448 
9449 /* Sort alphabetically by type name, except for "any". */
arm_cpu_list_compare(gconstpointer a,gconstpointer b)9450 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
9451 {
9452     ObjectClass *class_a = (ObjectClass *)a;
9453     ObjectClass *class_b = (ObjectClass *)b;
9454     const char *name_a, *name_b;
9455 
9456     name_a = object_class_get_name(class_a);
9457     name_b = object_class_get_name(class_b);
9458     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
9459         return 1;
9460     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
9461         return -1;
9462     } else {
9463         return strcmp(name_a, name_b);
9464     }
9465 }
9466 
arm_cpu_list_entry(gpointer data,gpointer user_data)9467 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
9468 {
9469     ObjectClass *oc = data;
9470     CPUClass *cc = CPU_CLASS(oc);
9471     const char *typename;
9472     char *name;
9473 
9474     typename = object_class_get_name(oc);
9475     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
9476     if (cc->deprecation_note) {
9477         qemu_printf("  %s (deprecated)\n", name);
9478     } else {
9479         qemu_printf("  %s\n", name);
9480     }
9481     g_free(name);
9482 }
9483 
arm_cpu_list(void)9484 void arm_cpu_list(void)
9485 {
9486     GSList *list;
9487 
9488     list = object_class_get_list(TYPE_ARM_CPU, false);
9489     list = g_slist_sort(list, arm_cpu_list_compare);
9490     qemu_printf("Available CPUs:\n");
9491     g_slist_foreach(list, arm_cpu_list_entry, NULL);
9492     g_slist_free(list);
9493 }
9494 
9495 /*
9496  * Private utility function for define_one_arm_cp_reg_with_opaque():
9497  * add a single reginfo struct to the hash table.
9498  */
add_cpreg_to_hashtable(ARMCPU * cpu,const ARMCPRegInfo * r,void * opaque,CPState state,CPSecureState secstate,int crm,int opc1,int opc2,const char * name)9499 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9500                                    void *opaque, CPState state,
9501                                    CPSecureState secstate,
9502                                    int crm, int opc1, int opc2,
9503                                    const char *name)
9504 {
9505     CPUARMState *env = &cpu->env;
9506     uint32_t key;
9507     ARMCPRegInfo *r2;
9508     bool is64 = r->type & ARM_CP_64BIT;
9509     bool ns = secstate & ARM_CP_SECSTATE_NS;
9510     int cp = r->cp;
9511     size_t name_len;
9512     bool make_const;
9513 
9514     switch (state) {
9515     case ARM_CP_STATE_AA32:
9516         /* We assume it is a cp15 register if the .cp field is left unset. */
9517         if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9518             cp = 15;
9519         }
9520         key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9521         break;
9522     case ARM_CP_STATE_AA64:
9523         /*
9524          * To allow abbreviation of ARMCPRegInfo definitions, we treat
9525          * cp == 0 as equivalent to the value for "standard guest-visible
9526          * sysreg".  STATE_BOTH definitions are also always "standard sysreg"
9527          * in their AArch64 view (the .cp value may be non-zero for the
9528          * benefit of the AArch32 view).
9529          */
9530         if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9531             cp = CP_REG_ARM64_SYSREG_CP;
9532         }
9533         key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9534         break;
9535     default:
9536         g_assert_not_reached();
9537     }
9538 
9539     /* Overriding of an existing definition must be explicitly requested. */
9540     if (!(r->type & ARM_CP_OVERRIDE)) {
9541         const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9542         if (oldreg) {
9543             assert(oldreg->type & ARM_CP_OVERRIDE);
9544         }
9545     }
9546 
9547     /*
9548      * Eliminate registers that are not present because the EL is missing.
9549      * Doing this here makes it easier to put all registers for a given
9550      * feature into the same ARMCPRegInfo array and define them all at once.
9551      */
9552     make_const = false;
9553     if (arm_feature(env, ARM_FEATURE_EL3)) {
9554         /*
9555          * An EL2 register without EL2 but with EL3 is (usually) RES0.
9556          * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9557          */
9558         int min_el = ctz32(r->access) / 2;
9559         if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9560             if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9561                 return;
9562             }
9563             make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9564         }
9565     } else {
9566         CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9567                                  ? PL2_RW : PL1_RW);
9568         if ((r->access & max_el) == 0) {
9569             return;
9570         }
9571     }
9572 
9573     /* Combine cpreg and name into one allocation. */
9574     name_len = strlen(name) + 1;
9575     r2 = g_malloc(sizeof(*r2) + name_len);
9576     *r2 = *r;
9577     r2->name = memcpy(r2 + 1, name, name_len);
9578 
9579     /*
9580      * Update fields to match the instantiation, overwiting wildcards
9581      * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9582      */
9583     r2->cp = cp;
9584     r2->crm = crm;
9585     r2->opc1 = opc1;
9586     r2->opc2 = opc2;
9587     r2->state = state;
9588     r2->secure = secstate;
9589     if (opaque) {
9590         r2->opaque = opaque;
9591     }
9592 
9593     if (make_const) {
9594         /* This should not have been a very special register to begin. */
9595         int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9596         assert(old_special == 0 || old_special == ARM_CP_NOP);
9597         /*
9598          * Set the special function to CONST, retaining the other flags.
9599          * This is important for e.g. ARM_CP_SVE so that we still
9600          * take the SVE trap if CPTR_EL3.EZ == 0.
9601          */
9602         r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9603         /*
9604          * Usually, these registers become RES0, but there are a few
9605          * special cases like VPIDR_EL2 which have a constant non-zero
9606          * value with writes ignored.
9607          */
9608         if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9609             r2->resetvalue = 0;
9610         }
9611         /*
9612          * ARM_CP_CONST has precedence, so removing the callbacks and
9613          * offsets are not strictly necessary, but it is potentially
9614          * less confusing to debug later.
9615          */
9616         r2->readfn = NULL;
9617         r2->writefn = NULL;
9618         r2->raw_readfn = NULL;
9619         r2->raw_writefn = NULL;
9620         r2->resetfn = NULL;
9621         r2->fieldoffset = 0;
9622         r2->bank_fieldoffsets[0] = 0;
9623         r2->bank_fieldoffsets[1] = 0;
9624     } else {
9625         bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9626 
9627         if (isbanked) {
9628             /*
9629              * Register is banked (using both entries in array).
9630              * Overwriting fieldoffset as the array is only used to define
9631              * banked registers but later only fieldoffset is used.
9632              */
9633             r2->fieldoffset = r->bank_fieldoffsets[ns];
9634         }
9635         if (state == ARM_CP_STATE_AA32) {
9636             if (isbanked) {
9637                 /*
9638                  * If the register is banked then we don't need to migrate or
9639                  * reset the 32-bit instance in certain cases:
9640                  *
9641                  * 1) If the register has both 32-bit and 64-bit instances
9642                  *    then we can count on the 64-bit instance taking care
9643                  *    of the non-secure bank.
9644                  * 2) If ARMv8 is enabled then we can count on a 64-bit
9645                  *    version taking care of the secure bank.  This requires
9646                  *    that separate 32 and 64-bit definitions are provided.
9647                  */
9648                 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9649                     (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9650                     r2->type |= ARM_CP_ALIAS;
9651                 }
9652             } else if ((secstate != r->secure) && !ns) {
9653                 /*
9654                  * The register is not banked so we only want to allow
9655                  * migration of the non-secure instance.
9656                  */
9657                 r2->type |= ARM_CP_ALIAS;
9658             }
9659 
9660             if (HOST_BIG_ENDIAN &&
9661                 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9662                 r2->fieldoffset += sizeof(uint32_t);
9663             }
9664         }
9665     }
9666 
9667     /*
9668      * By convention, for wildcarded registers only the first
9669      * entry is used for migration; the others are marked as
9670      * ALIAS so we don't try to transfer the register
9671      * multiple times. Special registers (ie NOP/WFI) are
9672      * never migratable and not even raw-accessible.
9673      */
9674     if (r2->type & ARM_CP_SPECIAL_MASK) {
9675         r2->type |= ARM_CP_NO_RAW;
9676     }
9677     if (((r->crm == CP_ANY) && crm != 0) ||
9678         ((r->opc1 == CP_ANY) && opc1 != 0) ||
9679         ((r->opc2 == CP_ANY) && opc2 != 0)) {
9680         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
9681     }
9682 
9683     /*
9684      * Check that raw accesses are either forbidden or handled. Note that
9685      * we can't assert this earlier because the setup of fieldoffset for
9686      * banked registers has to be done first.
9687      */
9688     if (!(r2->type & ARM_CP_NO_RAW)) {
9689         assert(!raw_accessors_invalid(r2));
9690     }
9691 
9692     g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
9693 }
9694 
9695 
define_one_arm_cp_reg_with_opaque(ARMCPU * cpu,const ARMCPRegInfo * r,void * opaque)9696 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9697                                        const ARMCPRegInfo *r, void *opaque)
9698 {
9699     /*
9700      * Define implementations of coprocessor registers.
9701      * We store these in a hashtable because typically
9702      * there are less than 150 registers in a space which
9703      * is 16*16*16*8*8 = 262144 in size.
9704      * Wildcarding is supported for the crm, opc1 and opc2 fields.
9705      * If a register is defined twice then the second definition is
9706      * used, so this can be used to define some generic registers and
9707      * then override them with implementation specific variations.
9708      * At least one of the original and the second definition should
9709      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9710      * against accidental use.
9711      *
9712      * The state field defines whether the register is to be
9713      * visible in the AArch32 or AArch64 execution state. If the
9714      * state is set to ARM_CP_STATE_BOTH then we synthesise a
9715      * reginfo structure for the AArch32 view, which sees the lower
9716      * 32 bits of the 64 bit register.
9717      *
9718      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9719      * be wildcarded. AArch64 registers are always considered to be 64
9720      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9721      * the register, if any.
9722      */
9723     int crm, opc1, opc2;
9724     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9725     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9726     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9727     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9728     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9729     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
9730     CPState state;
9731 
9732     /* 64 bit registers have only CRm and Opc1 fields */
9733     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
9734     /* op0 only exists in the AArch64 encodings */
9735     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9736     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9737     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
9738     /*
9739      * This API is only for Arm's system coprocessors (14 and 15) or
9740      * (M-profile or v7A-and-earlier only) for implementation defined
9741      * coprocessors in the range 0..7.  Our decode assumes this, since
9742      * 8..13 can be used for other insns including VFP and Neon. See
9743      * valid_cp() in translate.c.  Assert here that we haven't tried
9744      * to use an invalid coprocessor number.
9745      */
9746     switch (r->state) {
9747     case ARM_CP_STATE_BOTH:
9748         /* 0 has a special meaning, but otherwise the same rules as AA32. */
9749         if (r->cp == 0) {
9750             break;
9751         }
9752         /* fall through */
9753     case ARM_CP_STATE_AA32:
9754         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9755             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9756             assert(r->cp >= 14 && r->cp <= 15);
9757         } else {
9758             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9759         }
9760         break;
9761     case ARM_CP_STATE_AA64:
9762         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9763         break;
9764     default:
9765         g_assert_not_reached();
9766     }
9767     /*
9768      * The AArch64 pseudocode CheckSystemAccess() specifies that op1
9769      * encodes a minimum access level for the register. We roll this
9770      * runtime check into our general permission check code, so check
9771      * here that the reginfo's specified permissions are strict enough
9772      * to encompass the generic architectural permission check.
9773      */
9774     if (r->state != ARM_CP_STATE_AA32) {
9775         CPAccessRights mask;
9776         switch (r->opc1) {
9777         case 0:
9778             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
9779             mask = PL0U_R | PL1_RW;
9780             break;
9781         case 1: case 2:
9782             /* min_EL EL1 */
9783             mask = PL1_RW;
9784             break;
9785         case 3:
9786             /* min_EL EL0 */
9787             mask = PL0_RW;
9788             break;
9789         case 4:
9790         case 5:
9791             /* min_EL EL2 */
9792             mask = PL2_RW;
9793             break;
9794         case 6:
9795             /* min_EL EL3 */
9796             mask = PL3_RW;
9797             break;
9798         case 7:
9799             /* min_EL EL1, secure mode only (we don't check the latter) */
9800             mask = PL1_RW;
9801             break;
9802         default:
9803             /* broken reginfo with out-of-range opc1 */
9804             g_assert_not_reached();
9805         }
9806         /* assert our permissions are not too lax (stricter is fine) */
9807         assert((r->access & ~mask) == 0);
9808     }
9809 
9810     /*
9811      * Check that the register definition has enough info to handle
9812      * reads and writes if they are permitted.
9813      */
9814     if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
9815         if (r->access & PL3_R) {
9816             assert((r->fieldoffset ||
9817                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9818                    r->readfn);
9819         }
9820         if (r->access & PL3_W) {
9821             assert((r->fieldoffset ||
9822                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9823                    r->writefn);
9824         }
9825     }
9826 
9827     for (crm = crmmin; crm <= crmmax; crm++) {
9828         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9829             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9830                 for (state = ARM_CP_STATE_AA32;
9831                      state <= ARM_CP_STATE_AA64; state++) {
9832                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9833                         continue;
9834                     }
9835                     if (state == ARM_CP_STATE_AA32) {
9836                         /*
9837                          * Under AArch32 CP registers can be common
9838                          * (same for secure and non-secure world) or banked.
9839                          */
9840                         char *name;
9841 
9842                         switch (r->secure) {
9843                         case ARM_CP_SECSTATE_S:
9844                         case ARM_CP_SECSTATE_NS:
9845                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9846                                                    r->secure, crm, opc1, opc2,
9847                                                    r->name);
9848                             break;
9849                         case ARM_CP_SECSTATE_BOTH:
9850                             name = g_strdup_printf("%s_S", r->name);
9851                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9852                                                    ARM_CP_SECSTATE_S,
9853                                                    crm, opc1, opc2, name);
9854                             g_free(name);
9855                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9856                                                    ARM_CP_SECSTATE_NS,
9857                                                    crm, opc1, opc2, r->name);
9858                             break;
9859                         default:
9860                             g_assert_not_reached();
9861                         }
9862                     } else {
9863                         /*
9864                          * AArch64 registers get mapped to non-secure instance
9865                          * of AArch32
9866                          */
9867                         add_cpreg_to_hashtable(cpu, r, opaque, state,
9868                                                ARM_CP_SECSTATE_NS,
9869                                                crm, opc1, opc2, r->name);
9870                     }
9871                 }
9872             }
9873         }
9874     }
9875 }
9876 
9877 /* Define a whole list of registers */
define_arm_cp_regs_with_opaque_len(ARMCPU * cpu,const ARMCPRegInfo * regs,void * opaque,size_t len)9878 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
9879                                         void *opaque, size_t len)
9880 {
9881     size_t i;
9882     for (i = 0; i < len; ++i) {
9883         define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
9884     }
9885 }
9886 
9887 /*
9888  * Modify ARMCPRegInfo for access from userspace.
9889  *
9890  * This is a data driven modification directed by
9891  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9892  * user-space cannot alter any values and dynamic values pertaining to
9893  * execution state are hidden from user space view anyway.
9894  */
modify_arm_cp_regs_with_len(ARMCPRegInfo * regs,size_t regs_len,const ARMCPRegUserSpaceInfo * mods,size_t mods_len)9895 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
9896                                  const ARMCPRegUserSpaceInfo *mods,
9897                                  size_t mods_len)
9898 {
9899     for (size_t mi = 0; mi < mods_len; ++mi) {
9900         const ARMCPRegUserSpaceInfo *m = mods + mi;
9901         GPatternSpec *pat = NULL;
9902 
9903         if (m->is_glob) {
9904             pat = g_pattern_spec_new(m->name);
9905         }
9906         for (size_t ri = 0; ri < regs_len; ++ri) {
9907             ARMCPRegInfo *r = regs + ri;
9908 
9909             if (pat && g_pattern_match_string(pat, r->name)) {
9910                 r->type = ARM_CP_CONST;
9911                 r->access = PL0U_R;
9912                 r->resetvalue = 0;
9913                 /* continue */
9914             } else if (strcmp(r->name, m->name) == 0) {
9915                 r->type = ARM_CP_CONST;
9916                 r->access = PL0U_R;
9917                 r->resetvalue &= m->exported_bits;
9918                 r->resetvalue |= m->fixed_bits;
9919                 break;
9920             }
9921         }
9922         if (pat) {
9923             g_pattern_spec_free(pat);
9924         }
9925     }
9926 }
9927 
get_arm_cp_reginfo(GHashTable * cpregs,uint32_t encoded_cp)9928 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9929 {
9930     return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
9931 }
9932 
arm_cp_write_ignore(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)9933 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9934                          uint64_t value)
9935 {
9936     /* Helper coprocessor write function for write-ignore registers */
9937 }
9938 
arm_cp_read_zero(CPUARMState * env,const ARMCPRegInfo * ri)9939 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9940 {
9941     /* Helper coprocessor write function for read-as-zero registers */
9942     return 0;
9943 }
9944 
arm_cp_reset_ignore(CPUARMState * env,const ARMCPRegInfo * opaque)9945 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9946 {
9947     /* Helper coprocessor reset function for do-nothing-on-reset registers */
9948 }
9949 
bad_mode_switch(CPUARMState * env,int mode,CPSRWriteType write_type)9950 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9951 {
9952     /*
9953      * Return true if it is not valid for us to switch to
9954      * this CPU mode (ie all the UNPREDICTABLE cases in
9955      * the ARM ARM CPSRWriteByInstr pseudocode).
9956      */
9957 
9958     /* Changes to or from Hyp via MSR and CPS are illegal. */
9959     if (write_type == CPSRWriteByInstr &&
9960         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9961          mode == ARM_CPU_MODE_HYP)) {
9962         return 1;
9963     }
9964 
9965     switch (mode) {
9966     case ARM_CPU_MODE_USR:
9967         return 0;
9968     case ARM_CPU_MODE_SYS:
9969     case ARM_CPU_MODE_SVC:
9970     case ARM_CPU_MODE_ABT:
9971     case ARM_CPU_MODE_UND:
9972     case ARM_CPU_MODE_IRQ:
9973     case ARM_CPU_MODE_FIQ:
9974         /*
9975          * Note that we don't implement the IMPDEF NSACR.RFR which in v7
9976          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9977          */
9978         /*
9979          * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9980          * and CPS are treated as illegal mode changes.
9981          */
9982         if (write_type == CPSRWriteByInstr &&
9983             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9984             (arm_hcr_el2_eff(env) & HCR_TGE)) {
9985             return 1;
9986         }
9987         return 0;
9988     case ARM_CPU_MODE_HYP:
9989         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9990     case ARM_CPU_MODE_MON:
9991         return arm_current_el(env) < 3;
9992     default:
9993         return 1;
9994     }
9995 }
9996 
cpsr_read(CPUARMState * env)9997 uint32_t cpsr_read(CPUARMState *env)
9998 {
9999     int ZF;
10000     ZF = (env->ZF == 0);
10001     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
10002         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
10003         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
10004         | ((env->condexec_bits & 0xfc) << 8)
10005         | (env->GE << 16) | (env->daif & CPSR_AIF);
10006 }
10007 
cpsr_write(CPUARMState * env,uint32_t val,uint32_t mask,CPSRWriteType write_type)10008 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
10009                 CPSRWriteType write_type)
10010 {
10011     uint32_t changed_daif;
10012     bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
10013         (mask & (CPSR_M | CPSR_E | CPSR_IL));
10014 
10015     if (mask & CPSR_NZCV) {
10016         env->ZF = (~val) & CPSR_Z;
10017         env->NF = val;
10018         env->CF = (val >> 29) & 1;
10019         env->VF = (val << 3) & 0x80000000;
10020     }
10021     if (mask & CPSR_Q) {
10022         env->QF = ((val & CPSR_Q) != 0);
10023     }
10024     if (mask & CPSR_T) {
10025         env->thumb = ((val & CPSR_T) != 0);
10026     }
10027     if (mask & CPSR_IT_0_1) {
10028         env->condexec_bits &= ~3;
10029         env->condexec_bits |= (val >> 25) & 3;
10030     }
10031     if (mask & CPSR_IT_2_7) {
10032         env->condexec_bits &= 3;
10033         env->condexec_bits |= (val >> 8) & 0xfc;
10034     }
10035     if (mask & CPSR_GE) {
10036         env->GE = (val >> 16) & 0xf;
10037     }
10038 
10039     /*
10040      * In a V7 implementation that includes the security extensions but does
10041      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
10042      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
10043      * bits respectively.
10044      *
10045      * In a V8 implementation, it is permitted for privileged software to
10046      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
10047      */
10048     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
10049         arm_feature(env, ARM_FEATURE_EL3) &&
10050         !arm_feature(env, ARM_FEATURE_EL2) &&
10051         !arm_is_secure(env)) {
10052 
10053         changed_daif = (env->daif ^ val) & mask;
10054 
10055         if (changed_daif & CPSR_A) {
10056             /*
10057              * Check to see if we are allowed to change the masking of async
10058              * abort exceptions from a non-secure state.
10059              */
10060             if (!(env->cp15.scr_el3 & SCR_AW)) {
10061                 qemu_log_mask(LOG_GUEST_ERROR,
10062                               "Ignoring attempt to switch CPSR_A flag from "
10063                               "non-secure world with SCR.AW bit clear\n");
10064                 mask &= ~CPSR_A;
10065             }
10066         }
10067 
10068         if (changed_daif & CPSR_F) {
10069             /*
10070              * Check to see if we are allowed to change the masking of FIQ
10071              * exceptions from a non-secure state.
10072              */
10073             if (!(env->cp15.scr_el3 & SCR_FW)) {
10074                 qemu_log_mask(LOG_GUEST_ERROR,
10075                               "Ignoring attempt to switch CPSR_F flag from "
10076                               "non-secure world with SCR.FW bit clear\n");
10077                 mask &= ~CPSR_F;
10078             }
10079 
10080             /*
10081              * Check whether non-maskable FIQ (NMFI) support is enabled.
10082              * If this bit is set software is not allowed to mask
10083              * FIQs, but is allowed to set CPSR_F to 0.
10084              */
10085             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
10086                 (val & CPSR_F)) {
10087                 qemu_log_mask(LOG_GUEST_ERROR,
10088                               "Ignoring attempt to enable CPSR_F flag "
10089                               "(non-maskable FIQ [NMFI] support enabled)\n");
10090                 mask &= ~CPSR_F;
10091             }
10092         }
10093     }
10094 
10095     env->daif &= ~(CPSR_AIF & mask);
10096     env->daif |= val & CPSR_AIF & mask;
10097 
10098     if (write_type != CPSRWriteRaw &&
10099         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
10100         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
10101             /*
10102              * Note that we can only get here in USR mode if this is a
10103              * gdb stub write; for this case we follow the architectural
10104              * behaviour for guest writes in USR mode of ignoring an attempt
10105              * to switch mode. (Those are caught by translate.c for writes
10106              * triggered by guest instructions.)
10107              */
10108             mask &= ~CPSR_M;
10109         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
10110             /*
10111              * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
10112              * v7, and has defined behaviour in v8:
10113              *  + leave CPSR.M untouched
10114              *  + allow changes to the other CPSR fields
10115              *  + set PSTATE.IL
10116              * For user changes via the GDB stub, we don't set PSTATE.IL,
10117              * as this would be unnecessarily harsh for a user error.
10118              */
10119             mask &= ~CPSR_M;
10120             if (write_type != CPSRWriteByGDBStub &&
10121                 arm_feature(env, ARM_FEATURE_V8)) {
10122                 mask |= CPSR_IL;
10123                 val |= CPSR_IL;
10124             }
10125             qemu_log_mask(LOG_GUEST_ERROR,
10126                           "Illegal AArch32 mode switch attempt from %s to %s\n",
10127                           aarch32_mode_name(env->uncached_cpsr),
10128                           aarch32_mode_name(val));
10129         } else {
10130             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
10131                           write_type == CPSRWriteExceptionReturn ?
10132                           "Exception return from AArch32" :
10133                           "AArch32 mode switch from",
10134                           aarch32_mode_name(env->uncached_cpsr),
10135                           aarch32_mode_name(val), env->regs[15]);
10136             switch_mode(env, val & CPSR_M);
10137         }
10138     }
10139     mask &= ~CACHED_CPSR_BITS;
10140     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
10141     if (tcg_enabled() && rebuild_hflags) {
10142         arm_rebuild_hflags(env);
10143     }
10144 }
10145 
10146 /* Sign/zero extend */
HELPER(sxtb16)10147 uint32_t HELPER(sxtb16)(uint32_t x)
10148 {
10149     uint32_t res;
10150     res = (uint16_t)(int8_t)x;
10151     res |= (uint32_t)(int8_t)(x >> 16) << 16;
10152     return res;
10153 }
10154 
handle_possible_div0_trap(CPUARMState * env,uintptr_t ra)10155 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
10156 {
10157     /*
10158      * Take a division-by-zero exception if necessary; otherwise return
10159      * to get the usual non-trapping division behaviour (result of 0)
10160      */
10161     if (arm_feature(env, ARM_FEATURE_M)
10162         && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
10163         raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
10164     }
10165 }
10166 
HELPER(uxtb16)10167 uint32_t HELPER(uxtb16)(uint32_t x)
10168 {
10169     uint32_t res;
10170     res = (uint16_t)(uint8_t)x;
10171     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
10172     return res;
10173 }
10174 
HELPER(sdiv)10175 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
10176 {
10177     if (den == 0) {
10178         handle_possible_div0_trap(env, GETPC());
10179         return 0;
10180     }
10181     if (num == INT_MIN && den == -1) {
10182         return INT_MIN;
10183     }
10184     return num / den;
10185 }
10186 
HELPER(udiv)10187 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
10188 {
10189     if (den == 0) {
10190         handle_possible_div0_trap(env, GETPC());
10191         return 0;
10192     }
10193     return num / den;
10194 }
10195 
HELPER(rbit)10196 uint32_t HELPER(rbit)(uint32_t x)
10197 {
10198     return revbit32(x);
10199 }
10200 
10201 #ifdef CONFIG_USER_ONLY
10202 
switch_mode(CPUARMState * env,int mode)10203 static void switch_mode(CPUARMState *env, int mode)
10204 {
10205     ARMCPU *cpu = env_archcpu(env);
10206 
10207     if (mode != ARM_CPU_MODE_USR) {
10208         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
10209     }
10210 }
10211 
arm_phys_excp_target_el(CPUState * cs,uint32_t excp_idx,uint32_t cur_el,bool secure)10212 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10213                                  uint32_t cur_el, bool secure)
10214 {
10215     return 1;
10216 }
10217 
aarch64_sync_64_to_32(CPUARMState * env)10218 void aarch64_sync_64_to_32(CPUARMState *env)
10219 {
10220     g_assert_not_reached();
10221 }
10222 
10223 #else
10224 
switch_mode(CPUARMState * env,int mode)10225 static void switch_mode(CPUARMState *env, int mode)
10226 {
10227     int old_mode;
10228     int i;
10229 
10230     old_mode = env->uncached_cpsr & CPSR_M;
10231     if (mode == old_mode) {
10232         return;
10233     }
10234 
10235     if (old_mode == ARM_CPU_MODE_FIQ) {
10236         memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10237         memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10238     } else if (mode == ARM_CPU_MODE_FIQ) {
10239         memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10240         memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10241     }
10242 
10243     i = bank_number(old_mode);
10244     env->banked_r13[i] = env->regs[13];
10245     env->banked_spsr[i] = env->spsr;
10246 
10247     i = bank_number(mode);
10248     env->regs[13] = env->banked_r13[i];
10249     env->spsr = env->banked_spsr[i];
10250 
10251     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10252     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10253 }
10254 
10255 /*
10256  * Physical Interrupt Target EL Lookup Table
10257  *
10258  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10259  *
10260  * The below multi-dimensional table is used for looking up the target
10261  * exception level given numerous condition criteria.  Specifically, the
10262  * target EL is based on SCR and HCR routing controls as well as the
10263  * currently executing EL and secure state.
10264  *
10265  *    Dimensions:
10266  *    target_el_table[2][2][2][2][2][4]
10267  *                    |  |  |  |  |  +--- Current EL
10268  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
10269  *                    |  |  |  +--------- HCR mask override
10270  *                    |  |  +------------ SCR exec state control
10271  *                    |  +--------------- SCR mask override
10272  *                    +------------------ 32-bit(0)/64-bit(1) EL3
10273  *
10274  *    The table values are as such:
10275  *    0-3 = EL0-EL3
10276  *     -1 = Cannot occur
10277  *
10278  * The ARM ARM target EL table includes entries indicating that an "exception
10279  * is not taken".  The two cases where this is applicable are:
10280  *    1) An exception is taken from EL3 but the SCR does not have the exception
10281  *    routed to EL3.
10282  *    2) An exception is taken from EL2 but the HCR does not have the exception
10283  *    routed to EL2.
10284  * In these two cases, the below table contain a target of EL1.  This value is
10285  * returned as it is expected that the consumer of the table data will check
10286  * for "target EL >= current EL" to ensure the exception is not taken.
10287  *
10288  *            SCR     HCR
10289  *         64  EA     AMO                 From
10290  *        BIT IRQ     IMO      Non-secure         Secure
10291  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
10292  */
10293 static const int8_t target_el_table[2][2][2][2][2][4] = {
10294     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
10295        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
10296       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
10297        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
10298      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
10299        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
10300       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
10301        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
10302     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
10303        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
10304       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
10305        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
10306      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
10307        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
10308       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
10309        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
10310 };
10311 
10312 /*
10313  * Determine the target EL for physical exceptions
10314  */
arm_phys_excp_target_el(CPUState * cs,uint32_t excp_idx,uint32_t cur_el,bool secure)10315 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10316                                  uint32_t cur_el, bool secure)
10317 {
10318     CPUARMState *env = cpu_env(cs);
10319     bool rw;
10320     bool scr;
10321     bool hcr;
10322     int target_el;
10323     /* Is the highest EL AArch64? */
10324     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10325     uint64_t hcr_el2;
10326 
10327     if (arm_feature(env, ARM_FEATURE_EL3)) {
10328         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10329     } else {
10330         /*
10331          * Either EL2 is the highest EL (and so the EL2 register width
10332          * is given by is64); or there is no EL2 or EL3, in which case
10333          * the value of 'rw' does not affect the table lookup anyway.
10334          */
10335         rw = is64;
10336     }
10337 
10338     hcr_el2 = arm_hcr_el2_eff(env);
10339     switch (excp_idx) {
10340     case EXCP_IRQ:
10341         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10342         hcr = hcr_el2 & HCR_IMO;
10343         break;
10344     case EXCP_FIQ:
10345         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10346         hcr = hcr_el2 & HCR_FMO;
10347         break;
10348     default:
10349         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10350         hcr = hcr_el2 & HCR_AMO;
10351         break;
10352     };
10353 
10354     /*
10355      * For these purposes, TGE and AMO/IMO/FMO both force the
10356      * interrupt to EL2.  Fold TGE into the bit extracted above.
10357      */
10358     hcr |= (hcr_el2 & HCR_TGE) != 0;
10359 
10360     /* Perform a table-lookup for the target EL given the current state */
10361     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10362 
10363     assert(target_el > 0);
10364 
10365     return target_el;
10366 }
10367 
arm_log_exception(CPUState * cs)10368 void arm_log_exception(CPUState *cs)
10369 {
10370     int idx = cs->exception_index;
10371 
10372     if (qemu_loglevel_mask(CPU_LOG_INT)) {
10373         const char *exc = NULL;
10374         static const char * const excnames[] = {
10375             [EXCP_UDEF] = "Undefined Instruction",
10376             [EXCP_SWI] = "SVC",
10377             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10378             [EXCP_DATA_ABORT] = "Data Abort",
10379             [EXCP_IRQ] = "IRQ",
10380             [EXCP_FIQ] = "FIQ",
10381             [EXCP_BKPT] = "Breakpoint",
10382             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10383             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10384             [EXCP_HVC] = "Hypervisor Call",
10385             [EXCP_HYP_TRAP] = "Hypervisor Trap",
10386             [EXCP_SMC] = "Secure Monitor Call",
10387             [EXCP_VIRQ] = "Virtual IRQ",
10388             [EXCP_VFIQ] = "Virtual FIQ",
10389             [EXCP_SEMIHOST] = "Semihosting call",
10390             [EXCP_NOCP] = "v7M NOCP UsageFault",
10391             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10392             [EXCP_STKOF] = "v8M STKOF UsageFault",
10393             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10394             [EXCP_LSERR] = "v8M LSERR UsageFault",
10395             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10396             [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10397             [EXCP_VSERR] = "Virtual SERR",
10398             [EXCP_GPC] = "Granule Protection Check",
10399         };
10400 
10401         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10402             exc = excnames[idx];
10403         }
10404         if (!exc) {
10405             exc = "unknown";
10406         }
10407         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10408                       idx, exc, cs->cpu_index);
10409     }
10410 }
10411 
10412 /*
10413  * Function used to synchronize QEMU's AArch64 register set with AArch32
10414  * register set.  This is necessary when switching between AArch32 and AArch64
10415  * execution state.
10416  */
aarch64_sync_32_to_64(CPUARMState * env)10417 void aarch64_sync_32_to_64(CPUARMState *env)
10418 {
10419     int i;
10420     uint32_t mode = env->uncached_cpsr & CPSR_M;
10421 
10422     /* We can blanket copy R[0:7] to X[0:7] */
10423     for (i = 0; i < 8; i++) {
10424         env->xregs[i] = env->regs[i];
10425     }
10426 
10427     /*
10428      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10429      * Otherwise, they come from the banked user regs.
10430      */
10431     if (mode == ARM_CPU_MODE_FIQ) {
10432         for (i = 8; i < 13; i++) {
10433             env->xregs[i] = env->usr_regs[i - 8];
10434         }
10435     } else {
10436         for (i = 8; i < 13; i++) {
10437             env->xregs[i] = env->regs[i];
10438         }
10439     }
10440 
10441     /*
10442      * Registers x13-x23 are the various mode SP and FP registers. Registers
10443      * r13 and r14 are only copied if we are in that mode, otherwise we copy
10444      * from the mode banked register.
10445      */
10446     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10447         env->xregs[13] = env->regs[13];
10448         env->xregs[14] = env->regs[14];
10449     } else {
10450         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10451         /* HYP is an exception in that it is copied from r14 */
10452         if (mode == ARM_CPU_MODE_HYP) {
10453             env->xregs[14] = env->regs[14];
10454         } else {
10455             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10456         }
10457     }
10458 
10459     if (mode == ARM_CPU_MODE_HYP) {
10460         env->xregs[15] = env->regs[13];
10461     } else {
10462         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10463     }
10464 
10465     if (mode == ARM_CPU_MODE_IRQ) {
10466         env->xregs[16] = env->regs[14];
10467         env->xregs[17] = env->regs[13];
10468     } else {
10469         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10470         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10471     }
10472 
10473     if (mode == ARM_CPU_MODE_SVC) {
10474         env->xregs[18] = env->regs[14];
10475         env->xregs[19] = env->regs[13];
10476     } else {
10477         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10478         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10479     }
10480 
10481     if (mode == ARM_CPU_MODE_ABT) {
10482         env->xregs[20] = env->regs[14];
10483         env->xregs[21] = env->regs[13];
10484     } else {
10485         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10486         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10487     }
10488 
10489     if (mode == ARM_CPU_MODE_UND) {
10490         env->xregs[22] = env->regs[14];
10491         env->xregs[23] = env->regs[13];
10492     } else {
10493         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10494         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10495     }
10496 
10497     /*
10498      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10499      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
10500      * FIQ bank for r8-r14.
10501      */
10502     if (mode == ARM_CPU_MODE_FIQ) {
10503         for (i = 24; i < 31; i++) {
10504             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
10505         }
10506     } else {
10507         for (i = 24; i < 29; i++) {
10508             env->xregs[i] = env->fiq_regs[i - 24];
10509         }
10510         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10511         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10512     }
10513 
10514     env->pc = env->regs[15];
10515 }
10516 
10517 /*
10518  * Function used to synchronize QEMU's AArch32 register set with AArch64
10519  * register set.  This is necessary when switching between AArch32 and AArch64
10520  * execution state.
10521  */
aarch64_sync_64_to_32(CPUARMState * env)10522 void aarch64_sync_64_to_32(CPUARMState *env)
10523 {
10524     int i;
10525     uint32_t mode = env->uncached_cpsr & CPSR_M;
10526 
10527     /* We can blanket copy X[0:7] to R[0:7] */
10528     for (i = 0; i < 8; i++) {
10529         env->regs[i] = env->xregs[i];
10530     }
10531 
10532     /*
10533      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10534      * Otherwise, we copy x8-x12 into the banked user regs.
10535      */
10536     if (mode == ARM_CPU_MODE_FIQ) {
10537         for (i = 8; i < 13; i++) {
10538             env->usr_regs[i - 8] = env->xregs[i];
10539         }
10540     } else {
10541         for (i = 8; i < 13; i++) {
10542             env->regs[i] = env->xregs[i];
10543         }
10544     }
10545 
10546     /*
10547      * Registers r13 & r14 depend on the current mode.
10548      * If we are in a given mode, we copy the corresponding x registers to r13
10549      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
10550      * for the mode.
10551      */
10552     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10553         env->regs[13] = env->xregs[13];
10554         env->regs[14] = env->xregs[14];
10555     } else {
10556         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10557 
10558         /*
10559          * HYP is an exception in that it does not have its own banked r14 but
10560          * shares the USR r14
10561          */
10562         if (mode == ARM_CPU_MODE_HYP) {
10563             env->regs[14] = env->xregs[14];
10564         } else {
10565             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10566         }
10567     }
10568 
10569     if (mode == ARM_CPU_MODE_HYP) {
10570         env->regs[13] = env->xregs[15];
10571     } else {
10572         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10573     }
10574 
10575     if (mode == ARM_CPU_MODE_IRQ) {
10576         env->regs[14] = env->xregs[16];
10577         env->regs[13] = env->xregs[17];
10578     } else {
10579         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10580         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10581     }
10582 
10583     if (mode == ARM_CPU_MODE_SVC) {
10584         env->regs[14] = env->xregs[18];
10585         env->regs[13] = env->xregs[19];
10586     } else {
10587         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10588         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10589     }
10590 
10591     if (mode == ARM_CPU_MODE_ABT) {
10592         env->regs[14] = env->xregs[20];
10593         env->regs[13] = env->xregs[21];
10594     } else {
10595         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10596         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10597     }
10598 
10599     if (mode == ARM_CPU_MODE_UND) {
10600         env->regs[14] = env->xregs[22];
10601         env->regs[13] = env->xregs[23];
10602     } else {
10603         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10604         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10605     }
10606 
10607     /*
10608      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10609      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
10610      * FIQ bank for r8-r14.
10611      */
10612     if (mode == ARM_CPU_MODE_FIQ) {
10613         for (i = 24; i < 31; i++) {
10614             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
10615         }
10616     } else {
10617         for (i = 24; i < 29; i++) {
10618             env->fiq_regs[i - 24] = env->xregs[i];
10619         }
10620         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10621         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10622     }
10623 
10624     env->regs[15] = env->pc;
10625 }
10626 
take_aarch32_exception(CPUARMState * env,int new_mode,uint32_t mask,uint32_t offset,uint32_t newpc)10627 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10628                                    uint32_t mask, uint32_t offset,
10629                                    uint32_t newpc)
10630 {
10631     int new_el;
10632 
10633     /* Change the CPU state so as to actually take the exception. */
10634     switch_mode(env, new_mode);
10635 
10636     /*
10637      * For exceptions taken to AArch32 we must clear the SS bit in both
10638      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10639      */
10640     env->pstate &= ~PSTATE_SS;
10641     env->spsr = cpsr_read(env);
10642     /* Clear IT bits.  */
10643     env->condexec_bits = 0;
10644     /* Switch to the new mode, and to the correct instruction set.  */
10645     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10646 
10647     /* This must be after mode switching. */
10648     new_el = arm_current_el(env);
10649 
10650     /* Set new mode endianness */
10651     env->uncached_cpsr &= ~CPSR_E;
10652     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10653         env->uncached_cpsr |= CPSR_E;
10654     }
10655     /* J and IL must always be cleared for exception entry */
10656     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10657     env->daif |= mask;
10658 
10659     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10660         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10661             env->uncached_cpsr |= CPSR_SSBS;
10662         } else {
10663             env->uncached_cpsr &= ~CPSR_SSBS;
10664         }
10665     }
10666 
10667     if (new_mode == ARM_CPU_MODE_HYP) {
10668         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10669         env->elr_el[2] = env->regs[15];
10670     } else {
10671         /* CPSR.PAN is normally preserved preserved unless...  */
10672         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10673             switch (new_el) {
10674             case 3:
10675                 if (!arm_is_secure_below_el3(env)) {
10676                     /* ... the target is EL3, from non-secure state.  */
10677                     env->uncached_cpsr &= ~CPSR_PAN;
10678                     break;
10679                 }
10680                 /* ... the target is EL3, from secure state ... */
10681                 /* fall through */
10682             case 1:
10683                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
10684                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10685                     env->uncached_cpsr |= CPSR_PAN;
10686                 }
10687                 break;
10688             }
10689         }
10690         /*
10691          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10692          * and we should just guard the thumb mode on V4
10693          */
10694         if (arm_feature(env, ARM_FEATURE_V4T)) {
10695             env->thumb =
10696                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10697         }
10698         env->regs[14] = env->regs[15] + offset;
10699     }
10700     env->regs[15] = newpc;
10701 
10702     if (tcg_enabled()) {
10703         arm_rebuild_hflags(env);
10704     }
10705 }
10706 
arm_cpu_do_interrupt_aarch32_hyp(CPUState * cs)10707 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10708 {
10709     /*
10710      * Handle exception entry to Hyp mode; this is sufficiently
10711      * different to entry to other AArch32 modes that we handle it
10712      * separately here.
10713      *
10714      * The vector table entry used is always the 0x14 Hyp mode entry point,
10715      * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
10716      * The offset applied to the preferred return address is always zero
10717      * (see DDI0487C.a section G1.12.3).
10718      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10719      */
10720     uint32_t addr, mask;
10721     ARMCPU *cpu = ARM_CPU(cs);
10722     CPUARMState *env = &cpu->env;
10723 
10724     switch (cs->exception_index) {
10725     case EXCP_UDEF:
10726         addr = 0x04;
10727         break;
10728     case EXCP_SWI:
10729         addr = 0x08;
10730         break;
10731     case EXCP_BKPT:
10732         /* Fall through to prefetch abort.  */
10733     case EXCP_PREFETCH_ABORT:
10734         env->cp15.ifar_s = env->exception.vaddress;
10735         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10736                       (uint32_t)env->exception.vaddress);
10737         addr = 0x0c;
10738         break;
10739     case EXCP_DATA_ABORT:
10740         env->cp15.dfar_s = env->exception.vaddress;
10741         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10742                       (uint32_t)env->exception.vaddress);
10743         addr = 0x10;
10744         break;
10745     case EXCP_IRQ:
10746         addr = 0x18;
10747         break;
10748     case EXCP_FIQ:
10749         addr = 0x1c;
10750         break;
10751     case EXCP_HVC:
10752         addr = 0x08;
10753         break;
10754     case EXCP_HYP_TRAP:
10755         addr = 0x14;
10756         break;
10757     default:
10758         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10759     }
10760 
10761     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10762         if (!arm_feature(env, ARM_FEATURE_V8)) {
10763             /*
10764              * QEMU syndrome values are v8-style. v7 has the IL bit
10765              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10766              * If this is a v7 CPU, squash the IL bit in those cases.
10767              */
10768             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10769                 (cs->exception_index == EXCP_DATA_ABORT &&
10770                  !(env->exception.syndrome & ARM_EL_ISV)) ||
10771                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10772                 env->exception.syndrome &= ~ARM_EL_IL;
10773             }
10774         }
10775         env->cp15.esr_el[2] = env->exception.syndrome;
10776     }
10777 
10778     if (arm_current_el(env) != 2 && addr < 0x14) {
10779         addr = 0x14;
10780     }
10781 
10782     mask = 0;
10783     if (!(env->cp15.scr_el3 & SCR_EA)) {
10784         mask |= CPSR_A;
10785     }
10786     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10787         mask |= CPSR_I;
10788     }
10789     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10790         mask |= CPSR_F;
10791     }
10792 
10793     addr += env->cp15.hvbar;
10794 
10795     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10796 }
10797 
arm_cpu_do_interrupt_aarch32(CPUState * cs)10798 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10799 {
10800     ARMCPU *cpu = ARM_CPU(cs);
10801     CPUARMState *env = &cpu->env;
10802     uint32_t addr;
10803     uint32_t mask;
10804     int new_mode;
10805     uint32_t offset;
10806     uint32_t moe;
10807 
10808     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10809     switch (syn_get_ec(env->exception.syndrome)) {
10810     case EC_BREAKPOINT:
10811     case EC_BREAKPOINT_SAME_EL:
10812         moe = 1;
10813         break;
10814     case EC_WATCHPOINT:
10815     case EC_WATCHPOINT_SAME_EL:
10816         moe = 10;
10817         break;
10818     case EC_AA32_BKPT:
10819         moe = 3;
10820         break;
10821     case EC_VECTORCATCH:
10822         moe = 5;
10823         break;
10824     default:
10825         moe = 0;
10826         break;
10827     }
10828 
10829     if (moe) {
10830         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10831     }
10832 
10833     if (env->exception.target_el == 2) {
10834         /* Debug exceptions are reported differently on AArch32 */
10835         switch (syn_get_ec(env->exception.syndrome)) {
10836         case EC_BREAKPOINT:
10837         case EC_BREAKPOINT_SAME_EL:
10838         case EC_AA32_BKPT:
10839         case EC_VECTORCATCH:
10840             env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2,
10841                                                      0, 0, 0x22);
10842             break;
10843         case EC_WATCHPOINT:
10844             env->exception.syndrome = syn_set_ec(env->exception.syndrome,
10845                                                  EC_DATAABORT);
10846             break;
10847         case EC_WATCHPOINT_SAME_EL:
10848             env->exception.syndrome = syn_set_ec(env->exception.syndrome,
10849                                                  EC_DATAABORT_SAME_EL);
10850             break;
10851         }
10852         arm_cpu_do_interrupt_aarch32_hyp(cs);
10853         return;
10854     }
10855 
10856     switch (cs->exception_index) {
10857     case EXCP_UDEF:
10858         new_mode = ARM_CPU_MODE_UND;
10859         addr = 0x04;
10860         mask = CPSR_I;
10861         if (env->thumb) {
10862             offset = 2;
10863         } else {
10864             offset = 4;
10865         }
10866         break;
10867     case EXCP_SWI:
10868         new_mode = ARM_CPU_MODE_SVC;
10869         addr = 0x08;
10870         mask = CPSR_I;
10871         /* The PC already points to the next instruction.  */
10872         offset = 0;
10873         break;
10874     case EXCP_BKPT:
10875         /* Fall through to prefetch abort.  */
10876     case EXCP_PREFETCH_ABORT:
10877         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10878         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10879         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10880                       env->exception.fsr, (uint32_t)env->exception.vaddress);
10881         new_mode = ARM_CPU_MODE_ABT;
10882         addr = 0x0c;
10883         mask = CPSR_A | CPSR_I;
10884         offset = 4;
10885         break;
10886     case EXCP_DATA_ABORT:
10887         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10888         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10889         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10890                       env->exception.fsr,
10891                       (uint32_t)env->exception.vaddress);
10892         new_mode = ARM_CPU_MODE_ABT;
10893         addr = 0x10;
10894         mask = CPSR_A | CPSR_I;
10895         offset = 8;
10896         break;
10897     case EXCP_IRQ:
10898         new_mode = ARM_CPU_MODE_IRQ;
10899         addr = 0x18;
10900         /* Disable IRQ and imprecise data aborts.  */
10901         mask = CPSR_A | CPSR_I;
10902         offset = 4;
10903         if (env->cp15.scr_el3 & SCR_IRQ) {
10904             /* IRQ routed to monitor mode */
10905             new_mode = ARM_CPU_MODE_MON;
10906             mask |= CPSR_F;
10907         }
10908         break;
10909     case EXCP_FIQ:
10910         new_mode = ARM_CPU_MODE_FIQ;
10911         addr = 0x1c;
10912         /* Disable FIQ, IRQ and imprecise data aborts.  */
10913         mask = CPSR_A | CPSR_I | CPSR_F;
10914         if (env->cp15.scr_el3 & SCR_FIQ) {
10915             /* FIQ routed to monitor mode */
10916             new_mode = ARM_CPU_MODE_MON;
10917         }
10918         offset = 4;
10919         break;
10920     case EXCP_VIRQ:
10921         new_mode = ARM_CPU_MODE_IRQ;
10922         addr = 0x18;
10923         /* Disable IRQ and imprecise data aborts.  */
10924         mask = CPSR_A | CPSR_I;
10925         offset = 4;
10926         break;
10927     case EXCP_VFIQ:
10928         new_mode = ARM_CPU_MODE_FIQ;
10929         addr = 0x1c;
10930         /* Disable FIQ, IRQ and imprecise data aborts.  */
10931         mask = CPSR_A | CPSR_I | CPSR_F;
10932         offset = 4;
10933         break;
10934     case EXCP_VSERR:
10935         {
10936             /*
10937              * Note that this is reported as a data abort, but the DFAR
10938              * has an UNKNOWN value.  Construct the SError syndrome from
10939              * AET and ExT fields.
10940              */
10941             ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
10942 
10943             if (extended_addresses_enabled(env)) {
10944                 env->exception.fsr = arm_fi_to_lfsc(&fi);
10945             } else {
10946                 env->exception.fsr = arm_fi_to_sfsc(&fi);
10947             }
10948             env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
10949             A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10950             qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
10951                           env->exception.fsr);
10952 
10953             new_mode = ARM_CPU_MODE_ABT;
10954             addr = 0x10;
10955             mask = CPSR_A | CPSR_I;
10956             offset = 8;
10957         }
10958         break;
10959     case EXCP_SMC:
10960         new_mode = ARM_CPU_MODE_MON;
10961         addr = 0x08;
10962         mask = CPSR_A | CPSR_I | CPSR_F;
10963         offset = 0;
10964         break;
10965     default:
10966         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10967         return; /* Never happens.  Keep compiler happy.  */
10968     }
10969 
10970     if (new_mode == ARM_CPU_MODE_MON) {
10971         addr += env->cp15.mvbar;
10972     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10973         /* High vectors. When enabled, base address cannot be remapped. */
10974         addr += 0xffff0000;
10975     } else {
10976         /*
10977          * ARM v7 architectures provide a vector base address register to remap
10978          * the interrupt vector table.
10979          * This register is only followed in non-monitor mode, and is banked.
10980          * Note: only bits 31:5 are valid.
10981          */
10982         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10983     }
10984 
10985     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10986         env->cp15.scr_el3 &= ~SCR_NS;
10987     }
10988 
10989     take_aarch32_exception(env, new_mode, mask, offset, addr);
10990 }
10991 
aarch64_regnum(CPUARMState * env,int aarch32_reg)10992 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10993 {
10994     /*
10995      * Return the register number of the AArch64 view of the AArch32
10996      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10997      * be that of the AArch32 mode the exception came from.
10998      */
10999     int mode = env->uncached_cpsr & CPSR_M;
11000 
11001     switch (aarch32_reg) {
11002     case 0 ... 7:
11003         return aarch32_reg;
11004     case 8 ... 12:
11005         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
11006     case 13:
11007         switch (mode) {
11008         case ARM_CPU_MODE_USR:
11009         case ARM_CPU_MODE_SYS:
11010             return 13;
11011         case ARM_CPU_MODE_HYP:
11012             return 15;
11013         case ARM_CPU_MODE_IRQ:
11014             return 17;
11015         case ARM_CPU_MODE_SVC:
11016             return 19;
11017         case ARM_CPU_MODE_ABT:
11018             return 21;
11019         case ARM_CPU_MODE_UND:
11020             return 23;
11021         case ARM_CPU_MODE_FIQ:
11022             return 29;
11023         default:
11024             g_assert_not_reached();
11025         }
11026     case 14:
11027         switch (mode) {
11028         case ARM_CPU_MODE_USR:
11029         case ARM_CPU_MODE_SYS:
11030         case ARM_CPU_MODE_HYP:
11031             return 14;
11032         case ARM_CPU_MODE_IRQ:
11033             return 16;
11034         case ARM_CPU_MODE_SVC:
11035             return 18;
11036         case ARM_CPU_MODE_ABT:
11037             return 20;
11038         case ARM_CPU_MODE_UND:
11039             return 22;
11040         case ARM_CPU_MODE_FIQ:
11041             return 30;
11042         default:
11043             g_assert_not_reached();
11044         }
11045     case 15:
11046         return 31;
11047     default:
11048         g_assert_not_reached();
11049     }
11050 }
11051 
cpsr_read_for_spsr_elx(CPUARMState * env)11052 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
11053 {
11054     uint32_t ret = cpsr_read(env);
11055 
11056     /* Move DIT to the correct location for SPSR_ELx */
11057     if (ret & CPSR_DIT) {
11058         ret &= ~CPSR_DIT;
11059         ret |= PSTATE_DIT;
11060     }
11061     /* Merge PSTATE.SS into SPSR_ELx */
11062     ret |= env->pstate & PSTATE_SS;
11063 
11064     return ret;
11065 }
11066 
syndrome_is_sync_extabt(uint32_t syndrome)11067 static bool syndrome_is_sync_extabt(uint32_t syndrome)
11068 {
11069     /* Return true if this syndrome value is a synchronous external abort */
11070     switch (syn_get_ec(syndrome)) {
11071     case EC_INSNABORT:
11072     case EC_INSNABORT_SAME_EL:
11073     case EC_DATAABORT:
11074     case EC_DATAABORT_SAME_EL:
11075         /* Look at fault status code for all the synchronous ext abort cases */
11076         switch (syndrome & 0x3f) {
11077         case 0x10:
11078         case 0x13:
11079         case 0x14:
11080         case 0x15:
11081         case 0x16:
11082         case 0x17:
11083             return true;
11084         default:
11085             return false;
11086         }
11087     default:
11088         return false;
11089     }
11090 }
11091 
11092 /* Handle exception entry to a target EL which is using AArch64 */
arm_cpu_do_interrupt_aarch64(CPUState * cs)11093 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
11094 {
11095     ARMCPU *cpu = ARM_CPU(cs);
11096     CPUARMState *env = &cpu->env;
11097     unsigned int new_el = env->exception.target_el;
11098     target_ulong addr = env->cp15.vbar_el[new_el];
11099     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
11100     unsigned int old_mode;
11101     unsigned int cur_el = arm_current_el(env);
11102     int rt;
11103 
11104     if (tcg_enabled()) {
11105         /*
11106          * Note that new_el can never be 0.  If cur_el is 0, then
11107          * el0_a64 is is_a64(), else el0_a64 is ignored.
11108          */
11109         aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
11110     }
11111 
11112     if (cur_el < new_el) {
11113         /*
11114          * Entry vector offset depends on whether the implemented EL
11115          * immediately lower than the target level is using AArch32 or AArch64
11116          */
11117         bool is_aa64;
11118         uint64_t hcr;
11119 
11120         switch (new_el) {
11121         case 3:
11122             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
11123             break;
11124         case 2:
11125             hcr = arm_hcr_el2_eff(env);
11126             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11127                 is_aa64 = (hcr & HCR_RW) != 0;
11128                 break;
11129             }
11130             /* fall through */
11131         case 1:
11132             is_aa64 = is_a64(env);
11133             break;
11134         default:
11135             g_assert_not_reached();
11136         }
11137 
11138         if (is_aa64) {
11139             addr += 0x400;
11140         } else {
11141             addr += 0x600;
11142         }
11143     } else if (pstate_read(env) & PSTATE_SP) {
11144         addr += 0x200;
11145     }
11146 
11147     switch (cs->exception_index) {
11148     case EXCP_GPC:
11149         qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
11150                       env->cp15.mfar_el3);
11151         /* fall through */
11152     case EXCP_PREFETCH_ABORT:
11153     case EXCP_DATA_ABORT:
11154         /*
11155          * FEAT_DoubleFault allows synchronous external aborts taken to EL3
11156          * to be taken to the SError vector entrypoint.
11157          */
11158         if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
11159             syndrome_is_sync_extabt(env->exception.syndrome)) {
11160             addr += 0x180;
11161         }
11162         env->cp15.far_el[new_el] = env->exception.vaddress;
11163         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
11164                       env->cp15.far_el[new_el]);
11165         /* fall through */
11166     case EXCP_BKPT:
11167     case EXCP_UDEF:
11168     case EXCP_SWI:
11169     case EXCP_HVC:
11170     case EXCP_HYP_TRAP:
11171     case EXCP_SMC:
11172         switch (syn_get_ec(env->exception.syndrome)) {
11173         case EC_ADVSIMDFPACCESSTRAP:
11174             /*
11175              * QEMU internal FP/SIMD syndromes from AArch32 include the
11176              * TA and coproc fields which are only exposed if the exception
11177              * is taken to AArch32 Hyp mode. Mask them out to get a valid
11178              * AArch64 format syndrome.
11179              */
11180             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
11181             break;
11182         case EC_CP14RTTRAP:
11183         case EC_CP15RTTRAP:
11184         case EC_CP14DTTRAP:
11185             /*
11186              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
11187              * the raw register field from the insn; when taking this to
11188              * AArch64 we must convert it to the AArch64 view of the register
11189              * number. Notice that we read a 4-bit AArch32 register number and
11190              * write back a 5-bit AArch64 one.
11191              */
11192             rt = extract32(env->exception.syndrome, 5, 4);
11193             rt = aarch64_regnum(env, rt);
11194             env->exception.syndrome = deposit32(env->exception.syndrome,
11195                                                 5, 5, rt);
11196             break;
11197         case EC_CP15RRTTRAP:
11198         case EC_CP14RRTTRAP:
11199             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
11200             rt = extract32(env->exception.syndrome, 5, 4);
11201             rt = aarch64_regnum(env, rt);
11202             env->exception.syndrome = deposit32(env->exception.syndrome,
11203                                                 5, 5, rt);
11204             rt = extract32(env->exception.syndrome, 10, 4);
11205             rt = aarch64_regnum(env, rt);
11206             env->exception.syndrome = deposit32(env->exception.syndrome,
11207                                                 10, 5, rt);
11208             break;
11209         }
11210         env->cp15.esr_el[new_el] = env->exception.syndrome;
11211         break;
11212     case EXCP_IRQ:
11213     case EXCP_VIRQ:
11214         addr += 0x80;
11215         break;
11216     case EXCP_FIQ:
11217     case EXCP_VFIQ:
11218         addr += 0x100;
11219         break;
11220     case EXCP_VSERR:
11221         addr += 0x180;
11222         /* Construct the SError syndrome from IDS and ISS fields. */
11223         env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
11224         env->cp15.esr_el[new_el] = env->exception.syndrome;
11225         break;
11226     default:
11227         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11228     }
11229 
11230     if (is_a64(env)) {
11231         old_mode = pstate_read(env);
11232         aarch64_save_sp(env, arm_current_el(env));
11233         env->elr_el[new_el] = env->pc;
11234     } else {
11235         old_mode = cpsr_read_for_spsr_elx(env);
11236         env->elr_el[new_el] = env->regs[15];
11237 
11238         aarch64_sync_32_to_64(env);
11239 
11240         env->condexec_bits = 0;
11241     }
11242     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11243 
11244     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11245                   env->elr_el[new_el]);
11246 
11247     if (cpu_isar_feature(aa64_pan, cpu)) {
11248         /* The value of PSTATE.PAN is normally preserved, except when ... */
11249         new_mode |= old_mode & PSTATE_PAN;
11250         switch (new_el) {
11251         case 2:
11252             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
11253             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11254                 != (HCR_E2H | HCR_TGE)) {
11255                 break;
11256             }
11257             /* fall through */
11258         case 1:
11259             /* ... the target is EL1 ... */
11260             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
11261             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11262                 new_mode |= PSTATE_PAN;
11263             }
11264             break;
11265         }
11266     }
11267     if (cpu_isar_feature(aa64_mte, cpu)) {
11268         new_mode |= PSTATE_TCO;
11269     }
11270 
11271     if (cpu_isar_feature(aa64_ssbs, cpu)) {
11272         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11273             new_mode |= PSTATE_SSBS;
11274         } else {
11275             new_mode &= ~PSTATE_SSBS;
11276         }
11277     }
11278 
11279     pstate_write(env, PSTATE_DAIF | new_mode);
11280     env->aarch64 = true;
11281     aarch64_restore_sp(env, new_el);
11282 
11283     if (tcg_enabled()) {
11284         helper_rebuild_hflags_a64(env, new_el);
11285     }
11286 
11287     env->pc = addr;
11288 
11289     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11290                   new_el, env->pc, pstate_read(env));
11291 }
11292 
11293 /*
11294  * Do semihosting call and set the appropriate return value. All the
11295  * permission and validity checks have been done at translate time.
11296  *
11297  * We only see semihosting exceptions in TCG only as they are not
11298  * trapped to the hypervisor in KVM.
11299  */
11300 #ifdef CONFIG_TCG
tcg_handle_semihosting(CPUState * cs)11301 static void tcg_handle_semihosting(CPUState *cs)
11302 {
11303     ARMCPU *cpu = ARM_CPU(cs);
11304     CPUARMState *env = &cpu->env;
11305 
11306     if (is_a64(env)) {
11307         qemu_log_mask(CPU_LOG_INT,
11308                       "...handling as semihosting call 0x%" PRIx64 "\n",
11309                       env->xregs[0]);
11310         do_common_semihosting(cs);
11311         env->pc += 4;
11312     } else {
11313         qemu_log_mask(CPU_LOG_INT,
11314                       "...handling as semihosting call 0x%x\n",
11315                       env->regs[0]);
11316         do_common_semihosting(cs);
11317         env->regs[15] += env->thumb ? 2 : 4;
11318     }
11319 }
11320 #endif
11321 
11322 /*
11323  * Handle a CPU exception for A and R profile CPUs.
11324  * Do any appropriate logging, handle PSCI calls, and then hand off
11325  * to the AArch64-entry or AArch32-entry function depending on the
11326  * target exception level's register width.
11327  *
11328  * Note: this is used for both TCG (as the do_interrupt tcg op),
11329  *       and KVM to re-inject guest debug exceptions, and to
11330  *       inject a Synchronous-External-Abort.
11331  */
arm_cpu_do_interrupt(CPUState * cs)11332 void arm_cpu_do_interrupt(CPUState *cs)
11333 {
11334     ARMCPU *cpu = ARM_CPU(cs);
11335     CPUARMState *env = &cpu->env;
11336     unsigned int new_el = env->exception.target_el;
11337 
11338     assert(!arm_feature(env, ARM_FEATURE_M));
11339 
11340     arm_log_exception(cs);
11341     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11342                   new_el);
11343     if (qemu_loglevel_mask(CPU_LOG_INT)
11344         && !excp_is_internal(cs->exception_index)) {
11345         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11346                       syn_get_ec(env->exception.syndrome),
11347                       env->exception.syndrome);
11348     }
11349 
11350     if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11351         arm_handle_psci_call(cpu);
11352         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11353         return;
11354     }
11355 
11356     /*
11357      * Semihosting semantics depend on the register width of the code
11358      * that caused the exception, not the target exception level, so
11359      * must be handled here.
11360      */
11361 #ifdef CONFIG_TCG
11362     if (cs->exception_index == EXCP_SEMIHOST) {
11363         tcg_handle_semihosting(cs);
11364         return;
11365     }
11366 #endif
11367 
11368     /*
11369      * Hooks may change global state so BQL should be held, also the
11370      * BQL needs to be held for any modification of
11371      * cs->interrupt_request.
11372      */
11373     g_assert(qemu_mutex_iothread_locked());
11374 
11375     arm_call_pre_el_change_hook(cpu);
11376 
11377     assert(!excp_is_internal(cs->exception_index));
11378     if (arm_el_is_aa64(env, new_el)) {
11379         arm_cpu_do_interrupt_aarch64(cs);
11380     } else {
11381         arm_cpu_do_interrupt_aarch32(cs);
11382     }
11383 
11384     arm_call_el_change_hook(cpu);
11385 
11386     if (!kvm_enabled()) {
11387         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11388     }
11389 }
11390 #endif /* !CONFIG_USER_ONLY */
11391 
arm_sctlr(CPUARMState * env,int el)11392 uint64_t arm_sctlr(CPUARMState *env, int el)
11393 {
11394     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11395     if (el == 0) {
11396         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11397         el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11398     }
11399     return env->cp15.sctlr_el[el];
11400 }
11401 
aa64_va_parameter_tbi(uint64_t tcr,ARMMMUIdx mmu_idx)11402 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11403 {
11404     if (regime_has_2_ranges(mmu_idx)) {
11405         return extract64(tcr, 37, 2);
11406     } else if (regime_is_stage2(mmu_idx)) {
11407         return 0; /* VTCR_EL2 */
11408     } else {
11409         /* Replicate the single TBI bit so we always have 2 bits.  */
11410         return extract32(tcr, 20, 1) * 3;
11411     }
11412 }
11413 
aa64_va_parameter_tbid(uint64_t tcr,ARMMMUIdx mmu_idx)11414 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11415 {
11416     if (regime_has_2_ranges(mmu_idx)) {
11417         return extract64(tcr, 51, 2);
11418     } else if (regime_is_stage2(mmu_idx)) {
11419         return 0; /* VTCR_EL2 */
11420     } else {
11421         /* Replicate the single TBID bit so we always have 2 bits.  */
11422         return extract32(tcr, 29, 1) * 3;
11423     }
11424 }
11425 
aa64_va_parameter_tcma(uint64_t tcr,ARMMMUIdx mmu_idx)11426 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11427 {
11428     if (regime_has_2_ranges(mmu_idx)) {
11429         return extract64(tcr, 57, 2);
11430     } else {
11431         /* Replicate the single TCMA bit so we always have 2 bits.  */
11432         return extract32(tcr, 30, 1) * 3;
11433     }
11434 }
11435 
tg0_to_gran_size(int tg)11436 static ARMGranuleSize tg0_to_gran_size(int tg)
11437 {
11438     switch (tg) {
11439     case 0:
11440         return Gran4K;
11441     case 1:
11442         return Gran64K;
11443     case 2:
11444         return Gran16K;
11445     default:
11446         return GranInvalid;
11447     }
11448 }
11449 
tg1_to_gran_size(int tg)11450 static ARMGranuleSize tg1_to_gran_size(int tg)
11451 {
11452     switch (tg) {
11453     case 1:
11454         return Gran16K;
11455     case 2:
11456         return Gran4K;
11457     case 3:
11458         return Gran64K;
11459     default:
11460         return GranInvalid;
11461     }
11462 }
11463 
have4k(ARMCPU * cpu,bool stage2)11464 static inline bool have4k(ARMCPU *cpu, bool stage2)
11465 {
11466     return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11467         : cpu_isar_feature(aa64_tgran4, cpu);
11468 }
11469 
have16k(ARMCPU * cpu,bool stage2)11470 static inline bool have16k(ARMCPU *cpu, bool stage2)
11471 {
11472     return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11473         : cpu_isar_feature(aa64_tgran16, cpu);
11474 }
11475 
have64k(ARMCPU * cpu,bool stage2)11476 static inline bool have64k(ARMCPU *cpu, bool stage2)
11477 {
11478     return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11479         : cpu_isar_feature(aa64_tgran64, cpu);
11480 }
11481 
sanitize_gran_size(ARMCPU * cpu,ARMGranuleSize gran,bool stage2)11482 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11483                                          bool stage2)
11484 {
11485     switch (gran) {
11486     case Gran4K:
11487         if (have4k(cpu, stage2)) {
11488             return gran;
11489         }
11490         break;
11491     case Gran16K:
11492         if (have16k(cpu, stage2)) {
11493             return gran;
11494         }
11495         break;
11496     case Gran64K:
11497         if (have64k(cpu, stage2)) {
11498             return gran;
11499         }
11500         break;
11501     case GranInvalid:
11502         break;
11503     }
11504     /*
11505      * If the guest selects a granule size that isn't implemented,
11506      * the architecture requires that we behave as if it selected one
11507      * that is (with an IMPDEF choice of which one to pick). We choose
11508      * to implement the smallest supported granule size.
11509      */
11510     if (have4k(cpu, stage2)) {
11511         return Gran4K;
11512     }
11513     if (have16k(cpu, stage2)) {
11514         return Gran16K;
11515     }
11516     assert(have64k(cpu, stage2));
11517     return Gran64K;
11518 }
11519 
aa64_va_parameters(CPUARMState * env,uint64_t va,ARMMMUIdx mmu_idx,bool data,bool el1_is_aa32)11520 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11521                                    ARMMMUIdx mmu_idx, bool data,
11522                                    bool el1_is_aa32)
11523 {
11524     uint64_t tcr = regime_tcr(env, mmu_idx);
11525     bool epd, hpd, tsz_oob, ds, ha, hd;
11526     int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11527     ARMGranuleSize gran;
11528     ARMCPU *cpu = env_archcpu(env);
11529     bool stage2 = regime_is_stage2(mmu_idx);
11530 
11531     if (!regime_has_2_ranges(mmu_idx)) {
11532         select = 0;
11533         tsz = extract32(tcr, 0, 6);
11534         gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11535         if (stage2) {
11536             /* VTCR_EL2 */
11537             hpd = false;
11538         } else {
11539             hpd = extract32(tcr, 24, 1);
11540         }
11541         epd = false;
11542         sh = extract32(tcr, 12, 2);
11543         ps = extract32(tcr, 16, 3);
11544         ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11545         hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11546         ds = extract64(tcr, 32, 1);
11547     } else {
11548         bool e0pd;
11549 
11550         /*
11551          * Bit 55 is always between the two regions, and is canonical for
11552          * determining if address tagging is enabled.
11553          */
11554         select = extract64(va, 55, 1);
11555         if (!select) {
11556             tsz = extract32(tcr, 0, 6);
11557             gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11558             epd = extract32(tcr, 7, 1);
11559             sh = extract32(tcr, 12, 2);
11560             hpd = extract64(tcr, 41, 1);
11561             e0pd = extract64(tcr, 55, 1);
11562         } else {
11563             tsz = extract32(tcr, 16, 6);
11564             gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11565             epd = extract32(tcr, 23, 1);
11566             sh = extract32(tcr, 28, 2);
11567             hpd = extract64(tcr, 42, 1);
11568             e0pd = extract64(tcr, 56, 1);
11569         }
11570         ps = extract64(tcr, 32, 3);
11571         ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11572         hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11573         ds = extract64(tcr, 59, 1);
11574 
11575         if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11576             regime_is_user(env, mmu_idx)) {
11577             epd = true;
11578         }
11579     }
11580 
11581     gran = sanitize_gran_size(cpu, gran, stage2);
11582 
11583     if (cpu_isar_feature(aa64_st, cpu)) {
11584         max_tsz = 48 - (gran == Gran64K);
11585     } else {
11586         max_tsz = 39;
11587     }
11588 
11589     /*
11590      * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11591      * adjust the effective value of DS, as documented.
11592      */
11593     min_tsz = 16;
11594     if (gran == Gran64K) {
11595         if (cpu_isar_feature(aa64_lva, cpu)) {
11596             min_tsz = 12;
11597         }
11598         ds = false;
11599     } else if (ds) {
11600         if (regime_is_stage2(mmu_idx)) {
11601             if (gran == Gran16K) {
11602                 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11603             } else {
11604                 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11605             }
11606         } else {
11607             if (gran == Gran16K) {
11608                 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11609             } else {
11610                 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11611             }
11612         }
11613         if (ds) {
11614             min_tsz = 12;
11615         }
11616     }
11617 
11618     if (stage2 && el1_is_aa32) {
11619         /*
11620          * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
11621          * are loosened: a configured IPA of 40 bits is permitted even if
11622          * the implemented PA is less than that (and so a 40 bit IPA would
11623          * fault for an AArch64 EL1). See R_DTLMN.
11624          */
11625         min_tsz = MIN(min_tsz, 24);
11626     }
11627 
11628     if (tsz > max_tsz) {
11629         tsz = max_tsz;
11630         tsz_oob = true;
11631     } else if (tsz < min_tsz) {
11632         tsz = min_tsz;
11633         tsz_oob = true;
11634     } else {
11635         tsz_oob = false;
11636     }
11637 
11638     /* Present TBI as a composite with TBID.  */
11639     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11640     if (!data) {
11641         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11642     }
11643     tbi = (tbi >> select) & 1;
11644 
11645     return (ARMVAParameters) {
11646         .tsz = tsz,
11647         .ps = ps,
11648         .sh = sh,
11649         .select = select,
11650         .tbi = tbi,
11651         .epd = epd,
11652         .hpd = hpd,
11653         .tsz_oob = tsz_oob,
11654         .ds = ds,
11655         .ha = ha,
11656         .hd = ha && hd,
11657         .gran = gran,
11658     };
11659 }
11660 
11661 /*
11662  * Note that signed overflow is undefined in C.  The following routines are
11663  * careful to use unsigned types where modulo arithmetic is required.
11664  * Failure to do so _will_ break on newer gcc.
11665  */
11666 
11667 /* Signed saturating arithmetic.  */
11668 
11669 /* Perform 16-bit signed saturating addition.  */
add16_sat(uint16_t a,uint16_t b)11670 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11671 {
11672     uint16_t res;
11673 
11674     res = a + b;
11675     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11676         if (a & 0x8000) {
11677             res = 0x8000;
11678         } else {
11679             res = 0x7fff;
11680         }
11681     }
11682     return res;
11683 }
11684 
11685 /* Perform 8-bit signed saturating addition.  */
add8_sat(uint8_t a,uint8_t b)11686 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11687 {
11688     uint8_t res;
11689 
11690     res = a + b;
11691     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11692         if (a & 0x80) {
11693             res = 0x80;
11694         } else {
11695             res = 0x7f;
11696         }
11697     }
11698     return res;
11699 }
11700 
11701 /* Perform 16-bit signed saturating subtraction.  */
sub16_sat(uint16_t a,uint16_t b)11702 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11703 {
11704     uint16_t res;
11705 
11706     res = a - b;
11707     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11708         if (a & 0x8000) {
11709             res = 0x8000;
11710         } else {
11711             res = 0x7fff;
11712         }
11713     }
11714     return res;
11715 }
11716 
11717 /* Perform 8-bit signed saturating subtraction.  */
sub8_sat(uint8_t a,uint8_t b)11718 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11719 {
11720     uint8_t res;
11721 
11722     res = a - b;
11723     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11724         if (a & 0x80) {
11725             res = 0x80;
11726         } else {
11727             res = 0x7f;
11728         }
11729     }
11730     return res;
11731 }
11732 
11733 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11734 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11735 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
11736 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
11737 #define PFX q
11738 
11739 #include "op_addsub.h"
11740 
11741 /* Unsigned saturating arithmetic.  */
add16_usat(uint16_t a,uint16_t b)11742 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11743 {
11744     uint16_t res;
11745     res = a + b;
11746     if (res < a) {
11747         res = 0xffff;
11748     }
11749     return res;
11750 }
11751 
sub16_usat(uint16_t a,uint16_t b)11752 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11753 {
11754     if (a > b) {
11755         return a - b;
11756     } else {
11757         return 0;
11758     }
11759 }
11760 
add8_usat(uint8_t a,uint8_t b)11761 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11762 {
11763     uint8_t res;
11764     res = a + b;
11765     if (res < a) {
11766         res = 0xff;
11767     }
11768     return res;
11769 }
11770 
sub8_usat(uint8_t a,uint8_t b)11771 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11772 {
11773     if (a > b) {
11774         return a - b;
11775     } else {
11776         return 0;
11777     }
11778 }
11779 
11780 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11781 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11782 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
11783 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
11784 #define PFX uq
11785 
11786 #include "op_addsub.h"
11787 
11788 /* Signed modulo arithmetic.  */
11789 #define SARITH16(a, b, n, op) do { \
11790     int32_t sum; \
11791     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11792     RESULT(sum, n, 16); \
11793     if (sum >= 0) \
11794         ge |= 3 << (n * 2); \
11795     } while (0)
11796 
11797 #define SARITH8(a, b, n, op) do { \
11798     int32_t sum; \
11799     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11800     RESULT(sum, n, 8); \
11801     if (sum >= 0) \
11802         ge |= 1 << n; \
11803     } while (0)
11804 
11805 
11806 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11807 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11808 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
11809 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
11810 #define PFX s
11811 #define ARITH_GE
11812 
11813 #include "op_addsub.h"
11814 
11815 /* Unsigned modulo arithmetic.  */
11816 #define ADD16(a, b, n) do { \
11817     uint32_t sum; \
11818     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11819     RESULT(sum, n, 16); \
11820     if ((sum >> 16) == 1) \
11821         ge |= 3 << (n * 2); \
11822     } while (0)
11823 
11824 #define ADD8(a, b, n) do { \
11825     uint32_t sum; \
11826     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11827     RESULT(sum, n, 8); \
11828     if ((sum >> 8) == 1) \
11829         ge |= 1 << n; \
11830     } while (0)
11831 
11832 #define SUB16(a, b, n) do { \
11833     uint32_t sum; \
11834     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11835     RESULT(sum, n, 16); \
11836     if ((sum >> 16) == 0) \
11837         ge |= 3 << (n * 2); \
11838     } while (0)
11839 
11840 #define SUB8(a, b, n) do { \
11841     uint32_t sum; \
11842     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11843     RESULT(sum, n, 8); \
11844     if ((sum >> 8) == 0) \
11845         ge |= 1 << n; \
11846     } while (0)
11847 
11848 #define PFX u
11849 #define ARITH_GE
11850 
11851 #include "op_addsub.h"
11852 
11853 /* Halved signed arithmetic.  */
11854 #define ADD16(a, b, n) \
11855   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11856 #define SUB16(a, b, n) \
11857   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11858 #define ADD8(a, b, n) \
11859   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11860 #define SUB8(a, b, n) \
11861   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11862 #define PFX sh
11863 
11864 #include "op_addsub.h"
11865 
11866 /* Halved unsigned arithmetic.  */
11867 #define ADD16(a, b, n) \
11868   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11869 #define SUB16(a, b, n) \
11870   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11871 #define ADD8(a, b, n) \
11872   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11873 #define SUB8(a, b, n) \
11874   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11875 #define PFX uh
11876 
11877 #include "op_addsub.h"
11878 
do_usad(uint8_t a,uint8_t b)11879 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11880 {
11881     if (a > b) {
11882         return a - b;
11883     } else {
11884         return b - a;
11885     }
11886 }
11887 
11888 /* Unsigned sum of absolute byte differences.  */
HELPER(usad8)11889 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11890 {
11891     uint32_t sum;
11892     sum = do_usad(a, b);
11893     sum += do_usad(a >> 8, b >> 8);
11894     sum += do_usad(a >> 16, b >> 16);
11895     sum += do_usad(a >> 24, b >> 24);
11896     return sum;
11897 }
11898 
11899 /* For ARMv6 SEL instruction.  */
HELPER(sel_flags)11900 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11901 {
11902     uint32_t mask;
11903 
11904     mask = 0;
11905     if (flags & 1) {
11906         mask |= 0xff;
11907     }
11908     if (flags & 2) {
11909         mask |= 0xff00;
11910     }
11911     if (flags & 4) {
11912         mask |= 0xff0000;
11913     }
11914     if (flags & 8) {
11915         mask |= 0xff000000;
11916     }
11917     return (a & mask) | (b & ~mask);
11918 }
11919 
11920 /*
11921  * CRC helpers.
11922  * The upper bytes of val (above the number specified by 'bytes') must have
11923  * been zeroed out by the caller.
11924  */
HELPER(crc32)11925 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11926 {
11927     uint8_t buf[4];
11928 
11929     stl_le_p(buf, val);
11930 
11931     /* zlib crc32 converts the accumulator and output to one's complement.  */
11932     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11933 }
11934 
HELPER(crc32c)11935 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11936 {
11937     uint8_t buf[4];
11938 
11939     stl_le_p(buf, val);
11940 
11941     /* Linux crc32c converts the output to one's complement.  */
11942     return crc32c(acc, buf, bytes) ^ 0xffffffff;
11943 }
11944 
11945 /*
11946  * Return the exception level to which FP-disabled exceptions should
11947  * be taken, or 0 if FP is enabled.
11948  */
fp_exception_el(CPUARMState * env,int cur_el)11949 int fp_exception_el(CPUARMState *env, int cur_el)
11950 {
11951 #ifndef CONFIG_USER_ONLY
11952     uint64_t hcr_el2;
11953 
11954     /*
11955      * CPACR and the CPTR registers don't exist before v6, so FP is
11956      * always accessible
11957      */
11958     if (!arm_feature(env, ARM_FEATURE_V6)) {
11959         return 0;
11960     }
11961 
11962     if (arm_feature(env, ARM_FEATURE_M)) {
11963         /* CPACR can cause a NOCP UsageFault taken to current security state */
11964         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11965             return 1;
11966         }
11967 
11968         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11969             if (!extract32(env->v7m.nsacr, 10, 1)) {
11970                 /* FP insns cause a NOCP UsageFault taken to Secure */
11971                 return 3;
11972             }
11973         }
11974 
11975         return 0;
11976     }
11977 
11978     hcr_el2 = arm_hcr_el2_eff(env);
11979 
11980     /*
11981      * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11982      * 0, 2 : trap EL0 and EL1/PL1 accesses
11983      * 1    : trap only EL0 accesses
11984      * 3    : trap no accesses
11985      * This register is ignored if E2H+TGE are both set.
11986      */
11987     if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11988         int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
11989 
11990         switch (fpen) {
11991         case 1:
11992             if (cur_el != 0) {
11993                 break;
11994             }
11995             /* fall through */
11996         case 0:
11997         case 2:
11998             /* Trap from Secure PL0 or PL1 to Secure PL1. */
11999             if (!arm_el_is_aa64(env, 3)
12000                 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
12001                 return 3;
12002             }
12003             if (cur_el <= 1) {
12004                 return 1;
12005             }
12006             break;
12007         }
12008     }
12009 
12010     /*
12011      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12012      * to control non-secure access to the FPU. It doesn't have any
12013      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12014      */
12015     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12016          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12017         if (!extract32(env->cp15.nsacr, 10, 1)) {
12018             /* FP insns act as UNDEF */
12019             return cur_el == 2 ? 2 : 1;
12020         }
12021     }
12022 
12023     /*
12024      * CPTR_EL2 is present in v7VE or v8, and changes format
12025      * with HCR_EL2.E2H (regardless of TGE).
12026      */
12027     if (cur_el <= 2) {
12028         if (hcr_el2 & HCR_E2H) {
12029             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
12030             case 1:
12031                 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
12032                     break;
12033                 }
12034                 /* fall through */
12035             case 0:
12036             case 2:
12037                 return 2;
12038             }
12039         } else if (arm_is_el2_enabled(env)) {
12040             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
12041                 return 2;
12042             }
12043         }
12044     }
12045 
12046     /* CPTR_EL3 : present in v8 */
12047     if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
12048         /* Trap all FP ops to EL3 */
12049         return 3;
12050     }
12051 #endif
12052     return 0;
12053 }
12054 
12055 /* Return the exception level we're running at if this is our mmu_idx */
arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)12056 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12057 {
12058     if (mmu_idx & ARM_MMU_IDX_M) {
12059         return mmu_idx & ARM_MMU_IDX_M_PRIV;
12060     }
12061 
12062     switch (mmu_idx) {
12063     case ARMMMUIdx_E10_0:
12064     case ARMMMUIdx_E20_0:
12065         return 0;
12066     case ARMMMUIdx_E10_1:
12067     case ARMMMUIdx_E10_1_PAN:
12068         return 1;
12069     case ARMMMUIdx_E2:
12070     case ARMMMUIdx_E20_2:
12071     case ARMMMUIdx_E20_2_PAN:
12072         return 2;
12073     case ARMMMUIdx_E3:
12074         return 3;
12075     default:
12076         g_assert_not_reached();
12077     }
12078 }
12079 
12080 #ifndef CONFIG_TCG
arm_v7m_mmu_idx_for_secstate(CPUARMState * env,bool secstate)12081 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12082 {
12083     g_assert_not_reached();
12084 }
12085 #endif
12086 
arm_pan_enabled(CPUARMState * env)12087 static bool arm_pan_enabled(CPUARMState *env)
12088 {
12089     if (is_a64(env)) {
12090         return env->pstate & PSTATE_PAN;
12091     } else {
12092         return env->uncached_cpsr & CPSR_PAN;
12093     }
12094 }
12095 
arm_mmu_idx_el(CPUARMState * env,int el)12096 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12097 {
12098     ARMMMUIdx idx;
12099     uint64_t hcr;
12100 
12101     if (arm_feature(env, ARM_FEATURE_M)) {
12102         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12103     }
12104 
12105     /* See ARM pseudo-function ELIsInHost.  */
12106     switch (el) {
12107     case 0:
12108         hcr = arm_hcr_el2_eff(env);
12109         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12110             idx = ARMMMUIdx_E20_0;
12111         } else {
12112             idx = ARMMMUIdx_E10_0;
12113         }
12114         break;
12115     case 1:
12116         if (arm_pan_enabled(env)) {
12117             idx = ARMMMUIdx_E10_1_PAN;
12118         } else {
12119             idx = ARMMMUIdx_E10_1;
12120         }
12121         break;
12122     case 2:
12123         /* Note that TGE does not apply at EL2.  */
12124         if (arm_hcr_el2_eff(env) & HCR_E2H) {
12125             if (arm_pan_enabled(env)) {
12126                 idx = ARMMMUIdx_E20_2_PAN;
12127             } else {
12128                 idx = ARMMMUIdx_E20_2;
12129             }
12130         } else {
12131             idx = ARMMMUIdx_E2;
12132         }
12133         break;
12134     case 3:
12135         return ARMMMUIdx_E3;
12136     default:
12137         g_assert_not_reached();
12138     }
12139 
12140     return idx;
12141 }
12142 
arm_mmu_idx(CPUARMState * env)12143 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12144 {
12145     return arm_mmu_idx_el(env, arm_current_el(env));
12146 }
12147 
mve_no_pred(CPUARMState * env)12148 static bool mve_no_pred(CPUARMState *env)
12149 {
12150     /*
12151      * Return true if there is definitely no predication of MVE
12152      * instructions by VPR or LTPSIZE. (Returning false even if there
12153      * isn't any predication is OK; generated code will just be
12154      * a little worse.)
12155      * If the CPU does not implement MVE then this TB flag is always 0.
12156      *
12157      * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12158      * logic in gen_update_fp_context() needs to be updated to match.
12159      *
12160      * We do not include the effect of the ECI bits here -- they are
12161      * tracked in other TB flags. This simplifies the logic for
12162      * "when did we emit code that changes the MVE_NO_PRED TB flag
12163      * and thus need to end the TB?".
12164      */
12165     if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12166         return false;
12167     }
12168     if (env->v7m.vpr) {
12169         return false;
12170     }
12171     if (env->v7m.ltpsize < 4) {
12172         return false;
12173     }
12174     return true;
12175 }
12176 
cpu_get_tb_cpu_state(CPUARMState * env,vaddr * pc,uint64_t * cs_base,uint32_t * pflags)12177 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
12178                           uint64_t *cs_base, uint32_t *pflags)
12179 {
12180     CPUARMTBFlags flags;
12181 
12182     assert_hflags_rebuild_correctly(env);
12183     flags = env->hflags;
12184 
12185     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12186         *pc = env->pc;
12187         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12188             DP_TBFLAG_A64(flags, BTYPE, env->btype);
12189         }
12190     } else {
12191         *pc = env->regs[15];
12192 
12193         if (arm_feature(env, ARM_FEATURE_M)) {
12194             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12195                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12196                 != env->v7m.secure) {
12197                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12198             }
12199 
12200             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12201                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12202                  (env->v7m.secure &&
12203                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12204                 /*
12205                  * ASPEN is set, but FPCA/SFPA indicate that there is no
12206                  * active FP context; we must create a new FP context before
12207                  * executing any FP insn.
12208                  */
12209                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12210             }
12211 
12212             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12213             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12214                 DP_TBFLAG_M32(flags, LSPACT, 1);
12215             }
12216 
12217             if (mve_no_pred(env)) {
12218                 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12219             }
12220         } else {
12221             /*
12222              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12223              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12224              */
12225             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12226                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12227             } else {
12228                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12229                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12230             }
12231             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12232                 DP_TBFLAG_A32(flags, VFPEN, 1);
12233             }
12234         }
12235 
12236         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12237         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12238     }
12239 
12240     /*
12241      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12242      * states defined in the ARM ARM for software singlestep:
12243      *  SS_ACTIVE   PSTATE.SS   State
12244      *     0            x       Inactive (the TB flag for SS is always 0)
12245      *     1            0       Active-pending
12246      *     1            1       Active-not-pending
12247      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12248      */
12249     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12250         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12251     }
12252 
12253     *pflags = flags.flags;
12254     *cs_base = flags.flags2;
12255 }
12256 
12257 #ifdef TARGET_AARCH64
12258 /*
12259  * The manual says that when SVE is enabled and VQ is widened the
12260  * implementation is allowed to zero the previously inaccessible
12261  * portion of the registers.  The corollary to that is that when
12262  * SVE is enabled and VQ is narrowed we are also allowed to zero
12263  * the now inaccessible portion of the registers.
12264  *
12265  * The intent of this is that no predicate bit beyond VQ is ever set.
12266  * Which means that some operations on predicate registers themselves
12267  * may operate on full uint64_t or even unrolled across the maximum
12268  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
12269  * may well be cheaper than conditionals to restrict the operation
12270  * to the relevant portion of a uint16_t[16].
12271  */
aarch64_sve_narrow_vq(CPUARMState * env,unsigned vq)12272 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12273 {
12274     int i, j;
12275     uint64_t pmask;
12276 
12277     assert(vq >= 1 && vq <= ARM_MAX_VQ);
12278     assert(vq <= env_archcpu(env)->sve_max_vq);
12279 
12280     /* Zap the high bits of the zregs.  */
12281     for (i = 0; i < 32; i++) {
12282         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12283     }
12284 
12285     /* Zap the high bits of the pregs and ffr.  */
12286     pmask = 0;
12287     if (vq & 3) {
12288         pmask = ~(-1ULL << (16 * (vq & 3)));
12289     }
12290     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12291         for (i = 0; i < 17; ++i) {
12292             env->vfp.pregs[i].p[j] &= pmask;
12293         }
12294         pmask = 0;
12295     }
12296 }
12297 
sve_vqm1_for_el_sm_ena(CPUARMState * env,int el,bool sm)12298 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12299 {
12300     int exc_el;
12301 
12302     if (sm) {
12303         exc_el = sme_exception_el(env, el);
12304     } else {
12305         exc_el = sve_exception_el(env, el);
12306     }
12307     if (exc_el) {
12308         return 0; /* disabled */
12309     }
12310     return sve_vqm1_for_el_sm(env, el, sm);
12311 }
12312 
12313 /*
12314  * Notice a change in SVE vector size when changing EL.
12315  */
aarch64_sve_change_el(CPUARMState * env,int old_el,int new_el,bool el0_a64)12316 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12317                            int new_el, bool el0_a64)
12318 {
12319     ARMCPU *cpu = env_archcpu(env);
12320     int old_len, new_len;
12321     bool old_a64, new_a64, sm;
12322 
12323     /* Nothing to do if no SVE.  */
12324     if (!cpu_isar_feature(aa64_sve, cpu)) {
12325         return;
12326     }
12327 
12328     /* Nothing to do if FP is disabled in either EL.  */
12329     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12330         return;
12331     }
12332 
12333     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12334     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12335 
12336     /*
12337      * Both AArch64.TakeException and AArch64.ExceptionReturn
12338      * invoke ResetSVEState when taking an exception from, or
12339      * returning to, AArch32 state when PSTATE.SM is enabled.
12340      */
12341     sm = FIELD_EX64(env->svcr, SVCR, SM);
12342     if (old_a64 != new_a64 && sm) {
12343         arm_reset_sve_state(env);
12344         return;
12345     }
12346 
12347     /*
12348      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12349      * at ELx, or not available because the EL is in AArch32 state, then
12350      * for all purposes other than a direct read, the ZCR_ELx.LEN field
12351      * has an effective value of 0".
12352      *
12353      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12354      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12355      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
12356      * we already have the correct register contents when encountering the
12357      * vq0->vq0 transition between EL0->EL1.
12358      */
12359     old_len = new_len = 0;
12360     if (old_a64) {
12361         old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12362     }
12363     if (new_a64) {
12364         new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12365     }
12366 
12367     /* When changing vector length, clear inaccessible state.  */
12368     if (new_len < old_len) {
12369         aarch64_sve_narrow_vq(env, new_len + 1);
12370     }
12371 }
12372 #endif
12373 
12374 #ifndef CONFIG_USER_ONLY
arm_security_space(CPUARMState * env)12375 ARMSecuritySpace arm_security_space(CPUARMState *env)
12376 {
12377     if (arm_feature(env, ARM_FEATURE_M)) {
12378         return arm_secure_to_space(env->v7m.secure);
12379     }
12380 
12381     /*
12382      * If EL3 is not supported then the secure state is implementation
12383      * defined, in which case QEMU defaults to non-secure.
12384      */
12385     if (!arm_feature(env, ARM_FEATURE_EL3)) {
12386         return ARMSS_NonSecure;
12387     }
12388 
12389     /* Check for AArch64 EL3 or AArch32 Mon. */
12390     if (is_a64(env)) {
12391         if (extract32(env->pstate, 2, 2) == 3) {
12392             if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12393                 return ARMSS_Root;
12394             } else {
12395                 return ARMSS_Secure;
12396             }
12397         }
12398     } else {
12399         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12400             return ARMSS_Secure;
12401         }
12402     }
12403 
12404     return arm_security_space_below_el3(env);
12405 }
12406 
arm_security_space_below_el3(CPUARMState * env)12407 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12408 {
12409     assert(!arm_feature(env, ARM_FEATURE_M));
12410 
12411     /*
12412      * If EL3 is not supported then the secure state is implementation
12413      * defined, in which case QEMU defaults to non-secure.
12414      */
12415     if (!arm_feature(env, ARM_FEATURE_EL3)) {
12416         return ARMSS_NonSecure;
12417     }
12418 
12419     /*
12420      * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12421      * Ignoring NSE when !NS retains consistency without having to
12422      * modify other predicates.
12423      */
12424     if (!(env->cp15.scr_el3 & SCR_NS)) {
12425         return ARMSS_Secure;
12426     } else if (env->cp15.scr_el3 & SCR_NSE) {
12427         return ARMSS_Realm;
12428     } else {
12429         return ARMSS_NonSecure;
12430     }
12431 }
12432 #endif /* !CONFIG_USER_ONLY */
12433