1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/init.h>
3
4 #include <linux/mm.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/interrupt.h>
8 #include <linux/export.h>
9 #include <linux/cpu.h>
10 #include <linux/debugfs.h>
11 #include <linux/sched/smt.h>
12 #include <linux/task_work.h>
13 #include <linux/mmu_notifier.h>
14
15 #include <asm/tlbflush.h>
16 #include <asm/mmu_context.h>
17 #include <asm/nospec-branch.h>
18 #include <asm/cache.h>
19 #include <asm/cacheflush.h>
20 #include <asm/apic.h>
21 #include <asm/perf_event.h>
22 #include <asm/tlb.h>
23
24 #include "mm_internal.h"
25
26 #ifdef CONFIG_PARAVIRT
27 # define STATIC_NOPV
28 #else
29 # define STATIC_NOPV static
30 # define __flush_tlb_local native_flush_tlb_local
31 # define __flush_tlb_global native_flush_tlb_global
32 # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr)
33 # define __flush_tlb_multi(msk, info) native_flush_tlb_multi(msk, info)
34 #endif
35
36 /*
37 * TLB flushing, formerly SMP-only
38 * c/o Linus Torvalds.
39 *
40 * These mean you can really definitely utterly forget about
41 * writing to user space from interrupts. (Its not allowed anyway).
42 *
43 * Optimizations Manfred Spraul <manfred@colorfullife.com>
44 *
45 * More scalable flush, from Andi Kleen
46 *
47 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
48 */
49
50 /*
51 * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
52 * stored in cpu_tlb_state.last_user_mm_spec.
53 */
54 #define LAST_USER_MM_IBPB 0x1UL
55 #define LAST_USER_MM_L1D_FLUSH 0x2UL
56 #define LAST_USER_MM_SPEC_MASK (LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
57
58 /* Bits to set when tlbstate and flush is (re)initialized */
59 #define LAST_USER_MM_INIT LAST_USER_MM_IBPB
60
61 /*
62 * The x86 feature is called PCID (Process Context IDentifier). It is similar
63 * to what is traditionally called ASID on the RISC processors.
64 *
65 * We don't use the traditional ASID implementation, where each process/mm gets
66 * its own ASID and flush/restart when we run out of ASID space.
67 *
68 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
69 * that came by on this CPU, allowing cheaper switch_mm between processes on
70 * this CPU.
71 *
72 * We end up with different spaces for different things. To avoid confusion we
73 * use different names for each of them:
74 *
75 * ASID - [0, TLB_NR_DYN_ASIDS-1]
76 * the canonical identifier for an mm
77 *
78 * kPCID - [1, TLB_NR_DYN_ASIDS]
79 * the value we write into the PCID part of CR3; corresponds to the
80 * ASID+1, because PCID 0 is special.
81 *
82 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
83 * for KPTI each mm has two address spaces and thus needs two
84 * PCID values, but we can still do with a single ASID denomination
85 * for each mm. Corresponds to kPCID + 2048.
86 *
87 */
88
89 /* There are 12 bits of space for ASIDS in CR3 */
90 #define CR3_HW_ASID_BITS 12
91
92 /*
93 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
94 * user/kernel switches
95 */
96 #ifdef CONFIG_PAGE_TABLE_ISOLATION
97 # define PTI_CONSUMED_PCID_BITS 1
98 #else
99 # define PTI_CONSUMED_PCID_BITS 0
100 #endif
101
102 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
103
104 /*
105 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account
106 * for them being zero-based. Another -1 is because PCID 0 is reserved for
107 * use by non-PCID-aware users.
108 */
109 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
110
111 /*
112 * Given @asid, compute kPCID
113 */
kern_pcid(u16 asid)114 static inline u16 kern_pcid(u16 asid)
115 {
116 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
117
118 #ifdef CONFIG_PAGE_TABLE_ISOLATION
119 /*
120 * Make sure that the dynamic ASID space does not conflict with the
121 * bit we are using to switch between user and kernel ASIDs.
122 */
123 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
124
125 /*
126 * The ASID being passed in here should have respected the
127 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
128 */
129 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
130 #endif
131 /*
132 * The dynamically-assigned ASIDs that get passed in are small
133 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set,
134 * so do not bother to clear it.
135 *
136 * If PCID is on, ASID-aware code paths put the ASID+1 into the
137 * PCID bits. This serves two purposes. It prevents a nasty
138 * situation in which PCID-unaware code saves CR3, loads some other
139 * value (with PCID == 0), and then restores CR3, thus corrupting
140 * the TLB for ASID 0 if the saved ASID was nonzero. It also means
141 * that any bugs involving loading a PCID-enabled CR3 with
142 * CR4.PCIDE off will trigger deterministically.
143 */
144 return asid + 1;
145 }
146
147 /*
148 * Given @asid, compute uPCID
149 */
user_pcid(u16 asid)150 static inline u16 user_pcid(u16 asid)
151 {
152 u16 ret = kern_pcid(asid);
153 #ifdef CONFIG_PAGE_TABLE_ISOLATION
154 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
155 #endif
156 return ret;
157 }
158
build_cr3(pgd_t * pgd,u16 asid,unsigned long lam)159 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid, unsigned long lam)
160 {
161 unsigned long cr3 = __sme_pa(pgd) | lam;
162
163 if (static_cpu_has(X86_FEATURE_PCID)) {
164 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
165 cr3 |= kern_pcid(asid);
166 } else {
167 VM_WARN_ON_ONCE(asid != 0);
168 }
169
170 return cr3;
171 }
172
build_cr3_noflush(pgd_t * pgd,u16 asid,unsigned long lam)173 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid,
174 unsigned long lam)
175 {
176 /*
177 * Use boot_cpu_has() instead of this_cpu_has() as this function
178 * might be called during early boot. This should work even after
179 * boot because all CPU's the have same capabilities:
180 */
181 VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
182 return build_cr3(pgd, asid, lam) | CR3_NOFLUSH;
183 }
184
185 /*
186 * We get here when we do something requiring a TLB invalidation
187 * but could not go invalidate all of the contexts. We do the
188 * necessary invalidation by clearing out the 'ctx_id' which
189 * forces a TLB flush when the context is loaded.
190 */
clear_asid_other(void)191 static void clear_asid_other(void)
192 {
193 u16 asid;
194
195 /*
196 * This is only expected to be set if we have disabled
197 * kernel _PAGE_GLOBAL pages.
198 */
199 if (!static_cpu_has(X86_FEATURE_PTI)) {
200 WARN_ON_ONCE(1);
201 return;
202 }
203
204 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
205 /* Do not need to flush the current asid */
206 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
207 continue;
208 /*
209 * Make sure the next time we go to switch to
210 * this asid, we do a flush:
211 */
212 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
213 }
214 this_cpu_write(cpu_tlbstate.invalidate_other, false);
215 }
216
217 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
218
219
choose_new_asid(struct mm_struct * next,u64 next_tlb_gen,u16 * new_asid,bool * need_flush)220 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
221 u16 *new_asid, bool *need_flush)
222 {
223 u16 asid;
224
225 if (!static_cpu_has(X86_FEATURE_PCID)) {
226 *new_asid = 0;
227 *need_flush = true;
228 return;
229 }
230
231 if (this_cpu_read(cpu_tlbstate.invalidate_other))
232 clear_asid_other();
233
234 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
235 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
236 next->context.ctx_id)
237 continue;
238
239 *new_asid = asid;
240 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
241 next_tlb_gen);
242 return;
243 }
244
245 /*
246 * We don't currently own an ASID slot on this CPU.
247 * Allocate a slot.
248 */
249 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
250 if (*new_asid >= TLB_NR_DYN_ASIDS) {
251 *new_asid = 0;
252 this_cpu_write(cpu_tlbstate.next_asid, 1);
253 }
254 *need_flush = true;
255 }
256
257 /*
258 * Given an ASID, flush the corresponding user ASID. We can delay this
259 * until the next time we switch to it.
260 *
261 * See SWITCH_TO_USER_CR3.
262 */
invalidate_user_asid(u16 asid)263 static inline void invalidate_user_asid(u16 asid)
264 {
265 /* There is no user ASID if address space separation is off */
266 if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
267 return;
268
269 /*
270 * We only have a single ASID if PCID is off and the CR3
271 * write will have flushed it.
272 */
273 if (!cpu_feature_enabled(X86_FEATURE_PCID))
274 return;
275
276 if (!static_cpu_has(X86_FEATURE_PTI))
277 return;
278
279 __set_bit(kern_pcid(asid),
280 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
281 }
282
load_new_mm_cr3(pgd_t * pgdir,u16 new_asid,unsigned long lam,bool need_flush)283 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, unsigned long lam,
284 bool need_flush)
285 {
286 unsigned long new_mm_cr3;
287
288 if (need_flush) {
289 invalidate_user_asid(new_asid);
290 new_mm_cr3 = build_cr3(pgdir, new_asid, lam);
291 } else {
292 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid, lam);
293 }
294
295 /*
296 * Caution: many callers of this function expect
297 * that load_cr3() is serializing and orders TLB
298 * fills with respect to the mm_cpumask writes.
299 */
300 write_cr3(new_mm_cr3);
301 }
302
leave_mm(int cpu)303 void leave_mm(int cpu)
304 {
305 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
306
307 /*
308 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
309 * If so, our callers still expect us to flush the TLB, but there
310 * aren't any user TLB entries in init_mm to worry about.
311 *
312 * This needs to happen before any other sanity checks due to
313 * intel_idle's shenanigans.
314 */
315 if (loaded_mm == &init_mm)
316 return;
317
318 /* Warn if we're not lazy. */
319 WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
320
321 switch_mm(NULL, &init_mm, NULL);
322 }
323 EXPORT_SYMBOL_GPL(leave_mm);
324
switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)325 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
326 struct task_struct *tsk)
327 {
328 unsigned long flags;
329
330 local_irq_save(flags);
331 switch_mm_irqs_off(prev, next, tsk);
332 local_irq_restore(flags);
333 }
334
335 /*
336 * Invoked from return to user/guest by a task that opted-in to L1D
337 * flushing but ended up running on an SMT enabled core due to wrong
338 * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
339 * contract which this task requested.
340 */
l1d_flush_force_sigbus(struct callback_head * ch)341 static void l1d_flush_force_sigbus(struct callback_head *ch)
342 {
343 force_sig(SIGBUS);
344 }
345
l1d_flush_evaluate(unsigned long prev_mm,unsigned long next_mm,struct task_struct * next)346 static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
347 struct task_struct *next)
348 {
349 /* Flush L1D if the outgoing task requests it */
350 if (prev_mm & LAST_USER_MM_L1D_FLUSH)
351 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
352
353 /* Check whether the incoming task opted in for L1D flush */
354 if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
355 return;
356
357 /*
358 * Validate that it is not running on an SMT sibling as this would
359 * make the excercise pointless because the siblings share L1D. If
360 * it runs on a SMT sibling, notify it with SIGBUS on return to
361 * user/guest
362 */
363 if (this_cpu_read(cpu_info.smt_active)) {
364 clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
365 next->l1d_flush_kill.func = l1d_flush_force_sigbus;
366 task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
367 }
368 }
369
mm_mangle_tif_spec_bits(struct task_struct * next)370 static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
371 {
372 unsigned long next_tif = read_task_thread_flags(next);
373 unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;
374
375 /*
376 * Ensure that the bit shift above works as expected and the two flags
377 * end up in bit 0 and 1.
378 */
379 BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);
380
381 return (unsigned long)next->mm | spec_bits;
382 }
383
cond_mitigation(struct task_struct * next)384 static void cond_mitigation(struct task_struct *next)
385 {
386 unsigned long prev_mm, next_mm;
387
388 if (!next || !next->mm)
389 return;
390
391 next_mm = mm_mangle_tif_spec_bits(next);
392 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
393
394 /*
395 * Avoid user/user BTB poisoning by flushing the branch predictor
396 * when switching between processes. This stops one process from
397 * doing Spectre-v2 attacks on another.
398 *
399 * Both, the conditional and the always IBPB mode use the mm
400 * pointer to avoid the IBPB when switching between tasks of the
401 * same process. Using the mm pointer instead of mm->context.ctx_id
402 * opens a hypothetical hole vs. mm_struct reuse, which is more or
403 * less impossible to control by an attacker. Aside of that it
404 * would only affect the first schedule so the theoretically
405 * exposed data is not really interesting.
406 */
407 if (static_branch_likely(&switch_mm_cond_ibpb)) {
408 /*
409 * This is a bit more complex than the always mode because
410 * it has to handle two cases:
411 *
412 * 1) Switch from a user space task (potential attacker)
413 * which has TIF_SPEC_IB set to a user space task
414 * (potential victim) which has TIF_SPEC_IB not set.
415 *
416 * 2) Switch from a user space task (potential attacker)
417 * which has TIF_SPEC_IB not set to a user space task
418 * (potential victim) which has TIF_SPEC_IB set.
419 *
420 * This could be done by unconditionally issuing IBPB when
421 * a task which has TIF_SPEC_IB set is either scheduled in
422 * or out. Though that results in two flushes when:
423 *
424 * - the same user space task is scheduled out and later
425 * scheduled in again and only a kernel thread ran in
426 * between.
427 *
428 * - a user space task belonging to the same process is
429 * scheduled in after a kernel thread ran in between
430 *
431 * - a user space task belonging to the same process is
432 * scheduled in immediately.
433 *
434 * Optimize this with reasonably small overhead for the
435 * above cases. Mangle the TIF_SPEC_IB bit into the mm
436 * pointer of the incoming task which is stored in
437 * cpu_tlbstate.last_user_mm_spec for comparison.
438 *
439 * Issue IBPB only if the mm's are different and one or
440 * both have the IBPB bit set.
441 */
442 if (next_mm != prev_mm &&
443 (next_mm | prev_mm) & LAST_USER_MM_IBPB)
444 indirect_branch_prediction_barrier();
445 }
446
447 if (static_branch_unlikely(&switch_mm_always_ibpb)) {
448 /*
449 * Only flush when switching to a user space task with a
450 * different context than the user space task which ran
451 * last on this CPU.
452 */
453 if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) !=
454 (unsigned long)next->mm)
455 indirect_branch_prediction_barrier();
456 }
457
458 if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
459 /*
460 * Flush L1D when the outgoing task requested it and/or
461 * check whether the incoming task requested L1D flushing
462 * and ended up on an SMT sibling.
463 */
464 if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
465 l1d_flush_evaluate(prev_mm, next_mm, next);
466 }
467
468 this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
469 }
470
471 #ifdef CONFIG_PERF_EVENTS
cr4_update_pce_mm(struct mm_struct * mm)472 static inline void cr4_update_pce_mm(struct mm_struct *mm)
473 {
474 if (static_branch_unlikely(&rdpmc_always_available_key) ||
475 (!static_branch_unlikely(&rdpmc_never_available_key) &&
476 atomic_read(&mm->context.perf_rdpmc_allowed))) {
477 /*
478 * Clear the existing dirty counters to
479 * prevent the leak for an RDPMC task.
480 */
481 perf_clear_dirty_counters();
482 cr4_set_bits_irqsoff(X86_CR4_PCE);
483 } else
484 cr4_clear_bits_irqsoff(X86_CR4_PCE);
485 }
486
cr4_update_pce(void * ignored)487 void cr4_update_pce(void *ignored)
488 {
489 cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
490 }
491
492 #else
cr4_update_pce_mm(struct mm_struct * mm)493 static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
494 #endif
495
switch_mm_irqs_off(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)496 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
497 struct task_struct *tsk)
498 {
499 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
500 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
501 bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
502 unsigned cpu = smp_processor_id();
503 unsigned long new_lam;
504 u64 next_tlb_gen;
505 bool need_flush;
506 u16 new_asid;
507
508 /*
509 * NB: The scheduler will call us with prev == next when switching
510 * from lazy TLB mode to normal mode if active_mm isn't changing.
511 * When this happens, we don't assume that CR3 (and hence
512 * cpu_tlbstate.loaded_mm) matches next.
513 *
514 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
515 */
516
517 /* We don't want flush_tlb_func() to run concurrently with us. */
518 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
519 WARN_ON_ONCE(!irqs_disabled());
520
521 /*
522 * Verify that CR3 is what we think it is. This will catch
523 * hypothetical buggy code that directly switches to swapper_pg_dir
524 * without going through leave_mm() / switch_mm_irqs_off() or that
525 * does something like write_cr3(read_cr3_pa()).
526 *
527 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
528 * isn't free.
529 */
530 #ifdef CONFIG_DEBUG_VM
531 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid,
532 tlbstate_lam_cr3_mask()))) {
533 /*
534 * If we were to BUG here, we'd be very likely to kill
535 * the system so hard that we don't see the call trace.
536 * Try to recover instead by ignoring the error and doing
537 * a global flush to minimize the chance of corruption.
538 *
539 * (This is far from being a fully correct recovery.
540 * Architecturally, the CPU could prefetch something
541 * back into an incorrect ASID slot and leave it there
542 * to cause trouble down the road. It's better than
543 * nothing, though.)
544 */
545 __flush_tlb_all();
546 }
547 #endif
548 if (was_lazy)
549 this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
550
551 /*
552 * The membarrier system call requires a full memory barrier and
553 * core serialization before returning to user-space, after
554 * storing to rq->curr, when changing mm. This is because
555 * membarrier() sends IPIs to all CPUs that are in the target mm
556 * to make them issue memory barriers. However, if another CPU
557 * switches to/from the target mm concurrently with
558 * membarrier(), it can cause that CPU not to receive an IPI
559 * when it really should issue a memory barrier. Writing to CR3
560 * provides that full memory barrier and core serializing
561 * instruction.
562 */
563 if (real_prev == next) {
564 /* Not actually switching mm's */
565 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
566 next->context.ctx_id);
567
568 /*
569 * If this races with another thread that enables lam, 'new_lam'
570 * might not match tlbstate_lam_cr3_mask().
571 */
572
573 /*
574 * Even in lazy TLB mode, the CPU should stay set in the
575 * mm_cpumask. The TLB shootdown code can figure out from
576 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
577 */
578 if (WARN_ON_ONCE(real_prev != &init_mm &&
579 !cpumask_test_cpu(cpu, mm_cpumask(next))))
580 cpumask_set_cpu(cpu, mm_cpumask(next));
581
582 /*
583 * If the CPU is not in lazy TLB mode, we are just switching
584 * from one thread in a process to another thread in the same
585 * process. No TLB flush required.
586 */
587 if (!was_lazy)
588 return;
589
590 /*
591 * Read the tlb_gen to check whether a flush is needed.
592 * If the TLB is up to date, just use it.
593 * The barrier synchronizes with the tlb_gen increment in
594 * the TLB shootdown code.
595 */
596 smp_mb();
597 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
598 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
599 next_tlb_gen)
600 return;
601
602 /*
603 * TLB contents went out of date while we were in lazy
604 * mode. Fall through to the TLB switching code below.
605 */
606 new_asid = prev_asid;
607 need_flush = true;
608 } else {
609 /*
610 * Apply process to process speculation vulnerability
611 * mitigations if applicable.
612 */
613 cond_mitigation(tsk);
614
615 /*
616 * Stop remote flushes for the previous mm.
617 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
618 * but the bitmap manipulation can cause cache line contention.
619 */
620 if (real_prev != &init_mm) {
621 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
622 mm_cpumask(real_prev)));
623 cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
624 }
625
626 /* Start receiving IPIs and then read tlb_gen (and LAM below) */
627 if (next != &init_mm)
628 cpumask_set_cpu(cpu, mm_cpumask(next));
629 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
630
631 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
632
633 /* Let nmi_uaccess_okay() know that we're changing CR3. */
634 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
635 barrier();
636 }
637
638 new_lam = mm_lam_cr3_mask(next);
639 set_tlbstate_lam_mode(next);
640 if (need_flush) {
641 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
642 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
643 load_new_mm_cr3(next->pgd, new_asid, new_lam, true);
644
645 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
646 } else {
647 /* The new ASID is already up to date. */
648 load_new_mm_cr3(next->pgd, new_asid, new_lam, false);
649
650 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
651 }
652
653 /* Make sure we write CR3 before loaded_mm. */
654 barrier();
655
656 this_cpu_write(cpu_tlbstate.loaded_mm, next);
657 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
658
659 if (next != real_prev) {
660 cr4_update_pce_mm(next);
661 switch_ldt(real_prev, next);
662 }
663 }
664
665 /*
666 * Please ignore the name of this function. It should be called
667 * switch_to_kernel_thread().
668 *
669 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
670 * kernel thread or other context without an mm. Acceptable implementations
671 * include doing nothing whatsoever, switching to init_mm, or various clever
672 * lazy tricks to try to minimize TLB flushes.
673 *
674 * The scheduler reserves the right to call enter_lazy_tlb() several times
675 * in a row. It will notify us that we're going back to a real mm by
676 * calling switch_mm_irqs_off().
677 */
enter_lazy_tlb(struct mm_struct * mm,struct task_struct * tsk)678 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
679 {
680 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
681 return;
682
683 this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
684 }
685
686 /*
687 * Call this when reinitializing a CPU. It fixes the following potential
688 * problems:
689 *
690 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
691 * because the CPU was taken down and came back up with CR3's PCID
692 * bits clear. CPU hotplug can do this.
693 *
694 * - The TLB contains junk in slots corresponding to inactive ASIDs.
695 *
696 * - The CPU went so far out to lunch that it may have missed a TLB
697 * flush.
698 */
initialize_tlbstate_and_flush(void)699 void initialize_tlbstate_and_flush(void)
700 {
701 int i;
702 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
703 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
704 unsigned long cr3 = __read_cr3();
705
706 /* Assert that CR3 already references the right mm. */
707 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
708
709 /* LAM expected to be disabled */
710 WARN_ON(cr3 & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57));
711 WARN_ON(mm_lam_cr3_mask(mm));
712
713 /*
714 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization
715 * doesn't work like other CR4 bits because it can only be set from
716 * long mode.)
717 */
718 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
719 !(cr4_read_shadow() & X86_CR4_PCIDE));
720
721 /* Disable LAM, force ASID 0 and force a TLB flush. */
722 write_cr3(build_cr3(mm->pgd, 0, 0));
723
724 /* Reinitialize tlbstate. */
725 this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
726 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
727 this_cpu_write(cpu_tlbstate.next_asid, 1);
728 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
729 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
730 set_tlbstate_lam_mode(mm);
731
732 for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
733 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
734 }
735
736 /*
737 * flush_tlb_func()'s memory ordering requirement is that any
738 * TLB fills that happen after we flush the TLB are ordered after we
739 * read active_mm's tlb_gen. We don't need any explicit barriers
740 * because all x86 flush operations are serializing and the
741 * atomic64_read operation won't be reordered by the compiler.
742 */
flush_tlb_func(void * info)743 static void flush_tlb_func(void *info)
744 {
745 /*
746 * We have three different tlb_gen values in here. They are:
747 *
748 * - mm_tlb_gen: the latest generation.
749 * - local_tlb_gen: the generation that this CPU has already caught
750 * up to.
751 * - f->new_tlb_gen: the generation that the requester of the flush
752 * wants us to catch up to.
753 */
754 const struct flush_tlb_info *f = info;
755 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
756 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
757 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
758 bool local = smp_processor_id() == f->initiating_cpu;
759 unsigned long nr_invalidate = 0;
760 u64 mm_tlb_gen;
761
762 /* This code cannot presently handle being reentered. */
763 VM_WARN_ON(!irqs_disabled());
764
765 if (!local) {
766 inc_irq_stat(irq_tlb_count);
767 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
768
769 /* Can only happen on remote CPUs */
770 if (f->mm && f->mm != loaded_mm)
771 return;
772 }
773
774 if (unlikely(loaded_mm == &init_mm))
775 return;
776
777 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
778 loaded_mm->context.ctx_id);
779
780 if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
781 /*
782 * We're in lazy mode. We need to at least flush our
783 * paging-structure cache to avoid speculatively reading
784 * garbage into our TLB. Since switching to init_mm is barely
785 * slower than a minimal flush, just switch to init_mm.
786 *
787 * This should be rare, with native_flush_tlb_multi() skipping
788 * IPIs to lazy TLB mode CPUs.
789 */
790 switch_mm_irqs_off(NULL, &init_mm, NULL);
791 return;
792 }
793
794 if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID &&
795 f->new_tlb_gen <= local_tlb_gen)) {
796 /*
797 * The TLB is already up to date in respect to f->new_tlb_gen.
798 * While the core might be still behind mm_tlb_gen, checking
799 * mm_tlb_gen unnecessarily would have negative caching effects
800 * so avoid it.
801 */
802 return;
803 }
804
805 /*
806 * Defer mm_tlb_gen reading as long as possible to avoid cache
807 * contention.
808 */
809 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
810
811 if (unlikely(local_tlb_gen == mm_tlb_gen)) {
812 /*
813 * There's nothing to do: we're already up to date. This can
814 * happen if two concurrent flushes happen -- the first flush to
815 * be handled can catch us all the way up, leaving no work for
816 * the second flush.
817 */
818 goto done;
819 }
820
821 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
822 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
823
824 /*
825 * If we get to this point, we know that our TLB is out of date.
826 * This does not strictly imply that we need to flush (it's
827 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
828 * going to need to flush in the very near future, so we might
829 * as well get it over with.
830 *
831 * The only question is whether to do a full or partial flush.
832 *
833 * We do a partial flush if requested and two extra conditions
834 * are met:
835 *
836 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that
837 * we've always done all needed flushes to catch up to
838 * local_tlb_gen. If, for example, local_tlb_gen == 2 and
839 * f->new_tlb_gen == 3, then we know that the flush needed to bring
840 * us up to date for tlb_gen 3 is the partial flush we're
841 * processing.
842 *
843 * As an example of why this check is needed, suppose that there
844 * are two concurrent flushes. The first is a full flush that
845 * changes context.tlb_gen from 1 to 2. The second is a partial
846 * flush that changes context.tlb_gen from 2 to 3. If they get
847 * processed on this CPU in reverse order, we'll see
848 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
849 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to
850 * 3, we'd be break the invariant: we'd update local_tlb_gen above
851 * 1 without the full flush that's needed for tlb_gen 2.
852 *
853 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimization.
854 * Partial TLB flushes are not all that much cheaper than full TLB
855 * flushes, so it seems unlikely that it would be a performance win
856 * to do a partial flush if that won't bring our TLB fully up to
857 * date. By doing a full flush instead, we can increase
858 * local_tlb_gen all the way to mm_tlb_gen and we can probably
859 * avoid another flush in the very near future.
860 */
861 if (f->end != TLB_FLUSH_ALL &&
862 f->new_tlb_gen == local_tlb_gen + 1 &&
863 f->new_tlb_gen == mm_tlb_gen) {
864 /* Partial flush */
865 unsigned long addr = f->start;
866
867 /* Partial flush cannot have invalid generations */
868 VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID);
869
870 /* Partial flush must have valid mm */
871 VM_WARN_ON(f->mm == NULL);
872
873 nr_invalidate = (f->end - f->start) >> f->stride_shift;
874
875 while (addr < f->end) {
876 flush_tlb_one_user(addr);
877 addr += 1UL << f->stride_shift;
878 }
879 if (local)
880 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
881 } else {
882 /* Full flush. */
883 nr_invalidate = TLB_FLUSH_ALL;
884
885 flush_tlb_local();
886 if (local)
887 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
888 }
889
890 /* Both paths above update our state to mm_tlb_gen. */
891 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
892
893 /* Tracing is done in a unified manner to reduce the code size */
894 done:
895 trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
896 (f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
897 TLB_LOCAL_MM_SHOOTDOWN,
898 nr_invalidate);
899 }
900
should_flush_tlb(int cpu,void * data)901 static bool should_flush_tlb(int cpu, void *data)
902 {
903 struct flush_tlb_info *info = data;
904
905 /* Lazy TLB will get flushed at the next context switch. */
906 if (per_cpu(cpu_tlbstate_shared.is_lazy, cpu))
907 return false;
908
909 /* No mm means kernel memory flush. */
910 if (!info->mm)
911 return true;
912
913 /* The target mm is loaded, and the CPU is not lazy. */
914 if (per_cpu(cpu_tlbstate.loaded_mm, cpu) == info->mm)
915 return true;
916
917 /* In cpumask, but not the loaded mm? Periodically remove by flushing. */
918 if (info->trim_cpumask)
919 return true;
920
921 return false;
922 }
923
should_trim_cpumask(struct mm_struct * mm)924 static bool should_trim_cpumask(struct mm_struct *mm)
925 {
926 if (time_after(jiffies, READ_ONCE(mm->context.next_trim_cpumask))) {
927 WRITE_ONCE(mm->context.next_trim_cpumask, jiffies + HZ);
928 return true;
929 }
930 return false;
931 }
932
933 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
934 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
935
native_flush_tlb_multi(const struct cpumask * cpumask,const struct flush_tlb_info * info)936 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
937 const struct flush_tlb_info *info)
938 {
939 /*
940 * Do accounting and tracing. Note that there are (and have always been)
941 * cases in which a remote TLB flush will be traced, but eventually
942 * would not happen.
943 */
944 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
945 if (info->end == TLB_FLUSH_ALL)
946 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
947 else
948 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
949 (info->end - info->start) >> PAGE_SHIFT);
950
951 /*
952 * If no page tables were freed, we can skip sending IPIs to
953 * CPUs in lazy TLB mode. They will flush the CPU themselves
954 * at the next context switch.
955 *
956 * However, if page tables are getting freed, we need to send the
957 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
958 * up on the new contents of what used to be page tables, while
959 * doing a speculative memory access.
960 */
961 if (info->freed_tables)
962 on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
963 else
964 on_each_cpu_cond_mask(should_flush_tlb, flush_tlb_func,
965 (void *)info, 1, cpumask);
966 }
967
flush_tlb_multi(const struct cpumask * cpumask,const struct flush_tlb_info * info)968 void flush_tlb_multi(const struct cpumask *cpumask,
969 const struct flush_tlb_info *info)
970 {
971 __flush_tlb_multi(cpumask, info);
972 }
973
974 /*
975 * See Documentation/arch/x86/tlb.rst for details. We choose 33
976 * because it is large enough to cover the vast majority (at
977 * least 95%) of allocations, and is small enough that we are
978 * confident it will not cause too much overhead. Each single
979 * flush is about 100 ns, so this caps the maximum overhead at
980 * _about_ 3,000 ns.
981 *
982 * This is in units of pages.
983 */
984 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
985
986 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
987
988 #ifdef CONFIG_DEBUG_VM
989 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
990 #endif
991
get_flush_tlb_info(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables,u64 new_tlb_gen)992 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
993 unsigned long start, unsigned long end,
994 unsigned int stride_shift, bool freed_tables,
995 u64 new_tlb_gen)
996 {
997 struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
998
999 #ifdef CONFIG_DEBUG_VM
1000 /*
1001 * Ensure that the following code is non-reentrant and flush_tlb_info
1002 * is not overwritten. This means no TLB flushing is initiated by
1003 * interrupt handlers and machine-check exception handlers.
1004 */
1005 BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
1006 #endif
1007
1008 info->start = start;
1009 info->end = end;
1010 info->mm = mm;
1011 info->stride_shift = stride_shift;
1012 info->freed_tables = freed_tables;
1013 info->new_tlb_gen = new_tlb_gen;
1014 info->initiating_cpu = smp_processor_id();
1015 info->trim_cpumask = 0;
1016
1017 return info;
1018 }
1019
put_flush_tlb_info(void)1020 static void put_flush_tlb_info(void)
1021 {
1022 #ifdef CONFIG_DEBUG_VM
1023 /* Complete reentrancy prevention checks */
1024 barrier();
1025 this_cpu_dec(flush_tlb_info_idx);
1026 #endif
1027 }
1028
flush_tlb_mm_range(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables)1029 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
1030 unsigned long end, unsigned int stride_shift,
1031 bool freed_tables)
1032 {
1033 struct flush_tlb_info *info;
1034 u64 new_tlb_gen;
1035 int cpu;
1036
1037 cpu = get_cpu();
1038
1039 /* Should we flush just the requested range? */
1040 if ((end == TLB_FLUSH_ALL) ||
1041 ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
1042 start = 0;
1043 end = TLB_FLUSH_ALL;
1044 }
1045
1046 /* This is also a barrier that synchronizes with switch_mm(). */
1047 new_tlb_gen = inc_mm_tlb_gen(mm);
1048
1049 info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
1050 new_tlb_gen);
1051
1052 /*
1053 * flush_tlb_multi() is not optimized for the common case in which only
1054 * a local TLB flush is needed. Optimize this use-case by calling
1055 * flush_tlb_func_local() directly in this case.
1056 */
1057 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
1058 info->trim_cpumask = should_trim_cpumask(mm);
1059 flush_tlb_multi(mm_cpumask(mm), info);
1060 } else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
1061 lockdep_assert_irqs_enabled();
1062 local_irq_disable();
1063 flush_tlb_func(info);
1064 local_irq_enable();
1065 }
1066
1067 put_flush_tlb_info();
1068 put_cpu();
1069 mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end);
1070 }
1071
1072
do_flush_tlb_all(void * info)1073 static void do_flush_tlb_all(void *info)
1074 {
1075 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1076 __flush_tlb_all();
1077 }
1078
flush_tlb_all(void)1079 void flush_tlb_all(void)
1080 {
1081 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1082 on_each_cpu(do_flush_tlb_all, NULL, 1);
1083 }
1084
do_kernel_range_flush(void * info)1085 static void do_kernel_range_flush(void *info)
1086 {
1087 struct flush_tlb_info *f = info;
1088 unsigned long addr;
1089
1090 /* flush range by one by one 'invlpg' */
1091 for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
1092 flush_tlb_one_kernel(addr);
1093 }
1094
flush_tlb_kernel_range(unsigned long start,unsigned long end)1095 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
1096 {
1097 /* Balance as user space task's flush, a bit conservative */
1098 if (end == TLB_FLUSH_ALL ||
1099 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
1100 on_each_cpu(do_flush_tlb_all, NULL, 1);
1101 } else {
1102 struct flush_tlb_info *info;
1103
1104 preempt_disable();
1105 info = get_flush_tlb_info(NULL, start, end, 0, false,
1106 TLB_GENERATION_INVALID);
1107
1108 on_each_cpu(do_kernel_range_flush, info, 1);
1109
1110 put_flush_tlb_info();
1111 preempt_enable();
1112 }
1113 }
1114
1115 /*
1116 * This can be used from process context to figure out what the value of
1117 * CR3 is without needing to do a (slow) __read_cr3().
1118 *
1119 * It's intended to be used for code like KVM that sneakily changes CR3
1120 * and needs to restore it. It needs to be used very carefully.
1121 */
__get_current_cr3_fast(void)1122 unsigned long __get_current_cr3_fast(void)
1123 {
1124 unsigned long cr3 =
1125 build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
1126 this_cpu_read(cpu_tlbstate.loaded_mm_asid),
1127 tlbstate_lam_cr3_mask());
1128
1129 /* For now, be very restrictive about when this can be called. */
1130 VM_WARN_ON(in_nmi() || preemptible());
1131
1132 VM_BUG_ON(cr3 != __read_cr3());
1133 return cr3;
1134 }
1135 EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
1136
1137 /*
1138 * Flush one page in the kernel mapping
1139 */
flush_tlb_one_kernel(unsigned long addr)1140 void flush_tlb_one_kernel(unsigned long addr)
1141 {
1142 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1143
1144 /*
1145 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1146 * paravirt equivalent. Even with PCID, this is sufficient: we only
1147 * use PCID if we also use global PTEs for the kernel mapping, and
1148 * INVLPG flushes global translations across all address spaces.
1149 *
1150 * If PTI is on, then the kernel is mapped with non-global PTEs, and
1151 * __flush_tlb_one_user() will flush the given address for the current
1152 * kernel address space and for its usermode counterpart, but it does
1153 * not flush it for other address spaces.
1154 */
1155 flush_tlb_one_user(addr);
1156
1157 if (!static_cpu_has(X86_FEATURE_PTI))
1158 return;
1159
1160 /*
1161 * See above. We need to propagate the flush to all other address
1162 * spaces. In principle, we only need to propagate it to kernelmode
1163 * address spaces, but the extra bookkeeping we would need is not
1164 * worth it.
1165 */
1166 this_cpu_write(cpu_tlbstate.invalidate_other, true);
1167 }
1168
1169 /*
1170 * Flush one page in the user mapping
1171 */
native_flush_tlb_one_user(unsigned long addr)1172 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1173 {
1174 u32 loaded_mm_asid;
1175 bool cpu_pcide;
1176
1177 /* Flush 'addr' from the kernel PCID: */
1178 invlpg(addr);
1179
1180 /* If PTI is off there is no user PCID and nothing to flush. */
1181 if (!static_cpu_has(X86_FEATURE_PTI))
1182 return;
1183
1184 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1185 cpu_pcide = this_cpu_read(cpu_tlbstate.cr4) & X86_CR4_PCIDE;
1186
1187 /*
1188 * invpcid_flush_one(pcid>0) will #GP if CR4.PCIDE==0. Check
1189 * 'cpu_pcide' to ensure that *this* CPU will not trigger those
1190 * #GP's even if called before CR4.PCIDE has been initialized.
1191 */
1192 if (boot_cpu_has(X86_FEATURE_INVPCID) && cpu_pcide)
1193 invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1194 else
1195 invalidate_user_asid(loaded_mm_asid);
1196 }
1197
flush_tlb_one_user(unsigned long addr)1198 void flush_tlb_one_user(unsigned long addr)
1199 {
1200 __flush_tlb_one_user(addr);
1201 }
1202
1203 /*
1204 * Flush everything
1205 */
native_flush_tlb_global(void)1206 STATIC_NOPV void native_flush_tlb_global(void)
1207 {
1208 unsigned long flags;
1209
1210 if (static_cpu_has(X86_FEATURE_INVPCID)) {
1211 /*
1212 * Using INVPCID is considerably faster than a pair of writes
1213 * to CR4 sandwiched inside an IRQ flag save/restore.
1214 *
1215 * Note, this works with CR4.PCIDE=0 or 1.
1216 */
1217 invpcid_flush_all();
1218 return;
1219 }
1220
1221 /*
1222 * Read-modify-write to CR4 - protect it from preemption and
1223 * from interrupts. (Use the raw variant because this code can
1224 * be called from deep inside debugging code.)
1225 */
1226 raw_local_irq_save(flags);
1227
1228 __native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
1229
1230 raw_local_irq_restore(flags);
1231 }
1232
1233 /*
1234 * Flush the entire current user mapping
1235 */
native_flush_tlb_local(void)1236 STATIC_NOPV void native_flush_tlb_local(void)
1237 {
1238 /*
1239 * Preemption or interrupts must be disabled to protect the access
1240 * to the per CPU variable and to prevent being preempted between
1241 * read_cr3() and write_cr3().
1242 */
1243 WARN_ON_ONCE(preemptible());
1244
1245 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1246
1247 /* If current->mm == NULL then the read_cr3() "borrows" an mm */
1248 native_write_cr3(__native_read_cr3());
1249 }
1250
flush_tlb_local(void)1251 void flush_tlb_local(void)
1252 {
1253 __flush_tlb_local();
1254 }
1255
1256 /*
1257 * Flush everything
1258 */
__flush_tlb_all(void)1259 void __flush_tlb_all(void)
1260 {
1261 /*
1262 * This is to catch users with enabled preemption and the PGE feature
1263 * and don't trigger the warning in __native_flush_tlb().
1264 */
1265 VM_WARN_ON_ONCE(preemptible());
1266
1267 if (cpu_feature_enabled(X86_FEATURE_PGE)) {
1268 __flush_tlb_global();
1269 } else {
1270 /*
1271 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1272 */
1273 flush_tlb_local();
1274 }
1275 }
1276 EXPORT_SYMBOL_GPL(__flush_tlb_all);
1277
arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch * batch)1278 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1279 {
1280 struct flush_tlb_info *info;
1281
1282 int cpu = get_cpu();
1283
1284 info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false,
1285 TLB_GENERATION_INVALID);
1286 /*
1287 * flush_tlb_multi() is not optimized for the common case in which only
1288 * a local TLB flush is needed. Optimize this use-case by calling
1289 * flush_tlb_func_local() directly in this case.
1290 */
1291 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
1292 flush_tlb_multi(&batch->cpumask, info);
1293 } else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1294 lockdep_assert_irqs_enabled();
1295 local_irq_disable();
1296 flush_tlb_func(info);
1297 local_irq_enable();
1298 }
1299
1300 cpumask_clear(&batch->cpumask);
1301
1302 put_flush_tlb_info();
1303 put_cpu();
1304 }
1305
1306 /*
1307 * Blindly accessing user memory from NMI context can be dangerous
1308 * if we're in the middle of switching the current user task or
1309 * switching the loaded mm. It can also be dangerous if we
1310 * interrupted some kernel code that was temporarily using a
1311 * different mm.
1312 */
nmi_uaccess_okay(void)1313 bool nmi_uaccess_okay(void)
1314 {
1315 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1316 struct mm_struct *current_mm = current->mm;
1317
1318 VM_WARN_ON_ONCE(!loaded_mm);
1319
1320 /*
1321 * The condition we want to check is
1322 * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though,
1323 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1324 * is supposed to be reasonably fast.
1325 *
1326 * Instead, we check the almost equivalent but somewhat conservative
1327 * condition below, and we rely on the fact that switch_mm_irqs_off()
1328 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1329 */
1330 if (loaded_mm != current_mm)
1331 return false;
1332
1333 VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1334
1335 return true;
1336 }
1337
tlbflush_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1338 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1339 size_t count, loff_t *ppos)
1340 {
1341 char buf[32];
1342 unsigned int len;
1343
1344 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1345 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1346 }
1347
tlbflush_write_file(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)1348 static ssize_t tlbflush_write_file(struct file *file,
1349 const char __user *user_buf, size_t count, loff_t *ppos)
1350 {
1351 char buf[32];
1352 ssize_t len;
1353 int ceiling;
1354
1355 len = min(count, sizeof(buf) - 1);
1356 if (copy_from_user(buf, user_buf, len))
1357 return -EFAULT;
1358
1359 buf[len] = '\0';
1360 if (kstrtoint(buf, 0, &ceiling))
1361 return -EINVAL;
1362
1363 if (ceiling < 0)
1364 return -EINVAL;
1365
1366 tlb_single_page_flush_ceiling = ceiling;
1367 return count;
1368 }
1369
1370 static const struct file_operations fops_tlbflush = {
1371 .read = tlbflush_read_file,
1372 .write = tlbflush_write_file,
1373 .llseek = default_llseek,
1374 };
1375
create_tlb_single_page_flush_ceiling(void)1376 static int __init create_tlb_single_page_flush_ceiling(void)
1377 {
1378 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1379 arch_debugfs_dir, NULL, &fops_tlbflush);
1380 return 0;
1381 }
1382 late_initcall(create_tlb_single_page_flush_ceiling);
1383