1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3 /*
4 * Common eBPF ELF object loading operations.
5 *
6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8 * Copyright (C) 2015 Huawei Inc.
9 * Copyright (C) 2017 Nicira, Inc.
10 * Copyright (C) 2019 Isovalent, Inc.
11 */
12
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/ring_buffer.h>
37 #include <sys/epoll.h>
38 #include <sys/ioctl.h>
39 #include <sys/mman.h>
40 #include <sys/stat.h>
41 #include <sys/types.h>
42 #include <sys/vfs.h>
43 #include <sys/utsname.h>
44 #include <sys/resource.h>
45 #include <libelf.h>
46 #include <gelf.h>
47 #include <zlib.h>
48
49 #include "libbpf.h"
50 #include "bpf.h"
51 #include "btf.h"
52 #include "str_error.h"
53 #include "libbpf_internal.h"
54 #include "hashmap.h"
55 #include "bpf_gen_internal.h"
56 #include "zip.h"
57
58 #ifndef BPF_FS_MAGIC
59 #define BPF_FS_MAGIC 0xcafe4a11
60 #endif
61
62 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
63
64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
65 * compilation if user enables corresponding warning. Disable it explicitly.
66 */
67 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
68
69 #define __printf(a, b) __attribute__((format(printf, a, b)))
70
71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
73 static int map_set_def_max_entries(struct bpf_map *map);
74
75 static const char * const attach_type_name[] = {
76 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress",
77 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress",
78 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create",
79 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release",
80 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops",
81 [BPF_CGROUP_DEVICE] = "cgroup_device",
82 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind",
83 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind",
84 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect",
85 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect",
86 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind",
87 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind",
88 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername",
89 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername",
90 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname",
91 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname",
92 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg",
93 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg",
94 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl",
95 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg",
96 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg",
97 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt",
98 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt",
99 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser",
100 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict",
101 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict",
102 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict",
103 [BPF_LIRC_MODE2] = "lirc_mode2",
104 [BPF_FLOW_DISSECTOR] = "flow_dissector",
105 [BPF_TRACE_RAW_TP] = "trace_raw_tp",
106 [BPF_TRACE_FENTRY] = "trace_fentry",
107 [BPF_TRACE_FEXIT] = "trace_fexit",
108 [BPF_MODIFY_RETURN] = "modify_return",
109 [BPF_LSM_MAC] = "lsm_mac",
110 [BPF_LSM_CGROUP] = "lsm_cgroup",
111 [BPF_SK_LOOKUP] = "sk_lookup",
112 [BPF_TRACE_ITER] = "trace_iter",
113 [BPF_XDP_DEVMAP] = "xdp_devmap",
114 [BPF_XDP_CPUMAP] = "xdp_cpumap",
115 [BPF_XDP] = "xdp",
116 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select",
117 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate",
118 [BPF_PERF_EVENT] = "perf_event",
119 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi",
120 [BPF_STRUCT_OPS] = "struct_ops",
121 [BPF_NETFILTER] = "netfilter",
122 [BPF_TCX_INGRESS] = "tcx_ingress",
123 [BPF_TCX_EGRESS] = "tcx_egress",
124 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi",
125 };
126
127 static const char * const link_type_name[] = {
128 [BPF_LINK_TYPE_UNSPEC] = "unspec",
129 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
130 [BPF_LINK_TYPE_TRACING] = "tracing",
131 [BPF_LINK_TYPE_CGROUP] = "cgroup",
132 [BPF_LINK_TYPE_ITER] = "iter",
133 [BPF_LINK_TYPE_NETNS] = "netns",
134 [BPF_LINK_TYPE_XDP] = "xdp",
135 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event",
136 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi",
137 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops",
138 [BPF_LINK_TYPE_NETFILTER] = "netfilter",
139 [BPF_LINK_TYPE_TCX] = "tcx",
140 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi",
141 };
142
143 static const char * const map_type_name[] = {
144 [BPF_MAP_TYPE_UNSPEC] = "unspec",
145 [BPF_MAP_TYPE_HASH] = "hash",
146 [BPF_MAP_TYPE_ARRAY] = "array",
147 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array",
148 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array",
149 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash",
150 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array",
151 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace",
152 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array",
153 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash",
154 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash",
155 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie",
156 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps",
157 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps",
158 [BPF_MAP_TYPE_DEVMAP] = "devmap",
159 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash",
160 [BPF_MAP_TYPE_SOCKMAP] = "sockmap",
161 [BPF_MAP_TYPE_CPUMAP] = "cpumap",
162 [BPF_MAP_TYPE_XSKMAP] = "xskmap",
163 [BPF_MAP_TYPE_SOCKHASH] = "sockhash",
164 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage",
165 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray",
166 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage",
167 [BPF_MAP_TYPE_QUEUE] = "queue",
168 [BPF_MAP_TYPE_STACK] = "stack",
169 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage",
170 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops",
171 [BPF_MAP_TYPE_RINGBUF] = "ringbuf",
172 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage",
173 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage",
174 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter",
175 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf",
176 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage",
177 };
178
179 static const char * const prog_type_name[] = {
180 [BPF_PROG_TYPE_UNSPEC] = "unspec",
181 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter",
182 [BPF_PROG_TYPE_KPROBE] = "kprobe",
183 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls",
184 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act",
185 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint",
186 [BPF_PROG_TYPE_XDP] = "xdp",
187 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event",
188 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb",
189 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock",
190 [BPF_PROG_TYPE_LWT_IN] = "lwt_in",
191 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out",
192 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit",
193 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops",
194 [BPF_PROG_TYPE_SK_SKB] = "sk_skb",
195 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device",
196 [BPF_PROG_TYPE_SK_MSG] = "sk_msg",
197 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
198 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr",
199 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local",
200 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2",
201 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport",
202 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector",
203 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl",
204 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable",
205 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt",
206 [BPF_PROG_TYPE_TRACING] = "tracing",
207 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops",
208 [BPF_PROG_TYPE_EXT] = "ext",
209 [BPF_PROG_TYPE_LSM] = "lsm",
210 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup",
211 [BPF_PROG_TYPE_SYSCALL] = "syscall",
212 [BPF_PROG_TYPE_NETFILTER] = "netfilter",
213 };
214
__base_pr(enum libbpf_print_level level,const char * format,va_list args)215 static int __base_pr(enum libbpf_print_level level, const char *format,
216 va_list args)
217 {
218 if (level == LIBBPF_DEBUG)
219 return 0;
220
221 return vfprintf(stderr, format, args);
222 }
223
224 static libbpf_print_fn_t __libbpf_pr = __base_pr;
225
libbpf_set_print(libbpf_print_fn_t fn)226 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
227 {
228 libbpf_print_fn_t old_print_fn;
229
230 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
231
232 return old_print_fn;
233 }
234
235 __printf(2, 3)
libbpf_print(enum libbpf_print_level level,const char * format,...)236 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
237 {
238 va_list args;
239 int old_errno;
240 libbpf_print_fn_t print_fn;
241
242 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
243 if (!print_fn)
244 return;
245
246 old_errno = errno;
247
248 va_start(args, format);
249 print_fn(level, format, args);
250 va_end(args);
251
252 errno = old_errno;
253 }
254
pr_perm_msg(int err)255 static void pr_perm_msg(int err)
256 {
257 struct rlimit limit;
258 char buf[100];
259
260 if (err != -EPERM || geteuid() != 0)
261 return;
262
263 err = getrlimit(RLIMIT_MEMLOCK, &limit);
264 if (err)
265 return;
266
267 if (limit.rlim_cur == RLIM_INFINITY)
268 return;
269
270 if (limit.rlim_cur < 1024)
271 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
272 else if (limit.rlim_cur < 1024*1024)
273 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
274 else
275 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
276
277 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
278 buf);
279 }
280
281 #define STRERR_BUFSIZE 128
282
283 /* Copied from tools/perf/util/util.h */
284 #ifndef zfree
285 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
286 #endif
287
288 #ifndef zclose
289 # define zclose(fd) ({ \
290 int ___err = 0; \
291 if ((fd) >= 0) \
292 ___err = close((fd)); \
293 fd = -1; \
294 ___err; })
295 #endif
296
ptr_to_u64(const void * ptr)297 static inline __u64 ptr_to_u64(const void *ptr)
298 {
299 return (__u64) (unsigned long) ptr;
300 }
301
libbpf_set_strict_mode(enum libbpf_strict_mode mode)302 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
303 {
304 /* as of v1.0 libbpf_set_strict_mode() is a no-op */
305 return 0;
306 }
307
libbpf_major_version(void)308 __u32 libbpf_major_version(void)
309 {
310 return LIBBPF_MAJOR_VERSION;
311 }
312
libbpf_minor_version(void)313 __u32 libbpf_minor_version(void)
314 {
315 return LIBBPF_MINOR_VERSION;
316 }
317
libbpf_version_string(void)318 const char *libbpf_version_string(void)
319 {
320 #define __S(X) #X
321 #define _S(X) __S(X)
322 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
323 #undef _S
324 #undef __S
325 }
326
327 enum reloc_type {
328 RELO_LD64,
329 RELO_CALL,
330 RELO_DATA,
331 RELO_EXTERN_LD64,
332 RELO_EXTERN_CALL,
333 RELO_SUBPROG_ADDR,
334 RELO_CORE,
335 };
336
337 struct reloc_desc {
338 enum reloc_type type;
339 int insn_idx;
340 union {
341 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
342 struct {
343 int map_idx;
344 int sym_off;
345 int ext_idx;
346 };
347 };
348 };
349
350 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
351 enum sec_def_flags {
352 SEC_NONE = 0,
353 /* expected_attach_type is optional, if kernel doesn't support that */
354 SEC_EXP_ATTACH_OPT = 1,
355 /* legacy, only used by libbpf_get_type_names() and
356 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
357 * This used to be associated with cgroup (and few other) BPF programs
358 * that were attachable through BPF_PROG_ATTACH command. Pretty
359 * meaningless nowadays, though.
360 */
361 SEC_ATTACHABLE = 2,
362 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
363 /* attachment target is specified through BTF ID in either kernel or
364 * other BPF program's BTF object
365 */
366 SEC_ATTACH_BTF = 4,
367 /* BPF program type allows sleeping/blocking in kernel */
368 SEC_SLEEPABLE = 8,
369 /* BPF program support non-linear XDP buffer */
370 SEC_XDP_FRAGS = 16,
371 /* Setup proper attach type for usdt probes. */
372 SEC_USDT = 32,
373 };
374
375 struct bpf_sec_def {
376 char *sec;
377 enum bpf_prog_type prog_type;
378 enum bpf_attach_type expected_attach_type;
379 long cookie;
380 int handler_id;
381
382 libbpf_prog_setup_fn_t prog_setup_fn;
383 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
384 libbpf_prog_attach_fn_t prog_attach_fn;
385 };
386
387 /*
388 * bpf_prog should be a better name but it has been used in
389 * linux/filter.h.
390 */
391 struct bpf_program {
392 char *name;
393 char *sec_name;
394 size_t sec_idx;
395 const struct bpf_sec_def *sec_def;
396 /* this program's instruction offset (in number of instructions)
397 * within its containing ELF section
398 */
399 size_t sec_insn_off;
400 /* number of original instructions in ELF section belonging to this
401 * program, not taking into account subprogram instructions possible
402 * appended later during relocation
403 */
404 size_t sec_insn_cnt;
405 /* Offset (in number of instructions) of the start of instruction
406 * belonging to this BPF program within its containing main BPF
407 * program. For the entry-point (main) BPF program, this is always
408 * zero. For a sub-program, this gets reset before each of main BPF
409 * programs are processed and relocated and is used to determined
410 * whether sub-program was already appended to the main program, and
411 * if yes, at which instruction offset.
412 */
413 size_t sub_insn_off;
414
415 /* instructions that belong to BPF program; insns[0] is located at
416 * sec_insn_off instruction within its ELF section in ELF file, so
417 * when mapping ELF file instruction index to the local instruction,
418 * one needs to subtract sec_insn_off; and vice versa.
419 */
420 struct bpf_insn *insns;
421 /* actual number of instruction in this BPF program's image; for
422 * entry-point BPF programs this includes the size of main program
423 * itself plus all the used sub-programs, appended at the end
424 */
425 size_t insns_cnt;
426
427 struct reloc_desc *reloc_desc;
428 int nr_reloc;
429
430 /* BPF verifier log settings */
431 char *log_buf;
432 size_t log_size;
433 __u32 log_level;
434
435 struct bpf_object *obj;
436
437 int fd;
438 bool autoload;
439 bool autoattach;
440 bool mark_btf_static;
441 enum bpf_prog_type type;
442 enum bpf_attach_type expected_attach_type;
443
444 int prog_ifindex;
445 __u32 attach_btf_obj_fd;
446 __u32 attach_btf_id;
447 __u32 attach_prog_fd;
448
449 void *func_info;
450 __u32 func_info_rec_size;
451 __u32 func_info_cnt;
452
453 void *line_info;
454 __u32 line_info_rec_size;
455 __u32 line_info_cnt;
456 __u32 prog_flags;
457 };
458
459 struct bpf_struct_ops {
460 const char *tname;
461 const struct btf_type *type;
462 struct bpf_program **progs;
463 __u32 *kern_func_off;
464 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
465 void *data;
466 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
467 * btf_vmlinux's format.
468 * struct bpf_struct_ops_tcp_congestion_ops {
469 * [... some other kernel fields ...]
470 * struct tcp_congestion_ops data;
471 * }
472 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
473 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
474 * from "data".
475 */
476 void *kern_vdata;
477 __u32 type_id;
478 };
479
480 #define DATA_SEC ".data"
481 #define BSS_SEC ".bss"
482 #define RODATA_SEC ".rodata"
483 #define KCONFIG_SEC ".kconfig"
484 #define KSYMS_SEC ".ksyms"
485 #define STRUCT_OPS_SEC ".struct_ops"
486 #define STRUCT_OPS_LINK_SEC ".struct_ops.link"
487
488 enum libbpf_map_type {
489 LIBBPF_MAP_UNSPEC,
490 LIBBPF_MAP_DATA,
491 LIBBPF_MAP_BSS,
492 LIBBPF_MAP_RODATA,
493 LIBBPF_MAP_KCONFIG,
494 };
495
496 struct bpf_map_def {
497 unsigned int type;
498 unsigned int key_size;
499 unsigned int value_size;
500 unsigned int max_entries;
501 unsigned int map_flags;
502 };
503
504 struct bpf_map {
505 struct bpf_object *obj;
506 char *name;
507 /* real_name is defined for special internal maps (.rodata*,
508 * .data*, .bss, .kconfig) and preserves their original ELF section
509 * name. This is important to be able to find corresponding BTF
510 * DATASEC information.
511 */
512 char *real_name;
513 int fd;
514 int sec_idx;
515 size_t sec_offset;
516 int map_ifindex;
517 int inner_map_fd;
518 struct bpf_map_def def;
519 __u32 numa_node;
520 __u32 btf_var_idx;
521 __u32 btf_key_type_id;
522 __u32 btf_value_type_id;
523 __u32 btf_vmlinux_value_type_id;
524 enum libbpf_map_type libbpf_type;
525 void *mmaped;
526 struct bpf_struct_ops *st_ops;
527 struct bpf_map *inner_map;
528 void **init_slots;
529 int init_slots_sz;
530 char *pin_path;
531 bool pinned;
532 bool reused;
533 bool autocreate;
534 __u64 map_extra;
535 };
536
537 enum extern_type {
538 EXT_UNKNOWN,
539 EXT_KCFG,
540 EXT_KSYM,
541 };
542
543 enum kcfg_type {
544 KCFG_UNKNOWN,
545 KCFG_CHAR,
546 KCFG_BOOL,
547 KCFG_INT,
548 KCFG_TRISTATE,
549 KCFG_CHAR_ARR,
550 };
551
552 struct extern_desc {
553 enum extern_type type;
554 int sym_idx;
555 int btf_id;
556 int sec_btf_id;
557 char *name;
558 char *essent_name;
559 bool is_set;
560 bool is_weak;
561 union {
562 struct {
563 enum kcfg_type type;
564 int sz;
565 int align;
566 int data_off;
567 bool is_signed;
568 } kcfg;
569 struct {
570 unsigned long long addr;
571
572 /* target btf_id of the corresponding kernel var. */
573 int kernel_btf_obj_fd;
574 int kernel_btf_id;
575
576 /* local btf_id of the ksym extern's type. */
577 __u32 type_id;
578 /* BTF fd index to be patched in for insn->off, this is
579 * 0 for vmlinux BTF, index in obj->fd_array for module
580 * BTF
581 */
582 __s16 btf_fd_idx;
583 } ksym;
584 };
585 };
586
587 struct module_btf {
588 struct btf *btf;
589 char *name;
590 __u32 id;
591 int fd;
592 int fd_array_idx;
593 };
594
595 enum sec_type {
596 SEC_UNUSED = 0,
597 SEC_RELO,
598 SEC_BSS,
599 SEC_DATA,
600 SEC_RODATA,
601 };
602
603 struct elf_sec_desc {
604 enum sec_type sec_type;
605 Elf64_Shdr *shdr;
606 Elf_Data *data;
607 };
608
609 struct elf_state {
610 int fd;
611 const void *obj_buf;
612 size_t obj_buf_sz;
613 Elf *elf;
614 Elf64_Ehdr *ehdr;
615 Elf_Data *symbols;
616 Elf_Data *st_ops_data;
617 Elf_Data *st_ops_link_data;
618 size_t shstrndx; /* section index for section name strings */
619 size_t strtabidx;
620 struct elf_sec_desc *secs;
621 size_t sec_cnt;
622 int btf_maps_shndx;
623 __u32 btf_maps_sec_btf_id;
624 int text_shndx;
625 int symbols_shndx;
626 int st_ops_shndx;
627 int st_ops_link_shndx;
628 };
629
630 struct usdt_manager;
631
632 struct bpf_object {
633 char name[BPF_OBJ_NAME_LEN];
634 char license[64];
635 __u32 kern_version;
636
637 struct bpf_program *programs;
638 size_t nr_programs;
639 struct bpf_map *maps;
640 size_t nr_maps;
641 size_t maps_cap;
642
643 char *kconfig;
644 struct extern_desc *externs;
645 int nr_extern;
646 int kconfig_map_idx;
647
648 bool loaded;
649 bool has_subcalls;
650 bool has_rodata;
651
652 struct bpf_gen *gen_loader;
653
654 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */
655 struct elf_state efile;
656
657 struct btf *btf;
658 struct btf_ext *btf_ext;
659
660 /* Parse and load BTF vmlinux if any of the programs in the object need
661 * it at load time.
662 */
663 struct btf *btf_vmlinux;
664 /* Path to the custom BTF to be used for BPF CO-RE relocations as an
665 * override for vmlinux BTF.
666 */
667 char *btf_custom_path;
668 /* vmlinux BTF override for CO-RE relocations */
669 struct btf *btf_vmlinux_override;
670 /* Lazily initialized kernel module BTFs */
671 struct module_btf *btf_modules;
672 bool btf_modules_loaded;
673 size_t btf_module_cnt;
674 size_t btf_module_cap;
675
676 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
677 char *log_buf;
678 size_t log_size;
679 __u32 log_level;
680
681 int *fd_array;
682 size_t fd_array_cap;
683 size_t fd_array_cnt;
684
685 struct usdt_manager *usdt_man;
686
687 char path[];
688 };
689
690 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
691 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
692 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
693 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
694 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
695 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
696 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
697 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
698 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
699
bpf_program__unload(struct bpf_program * prog)700 void bpf_program__unload(struct bpf_program *prog)
701 {
702 if (!prog)
703 return;
704
705 zclose(prog->fd);
706
707 zfree(&prog->func_info);
708 zfree(&prog->line_info);
709 }
710
bpf_program__exit(struct bpf_program * prog)711 static void bpf_program__exit(struct bpf_program *prog)
712 {
713 if (!prog)
714 return;
715
716 bpf_program__unload(prog);
717 zfree(&prog->name);
718 zfree(&prog->sec_name);
719 zfree(&prog->insns);
720 zfree(&prog->reloc_desc);
721
722 prog->nr_reloc = 0;
723 prog->insns_cnt = 0;
724 prog->sec_idx = -1;
725 }
726
insn_is_subprog_call(const struct bpf_insn * insn)727 static bool insn_is_subprog_call(const struct bpf_insn *insn)
728 {
729 return BPF_CLASS(insn->code) == BPF_JMP &&
730 BPF_OP(insn->code) == BPF_CALL &&
731 BPF_SRC(insn->code) == BPF_K &&
732 insn->src_reg == BPF_PSEUDO_CALL &&
733 insn->dst_reg == 0 &&
734 insn->off == 0;
735 }
736
is_call_insn(const struct bpf_insn * insn)737 static bool is_call_insn(const struct bpf_insn *insn)
738 {
739 return insn->code == (BPF_JMP | BPF_CALL);
740 }
741
insn_is_pseudo_func(struct bpf_insn * insn)742 static bool insn_is_pseudo_func(struct bpf_insn *insn)
743 {
744 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
745 }
746
747 static int
bpf_object__init_prog(struct bpf_object * obj,struct bpf_program * prog,const char * name,size_t sec_idx,const char * sec_name,size_t sec_off,void * insn_data,size_t insn_data_sz)748 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
749 const char *name, size_t sec_idx, const char *sec_name,
750 size_t sec_off, void *insn_data, size_t insn_data_sz)
751 {
752 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
753 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
754 sec_name, name, sec_off, insn_data_sz);
755 return -EINVAL;
756 }
757
758 memset(prog, 0, sizeof(*prog));
759 prog->obj = obj;
760
761 prog->sec_idx = sec_idx;
762 prog->sec_insn_off = sec_off / BPF_INSN_SZ;
763 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
764 /* insns_cnt can later be increased by appending used subprograms */
765 prog->insns_cnt = prog->sec_insn_cnt;
766
767 prog->type = BPF_PROG_TYPE_UNSPEC;
768 prog->fd = -1;
769
770 /* libbpf's convention for SEC("?abc...") is that it's just like
771 * SEC("abc...") but the corresponding bpf_program starts out with
772 * autoload set to false.
773 */
774 if (sec_name[0] == '?') {
775 prog->autoload = false;
776 /* from now on forget there was ? in section name */
777 sec_name++;
778 } else {
779 prog->autoload = true;
780 }
781
782 prog->autoattach = true;
783
784 /* inherit object's log_level */
785 prog->log_level = obj->log_level;
786
787 prog->sec_name = strdup(sec_name);
788 if (!prog->sec_name)
789 goto errout;
790
791 prog->name = strdup(name);
792 if (!prog->name)
793 goto errout;
794
795 prog->insns = malloc(insn_data_sz);
796 if (!prog->insns)
797 goto errout;
798 memcpy(prog->insns, insn_data, insn_data_sz);
799
800 return 0;
801 errout:
802 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
803 bpf_program__exit(prog);
804 return -ENOMEM;
805 }
806
807 static int
bpf_object__add_programs(struct bpf_object * obj,Elf_Data * sec_data,const char * sec_name,int sec_idx)808 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
809 const char *sec_name, int sec_idx)
810 {
811 Elf_Data *symbols = obj->efile.symbols;
812 struct bpf_program *prog, *progs;
813 void *data = sec_data->d_buf;
814 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
815 int nr_progs, err, i;
816 const char *name;
817 Elf64_Sym *sym;
818
819 progs = obj->programs;
820 nr_progs = obj->nr_programs;
821 nr_syms = symbols->d_size / sizeof(Elf64_Sym);
822
823 for (i = 0; i < nr_syms; i++) {
824 sym = elf_sym_by_idx(obj, i);
825
826 if (sym->st_shndx != sec_idx)
827 continue;
828 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
829 continue;
830
831 prog_sz = sym->st_size;
832 sec_off = sym->st_value;
833
834 name = elf_sym_str(obj, sym->st_name);
835 if (!name) {
836 pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
837 sec_name, sec_off);
838 return -LIBBPF_ERRNO__FORMAT;
839 }
840
841 if (sec_off + prog_sz > sec_sz || sec_off + prog_sz < sec_off) {
842 pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
843 sec_name, sec_off);
844 return -LIBBPF_ERRNO__FORMAT;
845 }
846
847 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
848 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
849 return -ENOTSUP;
850 }
851
852 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
853 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
854
855 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
856 if (!progs) {
857 /*
858 * In this case the original obj->programs
859 * is still valid, so don't need special treat for
860 * bpf_close_object().
861 */
862 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
863 sec_name, name);
864 return -ENOMEM;
865 }
866 obj->programs = progs;
867
868 prog = &progs[nr_progs];
869
870 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
871 sec_off, data + sec_off, prog_sz);
872 if (err)
873 return err;
874
875 /* if function is a global/weak symbol, but has restricted
876 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
877 * as static to enable more permissive BPF verification mode
878 * with more outside context available to BPF verifier
879 */
880 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL
881 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
882 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
883 prog->mark_btf_static = true;
884
885 nr_progs++;
886 obj->nr_programs = nr_progs;
887 }
888
889 return 0;
890 }
891
892 static const struct btf_member *
find_member_by_offset(const struct btf_type * t,__u32 bit_offset)893 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
894 {
895 struct btf_member *m;
896 int i;
897
898 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
899 if (btf_member_bit_offset(t, i) == bit_offset)
900 return m;
901 }
902
903 return NULL;
904 }
905
906 static const struct btf_member *
find_member_by_name(const struct btf * btf,const struct btf_type * t,const char * name)907 find_member_by_name(const struct btf *btf, const struct btf_type *t,
908 const char *name)
909 {
910 struct btf_member *m;
911 int i;
912
913 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
914 if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
915 return m;
916 }
917
918 return NULL;
919 }
920
921 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
922 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
923 const char *name, __u32 kind);
924
925 static int
find_struct_ops_kern_types(const struct btf * btf,const char * tname,const struct btf_type ** type,__u32 * type_id,const struct btf_type ** vtype,__u32 * vtype_id,const struct btf_member ** data_member)926 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
927 const struct btf_type **type, __u32 *type_id,
928 const struct btf_type **vtype, __u32 *vtype_id,
929 const struct btf_member **data_member)
930 {
931 const struct btf_type *kern_type, *kern_vtype;
932 const struct btf_member *kern_data_member;
933 __s32 kern_vtype_id, kern_type_id;
934 __u32 i;
935
936 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
937 if (kern_type_id < 0) {
938 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
939 tname);
940 return kern_type_id;
941 }
942 kern_type = btf__type_by_id(btf, kern_type_id);
943
944 /* Find the corresponding "map_value" type that will be used
945 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example,
946 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
947 * btf_vmlinux.
948 */
949 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
950 tname, BTF_KIND_STRUCT);
951 if (kern_vtype_id < 0) {
952 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
953 STRUCT_OPS_VALUE_PREFIX, tname);
954 return kern_vtype_id;
955 }
956 kern_vtype = btf__type_by_id(btf, kern_vtype_id);
957
958 /* Find "struct tcp_congestion_ops" from
959 * struct bpf_struct_ops_tcp_congestion_ops {
960 * [ ... ]
961 * struct tcp_congestion_ops data;
962 * }
963 */
964 kern_data_member = btf_members(kern_vtype);
965 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
966 if (kern_data_member->type == kern_type_id)
967 break;
968 }
969 if (i == btf_vlen(kern_vtype)) {
970 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
971 tname, STRUCT_OPS_VALUE_PREFIX, tname);
972 return -EINVAL;
973 }
974
975 *type = kern_type;
976 *type_id = kern_type_id;
977 *vtype = kern_vtype;
978 *vtype_id = kern_vtype_id;
979 *data_member = kern_data_member;
980
981 return 0;
982 }
983
bpf_map__is_struct_ops(const struct bpf_map * map)984 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
985 {
986 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
987 }
988
989 /* Init the map's fields that depend on kern_btf */
bpf_map__init_kern_struct_ops(struct bpf_map * map,const struct btf * btf,const struct btf * kern_btf)990 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
991 const struct btf *btf,
992 const struct btf *kern_btf)
993 {
994 const struct btf_member *member, *kern_member, *kern_data_member;
995 const struct btf_type *type, *kern_type, *kern_vtype;
996 __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
997 struct bpf_struct_ops *st_ops;
998 void *data, *kern_data;
999 const char *tname;
1000 int err;
1001
1002 st_ops = map->st_ops;
1003 type = st_ops->type;
1004 tname = st_ops->tname;
1005 err = find_struct_ops_kern_types(kern_btf, tname,
1006 &kern_type, &kern_type_id,
1007 &kern_vtype, &kern_vtype_id,
1008 &kern_data_member);
1009 if (err)
1010 return err;
1011
1012 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1013 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1014
1015 map->def.value_size = kern_vtype->size;
1016 map->btf_vmlinux_value_type_id = kern_vtype_id;
1017
1018 st_ops->kern_vdata = calloc(1, kern_vtype->size);
1019 if (!st_ops->kern_vdata)
1020 return -ENOMEM;
1021
1022 data = st_ops->data;
1023 kern_data_off = kern_data_member->offset / 8;
1024 kern_data = st_ops->kern_vdata + kern_data_off;
1025
1026 member = btf_members(type);
1027 for (i = 0; i < btf_vlen(type); i++, member++) {
1028 const struct btf_type *mtype, *kern_mtype;
1029 __u32 mtype_id, kern_mtype_id;
1030 void *mdata, *kern_mdata;
1031 __s64 msize, kern_msize;
1032 __u32 moff, kern_moff;
1033 __u32 kern_member_idx;
1034 const char *mname;
1035
1036 mname = btf__name_by_offset(btf, member->name_off);
1037 kern_member = find_member_by_name(kern_btf, kern_type, mname);
1038 if (!kern_member) {
1039 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1040 map->name, mname);
1041 return -ENOTSUP;
1042 }
1043
1044 kern_member_idx = kern_member - btf_members(kern_type);
1045 if (btf_member_bitfield_size(type, i) ||
1046 btf_member_bitfield_size(kern_type, kern_member_idx)) {
1047 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1048 map->name, mname);
1049 return -ENOTSUP;
1050 }
1051
1052 moff = member->offset / 8;
1053 kern_moff = kern_member->offset / 8;
1054
1055 mdata = data + moff;
1056 kern_mdata = kern_data + kern_moff;
1057
1058 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1059 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1060 &kern_mtype_id);
1061 if (BTF_INFO_KIND(mtype->info) !=
1062 BTF_INFO_KIND(kern_mtype->info)) {
1063 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1064 map->name, mname, BTF_INFO_KIND(mtype->info),
1065 BTF_INFO_KIND(kern_mtype->info));
1066 return -ENOTSUP;
1067 }
1068
1069 if (btf_is_ptr(mtype)) {
1070 struct bpf_program *prog;
1071
1072 prog = st_ops->progs[i];
1073 if (!prog)
1074 continue;
1075
1076 kern_mtype = skip_mods_and_typedefs(kern_btf,
1077 kern_mtype->type,
1078 &kern_mtype_id);
1079
1080 /* mtype->type must be a func_proto which was
1081 * guaranteed in bpf_object__collect_st_ops_relos(),
1082 * so only check kern_mtype for func_proto here.
1083 */
1084 if (!btf_is_func_proto(kern_mtype)) {
1085 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1086 map->name, mname);
1087 return -ENOTSUP;
1088 }
1089
1090 prog->attach_btf_id = kern_type_id;
1091 prog->expected_attach_type = kern_member_idx;
1092
1093 st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1094
1095 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1096 map->name, mname, prog->name, moff,
1097 kern_moff);
1098
1099 continue;
1100 }
1101
1102 msize = btf__resolve_size(btf, mtype_id);
1103 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1104 if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1105 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1106 map->name, mname, (ssize_t)msize,
1107 (ssize_t)kern_msize);
1108 return -ENOTSUP;
1109 }
1110
1111 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1112 map->name, mname, (unsigned int)msize,
1113 moff, kern_moff);
1114 memcpy(kern_mdata, mdata, msize);
1115 }
1116
1117 return 0;
1118 }
1119
bpf_object__init_kern_struct_ops_maps(struct bpf_object * obj)1120 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1121 {
1122 struct bpf_map *map;
1123 size_t i;
1124 int err;
1125
1126 for (i = 0; i < obj->nr_maps; i++) {
1127 map = &obj->maps[i];
1128
1129 if (!bpf_map__is_struct_ops(map))
1130 continue;
1131
1132 err = bpf_map__init_kern_struct_ops(map, obj->btf,
1133 obj->btf_vmlinux);
1134 if (err)
1135 return err;
1136 }
1137
1138 return 0;
1139 }
1140
init_struct_ops_maps(struct bpf_object * obj,const char * sec_name,int shndx,Elf_Data * data,__u32 map_flags)1141 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1142 int shndx, Elf_Data *data, __u32 map_flags)
1143 {
1144 const struct btf_type *type, *datasec;
1145 const struct btf_var_secinfo *vsi;
1146 struct bpf_struct_ops *st_ops;
1147 const char *tname, *var_name;
1148 __s32 type_id, datasec_id;
1149 const struct btf *btf;
1150 struct bpf_map *map;
1151 __u32 i;
1152
1153 if (shndx == -1)
1154 return 0;
1155
1156 btf = obj->btf;
1157 datasec_id = btf__find_by_name_kind(btf, sec_name,
1158 BTF_KIND_DATASEC);
1159 if (datasec_id < 0) {
1160 pr_warn("struct_ops init: DATASEC %s not found\n",
1161 sec_name);
1162 return -EINVAL;
1163 }
1164
1165 datasec = btf__type_by_id(btf, datasec_id);
1166 vsi = btf_var_secinfos(datasec);
1167 for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1168 type = btf__type_by_id(obj->btf, vsi->type);
1169 var_name = btf__name_by_offset(obj->btf, type->name_off);
1170
1171 type_id = btf__resolve_type(obj->btf, vsi->type);
1172 if (type_id < 0) {
1173 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1174 vsi->type, sec_name);
1175 return -EINVAL;
1176 }
1177
1178 type = btf__type_by_id(obj->btf, type_id);
1179 tname = btf__name_by_offset(obj->btf, type->name_off);
1180 if (!tname[0]) {
1181 pr_warn("struct_ops init: anonymous type is not supported\n");
1182 return -ENOTSUP;
1183 }
1184 if (!btf_is_struct(type)) {
1185 pr_warn("struct_ops init: %s is not a struct\n", tname);
1186 return -EINVAL;
1187 }
1188
1189 map = bpf_object__add_map(obj);
1190 if (IS_ERR(map))
1191 return PTR_ERR(map);
1192
1193 map->sec_idx = shndx;
1194 map->sec_offset = vsi->offset;
1195 map->name = strdup(var_name);
1196 if (!map->name)
1197 return -ENOMEM;
1198
1199 map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1200 map->def.key_size = sizeof(int);
1201 map->def.value_size = type->size;
1202 map->def.max_entries = 1;
1203 map->def.map_flags = map_flags;
1204
1205 map->st_ops = calloc(1, sizeof(*map->st_ops));
1206 if (!map->st_ops)
1207 return -ENOMEM;
1208 st_ops = map->st_ops;
1209 st_ops->data = malloc(type->size);
1210 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1211 st_ops->kern_func_off = malloc(btf_vlen(type) *
1212 sizeof(*st_ops->kern_func_off));
1213 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1214 return -ENOMEM;
1215
1216 if (vsi->offset + type->size > data->d_size) {
1217 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1218 var_name, sec_name);
1219 return -EINVAL;
1220 }
1221
1222 memcpy(st_ops->data,
1223 data->d_buf + vsi->offset,
1224 type->size);
1225 st_ops->tname = tname;
1226 st_ops->type = type;
1227 st_ops->type_id = type_id;
1228
1229 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1230 tname, type_id, var_name, vsi->offset);
1231 }
1232
1233 return 0;
1234 }
1235
bpf_object_init_struct_ops(struct bpf_object * obj)1236 static int bpf_object_init_struct_ops(struct bpf_object *obj)
1237 {
1238 int err;
1239
1240 err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx,
1241 obj->efile.st_ops_data, 0);
1242 err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC,
1243 obj->efile.st_ops_link_shndx,
1244 obj->efile.st_ops_link_data,
1245 BPF_F_LINK);
1246 return err;
1247 }
1248
bpf_object__new(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name)1249 static struct bpf_object *bpf_object__new(const char *path,
1250 const void *obj_buf,
1251 size_t obj_buf_sz,
1252 const char *obj_name)
1253 {
1254 struct bpf_object *obj;
1255 char *end;
1256
1257 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1258 if (!obj) {
1259 pr_warn("alloc memory failed for %s\n", path);
1260 return ERR_PTR(-ENOMEM);
1261 }
1262
1263 strcpy(obj->path, path);
1264 if (obj_name) {
1265 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1266 } else {
1267 /* Using basename() GNU version which doesn't modify arg. */
1268 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1269 end = strchr(obj->name, '.');
1270 if (end)
1271 *end = 0;
1272 }
1273
1274 obj->efile.fd = -1;
1275 /*
1276 * Caller of this function should also call
1277 * bpf_object__elf_finish() after data collection to return
1278 * obj_buf to user. If not, we should duplicate the buffer to
1279 * avoid user freeing them before elf finish.
1280 */
1281 obj->efile.obj_buf = obj_buf;
1282 obj->efile.obj_buf_sz = obj_buf_sz;
1283 obj->efile.btf_maps_shndx = -1;
1284 obj->efile.st_ops_shndx = -1;
1285 obj->efile.st_ops_link_shndx = -1;
1286 obj->kconfig_map_idx = -1;
1287
1288 obj->kern_version = get_kernel_version();
1289 obj->loaded = false;
1290
1291 return obj;
1292 }
1293
bpf_object__elf_finish(struct bpf_object * obj)1294 static void bpf_object__elf_finish(struct bpf_object *obj)
1295 {
1296 if (!obj->efile.elf)
1297 return;
1298
1299 elf_end(obj->efile.elf);
1300 obj->efile.elf = NULL;
1301 obj->efile.symbols = NULL;
1302 obj->efile.st_ops_data = NULL;
1303 obj->efile.st_ops_link_data = NULL;
1304
1305 zfree(&obj->efile.secs);
1306 obj->efile.sec_cnt = 0;
1307 zclose(obj->efile.fd);
1308 obj->efile.obj_buf = NULL;
1309 obj->efile.obj_buf_sz = 0;
1310 }
1311
bpf_object__elf_init(struct bpf_object * obj)1312 static int bpf_object__elf_init(struct bpf_object *obj)
1313 {
1314 Elf64_Ehdr *ehdr;
1315 int err = 0;
1316 Elf *elf;
1317
1318 if (obj->efile.elf) {
1319 pr_warn("elf: init internal error\n");
1320 return -LIBBPF_ERRNO__LIBELF;
1321 }
1322
1323 if (obj->efile.obj_buf_sz > 0) {
1324 /* obj_buf should have been validated by bpf_object__open_mem(). */
1325 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1326 } else {
1327 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1328 if (obj->efile.fd < 0) {
1329 char errmsg[STRERR_BUFSIZE], *cp;
1330
1331 err = -errno;
1332 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1333 pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1334 return err;
1335 }
1336
1337 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1338 }
1339
1340 if (!elf) {
1341 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1342 err = -LIBBPF_ERRNO__LIBELF;
1343 goto errout;
1344 }
1345
1346 obj->efile.elf = elf;
1347
1348 if (elf_kind(elf) != ELF_K_ELF) {
1349 err = -LIBBPF_ERRNO__FORMAT;
1350 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1351 goto errout;
1352 }
1353
1354 if (gelf_getclass(elf) != ELFCLASS64) {
1355 err = -LIBBPF_ERRNO__FORMAT;
1356 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1357 goto errout;
1358 }
1359
1360 obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1361 if (!obj->efile.ehdr) {
1362 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1363 err = -LIBBPF_ERRNO__FORMAT;
1364 goto errout;
1365 }
1366
1367 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1368 pr_warn("elf: failed to get section names section index for %s: %s\n",
1369 obj->path, elf_errmsg(-1));
1370 err = -LIBBPF_ERRNO__FORMAT;
1371 goto errout;
1372 }
1373
1374 /* ELF is corrupted/truncated, avoid calling elf_strptr. */
1375 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1376 pr_warn("elf: failed to get section names strings from %s: %s\n",
1377 obj->path, elf_errmsg(-1));
1378 err = -LIBBPF_ERRNO__FORMAT;
1379 goto errout;
1380 }
1381
1382 /* Old LLVM set e_machine to EM_NONE */
1383 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1384 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1385 err = -LIBBPF_ERRNO__FORMAT;
1386 goto errout;
1387 }
1388
1389 return 0;
1390 errout:
1391 bpf_object__elf_finish(obj);
1392 return err;
1393 }
1394
bpf_object__check_endianness(struct bpf_object * obj)1395 static int bpf_object__check_endianness(struct bpf_object *obj)
1396 {
1397 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1398 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1399 return 0;
1400 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1401 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1402 return 0;
1403 #else
1404 # error "Unrecognized __BYTE_ORDER__"
1405 #endif
1406 pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1407 return -LIBBPF_ERRNO__ENDIAN;
1408 }
1409
1410 static int
bpf_object__init_license(struct bpf_object * obj,void * data,size_t size)1411 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1412 {
1413 if (!data) {
1414 pr_warn("invalid license section in %s\n", obj->path);
1415 return -LIBBPF_ERRNO__FORMAT;
1416 }
1417 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1418 * go over allowed ELF data section buffer
1419 */
1420 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1421 pr_debug("license of %s is %s\n", obj->path, obj->license);
1422 return 0;
1423 }
1424
1425 static int
bpf_object__init_kversion(struct bpf_object * obj,void * data,size_t size)1426 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1427 {
1428 __u32 kver;
1429
1430 if (!data || size != sizeof(kver)) {
1431 pr_warn("invalid kver section in %s\n", obj->path);
1432 return -LIBBPF_ERRNO__FORMAT;
1433 }
1434 memcpy(&kver, data, sizeof(kver));
1435 obj->kern_version = kver;
1436 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1437 return 0;
1438 }
1439
bpf_map_type__is_map_in_map(enum bpf_map_type type)1440 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1441 {
1442 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1443 type == BPF_MAP_TYPE_HASH_OF_MAPS)
1444 return true;
1445 return false;
1446 }
1447
find_elf_sec_sz(const struct bpf_object * obj,const char * name,__u32 * size)1448 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1449 {
1450 Elf_Data *data;
1451 Elf_Scn *scn;
1452
1453 if (!name)
1454 return -EINVAL;
1455
1456 scn = elf_sec_by_name(obj, name);
1457 data = elf_sec_data(obj, scn);
1458 if (data) {
1459 *size = data->d_size;
1460 return 0; /* found it */
1461 }
1462
1463 return -ENOENT;
1464 }
1465
find_elf_var_sym(const struct bpf_object * obj,const char * name)1466 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1467 {
1468 Elf_Data *symbols = obj->efile.symbols;
1469 const char *sname;
1470 size_t si;
1471
1472 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1473 Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1474
1475 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1476 continue;
1477
1478 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1479 ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1480 continue;
1481
1482 sname = elf_sym_str(obj, sym->st_name);
1483 if (!sname) {
1484 pr_warn("failed to get sym name string for var %s\n", name);
1485 return ERR_PTR(-EIO);
1486 }
1487 if (strcmp(name, sname) == 0)
1488 return sym;
1489 }
1490
1491 return ERR_PTR(-ENOENT);
1492 }
1493
bpf_object__add_map(struct bpf_object * obj)1494 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1495 {
1496 struct bpf_map *map;
1497 int err;
1498
1499 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1500 sizeof(*obj->maps), obj->nr_maps + 1);
1501 if (err)
1502 return ERR_PTR(err);
1503
1504 map = &obj->maps[obj->nr_maps++];
1505 map->obj = obj;
1506 map->fd = -1;
1507 map->inner_map_fd = -1;
1508 map->autocreate = true;
1509
1510 return map;
1511 }
1512
bpf_map_mmap_sz(unsigned int value_sz,unsigned int max_entries)1513 static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1514 {
1515 const long page_sz = sysconf(_SC_PAGE_SIZE);
1516 size_t map_sz;
1517
1518 map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1519 map_sz = roundup(map_sz, page_sz);
1520 return map_sz;
1521 }
1522
bpf_map_mmap_resize(struct bpf_map * map,size_t old_sz,size_t new_sz)1523 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1524 {
1525 void *mmaped;
1526
1527 if (!map->mmaped)
1528 return -EINVAL;
1529
1530 if (old_sz == new_sz)
1531 return 0;
1532
1533 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1534 if (mmaped == MAP_FAILED)
1535 return -errno;
1536
1537 memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1538 munmap(map->mmaped, old_sz);
1539 map->mmaped = mmaped;
1540 return 0;
1541 }
1542
internal_map_name(struct bpf_object * obj,const char * real_name)1543 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1544 {
1545 char map_name[BPF_OBJ_NAME_LEN], *p;
1546 int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1547
1548 /* This is one of the more confusing parts of libbpf for various
1549 * reasons, some of which are historical. The original idea for naming
1550 * internal names was to include as much of BPF object name prefix as
1551 * possible, so that it can be distinguished from similar internal
1552 * maps of a different BPF object.
1553 * As an example, let's say we have bpf_object named 'my_object_name'
1554 * and internal map corresponding to '.rodata' ELF section. The final
1555 * map name advertised to user and to the kernel will be
1556 * 'my_objec.rodata', taking first 8 characters of object name and
1557 * entire 7 characters of '.rodata'.
1558 * Somewhat confusingly, if internal map ELF section name is shorter
1559 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1560 * for the suffix, even though we only have 4 actual characters, and
1561 * resulting map will be called 'my_objec.bss', not even using all 15
1562 * characters allowed by the kernel. Oh well, at least the truncated
1563 * object name is somewhat consistent in this case. But if the map
1564 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1565 * (8 chars) and thus will be left with only first 7 characters of the
1566 * object name ('my_obje'). Happy guessing, user, that the final map
1567 * name will be "my_obje.kconfig".
1568 * Now, with libbpf starting to support arbitrarily named .rodata.*
1569 * and .data.* data sections, it's possible that ELF section name is
1570 * longer than allowed 15 chars, so we now need to be careful to take
1571 * only up to 15 first characters of ELF name, taking no BPF object
1572 * name characters at all. So '.rodata.abracadabra' will result in
1573 * '.rodata.abracad' kernel and user-visible name.
1574 * We need to keep this convoluted logic intact for .data, .bss and
1575 * .rodata maps, but for new custom .data.custom and .rodata.custom
1576 * maps we use their ELF names as is, not prepending bpf_object name
1577 * in front. We still need to truncate them to 15 characters for the
1578 * kernel. Full name can be recovered for such maps by using DATASEC
1579 * BTF type associated with such map's value type, though.
1580 */
1581 if (sfx_len >= BPF_OBJ_NAME_LEN)
1582 sfx_len = BPF_OBJ_NAME_LEN - 1;
1583
1584 /* if there are two or more dots in map name, it's a custom dot map */
1585 if (strchr(real_name + 1, '.') != NULL)
1586 pfx_len = 0;
1587 else
1588 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1589
1590 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1591 sfx_len, real_name);
1592
1593 /* sanitise map name to characters allowed by kernel */
1594 for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1595 if (!isalnum(*p) && *p != '_' && *p != '.')
1596 *p = '_';
1597
1598 return strdup(map_name);
1599 }
1600
1601 static int
1602 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1603
1604 /* Internal BPF map is mmap()'able only if at least one of corresponding
1605 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1606 * variable and it's not marked as __hidden (which turns it into, effectively,
1607 * a STATIC variable).
1608 */
map_is_mmapable(struct bpf_object * obj,struct bpf_map * map)1609 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1610 {
1611 const struct btf_type *t, *vt;
1612 struct btf_var_secinfo *vsi;
1613 int i, n;
1614
1615 if (!map->btf_value_type_id)
1616 return false;
1617
1618 t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1619 if (!btf_is_datasec(t))
1620 return false;
1621
1622 vsi = btf_var_secinfos(t);
1623 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1624 vt = btf__type_by_id(obj->btf, vsi->type);
1625 if (!btf_is_var(vt))
1626 continue;
1627
1628 if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1629 return true;
1630 }
1631
1632 return false;
1633 }
1634
1635 static int
bpf_object__init_internal_map(struct bpf_object * obj,enum libbpf_map_type type,const char * real_name,int sec_idx,void * data,size_t data_sz)1636 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1637 const char *real_name, int sec_idx, void *data, size_t data_sz)
1638 {
1639 struct bpf_map_def *def;
1640 struct bpf_map *map;
1641 size_t mmap_sz;
1642 int err;
1643
1644 map = bpf_object__add_map(obj);
1645 if (IS_ERR(map))
1646 return PTR_ERR(map);
1647
1648 map->libbpf_type = type;
1649 map->sec_idx = sec_idx;
1650 map->sec_offset = 0;
1651 map->real_name = strdup(real_name);
1652 map->name = internal_map_name(obj, real_name);
1653 if (!map->real_name || !map->name) {
1654 zfree(&map->real_name);
1655 zfree(&map->name);
1656 return -ENOMEM;
1657 }
1658
1659 def = &map->def;
1660 def->type = BPF_MAP_TYPE_ARRAY;
1661 def->key_size = sizeof(int);
1662 def->value_size = data_sz;
1663 def->max_entries = 1;
1664 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1665 ? BPF_F_RDONLY_PROG : 0;
1666
1667 /* failures are fine because of maps like .rodata.str1.1 */
1668 (void) map_fill_btf_type_info(obj, map);
1669
1670 if (map_is_mmapable(obj, map))
1671 def->map_flags |= BPF_F_MMAPABLE;
1672
1673 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1674 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1675
1676 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
1677 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1678 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1679 if (map->mmaped == MAP_FAILED) {
1680 err = -errno;
1681 map->mmaped = NULL;
1682 pr_warn("failed to alloc map '%s' content buffer: %d\n",
1683 map->name, err);
1684 zfree(&map->real_name);
1685 zfree(&map->name);
1686 return err;
1687 }
1688
1689 if (data)
1690 memcpy(map->mmaped, data, data_sz);
1691
1692 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1693 return 0;
1694 }
1695
bpf_object__init_global_data_maps(struct bpf_object * obj)1696 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1697 {
1698 struct elf_sec_desc *sec_desc;
1699 const char *sec_name;
1700 int err = 0, sec_idx;
1701
1702 /*
1703 * Populate obj->maps with libbpf internal maps.
1704 */
1705 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1706 sec_desc = &obj->efile.secs[sec_idx];
1707
1708 /* Skip recognized sections with size 0. */
1709 if (!sec_desc->data || sec_desc->data->d_size == 0)
1710 continue;
1711
1712 switch (sec_desc->sec_type) {
1713 case SEC_DATA:
1714 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1715 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1716 sec_name, sec_idx,
1717 sec_desc->data->d_buf,
1718 sec_desc->data->d_size);
1719 break;
1720 case SEC_RODATA:
1721 obj->has_rodata = true;
1722 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1723 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1724 sec_name, sec_idx,
1725 sec_desc->data->d_buf,
1726 sec_desc->data->d_size);
1727 break;
1728 case SEC_BSS:
1729 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1730 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1731 sec_name, sec_idx,
1732 NULL,
1733 sec_desc->data->d_size);
1734 break;
1735 default:
1736 /* skip */
1737 break;
1738 }
1739 if (err)
1740 return err;
1741 }
1742 return 0;
1743 }
1744
1745
find_extern_by_name(const struct bpf_object * obj,const void * name)1746 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1747 const void *name)
1748 {
1749 int i;
1750
1751 for (i = 0; i < obj->nr_extern; i++) {
1752 if (strcmp(obj->externs[i].name, name) == 0)
1753 return &obj->externs[i];
1754 }
1755 return NULL;
1756 }
1757
set_kcfg_value_tri(struct extern_desc * ext,void * ext_val,char value)1758 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1759 char value)
1760 {
1761 switch (ext->kcfg.type) {
1762 case KCFG_BOOL:
1763 if (value == 'm') {
1764 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1765 ext->name, value);
1766 return -EINVAL;
1767 }
1768 *(bool *)ext_val = value == 'y' ? true : false;
1769 break;
1770 case KCFG_TRISTATE:
1771 if (value == 'y')
1772 *(enum libbpf_tristate *)ext_val = TRI_YES;
1773 else if (value == 'm')
1774 *(enum libbpf_tristate *)ext_val = TRI_MODULE;
1775 else /* value == 'n' */
1776 *(enum libbpf_tristate *)ext_val = TRI_NO;
1777 break;
1778 case KCFG_CHAR:
1779 *(char *)ext_val = value;
1780 break;
1781 case KCFG_UNKNOWN:
1782 case KCFG_INT:
1783 case KCFG_CHAR_ARR:
1784 default:
1785 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1786 ext->name, value);
1787 return -EINVAL;
1788 }
1789 ext->is_set = true;
1790 return 0;
1791 }
1792
set_kcfg_value_str(struct extern_desc * ext,char * ext_val,const char * value)1793 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1794 const char *value)
1795 {
1796 size_t len;
1797
1798 if (ext->kcfg.type != KCFG_CHAR_ARR) {
1799 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1800 ext->name, value);
1801 return -EINVAL;
1802 }
1803
1804 len = strlen(value);
1805 if (len < 2 || value[len - 1] != '"') {
1806 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1807 ext->name, value);
1808 return -EINVAL;
1809 }
1810
1811 /* strip quotes */
1812 len -= 2;
1813 if (len >= ext->kcfg.sz) {
1814 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
1815 ext->name, value, len, ext->kcfg.sz - 1);
1816 len = ext->kcfg.sz - 1;
1817 }
1818 memcpy(ext_val, value + 1, len);
1819 ext_val[len] = '\0';
1820 ext->is_set = true;
1821 return 0;
1822 }
1823
parse_u64(const char * value,__u64 * res)1824 static int parse_u64(const char *value, __u64 *res)
1825 {
1826 char *value_end;
1827 int err;
1828
1829 errno = 0;
1830 *res = strtoull(value, &value_end, 0);
1831 if (errno) {
1832 err = -errno;
1833 pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1834 return err;
1835 }
1836 if (*value_end) {
1837 pr_warn("failed to parse '%s' as integer completely\n", value);
1838 return -EINVAL;
1839 }
1840 return 0;
1841 }
1842
is_kcfg_value_in_range(const struct extern_desc * ext,__u64 v)1843 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1844 {
1845 int bit_sz = ext->kcfg.sz * 8;
1846
1847 if (ext->kcfg.sz == 8)
1848 return true;
1849
1850 /* Validate that value stored in u64 fits in integer of `ext->sz`
1851 * bytes size without any loss of information. If the target integer
1852 * is signed, we rely on the following limits of integer type of
1853 * Y bits and subsequent transformation:
1854 *
1855 * -2^(Y-1) <= X <= 2^(Y-1) - 1
1856 * 0 <= X + 2^(Y-1) <= 2^Y - 1
1857 * 0 <= X + 2^(Y-1) < 2^Y
1858 *
1859 * For unsigned target integer, check that all the (64 - Y) bits are
1860 * zero.
1861 */
1862 if (ext->kcfg.is_signed)
1863 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1864 else
1865 return (v >> bit_sz) == 0;
1866 }
1867
set_kcfg_value_num(struct extern_desc * ext,void * ext_val,__u64 value)1868 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1869 __u64 value)
1870 {
1871 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
1872 ext->kcfg.type != KCFG_BOOL) {
1873 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
1874 ext->name, (unsigned long long)value);
1875 return -EINVAL;
1876 }
1877 if (ext->kcfg.type == KCFG_BOOL && value > 1) {
1878 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
1879 ext->name, (unsigned long long)value);
1880 return -EINVAL;
1881
1882 }
1883 if (!is_kcfg_value_in_range(ext, value)) {
1884 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
1885 ext->name, (unsigned long long)value, ext->kcfg.sz);
1886 return -ERANGE;
1887 }
1888 switch (ext->kcfg.sz) {
1889 case 1:
1890 *(__u8 *)ext_val = value;
1891 break;
1892 case 2:
1893 *(__u16 *)ext_val = value;
1894 break;
1895 case 4:
1896 *(__u32 *)ext_val = value;
1897 break;
1898 case 8:
1899 *(__u64 *)ext_val = value;
1900 break;
1901 default:
1902 return -EINVAL;
1903 }
1904 ext->is_set = true;
1905 return 0;
1906 }
1907
bpf_object__process_kconfig_line(struct bpf_object * obj,char * buf,void * data)1908 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1909 char *buf, void *data)
1910 {
1911 struct extern_desc *ext;
1912 char *sep, *value;
1913 int len, err = 0;
1914 void *ext_val;
1915 __u64 num;
1916
1917 if (!str_has_pfx(buf, "CONFIG_"))
1918 return 0;
1919
1920 sep = strchr(buf, '=');
1921 if (!sep) {
1922 pr_warn("failed to parse '%s': no separator\n", buf);
1923 return -EINVAL;
1924 }
1925
1926 /* Trim ending '\n' */
1927 len = strlen(buf);
1928 if (buf[len - 1] == '\n')
1929 buf[len - 1] = '\0';
1930 /* Split on '=' and ensure that a value is present. */
1931 *sep = '\0';
1932 if (!sep[1]) {
1933 *sep = '=';
1934 pr_warn("failed to parse '%s': no value\n", buf);
1935 return -EINVAL;
1936 }
1937
1938 ext = find_extern_by_name(obj, buf);
1939 if (!ext || ext->is_set)
1940 return 0;
1941
1942 ext_val = data + ext->kcfg.data_off;
1943 value = sep + 1;
1944
1945 switch (*value) {
1946 case 'y': case 'n': case 'm':
1947 err = set_kcfg_value_tri(ext, ext_val, *value);
1948 break;
1949 case '"':
1950 err = set_kcfg_value_str(ext, ext_val, value);
1951 break;
1952 default:
1953 /* assume integer */
1954 err = parse_u64(value, &num);
1955 if (err) {
1956 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
1957 return err;
1958 }
1959 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1960 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
1961 return -EINVAL;
1962 }
1963 err = set_kcfg_value_num(ext, ext_val, num);
1964 break;
1965 }
1966 if (err)
1967 return err;
1968 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
1969 return 0;
1970 }
1971
bpf_object__read_kconfig_file(struct bpf_object * obj,void * data)1972 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1973 {
1974 char buf[PATH_MAX];
1975 struct utsname uts;
1976 int len, err = 0;
1977 gzFile file;
1978
1979 uname(&uts);
1980 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1981 if (len < 0)
1982 return -EINVAL;
1983 else if (len >= PATH_MAX)
1984 return -ENAMETOOLONG;
1985
1986 /* gzopen also accepts uncompressed files. */
1987 file = gzopen(buf, "re");
1988 if (!file)
1989 file = gzopen("/proc/config.gz", "re");
1990
1991 if (!file) {
1992 pr_warn("failed to open system Kconfig\n");
1993 return -ENOENT;
1994 }
1995
1996 while (gzgets(file, buf, sizeof(buf))) {
1997 err = bpf_object__process_kconfig_line(obj, buf, data);
1998 if (err) {
1999 pr_warn("error parsing system Kconfig line '%s': %d\n",
2000 buf, err);
2001 goto out;
2002 }
2003 }
2004
2005 out:
2006 gzclose(file);
2007 return err;
2008 }
2009
bpf_object__read_kconfig_mem(struct bpf_object * obj,const char * config,void * data)2010 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2011 const char *config, void *data)
2012 {
2013 char buf[PATH_MAX];
2014 int err = 0;
2015 FILE *file;
2016
2017 file = fmemopen((void *)config, strlen(config), "r");
2018 if (!file) {
2019 err = -errno;
2020 pr_warn("failed to open in-memory Kconfig: %d\n", err);
2021 return err;
2022 }
2023
2024 while (fgets(buf, sizeof(buf), file)) {
2025 err = bpf_object__process_kconfig_line(obj, buf, data);
2026 if (err) {
2027 pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
2028 buf, err);
2029 break;
2030 }
2031 }
2032
2033 fclose(file);
2034 return err;
2035 }
2036
bpf_object__init_kconfig_map(struct bpf_object * obj)2037 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2038 {
2039 struct extern_desc *last_ext = NULL, *ext;
2040 size_t map_sz;
2041 int i, err;
2042
2043 for (i = 0; i < obj->nr_extern; i++) {
2044 ext = &obj->externs[i];
2045 if (ext->type == EXT_KCFG)
2046 last_ext = ext;
2047 }
2048
2049 if (!last_ext)
2050 return 0;
2051
2052 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2053 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2054 ".kconfig", obj->efile.symbols_shndx,
2055 NULL, map_sz);
2056 if (err)
2057 return err;
2058
2059 obj->kconfig_map_idx = obj->nr_maps - 1;
2060
2061 return 0;
2062 }
2063
2064 const struct btf_type *
skip_mods_and_typedefs(const struct btf * btf,__u32 id,__u32 * res_id)2065 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2066 {
2067 const struct btf_type *t = btf__type_by_id(btf, id);
2068
2069 if (res_id)
2070 *res_id = id;
2071
2072 while (btf_is_mod(t) || btf_is_typedef(t)) {
2073 if (res_id)
2074 *res_id = t->type;
2075 t = btf__type_by_id(btf, t->type);
2076 }
2077
2078 return t;
2079 }
2080
2081 static const struct btf_type *
resolve_func_ptr(const struct btf * btf,__u32 id,__u32 * res_id)2082 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2083 {
2084 const struct btf_type *t;
2085
2086 t = skip_mods_and_typedefs(btf, id, NULL);
2087 if (!btf_is_ptr(t))
2088 return NULL;
2089
2090 t = skip_mods_and_typedefs(btf, t->type, res_id);
2091
2092 return btf_is_func_proto(t) ? t : NULL;
2093 }
2094
__btf_kind_str(__u16 kind)2095 static const char *__btf_kind_str(__u16 kind)
2096 {
2097 switch (kind) {
2098 case BTF_KIND_UNKN: return "void";
2099 case BTF_KIND_INT: return "int";
2100 case BTF_KIND_PTR: return "ptr";
2101 case BTF_KIND_ARRAY: return "array";
2102 case BTF_KIND_STRUCT: return "struct";
2103 case BTF_KIND_UNION: return "union";
2104 case BTF_KIND_ENUM: return "enum";
2105 case BTF_KIND_FWD: return "fwd";
2106 case BTF_KIND_TYPEDEF: return "typedef";
2107 case BTF_KIND_VOLATILE: return "volatile";
2108 case BTF_KIND_CONST: return "const";
2109 case BTF_KIND_RESTRICT: return "restrict";
2110 case BTF_KIND_FUNC: return "func";
2111 case BTF_KIND_FUNC_PROTO: return "func_proto";
2112 case BTF_KIND_VAR: return "var";
2113 case BTF_KIND_DATASEC: return "datasec";
2114 case BTF_KIND_FLOAT: return "float";
2115 case BTF_KIND_DECL_TAG: return "decl_tag";
2116 case BTF_KIND_TYPE_TAG: return "type_tag";
2117 case BTF_KIND_ENUM64: return "enum64";
2118 default: return "unknown";
2119 }
2120 }
2121
btf_kind_str(const struct btf_type * t)2122 const char *btf_kind_str(const struct btf_type *t)
2123 {
2124 return __btf_kind_str(btf_kind(t));
2125 }
2126
2127 /*
2128 * Fetch integer attribute of BTF map definition. Such attributes are
2129 * represented using a pointer to an array, in which dimensionality of array
2130 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2131 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2132 * type definition, while using only sizeof(void *) space in ELF data section.
2133 */
get_map_field_int(const char * map_name,const struct btf * btf,const struct btf_member * m,__u32 * res)2134 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2135 const struct btf_member *m, __u32 *res)
2136 {
2137 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2138 const char *name = btf__name_by_offset(btf, m->name_off);
2139 const struct btf_array *arr_info;
2140 const struct btf_type *arr_t;
2141
2142 if (!btf_is_ptr(t)) {
2143 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2144 map_name, name, btf_kind_str(t));
2145 return false;
2146 }
2147
2148 arr_t = btf__type_by_id(btf, t->type);
2149 if (!arr_t) {
2150 pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2151 map_name, name, t->type);
2152 return false;
2153 }
2154 if (!btf_is_array(arr_t)) {
2155 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2156 map_name, name, btf_kind_str(arr_t));
2157 return false;
2158 }
2159 arr_info = btf_array(arr_t);
2160 *res = arr_info->nelems;
2161 return true;
2162 }
2163
pathname_concat(char * buf,size_t buf_sz,const char * path,const char * name)2164 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2165 {
2166 int len;
2167
2168 len = snprintf(buf, buf_sz, "%s/%s", path, name);
2169 if (len < 0)
2170 return -EINVAL;
2171 if (len >= buf_sz)
2172 return -ENAMETOOLONG;
2173
2174 return 0;
2175 }
2176
build_map_pin_path(struct bpf_map * map,const char * path)2177 static int build_map_pin_path(struct bpf_map *map, const char *path)
2178 {
2179 char buf[PATH_MAX];
2180 int err;
2181
2182 if (!path)
2183 path = "/sys/fs/bpf";
2184
2185 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2186 if (err)
2187 return err;
2188
2189 return bpf_map__set_pin_path(map, buf);
2190 }
2191
2192 /* should match definition in bpf_helpers.h */
2193 enum libbpf_pin_type {
2194 LIBBPF_PIN_NONE,
2195 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2196 LIBBPF_PIN_BY_NAME,
2197 };
2198
parse_btf_map_def(const char * map_name,struct btf * btf,const struct btf_type * def_t,bool strict,struct btf_map_def * map_def,struct btf_map_def * inner_def)2199 int parse_btf_map_def(const char *map_name, struct btf *btf,
2200 const struct btf_type *def_t, bool strict,
2201 struct btf_map_def *map_def, struct btf_map_def *inner_def)
2202 {
2203 const struct btf_type *t;
2204 const struct btf_member *m;
2205 bool is_inner = inner_def == NULL;
2206 int vlen, i;
2207
2208 vlen = btf_vlen(def_t);
2209 m = btf_members(def_t);
2210 for (i = 0; i < vlen; i++, m++) {
2211 const char *name = btf__name_by_offset(btf, m->name_off);
2212
2213 if (!name) {
2214 pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2215 return -EINVAL;
2216 }
2217 if (strcmp(name, "type") == 0) {
2218 if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2219 return -EINVAL;
2220 map_def->parts |= MAP_DEF_MAP_TYPE;
2221 } else if (strcmp(name, "max_entries") == 0) {
2222 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2223 return -EINVAL;
2224 map_def->parts |= MAP_DEF_MAX_ENTRIES;
2225 } else if (strcmp(name, "map_flags") == 0) {
2226 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2227 return -EINVAL;
2228 map_def->parts |= MAP_DEF_MAP_FLAGS;
2229 } else if (strcmp(name, "numa_node") == 0) {
2230 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2231 return -EINVAL;
2232 map_def->parts |= MAP_DEF_NUMA_NODE;
2233 } else if (strcmp(name, "key_size") == 0) {
2234 __u32 sz;
2235
2236 if (!get_map_field_int(map_name, btf, m, &sz))
2237 return -EINVAL;
2238 if (map_def->key_size && map_def->key_size != sz) {
2239 pr_warn("map '%s': conflicting key size %u != %u.\n",
2240 map_name, map_def->key_size, sz);
2241 return -EINVAL;
2242 }
2243 map_def->key_size = sz;
2244 map_def->parts |= MAP_DEF_KEY_SIZE;
2245 } else if (strcmp(name, "key") == 0) {
2246 __s64 sz;
2247
2248 t = btf__type_by_id(btf, m->type);
2249 if (!t) {
2250 pr_warn("map '%s': key type [%d] not found.\n",
2251 map_name, m->type);
2252 return -EINVAL;
2253 }
2254 if (!btf_is_ptr(t)) {
2255 pr_warn("map '%s': key spec is not PTR: %s.\n",
2256 map_name, btf_kind_str(t));
2257 return -EINVAL;
2258 }
2259 sz = btf__resolve_size(btf, t->type);
2260 if (sz < 0) {
2261 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2262 map_name, t->type, (ssize_t)sz);
2263 return sz;
2264 }
2265 if (map_def->key_size && map_def->key_size != sz) {
2266 pr_warn("map '%s': conflicting key size %u != %zd.\n",
2267 map_name, map_def->key_size, (ssize_t)sz);
2268 return -EINVAL;
2269 }
2270 map_def->key_size = sz;
2271 map_def->key_type_id = t->type;
2272 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2273 } else if (strcmp(name, "value_size") == 0) {
2274 __u32 sz;
2275
2276 if (!get_map_field_int(map_name, btf, m, &sz))
2277 return -EINVAL;
2278 if (map_def->value_size && map_def->value_size != sz) {
2279 pr_warn("map '%s': conflicting value size %u != %u.\n",
2280 map_name, map_def->value_size, sz);
2281 return -EINVAL;
2282 }
2283 map_def->value_size = sz;
2284 map_def->parts |= MAP_DEF_VALUE_SIZE;
2285 } else if (strcmp(name, "value") == 0) {
2286 __s64 sz;
2287
2288 t = btf__type_by_id(btf, m->type);
2289 if (!t) {
2290 pr_warn("map '%s': value type [%d] not found.\n",
2291 map_name, m->type);
2292 return -EINVAL;
2293 }
2294 if (!btf_is_ptr(t)) {
2295 pr_warn("map '%s': value spec is not PTR: %s.\n",
2296 map_name, btf_kind_str(t));
2297 return -EINVAL;
2298 }
2299 sz = btf__resolve_size(btf, t->type);
2300 if (sz < 0) {
2301 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2302 map_name, t->type, (ssize_t)sz);
2303 return sz;
2304 }
2305 if (map_def->value_size && map_def->value_size != sz) {
2306 pr_warn("map '%s': conflicting value size %u != %zd.\n",
2307 map_name, map_def->value_size, (ssize_t)sz);
2308 return -EINVAL;
2309 }
2310 map_def->value_size = sz;
2311 map_def->value_type_id = t->type;
2312 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2313 }
2314 else if (strcmp(name, "values") == 0) {
2315 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2316 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2317 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2318 char inner_map_name[128];
2319 int err;
2320
2321 if (is_inner) {
2322 pr_warn("map '%s': multi-level inner maps not supported.\n",
2323 map_name);
2324 return -ENOTSUP;
2325 }
2326 if (i != vlen - 1) {
2327 pr_warn("map '%s': '%s' member should be last.\n",
2328 map_name, name);
2329 return -EINVAL;
2330 }
2331 if (!is_map_in_map && !is_prog_array) {
2332 pr_warn("map '%s': should be map-in-map or prog-array.\n",
2333 map_name);
2334 return -ENOTSUP;
2335 }
2336 if (map_def->value_size && map_def->value_size != 4) {
2337 pr_warn("map '%s': conflicting value size %u != 4.\n",
2338 map_name, map_def->value_size);
2339 return -EINVAL;
2340 }
2341 map_def->value_size = 4;
2342 t = btf__type_by_id(btf, m->type);
2343 if (!t) {
2344 pr_warn("map '%s': %s type [%d] not found.\n",
2345 map_name, desc, m->type);
2346 return -EINVAL;
2347 }
2348 if (!btf_is_array(t) || btf_array(t)->nelems) {
2349 pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2350 map_name, desc);
2351 return -EINVAL;
2352 }
2353 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2354 if (!btf_is_ptr(t)) {
2355 pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2356 map_name, desc, btf_kind_str(t));
2357 return -EINVAL;
2358 }
2359 t = skip_mods_and_typedefs(btf, t->type, NULL);
2360 if (is_prog_array) {
2361 if (!btf_is_func_proto(t)) {
2362 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2363 map_name, btf_kind_str(t));
2364 return -EINVAL;
2365 }
2366 continue;
2367 }
2368 if (!btf_is_struct(t)) {
2369 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2370 map_name, btf_kind_str(t));
2371 return -EINVAL;
2372 }
2373
2374 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2375 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2376 if (err)
2377 return err;
2378
2379 map_def->parts |= MAP_DEF_INNER_MAP;
2380 } else if (strcmp(name, "pinning") == 0) {
2381 __u32 val;
2382
2383 if (is_inner) {
2384 pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2385 return -EINVAL;
2386 }
2387 if (!get_map_field_int(map_name, btf, m, &val))
2388 return -EINVAL;
2389 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2390 pr_warn("map '%s': invalid pinning value %u.\n",
2391 map_name, val);
2392 return -EINVAL;
2393 }
2394 map_def->pinning = val;
2395 map_def->parts |= MAP_DEF_PINNING;
2396 } else if (strcmp(name, "map_extra") == 0) {
2397 __u32 map_extra;
2398
2399 if (!get_map_field_int(map_name, btf, m, &map_extra))
2400 return -EINVAL;
2401 map_def->map_extra = map_extra;
2402 map_def->parts |= MAP_DEF_MAP_EXTRA;
2403 } else {
2404 if (strict) {
2405 pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2406 return -ENOTSUP;
2407 }
2408 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2409 }
2410 }
2411
2412 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2413 pr_warn("map '%s': map type isn't specified.\n", map_name);
2414 return -EINVAL;
2415 }
2416
2417 return 0;
2418 }
2419
adjust_ringbuf_sz(size_t sz)2420 static size_t adjust_ringbuf_sz(size_t sz)
2421 {
2422 __u32 page_sz = sysconf(_SC_PAGE_SIZE);
2423 __u32 mul;
2424
2425 /* if user forgot to set any size, make sure they see error */
2426 if (sz == 0)
2427 return 0;
2428 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2429 * a power-of-2 multiple of kernel's page size. If user diligently
2430 * satisified these conditions, pass the size through.
2431 */
2432 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2433 return sz;
2434
2435 /* Otherwise find closest (page_sz * power_of_2) product bigger than
2436 * user-set size to satisfy both user size request and kernel
2437 * requirements and substitute correct max_entries for map creation.
2438 */
2439 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2440 if (mul * page_sz > sz)
2441 return mul * page_sz;
2442 }
2443
2444 /* if it's impossible to satisfy the conditions (i.e., user size is
2445 * very close to UINT_MAX but is not a power-of-2 multiple of
2446 * page_size) then just return original size and let kernel reject it
2447 */
2448 return sz;
2449 }
2450
map_is_ringbuf(const struct bpf_map * map)2451 static bool map_is_ringbuf(const struct bpf_map *map)
2452 {
2453 return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2454 map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2455 }
2456
fill_map_from_def(struct bpf_map * map,const struct btf_map_def * def)2457 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2458 {
2459 map->def.type = def->map_type;
2460 map->def.key_size = def->key_size;
2461 map->def.value_size = def->value_size;
2462 map->def.max_entries = def->max_entries;
2463 map->def.map_flags = def->map_flags;
2464 map->map_extra = def->map_extra;
2465
2466 map->numa_node = def->numa_node;
2467 map->btf_key_type_id = def->key_type_id;
2468 map->btf_value_type_id = def->value_type_id;
2469
2470 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2471 if (map_is_ringbuf(map))
2472 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2473
2474 if (def->parts & MAP_DEF_MAP_TYPE)
2475 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2476
2477 if (def->parts & MAP_DEF_KEY_TYPE)
2478 pr_debug("map '%s': found key [%u], sz = %u.\n",
2479 map->name, def->key_type_id, def->key_size);
2480 else if (def->parts & MAP_DEF_KEY_SIZE)
2481 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2482
2483 if (def->parts & MAP_DEF_VALUE_TYPE)
2484 pr_debug("map '%s': found value [%u], sz = %u.\n",
2485 map->name, def->value_type_id, def->value_size);
2486 else if (def->parts & MAP_DEF_VALUE_SIZE)
2487 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2488
2489 if (def->parts & MAP_DEF_MAX_ENTRIES)
2490 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2491 if (def->parts & MAP_DEF_MAP_FLAGS)
2492 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2493 if (def->parts & MAP_DEF_MAP_EXTRA)
2494 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2495 (unsigned long long)def->map_extra);
2496 if (def->parts & MAP_DEF_PINNING)
2497 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2498 if (def->parts & MAP_DEF_NUMA_NODE)
2499 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2500
2501 if (def->parts & MAP_DEF_INNER_MAP)
2502 pr_debug("map '%s': found inner map definition.\n", map->name);
2503 }
2504
btf_var_linkage_str(__u32 linkage)2505 static const char *btf_var_linkage_str(__u32 linkage)
2506 {
2507 switch (linkage) {
2508 case BTF_VAR_STATIC: return "static";
2509 case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2510 case BTF_VAR_GLOBAL_EXTERN: return "extern";
2511 default: return "unknown";
2512 }
2513 }
2514
bpf_object__init_user_btf_map(struct bpf_object * obj,const struct btf_type * sec,int var_idx,int sec_idx,const Elf_Data * data,bool strict,const char * pin_root_path)2515 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2516 const struct btf_type *sec,
2517 int var_idx, int sec_idx,
2518 const Elf_Data *data, bool strict,
2519 const char *pin_root_path)
2520 {
2521 struct btf_map_def map_def = {}, inner_def = {};
2522 const struct btf_type *var, *def;
2523 const struct btf_var_secinfo *vi;
2524 const struct btf_var *var_extra;
2525 const char *map_name;
2526 struct bpf_map *map;
2527 int err;
2528
2529 vi = btf_var_secinfos(sec) + var_idx;
2530 var = btf__type_by_id(obj->btf, vi->type);
2531 var_extra = btf_var(var);
2532 map_name = btf__name_by_offset(obj->btf, var->name_off);
2533
2534 if (map_name == NULL || map_name[0] == '\0') {
2535 pr_warn("map #%d: empty name.\n", var_idx);
2536 return -EINVAL;
2537 }
2538 if ((__u64)vi->offset + vi->size > data->d_size) {
2539 pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2540 return -EINVAL;
2541 }
2542 if (!btf_is_var(var)) {
2543 pr_warn("map '%s': unexpected var kind %s.\n",
2544 map_name, btf_kind_str(var));
2545 return -EINVAL;
2546 }
2547 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2548 pr_warn("map '%s': unsupported map linkage %s.\n",
2549 map_name, btf_var_linkage_str(var_extra->linkage));
2550 return -EOPNOTSUPP;
2551 }
2552
2553 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2554 if (!btf_is_struct(def)) {
2555 pr_warn("map '%s': unexpected def kind %s.\n",
2556 map_name, btf_kind_str(var));
2557 return -EINVAL;
2558 }
2559 if (def->size > vi->size) {
2560 pr_warn("map '%s': invalid def size.\n", map_name);
2561 return -EINVAL;
2562 }
2563
2564 map = bpf_object__add_map(obj);
2565 if (IS_ERR(map))
2566 return PTR_ERR(map);
2567 map->name = strdup(map_name);
2568 if (!map->name) {
2569 pr_warn("map '%s': failed to alloc map name.\n", map_name);
2570 return -ENOMEM;
2571 }
2572 map->libbpf_type = LIBBPF_MAP_UNSPEC;
2573 map->def.type = BPF_MAP_TYPE_UNSPEC;
2574 map->sec_idx = sec_idx;
2575 map->sec_offset = vi->offset;
2576 map->btf_var_idx = var_idx;
2577 pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2578 map_name, map->sec_idx, map->sec_offset);
2579
2580 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2581 if (err)
2582 return err;
2583
2584 fill_map_from_def(map, &map_def);
2585
2586 if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2587 err = build_map_pin_path(map, pin_root_path);
2588 if (err) {
2589 pr_warn("map '%s': couldn't build pin path.\n", map->name);
2590 return err;
2591 }
2592 }
2593
2594 if (map_def.parts & MAP_DEF_INNER_MAP) {
2595 map->inner_map = calloc(1, sizeof(*map->inner_map));
2596 if (!map->inner_map)
2597 return -ENOMEM;
2598 map->inner_map->fd = -1;
2599 map->inner_map->sec_idx = sec_idx;
2600 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2601 if (!map->inner_map->name)
2602 return -ENOMEM;
2603 sprintf(map->inner_map->name, "%s.inner", map_name);
2604
2605 fill_map_from_def(map->inner_map, &inner_def);
2606 }
2607
2608 err = map_fill_btf_type_info(obj, map);
2609 if (err)
2610 return err;
2611
2612 return 0;
2613 }
2614
bpf_object__init_user_btf_maps(struct bpf_object * obj,bool strict,const char * pin_root_path)2615 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2616 const char *pin_root_path)
2617 {
2618 const struct btf_type *sec = NULL;
2619 int nr_types, i, vlen, err;
2620 const struct btf_type *t;
2621 const char *name;
2622 Elf_Data *data;
2623 Elf_Scn *scn;
2624
2625 if (obj->efile.btf_maps_shndx < 0)
2626 return 0;
2627
2628 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2629 data = elf_sec_data(obj, scn);
2630 if (!scn || !data) {
2631 pr_warn("elf: failed to get %s map definitions for %s\n",
2632 MAPS_ELF_SEC, obj->path);
2633 return -EINVAL;
2634 }
2635
2636 nr_types = btf__type_cnt(obj->btf);
2637 for (i = 1; i < nr_types; i++) {
2638 t = btf__type_by_id(obj->btf, i);
2639 if (!btf_is_datasec(t))
2640 continue;
2641 name = btf__name_by_offset(obj->btf, t->name_off);
2642 if (strcmp(name, MAPS_ELF_SEC) == 0) {
2643 sec = t;
2644 obj->efile.btf_maps_sec_btf_id = i;
2645 break;
2646 }
2647 }
2648
2649 if (!sec) {
2650 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2651 return -ENOENT;
2652 }
2653
2654 vlen = btf_vlen(sec);
2655 for (i = 0; i < vlen; i++) {
2656 err = bpf_object__init_user_btf_map(obj, sec, i,
2657 obj->efile.btf_maps_shndx,
2658 data, strict,
2659 pin_root_path);
2660 if (err)
2661 return err;
2662 }
2663
2664 return 0;
2665 }
2666
bpf_object__init_maps(struct bpf_object * obj,const struct bpf_object_open_opts * opts)2667 static int bpf_object__init_maps(struct bpf_object *obj,
2668 const struct bpf_object_open_opts *opts)
2669 {
2670 const char *pin_root_path;
2671 bool strict;
2672 int err = 0;
2673
2674 strict = !OPTS_GET(opts, relaxed_maps, false);
2675 pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2676
2677 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2678 err = err ?: bpf_object__init_global_data_maps(obj);
2679 err = err ?: bpf_object__init_kconfig_map(obj);
2680 err = err ?: bpf_object_init_struct_ops(obj);
2681
2682 return err;
2683 }
2684
section_have_execinstr(struct bpf_object * obj,int idx)2685 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2686 {
2687 Elf64_Shdr *sh;
2688
2689 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2690 if (!sh)
2691 return false;
2692
2693 return sh->sh_flags & SHF_EXECINSTR;
2694 }
2695
btf_needs_sanitization(struct bpf_object * obj)2696 static bool btf_needs_sanitization(struct bpf_object *obj)
2697 {
2698 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2699 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2700 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2701 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2702 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2703 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2704 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2705
2706 return !has_func || !has_datasec || !has_func_global || !has_float ||
2707 !has_decl_tag || !has_type_tag || !has_enum64;
2708 }
2709
bpf_object__sanitize_btf(struct bpf_object * obj,struct btf * btf)2710 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2711 {
2712 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2713 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2714 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2715 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2716 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2717 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2718 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2719 int enum64_placeholder_id = 0;
2720 struct btf_type *t;
2721 int i, j, vlen;
2722
2723 for (i = 1; i < btf__type_cnt(btf); i++) {
2724 t = (struct btf_type *)btf__type_by_id(btf, i);
2725
2726 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2727 /* replace VAR/DECL_TAG with INT */
2728 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2729 /*
2730 * using size = 1 is the safest choice, 4 will be too
2731 * big and cause kernel BTF validation failure if
2732 * original variable took less than 4 bytes
2733 */
2734 t->size = 1;
2735 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2736 } else if (!has_datasec && btf_is_datasec(t)) {
2737 /* replace DATASEC with STRUCT */
2738 const struct btf_var_secinfo *v = btf_var_secinfos(t);
2739 struct btf_member *m = btf_members(t);
2740 struct btf_type *vt;
2741 char *name;
2742
2743 name = (char *)btf__name_by_offset(btf, t->name_off);
2744 while (*name) {
2745 if (*name == '.')
2746 *name = '_';
2747 name++;
2748 }
2749
2750 vlen = btf_vlen(t);
2751 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2752 for (j = 0; j < vlen; j++, v++, m++) {
2753 /* order of field assignments is important */
2754 m->offset = v->offset * 8;
2755 m->type = v->type;
2756 /* preserve variable name as member name */
2757 vt = (void *)btf__type_by_id(btf, v->type);
2758 m->name_off = vt->name_off;
2759 }
2760 } else if (!has_func && btf_is_func_proto(t)) {
2761 /* replace FUNC_PROTO with ENUM */
2762 vlen = btf_vlen(t);
2763 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2764 t->size = sizeof(__u32); /* kernel enforced */
2765 } else if (!has_func && btf_is_func(t)) {
2766 /* replace FUNC with TYPEDEF */
2767 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2768 } else if (!has_func_global && btf_is_func(t)) {
2769 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2770 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2771 } else if (!has_float && btf_is_float(t)) {
2772 /* replace FLOAT with an equally-sized empty STRUCT;
2773 * since C compilers do not accept e.g. "float" as a
2774 * valid struct name, make it anonymous
2775 */
2776 t->name_off = 0;
2777 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2778 } else if (!has_type_tag && btf_is_type_tag(t)) {
2779 /* replace TYPE_TAG with a CONST */
2780 t->name_off = 0;
2781 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2782 } else if (!has_enum64 && btf_is_enum(t)) {
2783 /* clear the kflag */
2784 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
2785 } else if (!has_enum64 && btf_is_enum64(t)) {
2786 /* replace ENUM64 with a union */
2787 struct btf_member *m;
2788
2789 if (enum64_placeholder_id == 0) {
2790 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
2791 if (enum64_placeholder_id < 0)
2792 return enum64_placeholder_id;
2793
2794 t = (struct btf_type *)btf__type_by_id(btf, i);
2795 }
2796
2797 m = btf_members(t);
2798 vlen = btf_vlen(t);
2799 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
2800 for (j = 0; j < vlen; j++, m++) {
2801 m->type = enum64_placeholder_id;
2802 m->offset = 0;
2803 }
2804 }
2805 }
2806
2807 return 0;
2808 }
2809
libbpf_needs_btf(const struct bpf_object * obj)2810 static bool libbpf_needs_btf(const struct bpf_object *obj)
2811 {
2812 return obj->efile.btf_maps_shndx >= 0 ||
2813 obj->efile.st_ops_shndx >= 0 ||
2814 obj->efile.st_ops_link_shndx >= 0 ||
2815 obj->nr_extern > 0;
2816 }
2817
kernel_needs_btf(const struct bpf_object * obj)2818 static bool kernel_needs_btf(const struct bpf_object *obj)
2819 {
2820 return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0;
2821 }
2822
bpf_object__init_btf(struct bpf_object * obj,Elf_Data * btf_data,Elf_Data * btf_ext_data)2823 static int bpf_object__init_btf(struct bpf_object *obj,
2824 Elf_Data *btf_data,
2825 Elf_Data *btf_ext_data)
2826 {
2827 int err = -ENOENT;
2828
2829 if (btf_data) {
2830 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2831 err = libbpf_get_error(obj->btf);
2832 if (err) {
2833 obj->btf = NULL;
2834 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2835 goto out;
2836 }
2837 /* enforce 8-byte pointers for BPF-targeted BTFs */
2838 btf__set_pointer_size(obj->btf, 8);
2839 }
2840 if (btf_ext_data) {
2841 struct btf_ext_info *ext_segs[3];
2842 int seg_num, sec_num;
2843
2844 if (!obj->btf) {
2845 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2846 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2847 goto out;
2848 }
2849 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2850 err = libbpf_get_error(obj->btf_ext);
2851 if (err) {
2852 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2853 BTF_EXT_ELF_SEC, err);
2854 obj->btf_ext = NULL;
2855 goto out;
2856 }
2857
2858 /* setup .BTF.ext to ELF section mapping */
2859 ext_segs[0] = &obj->btf_ext->func_info;
2860 ext_segs[1] = &obj->btf_ext->line_info;
2861 ext_segs[2] = &obj->btf_ext->core_relo_info;
2862 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2863 struct btf_ext_info *seg = ext_segs[seg_num];
2864 const struct btf_ext_info_sec *sec;
2865 const char *sec_name;
2866 Elf_Scn *scn;
2867
2868 if (seg->sec_cnt == 0)
2869 continue;
2870
2871 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2872 if (!seg->sec_idxs) {
2873 err = -ENOMEM;
2874 goto out;
2875 }
2876
2877 sec_num = 0;
2878 for_each_btf_ext_sec(seg, sec) {
2879 /* preventively increment index to avoid doing
2880 * this before every continue below
2881 */
2882 sec_num++;
2883
2884 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2885 if (str_is_empty(sec_name))
2886 continue;
2887 scn = elf_sec_by_name(obj, sec_name);
2888 if (!scn)
2889 continue;
2890
2891 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
2892 }
2893 }
2894 }
2895 out:
2896 if (err && libbpf_needs_btf(obj)) {
2897 pr_warn("BTF is required, but is missing or corrupted.\n");
2898 return err;
2899 }
2900 return 0;
2901 }
2902
compare_vsi_off(const void * _a,const void * _b)2903 static int compare_vsi_off(const void *_a, const void *_b)
2904 {
2905 const struct btf_var_secinfo *a = _a;
2906 const struct btf_var_secinfo *b = _b;
2907
2908 return a->offset - b->offset;
2909 }
2910
btf_fixup_datasec(struct bpf_object * obj,struct btf * btf,struct btf_type * t)2911 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2912 struct btf_type *t)
2913 {
2914 __u32 size = 0, i, vars = btf_vlen(t);
2915 const char *sec_name = btf__name_by_offset(btf, t->name_off);
2916 struct btf_var_secinfo *vsi;
2917 bool fixup_offsets = false;
2918 int err;
2919
2920 if (!sec_name) {
2921 pr_debug("No name found in string section for DATASEC kind.\n");
2922 return -ENOENT;
2923 }
2924
2925 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and
2926 * variable offsets set at the previous step. Further, not every
2927 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
2928 * all fixups altogether for such sections and go straight to sorting
2929 * VARs within their DATASEC.
2930 */
2931 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
2932 goto sort_vars;
2933
2934 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
2935 * fix this up. But BPF static linker already fixes this up and fills
2936 * all the sizes and offsets during static linking. So this step has
2937 * to be optional. But the STV_HIDDEN handling is non-optional for any
2938 * non-extern DATASEC, so the variable fixup loop below handles both
2939 * functions at the same time, paying the cost of BTF VAR <-> ELF
2940 * symbol matching just once.
2941 */
2942 if (t->size == 0) {
2943 err = find_elf_sec_sz(obj, sec_name, &size);
2944 if (err || !size) {
2945 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n",
2946 sec_name, size, err);
2947 return -ENOENT;
2948 }
2949
2950 t->size = size;
2951 fixup_offsets = true;
2952 }
2953
2954 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2955 const struct btf_type *t_var;
2956 struct btf_var *var;
2957 const char *var_name;
2958 Elf64_Sym *sym;
2959
2960 t_var = btf__type_by_id(btf, vsi->type);
2961 if (!t_var || !btf_is_var(t_var)) {
2962 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
2963 return -EINVAL;
2964 }
2965
2966 var = btf_var(t_var);
2967 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
2968 continue;
2969
2970 var_name = btf__name_by_offset(btf, t_var->name_off);
2971 if (!var_name) {
2972 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
2973 sec_name, i);
2974 return -ENOENT;
2975 }
2976
2977 sym = find_elf_var_sym(obj, var_name);
2978 if (IS_ERR(sym)) {
2979 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
2980 sec_name, var_name);
2981 return -ENOENT;
2982 }
2983
2984 if (fixup_offsets)
2985 vsi->offset = sym->st_value;
2986
2987 /* if variable is a global/weak symbol, but has restricted
2988 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
2989 * as static. This follows similar logic for functions (BPF
2990 * subprogs) and influences libbpf's further decisions about
2991 * whether to make global data BPF array maps as
2992 * BPF_F_MMAPABLE.
2993 */
2994 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
2995 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
2996 var->linkage = BTF_VAR_STATIC;
2997 }
2998
2999 sort_vars:
3000 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3001 return 0;
3002 }
3003
bpf_object_fixup_btf(struct bpf_object * obj)3004 static int bpf_object_fixup_btf(struct bpf_object *obj)
3005 {
3006 int i, n, err = 0;
3007
3008 if (!obj->btf)
3009 return 0;
3010
3011 n = btf__type_cnt(obj->btf);
3012 for (i = 1; i < n; i++) {
3013 struct btf_type *t = btf_type_by_id(obj->btf, i);
3014
3015 /* Loader needs to fix up some of the things compiler
3016 * couldn't get its hands on while emitting BTF. This
3017 * is section size and global variable offset. We use
3018 * the info from the ELF itself for this purpose.
3019 */
3020 if (btf_is_datasec(t)) {
3021 err = btf_fixup_datasec(obj, obj->btf, t);
3022 if (err)
3023 return err;
3024 }
3025 }
3026
3027 return 0;
3028 }
3029
prog_needs_vmlinux_btf(struct bpf_program * prog)3030 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3031 {
3032 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3033 prog->type == BPF_PROG_TYPE_LSM)
3034 return true;
3035
3036 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3037 * also need vmlinux BTF
3038 */
3039 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3040 return true;
3041
3042 return false;
3043 }
3044
obj_needs_vmlinux_btf(const struct bpf_object * obj)3045 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3046 {
3047 struct bpf_program *prog;
3048 int i;
3049
3050 /* CO-RE relocations need kernel BTF, only when btf_custom_path
3051 * is not specified
3052 */
3053 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3054 return true;
3055
3056 /* Support for typed ksyms needs kernel BTF */
3057 for (i = 0; i < obj->nr_extern; i++) {
3058 const struct extern_desc *ext;
3059
3060 ext = &obj->externs[i];
3061 if (ext->type == EXT_KSYM && ext->ksym.type_id)
3062 return true;
3063 }
3064
3065 bpf_object__for_each_program(prog, obj) {
3066 if (!prog->autoload)
3067 continue;
3068 if (prog_needs_vmlinux_btf(prog))
3069 return true;
3070 }
3071
3072 return false;
3073 }
3074
bpf_object__load_vmlinux_btf(struct bpf_object * obj,bool force)3075 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3076 {
3077 int err;
3078
3079 /* btf_vmlinux could be loaded earlier */
3080 if (obj->btf_vmlinux || obj->gen_loader)
3081 return 0;
3082
3083 if (!force && !obj_needs_vmlinux_btf(obj))
3084 return 0;
3085
3086 obj->btf_vmlinux = btf__load_vmlinux_btf();
3087 err = libbpf_get_error(obj->btf_vmlinux);
3088 if (err) {
3089 pr_warn("Error loading vmlinux BTF: %d\n", err);
3090 obj->btf_vmlinux = NULL;
3091 return err;
3092 }
3093 return 0;
3094 }
3095
bpf_object__sanitize_and_load_btf(struct bpf_object * obj)3096 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3097 {
3098 struct btf *kern_btf = obj->btf;
3099 bool btf_mandatory, sanitize;
3100 int i, err = 0;
3101
3102 if (!obj->btf)
3103 return 0;
3104
3105 if (!kernel_supports(obj, FEAT_BTF)) {
3106 if (kernel_needs_btf(obj)) {
3107 err = -EOPNOTSUPP;
3108 goto report;
3109 }
3110 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3111 return 0;
3112 }
3113
3114 /* Even though some subprogs are global/weak, user might prefer more
3115 * permissive BPF verification process that BPF verifier performs for
3116 * static functions, taking into account more context from the caller
3117 * functions. In such case, they need to mark such subprogs with
3118 * __attribute__((visibility("hidden"))) and libbpf will adjust
3119 * corresponding FUNC BTF type to be marked as static and trigger more
3120 * involved BPF verification process.
3121 */
3122 for (i = 0; i < obj->nr_programs; i++) {
3123 struct bpf_program *prog = &obj->programs[i];
3124 struct btf_type *t;
3125 const char *name;
3126 int j, n;
3127
3128 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3129 continue;
3130
3131 n = btf__type_cnt(obj->btf);
3132 for (j = 1; j < n; j++) {
3133 t = btf_type_by_id(obj->btf, j);
3134 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3135 continue;
3136
3137 name = btf__str_by_offset(obj->btf, t->name_off);
3138 if (strcmp(name, prog->name) != 0)
3139 continue;
3140
3141 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3142 break;
3143 }
3144 }
3145
3146 sanitize = btf_needs_sanitization(obj);
3147 if (sanitize) {
3148 const void *raw_data;
3149 __u32 sz;
3150
3151 /* clone BTF to sanitize a copy and leave the original intact */
3152 raw_data = btf__raw_data(obj->btf, &sz);
3153 kern_btf = btf__new(raw_data, sz);
3154 err = libbpf_get_error(kern_btf);
3155 if (err)
3156 return err;
3157
3158 /* enforce 8-byte pointers for BPF-targeted BTFs */
3159 btf__set_pointer_size(obj->btf, 8);
3160 err = bpf_object__sanitize_btf(obj, kern_btf);
3161 if (err)
3162 return err;
3163 }
3164
3165 if (obj->gen_loader) {
3166 __u32 raw_size = 0;
3167 const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3168
3169 if (!raw_data)
3170 return -ENOMEM;
3171 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3172 /* Pretend to have valid FD to pass various fd >= 0 checks.
3173 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3174 */
3175 btf__set_fd(kern_btf, 0);
3176 } else {
3177 /* currently BPF_BTF_LOAD only supports log_level 1 */
3178 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3179 obj->log_level ? 1 : 0);
3180 }
3181 if (sanitize) {
3182 if (!err) {
3183 /* move fd to libbpf's BTF */
3184 btf__set_fd(obj->btf, btf__fd(kern_btf));
3185 btf__set_fd(kern_btf, -1);
3186 }
3187 btf__free(kern_btf);
3188 }
3189 report:
3190 if (err) {
3191 btf_mandatory = kernel_needs_btf(obj);
3192 pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3193 btf_mandatory ? "BTF is mandatory, can't proceed."
3194 : "BTF is optional, ignoring.");
3195 if (!btf_mandatory)
3196 err = 0;
3197 }
3198 return err;
3199 }
3200
elf_sym_str(const struct bpf_object * obj,size_t off)3201 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3202 {
3203 const char *name;
3204
3205 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3206 if (!name) {
3207 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3208 off, obj->path, elf_errmsg(-1));
3209 return NULL;
3210 }
3211
3212 return name;
3213 }
3214
elf_sec_str(const struct bpf_object * obj,size_t off)3215 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3216 {
3217 const char *name;
3218
3219 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3220 if (!name) {
3221 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3222 off, obj->path, elf_errmsg(-1));
3223 return NULL;
3224 }
3225
3226 return name;
3227 }
3228
elf_sec_by_idx(const struct bpf_object * obj,size_t idx)3229 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3230 {
3231 Elf_Scn *scn;
3232
3233 scn = elf_getscn(obj->efile.elf, idx);
3234 if (!scn) {
3235 pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3236 idx, obj->path, elf_errmsg(-1));
3237 return NULL;
3238 }
3239 return scn;
3240 }
3241
elf_sec_by_name(const struct bpf_object * obj,const char * name)3242 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3243 {
3244 Elf_Scn *scn = NULL;
3245 Elf *elf = obj->efile.elf;
3246 const char *sec_name;
3247
3248 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3249 sec_name = elf_sec_name(obj, scn);
3250 if (!sec_name)
3251 return NULL;
3252
3253 if (strcmp(sec_name, name) != 0)
3254 continue;
3255
3256 return scn;
3257 }
3258 return NULL;
3259 }
3260
elf_sec_hdr(const struct bpf_object * obj,Elf_Scn * scn)3261 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3262 {
3263 Elf64_Shdr *shdr;
3264
3265 if (!scn)
3266 return NULL;
3267
3268 shdr = elf64_getshdr(scn);
3269 if (!shdr) {
3270 pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3271 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3272 return NULL;
3273 }
3274
3275 return shdr;
3276 }
3277
elf_sec_name(const struct bpf_object * obj,Elf_Scn * scn)3278 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3279 {
3280 const char *name;
3281 Elf64_Shdr *sh;
3282
3283 if (!scn)
3284 return NULL;
3285
3286 sh = elf_sec_hdr(obj, scn);
3287 if (!sh)
3288 return NULL;
3289
3290 name = elf_sec_str(obj, sh->sh_name);
3291 if (!name) {
3292 pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3293 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3294 return NULL;
3295 }
3296
3297 return name;
3298 }
3299
elf_sec_data(const struct bpf_object * obj,Elf_Scn * scn)3300 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3301 {
3302 Elf_Data *data;
3303
3304 if (!scn)
3305 return NULL;
3306
3307 data = elf_getdata(scn, 0);
3308 if (!data) {
3309 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3310 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3311 obj->path, elf_errmsg(-1));
3312 return NULL;
3313 }
3314
3315 return data;
3316 }
3317
elf_sym_by_idx(const struct bpf_object * obj,size_t idx)3318 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3319 {
3320 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3321 return NULL;
3322
3323 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3324 }
3325
elf_rel_by_idx(Elf_Data * data,size_t idx)3326 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3327 {
3328 if (idx >= data->d_size / sizeof(Elf64_Rel))
3329 return NULL;
3330
3331 return (Elf64_Rel *)data->d_buf + idx;
3332 }
3333
is_sec_name_dwarf(const char * name)3334 static bool is_sec_name_dwarf(const char *name)
3335 {
3336 /* approximation, but the actual list is too long */
3337 return str_has_pfx(name, ".debug_");
3338 }
3339
ignore_elf_section(Elf64_Shdr * hdr,const char * name)3340 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3341 {
3342 /* no special handling of .strtab */
3343 if (hdr->sh_type == SHT_STRTAB)
3344 return true;
3345
3346 /* ignore .llvm_addrsig section as well */
3347 if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3348 return true;
3349
3350 /* no subprograms will lead to an empty .text section, ignore it */
3351 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3352 strcmp(name, ".text") == 0)
3353 return true;
3354
3355 /* DWARF sections */
3356 if (is_sec_name_dwarf(name))
3357 return true;
3358
3359 if (str_has_pfx(name, ".rel")) {
3360 name += sizeof(".rel") - 1;
3361 /* DWARF section relocations */
3362 if (is_sec_name_dwarf(name))
3363 return true;
3364
3365 /* .BTF and .BTF.ext don't need relocations */
3366 if (strcmp(name, BTF_ELF_SEC) == 0 ||
3367 strcmp(name, BTF_EXT_ELF_SEC) == 0)
3368 return true;
3369 }
3370
3371 return false;
3372 }
3373
cmp_progs(const void * _a,const void * _b)3374 static int cmp_progs(const void *_a, const void *_b)
3375 {
3376 const struct bpf_program *a = _a;
3377 const struct bpf_program *b = _b;
3378
3379 if (a->sec_idx != b->sec_idx)
3380 return a->sec_idx < b->sec_idx ? -1 : 1;
3381
3382 /* sec_insn_off can't be the same within the section */
3383 return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3384 }
3385
bpf_object__elf_collect(struct bpf_object * obj)3386 static int bpf_object__elf_collect(struct bpf_object *obj)
3387 {
3388 struct elf_sec_desc *sec_desc;
3389 Elf *elf = obj->efile.elf;
3390 Elf_Data *btf_ext_data = NULL;
3391 Elf_Data *btf_data = NULL;
3392 int idx = 0, err = 0;
3393 const char *name;
3394 Elf_Data *data;
3395 Elf_Scn *scn;
3396 Elf64_Shdr *sh;
3397
3398 /* ELF section indices are 0-based, but sec #0 is special "invalid"
3399 * section. Since section count retrieved by elf_getshdrnum() does
3400 * include sec #0, it is already the necessary size of an array to keep
3401 * all the sections.
3402 */
3403 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3404 pr_warn("elf: failed to get the number of sections for %s: %s\n",
3405 obj->path, elf_errmsg(-1));
3406 return -LIBBPF_ERRNO__FORMAT;
3407 }
3408 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3409 if (!obj->efile.secs)
3410 return -ENOMEM;
3411
3412 /* a bunch of ELF parsing functionality depends on processing symbols,
3413 * so do the first pass and find the symbol table
3414 */
3415 scn = NULL;
3416 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3417 sh = elf_sec_hdr(obj, scn);
3418 if (!sh)
3419 return -LIBBPF_ERRNO__FORMAT;
3420
3421 if (sh->sh_type == SHT_SYMTAB) {
3422 if (obj->efile.symbols) {
3423 pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3424 return -LIBBPF_ERRNO__FORMAT;
3425 }
3426
3427 data = elf_sec_data(obj, scn);
3428 if (!data)
3429 return -LIBBPF_ERRNO__FORMAT;
3430
3431 idx = elf_ndxscn(scn);
3432
3433 obj->efile.symbols = data;
3434 obj->efile.symbols_shndx = idx;
3435 obj->efile.strtabidx = sh->sh_link;
3436 }
3437 }
3438
3439 if (!obj->efile.symbols) {
3440 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3441 obj->path);
3442 return -ENOENT;
3443 }
3444
3445 scn = NULL;
3446 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3447 idx = elf_ndxscn(scn);
3448 sec_desc = &obj->efile.secs[idx];
3449
3450 sh = elf_sec_hdr(obj, scn);
3451 if (!sh)
3452 return -LIBBPF_ERRNO__FORMAT;
3453
3454 name = elf_sec_str(obj, sh->sh_name);
3455 if (!name)
3456 return -LIBBPF_ERRNO__FORMAT;
3457
3458 if (ignore_elf_section(sh, name))
3459 continue;
3460
3461 data = elf_sec_data(obj, scn);
3462 if (!data)
3463 return -LIBBPF_ERRNO__FORMAT;
3464
3465 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3466 idx, name, (unsigned long)data->d_size,
3467 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3468 (int)sh->sh_type);
3469
3470 if (strcmp(name, "license") == 0) {
3471 err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3472 if (err)
3473 return err;
3474 } else if (strcmp(name, "version") == 0) {
3475 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3476 if (err)
3477 return err;
3478 } else if (strcmp(name, "maps") == 0) {
3479 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3480 return -ENOTSUP;
3481 } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3482 obj->efile.btf_maps_shndx = idx;
3483 } else if (strcmp(name, BTF_ELF_SEC) == 0) {
3484 if (sh->sh_type != SHT_PROGBITS)
3485 return -LIBBPF_ERRNO__FORMAT;
3486 btf_data = data;
3487 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3488 if (sh->sh_type != SHT_PROGBITS)
3489 return -LIBBPF_ERRNO__FORMAT;
3490 btf_ext_data = data;
3491 } else if (sh->sh_type == SHT_SYMTAB) {
3492 /* already processed during the first pass above */
3493 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3494 if (sh->sh_flags & SHF_EXECINSTR) {
3495 if (strcmp(name, ".text") == 0)
3496 obj->efile.text_shndx = idx;
3497 err = bpf_object__add_programs(obj, data, name, idx);
3498 if (err)
3499 return err;
3500 } else if (strcmp(name, DATA_SEC) == 0 ||
3501 str_has_pfx(name, DATA_SEC ".")) {
3502 sec_desc->sec_type = SEC_DATA;
3503 sec_desc->shdr = sh;
3504 sec_desc->data = data;
3505 } else if (strcmp(name, RODATA_SEC) == 0 ||
3506 str_has_pfx(name, RODATA_SEC ".")) {
3507 sec_desc->sec_type = SEC_RODATA;
3508 sec_desc->shdr = sh;
3509 sec_desc->data = data;
3510 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3511 obj->efile.st_ops_data = data;
3512 obj->efile.st_ops_shndx = idx;
3513 } else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) {
3514 obj->efile.st_ops_link_data = data;
3515 obj->efile.st_ops_link_shndx = idx;
3516 } else {
3517 pr_info("elf: skipping unrecognized data section(%d) %s\n",
3518 idx, name);
3519 }
3520 } else if (sh->sh_type == SHT_REL) {
3521 int targ_sec_idx = sh->sh_info; /* points to other section */
3522
3523 if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3524 targ_sec_idx >= obj->efile.sec_cnt)
3525 return -LIBBPF_ERRNO__FORMAT;
3526
3527 /* Only do relo for section with exec instructions */
3528 if (!section_have_execinstr(obj, targ_sec_idx) &&
3529 strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3530 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3531 strcmp(name, ".rel" MAPS_ELF_SEC)) {
3532 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3533 idx, name, targ_sec_idx,
3534 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3535 continue;
3536 }
3537
3538 sec_desc->sec_type = SEC_RELO;
3539 sec_desc->shdr = sh;
3540 sec_desc->data = data;
3541 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3542 str_has_pfx(name, BSS_SEC "."))) {
3543 sec_desc->sec_type = SEC_BSS;
3544 sec_desc->shdr = sh;
3545 sec_desc->data = data;
3546 } else {
3547 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3548 (size_t)sh->sh_size);
3549 }
3550 }
3551
3552 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3553 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3554 return -LIBBPF_ERRNO__FORMAT;
3555 }
3556
3557 /* sort BPF programs by section name and in-section instruction offset
3558 * for faster search
3559 */
3560 if (obj->nr_programs)
3561 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3562
3563 return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3564 }
3565
sym_is_extern(const Elf64_Sym * sym)3566 static bool sym_is_extern(const Elf64_Sym *sym)
3567 {
3568 int bind = ELF64_ST_BIND(sym->st_info);
3569 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3570 return sym->st_shndx == SHN_UNDEF &&
3571 (bind == STB_GLOBAL || bind == STB_WEAK) &&
3572 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3573 }
3574
sym_is_subprog(const Elf64_Sym * sym,int text_shndx)3575 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3576 {
3577 int bind = ELF64_ST_BIND(sym->st_info);
3578 int type = ELF64_ST_TYPE(sym->st_info);
3579
3580 /* in .text section */
3581 if (sym->st_shndx != text_shndx)
3582 return false;
3583
3584 /* local function */
3585 if (bind == STB_LOCAL && type == STT_SECTION)
3586 return true;
3587
3588 /* global function */
3589 return (bind == STB_GLOBAL || bind == STB_WEAK) && type == STT_FUNC;
3590 }
3591
find_extern_btf_id(const struct btf * btf,const char * ext_name)3592 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3593 {
3594 const struct btf_type *t;
3595 const char *tname;
3596 int i, n;
3597
3598 if (!btf)
3599 return -ESRCH;
3600
3601 n = btf__type_cnt(btf);
3602 for (i = 1; i < n; i++) {
3603 t = btf__type_by_id(btf, i);
3604
3605 if (!btf_is_var(t) && !btf_is_func(t))
3606 continue;
3607
3608 tname = btf__name_by_offset(btf, t->name_off);
3609 if (strcmp(tname, ext_name))
3610 continue;
3611
3612 if (btf_is_var(t) &&
3613 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3614 return -EINVAL;
3615
3616 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3617 return -EINVAL;
3618
3619 return i;
3620 }
3621
3622 return -ENOENT;
3623 }
3624
find_extern_sec_btf_id(struct btf * btf,int ext_btf_id)3625 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3626 const struct btf_var_secinfo *vs;
3627 const struct btf_type *t;
3628 int i, j, n;
3629
3630 if (!btf)
3631 return -ESRCH;
3632
3633 n = btf__type_cnt(btf);
3634 for (i = 1; i < n; i++) {
3635 t = btf__type_by_id(btf, i);
3636
3637 if (!btf_is_datasec(t))
3638 continue;
3639
3640 vs = btf_var_secinfos(t);
3641 for (j = 0; j < btf_vlen(t); j++, vs++) {
3642 if (vs->type == ext_btf_id)
3643 return i;
3644 }
3645 }
3646
3647 return -ENOENT;
3648 }
3649
find_kcfg_type(const struct btf * btf,int id,bool * is_signed)3650 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3651 bool *is_signed)
3652 {
3653 const struct btf_type *t;
3654 const char *name;
3655
3656 t = skip_mods_and_typedefs(btf, id, NULL);
3657 name = btf__name_by_offset(btf, t->name_off);
3658
3659 if (is_signed)
3660 *is_signed = false;
3661 switch (btf_kind(t)) {
3662 case BTF_KIND_INT: {
3663 int enc = btf_int_encoding(t);
3664
3665 if (enc & BTF_INT_BOOL)
3666 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3667 if (is_signed)
3668 *is_signed = enc & BTF_INT_SIGNED;
3669 if (t->size == 1)
3670 return KCFG_CHAR;
3671 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3672 return KCFG_UNKNOWN;
3673 return KCFG_INT;
3674 }
3675 case BTF_KIND_ENUM:
3676 if (t->size != 4)
3677 return KCFG_UNKNOWN;
3678 if (strcmp(name, "libbpf_tristate"))
3679 return KCFG_UNKNOWN;
3680 return KCFG_TRISTATE;
3681 case BTF_KIND_ENUM64:
3682 if (strcmp(name, "libbpf_tristate"))
3683 return KCFG_UNKNOWN;
3684 return KCFG_TRISTATE;
3685 case BTF_KIND_ARRAY:
3686 if (btf_array(t)->nelems == 0)
3687 return KCFG_UNKNOWN;
3688 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3689 return KCFG_UNKNOWN;
3690 return KCFG_CHAR_ARR;
3691 default:
3692 return KCFG_UNKNOWN;
3693 }
3694 }
3695
cmp_externs(const void * _a,const void * _b)3696 static int cmp_externs(const void *_a, const void *_b)
3697 {
3698 const struct extern_desc *a = _a;
3699 const struct extern_desc *b = _b;
3700
3701 if (a->type != b->type)
3702 return a->type < b->type ? -1 : 1;
3703
3704 if (a->type == EXT_KCFG) {
3705 /* descending order by alignment requirements */
3706 if (a->kcfg.align != b->kcfg.align)
3707 return a->kcfg.align > b->kcfg.align ? -1 : 1;
3708 /* ascending order by size, within same alignment class */
3709 if (a->kcfg.sz != b->kcfg.sz)
3710 return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3711 }
3712
3713 /* resolve ties by name */
3714 return strcmp(a->name, b->name);
3715 }
3716
find_int_btf_id(const struct btf * btf)3717 static int find_int_btf_id(const struct btf *btf)
3718 {
3719 const struct btf_type *t;
3720 int i, n;
3721
3722 n = btf__type_cnt(btf);
3723 for (i = 1; i < n; i++) {
3724 t = btf__type_by_id(btf, i);
3725
3726 if (btf_is_int(t) && btf_int_bits(t) == 32)
3727 return i;
3728 }
3729
3730 return 0;
3731 }
3732
add_dummy_ksym_var(struct btf * btf)3733 static int add_dummy_ksym_var(struct btf *btf)
3734 {
3735 int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3736 const struct btf_var_secinfo *vs;
3737 const struct btf_type *sec;
3738
3739 if (!btf)
3740 return 0;
3741
3742 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3743 BTF_KIND_DATASEC);
3744 if (sec_btf_id < 0)
3745 return 0;
3746
3747 sec = btf__type_by_id(btf, sec_btf_id);
3748 vs = btf_var_secinfos(sec);
3749 for (i = 0; i < btf_vlen(sec); i++, vs++) {
3750 const struct btf_type *vt;
3751
3752 vt = btf__type_by_id(btf, vs->type);
3753 if (btf_is_func(vt))
3754 break;
3755 }
3756
3757 /* No func in ksyms sec. No need to add dummy var. */
3758 if (i == btf_vlen(sec))
3759 return 0;
3760
3761 int_btf_id = find_int_btf_id(btf);
3762 dummy_var_btf_id = btf__add_var(btf,
3763 "dummy_ksym",
3764 BTF_VAR_GLOBAL_ALLOCATED,
3765 int_btf_id);
3766 if (dummy_var_btf_id < 0)
3767 pr_warn("cannot create a dummy_ksym var\n");
3768
3769 return dummy_var_btf_id;
3770 }
3771
bpf_object__collect_externs(struct bpf_object * obj)3772 static int bpf_object__collect_externs(struct bpf_object *obj)
3773 {
3774 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3775 const struct btf_type *t;
3776 struct extern_desc *ext;
3777 int i, n, off, dummy_var_btf_id;
3778 const char *ext_name, *sec_name;
3779 size_t ext_essent_len;
3780 Elf_Scn *scn;
3781 Elf64_Shdr *sh;
3782
3783 if (!obj->efile.symbols)
3784 return 0;
3785
3786 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3787 sh = elf_sec_hdr(obj, scn);
3788 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3789 return -LIBBPF_ERRNO__FORMAT;
3790
3791 dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3792 if (dummy_var_btf_id < 0)
3793 return dummy_var_btf_id;
3794
3795 n = sh->sh_size / sh->sh_entsize;
3796 pr_debug("looking for externs among %d symbols...\n", n);
3797
3798 for (i = 0; i < n; i++) {
3799 Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3800
3801 if (!sym)
3802 return -LIBBPF_ERRNO__FORMAT;
3803 if (!sym_is_extern(sym))
3804 continue;
3805 ext_name = elf_sym_str(obj, sym->st_name);
3806 if (!ext_name || !ext_name[0])
3807 continue;
3808
3809 ext = obj->externs;
3810 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3811 if (!ext)
3812 return -ENOMEM;
3813 obj->externs = ext;
3814 ext = &ext[obj->nr_extern];
3815 memset(ext, 0, sizeof(*ext));
3816 obj->nr_extern++;
3817
3818 ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3819 if (ext->btf_id <= 0) {
3820 pr_warn("failed to find BTF for extern '%s': %d\n",
3821 ext_name, ext->btf_id);
3822 return ext->btf_id;
3823 }
3824 t = btf__type_by_id(obj->btf, ext->btf_id);
3825 ext->name = strdup(btf__name_by_offset(obj->btf, t->name_off));
3826 if (!ext->name)
3827 return -ENOMEM;
3828 ext->sym_idx = i;
3829 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3830
3831 ext_essent_len = bpf_core_essential_name_len(ext->name);
3832 ext->essent_name = NULL;
3833 if (ext_essent_len != strlen(ext->name)) {
3834 ext->essent_name = strndup(ext->name, ext_essent_len);
3835 if (!ext->essent_name)
3836 return -ENOMEM;
3837 }
3838
3839 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3840 if (ext->sec_btf_id <= 0) {
3841 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3842 ext_name, ext->btf_id, ext->sec_btf_id);
3843 return ext->sec_btf_id;
3844 }
3845 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3846 sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3847
3848 if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3849 if (btf_is_func(t)) {
3850 pr_warn("extern function %s is unsupported under %s section\n",
3851 ext->name, KCONFIG_SEC);
3852 return -ENOTSUP;
3853 }
3854 kcfg_sec = sec;
3855 ext->type = EXT_KCFG;
3856 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3857 if (ext->kcfg.sz <= 0) {
3858 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3859 ext_name, ext->kcfg.sz);
3860 return ext->kcfg.sz;
3861 }
3862 ext->kcfg.align = btf__align_of(obj->btf, t->type);
3863 if (ext->kcfg.align <= 0) {
3864 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3865 ext_name, ext->kcfg.align);
3866 return -EINVAL;
3867 }
3868 ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3869 &ext->kcfg.is_signed);
3870 if (ext->kcfg.type == KCFG_UNKNOWN) {
3871 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
3872 return -ENOTSUP;
3873 }
3874 } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3875 ksym_sec = sec;
3876 ext->type = EXT_KSYM;
3877 skip_mods_and_typedefs(obj->btf, t->type,
3878 &ext->ksym.type_id);
3879 } else {
3880 pr_warn("unrecognized extern section '%s'\n", sec_name);
3881 return -ENOTSUP;
3882 }
3883 }
3884 pr_debug("collected %d externs total\n", obj->nr_extern);
3885
3886 if (!obj->nr_extern)
3887 return 0;
3888
3889 /* sort externs by type, for kcfg ones also by (align, size, name) */
3890 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3891
3892 /* for .ksyms section, we need to turn all externs into allocated
3893 * variables in BTF to pass kernel verification; we do this by
3894 * pretending that each extern is a 8-byte variable
3895 */
3896 if (ksym_sec) {
3897 /* find existing 4-byte integer type in BTF to use for fake
3898 * extern variables in DATASEC
3899 */
3900 int int_btf_id = find_int_btf_id(obj->btf);
3901 /* For extern function, a dummy_var added earlier
3902 * will be used to replace the vs->type and
3903 * its name string will be used to refill
3904 * the missing param's name.
3905 */
3906 const struct btf_type *dummy_var;
3907
3908 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3909 for (i = 0; i < obj->nr_extern; i++) {
3910 ext = &obj->externs[i];
3911 if (ext->type != EXT_KSYM)
3912 continue;
3913 pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3914 i, ext->sym_idx, ext->name);
3915 }
3916
3917 sec = ksym_sec;
3918 n = btf_vlen(sec);
3919 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3920 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3921 struct btf_type *vt;
3922
3923 vt = (void *)btf__type_by_id(obj->btf, vs->type);
3924 ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3925 ext = find_extern_by_name(obj, ext_name);
3926 if (!ext) {
3927 pr_warn("failed to find extern definition for BTF %s '%s'\n",
3928 btf_kind_str(vt), ext_name);
3929 return -ESRCH;
3930 }
3931 if (btf_is_func(vt)) {
3932 const struct btf_type *func_proto;
3933 struct btf_param *param;
3934 int j;
3935
3936 func_proto = btf__type_by_id(obj->btf,
3937 vt->type);
3938 param = btf_params(func_proto);
3939 /* Reuse the dummy_var string if the
3940 * func proto does not have param name.
3941 */
3942 for (j = 0; j < btf_vlen(func_proto); j++)
3943 if (param[j].type && !param[j].name_off)
3944 param[j].name_off =
3945 dummy_var->name_off;
3946 vs->type = dummy_var_btf_id;
3947 vt->info &= ~0xffff;
3948 vt->info |= BTF_FUNC_GLOBAL;
3949 } else {
3950 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3951 vt->type = int_btf_id;
3952 }
3953 vs->offset = off;
3954 vs->size = sizeof(int);
3955 }
3956 sec->size = off;
3957 }
3958
3959 if (kcfg_sec) {
3960 sec = kcfg_sec;
3961 /* for kcfg externs calculate their offsets within a .kconfig map */
3962 off = 0;
3963 for (i = 0; i < obj->nr_extern; i++) {
3964 ext = &obj->externs[i];
3965 if (ext->type != EXT_KCFG)
3966 continue;
3967
3968 ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3969 off = ext->kcfg.data_off + ext->kcfg.sz;
3970 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3971 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3972 }
3973 sec->size = off;
3974 n = btf_vlen(sec);
3975 for (i = 0; i < n; i++) {
3976 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3977
3978 t = btf__type_by_id(obj->btf, vs->type);
3979 ext_name = btf__name_by_offset(obj->btf, t->name_off);
3980 ext = find_extern_by_name(obj, ext_name);
3981 if (!ext) {
3982 pr_warn("failed to find extern definition for BTF var '%s'\n",
3983 ext_name);
3984 return -ESRCH;
3985 }
3986 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3987 vs->offset = ext->kcfg.data_off;
3988 }
3989 }
3990 return 0;
3991 }
3992
prog_is_subprog(const struct bpf_object * obj,const struct bpf_program * prog)3993 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
3994 {
3995 return prog->sec_idx == obj->efile.text_shndx;
3996 }
3997
3998 struct bpf_program *
bpf_object__find_program_by_name(const struct bpf_object * obj,const char * name)3999 bpf_object__find_program_by_name(const struct bpf_object *obj,
4000 const char *name)
4001 {
4002 struct bpf_program *prog;
4003
4004 bpf_object__for_each_program(prog, obj) {
4005 if (prog_is_subprog(obj, prog))
4006 continue;
4007 if (!strcmp(prog->name, name))
4008 return prog;
4009 }
4010 return errno = ENOENT, NULL;
4011 }
4012
bpf_object__shndx_is_data(const struct bpf_object * obj,int shndx)4013 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4014 int shndx)
4015 {
4016 switch (obj->efile.secs[shndx].sec_type) {
4017 case SEC_BSS:
4018 case SEC_DATA:
4019 case SEC_RODATA:
4020 return true;
4021 default:
4022 return false;
4023 }
4024 }
4025
bpf_object__shndx_is_maps(const struct bpf_object * obj,int shndx)4026 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4027 int shndx)
4028 {
4029 return shndx == obj->efile.btf_maps_shndx;
4030 }
4031
4032 static enum libbpf_map_type
bpf_object__section_to_libbpf_map_type(const struct bpf_object * obj,int shndx)4033 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4034 {
4035 if (shndx == obj->efile.symbols_shndx)
4036 return LIBBPF_MAP_KCONFIG;
4037
4038 switch (obj->efile.secs[shndx].sec_type) {
4039 case SEC_BSS:
4040 return LIBBPF_MAP_BSS;
4041 case SEC_DATA:
4042 return LIBBPF_MAP_DATA;
4043 case SEC_RODATA:
4044 return LIBBPF_MAP_RODATA;
4045 default:
4046 return LIBBPF_MAP_UNSPEC;
4047 }
4048 }
4049
bpf_program__record_reloc(struct bpf_program * prog,struct reloc_desc * reloc_desc,__u32 insn_idx,const char * sym_name,const Elf64_Sym * sym,const Elf64_Rel * rel)4050 static int bpf_program__record_reloc(struct bpf_program *prog,
4051 struct reloc_desc *reloc_desc,
4052 __u32 insn_idx, const char *sym_name,
4053 const Elf64_Sym *sym, const Elf64_Rel *rel)
4054 {
4055 struct bpf_insn *insn = &prog->insns[insn_idx];
4056 size_t map_idx, nr_maps = prog->obj->nr_maps;
4057 struct bpf_object *obj = prog->obj;
4058 __u32 shdr_idx = sym->st_shndx;
4059 enum libbpf_map_type type;
4060 const char *sym_sec_name;
4061 struct bpf_map *map;
4062
4063 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4064 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4065 prog->name, sym_name, insn_idx, insn->code);
4066 return -LIBBPF_ERRNO__RELOC;
4067 }
4068
4069 if (sym_is_extern(sym)) {
4070 int sym_idx = ELF64_R_SYM(rel->r_info);
4071 int i, n = obj->nr_extern;
4072 struct extern_desc *ext;
4073
4074 for (i = 0; i < n; i++) {
4075 ext = &obj->externs[i];
4076 if (ext->sym_idx == sym_idx)
4077 break;
4078 }
4079 if (i >= n) {
4080 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4081 prog->name, sym_name, sym_idx);
4082 return -LIBBPF_ERRNO__RELOC;
4083 }
4084 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4085 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4086 if (insn->code == (BPF_JMP | BPF_CALL))
4087 reloc_desc->type = RELO_EXTERN_CALL;
4088 else
4089 reloc_desc->type = RELO_EXTERN_LD64;
4090 reloc_desc->insn_idx = insn_idx;
4091 reloc_desc->ext_idx = i;
4092 return 0;
4093 }
4094
4095 /* sub-program call relocation */
4096 if (is_call_insn(insn)) {
4097 if (insn->src_reg != BPF_PSEUDO_CALL) {
4098 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4099 return -LIBBPF_ERRNO__RELOC;
4100 }
4101 /* text_shndx can be 0, if no default "main" program exists */
4102 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4103 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4104 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4105 prog->name, sym_name, sym_sec_name);
4106 return -LIBBPF_ERRNO__RELOC;
4107 }
4108 if (sym->st_value % BPF_INSN_SZ) {
4109 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4110 prog->name, sym_name, (size_t)sym->st_value);
4111 return -LIBBPF_ERRNO__RELOC;
4112 }
4113 reloc_desc->type = RELO_CALL;
4114 reloc_desc->insn_idx = insn_idx;
4115 reloc_desc->sym_off = sym->st_value;
4116 return 0;
4117 }
4118
4119 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4120 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4121 prog->name, sym_name, shdr_idx);
4122 return -LIBBPF_ERRNO__RELOC;
4123 }
4124
4125 /* loading subprog addresses */
4126 if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4127 /* global_func: sym->st_value = offset in the section, insn->imm = 0.
4128 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4129 */
4130 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4131 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4132 prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4133 return -LIBBPF_ERRNO__RELOC;
4134 }
4135
4136 reloc_desc->type = RELO_SUBPROG_ADDR;
4137 reloc_desc->insn_idx = insn_idx;
4138 reloc_desc->sym_off = sym->st_value;
4139 return 0;
4140 }
4141
4142 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4143 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4144
4145 /* generic map reference relocation */
4146 if (type == LIBBPF_MAP_UNSPEC) {
4147 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4148 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4149 prog->name, sym_name, sym_sec_name);
4150 return -LIBBPF_ERRNO__RELOC;
4151 }
4152 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4153 map = &obj->maps[map_idx];
4154 if (map->libbpf_type != type ||
4155 map->sec_idx != sym->st_shndx ||
4156 map->sec_offset != sym->st_value)
4157 continue;
4158 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4159 prog->name, map_idx, map->name, map->sec_idx,
4160 map->sec_offset, insn_idx);
4161 break;
4162 }
4163 if (map_idx >= nr_maps) {
4164 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4165 prog->name, sym_sec_name, (size_t)sym->st_value);
4166 return -LIBBPF_ERRNO__RELOC;
4167 }
4168 reloc_desc->type = RELO_LD64;
4169 reloc_desc->insn_idx = insn_idx;
4170 reloc_desc->map_idx = map_idx;
4171 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4172 return 0;
4173 }
4174
4175 /* global data map relocation */
4176 if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4177 pr_warn("prog '%s': bad data relo against section '%s'\n",
4178 prog->name, sym_sec_name);
4179 return -LIBBPF_ERRNO__RELOC;
4180 }
4181 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4182 map = &obj->maps[map_idx];
4183 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4184 continue;
4185 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4186 prog->name, map_idx, map->name, map->sec_idx,
4187 map->sec_offset, insn_idx);
4188 break;
4189 }
4190 if (map_idx >= nr_maps) {
4191 pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4192 prog->name, sym_sec_name);
4193 return -LIBBPF_ERRNO__RELOC;
4194 }
4195
4196 reloc_desc->type = RELO_DATA;
4197 reloc_desc->insn_idx = insn_idx;
4198 reloc_desc->map_idx = map_idx;
4199 reloc_desc->sym_off = sym->st_value;
4200 return 0;
4201 }
4202
prog_contains_insn(const struct bpf_program * prog,size_t insn_idx)4203 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4204 {
4205 return insn_idx >= prog->sec_insn_off &&
4206 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4207 }
4208
find_prog_by_sec_insn(const struct bpf_object * obj,size_t sec_idx,size_t insn_idx)4209 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4210 size_t sec_idx, size_t insn_idx)
4211 {
4212 int l = 0, r = obj->nr_programs - 1, m;
4213 struct bpf_program *prog;
4214
4215 if (!obj->nr_programs)
4216 return NULL;
4217
4218 while (l < r) {
4219 m = l + (r - l + 1) / 2;
4220 prog = &obj->programs[m];
4221
4222 if (prog->sec_idx < sec_idx ||
4223 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4224 l = m;
4225 else
4226 r = m - 1;
4227 }
4228 /* matching program could be at index l, but it still might be the
4229 * wrong one, so we need to double check conditions for the last time
4230 */
4231 prog = &obj->programs[l];
4232 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4233 return prog;
4234 return NULL;
4235 }
4236
4237 static int
bpf_object__collect_prog_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)4238 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4239 {
4240 const char *relo_sec_name, *sec_name;
4241 size_t sec_idx = shdr->sh_info, sym_idx;
4242 struct bpf_program *prog;
4243 struct reloc_desc *relos;
4244 int err, i, nrels;
4245 const char *sym_name;
4246 __u32 insn_idx;
4247 Elf_Scn *scn;
4248 Elf_Data *scn_data;
4249 Elf64_Sym *sym;
4250 Elf64_Rel *rel;
4251
4252 if (sec_idx >= obj->efile.sec_cnt)
4253 return -EINVAL;
4254
4255 scn = elf_sec_by_idx(obj, sec_idx);
4256 scn_data = elf_sec_data(obj, scn);
4257 if (!scn_data)
4258 return -LIBBPF_ERRNO__FORMAT;
4259
4260 relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4261 sec_name = elf_sec_name(obj, scn);
4262 if (!relo_sec_name || !sec_name)
4263 return -EINVAL;
4264
4265 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4266 relo_sec_name, sec_idx, sec_name);
4267 nrels = shdr->sh_size / shdr->sh_entsize;
4268
4269 for (i = 0; i < nrels; i++) {
4270 rel = elf_rel_by_idx(data, i);
4271 if (!rel) {
4272 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4273 return -LIBBPF_ERRNO__FORMAT;
4274 }
4275
4276 sym_idx = ELF64_R_SYM(rel->r_info);
4277 sym = elf_sym_by_idx(obj, sym_idx);
4278 if (!sym) {
4279 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4280 relo_sec_name, sym_idx, i);
4281 return -LIBBPF_ERRNO__FORMAT;
4282 }
4283
4284 if (sym->st_shndx >= obj->efile.sec_cnt) {
4285 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4286 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4287 return -LIBBPF_ERRNO__FORMAT;
4288 }
4289
4290 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4291 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4292 relo_sec_name, (size_t)rel->r_offset, i);
4293 return -LIBBPF_ERRNO__FORMAT;
4294 }
4295
4296 insn_idx = rel->r_offset / BPF_INSN_SZ;
4297 /* relocations against static functions are recorded as
4298 * relocations against the section that contains a function;
4299 * in such case, symbol will be STT_SECTION and sym.st_name
4300 * will point to empty string (0), so fetch section name
4301 * instead
4302 */
4303 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4304 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4305 else
4306 sym_name = elf_sym_str(obj, sym->st_name);
4307 sym_name = sym_name ?: "<?";
4308
4309 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4310 relo_sec_name, i, insn_idx, sym_name);
4311
4312 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4313 if (!prog) {
4314 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4315 relo_sec_name, i, sec_name, insn_idx);
4316 continue;
4317 }
4318
4319 relos = libbpf_reallocarray(prog->reloc_desc,
4320 prog->nr_reloc + 1, sizeof(*relos));
4321 if (!relos)
4322 return -ENOMEM;
4323 prog->reloc_desc = relos;
4324
4325 /* adjust insn_idx to local BPF program frame of reference */
4326 insn_idx -= prog->sec_insn_off;
4327 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4328 insn_idx, sym_name, sym, rel);
4329 if (err)
4330 return err;
4331
4332 prog->nr_reloc++;
4333 }
4334 return 0;
4335 }
4336
map_fill_btf_type_info(struct bpf_object * obj,struct bpf_map * map)4337 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4338 {
4339 int id;
4340
4341 if (!obj->btf)
4342 return -ENOENT;
4343
4344 /* if it's BTF-defined map, we don't need to search for type IDs.
4345 * For struct_ops map, it does not need btf_key_type_id and
4346 * btf_value_type_id.
4347 */
4348 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4349 return 0;
4350
4351 /*
4352 * LLVM annotates global data differently in BTF, that is,
4353 * only as '.data', '.bss' or '.rodata'.
4354 */
4355 if (!bpf_map__is_internal(map))
4356 return -ENOENT;
4357
4358 id = btf__find_by_name(obj->btf, map->real_name);
4359 if (id < 0)
4360 return id;
4361
4362 map->btf_key_type_id = 0;
4363 map->btf_value_type_id = id;
4364 return 0;
4365 }
4366
bpf_get_map_info_from_fdinfo(int fd,struct bpf_map_info * info)4367 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4368 {
4369 char file[PATH_MAX], buff[4096];
4370 FILE *fp;
4371 __u32 val;
4372 int err;
4373
4374 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4375 memset(info, 0, sizeof(*info));
4376
4377 fp = fopen(file, "re");
4378 if (!fp) {
4379 err = -errno;
4380 pr_warn("failed to open %s: %d. No procfs support?\n", file,
4381 err);
4382 return err;
4383 }
4384
4385 while (fgets(buff, sizeof(buff), fp)) {
4386 if (sscanf(buff, "map_type:\t%u", &val) == 1)
4387 info->type = val;
4388 else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4389 info->key_size = val;
4390 else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4391 info->value_size = val;
4392 else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4393 info->max_entries = val;
4394 else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4395 info->map_flags = val;
4396 }
4397
4398 fclose(fp);
4399
4400 return 0;
4401 }
4402
bpf_map__autocreate(const struct bpf_map * map)4403 bool bpf_map__autocreate(const struct bpf_map *map)
4404 {
4405 return map->autocreate;
4406 }
4407
bpf_map__set_autocreate(struct bpf_map * map,bool autocreate)4408 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4409 {
4410 if (map->obj->loaded)
4411 return libbpf_err(-EBUSY);
4412
4413 map->autocreate = autocreate;
4414 return 0;
4415 }
4416
bpf_map__reuse_fd(struct bpf_map * map,int fd)4417 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4418 {
4419 struct bpf_map_info info;
4420 __u32 len = sizeof(info), name_len;
4421 int new_fd, err;
4422 char *new_name;
4423
4424 memset(&info, 0, len);
4425 err = bpf_map_get_info_by_fd(fd, &info, &len);
4426 if (err && errno == EINVAL)
4427 err = bpf_get_map_info_from_fdinfo(fd, &info);
4428 if (err)
4429 return libbpf_err(err);
4430
4431 name_len = strlen(info.name);
4432 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4433 new_name = strdup(map->name);
4434 else
4435 new_name = strdup(info.name);
4436
4437 if (!new_name)
4438 return libbpf_err(-errno);
4439
4440 /*
4441 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4442 * This is similar to what we do in ensure_good_fd(), but without
4443 * closing original FD.
4444 */
4445 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4446 if (new_fd < 0) {
4447 err = -errno;
4448 goto err_free_new_name;
4449 }
4450
4451 err = zclose(map->fd);
4452 if (err) {
4453 err = -errno;
4454 goto err_close_new_fd;
4455 }
4456 free(map->name);
4457
4458 map->fd = new_fd;
4459 map->name = new_name;
4460 map->def.type = info.type;
4461 map->def.key_size = info.key_size;
4462 map->def.value_size = info.value_size;
4463 map->def.max_entries = info.max_entries;
4464 map->def.map_flags = info.map_flags;
4465 map->btf_key_type_id = info.btf_key_type_id;
4466 map->btf_value_type_id = info.btf_value_type_id;
4467 map->reused = true;
4468 map->map_extra = info.map_extra;
4469
4470 return 0;
4471
4472 err_close_new_fd:
4473 close(new_fd);
4474 err_free_new_name:
4475 free(new_name);
4476 return libbpf_err(err);
4477 }
4478
bpf_map__max_entries(const struct bpf_map * map)4479 __u32 bpf_map__max_entries(const struct bpf_map *map)
4480 {
4481 return map->def.max_entries;
4482 }
4483
bpf_map__inner_map(struct bpf_map * map)4484 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4485 {
4486 if (!bpf_map_type__is_map_in_map(map->def.type))
4487 return errno = EINVAL, NULL;
4488
4489 return map->inner_map;
4490 }
4491
bpf_map__set_max_entries(struct bpf_map * map,__u32 max_entries)4492 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4493 {
4494 if (map->obj->loaded)
4495 return libbpf_err(-EBUSY);
4496
4497 map->def.max_entries = max_entries;
4498
4499 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4500 if (map_is_ringbuf(map))
4501 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4502
4503 return 0;
4504 }
4505
4506 static int
bpf_object__probe_loading(struct bpf_object * obj)4507 bpf_object__probe_loading(struct bpf_object *obj)
4508 {
4509 char *cp, errmsg[STRERR_BUFSIZE];
4510 struct bpf_insn insns[] = {
4511 BPF_MOV64_IMM(BPF_REG_0, 0),
4512 BPF_EXIT_INSN(),
4513 };
4514 int ret, insn_cnt = ARRAY_SIZE(insns);
4515
4516 if (obj->gen_loader)
4517 return 0;
4518
4519 ret = bump_rlimit_memlock();
4520 if (ret)
4521 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4522
4523 /* make sure basic loading works */
4524 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4525 if (ret < 0)
4526 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4527 if (ret < 0) {
4528 ret = errno;
4529 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4530 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4531 "program. Make sure your kernel supports BPF "
4532 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4533 "set to big enough value.\n", __func__, cp, ret);
4534 return -ret;
4535 }
4536 close(ret);
4537
4538 return 0;
4539 }
4540
probe_fd(int fd)4541 static int probe_fd(int fd)
4542 {
4543 if (fd >= 0)
4544 close(fd);
4545 return fd >= 0;
4546 }
4547
probe_kern_prog_name(void)4548 static int probe_kern_prog_name(void)
4549 {
4550 const size_t attr_sz = offsetofend(union bpf_attr, prog_name);
4551 struct bpf_insn insns[] = {
4552 BPF_MOV64_IMM(BPF_REG_0, 0),
4553 BPF_EXIT_INSN(),
4554 };
4555 union bpf_attr attr;
4556 int ret;
4557
4558 memset(&attr, 0, attr_sz);
4559 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4560 attr.license = ptr_to_u64("GPL");
4561 attr.insns = ptr_to_u64(insns);
4562 attr.insn_cnt = (__u32)ARRAY_SIZE(insns);
4563 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name));
4564
4565 /* make sure loading with name works */
4566 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS);
4567 return probe_fd(ret);
4568 }
4569
probe_kern_global_data(void)4570 static int probe_kern_global_data(void)
4571 {
4572 char *cp, errmsg[STRERR_BUFSIZE];
4573 struct bpf_insn insns[] = {
4574 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4575 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4576 BPF_MOV64_IMM(BPF_REG_0, 0),
4577 BPF_EXIT_INSN(),
4578 };
4579 int ret, map, insn_cnt = ARRAY_SIZE(insns);
4580
4581 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL);
4582 if (map < 0) {
4583 ret = -errno;
4584 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4585 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4586 __func__, cp, -ret);
4587 return ret;
4588 }
4589
4590 insns[0].imm = map;
4591
4592 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4593 close(map);
4594 return probe_fd(ret);
4595 }
4596
probe_kern_btf(void)4597 static int probe_kern_btf(void)
4598 {
4599 static const char strs[] = "\0int";
4600 __u32 types[] = {
4601 /* int */
4602 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4603 };
4604
4605 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4606 strs, sizeof(strs)));
4607 }
4608
probe_kern_btf_func(void)4609 static int probe_kern_btf_func(void)
4610 {
4611 static const char strs[] = "\0int\0x\0a";
4612 /* void x(int a) {} */
4613 __u32 types[] = {
4614 /* int */
4615 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4616 /* FUNC_PROTO */ /* [2] */
4617 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4618 BTF_PARAM_ENC(7, 1),
4619 /* FUNC x */ /* [3] */
4620 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4621 };
4622
4623 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4624 strs, sizeof(strs)));
4625 }
4626
probe_kern_btf_func_global(void)4627 static int probe_kern_btf_func_global(void)
4628 {
4629 static const char strs[] = "\0int\0x\0a";
4630 /* static void x(int a) {} */
4631 __u32 types[] = {
4632 /* int */
4633 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4634 /* FUNC_PROTO */ /* [2] */
4635 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4636 BTF_PARAM_ENC(7, 1),
4637 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */
4638 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4639 };
4640
4641 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4642 strs, sizeof(strs)));
4643 }
4644
probe_kern_btf_datasec(void)4645 static int probe_kern_btf_datasec(void)
4646 {
4647 static const char strs[] = "\0x\0.data";
4648 /* static int a; */
4649 __u32 types[] = {
4650 /* int */
4651 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4652 /* VAR x */ /* [2] */
4653 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4654 BTF_VAR_STATIC,
4655 /* DATASEC val */ /* [3] */
4656 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4657 BTF_VAR_SECINFO_ENC(2, 0, 4),
4658 };
4659
4660 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4661 strs, sizeof(strs)));
4662 }
4663
probe_kern_btf_float(void)4664 static int probe_kern_btf_float(void)
4665 {
4666 static const char strs[] = "\0float";
4667 __u32 types[] = {
4668 /* float */
4669 BTF_TYPE_FLOAT_ENC(1, 4),
4670 };
4671
4672 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4673 strs, sizeof(strs)));
4674 }
4675
probe_kern_btf_decl_tag(void)4676 static int probe_kern_btf_decl_tag(void)
4677 {
4678 static const char strs[] = "\0tag";
4679 __u32 types[] = {
4680 /* int */
4681 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4682 /* VAR x */ /* [2] */
4683 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4684 BTF_VAR_STATIC,
4685 /* attr */
4686 BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4687 };
4688
4689 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4690 strs, sizeof(strs)));
4691 }
4692
probe_kern_btf_type_tag(void)4693 static int probe_kern_btf_type_tag(void)
4694 {
4695 static const char strs[] = "\0tag";
4696 __u32 types[] = {
4697 /* int */
4698 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4699 /* attr */
4700 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */
4701 /* ptr */
4702 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */
4703 };
4704
4705 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4706 strs, sizeof(strs)));
4707 }
4708
probe_kern_array_mmap(void)4709 static int probe_kern_array_mmap(void)
4710 {
4711 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4712 int fd;
4713
4714 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts);
4715 return probe_fd(fd);
4716 }
4717
probe_kern_exp_attach_type(void)4718 static int probe_kern_exp_attach_type(void)
4719 {
4720 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4721 struct bpf_insn insns[] = {
4722 BPF_MOV64_IMM(BPF_REG_0, 0),
4723 BPF_EXIT_INSN(),
4724 };
4725 int fd, insn_cnt = ARRAY_SIZE(insns);
4726
4727 /* use any valid combination of program type and (optional)
4728 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4729 * to see if kernel supports expected_attach_type field for
4730 * BPF_PROG_LOAD command
4731 */
4732 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4733 return probe_fd(fd);
4734 }
4735
probe_kern_probe_read_kernel(void)4736 static int probe_kern_probe_read_kernel(void)
4737 {
4738 struct bpf_insn insns[] = {
4739 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */
4740 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */
4741 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */
4742 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */
4743 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4744 BPF_EXIT_INSN(),
4745 };
4746 int fd, insn_cnt = ARRAY_SIZE(insns);
4747
4748 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4749 return probe_fd(fd);
4750 }
4751
probe_prog_bind_map(void)4752 static int probe_prog_bind_map(void)
4753 {
4754 char *cp, errmsg[STRERR_BUFSIZE];
4755 struct bpf_insn insns[] = {
4756 BPF_MOV64_IMM(BPF_REG_0, 0),
4757 BPF_EXIT_INSN(),
4758 };
4759 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4760
4761 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL);
4762 if (map < 0) {
4763 ret = -errno;
4764 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4765 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4766 __func__, cp, -ret);
4767 return ret;
4768 }
4769
4770 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4771 if (prog < 0) {
4772 close(map);
4773 return 0;
4774 }
4775
4776 ret = bpf_prog_bind_map(prog, map, NULL);
4777
4778 close(map);
4779 close(prog);
4780
4781 return ret >= 0;
4782 }
4783
probe_module_btf(void)4784 static int probe_module_btf(void)
4785 {
4786 static const char strs[] = "\0int";
4787 __u32 types[] = {
4788 /* int */
4789 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4790 };
4791 struct bpf_btf_info info;
4792 __u32 len = sizeof(info);
4793 char name[16];
4794 int fd, err;
4795
4796 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4797 if (fd < 0)
4798 return 0; /* BTF not supported at all */
4799
4800 memset(&info, 0, sizeof(info));
4801 info.name = ptr_to_u64(name);
4802 info.name_len = sizeof(name);
4803
4804 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4805 * kernel's module BTF support coincides with support for
4806 * name/name_len fields in struct bpf_btf_info.
4807 */
4808 err = bpf_btf_get_info_by_fd(fd, &info, &len);
4809 close(fd);
4810 return !err;
4811 }
4812
probe_perf_link(void)4813 static int probe_perf_link(void)
4814 {
4815 struct bpf_insn insns[] = {
4816 BPF_MOV64_IMM(BPF_REG_0, 0),
4817 BPF_EXIT_INSN(),
4818 };
4819 int prog_fd, link_fd, err;
4820
4821 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4822 insns, ARRAY_SIZE(insns), NULL);
4823 if (prog_fd < 0)
4824 return -errno;
4825
4826 /* use invalid perf_event FD to get EBADF, if link is supported;
4827 * otherwise EINVAL should be returned
4828 */
4829 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4830 err = -errno; /* close() can clobber errno */
4831
4832 if (link_fd >= 0)
4833 close(link_fd);
4834 close(prog_fd);
4835
4836 return link_fd < 0 && err == -EBADF;
4837 }
4838
probe_uprobe_multi_link(void)4839 static int probe_uprobe_multi_link(void)
4840 {
4841 LIBBPF_OPTS(bpf_prog_load_opts, load_opts,
4842 .expected_attach_type = BPF_TRACE_UPROBE_MULTI,
4843 );
4844 LIBBPF_OPTS(bpf_link_create_opts, link_opts);
4845 struct bpf_insn insns[] = {
4846 BPF_MOV64_IMM(BPF_REG_0, 0),
4847 BPF_EXIT_INSN(),
4848 };
4849 int prog_fd, link_fd, err;
4850 unsigned long offset = 0;
4851
4852 prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL",
4853 insns, ARRAY_SIZE(insns), &load_opts);
4854 if (prog_fd < 0)
4855 return -errno;
4856
4857 /* Creating uprobe in '/' binary should fail with -EBADF. */
4858 link_opts.uprobe_multi.path = "/";
4859 link_opts.uprobe_multi.offsets = &offset;
4860 link_opts.uprobe_multi.cnt = 1;
4861
4862 link_fd = bpf_link_create(prog_fd, -1, BPF_TRACE_UPROBE_MULTI, &link_opts);
4863 err = -errno; /* close() can clobber errno */
4864
4865 if (link_fd >= 0)
4866 close(link_fd);
4867 close(prog_fd);
4868
4869 return link_fd < 0 && err == -EBADF;
4870 }
4871
probe_kern_bpf_cookie(void)4872 static int probe_kern_bpf_cookie(void)
4873 {
4874 struct bpf_insn insns[] = {
4875 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
4876 BPF_EXIT_INSN(),
4877 };
4878 int ret, insn_cnt = ARRAY_SIZE(insns);
4879
4880 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4881 return probe_fd(ret);
4882 }
4883
probe_kern_btf_enum64(void)4884 static int probe_kern_btf_enum64(void)
4885 {
4886 static const char strs[] = "\0enum64";
4887 __u32 types[] = {
4888 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8),
4889 };
4890
4891 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4892 strs, sizeof(strs)));
4893 }
4894
4895 static int probe_kern_syscall_wrapper(void);
4896
4897 enum kern_feature_result {
4898 FEAT_UNKNOWN = 0,
4899 FEAT_SUPPORTED = 1,
4900 FEAT_MISSING = 2,
4901 };
4902
4903 typedef int (*feature_probe_fn)(void);
4904
4905 static struct kern_feature_desc {
4906 const char *desc;
4907 feature_probe_fn probe;
4908 enum kern_feature_result res;
4909 } feature_probes[__FEAT_CNT] = {
4910 [FEAT_PROG_NAME] = {
4911 "BPF program name", probe_kern_prog_name,
4912 },
4913 [FEAT_GLOBAL_DATA] = {
4914 "global variables", probe_kern_global_data,
4915 },
4916 [FEAT_BTF] = {
4917 "minimal BTF", probe_kern_btf,
4918 },
4919 [FEAT_BTF_FUNC] = {
4920 "BTF functions", probe_kern_btf_func,
4921 },
4922 [FEAT_BTF_GLOBAL_FUNC] = {
4923 "BTF global function", probe_kern_btf_func_global,
4924 },
4925 [FEAT_BTF_DATASEC] = {
4926 "BTF data section and variable", probe_kern_btf_datasec,
4927 },
4928 [FEAT_ARRAY_MMAP] = {
4929 "ARRAY map mmap()", probe_kern_array_mmap,
4930 },
4931 [FEAT_EXP_ATTACH_TYPE] = {
4932 "BPF_PROG_LOAD expected_attach_type attribute",
4933 probe_kern_exp_attach_type,
4934 },
4935 [FEAT_PROBE_READ_KERN] = {
4936 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4937 },
4938 [FEAT_PROG_BIND_MAP] = {
4939 "BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4940 },
4941 [FEAT_MODULE_BTF] = {
4942 "module BTF support", probe_module_btf,
4943 },
4944 [FEAT_BTF_FLOAT] = {
4945 "BTF_KIND_FLOAT support", probe_kern_btf_float,
4946 },
4947 [FEAT_PERF_LINK] = {
4948 "BPF perf link support", probe_perf_link,
4949 },
4950 [FEAT_BTF_DECL_TAG] = {
4951 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4952 },
4953 [FEAT_BTF_TYPE_TAG] = {
4954 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4955 },
4956 [FEAT_MEMCG_ACCOUNT] = {
4957 "memcg-based memory accounting", probe_memcg_account,
4958 },
4959 [FEAT_BPF_COOKIE] = {
4960 "BPF cookie support", probe_kern_bpf_cookie,
4961 },
4962 [FEAT_BTF_ENUM64] = {
4963 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64,
4964 },
4965 [FEAT_SYSCALL_WRAPPER] = {
4966 "Kernel using syscall wrapper", probe_kern_syscall_wrapper,
4967 },
4968 [FEAT_UPROBE_MULTI_LINK] = {
4969 "BPF multi-uprobe link support", probe_uprobe_multi_link,
4970 },
4971 };
4972
kernel_supports(const struct bpf_object * obj,enum kern_feature_id feat_id)4973 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4974 {
4975 struct kern_feature_desc *feat = &feature_probes[feat_id];
4976 int ret;
4977
4978 if (obj && obj->gen_loader)
4979 /* To generate loader program assume the latest kernel
4980 * to avoid doing extra prog_load, map_create syscalls.
4981 */
4982 return true;
4983
4984 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4985 ret = feat->probe();
4986 if (ret > 0) {
4987 WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4988 } else if (ret == 0) {
4989 WRITE_ONCE(feat->res, FEAT_MISSING);
4990 } else {
4991 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4992 WRITE_ONCE(feat->res, FEAT_MISSING);
4993 }
4994 }
4995
4996 return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4997 }
4998
map_is_reuse_compat(const struct bpf_map * map,int map_fd)4999 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
5000 {
5001 struct bpf_map_info map_info;
5002 char msg[STRERR_BUFSIZE];
5003 __u32 map_info_len = sizeof(map_info);
5004 int err;
5005
5006 memset(&map_info, 0, map_info_len);
5007 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
5008 if (err && errno == EINVAL)
5009 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
5010 if (err) {
5011 pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
5012 libbpf_strerror_r(errno, msg, sizeof(msg)));
5013 return false;
5014 }
5015
5016 return (map_info.type == map->def.type &&
5017 map_info.key_size == map->def.key_size &&
5018 map_info.value_size == map->def.value_size &&
5019 map_info.max_entries == map->def.max_entries &&
5020 map_info.map_flags == map->def.map_flags &&
5021 map_info.map_extra == map->map_extra);
5022 }
5023
5024 static int
bpf_object__reuse_map(struct bpf_map * map)5025 bpf_object__reuse_map(struct bpf_map *map)
5026 {
5027 char *cp, errmsg[STRERR_BUFSIZE];
5028 int err, pin_fd;
5029
5030 pin_fd = bpf_obj_get(map->pin_path);
5031 if (pin_fd < 0) {
5032 err = -errno;
5033 if (err == -ENOENT) {
5034 pr_debug("found no pinned map to reuse at '%s'\n",
5035 map->pin_path);
5036 return 0;
5037 }
5038
5039 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
5040 pr_warn("couldn't retrieve pinned map '%s': %s\n",
5041 map->pin_path, cp);
5042 return err;
5043 }
5044
5045 if (!map_is_reuse_compat(map, pin_fd)) {
5046 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
5047 map->pin_path);
5048 close(pin_fd);
5049 return -EINVAL;
5050 }
5051
5052 err = bpf_map__reuse_fd(map, pin_fd);
5053 close(pin_fd);
5054 if (err)
5055 return err;
5056
5057 map->pinned = true;
5058 pr_debug("reused pinned map at '%s'\n", map->pin_path);
5059
5060 return 0;
5061 }
5062
5063 static int
bpf_object__populate_internal_map(struct bpf_object * obj,struct bpf_map * map)5064 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5065 {
5066 enum libbpf_map_type map_type = map->libbpf_type;
5067 char *cp, errmsg[STRERR_BUFSIZE];
5068 int err, zero = 0;
5069
5070 if (obj->gen_loader) {
5071 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5072 map->mmaped, map->def.value_size);
5073 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5074 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5075 return 0;
5076 }
5077 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5078 if (err) {
5079 err = -errno;
5080 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5081 pr_warn("Error setting initial map(%s) contents: %s\n",
5082 map->name, cp);
5083 return err;
5084 }
5085
5086 /* Freeze .rodata and .kconfig map as read-only from syscall side. */
5087 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5088 err = bpf_map_freeze(map->fd);
5089 if (err) {
5090 err = -errno;
5091 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5092 pr_warn("Error freezing map(%s) as read-only: %s\n",
5093 map->name, cp);
5094 return err;
5095 }
5096 }
5097 return 0;
5098 }
5099
5100 static void bpf_map__destroy(struct bpf_map *map);
5101
bpf_object__create_map(struct bpf_object * obj,struct bpf_map * map,bool is_inner)5102 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5103 {
5104 LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5105 struct bpf_map_def *def = &map->def;
5106 const char *map_name = NULL;
5107 int err = 0;
5108
5109 if (kernel_supports(obj, FEAT_PROG_NAME))
5110 map_name = map->name;
5111 create_attr.map_ifindex = map->map_ifindex;
5112 create_attr.map_flags = def->map_flags;
5113 create_attr.numa_node = map->numa_node;
5114 create_attr.map_extra = map->map_extra;
5115
5116 if (bpf_map__is_struct_ops(map))
5117 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5118
5119 if (obj->btf && btf__fd(obj->btf) >= 0) {
5120 create_attr.btf_fd = btf__fd(obj->btf);
5121 create_attr.btf_key_type_id = map->btf_key_type_id;
5122 create_attr.btf_value_type_id = map->btf_value_type_id;
5123 }
5124
5125 if (bpf_map_type__is_map_in_map(def->type)) {
5126 if (map->inner_map) {
5127 err = map_set_def_max_entries(map->inner_map);
5128 if (err)
5129 return err;
5130 err = bpf_object__create_map(obj, map->inner_map, true);
5131 if (err) {
5132 pr_warn("map '%s': failed to create inner map: %d\n",
5133 map->name, err);
5134 return err;
5135 }
5136 map->inner_map_fd = bpf_map__fd(map->inner_map);
5137 }
5138 if (map->inner_map_fd >= 0)
5139 create_attr.inner_map_fd = map->inner_map_fd;
5140 }
5141
5142 switch (def->type) {
5143 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5144 case BPF_MAP_TYPE_CGROUP_ARRAY:
5145 case BPF_MAP_TYPE_STACK_TRACE:
5146 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5147 case BPF_MAP_TYPE_HASH_OF_MAPS:
5148 case BPF_MAP_TYPE_DEVMAP:
5149 case BPF_MAP_TYPE_DEVMAP_HASH:
5150 case BPF_MAP_TYPE_CPUMAP:
5151 case BPF_MAP_TYPE_XSKMAP:
5152 case BPF_MAP_TYPE_SOCKMAP:
5153 case BPF_MAP_TYPE_SOCKHASH:
5154 case BPF_MAP_TYPE_QUEUE:
5155 case BPF_MAP_TYPE_STACK:
5156 create_attr.btf_fd = 0;
5157 create_attr.btf_key_type_id = 0;
5158 create_attr.btf_value_type_id = 0;
5159 map->btf_key_type_id = 0;
5160 map->btf_value_type_id = 0;
5161 default:
5162 break;
5163 }
5164
5165 if (obj->gen_loader) {
5166 bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5167 def->key_size, def->value_size, def->max_entries,
5168 &create_attr, is_inner ? -1 : map - obj->maps);
5169 /* Pretend to have valid FD to pass various fd >= 0 checks.
5170 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
5171 */
5172 map->fd = 0;
5173 } else {
5174 map->fd = bpf_map_create(def->type, map_name,
5175 def->key_size, def->value_size,
5176 def->max_entries, &create_attr);
5177 }
5178 if (map->fd < 0 && (create_attr.btf_key_type_id ||
5179 create_attr.btf_value_type_id)) {
5180 char *cp, errmsg[STRERR_BUFSIZE];
5181
5182 err = -errno;
5183 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5184 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5185 map->name, cp, err);
5186 create_attr.btf_fd = 0;
5187 create_attr.btf_key_type_id = 0;
5188 create_attr.btf_value_type_id = 0;
5189 map->btf_key_type_id = 0;
5190 map->btf_value_type_id = 0;
5191 map->fd = bpf_map_create(def->type, map_name,
5192 def->key_size, def->value_size,
5193 def->max_entries, &create_attr);
5194 }
5195
5196 err = map->fd < 0 ? -errno : 0;
5197
5198 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5199 if (obj->gen_loader)
5200 map->inner_map->fd = -1;
5201 bpf_map__destroy(map->inner_map);
5202 zfree(&map->inner_map);
5203 }
5204
5205 return err;
5206 }
5207
init_map_in_map_slots(struct bpf_object * obj,struct bpf_map * map)5208 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5209 {
5210 const struct bpf_map *targ_map;
5211 unsigned int i;
5212 int fd, err = 0;
5213
5214 for (i = 0; i < map->init_slots_sz; i++) {
5215 if (!map->init_slots[i])
5216 continue;
5217
5218 targ_map = map->init_slots[i];
5219 fd = bpf_map__fd(targ_map);
5220
5221 if (obj->gen_loader) {
5222 bpf_gen__populate_outer_map(obj->gen_loader,
5223 map - obj->maps, i,
5224 targ_map - obj->maps);
5225 } else {
5226 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5227 }
5228 if (err) {
5229 err = -errno;
5230 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5231 map->name, i, targ_map->name, fd, err);
5232 return err;
5233 }
5234 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5235 map->name, i, targ_map->name, fd);
5236 }
5237
5238 zfree(&map->init_slots);
5239 map->init_slots_sz = 0;
5240
5241 return 0;
5242 }
5243
init_prog_array_slots(struct bpf_object * obj,struct bpf_map * map)5244 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5245 {
5246 const struct bpf_program *targ_prog;
5247 unsigned int i;
5248 int fd, err;
5249
5250 if (obj->gen_loader)
5251 return -ENOTSUP;
5252
5253 for (i = 0; i < map->init_slots_sz; i++) {
5254 if (!map->init_slots[i])
5255 continue;
5256
5257 targ_prog = map->init_slots[i];
5258 fd = bpf_program__fd(targ_prog);
5259
5260 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5261 if (err) {
5262 err = -errno;
5263 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5264 map->name, i, targ_prog->name, fd, err);
5265 return err;
5266 }
5267 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5268 map->name, i, targ_prog->name, fd);
5269 }
5270
5271 zfree(&map->init_slots);
5272 map->init_slots_sz = 0;
5273
5274 return 0;
5275 }
5276
bpf_object_init_prog_arrays(struct bpf_object * obj)5277 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5278 {
5279 struct bpf_map *map;
5280 int i, err;
5281
5282 for (i = 0; i < obj->nr_maps; i++) {
5283 map = &obj->maps[i];
5284
5285 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5286 continue;
5287
5288 err = init_prog_array_slots(obj, map);
5289 if (err < 0) {
5290 zclose(map->fd);
5291 return err;
5292 }
5293 }
5294 return 0;
5295 }
5296
map_set_def_max_entries(struct bpf_map * map)5297 static int map_set_def_max_entries(struct bpf_map *map)
5298 {
5299 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5300 int nr_cpus;
5301
5302 nr_cpus = libbpf_num_possible_cpus();
5303 if (nr_cpus < 0) {
5304 pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5305 map->name, nr_cpus);
5306 return nr_cpus;
5307 }
5308 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5309 map->def.max_entries = nr_cpus;
5310 }
5311
5312 return 0;
5313 }
5314
5315 static int
bpf_object__create_maps(struct bpf_object * obj)5316 bpf_object__create_maps(struct bpf_object *obj)
5317 {
5318 struct bpf_map *map;
5319 char *cp, errmsg[STRERR_BUFSIZE];
5320 unsigned int i, j;
5321 int err;
5322 bool retried;
5323
5324 for (i = 0; i < obj->nr_maps; i++) {
5325 map = &obj->maps[i];
5326
5327 /* To support old kernels, we skip creating global data maps
5328 * (.rodata, .data, .kconfig, etc); later on, during program
5329 * loading, if we detect that at least one of the to-be-loaded
5330 * programs is referencing any global data map, we'll error
5331 * out with program name and relocation index logged.
5332 * This approach allows to accommodate Clang emitting
5333 * unnecessary .rodata.str1.1 sections for string literals,
5334 * but also it allows to have CO-RE applications that use
5335 * global variables in some of BPF programs, but not others.
5336 * If those global variable-using programs are not loaded at
5337 * runtime due to bpf_program__set_autoload(prog, false),
5338 * bpf_object loading will succeed just fine even on old
5339 * kernels.
5340 */
5341 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5342 map->autocreate = false;
5343
5344 if (!map->autocreate) {
5345 pr_debug("map '%s': skipped auto-creating...\n", map->name);
5346 continue;
5347 }
5348
5349 err = map_set_def_max_entries(map);
5350 if (err)
5351 goto err_out;
5352
5353 retried = false;
5354 retry:
5355 if (map->pin_path) {
5356 err = bpf_object__reuse_map(map);
5357 if (err) {
5358 pr_warn("map '%s': error reusing pinned map\n",
5359 map->name);
5360 goto err_out;
5361 }
5362 if (retried && map->fd < 0) {
5363 pr_warn("map '%s': cannot find pinned map\n",
5364 map->name);
5365 err = -ENOENT;
5366 goto err_out;
5367 }
5368 }
5369
5370 if (map->fd >= 0) {
5371 pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5372 map->name, map->fd);
5373 } else {
5374 err = bpf_object__create_map(obj, map, false);
5375 if (err)
5376 goto err_out;
5377
5378 pr_debug("map '%s': created successfully, fd=%d\n",
5379 map->name, map->fd);
5380
5381 if (bpf_map__is_internal(map)) {
5382 err = bpf_object__populate_internal_map(obj, map);
5383 if (err < 0) {
5384 zclose(map->fd);
5385 goto err_out;
5386 }
5387 }
5388
5389 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5390 err = init_map_in_map_slots(obj, map);
5391 if (err < 0) {
5392 zclose(map->fd);
5393 goto err_out;
5394 }
5395 }
5396 }
5397
5398 if (map->pin_path && !map->pinned) {
5399 err = bpf_map__pin(map, NULL);
5400 if (err) {
5401 zclose(map->fd);
5402 if (!retried && err == -EEXIST) {
5403 retried = true;
5404 goto retry;
5405 }
5406 pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5407 map->name, map->pin_path, err);
5408 goto err_out;
5409 }
5410 }
5411 }
5412
5413 return 0;
5414
5415 err_out:
5416 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5417 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5418 pr_perm_msg(err);
5419 for (j = 0; j < i; j++)
5420 zclose(obj->maps[j].fd);
5421 return err;
5422 }
5423
bpf_core_is_flavor_sep(const char * s)5424 static bool bpf_core_is_flavor_sep(const char *s)
5425 {
5426 /* check X___Y name pattern, where X and Y are not underscores */
5427 return s[0] != '_' && /* X */
5428 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
5429 s[4] != '_'; /* Y */
5430 }
5431
5432 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5433 * before last triple underscore. Struct name part after last triple
5434 * underscore is ignored by BPF CO-RE relocation during relocation matching.
5435 */
bpf_core_essential_name_len(const char * name)5436 size_t bpf_core_essential_name_len(const char *name)
5437 {
5438 size_t n = strlen(name);
5439 int i;
5440
5441 for (i = n - 5; i >= 0; i--) {
5442 if (bpf_core_is_flavor_sep(name + i))
5443 return i + 1;
5444 }
5445 return n;
5446 }
5447
bpf_core_free_cands(struct bpf_core_cand_list * cands)5448 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5449 {
5450 if (!cands)
5451 return;
5452
5453 free(cands->cands);
5454 free(cands);
5455 }
5456
bpf_core_add_cands(struct bpf_core_cand * local_cand,size_t local_essent_len,const struct btf * targ_btf,const char * targ_btf_name,int targ_start_id,struct bpf_core_cand_list * cands)5457 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5458 size_t local_essent_len,
5459 const struct btf *targ_btf,
5460 const char *targ_btf_name,
5461 int targ_start_id,
5462 struct bpf_core_cand_list *cands)
5463 {
5464 struct bpf_core_cand *new_cands, *cand;
5465 const struct btf_type *t, *local_t;
5466 const char *targ_name, *local_name;
5467 size_t targ_essent_len;
5468 int n, i;
5469
5470 local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5471 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5472
5473 n = btf__type_cnt(targ_btf);
5474 for (i = targ_start_id; i < n; i++) {
5475 t = btf__type_by_id(targ_btf, i);
5476 if (!btf_kind_core_compat(t, local_t))
5477 continue;
5478
5479 targ_name = btf__name_by_offset(targ_btf, t->name_off);
5480 if (str_is_empty(targ_name))
5481 continue;
5482
5483 targ_essent_len = bpf_core_essential_name_len(targ_name);
5484 if (targ_essent_len != local_essent_len)
5485 continue;
5486
5487 if (strncmp(local_name, targ_name, local_essent_len) != 0)
5488 continue;
5489
5490 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5491 local_cand->id, btf_kind_str(local_t),
5492 local_name, i, btf_kind_str(t), targ_name,
5493 targ_btf_name);
5494 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5495 sizeof(*cands->cands));
5496 if (!new_cands)
5497 return -ENOMEM;
5498
5499 cand = &new_cands[cands->len];
5500 cand->btf = targ_btf;
5501 cand->id = i;
5502
5503 cands->cands = new_cands;
5504 cands->len++;
5505 }
5506 return 0;
5507 }
5508
load_module_btfs(struct bpf_object * obj)5509 static int load_module_btfs(struct bpf_object *obj)
5510 {
5511 struct bpf_btf_info info;
5512 struct module_btf *mod_btf;
5513 struct btf *btf;
5514 char name[64];
5515 __u32 id = 0, len;
5516 int err, fd;
5517
5518 if (obj->btf_modules_loaded)
5519 return 0;
5520
5521 if (obj->gen_loader)
5522 return 0;
5523
5524 /* don't do this again, even if we find no module BTFs */
5525 obj->btf_modules_loaded = true;
5526
5527 /* kernel too old to support module BTFs */
5528 if (!kernel_supports(obj, FEAT_MODULE_BTF))
5529 return 0;
5530
5531 while (true) {
5532 err = bpf_btf_get_next_id(id, &id);
5533 if (err && errno == ENOENT)
5534 return 0;
5535 if (err && errno == EPERM) {
5536 pr_debug("skipping module BTFs loading, missing privileges\n");
5537 return 0;
5538 }
5539 if (err) {
5540 err = -errno;
5541 pr_warn("failed to iterate BTF objects: %d\n", err);
5542 return err;
5543 }
5544
5545 fd = bpf_btf_get_fd_by_id(id);
5546 if (fd < 0) {
5547 if (errno == ENOENT)
5548 continue; /* expected race: BTF was unloaded */
5549 err = -errno;
5550 pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5551 return err;
5552 }
5553
5554 len = sizeof(info);
5555 memset(&info, 0, sizeof(info));
5556 info.name = ptr_to_u64(name);
5557 info.name_len = sizeof(name);
5558
5559 err = bpf_btf_get_info_by_fd(fd, &info, &len);
5560 if (err) {
5561 err = -errno;
5562 pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5563 goto err_out;
5564 }
5565
5566 /* ignore non-module BTFs */
5567 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5568 close(fd);
5569 continue;
5570 }
5571
5572 btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5573 err = libbpf_get_error(btf);
5574 if (err) {
5575 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5576 name, id, err);
5577 goto err_out;
5578 }
5579
5580 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5581 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5582 if (err)
5583 goto err_out;
5584
5585 mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5586
5587 mod_btf->btf = btf;
5588 mod_btf->id = id;
5589 mod_btf->fd = fd;
5590 mod_btf->name = strdup(name);
5591 if (!mod_btf->name) {
5592 err = -ENOMEM;
5593 goto err_out;
5594 }
5595 continue;
5596
5597 err_out:
5598 close(fd);
5599 return err;
5600 }
5601
5602 return 0;
5603 }
5604
5605 static struct bpf_core_cand_list *
bpf_core_find_cands(struct bpf_object * obj,const struct btf * local_btf,__u32 local_type_id)5606 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5607 {
5608 struct bpf_core_cand local_cand = {};
5609 struct bpf_core_cand_list *cands;
5610 const struct btf *main_btf;
5611 const struct btf_type *local_t;
5612 const char *local_name;
5613 size_t local_essent_len;
5614 int err, i;
5615
5616 local_cand.btf = local_btf;
5617 local_cand.id = local_type_id;
5618 local_t = btf__type_by_id(local_btf, local_type_id);
5619 if (!local_t)
5620 return ERR_PTR(-EINVAL);
5621
5622 local_name = btf__name_by_offset(local_btf, local_t->name_off);
5623 if (str_is_empty(local_name))
5624 return ERR_PTR(-EINVAL);
5625 local_essent_len = bpf_core_essential_name_len(local_name);
5626
5627 cands = calloc(1, sizeof(*cands));
5628 if (!cands)
5629 return ERR_PTR(-ENOMEM);
5630
5631 /* Attempt to find target candidates in vmlinux BTF first */
5632 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5633 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5634 if (err)
5635 goto err_out;
5636
5637 /* if vmlinux BTF has any candidate, don't got for module BTFs */
5638 if (cands->len)
5639 return cands;
5640
5641 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5642 if (obj->btf_vmlinux_override)
5643 return cands;
5644
5645 /* now look through module BTFs, trying to still find candidates */
5646 err = load_module_btfs(obj);
5647 if (err)
5648 goto err_out;
5649
5650 for (i = 0; i < obj->btf_module_cnt; i++) {
5651 err = bpf_core_add_cands(&local_cand, local_essent_len,
5652 obj->btf_modules[i].btf,
5653 obj->btf_modules[i].name,
5654 btf__type_cnt(obj->btf_vmlinux),
5655 cands);
5656 if (err)
5657 goto err_out;
5658 }
5659
5660 return cands;
5661 err_out:
5662 bpf_core_free_cands(cands);
5663 return ERR_PTR(err);
5664 }
5665
5666 /* Check local and target types for compatibility. This check is used for
5667 * type-based CO-RE relocations and follow slightly different rules than
5668 * field-based relocations. This function assumes that root types were already
5669 * checked for name match. Beyond that initial root-level name check, names
5670 * are completely ignored. Compatibility rules are as follows:
5671 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5672 * kind should match for local and target types (i.e., STRUCT is not
5673 * compatible with UNION);
5674 * - for ENUMs, the size is ignored;
5675 * - for INT, size and signedness are ignored;
5676 * - for ARRAY, dimensionality is ignored, element types are checked for
5677 * compatibility recursively;
5678 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
5679 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5680 * - FUNC_PROTOs are compatible if they have compatible signature: same
5681 * number of input args and compatible return and argument types.
5682 * These rules are not set in stone and probably will be adjusted as we get
5683 * more experience with using BPF CO-RE relocations.
5684 */
bpf_core_types_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5685 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5686 const struct btf *targ_btf, __u32 targ_id)
5687 {
5688 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5689 }
5690
bpf_core_types_match(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5691 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5692 const struct btf *targ_btf, __u32 targ_id)
5693 {
5694 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5695 }
5696
bpf_core_hash_fn(const long key,void * ctx)5697 static size_t bpf_core_hash_fn(const long key, void *ctx)
5698 {
5699 return key;
5700 }
5701
bpf_core_equal_fn(const long k1,const long k2,void * ctx)5702 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5703 {
5704 return k1 == k2;
5705 }
5706
record_relo_core(struct bpf_program * prog,const struct bpf_core_relo * core_relo,int insn_idx)5707 static int record_relo_core(struct bpf_program *prog,
5708 const struct bpf_core_relo *core_relo, int insn_idx)
5709 {
5710 struct reloc_desc *relos, *relo;
5711
5712 relos = libbpf_reallocarray(prog->reloc_desc,
5713 prog->nr_reloc + 1, sizeof(*relos));
5714 if (!relos)
5715 return -ENOMEM;
5716 relo = &relos[prog->nr_reloc];
5717 relo->type = RELO_CORE;
5718 relo->insn_idx = insn_idx;
5719 relo->core_relo = core_relo;
5720 prog->reloc_desc = relos;
5721 prog->nr_reloc++;
5722 return 0;
5723 }
5724
find_relo_core(struct bpf_program * prog,int insn_idx)5725 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5726 {
5727 struct reloc_desc *relo;
5728 int i;
5729
5730 for (i = 0; i < prog->nr_reloc; i++) {
5731 relo = &prog->reloc_desc[i];
5732 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5733 continue;
5734
5735 return relo->core_relo;
5736 }
5737
5738 return NULL;
5739 }
5740
bpf_core_resolve_relo(struct bpf_program * prog,const struct bpf_core_relo * relo,int relo_idx,const struct btf * local_btf,struct hashmap * cand_cache,struct bpf_core_relo_res * targ_res)5741 static int bpf_core_resolve_relo(struct bpf_program *prog,
5742 const struct bpf_core_relo *relo,
5743 int relo_idx,
5744 const struct btf *local_btf,
5745 struct hashmap *cand_cache,
5746 struct bpf_core_relo_res *targ_res)
5747 {
5748 struct bpf_core_spec specs_scratch[3] = {};
5749 struct bpf_core_cand_list *cands = NULL;
5750 const char *prog_name = prog->name;
5751 const struct btf_type *local_type;
5752 const char *local_name;
5753 __u32 local_id = relo->type_id;
5754 int err;
5755
5756 local_type = btf__type_by_id(local_btf, local_id);
5757 if (!local_type)
5758 return -EINVAL;
5759
5760 local_name = btf__name_by_offset(local_btf, local_type->name_off);
5761 if (!local_name)
5762 return -EINVAL;
5763
5764 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5765 !hashmap__find(cand_cache, local_id, &cands)) {
5766 cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5767 if (IS_ERR(cands)) {
5768 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5769 prog_name, relo_idx, local_id, btf_kind_str(local_type),
5770 local_name, PTR_ERR(cands));
5771 return PTR_ERR(cands);
5772 }
5773 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5774 if (err) {
5775 bpf_core_free_cands(cands);
5776 return err;
5777 }
5778 }
5779
5780 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5781 targ_res);
5782 }
5783
5784 static int
bpf_object__relocate_core(struct bpf_object * obj,const char * targ_btf_path)5785 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5786 {
5787 const struct btf_ext_info_sec *sec;
5788 struct bpf_core_relo_res targ_res;
5789 const struct bpf_core_relo *rec;
5790 const struct btf_ext_info *seg;
5791 struct hashmap_entry *entry;
5792 struct hashmap *cand_cache = NULL;
5793 struct bpf_program *prog;
5794 struct bpf_insn *insn;
5795 const char *sec_name;
5796 int i, err = 0, insn_idx, sec_idx, sec_num;
5797
5798 if (obj->btf_ext->core_relo_info.len == 0)
5799 return 0;
5800
5801 if (targ_btf_path) {
5802 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5803 err = libbpf_get_error(obj->btf_vmlinux_override);
5804 if (err) {
5805 pr_warn("failed to parse target BTF: %d\n", err);
5806 return err;
5807 }
5808 }
5809
5810 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5811 if (IS_ERR(cand_cache)) {
5812 err = PTR_ERR(cand_cache);
5813 goto out;
5814 }
5815
5816 seg = &obj->btf_ext->core_relo_info;
5817 sec_num = 0;
5818 for_each_btf_ext_sec(seg, sec) {
5819 sec_idx = seg->sec_idxs[sec_num];
5820 sec_num++;
5821
5822 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5823 if (str_is_empty(sec_name)) {
5824 err = -EINVAL;
5825 goto out;
5826 }
5827
5828 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5829
5830 for_each_btf_ext_rec(seg, sec, i, rec) {
5831 if (rec->insn_off % BPF_INSN_SZ)
5832 return -EINVAL;
5833 insn_idx = rec->insn_off / BPF_INSN_SZ;
5834 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5835 if (!prog) {
5836 /* When __weak subprog is "overridden" by another instance
5837 * of the subprog from a different object file, linker still
5838 * appends all the .BTF.ext info that used to belong to that
5839 * eliminated subprogram.
5840 * This is similar to what x86-64 linker does for relocations.
5841 * So just ignore such relocations just like we ignore
5842 * subprog instructions when discovering subprograms.
5843 */
5844 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5845 sec_name, i, insn_idx);
5846 continue;
5847 }
5848 /* no need to apply CO-RE relocation if the program is
5849 * not going to be loaded
5850 */
5851 if (!prog->autoload)
5852 continue;
5853
5854 /* adjust insn_idx from section frame of reference to the local
5855 * program's frame of reference; (sub-)program code is not yet
5856 * relocated, so it's enough to just subtract in-section offset
5857 */
5858 insn_idx = insn_idx - prog->sec_insn_off;
5859 if (insn_idx >= prog->insns_cnt)
5860 return -EINVAL;
5861 insn = &prog->insns[insn_idx];
5862
5863 err = record_relo_core(prog, rec, insn_idx);
5864 if (err) {
5865 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5866 prog->name, i, err);
5867 goto out;
5868 }
5869
5870 if (prog->obj->gen_loader)
5871 continue;
5872
5873 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5874 if (err) {
5875 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5876 prog->name, i, err);
5877 goto out;
5878 }
5879
5880 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5881 if (err) {
5882 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5883 prog->name, i, insn_idx, err);
5884 goto out;
5885 }
5886 }
5887 }
5888
5889 out:
5890 /* obj->btf_vmlinux and module BTFs are freed after object load */
5891 btf__free(obj->btf_vmlinux_override);
5892 obj->btf_vmlinux_override = NULL;
5893
5894 if (!IS_ERR_OR_NULL(cand_cache)) {
5895 hashmap__for_each_entry(cand_cache, entry, i) {
5896 bpf_core_free_cands(entry->pvalue);
5897 }
5898 hashmap__free(cand_cache);
5899 }
5900 return err;
5901 }
5902
5903 /* base map load ldimm64 special constant, used also for log fixup logic */
5904 #define POISON_LDIMM64_MAP_BASE 2001000000
5905 #define POISON_LDIMM64_MAP_PFX "200100"
5906
poison_map_ldimm64(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int map_idx,const struct bpf_map * map)5907 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5908 int insn_idx, struct bpf_insn *insn,
5909 int map_idx, const struct bpf_map *map)
5910 {
5911 int i;
5912
5913 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5914 prog->name, relo_idx, insn_idx, map_idx, map->name);
5915
5916 /* we turn single ldimm64 into two identical invalid calls */
5917 for (i = 0; i < 2; i++) {
5918 insn->code = BPF_JMP | BPF_CALL;
5919 insn->dst_reg = 0;
5920 insn->src_reg = 0;
5921 insn->off = 0;
5922 /* if this instruction is reachable (not a dead code),
5923 * verifier will complain with something like:
5924 * invalid func unknown#2001000123
5925 * where lower 123 is map index into obj->maps[] array
5926 */
5927 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
5928
5929 insn++;
5930 }
5931 }
5932
5933 /* unresolved kfunc call special constant, used also for log fixup logic */
5934 #define POISON_CALL_KFUNC_BASE 2002000000
5935 #define POISON_CALL_KFUNC_PFX "2002"
5936
poison_kfunc_call(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int ext_idx,const struct extern_desc * ext)5937 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
5938 int insn_idx, struct bpf_insn *insn,
5939 int ext_idx, const struct extern_desc *ext)
5940 {
5941 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
5942 prog->name, relo_idx, insn_idx, ext->name);
5943
5944 /* we turn kfunc call into invalid helper call with identifiable constant */
5945 insn->code = BPF_JMP | BPF_CALL;
5946 insn->dst_reg = 0;
5947 insn->src_reg = 0;
5948 insn->off = 0;
5949 /* if this instruction is reachable (not a dead code),
5950 * verifier will complain with something like:
5951 * invalid func unknown#2001000123
5952 * where lower 123 is extern index into obj->externs[] array
5953 */
5954 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
5955 }
5956
5957 /* Relocate data references within program code:
5958 * - map references;
5959 * - global variable references;
5960 * - extern references.
5961 */
5962 static int
bpf_object__relocate_data(struct bpf_object * obj,struct bpf_program * prog)5963 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5964 {
5965 int i;
5966
5967 for (i = 0; i < prog->nr_reloc; i++) {
5968 struct reloc_desc *relo = &prog->reloc_desc[i];
5969 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5970 const struct bpf_map *map;
5971 struct extern_desc *ext;
5972
5973 switch (relo->type) {
5974 case RELO_LD64:
5975 map = &obj->maps[relo->map_idx];
5976 if (obj->gen_loader) {
5977 insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5978 insn[0].imm = relo->map_idx;
5979 } else if (map->autocreate) {
5980 insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5981 insn[0].imm = map->fd;
5982 } else {
5983 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5984 relo->map_idx, map);
5985 }
5986 break;
5987 case RELO_DATA:
5988 map = &obj->maps[relo->map_idx];
5989 insn[1].imm = insn[0].imm + relo->sym_off;
5990 if (obj->gen_loader) {
5991 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5992 insn[0].imm = relo->map_idx;
5993 } else if (map->autocreate) {
5994 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5995 insn[0].imm = map->fd;
5996 } else {
5997 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5998 relo->map_idx, map);
5999 }
6000 break;
6001 case RELO_EXTERN_LD64:
6002 ext = &obj->externs[relo->ext_idx];
6003 if (ext->type == EXT_KCFG) {
6004 if (obj->gen_loader) {
6005 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6006 insn[0].imm = obj->kconfig_map_idx;
6007 } else {
6008 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6009 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6010 }
6011 insn[1].imm = ext->kcfg.data_off;
6012 } else /* EXT_KSYM */ {
6013 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
6014 insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6015 insn[0].imm = ext->ksym.kernel_btf_id;
6016 insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6017 } else { /* typeless ksyms or unresolved typed ksyms */
6018 insn[0].imm = (__u32)ext->ksym.addr;
6019 insn[1].imm = ext->ksym.addr >> 32;
6020 }
6021 }
6022 break;
6023 case RELO_EXTERN_CALL:
6024 ext = &obj->externs[relo->ext_idx];
6025 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6026 if (ext->is_set) {
6027 insn[0].imm = ext->ksym.kernel_btf_id;
6028 insn[0].off = ext->ksym.btf_fd_idx;
6029 } else { /* unresolved weak kfunc call */
6030 poison_kfunc_call(prog, i, relo->insn_idx, insn,
6031 relo->ext_idx, ext);
6032 }
6033 break;
6034 case RELO_SUBPROG_ADDR:
6035 if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6036 pr_warn("prog '%s': relo #%d: bad insn\n",
6037 prog->name, i);
6038 return -EINVAL;
6039 }
6040 /* handled already */
6041 break;
6042 case RELO_CALL:
6043 /* handled already */
6044 break;
6045 case RELO_CORE:
6046 /* will be handled by bpf_program_record_relos() */
6047 break;
6048 default:
6049 pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6050 prog->name, i, relo->type);
6051 return -EINVAL;
6052 }
6053 }
6054
6055 return 0;
6056 }
6057
adjust_prog_btf_ext_info(const struct bpf_object * obj,const struct bpf_program * prog,const struct btf_ext_info * ext_info,void ** prog_info,__u32 * prog_rec_cnt,__u32 * prog_rec_sz)6058 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6059 const struct bpf_program *prog,
6060 const struct btf_ext_info *ext_info,
6061 void **prog_info, __u32 *prog_rec_cnt,
6062 __u32 *prog_rec_sz)
6063 {
6064 void *copy_start = NULL, *copy_end = NULL;
6065 void *rec, *rec_end, *new_prog_info;
6066 const struct btf_ext_info_sec *sec;
6067 size_t old_sz, new_sz;
6068 int i, sec_num, sec_idx, off_adj;
6069
6070 sec_num = 0;
6071 for_each_btf_ext_sec(ext_info, sec) {
6072 sec_idx = ext_info->sec_idxs[sec_num];
6073 sec_num++;
6074 if (prog->sec_idx != sec_idx)
6075 continue;
6076
6077 for_each_btf_ext_rec(ext_info, sec, i, rec) {
6078 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6079
6080 if (insn_off < prog->sec_insn_off)
6081 continue;
6082 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6083 break;
6084
6085 if (!copy_start)
6086 copy_start = rec;
6087 copy_end = rec + ext_info->rec_size;
6088 }
6089
6090 if (!copy_start)
6091 return -ENOENT;
6092
6093 /* append func/line info of a given (sub-)program to the main
6094 * program func/line info
6095 */
6096 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6097 new_sz = old_sz + (copy_end - copy_start);
6098 new_prog_info = realloc(*prog_info, new_sz);
6099 if (!new_prog_info)
6100 return -ENOMEM;
6101 *prog_info = new_prog_info;
6102 *prog_rec_cnt = new_sz / ext_info->rec_size;
6103 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6104
6105 /* Kernel instruction offsets are in units of 8-byte
6106 * instructions, while .BTF.ext instruction offsets generated
6107 * by Clang are in units of bytes. So convert Clang offsets
6108 * into kernel offsets and adjust offset according to program
6109 * relocated position.
6110 */
6111 off_adj = prog->sub_insn_off - prog->sec_insn_off;
6112 rec = new_prog_info + old_sz;
6113 rec_end = new_prog_info + new_sz;
6114 for (; rec < rec_end; rec += ext_info->rec_size) {
6115 __u32 *insn_off = rec;
6116
6117 *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6118 }
6119 *prog_rec_sz = ext_info->rec_size;
6120 return 0;
6121 }
6122
6123 return -ENOENT;
6124 }
6125
6126 static int
reloc_prog_func_and_line_info(const struct bpf_object * obj,struct bpf_program * main_prog,const struct bpf_program * prog)6127 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6128 struct bpf_program *main_prog,
6129 const struct bpf_program *prog)
6130 {
6131 int err;
6132
6133 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6134 * supprot func/line info
6135 */
6136 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6137 return 0;
6138
6139 /* only attempt func info relocation if main program's func_info
6140 * relocation was successful
6141 */
6142 if (main_prog != prog && !main_prog->func_info)
6143 goto line_info;
6144
6145 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6146 &main_prog->func_info,
6147 &main_prog->func_info_cnt,
6148 &main_prog->func_info_rec_size);
6149 if (err) {
6150 if (err != -ENOENT) {
6151 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6152 prog->name, err);
6153 return err;
6154 }
6155 if (main_prog->func_info) {
6156 /*
6157 * Some info has already been found but has problem
6158 * in the last btf_ext reloc. Must have to error out.
6159 */
6160 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6161 return err;
6162 }
6163 /* Have problem loading the very first info. Ignore the rest. */
6164 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6165 prog->name);
6166 }
6167
6168 line_info:
6169 /* don't relocate line info if main program's relocation failed */
6170 if (main_prog != prog && !main_prog->line_info)
6171 return 0;
6172
6173 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6174 &main_prog->line_info,
6175 &main_prog->line_info_cnt,
6176 &main_prog->line_info_rec_size);
6177 if (err) {
6178 if (err != -ENOENT) {
6179 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6180 prog->name, err);
6181 return err;
6182 }
6183 if (main_prog->line_info) {
6184 /*
6185 * Some info has already been found but has problem
6186 * in the last btf_ext reloc. Must have to error out.
6187 */
6188 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6189 return err;
6190 }
6191 /* Have problem loading the very first info. Ignore the rest. */
6192 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6193 prog->name);
6194 }
6195 return 0;
6196 }
6197
cmp_relo_by_insn_idx(const void * key,const void * elem)6198 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6199 {
6200 size_t insn_idx = *(const size_t *)key;
6201 const struct reloc_desc *relo = elem;
6202
6203 if (insn_idx == relo->insn_idx)
6204 return 0;
6205 return insn_idx < relo->insn_idx ? -1 : 1;
6206 }
6207
find_prog_insn_relo(const struct bpf_program * prog,size_t insn_idx)6208 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6209 {
6210 if (!prog->nr_reloc)
6211 return NULL;
6212 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6213 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6214 }
6215
append_subprog_relos(struct bpf_program * main_prog,struct bpf_program * subprog)6216 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6217 {
6218 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6219 struct reloc_desc *relos;
6220 int i;
6221
6222 if (main_prog == subprog)
6223 return 0;
6224 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6225 /* if new count is zero, reallocarray can return a valid NULL result;
6226 * in this case the previous pointer will be freed, so we *have to*
6227 * reassign old pointer to the new value (even if it's NULL)
6228 */
6229 if (!relos && new_cnt)
6230 return -ENOMEM;
6231 if (subprog->nr_reloc)
6232 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6233 sizeof(*relos) * subprog->nr_reloc);
6234
6235 for (i = main_prog->nr_reloc; i < new_cnt; i++)
6236 relos[i].insn_idx += subprog->sub_insn_off;
6237 /* After insn_idx adjustment the 'relos' array is still sorted
6238 * by insn_idx and doesn't break bsearch.
6239 */
6240 main_prog->reloc_desc = relos;
6241 main_prog->nr_reloc = new_cnt;
6242 return 0;
6243 }
6244
6245 static int
bpf_object__reloc_code(struct bpf_object * obj,struct bpf_program * main_prog,struct bpf_program * prog)6246 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6247 struct bpf_program *prog)
6248 {
6249 size_t sub_insn_idx, insn_idx, new_cnt;
6250 struct bpf_program *subprog;
6251 struct bpf_insn *insns, *insn;
6252 struct reloc_desc *relo;
6253 int err;
6254
6255 err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6256 if (err)
6257 return err;
6258
6259 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6260 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6261 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6262 continue;
6263
6264 relo = find_prog_insn_relo(prog, insn_idx);
6265 if (relo && relo->type == RELO_EXTERN_CALL)
6266 /* kfunc relocations will be handled later
6267 * in bpf_object__relocate_data()
6268 */
6269 continue;
6270 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6271 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6272 prog->name, insn_idx, relo->type);
6273 return -LIBBPF_ERRNO__RELOC;
6274 }
6275 if (relo) {
6276 /* sub-program instruction index is a combination of
6277 * an offset of a symbol pointed to by relocation and
6278 * call instruction's imm field; for global functions,
6279 * call always has imm = -1, but for static functions
6280 * relocation is against STT_SECTION and insn->imm
6281 * points to a start of a static function
6282 *
6283 * for subprog addr relocation, the relo->sym_off + insn->imm is
6284 * the byte offset in the corresponding section.
6285 */
6286 if (relo->type == RELO_CALL)
6287 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6288 else
6289 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6290 } else if (insn_is_pseudo_func(insn)) {
6291 /*
6292 * RELO_SUBPROG_ADDR relo is always emitted even if both
6293 * functions are in the same section, so it shouldn't reach here.
6294 */
6295 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6296 prog->name, insn_idx);
6297 return -LIBBPF_ERRNO__RELOC;
6298 } else {
6299 /* if subprogram call is to a static function within
6300 * the same ELF section, there won't be any relocation
6301 * emitted, but it also means there is no additional
6302 * offset necessary, insns->imm is relative to
6303 * instruction's original position within the section
6304 */
6305 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6306 }
6307
6308 /* we enforce that sub-programs should be in .text section */
6309 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6310 if (!subprog) {
6311 pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6312 prog->name);
6313 return -LIBBPF_ERRNO__RELOC;
6314 }
6315
6316 /* if it's the first call instruction calling into this
6317 * subprogram (meaning this subprog hasn't been processed
6318 * yet) within the context of current main program:
6319 * - append it at the end of main program's instructions blog;
6320 * - process is recursively, while current program is put on hold;
6321 * - if that subprogram calls some other not yet processes
6322 * subprogram, same thing will happen recursively until
6323 * there are no more unprocesses subprograms left to append
6324 * and relocate.
6325 */
6326 if (subprog->sub_insn_off == 0) {
6327 subprog->sub_insn_off = main_prog->insns_cnt;
6328
6329 new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6330 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6331 if (!insns) {
6332 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6333 return -ENOMEM;
6334 }
6335 main_prog->insns = insns;
6336 main_prog->insns_cnt = new_cnt;
6337
6338 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6339 subprog->insns_cnt * sizeof(*insns));
6340
6341 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6342 main_prog->name, subprog->insns_cnt, subprog->name);
6343
6344 /* The subprog insns are now appended. Append its relos too. */
6345 err = append_subprog_relos(main_prog, subprog);
6346 if (err)
6347 return err;
6348 err = bpf_object__reloc_code(obj, main_prog, subprog);
6349 if (err)
6350 return err;
6351 }
6352
6353 /* main_prog->insns memory could have been re-allocated, so
6354 * calculate pointer again
6355 */
6356 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6357 /* calculate correct instruction position within current main
6358 * prog; each main prog can have a different set of
6359 * subprograms appended (potentially in different order as
6360 * well), so position of any subprog can be different for
6361 * different main programs
6362 */
6363 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6364
6365 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6366 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6367 }
6368
6369 return 0;
6370 }
6371
6372 /*
6373 * Relocate sub-program calls.
6374 *
6375 * Algorithm operates as follows. Each entry-point BPF program (referred to as
6376 * main prog) is processed separately. For each subprog (non-entry functions,
6377 * that can be called from either entry progs or other subprogs) gets their
6378 * sub_insn_off reset to zero. This serves as indicator that this subprogram
6379 * hasn't been yet appended and relocated within current main prog. Once its
6380 * relocated, sub_insn_off will point at the position within current main prog
6381 * where given subprog was appended. This will further be used to relocate all
6382 * the call instructions jumping into this subprog.
6383 *
6384 * We start with main program and process all call instructions. If the call
6385 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6386 * is zero), subprog instructions are appended at the end of main program's
6387 * instruction array. Then main program is "put on hold" while we recursively
6388 * process newly appended subprogram. If that subprogram calls into another
6389 * subprogram that hasn't been appended, new subprogram is appended again to
6390 * the *main* prog's instructions (subprog's instructions are always left
6391 * untouched, as they need to be in unmodified state for subsequent main progs
6392 * and subprog instructions are always sent only as part of a main prog) and
6393 * the process continues recursively. Once all the subprogs called from a main
6394 * prog or any of its subprogs are appended (and relocated), all their
6395 * positions within finalized instructions array are known, so it's easy to
6396 * rewrite call instructions with correct relative offsets, corresponding to
6397 * desired target subprog.
6398 *
6399 * Its important to realize that some subprogs might not be called from some
6400 * main prog and any of its called/used subprogs. Those will keep their
6401 * subprog->sub_insn_off as zero at all times and won't be appended to current
6402 * main prog and won't be relocated within the context of current main prog.
6403 * They might still be used from other main progs later.
6404 *
6405 * Visually this process can be shown as below. Suppose we have two main
6406 * programs mainA and mainB and BPF object contains three subprogs: subA,
6407 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6408 * subC both call subB:
6409 *
6410 * +--------+ +-------+
6411 * | v v |
6412 * +--+---+ +--+-+-+ +---+--+
6413 * | subA | | subB | | subC |
6414 * +--+---+ +------+ +---+--+
6415 * ^ ^
6416 * | |
6417 * +---+-------+ +------+----+
6418 * | mainA | | mainB |
6419 * +-----------+ +-----------+
6420 *
6421 * We'll start relocating mainA, will find subA, append it and start
6422 * processing sub A recursively:
6423 *
6424 * +-----------+------+
6425 * | mainA | subA |
6426 * +-----------+------+
6427 *
6428 * At this point we notice that subB is used from subA, so we append it and
6429 * relocate (there are no further subcalls from subB):
6430 *
6431 * +-----------+------+------+
6432 * | mainA | subA | subB |
6433 * +-----------+------+------+
6434 *
6435 * At this point, we relocate subA calls, then go one level up and finish with
6436 * relocatin mainA calls. mainA is done.
6437 *
6438 * For mainB process is similar but results in different order. We start with
6439 * mainB and skip subA and subB, as mainB never calls them (at least
6440 * directly), but we see subC is needed, so we append and start processing it:
6441 *
6442 * +-----------+------+
6443 * | mainB | subC |
6444 * +-----------+------+
6445 * Now we see subC needs subB, so we go back to it, append and relocate it:
6446 *
6447 * +-----------+------+------+
6448 * | mainB | subC | subB |
6449 * +-----------+------+------+
6450 *
6451 * At this point we unwind recursion, relocate calls in subC, then in mainB.
6452 */
6453 static int
bpf_object__relocate_calls(struct bpf_object * obj,struct bpf_program * prog)6454 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6455 {
6456 struct bpf_program *subprog;
6457 int i, err;
6458
6459 /* mark all subprogs as not relocated (yet) within the context of
6460 * current main program
6461 */
6462 for (i = 0; i < obj->nr_programs; i++) {
6463 subprog = &obj->programs[i];
6464 if (!prog_is_subprog(obj, subprog))
6465 continue;
6466
6467 subprog->sub_insn_off = 0;
6468 }
6469
6470 err = bpf_object__reloc_code(obj, prog, prog);
6471 if (err)
6472 return err;
6473
6474 return 0;
6475 }
6476
6477 static void
bpf_object__free_relocs(struct bpf_object * obj)6478 bpf_object__free_relocs(struct bpf_object *obj)
6479 {
6480 struct bpf_program *prog;
6481 int i;
6482
6483 /* free up relocation descriptors */
6484 for (i = 0; i < obj->nr_programs; i++) {
6485 prog = &obj->programs[i];
6486 zfree(&prog->reloc_desc);
6487 prog->nr_reloc = 0;
6488 }
6489 }
6490
cmp_relocs(const void * _a,const void * _b)6491 static int cmp_relocs(const void *_a, const void *_b)
6492 {
6493 const struct reloc_desc *a = _a;
6494 const struct reloc_desc *b = _b;
6495
6496 if (a->insn_idx != b->insn_idx)
6497 return a->insn_idx < b->insn_idx ? -1 : 1;
6498
6499 /* no two relocations should have the same insn_idx, but ... */
6500 if (a->type != b->type)
6501 return a->type < b->type ? -1 : 1;
6502
6503 return 0;
6504 }
6505
bpf_object__sort_relos(struct bpf_object * obj)6506 static void bpf_object__sort_relos(struct bpf_object *obj)
6507 {
6508 int i;
6509
6510 for (i = 0; i < obj->nr_programs; i++) {
6511 struct bpf_program *p = &obj->programs[i];
6512
6513 if (!p->nr_reloc)
6514 continue;
6515
6516 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6517 }
6518 }
6519
6520 static int
bpf_object__relocate(struct bpf_object * obj,const char * targ_btf_path)6521 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6522 {
6523 struct bpf_program *prog;
6524 size_t i, j;
6525 int err;
6526
6527 if (obj->btf_ext) {
6528 err = bpf_object__relocate_core(obj, targ_btf_path);
6529 if (err) {
6530 pr_warn("failed to perform CO-RE relocations: %d\n",
6531 err);
6532 return err;
6533 }
6534 bpf_object__sort_relos(obj);
6535 }
6536
6537 /* Before relocating calls pre-process relocations and mark
6538 * few ld_imm64 instructions that points to subprogs.
6539 * Otherwise bpf_object__reloc_code() later would have to consider
6540 * all ld_imm64 insns as relocation candidates. That would
6541 * reduce relocation speed, since amount of find_prog_insn_relo()
6542 * would increase and most of them will fail to find a relo.
6543 */
6544 for (i = 0; i < obj->nr_programs; i++) {
6545 prog = &obj->programs[i];
6546 for (j = 0; j < prog->nr_reloc; j++) {
6547 struct reloc_desc *relo = &prog->reloc_desc[j];
6548 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6549
6550 /* mark the insn, so it's recognized by insn_is_pseudo_func() */
6551 if (relo->type == RELO_SUBPROG_ADDR)
6552 insn[0].src_reg = BPF_PSEUDO_FUNC;
6553 }
6554 }
6555
6556 /* relocate subprogram calls and append used subprograms to main
6557 * programs; each copy of subprogram code needs to be relocated
6558 * differently for each main program, because its code location might
6559 * have changed.
6560 * Append subprog relos to main programs to allow data relos to be
6561 * processed after text is completely relocated.
6562 */
6563 for (i = 0; i < obj->nr_programs; i++) {
6564 prog = &obj->programs[i];
6565 /* sub-program's sub-calls are relocated within the context of
6566 * its main program only
6567 */
6568 if (prog_is_subprog(obj, prog))
6569 continue;
6570 if (!prog->autoload)
6571 continue;
6572
6573 err = bpf_object__relocate_calls(obj, prog);
6574 if (err) {
6575 pr_warn("prog '%s': failed to relocate calls: %d\n",
6576 prog->name, err);
6577 return err;
6578 }
6579 }
6580 /* Process data relos for main programs */
6581 for (i = 0; i < obj->nr_programs; i++) {
6582 prog = &obj->programs[i];
6583 if (prog_is_subprog(obj, prog))
6584 continue;
6585 if (!prog->autoload)
6586 continue;
6587 err = bpf_object__relocate_data(obj, prog);
6588 if (err) {
6589 pr_warn("prog '%s': failed to relocate data references: %d\n",
6590 prog->name, err);
6591 return err;
6592 }
6593 }
6594
6595 return 0;
6596 }
6597
6598 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6599 Elf64_Shdr *shdr, Elf_Data *data);
6600
bpf_object__collect_map_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)6601 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6602 Elf64_Shdr *shdr, Elf_Data *data)
6603 {
6604 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6605 int i, j, nrels, new_sz;
6606 const struct btf_var_secinfo *vi = NULL;
6607 const struct btf_type *sec, *var, *def;
6608 struct bpf_map *map = NULL, *targ_map = NULL;
6609 struct bpf_program *targ_prog = NULL;
6610 bool is_prog_array, is_map_in_map;
6611 const struct btf_member *member;
6612 const char *name, *mname, *type;
6613 unsigned int moff;
6614 Elf64_Sym *sym;
6615 Elf64_Rel *rel;
6616 void *tmp;
6617
6618 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6619 return -EINVAL;
6620 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6621 if (!sec)
6622 return -EINVAL;
6623
6624 nrels = shdr->sh_size / shdr->sh_entsize;
6625 for (i = 0; i < nrels; i++) {
6626 rel = elf_rel_by_idx(data, i);
6627 if (!rel) {
6628 pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6629 return -LIBBPF_ERRNO__FORMAT;
6630 }
6631
6632 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6633 if (!sym) {
6634 pr_warn(".maps relo #%d: symbol %zx not found\n",
6635 i, (size_t)ELF64_R_SYM(rel->r_info));
6636 return -LIBBPF_ERRNO__FORMAT;
6637 }
6638 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6639
6640 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6641 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6642 (size_t)rel->r_offset, sym->st_name, name);
6643
6644 for (j = 0; j < obj->nr_maps; j++) {
6645 map = &obj->maps[j];
6646 if (map->sec_idx != obj->efile.btf_maps_shndx)
6647 continue;
6648
6649 vi = btf_var_secinfos(sec) + map->btf_var_idx;
6650 if (vi->offset <= rel->r_offset &&
6651 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6652 break;
6653 }
6654 if (j == obj->nr_maps) {
6655 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6656 i, name, (size_t)rel->r_offset);
6657 return -EINVAL;
6658 }
6659
6660 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
6661 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
6662 type = is_map_in_map ? "map" : "prog";
6663 if (is_map_in_map) {
6664 if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6665 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6666 i, name);
6667 return -LIBBPF_ERRNO__RELOC;
6668 }
6669 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6670 map->def.key_size != sizeof(int)) {
6671 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6672 i, map->name, sizeof(int));
6673 return -EINVAL;
6674 }
6675 targ_map = bpf_object__find_map_by_name(obj, name);
6676 if (!targ_map) {
6677 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
6678 i, name);
6679 return -ESRCH;
6680 }
6681 } else if (is_prog_array) {
6682 targ_prog = bpf_object__find_program_by_name(obj, name);
6683 if (!targ_prog) {
6684 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
6685 i, name);
6686 return -ESRCH;
6687 }
6688 if (targ_prog->sec_idx != sym->st_shndx ||
6689 targ_prog->sec_insn_off * 8 != sym->st_value ||
6690 prog_is_subprog(obj, targ_prog)) {
6691 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
6692 i, name);
6693 return -LIBBPF_ERRNO__RELOC;
6694 }
6695 } else {
6696 return -EINVAL;
6697 }
6698
6699 var = btf__type_by_id(obj->btf, vi->type);
6700 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6701 if (btf_vlen(def) == 0)
6702 return -EINVAL;
6703 member = btf_members(def) + btf_vlen(def) - 1;
6704 mname = btf__name_by_offset(obj->btf, member->name_off);
6705 if (strcmp(mname, "values"))
6706 return -EINVAL;
6707
6708 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6709 if (rel->r_offset - vi->offset < moff)
6710 return -EINVAL;
6711
6712 moff = rel->r_offset - vi->offset - moff;
6713 /* here we use BPF pointer size, which is always 64 bit, as we
6714 * are parsing ELF that was built for BPF target
6715 */
6716 if (moff % bpf_ptr_sz)
6717 return -EINVAL;
6718 moff /= bpf_ptr_sz;
6719 if (moff >= map->init_slots_sz) {
6720 new_sz = moff + 1;
6721 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6722 if (!tmp)
6723 return -ENOMEM;
6724 map->init_slots = tmp;
6725 memset(map->init_slots + map->init_slots_sz, 0,
6726 (new_sz - map->init_slots_sz) * host_ptr_sz);
6727 map->init_slots_sz = new_sz;
6728 }
6729 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
6730
6731 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
6732 i, map->name, moff, type, name);
6733 }
6734
6735 return 0;
6736 }
6737
bpf_object__collect_relos(struct bpf_object * obj)6738 static int bpf_object__collect_relos(struct bpf_object *obj)
6739 {
6740 int i, err;
6741
6742 for (i = 0; i < obj->efile.sec_cnt; i++) {
6743 struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6744 Elf64_Shdr *shdr;
6745 Elf_Data *data;
6746 int idx;
6747
6748 if (sec_desc->sec_type != SEC_RELO)
6749 continue;
6750
6751 shdr = sec_desc->shdr;
6752 data = sec_desc->data;
6753 idx = shdr->sh_info;
6754
6755 if (shdr->sh_type != SHT_REL) {
6756 pr_warn("internal error at %d\n", __LINE__);
6757 return -LIBBPF_ERRNO__INTERNAL;
6758 }
6759
6760 if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx)
6761 err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6762 else if (idx == obj->efile.btf_maps_shndx)
6763 err = bpf_object__collect_map_relos(obj, shdr, data);
6764 else
6765 err = bpf_object__collect_prog_relos(obj, shdr, data);
6766 if (err)
6767 return err;
6768 }
6769
6770 bpf_object__sort_relos(obj);
6771 return 0;
6772 }
6773
insn_is_helper_call(struct bpf_insn * insn,enum bpf_func_id * func_id)6774 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6775 {
6776 if (BPF_CLASS(insn->code) == BPF_JMP &&
6777 BPF_OP(insn->code) == BPF_CALL &&
6778 BPF_SRC(insn->code) == BPF_K &&
6779 insn->src_reg == 0 &&
6780 insn->dst_reg == 0) {
6781 *func_id = insn->imm;
6782 return true;
6783 }
6784 return false;
6785 }
6786
bpf_object__sanitize_prog(struct bpf_object * obj,struct bpf_program * prog)6787 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6788 {
6789 struct bpf_insn *insn = prog->insns;
6790 enum bpf_func_id func_id;
6791 int i;
6792
6793 if (obj->gen_loader)
6794 return 0;
6795
6796 for (i = 0; i < prog->insns_cnt; i++, insn++) {
6797 if (!insn_is_helper_call(insn, &func_id))
6798 continue;
6799
6800 /* on kernels that don't yet support
6801 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6802 * to bpf_probe_read() which works well for old kernels
6803 */
6804 switch (func_id) {
6805 case BPF_FUNC_probe_read_kernel:
6806 case BPF_FUNC_probe_read_user:
6807 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6808 insn->imm = BPF_FUNC_probe_read;
6809 break;
6810 case BPF_FUNC_probe_read_kernel_str:
6811 case BPF_FUNC_probe_read_user_str:
6812 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6813 insn->imm = BPF_FUNC_probe_read_str;
6814 break;
6815 default:
6816 break;
6817 }
6818 }
6819 return 0;
6820 }
6821
6822 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6823 int *btf_obj_fd, int *btf_type_id);
6824
6825 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
libbpf_prepare_prog_load(struct bpf_program * prog,struct bpf_prog_load_opts * opts,long cookie)6826 static int libbpf_prepare_prog_load(struct bpf_program *prog,
6827 struct bpf_prog_load_opts *opts, long cookie)
6828 {
6829 enum sec_def_flags def = cookie;
6830
6831 /* old kernels might not support specifying expected_attach_type */
6832 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6833 opts->expected_attach_type = 0;
6834
6835 if (def & SEC_SLEEPABLE)
6836 opts->prog_flags |= BPF_F_SLEEPABLE;
6837
6838 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
6839 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
6840
6841 /* special check for usdt to use uprobe_multi link */
6842 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) {
6843 /* for BPF_TRACE_UPROBE_MULTI, user might want to query expected_attach_type
6844 * in prog, and expected_attach_type we set in kernel is from opts, so we
6845 * update both.
6846 */
6847 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
6848 opts->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
6849 }
6850
6851 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
6852 int btf_obj_fd = 0, btf_type_id = 0, err;
6853 const char *attach_name;
6854
6855 attach_name = strchr(prog->sec_name, '/');
6856 if (!attach_name) {
6857 /* if BPF program is annotated with just SEC("fentry")
6858 * (or similar) without declaratively specifying
6859 * target, then it is expected that target will be
6860 * specified with bpf_program__set_attach_target() at
6861 * runtime before BPF object load step. If not, then
6862 * there is nothing to load into the kernel as BPF
6863 * verifier won't be able to validate BPF program
6864 * correctness anyways.
6865 */
6866 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
6867 prog->name);
6868 return -EINVAL;
6869 }
6870 attach_name++; /* skip over / */
6871
6872 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6873 if (err)
6874 return err;
6875
6876 /* cache resolved BTF FD and BTF type ID in the prog */
6877 prog->attach_btf_obj_fd = btf_obj_fd;
6878 prog->attach_btf_id = btf_type_id;
6879
6880 /* but by now libbpf common logic is not utilizing
6881 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
6882 * this callback is called after opts were populated by
6883 * libbpf, so this callback has to update opts explicitly here
6884 */
6885 opts->attach_btf_obj_fd = btf_obj_fd;
6886 opts->attach_btf_id = btf_type_id;
6887 }
6888 return 0;
6889 }
6890
6891 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
6892
bpf_object_load_prog(struct bpf_object * obj,struct bpf_program * prog,struct bpf_insn * insns,int insns_cnt,const char * license,__u32 kern_version,int * prog_fd)6893 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
6894 struct bpf_insn *insns, int insns_cnt,
6895 const char *license, __u32 kern_version, int *prog_fd)
6896 {
6897 LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
6898 const char *prog_name = NULL;
6899 char *cp, errmsg[STRERR_BUFSIZE];
6900 size_t log_buf_size = 0;
6901 char *log_buf = NULL, *tmp;
6902 int btf_fd, ret, err;
6903 bool own_log_buf = true;
6904 __u32 log_level = prog->log_level;
6905
6906 if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6907 /*
6908 * The program type must be set. Most likely we couldn't find a proper
6909 * section definition at load time, and thus we didn't infer the type.
6910 */
6911 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6912 prog->name, prog->sec_name);
6913 return -EINVAL;
6914 }
6915
6916 if (!insns || !insns_cnt)
6917 return -EINVAL;
6918
6919 if (kernel_supports(obj, FEAT_PROG_NAME))
6920 prog_name = prog->name;
6921 load_attr.attach_prog_fd = prog->attach_prog_fd;
6922 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6923 load_attr.attach_btf_id = prog->attach_btf_id;
6924 load_attr.kern_version = kern_version;
6925 load_attr.prog_ifindex = prog->prog_ifindex;
6926 load_attr.expected_attach_type = prog->expected_attach_type;
6927
6928 /* specify func_info/line_info only if kernel supports them */
6929 btf_fd = bpf_object__btf_fd(obj);
6930 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
6931 load_attr.prog_btf_fd = btf_fd;
6932 load_attr.func_info = prog->func_info;
6933 load_attr.func_info_rec_size = prog->func_info_rec_size;
6934 load_attr.func_info_cnt = prog->func_info_cnt;
6935 load_attr.line_info = prog->line_info;
6936 load_attr.line_info_rec_size = prog->line_info_rec_size;
6937 load_attr.line_info_cnt = prog->line_info_cnt;
6938 }
6939 load_attr.log_level = log_level;
6940 load_attr.prog_flags = prog->prog_flags;
6941 load_attr.fd_array = obj->fd_array;
6942
6943 /* adjust load_attr if sec_def provides custom preload callback */
6944 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
6945 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
6946 if (err < 0) {
6947 pr_warn("prog '%s': failed to prepare load attributes: %d\n",
6948 prog->name, err);
6949 return err;
6950 }
6951 insns = prog->insns;
6952 insns_cnt = prog->insns_cnt;
6953 }
6954
6955 if (obj->gen_loader) {
6956 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
6957 license, insns, insns_cnt, &load_attr,
6958 prog - obj->programs);
6959 *prog_fd = -1;
6960 return 0;
6961 }
6962
6963 retry_load:
6964 /* if log_level is zero, we don't request logs initially even if
6965 * custom log_buf is specified; if the program load fails, then we'll
6966 * bump log_level to 1 and use either custom log_buf or we'll allocate
6967 * our own and retry the load to get details on what failed
6968 */
6969 if (log_level) {
6970 if (prog->log_buf) {
6971 log_buf = prog->log_buf;
6972 log_buf_size = prog->log_size;
6973 own_log_buf = false;
6974 } else if (obj->log_buf) {
6975 log_buf = obj->log_buf;
6976 log_buf_size = obj->log_size;
6977 own_log_buf = false;
6978 } else {
6979 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
6980 tmp = realloc(log_buf, log_buf_size);
6981 if (!tmp) {
6982 ret = -ENOMEM;
6983 goto out;
6984 }
6985 log_buf = tmp;
6986 log_buf[0] = '\0';
6987 own_log_buf = true;
6988 }
6989 }
6990
6991 load_attr.log_buf = log_buf;
6992 load_attr.log_size = log_buf_size;
6993 load_attr.log_level = log_level;
6994
6995 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
6996 if (ret >= 0) {
6997 if (log_level && own_log_buf) {
6998 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6999 prog->name, log_buf);
7000 }
7001
7002 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
7003 struct bpf_map *map;
7004 int i;
7005
7006 for (i = 0; i < obj->nr_maps; i++) {
7007 map = &prog->obj->maps[i];
7008 if (map->libbpf_type != LIBBPF_MAP_RODATA)
7009 continue;
7010
7011 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
7012 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7013 pr_warn("prog '%s': failed to bind map '%s': %s\n",
7014 prog->name, map->real_name, cp);
7015 /* Don't fail hard if can't bind rodata. */
7016 }
7017 }
7018 }
7019
7020 *prog_fd = ret;
7021 ret = 0;
7022 goto out;
7023 }
7024
7025 if (log_level == 0) {
7026 log_level = 1;
7027 goto retry_load;
7028 }
7029 /* On ENOSPC, increase log buffer size and retry, unless custom
7030 * log_buf is specified.
7031 * Be careful to not overflow u32, though. Kernel's log buf size limit
7032 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7033 * multiply by 2 unless we are sure we'll fit within 32 bits.
7034 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7035 */
7036 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7037 goto retry_load;
7038
7039 ret = -errno;
7040
7041 /* post-process verifier log to improve error descriptions */
7042 fixup_verifier_log(prog, log_buf, log_buf_size);
7043
7044 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7045 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
7046 pr_perm_msg(ret);
7047
7048 if (own_log_buf && log_buf && log_buf[0] != '\0') {
7049 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7050 prog->name, log_buf);
7051 }
7052
7053 out:
7054 if (own_log_buf)
7055 free(log_buf);
7056 return ret;
7057 }
7058
find_prev_line(char * buf,char * cur)7059 static char *find_prev_line(char *buf, char *cur)
7060 {
7061 char *p;
7062
7063 if (cur == buf) /* end of a log buf */
7064 return NULL;
7065
7066 p = cur - 1;
7067 while (p - 1 >= buf && *(p - 1) != '\n')
7068 p--;
7069
7070 return p;
7071 }
7072
patch_log(char * buf,size_t buf_sz,size_t log_sz,char * orig,size_t orig_sz,const char * patch)7073 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7074 char *orig, size_t orig_sz, const char *patch)
7075 {
7076 /* size of the remaining log content to the right from the to-be-replaced part */
7077 size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7078 size_t patch_sz = strlen(patch);
7079
7080 if (patch_sz != orig_sz) {
7081 /* If patch line(s) are longer than original piece of verifier log,
7082 * shift log contents by (patch_sz - orig_sz) bytes to the right
7083 * starting from after to-be-replaced part of the log.
7084 *
7085 * If patch line(s) are shorter than original piece of verifier log,
7086 * shift log contents by (orig_sz - patch_sz) bytes to the left
7087 * starting from after to-be-replaced part of the log
7088 *
7089 * We need to be careful about not overflowing available
7090 * buf_sz capacity. If that's the case, we'll truncate the end
7091 * of the original log, as necessary.
7092 */
7093 if (patch_sz > orig_sz) {
7094 if (orig + patch_sz >= buf + buf_sz) {
7095 /* patch is big enough to cover remaining space completely */
7096 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7097 rem_sz = 0;
7098 } else if (patch_sz - orig_sz > buf_sz - log_sz) {
7099 /* patch causes part of remaining log to be truncated */
7100 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7101 }
7102 }
7103 /* shift remaining log to the right by calculated amount */
7104 memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7105 }
7106
7107 memcpy(orig, patch, patch_sz);
7108 }
7109
fixup_log_failed_core_relo(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7110 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7111 char *buf, size_t buf_sz, size_t log_sz,
7112 char *line1, char *line2, char *line3)
7113 {
7114 /* Expected log for failed and not properly guarded CO-RE relocation:
7115 * line1 -> 123: (85) call unknown#195896080
7116 * line2 -> invalid func unknown#195896080
7117 * line3 -> <anything else or end of buffer>
7118 *
7119 * "123" is the index of the instruction that was poisoned. We extract
7120 * instruction index to find corresponding CO-RE relocation and
7121 * replace this part of the log with more relevant information about
7122 * failed CO-RE relocation.
7123 */
7124 const struct bpf_core_relo *relo;
7125 struct bpf_core_spec spec;
7126 char patch[512], spec_buf[256];
7127 int insn_idx, err, spec_len;
7128
7129 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7130 return;
7131
7132 relo = find_relo_core(prog, insn_idx);
7133 if (!relo)
7134 return;
7135
7136 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7137 if (err)
7138 return;
7139
7140 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7141 snprintf(patch, sizeof(patch),
7142 "%d: <invalid CO-RE relocation>\n"
7143 "failed to resolve CO-RE relocation %s%s\n",
7144 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7145
7146 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7147 }
7148
fixup_log_missing_map_load(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7149 static void fixup_log_missing_map_load(struct bpf_program *prog,
7150 char *buf, size_t buf_sz, size_t log_sz,
7151 char *line1, char *line2, char *line3)
7152 {
7153 /* Expected log for failed and not properly guarded map reference:
7154 * line1 -> 123: (85) call unknown#2001000345
7155 * line2 -> invalid func unknown#2001000345
7156 * line3 -> <anything else or end of buffer>
7157 *
7158 * "123" is the index of the instruction that was poisoned.
7159 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7160 */
7161 struct bpf_object *obj = prog->obj;
7162 const struct bpf_map *map;
7163 int insn_idx, map_idx;
7164 char patch[128];
7165
7166 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7167 return;
7168
7169 map_idx -= POISON_LDIMM64_MAP_BASE;
7170 if (map_idx < 0 || map_idx >= obj->nr_maps)
7171 return;
7172 map = &obj->maps[map_idx];
7173
7174 snprintf(patch, sizeof(patch),
7175 "%d: <invalid BPF map reference>\n"
7176 "BPF map '%s' is referenced but wasn't created\n",
7177 insn_idx, map->name);
7178
7179 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7180 }
7181
fixup_log_missing_kfunc_call(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7182 static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7183 char *buf, size_t buf_sz, size_t log_sz,
7184 char *line1, char *line2, char *line3)
7185 {
7186 /* Expected log for failed and not properly guarded kfunc call:
7187 * line1 -> 123: (85) call unknown#2002000345
7188 * line2 -> invalid func unknown#2002000345
7189 * line3 -> <anything else or end of buffer>
7190 *
7191 * "123" is the index of the instruction that was poisoned.
7192 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7193 */
7194 struct bpf_object *obj = prog->obj;
7195 const struct extern_desc *ext;
7196 int insn_idx, ext_idx;
7197 char patch[128];
7198
7199 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7200 return;
7201
7202 ext_idx -= POISON_CALL_KFUNC_BASE;
7203 if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7204 return;
7205 ext = &obj->externs[ext_idx];
7206
7207 snprintf(patch, sizeof(patch),
7208 "%d: <invalid kfunc call>\n"
7209 "kfunc '%s' is referenced but wasn't resolved\n",
7210 insn_idx, ext->name);
7211
7212 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7213 }
7214
fixup_verifier_log(struct bpf_program * prog,char * buf,size_t buf_sz)7215 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7216 {
7217 /* look for familiar error patterns in last N lines of the log */
7218 const size_t max_last_line_cnt = 10;
7219 char *prev_line, *cur_line, *next_line;
7220 size_t log_sz;
7221 int i;
7222
7223 if (!buf)
7224 return;
7225
7226 log_sz = strlen(buf) + 1;
7227 next_line = buf + log_sz - 1;
7228
7229 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7230 cur_line = find_prev_line(buf, next_line);
7231 if (!cur_line)
7232 return;
7233
7234 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7235 prev_line = find_prev_line(buf, cur_line);
7236 if (!prev_line)
7237 continue;
7238
7239 /* failed CO-RE relocation case */
7240 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7241 prev_line, cur_line, next_line);
7242 return;
7243 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7244 prev_line = find_prev_line(buf, cur_line);
7245 if (!prev_line)
7246 continue;
7247
7248 /* reference to uncreated BPF map */
7249 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7250 prev_line, cur_line, next_line);
7251 return;
7252 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7253 prev_line = find_prev_line(buf, cur_line);
7254 if (!prev_line)
7255 continue;
7256
7257 /* reference to unresolved kfunc */
7258 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7259 prev_line, cur_line, next_line);
7260 return;
7261 }
7262 }
7263 }
7264
bpf_program_record_relos(struct bpf_program * prog)7265 static int bpf_program_record_relos(struct bpf_program *prog)
7266 {
7267 struct bpf_object *obj = prog->obj;
7268 int i;
7269
7270 for (i = 0; i < prog->nr_reloc; i++) {
7271 struct reloc_desc *relo = &prog->reloc_desc[i];
7272 struct extern_desc *ext = &obj->externs[relo->ext_idx];
7273 int kind;
7274
7275 switch (relo->type) {
7276 case RELO_EXTERN_LD64:
7277 if (ext->type != EXT_KSYM)
7278 continue;
7279 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7280 BTF_KIND_VAR : BTF_KIND_FUNC;
7281 bpf_gen__record_extern(obj->gen_loader, ext->name,
7282 ext->is_weak, !ext->ksym.type_id,
7283 true, kind, relo->insn_idx);
7284 break;
7285 case RELO_EXTERN_CALL:
7286 bpf_gen__record_extern(obj->gen_loader, ext->name,
7287 ext->is_weak, false, false, BTF_KIND_FUNC,
7288 relo->insn_idx);
7289 break;
7290 case RELO_CORE: {
7291 struct bpf_core_relo cr = {
7292 .insn_off = relo->insn_idx * 8,
7293 .type_id = relo->core_relo->type_id,
7294 .access_str_off = relo->core_relo->access_str_off,
7295 .kind = relo->core_relo->kind,
7296 };
7297
7298 bpf_gen__record_relo_core(obj->gen_loader, &cr);
7299 break;
7300 }
7301 default:
7302 continue;
7303 }
7304 }
7305 return 0;
7306 }
7307
7308 static int
bpf_object__load_progs(struct bpf_object * obj,int log_level)7309 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7310 {
7311 struct bpf_program *prog;
7312 size_t i;
7313 int err;
7314
7315 for (i = 0; i < obj->nr_programs; i++) {
7316 prog = &obj->programs[i];
7317 err = bpf_object__sanitize_prog(obj, prog);
7318 if (err)
7319 return err;
7320 }
7321
7322 for (i = 0; i < obj->nr_programs; i++) {
7323 prog = &obj->programs[i];
7324 if (prog_is_subprog(obj, prog))
7325 continue;
7326 if (!prog->autoload) {
7327 pr_debug("prog '%s': skipped loading\n", prog->name);
7328 continue;
7329 }
7330 prog->log_level |= log_level;
7331
7332 if (obj->gen_loader)
7333 bpf_program_record_relos(prog);
7334
7335 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7336 obj->license, obj->kern_version, &prog->fd);
7337 if (err) {
7338 pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7339 return err;
7340 }
7341 }
7342
7343 bpf_object__free_relocs(obj);
7344 return 0;
7345 }
7346
7347 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7348
bpf_object_init_progs(struct bpf_object * obj,const struct bpf_object_open_opts * opts)7349 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7350 {
7351 struct bpf_program *prog;
7352 int err;
7353
7354 bpf_object__for_each_program(prog, obj) {
7355 prog->sec_def = find_sec_def(prog->sec_name);
7356 if (!prog->sec_def) {
7357 /* couldn't guess, but user might manually specify */
7358 pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7359 prog->name, prog->sec_name);
7360 continue;
7361 }
7362
7363 prog->type = prog->sec_def->prog_type;
7364 prog->expected_attach_type = prog->sec_def->expected_attach_type;
7365
7366 /* sec_def can have custom callback which should be called
7367 * after bpf_program is initialized to adjust its properties
7368 */
7369 if (prog->sec_def->prog_setup_fn) {
7370 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7371 if (err < 0) {
7372 pr_warn("prog '%s': failed to initialize: %d\n",
7373 prog->name, err);
7374 return err;
7375 }
7376 }
7377 }
7378
7379 return 0;
7380 }
7381
bpf_object_open(const char * path,const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)7382 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7383 const struct bpf_object_open_opts *opts)
7384 {
7385 const char *obj_name, *kconfig, *btf_tmp_path;
7386 struct bpf_object *obj;
7387 char tmp_name[64];
7388 int err;
7389 char *log_buf;
7390 size_t log_size;
7391 __u32 log_level;
7392
7393 if (elf_version(EV_CURRENT) == EV_NONE) {
7394 pr_warn("failed to init libelf for %s\n",
7395 path ? : "(mem buf)");
7396 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7397 }
7398
7399 if (!OPTS_VALID(opts, bpf_object_open_opts))
7400 return ERR_PTR(-EINVAL);
7401
7402 obj_name = OPTS_GET(opts, object_name, NULL);
7403 if (obj_buf) {
7404 if (!obj_name) {
7405 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7406 (unsigned long)obj_buf,
7407 (unsigned long)obj_buf_sz);
7408 obj_name = tmp_name;
7409 }
7410 path = obj_name;
7411 pr_debug("loading object '%s' from buffer\n", obj_name);
7412 }
7413
7414 log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7415 log_size = OPTS_GET(opts, kernel_log_size, 0);
7416 log_level = OPTS_GET(opts, kernel_log_level, 0);
7417 if (log_size > UINT_MAX)
7418 return ERR_PTR(-EINVAL);
7419 if (log_size && !log_buf)
7420 return ERR_PTR(-EINVAL);
7421
7422 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7423 if (IS_ERR(obj))
7424 return obj;
7425
7426 obj->log_buf = log_buf;
7427 obj->log_size = log_size;
7428 obj->log_level = log_level;
7429
7430 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7431 if (btf_tmp_path) {
7432 if (strlen(btf_tmp_path) >= PATH_MAX) {
7433 err = -ENAMETOOLONG;
7434 goto out;
7435 }
7436 obj->btf_custom_path = strdup(btf_tmp_path);
7437 if (!obj->btf_custom_path) {
7438 err = -ENOMEM;
7439 goto out;
7440 }
7441 }
7442
7443 kconfig = OPTS_GET(opts, kconfig, NULL);
7444 if (kconfig) {
7445 obj->kconfig = strdup(kconfig);
7446 if (!obj->kconfig) {
7447 err = -ENOMEM;
7448 goto out;
7449 }
7450 }
7451
7452 err = bpf_object__elf_init(obj);
7453 err = err ? : bpf_object__check_endianness(obj);
7454 err = err ? : bpf_object__elf_collect(obj);
7455 err = err ? : bpf_object__collect_externs(obj);
7456 err = err ? : bpf_object_fixup_btf(obj);
7457 err = err ? : bpf_object__init_maps(obj, opts);
7458 err = err ? : bpf_object_init_progs(obj, opts);
7459 err = err ? : bpf_object__collect_relos(obj);
7460 if (err)
7461 goto out;
7462
7463 bpf_object__elf_finish(obj);
7464
7465 return obj;
7466 out:
7467 bpf_object__close(obj);
7468 return ERR_PTR(err);
7469 }
7470
7471 struct bpf_object *
bpf_object__open_file(const char * path,const struct bpf_object_open_opts * opts)7472 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7473 {
7474 if (!path)
7475 return libbpf_err_ptr(-EINVAL);
7476
7477 pr_debug("loading %s\n", path);
7478
7479 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7480 }
7481
bpf_object__open(const char * path)7482 struct bpf_object *bpf_object__open(const char *path)
7483 {
7484 return bpf_object__open_file(path, NULL);
7485 }
7486
7487 struct bpf_object *
bpf_object__open_mem(const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)7488 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7489 const struct bpf_object_open_opts *opts)
7490 {
7491 if (!obj_buf || obj_buf_sz == 0)
7492 return libbpf_err_ptr(-EINVAL);
7493
7494 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7495 }
7496
bpf_object_unload(struct bpf_object * obj)7497 static int bpf_object_unload(struct bpf_object *obj)
7498 {
7499 size_t i;
7500
7501 if (!obj)
7502 return libbpf_err(-EINVAL);
7503
7504 for (i = 0; i < obj->nr_maps; i++) {
7505 zclose(obj->maps[i].fd);
7506 if (obj->maps[i].st_ops)
7507 zfree(&obj->maps[i].st_ops->kern_vdata);
7508 }
7509
7510 for (i = 0; i < obj->nr_programs; i++)
7511 bpf_program__unload(&obj->programs[i]);
7512
7513 return 0;
7514 }
7515
bpf_object__sanitize_maps(struct bpf_object * obj)7516 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7517 {
7518 struct bpf_map *m;
7519
7520 bpf_object__for_each_map(m, obj) {
7521 if (!bpf_map__is_internal(m))
7522 continue;
7523 if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7524 m->def.map_flags &= ~BPF_F_MMAPABLE;
7525 }
7526
7527 return 0;
7528 }
7529
libbpf_kallsyms_parse(kallsyms_cb_t cb,void * ctx)7530 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7531 {
7532 char sym_type, sym_name[500];
7533 unsigned long long sym_addr;
7534 int ret, err = 0;
7535 FILE *f;
7536
7537 f = fopen("/proc/kallsyms", "re");
7538 if (!f) {
7539 err = -errno;
7540 pr_warn("failed to open /proc/kallsyms: %d\n", err);
7541 return err;
7542 }
7543
7544 while (true) {
7545 ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7546 &sym_addr, &sym_type, sym_name);
7547 if (ret == EOF && feof(f))
7548 break;
7549 if (ret != 3) {
7550 pr_warn("failed to read kallsyms entry: %d\n", ret);
7551 err = -EINVAL;
7552 break;
7553 }
7554
7555 err = cb(sym_addr, sym_type, sym_name, ctx);
7556 if (err)
7557 break;
7558 }
7559
7560 fclose(f);
7561 return err;
7562 }
7563
kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)7564 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
7565 const char *sym_name, void *ctx)
7566 {
7567 struct bpf_object *obj = ctx;
7568 const struct btf_type *t;
7569 struct extern_desc *ext;
7570
7571 ext = find_extern_by_name(obj, sym_name);
7572 if (!ext || ext->type != EXT_KSYM)
7573 return 0;
7574
7575 t = btf__type_by_id(obj->btf, ext->btf_id);
7576 if (!btf_is_var(t))
7577 return 0;
7578
7579 if (ext->is_set && ext->ksym.addr != sym_addr) {
7580 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
7581 sym_name, ext->ksym.addr, sym_addr);
7582 return -EINVAL;
7583 }
7584 if (!ext->is_set) {
7585 ext->is_set = true;
7586 ext->ksym.addr = sym_addr;
7587 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
7588 }
7589 return 0;
7590 }
7591
bpf_object__read_kallsyms_file(struct bpf_object * obj)7592 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7593 {
7594 return libbpf_kallsyms_parse(kallsyms_cb, obj);
7595 }
7596
find_ksym_btf_id(struct bpf_object * obj,const char * ksym_name,__u16 kind,struct btf ** res_btf,struct module_btf ** res_mod_btf)7597 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7598 __u16 kind, struct btf **res_btf,
7599 struct module_btf **res_mod_btf)
7600 {
7601 struct module_btf *mod_btf;
7602 struct btf *btf;
7603 int i, id, err;
7604
7605 btf = obj->btf_vmlinux;
7606 mod_btf = NULL;
7607 id = btf__find_by_name_kind(btf, ksym_name, kind);
7608
7609 if (id == -ENOENT) {
7610 err = load_module_btfs(obj);
7611 if (err)
7612 return err;
7613
7614 for (i = 0; i < obj->btf_module_cnt; i++) {
7615 /* we assume module_btf's BTF FD is always >0 */
7616 mod_btf = &obj->btf_modules[i];
7617 btf = mod_btf->btf;
7618 id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7619 if (id != -ENOENT)
7620 break;
7621 }
7622 }
7623 if (id <= 0)
7624 return -ESRCH;
7625
7626 *res_btf = btf;
7627 *res_mod_btf = mod_btf;
7628 return id;
7629 }
7630
bpf_object__resolve_ksym_var_btf_id(struct bpf_object * obj,struct extern_desc * ext)7631 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7632 struct extern_desc *ext)
7633 {
7634 const struct btf_type *targ_var, *targ_type;
7635 __u32 targ_type_id, local_type_id;
7636 struct module_btf *mod_btf = NULL;
7637 const char *targ_var_name;
7638 struct btf *btf = NULL;
7639 int id, err;
7640
7641 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7642 if (id < 0) {
7643 if (id == -ESRCH && ext->is_weak)
7644 return 0;
7645 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7646 ext->name);
7647 return id;
7648 }
7649
7650 /* find local type_id */
7651 local_type_id = ext->ksym.type_id;
7652
7653 /* find target type_id */
7654 targ_var = btf__type_by_id(btf, id);
7655 targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7656 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7657
7658 err = bpf_core_types_are_compat(obj->btf, local_type_id,
7659 btf, targ_type_id);
7660 if (err <= 0) {
7661 const struct btf_type *local_type;
7662 const char *targ_name, *local_name;
7663
7664 local_type = btf__type_by_id(obj->btf, local_type_id);
7665 local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7666 targ_name = btf__name_by_offset(btf, targ_type->name_off);
7667
7668 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7669 ext->name, local_type_id,
7670 btf_kind_str(local_type), local_name, targ_type_id,
7671 btf_kind_str(targ_type), targ_name);
7672 return -EINVAL;
7673 }
7674
7675 ext->is_set = true;
7676 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7677 ext->ksym.kernel_btf_id = id;
7678 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7679 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7680
7681 return 0;
7682 }
7683
bpf_object__resolve_ksym_func_btf_id(struct bpf_object * obj,struct extern_desc * ext)7684 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7685 struct extern_desc *ext)
7686 {
7687 int local_func_proto_id, kfunc_proto_id, kfunc_id;
7688 struct module_btf *mod_btf = NULL;
7689 const struct btf_type *kern_func;
7690 struct btf *kern_btf = NULL;
7691 int ret;
7692
7693 local_func_proto_id = ext->ksym.type_id;
7694
7695 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
7696 &mod_btf);
7697 if (kfunc_id < 0) {
7698 if (kfunc_id == -ESRCH && ext->is_weak)
7699 return 0;
7700 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7701 ext->name);
7702 return kfunc_id;
7703 }
7704
7705 kern_func = btf__type_by_id(kern_btf, kfunc_id);
7706 kfunc_proto_id = kern_func->type;
7707
7708 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7709 kern_btf, kfunc_proto_id);
7710 if (ret <= 0) {
7711 if (ext->is_weak)
7712 return 0;
7713
7714 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
7715 ext->name, local_func_proto_id,
7716 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
7717 return -EINVAL;
7718 }
7719
7720 /* set index for module BTF fd in fd_array, if unset */
7721 if (mod_btf && !mod_btf->fd_array_idx) {
7722 /* insn->off is s16 */
7723 if (obj->fd_array_cnt == INT16_MAX) {
7724 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7725 ext->name, mod_btf->fd_array_idx);
7726 return -E2BIG;
7727 }
7728 /* Cannot use index 0 for module BTF fd */
7729 if (!obj->fd_array_cnt)
7730 obj->fd_array_cnt = 1;
7731
7732 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7733 obj->fd_array_cnt + 1);
7734 if (ret)
7735 return ret;
7736 mod_btf->fd_array_idx = obj->fd_array_cnt;
7737 /* we assume module BTF FD is always >0 */
7738 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7739 }
7740
7741 ext->is_set = true;
7742 ext->ksym.kernel_btf_id = kfunc_id;
7743 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7744 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
7745 * populates FD into ld_imm64 insn when it's used to point to kfunc.
7746 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
7747 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
7748 */
7749 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7750 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
7751 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
7752
7753 return 0;
7754 }
7755
bpf_object__resolve_ksyms_btf_id(struct bpf_object * obj)7756 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7757 {
7758 const struct btf_type *t;
7759 struct extern_desc *ext;
7760 int i, err;
7761
7762 for (i = 0; i < obj->nr_extern; i++) {
7763 ext = &obj->externs[i];
7764 if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7765 continue;
7766
7767 if (obj->gen_loader) {
7768 ext->is_set = true;
7769 ext->ksym.kernel_btf_obj_fd = 0;
7770 ext->ksym.kernel_btf_id = 0;
7771 continue;
7772 }
7773 t = btf__type_by_id(obj->btf, ext->btf_id);
7774 if (btf_is_var(t))
7775 err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7776 else
7777 err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7778 if (err)
7779 return err;
7780 }
7781 return 0;
7782 }
7783
bpf_object__resolve_externs(struct bpf_object * obj,const char * extra_kconfig)7784 static int bpf_object__resolve_externs(struct bpf_object *obj,
7785 const char *extra_kconfig)
7786 {
7787 bool need_config = false, need_kallsyms = false;
7788 bool need_vmlinux_btf = false;
7789 struct extern_desc *ext;
7790 void *kcfg_data = NULL;
7791 int err, i;
7792
7793 if (obj->nr_extern == 0)
7794 return 0;
7795
7796 if (obj->kconfig_map_idx >= 0)
7797 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7798
7799 for (i = 0; i < obj->nr_extern; i++) {
7800 ext = &obj->externs[i];
7801
7802 if (ext->type == EXT_KSYM) {
7803 if (ext->ksym.type_id)
7804 need_vmlinux_btf = true;
7805 else
7806 need_kallsyms = true;
7807 continue;
7808 } else if (ext->type == EXT_KCFG) {
7809 void *ext_ptr = kcfg_data + ext->kcfg.data_off;
7810 __u64 value = 0;
7811
7812 /* Kconfig externs need actual /proc/config.gz */
7813 if (str_has_pfx(ext->name, "CONFIG_")) {
7814 need_config = true;
7815 continue;
7816 }
7817
7818 /* Virtual kcfg externs are customly handled by libbpf */
7819 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7820 value = get_kernel_version();
7821 if (!value) {
7822 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
7823 return -EINVAL;
7824 }
7825 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
7826 value = kernel_supports(obj, FEAT_BPF_COOKIE);
7827 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
7828 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
7829 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
7830 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
7831 * __kconfig externs, where LINUX_ ones are virtual and filled out
7832 * customly by libbpf (their values don't come from Kconfig).
7833 * If LINUX_xxx variable is not recognized by libbpf, but is marked
7834 * __weak, it defaults to zero value, just like for CONFIG_xxx
7835 * externs.
7836 */
7837 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
7838 return -EINVAL;
7839 }
7840
7841 err = set_kcfg_value_num(ext, ext_ptr, value);
7842 if (err)
7843 return err;
7844 pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
7845 ext->name, (long long)value);
7846 } else {
7847 pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
7848 return -EINVAL;
7849 }
7850 }
7851 if (need_config && extra_kconfig) {
7852 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7853 if (err)
7854 return -EINVAL;
7855 need_config = false;
7856 for (i = 0; i < obj->nr_extern; i++) {
7857 ext = &obj->externs[i];
7858 if (ext->type == EXT_KCFG && !ext->is_set) {
7859 need_config = true;
7860 break;
7861 }
7862 }
7863 }
7864 if (need_config) {
7865 err = bpf_object__read_kconfig_file(obj, kcfg_data);
7866 if (err)
7867 return -EINVAL;
7868 }
7869 if (need_kallsyms) {
7870 err = bpf_object__read_kallsyms_file(obj);
7871 if (err)
7872 return -EINVAL;
7873 }
7874 if (need_vmlinux_btf) {
7875 err = bpf_object__resolve_ksyms_btf_id(obj);
7876 if (err)
7877 return -EINVAL;
7878 }
7879 for (i = 0; i < obj->nr_extern; i++) {
7880 ext = &obj->externs[i];
7881
7882 if (!ext->is_set && !ext->is_weak) {
7883 pr_warn("extern '%s' (strong): not resolved\n", ext->name);
7884 return -ESRCH;
7885 } else if (!ext->is_set) {
7886 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
7887 ext->name);
7888 }
7889 }
7890
7891 return 0;
7892 }
7893
bpf_map_prepare_vdata(const struct bpf_map * map)7894 static void bpf_map_prepare_vdata(const struct bpf_map *map)
7895 {
7896 struct bpf_struct_ops *st_ops;
7897 __u32 i;
7898
7899 st_ops = map->st_ops;
7900 for (i = 0; i < btf_vlen(st_ops->type); i++) {
7901 struct bpf_program *prog = st_ops->progs[i];
7902 void *kern_data;
7903 int prog_fd;
7904
7905 if (!prog)
7906 continue;
7907
7908 prog_fd = bpf_program__fd(prog);
7909 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
7910 *(unsigned long *)kern_data = prog_fd;
7911 }
7912 }
7913
bpf_object_prepare_struct_ops(struct bpf_object * obj)7914 static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
7915 {
7916 int i;
7917
7918 for (i = 0; i < obj->nr_maps; i++)
7919 if (bpf_map__is_struct_ops(&obj->maps[i]))
7920 bpf_map_prepare_vdata(&obj->maps[i]);
7921
7922 return 0;
7923 }
7924
bpf_object_load(struct bpf_object * obj,int extra_log_level,const char * target_btf_path)7925 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
7926 {
7927 int err, i;
7928
7929 if (!obj)
7930 return libbpf_err(-EINVAL);
7931
7932 if (obj->loaded) {
7933 pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7934 return libbpf_err(-EINVAL);
7935 }
7936
7937 if (obj->gen_loader)
7938 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
7939
7940 err = bpf_object__probe_loading(obj);
7941 err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7942 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7943 err = err ? : bpf_object__sanitize_and_load_btf(obj);
7944 err = err ? : bpf_object__sanitize_maps(obj);
7945 err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7946 err = err ? : bpf_object__create_maps(obj);
7947 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
7948 err = err ? : bpf_object__load_progs(obj, extra_log_level);
7949 err = err ? : bpf_object_init_prog_arrays(obj);
7950 err = err ? : bpf_object_prepare_struct_ops(obj);
7951
7952 if (obj->gen_loader) {
7953 /* reset FDs */
7954 if (obj->btf)
7955 btf__set_fd(obj->btf, -1);
7956 for (i = 0; i < obj->nr_maps; i++)
7957 obj->maps[i].fd = -1;
7958 if (!err)
7959 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
7960 }
7961
7962 /* clean up fd_array */
7963 zfree(&obj->fd_array);
7964
7965 /* clean up module BTFs */
7966 for (i = 0; i < obj->btf_module_cnt; i++) {
7967 close(obj->btf_modules[i].fd);
7968 btf__free(obj->btf_modules[i].btf);
7969 free(obj->btf_modules[i].name);
7970 }
7971 free(obj->btf_modules);
7972
7973 /* clean up vmlinux BTF */
7974 btf__free(obj->btf_vmlinux);
7975 obj->btf_vmlinux = NULL;
7976
7977 obj->loaded = true; /* doesn't matter if successfully or not */
7978
7979 if (err)
7980 goto out;
7981
7982 return 0;
7983 out:
7984 /* unpin any maps that were auto-pinned during load */
7985 for (i = 0; i < obj->nr_maps; i++)
7986 if (obj->maps[i].pinned && !obj->maps[i].reused)
7987 bpf_map__unpin(&obj->maps[i], NULL);
7988
7989 bpf_object_unload(obj);
7990 pr_warn("failed to load object '%s'\n", obj->path);
7991 return libbpf_err(err);
7992 }
7993
bpf_object__load(struct bpf_object * obj)7994 int bpf_object__load(struct bpf_object *obj)
7995 {
7996 return bpf_object_load(obj, 0, NULL);
7997 }
7998
make_parent_dir(const char * path)7999 static int make_parent_dir(const char *path)
8000 {
8001 char *cp, errmsg[STRERR_BUFSIZE];
8002 char *dname, *dir;
8003 int err = 0;
8004
8005 dname = strdup(path);
8006 if (dname == NULL)
8007 return -ENOMEM;
8008
8009 dir = dirname(dname);
8010 if (mkdir(dir, 0700) && errno != EEXIST)
8011 err = -errno;
8012
8013 free(dname);
8014 if (err) {
8015 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8016 pr_warn("failed to mkdir %s: %s\n", path, cp);
8017 }
8018 return err;
8019 }
8020
check_path(const char * path)8021 static int check_path(const char *path)
8022 {
8023 char *cp, errmsg[STRERR_BUFSIZE];
8024 struct statfs st_fs;
8025 char *dname, *dir;
8026 int err = 0;
8027
8028 if (path == NULL)
8029 return -EINVAL;
8030
8031 dname = strdup(path);
8032 if (dname == NULL)
8033 return -ENOMEM;
8034
8035 dir = dirname(dname);
8036 if (statfs(dir, &st_fs)) {
8037 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
8038 pr_warn("failed to statfs %s: %s\n", dir, cp);
8039 err = -errno;
8040 }
8041 free(dname);
8042
8043 if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8044 pr_warn("specified path %s is not on BPF FS\n", path);
8045 err = -EINVAL;
8046 }
8047
8048 return err;
8049 }
8050
bpf_program__pin(struct bpf_program * prog,const char * path)8051 int bpf_program__pin(struct bpf_program *prog, const char *path)
8052 {
8053 char *cp, errmsg[STRERR_BUFSIZE];
8054 int err;
8055
8056 if (prog->fd < 0) {
8057 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8058 return libbpf_err(-EINVAL);
8059 }
8060
8061 err = make_parent_dir(path);
8062 if (err)
8063 return libbpf_err(err);
8064
8065 err = check_path(path);
8066 if (err)
8067 return libbpf_err(err);
8068
8069 if (bpf_obj_pin(prog->fd, path)) {
8070 err = -errno;
8071 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
8072 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
8073 return libbpf_err(err);
8074 }
8075
8076 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8077 return 0;
8078 }
8079
bpf_program__unpin(struct bpf_program * prog,const char * path)8080 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8081 {
8082 int err;
8083
8084 if (prog->fd < 0) {
8085 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8086 return libbpf_err(-EINVAL);
8087 }
8088
8089 err = check_path(path);
8090 if (err)
8091 return libbpf_err(err);
8092
8093 err = unlink(path);
8094 if (err)
8095 return libbpf_err(-errno);
8096
8097 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8098 return 0;
8099 }
8100
bpf_map__pin(struct bpf_map * map,const char * path)8101 int bpf_map__pin(struct bpf_map *map, const char *path)
8102 {
8103 char *cp, errmsg[STRERR_BUFSIZE];
8104 int err;
8105
8106 if (map == NULL) {
8107 pr_warn("invalid map pointer\n");
8108 return libbpf_err(-EINVAL);
8109 }
8110
8111 if (map->pin_path) {
8112 if (path && strcmp(path, map->pin_path)) {
8113 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8114 bpf_map__name(map), map->pin_path, path);
8115 return libbpf_err(-EINVAL);
8116 } else if (map->pinned) {
8117 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8118 bpf_map__name(map), map->pin_path);
8119 return 0;
8120 }
8121 } else {
8122 if (!path) {
8123 pr_warn("missing a path to pin map '%s' at\n",
8124 bpf_map__name(map));
8125 return libbpf_err(-EINVAL);
8126 } else if (map->pinned) {
8127 pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8128 return libbpf_err(-EEXIST);
8129 }
8130
8131 map->pin_path = strdup(path);
8132 if (!map->pin_path) {
8133 err = -errno;
8134 goto out_err;
8135 }
8136 }
8137
8138 err = make_parent_dir(map->pin_path);
8139 if (err)
8140 return libbpf_err(err);
8141
8142 err = check_path(map->pin_path);
8143 if (err)
8144 return libbpf_err(err);
8145
8146 if (bpf_obj_pin(map->fd, map->pin_path)) {
8147 err = -errno;
8148 goto out_err;
8149 }
8150
8151 map->pinned = true;
8152 pr_debug("pinned map '%s'\n", map->pin_path);
8153
8154 return 0;
8155
8156 out_err:
8157 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8158 pr_warn("failed to pin map: %s\n", cp);
8159 return libbpf_err(err);
8160 }
8161
bpf_map__unpin(struct bpf_map * map,const char * path)8162 int bpf_map__unpin(struct bpf_map *map, const char *path)
8163 {
8164 int err;
8165
8166 if (map == NULL) {
8167 pr_warn("invalid map pointer\n");
8168 return libbpf_err(-EINVAL);
8169 }
8170
8171 if (map->pin_path) {
8172 if (path && strcmp(path, map->pin_path)) {
8173 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8174 bpf_map__name(map), map->pin_path, path);
8175 return libbpf_err(-EINVAL);
8176 }
8177 path = map->pin_path;
8178 } else if (!path) {
8179 pr_warn("no path to unpin map '%s' from\n",
8180 bpf_map__name(map));
8181 return libbpf_err(-EINVAL);
8182 }
8183
8184 err = check_path(path);
8185 if (err)
8186 return libbpf_err(err);
8187
8188 err = unlink(path);
8189 if (err != 0)
8190 return libbpf_err(-errno);
8191
8192 map->pinned = false;
8193 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8194
8195 return 0;
8196 }
8197
bpf_map__set_pin_path(struct bpf_map * map,const char * path)8198 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8199 {
8200 char *new = NULL;
8201
8202 if (path) {
8203 new = strdup(path);
8204 if (!new)
8205 return libbpf_err(-errno);
8206 }
8207
8208 free(map->pin_path);
8209 map->pin_path = new;
8210 return 0;
8211 }
8212
8213 __alias(bpf_map__pin_path)
8214 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8215
bpf_map__pin_path(const struct bpf_map * map)8216 const char *bpf_map__pin_path(const struct bpf_map *map)
8217 {
8218 return map->pin_path;
8219 }
8220
bpf_map__is_pinned(const struct bpf_map * map)8221 bool bpf_map__is_pinned(const struct bpf_map *map)
8222 {
8223 return map->pinned;
8224 }
8225
sanitize_pin_path(char * s)8226 static void sanitize_pin_path(char *s)
8227 {
8228 /* bpffs disallows periods in path names */
8229 while (*s) {
8230 if (*s == '.')
8231 *s = '_';
8232 s++;
8233 }
8234 }
8235
bpf_object__pin_maps(struct bpf_object * obj,const char * path)8236 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8237 {
8238 struct bpf_map *map;
8239 int err;
8240
8241 if (!obj)
8242 return libbpf_err(-ENOENT);
8243
8244 if (!obj->loaded) {
8245 pr_warn("object not yet loaded; load it first\n");
8246 return libbpf_err(-ENOENT);
8247 }
8248
8249 bpf_object__for_each_map(map, obj) {
8250 char *pin_path = NULL;
8251 char buf[PATH_MAX];
8252
8253 if (!map->autocreate)
8254 continue;
8255
8256 if (path) {
8257 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8258 if (err)
8259 goto err_unpin_maps;
8260 sanitize_pin_path(buf);
8261 pin_path = buf;
8262 } else if (!map->pin_path) {
8263 continue;
8264 }
8265
8266 err = bpf_map__pin(map, pin_path);
8267 if (err)
8268 goto err_unpin_maps;
8269 }
8270
8271 return 0;
8272
8273 err_unpin_maps:
8274 while ((map = bpf_object__prev_map(obj, map))) {
8275 if (!map->pin_path)
8276 continue;
8277
8278 bpf_map__unpin(map, NULL);
8279 }
8280
8281 return libbpf_err(err);
8282 }
8283
bpf_object__unpin_maps(struct bpf_object * obj,const char * path)8284 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8285 {
8286 struct bpf_map *map;
8287 int err;
8288
8289 if (!obj)
8290 return libbpf_err(-ENOENT);
8291
8292 bpf_object__for_each_map(map, obj) {
8293 char *pin_path = NULL;
8294 char buf[PATH_MAX];
8295
8296 if (path) {
8297 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8298 if (err)
8299 return libbpf_err(err);
8300 sanitize_pin_path(buf);
8301 pin_path = buf;
8302 } else if (!map->pin_path) {
8303 continue;
8304 }
8305
8306 err = bpf_map__unpin(map, pin_path);
8307 if (err)
8308 return libbpf_err(err);
8309 }
8310
8311 return 0;
8312 }
8313
bpf_object__pin_programs(struct bpf_object * obj,const char * path)8314 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8315 {
8316 struct bpf_program *prog;
8317 char buf[PATH_MAX];
8318 int err;
8319
8320 if (!obj)
8321 return libbpf_err(-ENOENT);
8322
8323 if (!obj->loaded) {
8324 pr_warn("object not yet loaded; load it first\n");
8325 return libbpf_err(-ENOENT);
8326 }
8327
8328 bpf_object__for_each_program(prog, obj) {
8329 err = pathname_concat(buf, sizeof(buf), path, prog->name);
8330 if (err)
8331 goto err_unpin_programs;
8332
8333 err = bpf_program__pin(prog, buf);
8334 if (err)
8335 goto err_unpin_programs;
8336 }
8337
8338 return 0;
8339
8340 err_unpin_programs:
8341 while ((prog = bpf_object__prev_program(obj, prog))) {
8342 if (pathname_concat(buf, sizeof(buf), path, prog->name))
8343 continue;
8344
8345 bpf_program__unpin(prog, buf);
8346 }
8347
8348 return libbpf_err(err);
8349 }
8350
bpf_object__unpin_programs(struct bpf_object * obj,const char * path)8351 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8352 {
8353 struct bpf_program *prog;
8354 int err;
8355
8356 if (!obj)
8357 return libbpf_err(-ENOENT);
8358
8359 bpf_object__for_each_program(prog, obj) {
8360 char buf[PATH_MAX];
8361
8362 err = pathname_concat(buf, sizeof(buf), path, prog->name);
8363 if (err)
8364 return libbpf_err(err);
8365
8366 err = bpf_program__unpin(prog, buf);
8367 if (err)
8368 return libbpf_err(err);
8369 }
8370
8371 return 0;
8372 }
8373
bpf_object__pin(struct bpf_object * obj,const char * path)8374 int bpf_object__pin(struct bpf_object *obj, const char *path)
8375 {
8376 int err;
8377
8378 err = bpf_object__pin_maps(obj, path);
8379 if (err)
8380 return libbpf_err(err);
8381
8382 err = bpf_object__pin_programs(obj, path);
8383 if (err) {
8384 bpf_object__unpin_maps(obj, path);
8385 return libbpf_err(err);
8386 }
8387
8388 return 0;
8389 }
8390
bpf_object__unpin(struct bpf_object * obj,const char * path)8391 int bpf_object__unpin(struct bpf_object *obj, const char *path)
8392 {
8393 int err;
8394
8395 err = bpf_object__unpin_programs(obj, path);
8396 if (err)
8397 return libbpf_err(err);
8398
8399 err = bpf_object__unpin_maps(obj, path);
8400 if (err)
8401 return libbpf_err(err);
8402
8403 return 0;
8404 }
8405
bpf_map__destroy(struct bpf_map * map)8406 static void bpf_map__destroy(struct bpf_map *map)
8407 {
8408 if (map->inner_map) {
8409 bpf_map__destroy(map->inner_map);
8410 zfree(&map->inner_map);
8411 }
8412
8413 zfree(&map->init_slots);
8414 map->init_slots_sz = 0;
8415
8416 if (map->mmaped) {
8417 size_t mmap_sz;
8418
8419 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
8420 munmap(map->mmaped, mmap_sz);
8421 map->mmaped = NULL;
8422 }
8423
8424 if (map->st_ops) {
8425 zfree(&map->st_ops->data);
8426 zfree(&map->st_ops->progs);
8427 zfree(&map->st_ops->kern_func_off);
8428 zfree(&map->st_ops);
8429 }
8430
8431 zfree(&map->name);
8432 zfree(&map->real_name);
8433 zfree(&map->pin_path);
8434
8435 if (map->fd >= 0)
8436 zclose(map->fd);
8437 }
8438
bpf_object__close(struct bpf_object * obj)8439 void bpf_object__close(struct bpf_object *obj)
8440 {
8441 size_t i;
8442
8443 if (IS_ERR_OR_NULL(obj))
8444 return;
8445
8446 usdt_manager_free(obj->usdt_man);
8447 obj->usdt_man = NULL;
8448
8449 bpf_gen__free(obj->gen_loader);
8450 bpf_object__elf_finish(obj);
8451 bpf_object_unload(obj);
8452 btf__free(obj->btf);
8453 btf__free(obj->btf_vmlinux);
8454 btf_ext__free(obj->btf_ext);
8455
8456 for (i = 0; i < obj->nr_maps; i++)
8457 bpf_map__destroy(&obj->maps[i]);
8458
8459 zfree(&obj->btf_custom_path);
8460 zfree(&obj->kconfig);
8461
8462 for (i = 0; i < obj->nr_extern; i++) {
8463 zfree(&obj->externs[i].name);
8464 zfree(&obj->externs[i].essent_name);
8465 }
8466
8467 zfree(&obj->externs);
8468 obj->nr_extern = 0;
8469
8470 zfree(&obj->maps);
8471 obj->nr_maps = 0;
8472
8473 if (obj->programs && obj->nr_programs) {
8474 for (i = 0; i < obj->nr_programs; i++)
8475 bpf_program__exit(&obj->programs[i]);
8476 }
8477 zfree(&obj->programs);
8478
8479 free(obj);
8480 }
8481
bpf_object__name(const struct bpf_object * obj)8482 const char *bpf_object__name(const struct bpf_object *obj)
8483 {
8484 return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8485 }
8486
bpf_object__kversion(const struct bpf_object * obj)8487 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8488 {
8489 return obj ? obj->kern_version : 0;
8490 }
8491
bpf_object__btf(const struct bpf_object * obj)8492 struct btf *bpf_object__btf(const struct bpf_object *obj)
8493 {
8494 return obj ? obj->btf : NULL;
8495 }
8496
bpf_object__btf_fd(const struct bpf_object * obj)8497 int bpf_object__btf_fd(const struct bpf_object *obj)
8498 {
8499 return obj->btf ? btf__fd(obj->btf) : -1;
8500 }
8501
bpf_object__set_kversion(struct bpf_object * obj,__u32 kern_version)8502 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8503 {
8504 if (obj->loaded)
8505 return libbpf_err(-EINVAL);
8506
8507 obj->kern_version = kern_version;
8508
8509 return 0;
8510 }
8511
bpf_object__gen_loader(struct bpf_object * obj,struct gen_loader_opts * opts)8512 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8513 {
8514 struct bpf_gen *gen;
8515
8516 if (!opts)
8517 return -EFAULT;
8518 if (!OPTS_VALID(opts, gen_loader_opts))
8519 return -EINVAL;
8520 gen = calloc(sizeof(*gen), 1);
8521 if (!gen)
8522 return -ENOMEM;
8523 gen->opts = opts;
8524 obj->gen_loader = gen;
8525 return 0;
8526 }
8527
8528 static struct bpf_program *
__bpf_program__iter(const struct bpf_program * p,const struct bpf_object * obj,bool forward)8529 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8530 bool forward)
8531 {
8532 size_t nr_programs = obj->nr_programs;
8533 ssize_t idx;
8534
8535 if (!nr_programs)
8536 return NULL;
8537
8538 if (!p)
8539 /* Iter from the beginning */
8540 return forward ? &obj->programs[0] :
8541 &obj->programs[nr_programs - 1];
8542
8543 if (p->obj != obj) {
8544 pr_warn("error: program handler doesn't match object\n");
8545 return errno = EINVAL, NULL;
8546 }
8547
8548 idx = (p - obj->programs) + (forward ? 1 : -1);
8549 if (idx >= obj->nr_programs || idx < 0)
8550 return NULL;
8551 return &obj->programs[idx];
8552 }
8553
8554 struct bpf_program *
bpf_object__next_program(const struct bpf_object * obj,struct bpf_program * prev)8555 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8556 {
8557 struct bpf_program *prog = prev;
8558
8559 do {
8560 prog = __bpf_program__iter(prog, obj, true);
8561 } while (prog && prog_is_subprog(obj, prog));
8562
8563 return prog;
8564 }
8565
8566 struct bpf_program *
bpf_object__prev_program(const struct bpf_object * obj,struct bpf_program * next)8567 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8568 {
8569 struct bpf_program *prog = next;
8570
8571 do {
8572 prog = __bpf_program__iter(prog, obj, false);
8573 } while (prog && prog_is_subprog(obj, prog));
8574
8575 return prog;
8576 }
8577
bpf_program__set_ifindex(struct bpf_program * prog,__u32 ifindex)8578 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8579 {
8580 prog->prog_ifindex = ifindex;
8581 }
8582
bpf_program__name(const struct bpf_program * prog)8583 const char *bpf_program__name(const struct bpf_program *prog)
8584 {
8585 return prog->name;
8586 }
8587
bpf_program__section_name(const struct bpf_program * prog)8588 const char *bpf_program__section_name(const struct bpf_program *prog)
8589 {
8590 return prog->sec_name;
8591 }
8592
bpf_program__autoload(const struct bpf_program * prog)8593 bool bpf_program__autoload(const struct bpf_program *prog)
8594 {
8595 return prog->autoload;
8596 }
8597
bpf_program__set_autoload(struct bpf_program * prog,bool autoload)8598 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8599 {
8600 if (prog->obj->loaded)
8601 return libbpf_err(-EINVAL);
8602
8603 prog->autoload = autoload;
8604 return 0;
8605 }
8606
bpf_program__autoattach(const struct bpf_program * prog)8607 bool bpf_program__autoattach(const struct bpf_program *prog)
8608 {
8609 return prog->autoattach;
8610 }
8611
bpf_program__set_autoattach(struct bpf_program * prog,bool autoattach)8612 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
8613 {
8614 prog->autoattach = autoattach;
8615 }
8616
bpf_program__insns(const struct bpf_program * prog)8617 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8618 {
8619 return prog->insns;
8620 }
8621
bpf_program__insn_cnt(const struct bpf_program * prog)8622 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8623 {
8624 return prog->insns_cnt;
8625 }
8626
bpf_program__set_insns(struct bpf_program * prog,struct bpf_insn * new_insns,size_t new_insn_cnt)8627 int bpf_program__set_insns(struct bpf_program *prog,
8628 struct bpf_insn *new_insns, size_t new_insn_cnt)
8629 {
8630 struct bpf_insn *insns;
8631
8632 if (prog->obj->loaded)
8633 return -EBUSY;
8634
8635 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
8636 /* NULL is a valid return from reallocarray if the new count is zero */
8637 if (!insns && new_insn_cnt) {
8638 pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
8639 return -ENOMEM;
8640 }
8641 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
8642
8643 prog->insns = insns;
8644 prog->insns_cnt = new_insn_cnt;
8645 return 0;
8646 }
8647
bpf_program__fd(const struct bpf_program * prog)8648 int bpf_program__fd(const struct bpf_program *prog)
8649 {
8650 if (!prog)
8651 return libbpf_err(-EINVAL);
8652
8653 if (prog->fd < 0)
8654 return libbpf_err(-ENOENT);
8655
8656 return prog->fd;
8657 }
8658
8659 __alias(bpf_program__type)
8660 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
8661
bpf_program__type(const struct bpf_program * prog)8662 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
8663 {
8664 return prog->type;
8665 }
8666
8667 static size_t custom_sec_def_cnt;
8668 static struct bpf_sec_def *custom_sec_defs;
8669 static struct bpf_sec_def custom_fallback_def;
8670 static bool has_custom_fallback_def;
8671 static int last_custom_sec_def_handler_id;
8672
bpf_program__set_type(struct bpf_program * prog,enum bpf_prog_type type)8673 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8674 {
8675 if (prog->obj->loaded)
8676 return libbpf_err(-EBUSY);
8677
8678 /* if type is not changed, do nothing */
8679 if (prog->type == type)
8680 return 0;
8681
8682 prog->type = type;
8683
8684 /* If a program type was changed, we need to reset associated SEC()
8685 * handler, as it will be invalid now. The only exception is a generic
8686 * fallback handler, which by definition is program type-agnostic and
8687 * is a catch-all custom handler, optionally set by the application,
8688 * so should be able to handle any type of BPF program.
8689 */
8690 if (prog->sec_def != &custom_fallback_def)
8691 prog->sec_def = NULL;
8692 return 0;
8693 }
8694
8695 __alias(bpf_program__expected_attach_type)
8696 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
8697
bpf_program__expected_attach_type(const struct bpf_program * prog)8698 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
8699 {
8700 return prog->expected_attach_type;
8701 }
8702
bpf_program__set_expected_attach_type(struct bpf_program * prog,enum bpf_attach_type type)8703 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
8704 enum bpf_attach_type type)
8705 {
8706 if (prog->obj->loaded)
8707 return libbpf_err(-EBUSY);
8708
8709 prog->expected_attach_type = type;
8710 return 0;
8711 }
8712
bpf_program__flags(const struct bpf_program * prog)8713 __u32 bpf_program__flags(const struct bpf_program *prog)
8714 {
8715 return prog->prog_flags;
8716 }
8717
bpf_program__set_flags(struct bpf_program * prog,__u32 flags)8718 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
8719 {
8720 if (prog->obj->loaded)
8721 return libbpf_err(-EBUSY);
8722
8723 prog->prog_flags = flags;
8724 return 0;
8725 }
8726
bpf_program__log_level(const struct bpf_program * prog)8727 __u32 bpf_program__log_level(const struct bpf_program *prog)
8728 {
8729 return prog->log_level;
8730 }
8731
bpf_program__set_log_level(struct bpf_program * prog,__u32 log_level)8732 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
8733 {
8734 if (prog->obj->loaded)
8735 return libbpf_err(-EBUSY);
8736
8737 prog->log_level = log_level;
8738 return 0;
8739 }
8740
bpf_program__log_buf(const struct bpf_program * prog,size_t * log_size)8741 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
8742 {
8743 *log_size = prog->log_size;
8744 return prog->log_buf;
8745 }
8746
bpf_program__set_log_buf(struct bpf_program * prog,char * log_buf,size_t log_size)8747 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
8748 {
8749 if (log_size && !log_buf)
8750 return -EINVAL;
8751 if (prog->log_size > UINT_MAX)
8752 return -EINVAL;
8753 if (prog->obj->loaded)
8754 return -EBUSY;
8755
8756 prog->log_buf = log_buf;
8757 prog->log_size = log_size;
8758 return 0;
8759 }
8760
8761 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \
8762 .sec = (char *)sec_pfx, \
8763 .prog_type = BPF_PROG_TYPE_##ptype, \
8764 .expected_attach_type = atype, \
8765 .cookie = (long)(flags), \
8766 .prog_prepare_load_fn = libbpf_prepare_prog_load, \
8767 __VA_ARGS__ \
8768 }
8769
8770 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8771 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8772 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8773 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8774 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8775 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8776 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8777 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8778 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8779 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8780 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8781
8782 static const struct bpf_sec_def section_defs[] = {
8783 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE),
8784 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
8785 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
8786 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
8787 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
8788 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8789 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
8790 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
8791 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8792 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8793 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8794 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
8795 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
8796 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
8797 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
8798 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
8799 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
8800 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt),
8801 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
8802 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
8803 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */
8804 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
8805 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
8806 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
8807 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
8808 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
8809 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp),
8810 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp),
8811 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8812 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8813 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8814 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8815 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
8816 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
8817 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
8818 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
8819 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8820 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8821 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8822 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace),
8823 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
8824 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
8825 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
8826 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
8827 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
8828 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE),
8829 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
8830 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
8831 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
8832 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
8833 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS),
8834 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
8835 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE),
8836 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE),
8837 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE),
8838 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE),
8839 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE),
8840 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
8841 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
8842 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
8843 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE),
8844 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
8845 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
8846 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
8847 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
8848 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
8849 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE),
8850 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
8851 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
8852 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
8853 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
8854 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
8855 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
8856 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
8857 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
8858 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
8859 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
8860 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
8861 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
8862 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
8863 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
8864 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
8865 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
8866 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
8867 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
8868 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
8869 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
8870 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
8871 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE),
8872 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE),
8873 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
8874 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE),
8875 };
8876
libbpf_register_prog_handler(const char * sec,enum bpf_prog_type prog_type,enum bpf_attach_type exp_attach_type,const struct libbpf_prog_handler_opts * opts)8877 int libbpf_register_prog_handler(const char *sec,
8878 enum bpf_prog_type prog_type,
8879 enum bpf_attach_type exp_attach_type,
8880 const struct libbpf_prog_handler_opts *opts)
8881 {
8882 struct bpf_sec_def *sec_def;
8883
8884 if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
8885 return libbpf_err(-EINVAL);
8886
8887 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
8888 return libbpf_err(-E2BIG);
8889
8890 if (sec) {
8891 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
8892 sizeof(*sec_def));
8893 if (!sec_def)
8894 return libbpf_err(-ENOMEM);
8895
8896 custom_sec_defs = sec_def;
8897 sec_def = &custom_sec_defs[custom_sec_def_cnt];
8898 } else {
8899 if (has_custom_fallback_def)
8900 return libbpf_err(-EBUSY);
8901
8902 sec_def = &custom_fallback_def;
8903 }
8904
8905 sec_def->sec = sec ? strdup(sec) : NULL;
8906 if (sec && !sec_def->sec)
8907 return libbpf_err(-ENOMEM);
8908
8909 sec_def->prog_type = prog_type;
8910 sec_def->expected_attach_type = exp_attach_type;
8911 sec_def->cookie = OPTS_GET(opts, cookie, 0);
8912
8913 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
8914 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
8915 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
8916
8917 sec_def->handler_id = ++last_custom_sec_def_handler_id;
8918
8919 if (sec)
8920 custom_sec_def_cnt++;
8921 else
8922 has_custom_fallback_def = true;
8923
8924 return sec_def->handler_id;
8925 }
8926
libbpf_unregister_prog_handler(int handler_id)8927 int libbpf_unregister_prog_handler(int handler_id)
8928 {
8929 struct bpf_sec_def *sec_defs;
8930 int i;
8931
8932 if (handler_id <= 0)
8933 return libbpf_err(-EINVAL);
8934
8935 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
8936 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
8937 has_custom_fallback_def = false;
8938 return 0;
8939 }
8940
8941 for (i = 0; i < custom_sec_def_cnt; i++) {
8942 if (custom_sec_defs[i].handler_id == handler_id)
8943 break;
8944 }
8945
8946 if (i == custom_sec_def_cnt)
8947 return libbpf_err(-ENOENT);
8948
8949 free(custom_sec_defs[i].sec);
8950 for (i = i + 1; i < custom_sec_def_cnt; i++)
8951 custom_sec_defs[i - 1] = custom_sec_defs[i];
8952 custom_sec_def_cnt--;
8953
8954 /* try to shrink the array, but it's ok if we couldn't */
8955 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
8956 /* if new count is zero, reallocarray can return a valid NULL result;
8957 * in this case the previous pointer will be freed, so we *have to*
8958 * reassign old pointer to the new value (even if it's NULL)
8959 */
8960 if (sec_defs || custom_sec_def_cnt == 0)
8961 custom_sec_defs = sec_defs;
8962
8963 return 0;
8964 }
8965
sec_def_matches(const struct bpf_sec_def * sec_def,const char * sec_name)8966 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
8967 {
8968 size_t len = strlen(sec_def->sec);
8969
8970 /* "type/" always has to have proper SEC("type/extras") form */
8971 if (sec_def->sec[len - 1] == '/') {
8972 if (str_has_pfx(sec_name, sec_def->sec))
8973 return true;
8974 return false;
8975 }
8976
8977 /* "type+" means it can be either exact SEC("type") or
8978 * well-formed SEC("type/extras") with proper '/' separator
8979 */
8980 if (sec_def->sec[len - 1] == '+') {
8981 len--;
8982 /* not even a prefix */
8983 if (strncmp(sec_name, sec_def->sec, len) != 0)
8984 return false;
8985 /* exact match or has '/' separator */
8986 if (sec_name[len] == '\0' || sec_name[len] == '/')
8987 return true;
8988 return false;
8989 }
8990
8991 return strcmp(sec_name, sec_def->sec) == 0;
8992 }
8993
find_sec_def(const char * sec_name)8994 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8995 {
8996 const struct bpf_sec_def *sec_def;
8997 int i, n;
8998
8999 n = custom_sec_def_cnt;
9000 for (i = 0; i < n; i++) {
9001 sec_def = &custom_sec_defs[i];
9002 if (sec_def_matches(sec_def, sec_name))
9003 return sec_def;
9004 }
9005
9006 n = ARRAY_SIZE(section_defs);
9007 for (i = 0; i < n; i++) {
9008 sec_def = §ion_defs[i];
9009 if (sec_def_matches(sec_def, sec_name))
9010 return sec_def;
9011 }
9012
9013 if (has_custom_fallback_def)
9014 return &custom_fallback_def;
9015
9016 return NULL;
9017 }
9018
9019 #define MAX_TYPE_NAME_SIZE 32
9020
libbpf_get_type_names(bool attach_type)9021 static char *libbpf_get_type_names(bool attach_type)
9022 {
9023 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9024 char *buf;
9025
9026 buf = malloc(len);
9027 if (!buf)
9028 return NULL;
9029
9030 buf[0] = '\0';
9031 /* Forge string buf with all available names */
9032 for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9033 const struct bpf_sec_def *sec_def = §ion_defs[i];
9034
9035 if (attach_type) {
9036 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9037 continue;
9038
9039 if (!(sec_def->cookie & SEC_ATTACHABLE))
9040 continue;
9041 }
9042
9043 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9044 free(buf);
9045 return NULL;
9046 }
9047 strcat(buf, " ");
9048 strcat(buf, section_defs[i].sec);
9049 }
9050
9051 return buf;
9052 }
9053
libbpf_prog_type_by_name(const char * name,enum bpf_prog_type * prog_type,enum bpf_attach_type * expected_attach_type)9054 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9055 enum bpf_attach_type *expected_attach_type)
9056 {
9057 const struct bpf_sec_def *sec_def;
9058 char *type_names;
9059
9060 if (!name)
9061 return libbpf_err(-EINVAL);
9062
9063 sec_def = find_sec_def(name);
9064 if (sec_def) {
9065 *prog_type = sec_def->prog_type;
9066 *expected_attach_type = sec_def->expected_attach_type;
9067 return 0;
9068 }
9069
9070 pr_debug("failed to guess program type from ELF section '%s'\n", name);
9071 type_names = libbpf_get_type_names(false);
9072 if (type_names != NULL) {
9073 pr_debug("supported section(type) names are:%s\n", type_names);
9074 free(type_names);
9075 }
9076
9077 return libbpf_err(-ESRCH);
9078 }
9079
libbpf_bpf_attach_type_str(enum bpf_attach_type t)9080 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9081 {
9082 if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9083 return NULL;
9084
9085 return attach_type_name[t];
9086 }
9087
libbpf_bpf_link_type_str(enum bpf_link_type t)9088 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9089 {
9090 if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9091 return NULL;
9092
9093 return link_type_name[t];
9094 }
9095
libbpf_bpf_map_type_str(enum bpf_map_type t)9096 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9097 {
9098 if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9099 return NULL;
9100
9101 return map_type_name[t];
9102 }
9103
libbpf_bpf_prog_type_str(enum bpf_prog_type t)9104 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9105 {
9106 if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9107 return NULL;
9108
9109 return prog_type_name[t];
9110 }
9111
find_struct_ops_map_by_offset(struct bpf_object * obj,int sec_idx,size_t offset)9112 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9113 int sec_idx,
9114 size_t offset)
9115 {
9116 struct bpf_map *map;
9117 size_t i;
9118
9119 for (i = 0; i < obj->nr_maps; i++) {
9120 map = &obj->maps[i];
9121 if (!bpf_map__is_struct_ops(map))
9122 continue;
9123 if (map->sec_idx == sec_idx &&
9124 map->sec_offset <= offset &&
9125 offset - map->sec_offset < map->def.value_size)
9126 return map;
9127 }
9128
9129 return NULL;
9130 }
9131
9132 /* Collect the reloc from ELF and populate the st_ops->progs[] */
bpf_object__collect_st_ops_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)9133 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9134 Elf64_Shdr *shdr, Elf_Data *data)
9135 {
9136 const struct btf_member *member;
9137 struct bpf_struct_ops *st_ops;
9138 struct bpf_program *prog;
9139 unsigned int shdr_idx;
9140 const struct btf *btf;
9141 struct bpf_map *map;
9142 unsigned int moff, insn_idx;
9143 const char *name;
9144 __u32 member_idx;
9145 Elf64_Sym *sym;
9146 Elf64_Rel *rel;
9147 int i, nrels;
9148
9149 btf = obj->btf;
9150 nrels = shdr->sh_size / shdr->sh_entsize;
9151 for (i = 0; i < nrels; i++) {
9152 rel = elf_rel_by_idx(data, i);
9153 if (!rel) {
9154 pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9155 return -LIBBPF_ERRNO__FORMAT;
9156 }
9157
9158 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9159 if (!sym) {
9160 pr_warn("struct_ops reloc: symbol %zx not found\n",
9161 (size_t)ELF64_R_SYM(rel->r_info));
9162 return -LIBBPF_ERRNO__FORMAT;
9163 }
9164
9165 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9166 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9167 if (!map) {
9168 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9169 (size_t)rel->r_offset);
9170 return -EINVAL;
9171 }
9172
9173 moff = rel->r_offset - map->sec_offset;
9174 shdr_idx = sym->st_shndx;
9175 st_ops = map->st_ops;
9176 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9177 map->name,
9178 (long long)(rel->r_info >> 32),
9179 (long long)sym->st_value,
9180 shdr_idx, (size_t)rel->r_offset,
9181 map->sec_offset, sym->st_name, name);
9182
9183 if (shdr_idx >= SHN_LORESERVE) {
9184 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9185 map->name, (size_t)rel->r_offset, shdr_idx);
9186 return -LIBBPF_ERRNO__RELOC;
9187 }
9188 if (sym->st_value % BPF_INSN_SZ) {
9189 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9190 map->name, (unsigned long long)sym->st_value);
9191 return -LIBBPF_ERRNO__FORMAT;
9192 }
9193 insn_idx = sym->st_value / BPF_INSN_SZ;
9194
9195 member = find_member_by_offset(st_ops->type, moff * 8);
9196 if (!member) {
9197 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9198 map->name, moff);
9199 return -EINVAL;
9200 }
9201 member_idx = member - btf_members(st_ops->type);
9202 name = btf__name_by_offset(btf, member->name_off);
9203
9204 if (!resolve_func_ptr(btf, member->type, NULL)) {
9205 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9206 map->name, name);
9207 return -EINVAL;
9208 }
9209
9210 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9211 if (!prog) {
9212 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9213 map->name, shdr_idx, name);
9214 return -EINVAL;
9215 }
9216
9217 /* prevent the use of BPF prog with invalid type */
9218 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9219 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9220 map->name, prog->name);
9221 return -EINVAL;
9222 }
9223
9224 /* if we haven't yet processed this BPF program, record proper
9225 * attach_btf_id and member_idx
9226 */
9227 if (!prog->attach_btf_id) {
9228 prog->attach_btf_id = st_ops->type_id;
9229 prog->expected_attach_type = member_idx;
9230 }
9231
9232 /* struct_ops BPF prog can be re-used between multiple
9233 * .struct_ops & .struct_ops.link as long as it's the
9234 * same struct_ops struct definition and the same
9235 * function pointer field
9236 */
9237 if (prog->attach_btf_id != st_ops->type_id ||
9238 prog->expected_attach_type != member_idx) {
9239 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
9240 map->name, prog->name, prog->sec_name, prog->type,
9241 prog->attach_btf_id, prog->expected_attach_type, name);
9242 return -EINVAL;
9243 }
9244
9245 st_ops->progs[member_idx] = prog;
9246 }
9247
9248 return 0;
9249 }
9250
9251 #define BTF_TRACE_PREFIX "btf_trace_"
9252 #define BTF_LSM_PREFIX "bpf_lsm_"
9253 #define BTF_ITER_PREFIX "bpf_iter_"
9254 #define BTF_MAX_NAME_SIZE 128
9255
btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,const char ** prefix,int * kind)9256 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9257 const char **prefix, int *kind)
9258 {
9259 switch (attach_type) {
9260 case BPF_TRACE_RAW_TP:
9261 *prefix = BTF_TRACE_PREFIX;
9262 *kind = BTF_KIND_TYPEDEF;
9263 break;
9264 case BPF_LSM_MAC:
9265 case BPF_LSM_CGROUP:
9266 *prefix = BTF_LSM_PREFIX;
9267 *kind = BTF_KIND_FUNC;
9268 break;
9269 case BPF_TRACE_ITER:
9270 *prefix = BTF_ITER_PREFIX;
9271 *kind = BTF_KIND_FUNC;
9272 break;
9273 default:
9274 *prefix = "";
9275 *kind = BTF_KIND_FUNC;
9276 }
9277 }
9278
find_btf_by_prefix_kind(const struct btf * btf,const char * prefix,const char * name,__u32 kind)9279 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9280 const char *name, __u32 kind)
9281 {
9282 char btf_type_name[BTF_MAX_NAME_SIZE];
9283 int ret;
9284
9285 ret = snprintf(btf_type_name, sizeof(btf_type_name),
9286 "%s%s", prefix, name);
9287 /* snprintf returns the number of characters written excluding the
9288 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9289 * indicates truncation.
9290 */
9291 if (ret < 0 || ret >= sizeof(btf_type_name))
9292 return -ENAMETOOLONG;
9293 return btf__find_by_name_kind(btf, btf_type_name, kind);
9294 }
9295
find_attach_btf_id(struct btf * btf,const char * name,enum bpf_attach_type attach_type)9296 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9297 enum bpf_attach_type attach_type)
9298 {
9299 const char *prefix;
9300 int kind;
9301
9302 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9303 return find_btf_by_prefix_kind(btf, prefix, name, kind);
9304 }
9305
libbpf_find_vmlinux_btf_id(const char * name,enum bpf_attach_type attach_type)9306 int libbpf_find_vmlinux_btf_id(const char *name,
9307 enum bpf_attach_type attach_type)
9308 {
9309 struct btf *btf;
9310 int err;
9311
9312 btf = btf__load_vmlinux_btf();
9313 err = libbpf_get_error(btf);
9314 if (err) {
9315 pr_warn("vmlinux BTF is not found\n");
9316 return libbpf_err(err);
9317 }
9318
9319 err = find_attach_btf_id(btf, name, attach_type);
9320 if (err <= 0)
9321 pr_warn("%s is not found in vmlinux BTF\n", name);
9322
9323 btf__free(btf);
9324 return libbpf_err(err);
9325 }
9326
libbpf_find_prog_btf_id(const char * name,__u32 attach_prog_fd)9327 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9328 {
9329 struct bpf_prog_info info;
9330 __u32 info_len = sizeof(info);
9331 struct btf *btf;
9332 int err;
9333
9334 memset(&info, 0, info_len);
9335 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
9336 if (err) {
9337 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n",
9338 attach_prog_fd, err);
9339 return err;
9340 }
9341
9342 err = -EINVAL;
9343 if (!info.btf_id) {
9344 pr_warn("The target program doesn't have BTF\n");
9345 goto out;
9346 }
9347 btf = btf__load_from_kernel_by_id(info.btf_id);
9348 err = libbpf_get_error(btf);
9349 if (err) {
9350 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9351 goto out;
9352 }
9353 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9354 btf__free(btf);
9355 if (err <= 0) {
9356 pr_warn("%s is not found in prog's BTF\n", name);
9357 goto out;
9358 }
9359 out:
9360 return err;
9361 }
9362
find_kernel_btf_id(struct bpf_object * obj,const char * attach_name,enum bpf_attach_type attach_type,int * btf_obj_fd,int * btf_type_id)9363 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9364 enum bpf_attach_type attach_type,
9365 int *btf_obj_fd, int *btf_type_id)
9366 {
9367 int ret, i;
9368
9369 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9370 if (ret > 0) {
9371 *btf_obj_fd = 0; /* vmlinux BTF */
9372 *btf_type_id = ret;
9373 return 0;
9374 }
9375 if (ret != -ENOENT)
9376 return ret;
9377
9378 ret = load_module_btfs(obj);
9379 if (ret)
9380 return ret;
9381
9382 for (i = 0; i < obj->btf_module_cnt; i++) {
9383 const struct module_btf *mod = &obj->btf_modules[i];
9384
9385 ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9386 if (ret > 0) {
9387 *btf_obj_fd = mod->fd;
9388 *btf_type_id = ret;
9389 return 0;
9390 }
9391 if (ret == -ENOENT)
9392 continue;
9393
9394 return ret;
9395 }
9396
9397 return -ESRCH;
9398 }
9399
libbpf_find_attach_btf_id(struct bpf_program * prog,const char * attach_name,int * btf_obj_fd,int * btf_type_id)9400 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9401 int *btf_obj_fd, int *btf_type_id)
9402 {
9403 enum bpf_attach_type attach_type = prog->expected_attach_type;
9404 __u32 attach_prog_fd = prog->attach_prog_fd;
9405 int err = 0;
9406
9407 /* BPF program's BTF ID */
9408 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9409 if (!attach_prog_fd) {
9410 pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9411 return -EINVAL;
9412 }
9413 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9414 if (err < 0) {
9415 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9416 prog->name, attach_prog_fd, attach_name, err);
9417 return err;
9418 }
9419 *btf_obj_fd = 0;
9420 *btf_type_id = err;
9421 return 0;
9422 }
9423
9424 /* kernel/module BTF ID */
9425 if (prog->obj->gen_loader) {
9426 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9427 *btf_obj_fd = 0;
9428 *btf_type_id = 1;
9429 } else {
9430 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9431 }
9432 if (err) {
9433 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9434 prog->name, attach_name, err);
9435 return err;
9436 }
9437 return 0;
9438 }
9439
libbpf_attach_type_by_name(const char * name,enum bpf_attach_type * attach_type)9440 int libbpf_attach_type_by_name(const char *name,
9441 enum bpf_attach_type *attach_type)
9442 {
9443 char *type_names;
9444 const struct bpf_sec_def *sec_def;
9445
9446 if (!name)
9447 return libbpf_err(-EINVAL);
9448
9449 sec_def = find_sec_def(name);
9450 if (!sec_def) {
9451 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9452 type_names = libbpf_get_type_names(true);
9453 if (type_names != NULL) {
9454 pr_debug("attachable section(type) names are:%s\n", type_names);
9455 free(type_names);
9456 }
9457
9458 return libbpf_err(-EINVAL);
9459 }
9460
9461 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9462 return libbpf_err(-EINVAL);
9463 if (!(sec_def->cookie & SEC_ATTACHABLE))
9464 return libbpf_err(-EINVAL);
9465
9466 *attach_type = sec_def->expected_attach_type;
9467 return 0;
9468 }
9469
bpf_map__fd(const struct bpf_map * map)9470 int bpf_map__fd(const struct bpf_map *map)
9471 {
9472 return map ? map->fd : libbpf_err(-EINVAL);
9473 }
9474
map_uses_real_name(const struct bpf_map * map)9475 static bool map_uses_real_name(const struct bpf_map *map)
9476 {
9477 /* Since libbpf started to support custom .data.* and .rodata.* maps,
9478 * their user-visible name differs from kernel-visible name. Users see
9479 * such map's corresponding ELF section name as a map name.
9480 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9481 * maps to know which name has to be returned to the user.
9482 */
9483 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9484 return true;
9485 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9486 return true;
9487 return false;
9488 }
9489
bpf_map__name(const struct bpf_map * map)9490 const char *bpf_map__name(const struct bpf_map *map)
9491 {
9492 if (!map)
9493 return NULL;
9494
9495 if (map_uses_real_name(map))
9496 return map->real_name;
9497
9498 return map->name;
9499 }
9500
bpf_map__type(const struct bpf_map * map)9501 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9502 {
9503 return map->def.type;
9504 }
9505
bpf_map__set_type(struct bpf_map * map,enum bpf_map_type type)9506 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9507 {
9508 if (map->fd >= 0)
9509 return libbpf_err(-EBUSY);
9510 map->def.type = type;
9511 return 0;
9512 }
9513
bpf_map__map_flags(const struct bpf_map * map)9514 __u32 bpf_map__map_flags(const struct bpf_map *map)
9515 {
9516 return map->def.map_flags;
9517 }
9518
bpf_map__set_map_flags(struct bpf_map * map,__u32 flags)9519 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9520 {
9521 if (map->fd >= 0)
9522 return libbpf_err(-EBUSY);
9523 map->def.map_flags = flags;
9524 return 0;
9525 }
9526
bpf_map__map_extra(const struct bpf_map * map)9527 __u64 bpf_map__map_extra(const struct bpf_map *map)
9528 {
9529 return map->map_extra;
9530 }
9531
bpf_map__set_map_extra(struct bpf_map * map,__u64 map_extra)9532 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9533 {
9534 if (map->fd >= 0)
9535 return libbpf_err(-EBUSY);
9536 map->map_extra = map_extra;
9537 return 0;
9538 }
9539
bpf_map__numa_node(const struct bpf_map * map)9540 __u32 bpf_map__numa_node(const struct bpf_map *map)
9541 {
9542 return map->numa_node;
9543 }
9544
bpf_map__set_numa_node(struct bpf_map * map,__u32 numa_node)9545 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9546 {
9547 if (map->fd >= 0)
9548 return libbpf_err(-EBUSY);
9549 map->numa_node = numa_node;
9550 return 0;
9551 }
9552
bpf_map__key_size(const struct bpf_map * map)9553 __u32 bpf_map__key_size(const struct bpf_map *map)
9554 {
9555 return map->def.key_size;
9556 }
9557
bpf_map__set_key_size(struct bpf_map * map,__u32 size)9558 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9559 {
9560 if (map->fd >= 0)
9561 return libbpf_err(-EBUSY);
9562 map->def.key_size = size;
9563 return 0;
9564 }
9565
bpf_map__value_size(const struct bpf_map * map)9566 __u32 bpf_map__value_size(const struct bpf_map *map)
9567 {
9568 return map->def.value_size;
9569 }
9570
map_btf_datasec_resize(struct bpf_map * map,__u32 size)9571 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
9572 {
9573 struct btf *btf;
9574 struct btf_type *datasec_type, *var_type;
9575 struct btf_var_secinfo *var;
9576 const struct btf_type *array_type;
9577 const struct btf_array *array;
9578 int vlen, element_sz, new_array_id;
9579 __u32 nr_elements;
9580
9581 /* check btf existence */
9582 btf = bpf_object__btf(map->obj);
9583 if (!btf)
9584 return -ENOENT;
9585
9586 /* verify map is datasec */
9587 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
9588 if (!btf_is_datasec(datasec_type)) {
9589 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
9590 bpf_map__name(map));
9591 return -EINVAL;
9592 }
9593
9594 /* verify datasec has at least one var */
9595 vlen = btf_vlen(datasec_type);
9596 if (vlen == 0) {
9597 pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
9598 bpf_map__name(map));
9599 return -EINVAL;
9600 }
9601
9602 /* verify last var in the datasec is an array */
9603 var = &btf_var_secinfos(datasec_type)[vlen - 1];
9604 var_type = btf_type_by_id(btf, var->type);
9605 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
9606 if (!btf_is_array(array_type)) {
9607 pr_warn("map '%s': cannot be resized, last var must be an array\n",
9608 bpf_map__name(map));
9609 return -EINVAL;
9610 }
9611
9612 /* verify request size aligns with array */
9613 array = btf_array(array_type);
9614 element_sz = btf__resolve_size(btf, array->type);
9615 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
9616 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
9617 bpf_map__name(map), element_sz, size);
9618 return -EINVAL;
9619 }
9620
9621 /* create a new array based on the existing array, but with new length */
9622 nr_elements = (size - var->offset) / element_sz;
9623 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
9624 if (new_array_id < 0)
9625 return new_array_id;
9626
9627 /* adding a new btf type invalidates existing pointers to btf objects,
9628 * so refresh pointers before proceeding
9629 */
9630 datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
9631 var = &btf_var_secinfos(datasec_type)[vlen - 1];
9632 var_type = btf_type_by_id(btf, var->type);
9633
9634 /* finally update btf info */
9635 datasec_type->size = size;
9636 var->size = size - var->offset;
9637 var_type->type = new_array_id;
9638
9639 return 0;
9640 }
9641
bpf_map__set_value_size(struct bpf_map * map,__u32 size)9642 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9643 {
9644 if (map->fd >= 0)
9645 return libbpf_err(-EBUSY);
9646
9647 if (map->mmaped) {
9648 int err;
9649 size_t mmap_old_sz, mmap_new_sz;
9650
9651 mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
9652 mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries);
9653 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
9654 if (err) {
9655 pr_warn("map '%s': failed to resize memory-mapped region: %d\n",
9656 bpf_map__name(map), err);
9657 return err;
9658 }
9659 err = map_btf_datasec_resize(map, size);
9660 if (err && err != -ENOENT) {
9661 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n",
9662 bpf_map__name(map), err);
9663 map->btf_value_type_id = 0;
9664 map->btf_key_type_id = 0;
9665 }
9666 }
9667
9668 map->def.value_size = size;
9669 return 0;
9670 }
9671
bpf_map__btf_key_type_id(const struct bpf_map * map)9672 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9673 {
9674 return map ? map->btf_key_type_id : 0;
9675 }
9676
bpf_map__btf_value_type_id(const struct bpf_map * map)9677 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9678 {
9679 return map ? map->btf_value_type_id : 0;
9680 }
9681
bpf_map__set_initial_value(struct bpf_map * map,const void * data,size_t size)9682 int bpf_map__set_initial_value(struct bpf_map *map,
9683 const void *data, size_t size)
9684 {
9685 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9686 size != map->def.value_size || map->fd >= 0)
9687 return libbpf_err(-EINVAL);
9688
9689 memcpy(map->mmaped, data, size);
9690 return 0;
9691 }
9692
bpf_map__initial_value(struct bpf_map * map,size_t * psize)9693 void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9694 {
9695 if (!map->mmaped)
9696 return NULL;
9697 *psize = map->def.value_size;
9698 return map->mmaped;
9699 }
9700
bpf_map__is_internal(const struct bpf_map * map)9701 bool bpf_map__is_internal(const struct bpf_map *map)
9702 {
9703 return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9704 }
9705
bpf_map__ifindex(const struct bpf_map * map)9706 __u32 bpf_map__ifindex(const struct bpf_map *map)
9707 {
9708 return map->map_ifindex;
9709 }
9710
bpf_map__set_ifindex(struct bpf_map * map,__u32 ifindex)9711 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9712 {
9713 if (map->fd >= 0)
9714 return libbpf_err(-EBUSY);
9715 map->map_ifindex = ifindex;
9716 return 0;
9717 }
9718
bpf_map__set_inner_map_fd(struct bpf_map * map,int fd)9719 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9720 {
9721 if (!bpf_map_type__is_map_in_map(map->def.type)) {
9722 pr_warn("error: unsupported map type\n");
9723 return libbpf_err(-EINVAL);
9724 }
9725 if (map->inner_map_fd != -1) {
9726 pr_warn("error: inner_map_fd already specified\n");
9727 return libbpf_err(-EINVAL);
9728 }
9729 if (map->inner_map) {
9730 bpf_map__destroy(map->inner_map);
9731 zfree(&map->inner_map);
9732 }
9733 map->inner_map_fd = fd;
9734 return 0;
9735 }
9736
9737 static struct bpf_map *
__bpf_map__iter(const struct bpf_map * m,const struct bpf_object * obj,int i)9738 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9739 {
9740 ssize_t idx;
9741 struct bpf_map *s, *e;
9742
9743 if (!obj || !obj->maps)
9744 return errno = EINVAL, NULL;
9745
9746 s = obj->maps;
9747 e = obj->maps + obj->nr_maps;
9748
9749 if ((m < s) || (m >= e)) {
9750 pr_warn("error in %s: map handler doesn't belong to object\n",
9751 __func__);
9752 return errno = EINVAL, NULL;
9753 }
9754
9755 idx = (m - obj->maps) + i;
9756 if (idx >= obj->nr_maps || idx < 0)
9757 return NULL;
9758 return &obj->maps[idx];
9759 }
9760
9761 struct bpf_map *
bpf_object__next_map(const struct bpf_object * obj,const struct bpf_map * prev)9762 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9763 {
9764 if (prev == NULL && obj != NULL)
9765 return obj->maps;
9766
9767 return __bpf_map__iter(prev, obj, 1);
9768 }
9769
9770 struct bpf_map *
bpf_object__prev_map(const struct bpf_object * obj,const struct bpf_map * next)9771 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9772 {
9773 if (next == NULL && obj != NULL) {
9774 if (!obj->nr_maps)
9775 return NULL;
9776 return obj->maps + obj->nr_maps - 1;
9777 }
9778
9779 return __bpf_map__iter(next, obj, -1);
9780 }
9781
9782 struct bpf_map *
bpf_object__find_map_by_name(const struct bpf_object * obj,const char * name)9783 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9784 {
9785 struct bpf_map *pos;
9786
9787 bpf_object__for_each_map(pos, obj) {
9788 /* if it's a special internal map name (which always starts
9789 * with dot) then check if that special name matches the
9790 * real map name (ELF section name)
9791 */
9792 if (name[0] == '.') {
9793 if (pos->real_name && strcmp(pos->real_name, name) == 0)
9794 return pos;
9795 continue;
9796 }
9797 /* otherwise map name has to be an exact match */
9798 if (map_uses_real_name(pos)) {
9799 if (strcmp(pos->real_name, name) == 0)
9800 return pos;
9801 continue;
9802 }
9803 if (strcmp(pos->name, name) == 0)
9804 return pos;
9805 }
9806 return errno = ENOENT, NULL;
9807 }
9808
9809 int
bpf_object__find_map_fd_by_name(const struct bpf_object * obj,const char * name)9810 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9811 {
9812 return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9813 }
9814
validate_map_op(const struct bpf_map * map,size_t key_sz,size_t value_sz,bool check_value_sz)9815 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
9816 size_t value_sz, bool check_value_sz)
9817 {
9818 if (map->fd <= 0)
9819 return -ENOENT;
9820
9821 if (map->def.key_size != key_sz) {
9822 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
9823 map->name, key_sz, map->def.key_size);
9824 return -EINVAL;
9825 }
9826
9827 if (!check_value_sz)
9828 return 0;
9829
9830 switch (map->def.type) {
9831 case BPF_MAP_TYPE_PERCPU_ARRAY:
9832 case BPF_MAP_TYPE_PERCPU_HASH:
9833 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
9834 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
9835 int num_cpu = libbpf_num_possible_cpus();
9836 size_t elem_sz = roundup(map->def.value_size, 8);
9837
9838 if (value_sz != num_cpu * elem_sz) {
9839 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
9840 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
9841 return -EINVAL;
9842 }
9843 break;
9844 }
9845 default:
9846 if (map->def.value_size != value_sz) {
9847 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
9848 map->name, value_sz, map->def.value_size);
9849 return -EINVAL;
9850 }
9851 break;
9852 }
9853 return 0;
9854 }
9855
bpf_map__lookup_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)9856 int bpf_map__lookup_elem(const struct bpf_map *map,
9857 const void *key, size_t key_sz,
9858 void *value, size_t value_sz, __u64 flags)
9859 {
9860 int err;
9861
9862 err = validate_map_op(map, key_sz, value_sz, true);
9863 if (err)
9864 return libbpf_err(err);
9865
9866 return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
9867 }
9868
bpf_map__update_elem(const struct bpf_map * map,const void * key,size_t key_sz,const void * value,size_t value_sz,__u64 flags)9869 int bpf_map__update_elem(const struct bpf_map *map,
9870 const void *key, size_t key_sz,
9871 const void *value, size_t value_sz, __u64 flags)
9872 {
9873 int err;
9874
9875 err = validate_map_op(map, key_sz, value_sz, true);
9876 if (err)
9877 return libbpf_err(err);
9878
9879 return bpf_map_update_elem(map->fd, key, value, flags);
9880 }
9881
bpf_map__delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,__u64 flags)9882 int bpf_map__delete_elem(const struct bpf_map *map,
9883 const void *key, size_t key_sz, __u64 flags)
9884 {
9885 int err;
9886
9887 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9888 if (err)
9889 return libbpf_err(err);
9890
9891 return bpf_map_delete_elem_flags(map->fd, key, flags);
9892 }
9893
bpf_map__lookup_and_delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)9894 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
9895 const void *key, size_t key_sz,
9896 void *value, size_t value_sz, __u64 flags)
9897 {
9898 int err;
9899
9900 err = validate_map_op(map, key_sz, value_sz, true);
9901 if (err)
9902 return libbpf_err(err);
9903
9904 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
9905 }
9906
bpf_map__get_next_key(const struct bpf_map * map,const void * cur_key,void * next_key,size_t key_sz)9907 int bpf_map__get_next_key(const struct bpf_map *map,
9908 const void *cur_key, void *next_key, size_t key_sz)
9909 {
9910 int err;
9911
9912 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9913 if (err)
9914 return libbpf_err(err);
9915
9916 return bpf_map_get_next_key(map->fd, cur_key, next_key);
9917 }
9918
libbpf_get_error(const void * ptr)9919 long libbpf_get_error(const void *ptr)
9920 {
9921 if (!IS_ERR_OR_NULL(ptr))
9922 return 0;
9923
9924 if (IS_ERR(ptr))
9925 errno = -PTR_ERR(ptr);
9926
9927 /* If ptr == NULL, then errno should be already set by the failing
9928 * API, because libbpf never returns NULL on success and it now always
9929 * sets errno on error. So no extra errno handling for ptr == NULL
9930 * case.
9931 */
9932 return -errno;
9933 }
9934
9935 /* Replace link's underlying BPF program with the new one */
bpf_link__update_program(struct bpf_link * link,struct bpf_program * prog)9936 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9937 {
9938 int ret;
9939
9940 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9941 return libbpf_err_errno(ret);
9942 }
9943
9944 /* Release "ownership" of underlying BPF resource (typically, BPF program
9945 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9946 * link, when destructed through bpf_link__destroy() call won't attempt to
9947 * detach/unregisted that BPF resource. This is useful in situations where,
9948 * say, attached BPF program has to outlive userspace program that attached it
9949 * in the system. Depending on type of BPF program, though, there might be
9950 * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9951 * exit of userspace program doesn't trigger automatic detachment and clean up
9952 * inside the kernel.
9953 */
bpf_link__disconnect(struct bpf_link * link)9954 void bpf_link__disconnect(struct bpf_link *link)
9955 {
9956 link->disconnected = true;
9957 }
9958
bpf_link__destroy(struct bpf_link * link)9959 int bpf_link__destroy(struct bpf_link *link)
9960 {
9961 int err = 0;
9962
9963 if (IS_ERR_OR_NULL(link))
9964 return 0;
9965
9966 if (!link->disconnected && link->detach)
9967 err = link->detach(link);
9968 if (link->pin_path)
9969 free(link->pin_path);
9970 if (link->dealloc)
9971 link->dealloc(link);
9972 else
9973 free(link);
9974
9975 return libbpf_err(err);
9976 }
9977
bpf_link__fd(const struct bpf_link * link)9978 int bpf_link__fd(const struct bpf_link *link)
9979 {
9980 return link->fd;
9981 }
9982
bpf_link__pin_path(const struct bpf_link * link)9983 const char *bpf_link__pin_path(const struct bpf_link *link)
9984 {
9985 return link->pin_path;
9986 }
9987
bpf_link__detach_fd(struct bpf_link * link)9988 static int bpf_link__detach_fd(struct bpf_link *link)
9989 {
9990 return libbpf_err_errno(close(link->fd));
9991 }
9992
bpf_link__open(const char * path)9993 struct bpf_link *bpf_link__open(const char *path)
9994 {
9995 struct bpf_link *link;
9996 int fd;
9997
9998 fd = bpf_obj_get(path);
9999 if (fd < 0) {
10000 fd = -errno;
10001 pr_warn("failed to open link at %s: %d\n", path, fd);
10002 return libbpf_err_ptr(fd);
10003 }
10004
10005 link = calloc(1, sizeof(*link));
10006 if (!link) {
10007 close(fd);
10008 return libbpf_err_ptr(-ENOMEM);
10009 }
10010 link->detach = &bpf_link__detach_fd;
10011 link->fd = fd;
10012
10013 link->pin_path = strdup(path);
10014 if (!link->pin_path) {
10015 bpf_link__destroy(link);
10016 return libbpf_err_ptr(-ENOMEM);
10017 }
10018
10019 return link;
10020 }
10021
bpf_link__detach(struct bpf_link * link)10022 int bpf_link__detach(struct bpf_link *link)
10023 {
10024 return bpf_link_detach(link->fd) ? -errno : 0;
10025 }
10026
bpf_link__pin(struct bpf_link * link,const char * path)10027 int bpf_link__pin(struct bpf_link *link, const char *path)
10028 {
10029 int err;
10030
10031 if (link->pin_path)
10032 return libbpf_err(-EBUSY);
10033 err = make_parent_dir(path);
10034 if (err)
10035 return libbpf_err(err);
10036 err = check_path(path);
10037 if (err)
10038 return libbpf_err(err);
10039
10040 link->pin_path = strdup(path);
10041 if (!link->pin_path)
10042 return libbpf_err(-ENOMEM);
10043
10044 if (bpf_obj_pin(link->fd, link->pin_path)) {
10045 err = -errno;
10046 zfree(&link->pin_path);
10047 return libbpf_err(err);
10048 }
10049
10050 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10051 return 0;
10052 }
10053
bpf_link__unpin(struct bpf_link * link)10054 int bpf_link__unpin(struct bpf_link *link)
10055 {
10056 int err;
10057
10058 if (!link->pin_path)
10059 return libbpf_err(-EINVAL);
10060
10061 err = unlink(link->pin_path);
10062 if (err != 0)
10063 return -errno;
10064
10065 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10066 zfree(&link->pin_path);
10067 return 0;
10068 }
10069
10070 struct bpf_link_perf {
10071 struct bpf_link link;
10072 int perf_event_fd;
10073 /* legacy kprobe support: keep track of probe identifier and type */
10074 char *legacy_probe_name;
10075 bool legacy_is_kprobe;
10076 bool legacy_is_retprobe;
10077 };
10078
10079 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10080 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10081
bpf_link_perf_detach(struct bpf_link * link)10082 static int bpf_link_perf_detach(struct bpf_link *link)
10083 {
10084 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10085 int err = 0;
10086
10087 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10088 err = -errno;
10089
10090 if (perf_link->perf_event_fd != link->fd)
10091 close(perf_link->perf_event_fd);
10092 close(link->fd);
10093
10094 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10095 if (perf_link->legacy_probe_name) {
10096 if (perf_link->legacy_is_kprobe) {
10097 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10098 perf_link->legacy_is_retprobe);
10099 } else {
10100 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10101 perf_link->legacy_is_retprobe);
10102 }
10103 }
10104
10105 return err;
10106 }
10107
bpf_link_perf_dealloc(struct bpf_link * link)10108 static void bpf_link_perf_dealloc(struct bpf_link *link)
10109 {
10110 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10111
10112 free(perf_link->legacy_probe_name);
10113 free(perf_link);
10114 }
10115
bpf_program__attach_perf_event_opts(const struct bpf_program * prog,int pfd,const struct bpf_perf_event_opts * opts)10116 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10117 const struct bpf_perf_event_opts *opts)
10118 {
10119 char errmsg[STRERR_BUFSIZE];
10120 struct bpf_link_perf *link;
10121 int prog_fd, link_fd = -1, err;
10122 bool force_ioctl_attach;
10123
10124 if (!OPTS_VALID(opts, bpf_perf_event_opts))
10125 return libbpf_err_ptr(-EINVAL);
10126
10127 if (pfd < 0) {
10128 pr_warn("prog '%s': invalid perf event FD %d\n",
10129 prog->name, pfd);
10130 return libbpf_err_ptr(-EINVAL);
10131 }
10132 prog_fd = bpf_program__fd(prog);
10133 if (prog_fd < 0) {
10134 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10135 prog->name);
10136 return libbpf_err_ptr(-EINVAL);
10137 }
10138
10139 link = calloc(1, sizeof(*link));
10140 if (!link)
10141 return libbpf_err_ptr(-ENOMEM);
10142 link->link.detach = &bpf_link_perf_detach;
10143 link->link.dealloc = &bpf_link_perf_dealloc;
10144 link->perf_event_fd = pfd;
10145
10146 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10147 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10148 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10149 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10150
10151 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10152 if (link_fd < 0) {
10153 err = -errno;
10154 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
10155 prog->name, pfd,
10156 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10157 goto err_out;
10158 }
10159 link->link.fd = link_fd;
10160 } else {
10161 if (OPTS_GET(opts, bpf_cookie, 0)) {
10162 pr_warn("prog '%s': user context value is not supported\n", prog->name);
10163 err = -EOPNOTSUPP;
10164 goto err_out;
10165 }
10166
10167 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10168 err = -errno;
10169 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10170 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10171 if (err == -EPROTO)
10172 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10173 prog->name, pfd);
10174 goto err_out;
10175 }
10176 link->link.fd = pfd;
10177 }
10178 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10179 err = -errno;
10180 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10181 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10182 goto err_out;
10183 }
10184
10185 return &link->link;
10186 err_out:
10187 if (link_fd >= 0)
10188 close(link_fd);
10189 free(link);
10190 return libbpf_err_ptr(err);
10191 }
10192
bpf_program__attach_perf_event(const struct bpf_program * prog,int pfd)10193 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10194 {
10195 return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10196 }
10197
10198 /*
10199 * this function is expected to parse integer in the range of [0, 2^31-1] from
10200 * given file using scanf format string fmt. If actual parsed value is
10201 * negative, the result might be indistinguishable from error
10202 */
parse_uint_from_file(const char * file,const char * fmt)10203 static int parse_uint_from_file(const char *file, const char *fmt)
10204 {
10205 char buf[STRERR_BUFSIZE];
10206 int err, ret;
10207 FILE *f;
10208
10209 f = fopen(file, "re");
10210 if (!f) {
10211 err = -errno;
10212 pr_debug("failed to open '%s': %s\n", file,
10213 libbpf_strerror_r(err, buf, sizeof(buf)));
10214 return err;
10215 }
10216 err = fscanf(f, fmt, &ret);
10217 if (err != 1) {
10218 err = err == EOF ? -EIO : -errno;
10219 pr_debug("failed to parse '%s': %s\n", file,
10220 libbpf_strerror_r(err, buf, sizeof(buf)));
10221 fclose(f);
10222 return err;
10223 }
10224 fclose(f);
10225 return ret;
10226 }
10227
determine_kprobe_perf_type(void)10228 static int determine_kprobe_perf_type(void)
10229 {
10230 const char *file = "/sys/bus/event_source/devices/kprobe/type";
10231
10232 return parse_uint_from_file(file, "%d\n");
10233 }
10234
determine_uprobe_perf_type(void)10235 static int determine_uprobe_perf_type(void)
10236 {
10237 const char *file = "/sys/bus/event_source/devices/uprobe/type";
10238
10239 return parse_uint_from_file(file, "%d\n");
10240 }
10241
determine_kprobe_retprobe_bit(void)10242 static int determine_kprobe_retprobe_bit(void)
10243 {
10244 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10245
10246 return parse_uint_from_file(file, "config:%d\n");
10247 }
10248
determine_uprobe_retprobe_bit(void)10249 static int determine_uprobe_retprobe_bit(void)
10250 {
10251 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10252
10253 return parse_uint_from_file(file, "config:%d\n");
10254 }
10255
10256 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10257 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10258
perf_event_open_probe(bool uprobe,bool retprobe,const char * name,uint64_t offset,int pid,size_t ref_ctr_off)10259 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10260 uint64_t offset, int pid, size_t ref_ctr_off)
10261 {
10262 const size_t attr_sz = sizeof(struct perf_event_attr);
10263 struct perf_event_attr attr;
10264 char errmsg[STRERR_BUFSIZE];
10265 int type, pfd;
10266
10267 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10268 return -EINVAL;
10269
10270 memset(&attr, 0, attr_sz);
10271
10272 type = uprobe ? determine_uprobe_perf_type()
10273 : determine_kprobe_perf_type();
10274 if (type < 0) {
10275 pr_warn("failed to determine %s perf type: %s\n",
10276 uprobe ? "uprobe" : "kprobe",
10277 libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10278 return type;
10279 }
10280 if (retprobe) {
10281 int bit = uprobe ? determine_uprobe_retprobe_bit()
10282 : determine_kprobe_retprobe_bit();
10283
10284 if (bit < 0) {
10285 pr_warn("failed to determine %s retprobe bit: %s\n",
10286 uprobe ? "uprobe" : "kprobe",
10287 libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10288 return bit;
10289 }
10290 attr.config |= 1 << bit;
10291 }
10292 attr.size = attr_sz;
10293 attr.type = type;
10294 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10295 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10296 attr.config2 = offset; /* kprobe_addr or probe_offset */
10297
10298 /* pid filter is meaningful only for uprobes */
10299 pfd = syscall(__NR_perf_event_open, &attr,
10300 pid < 0 ? -1 : pid /* pid */,
10301 pid == -1 ? 0 : -1 /* cpu */,
10302 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10303 return pfd >= 0 ? pfd : -errno;
10304 }
10305
append_to_file(const char * file,const char * fmt,...)10306 static int append_to_file(const char *file, const char *fmt, ...)
10307 {
10308 int fd, n, err = 0;
10309 va_list ap;
10310 char buf[1024];
10311
10312 va_start(ap, fmt);
10313 n = vsnprintf(buf, sizeof(buf), fmt, ap);
10314 va_end(ap);
10315
10316 if (n < 0 || n >= sizeof(buf))
10317 return -EINVAL;
10318
10319 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10320 if (fd < 0)
10321 return -errno;
10322
10323 if (write(fd, buf, n) < 0)
10324 err = -errno;
10325
10326 close(fd);
10327 return err;
10328 }
10329
10330 #define DEBUGFS "/sys/kernel/debug/tracing"
10331 #define TRACEFS "/sys/kernel/tracing"
10332
use_debugfs(void)10333 static bool use_debugfs(void)
10334 {
10335 static int has_debugfs = -1;
10336
10337 if (has_debugfs < 0)
10338 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
10339
10340 return has_debugfs == 1;
10341 }
10342
tracefs_path(void)10343 static const char *tracefs_path(void)
10344 {
10345 return use_debugfs() ? DEBUGFS : TRACEFS;
10346 }
10347
tracefs_kprobe_events(void)10348 static const char *tracefs_kprobe_events(void)
10349 {
10350 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
10351 }
10352
tracefs_uprobe_events(void)10353 static const char *tracefs_uprobe_events(void)
10354 {
10355 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
10356 }
10357
tracefs_available_filter_functions(void)10358 static const char *tracefs_available_filter_functions(void)
10359 {
10360 return use_debugfs() ? DEBUGFS"/available_filter_functions"
10361 : TRACEFS"/available_filter_functions";
10362 }
10363
tracefs_available_filter_functions_addrs(void)10364 static const char *tracefs_available_filter_functions_addrs(void)
10365 {
10366 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
10367 : TRACEFS"/available_filter_functions_addrs";
10368 }
10369
gen_kprobe_legacy_event_name(char * buf,size_t buf_sz,const char * kfunc_name,size_t offset)10370 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
10371 const char *kfunc_name, size_t offset)
10372 {
10373 static int index = 0;
10374 int i;
10375
10376 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
10377 __sync_fetch_and_add(&index, 1));
10378
10379 /* sanitize binary_path in the probe name */
10380 for (i = 0; buf[i]; i++) {
10381 if (!isalnum(buf[i]))
10382 buf[i] = '_';
10383 }
10384 }
10385
add_kprobe_event_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset)10386 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10387 const char *kfunc_name, size_t offset)
10388 {
10389 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
10390 retprobe ? 'r' : 'p',
10391 retprobe ? "kretprobes" : "kprobes",
10392 probe_name, kfunc_name, offset);
10393 }
10394
remove_kprobe_event_legacy(const char * probe_name,bool retprobe)10395 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10396 {
10397 return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
10398 retprobe ? "kretprobes" : "kprobes", probe_name);
10399 }
10400
determine_kprobe_perf_type_legacy(const char * probe_name,bool retprobe)10401 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10402 {
10403 char file[256];
10404
10405 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10406 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
10407
10408 return parse_uint_from_file(file, "%d\n");
10409 }
10410
perf_event_kprobe_open_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset,int pid)10411 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10412 const char *kfunc_name, size_t offset, int pid)
10413 {
10414 const size_t attr_sz = sizeof(struct perf_event_attr);
10415 struct perf_event_attr attr;
10416 char errmsg[STRERR_BUFSIZE];
10417 int type, pfd, err;
10418
10419 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10420 if (err < 0) {
10421 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10422 kfunc_name, offset,
10423 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10424 return err;
10425 }
10426 type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10427 if (type < 0) {
10428 err = type;
10429 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10430 kfunc_name, offset,
10431 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10432 goto err_clean_legacy;
10433 }
10434
10435 memset(&attr, 0, attr_sz);
10436 attr.size = attr_sz;
10437 attr.config = type;
10438 attr.type = PERF_TYPE_TRACEPOINT;
10439
10440 pfd = syscall(__NR_perf_event_open, &attr,
10441 pid < 0 ? -1 : pid, /* pid */
10442 pid == -1 ? 0 : -1, /* cpu */
10443 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10444 if (pfd < 0) {
10445 err = -errno;
10446 pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10447 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10448 goto err_clean_legacy;
10449 }
10450 return pfd;
10451
10452 err_clean_legacy:
10453 /* Clear the newly added legacy kprobe_event */
10454 remove_kprobe_event_legacy(probe_name, retprobe);
10455 return err;
10456 }
10457
arch_specific_syscall_pfx(void)10458 static const char *arch_specific_syscall_pfx(void)
10459 {
10460 #if defined(__x86_64__)
10461 return "x64";
10462 #elif defined(__i386__)
10463 return "ia32";
10464 #elif defined(__s390x__)
10465 return "s390x";
10466 #elif defined(__s390__)
10467 return "s390";
10468 #elif defined(__arm__)
10469 return "arm";
10470 #elif defined(__aarch64__)
10471 return "arm64";
10472 #elif defined(__mips__)
10473 return "mips";
10474 #elif defined(__riscv)
10475 return "riscv";
10476 #elif defined(__powerpc__)
10477 return "powerpc";
10478 #elif defined(__powerpc64__)
10479 return "powerpc64";
10480 #else
10481 return NULL;
10482 #endif
10483 }
10484
probe_kern_syscall_wrapper(void)10485 static int probe_kern_syscall_wrapper(void)
10486 {
10487 char syscall_name[64];
10488 const char *ksys_pfx;
10489
10490 ksys_pfx = arch_specific_syscall_pfx();
10491 if (!ksys_pfx)
10492 return 0;
10493
10494 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
10495
10496 if (determine_kprobe_perf_type() >= 0) {
10497 int pfd;
10498
10499 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
10500 if (pfd >= 0)
10501 close(pfd);
10502
10503 return pfd >= 0 ? 1 : 0;
10504 } else { /* legacy mode */
10505 char probe_name[128];
10506
10507 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
10508 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
10509 return 0;
10510
10511 (void)remove_kprobe_event_legacy(probe_name, false);
10512 return 1;
10513 }
10514 }
10515
10516 struct bpf_link *
bpf_program__attach_kprobe_opts(const struct bpf_program * prog,const char * func_name,const struct bpf_kprobe_opts * opts)10517 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10518 const char *func_name,
10519 const struct bpf_kprobe_opts *opts)
10520 {
10521 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10522 enum probe_attach_mode attach_mode;
10523 char errmsg[STRERR_BUFSIZE];
10524 char *legacy_probe = NULL;
10525 struct bpf_link *link;
10526 size_t offset;
10527 bool retprobe, legacy;
10528 int pfd, err;
10529
10530 if (!OPTS_VALID(opts, bpf_kprobe_opts))
10531 return libbpf_err_ptr(-EINVAL);
10532
10533 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
10534 retprobe = OPTS_GET(opts, retprobe, false);
10535 offset = OPTS_GET(opts, offset, 0);
10536 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10537
10538 legacy = determine_kprobe_perf_type() < 0;
10539 switch (attach_mode) {
10540 case PROBE_ATTACH_MODE_LEGACY:
10541 legacy = true;
10542 pe_opts.force_ioctl_attach = true;
10543 break;
10544 case PROBE_ATTACH_MODE_PERF:
10545 if (legacy)
10546 return libbpf_err_ptr(-ENOTSUP);
10547 pe_opts.force_ioctl_attach = true;
10548 break;
10549 case PROBE_ATTACH_MODE_LINK:
10550 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
10551 return libbpf_err_ptr(-ENOTSUP);
10552 break;
10553 case PROBE_ATTACH_MODE_DEFAULT:
10554 break;
10555 default:
10556 return libbpf_err_ptr(-EINVAL);
10557 }
10558
10559 if (!legacy) {
10560 pfd = perf_event_open_probe(false /* uprobe */, retprobe,
10561 func_name, offset,
10562 -1 /* pid */, 0 /* ref_ctr_off */);
10563 } else {
10564 char probe_name[256];
10565
10566 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
10567 func_name, offset);
10568
10569 legacy_probe = strdup(probe_name);
10570 if (!legacy_probe)
10571 return libbpf_err_ptr(-ENOMEM);
10572
10573 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
10574 offset, -1 /* pid */);
10575 }
10576 if (pfd < 0) {
10577 err = -errno;
10578 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
10579 prog->name, retprobe ? "kretprobe" : "kprobe",
10580 func_name, offset,
10581 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10582 goto err_out;
10583 }
10584 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10585 err = libbpf_get_error(link);
10586 if (err) {
10587 close(pfd);
10588 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
10589 prog->name, retprobe ? "kretprobe" : "kprobe",
10590 func_name, offset,
10591 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10592 goto err_clean_legacy;
10593 }
10594 if (legacy) {
10595 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10596
10597 perf_link->legacy_probe_name = legacy_probe;
10598 perf_link->legacy_is_kprobe = true;
10599 perf_link->legacy_is_retprobe = retprobe;
10600 }
10601
10602 return link;
10603
10604 err_clean_legacy:
10605 if (legacy)
10606 remove_kprobe_event_legacy(legacy_probe, retprobe);
10607 err_out:
10608 free(legacy_probe);
10609 return libbpf_err_ptr(err);
10610 }
10611
bpf_program__attach_kprobe(const struct bpf_program * prog,bool retprobe,const char * func_name)10612 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
10613 bool retprobe,
10614 const char *func_name)
10615 {
10616 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
10617 .retprobe = retprobe,
10618 );
10619
10620 return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
10621 }
10622
bpf_program__attach_ksyscall(const struct bpf_program * prog,const char * syscall_name,const struct bpf_ksyscall_opts * opts)10623 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
10624 const char *syscall_name,
10625 const struct bpf_ksyscall_opts *opts)
10626 {
10627 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
10628 char func_name[128];
10629
10630 if (!OPTS_VALID(opts, bpf_ksyscall_opts))
10631 return libbpf_err_ptr(-EINVAL);
10632
10633 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
10634 /* arch_specific_syscall_pfx() should never return NULL here
10635 * because it is guarded by kernel_supports(). However, since
10636 * compiler does not know that we have an explicit conditional
10637 * as well.
10638 */
10639 snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
10640 arch_specific_syscall_pfx() ? : "", syscall_name);
10641 } else {
10642 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
10643 }
10644
10645 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
10646 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10647
10648 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
10649 }
10650
10651 /* Adapted from perf/util/string.c */
glob_match(const char * str,const char * pat)10652 bool glob_match(const char *str, const char *pat)
10653 {
10654 while (*str && *pat && *pat != '*') {
10655 if (*pat == '?') { /* Matches any single character */
10656 str++;
10657 pat++;
10658 continue;
10659 }
10660 if (*str != *pat)
10661 return false;
10662 str++;
10663 pat++;
10664 }
10665 /* Check wild card */
10666 if (*pat == '*') {
10667 while (*pat == '*')
10668 pat++;
10669 if (!*pat) /* Tail wild card matches all */
10670 return true;
10671 while (*str)
10672 if (glob_match(str++, pat))
10673 return true;
10674 }
10675 return !*str && !*pat;
10676 }
10677
10678 struct kprobe_multi_resolve {
10679 const char *pattern;
10680 unsigned long *addrs;
10681 size_t cap;
10682 size_t cnt;
10683 };
10684
10685 struct avail_kallsyms_data {
10686 char **syms;
10687 size_t cnt;
10688 struct kprobe_multi_resolve *res;
10689 };
10690
avail_func_cmp(const void * a,const void * b)10691 static int avail_func_cmp(const void *a, const void *b)
10692 {
10693 return strcmp(*(const char **)a, *(const char **)b);
10694 }
10695
avail_kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)10696 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
10697 const char *sym_name, void *ctx)
10698 {
10699 struct avail_kallsyms_data *data = ctx;
10700 struct kprobe_multi_resolve *res = data->res;
10701 int err;
10702
10703 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
10704 return 0;
10705
10706 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
10707 if (err)
10708 return err;
10709
10710 res->addrs[res->cnt++] = (unsigned long)sym_addr;
10711 return 0;
10712 }
10713
libbpf_available_kallsyms_parse(struct kprobe_multi_resolve * res)10714 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
10715 {
10716 const char *available_functions_file = tracefs_available_filter_functions();
10717 struct avail_kallsyms_data data;
10718 char sym_name[500];
10719 FILE *f;
10720 int err = 0, ret, i;
10721 char **syms = NULL;
10722 size_t cap = 0, cnt = 0;
10723
10724 f = fopen(available_functions_file, "re");
10725 if (!f) {
10726 err = -errno;
10727 pr_warn("failed to open %s: %d\n", available_functions_file, err);
10728 return err;
10729 }
10730
10731 while (true) {
10732 char *name;
10733
10734 ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
10735 if (ret == EOF && feof(f))
10736 break;
10737
10738 if (ret != 1) {
10739 pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
10740 err = -EINVAL;
10741 goto cleanup;
10742 }
10743
10744 if (!glob_match(sym_name, res->pattern))
10745 continue;
10746
10747 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
10748 if (err)
10749 goto cleanup;
10750
10751 name = strdup(sym_name);
10752 if (!name) {
10753 err = -errno;
10754 goto cleanup;
10755 }
10756
10757 syms[cnt++] = name;
10758 }
10759
10760 /* no entries found, bail out */
10761 if (cnt == 0) {
10762 err = -ENOENT;
10763 goto cleanup;
10764 }
10765
10766 /* sort available functions */
10767 qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
10768
10769 data.syms = syms;
10770 data.res = res;
10771 data.cnt = cnt;
10772 libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
10773
10774 if (res->cnt == 0)
10775 err = -ENOENT;
10776
10777 cleanup:
10778 for (i = 0; i < cnt; i++)
10779 free((char *)syms[i]);
10780 free(syms);
10781
10782 fclose(f);
10783 return err;
10784 }
10785
has_available_filter_functions_addrs(void)10786 static bool has_available_filter_functions_addrs(void)
10787 {
10788 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
10789 }
10790
libbpf_available_kprobes_parse(struct kprobe_multi_resolve * res)10791 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
10792 {
10793 const char *available_path = tracefs_available_filter_functions_addrs();
10794 char sym_name[500];
10795 FILE *f;
10796 int ret, err = 0;
10797 unsigned long long sym_addr;
10798
10799 f = fopen(available_path, "re");
10800 if (!f) {
10801 err = -errno;
10802 pr_warn("failed to open %s: %d\n", available_path, err);
10803 return err;
10804 }
10805
10806 while (true) {
10807 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
10808 if (ret == EOF && feof(f))
10809 break;
10810
10811 if (ret != 2) {
10812 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
10813 ret);
10814 err = -EINVAL;
10815 goto cleanup;
10816 }
10817
10818 if (!glob_match(sym_name, res->pattern))
10819 continue;
10820
10821 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
10822 sizeof(*res->addrs), res->cnt + 1);
10823 if (err)
10824 goto cleanup;
10825
10826 res->addrs[res->cnt++] = (unsigned long)sym_addr;
10827 }
10828
10829 if (res->cnt == 0)
10830 err = -ENOENT;
10831
10832 cleanup:
10833 fclose(f);
10834 return err;
10835 }
10836
10837 struct bpf_link *
bpf_program__attach_kprobe_multi_opts(const struct bpf_program * prog,const char * pattern,const struct bpf_kprobe_multi_opts * opts)10838 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
10839 const char *pattern,
10840 const struct bpf_kprobe_multi_opts *opts)
10841 {
10842 LIBBPF_OPTS(bpf_link_create_opts, lopts);
10843 struct kprobe_multi_resolve res = {
10844 .pattern = pattern,
10845 };
10846 struct bpf_link *link = NULL;
10847 char errmsg[STRERR_BUFSIZE];
10848 const unsigned long *addrs;
10849 int err, link_fd, prog_fd;
10850 const __u64 *cookies;
10851 const char **syms;
10852 bool retprobe;
10853 size_t cnt;
10854
10855 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
10856 return libbpf_err_ptr(-EINVAL);
10857
10858 syms = OPTS_GET(opts, syms, false);
10859 addrs = OPTS_GET(opts, addrs, false);
10860 cnt = OPTS_GET(opts, cnt, false);
10861 cookies = OPTS_GET(opts, cookies, false);
10862
10863 if (!pattern && !addrs && !syms)
10864 return libbpf_err_ptr(-EINVAL);
10865 if (pattern && (addrs || syms || cookies || cnt))
10866 return libbpf_err_ptr(-EINVAL);
10867 if (!pattern && !cnt)
10868 return libbpf_err_ptr(-EINVAL);
10869 if (addrs && syms)
10870 return libbpf_err_ptr(-EINVAL);
10871
10872 if (pattern) {
10873 if (has_available_filter_functions_addrs())
10874 err = libbpf_available_kprobes_parse(&res);
10875 else
10876 err = libbpf_available_kallsyms_parse(&res);
10877 if (err)
10878 goto error;
10879 addrs = res.addrs;
10880 cnt = res.cnt;
10881 }
10882
10883 retprobe = OPTS_GET(opts, retprobe, false);
10884
10885 lopts.kprobe_multi.syms = syms;
10886 lopts.kprobe_multi.addrs = addrs;
10887 lopts.kprobe_multi.cookies = cookies;
10888 lopts.kprobe_multi.cnt = cnt;
10889 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
10890
10891 link = calloc(1, sizeof(*link));
10892 if (!link) {
10893 err = -ENOMEM;
10894 goto error;
10895 }
10896 link->detach = &bpf_link__detach_fd;
10897
10898 prog_fd = bpf_program__fd(prog);
10899 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
10900 if (link_fd < 0) {
10901 err = -errno;
10902 pr_warn("prog '%s': failed to attach: %s\n",
10903 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10904 goto error;
10905 }
10906 link->fd = link_fd;
10907 free(res.addrs);
10908 return link;
10909
10910 error:
10911 free(link);
10912 free(res.addrs);
10913 return libbpf_err_ptr(err);
10914 }
10915
attach_kprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10916 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10917 {
10918 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
10919 unsigned long offset = 0;
10920 const char *func_name;
10921 char *func;
10922 int n;
10923
10924 *link = NULL;
10925
10926 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
10927 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
10928 return 0;
10929
10930 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
10931 if (opts.retprobe)
10932 func_name = prog->sec_name + sizeof("kretprobe/") - 1;
10933 else
10934 func_name = prog->sec_name + sizeof("kprobe/") - 1;
10935
10936 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
10937 if (n < 1) {
10938 pr_warn("kprobe name is invalid: %s\n", func_name);
10939 return -EINVAL;
10940 }
10941 if (opts.retprobe && offset != 0) {
10942 free(func);
10943 pr_warn("kretprobes do not support offset specification\n");
10944 return -EINVAL;
10945 }
10946
10947 opts.offset = offset;
10948 *link = bpf_program__attach_kprobe_opts(prog, func, &opts);
10949 free(func);
10950 return libbpf_get_error(*link);
10951 }
10952
attach_ksyscall(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10953 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10954 {
10955 LIBBPF_OPTS(bpf_ksyscall_opts, opts);
10956 const char *syscall_name;
10957
10958 *link = NULL;
10959
10960 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
10961 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
10962 return 0;
10963
10964 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
10965 if (opts.retprobe)
10966 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
10967 else
10968 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
10969
10970 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
10971 return *link ? 0 : -errno;
10972 }
10973
attach_kprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10974 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10975 {
10976 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
10977 const char *spec;
10978 char *pattern;
10979 int n;
10980
10981 *link = NULL;
10982
10983 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
10984 if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
10985 strcmp(prog->sec_name, "kretprobe.multi") == 0)
10986 return 0;
10987
10988 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
10989 if (opts.retprobe)
10990 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
10991 else
10992 spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
10993
10994 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
10995 if (n < 1) {
10996 pr_warn("kprobe multi pattern is invalid: %s\n", spec);
10997 return -EINVAL;
10998 }
10999
11000 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11001 free(pattern);
11002 return libbpf_get_error(*link);
11003 }
11004
attach_uprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11005 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11006 {
11007 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11008 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
11009 int n, ret = -EINVAL;
11010
11011 *link = NULL;
11012
11013 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%ms",
11014 &probe_type, &binary_path, &func_name);
11015 switch (n) {
11016 case 1:
11017 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11018 ret = 0;
11019 break;
11020 case 3:
11021 opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0;
11022 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11023 ret = libbpf_get_error(*link);
11024 break;
11025 default:
11026 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11027 prog->sec_name);
11028 break;
11029 }
11030 free(probe_type);
11031 free(binary_path);
11032 free(func_name);
11033 return ret;
11034 }
11035
gen_uprobe_legacy_event_name(char * buf,size_t buf_sz,const char * binary_path,uint64_t offset)11036 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
11037 const char *binary_path, uint64_t offset)
11038 {
11039 int i;
11040
11041 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
11042
11043 /* sanitize binary_path in the probe name */
11044 for (i = 0; buf[i]; i++) {
11045 if (!isalnum(buf[i]))
11046 buf[i] = '_';
11047 }
11048 }
11049
add_uprobe_event_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset)11050 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11051 const char *binary_path, size_t offset)
11052 {
11053 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11054 retprobe ? 'r' : 'p',
11055 retprobe ? "uretprobes" : "uprobes",
11056 probe_name, binary_path, offset);
11057 }
11058
remove_uprobe_event_legacy(const char * probe_name,bool retprobe)11059 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11060 {
11061 return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11062 retprobe ? "uretprobes" : "uprobes", probe_name);
11063 }
11064
determine_uprobe_perf_type_legacy(const char * probe_name,bool retprobe)11065 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11066 {
11067 char file[512];
11068
11069 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11070 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11071
11072 return parse_uint_from_file(file, "%d\n");
11073 }
11074
perf_event_uprobe_open_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset,int pid)11075 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11076 const char *binary_path, size_t offset, int pid)
11077 {
11078 const size_t attr_sz = sizeof(struct perf_event_attr);
11079 struct perf_event_attr attr;
11080 int type, pfd, err;
11081
11082 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
11083 if (err < 0) {
11084 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
11085 binary_path, (size_t)offset, err);
11086 return err;
11087 }
11088 type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
11089 if (type < 0) {
11090 err = type;
11091 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
11092 binary_path, offset, err);
11093 goto err_clean_legacy;
11094 }
11095
11096 memset(&attr, 0, attr_sz);
11097 attr.size = attr_sz;
11098 attr.config = type;
11099 attr.type = PERF_TYPE_TRACEPOINT;
11100
11101 pfd = syscall(__NR_perf_event_open, &attr,
11102 pid < 0 ? -1 : pid, /* pid */
11103 pid == -1 ? 0 : -1, /* cpu */
11104 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11105 if (pfd < 0) {
11106 err = -errno;
11107 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
11108 goto err_clean_legacy;
11109 }
11110 return pfd;
11111
11112 err_clean_legacy:
11113 /* Clear the newly added legacy uprobe_event */
11114 remove_uprobe_event_legacy(probe_name, retprobe);
11115 return err;
11116 }
11117
11118 /* Find offset of function name in archive specified by path. Currently
11119 * supported are .zip files that do not compress their contents, as used on
11120 * Android in the form of APKs, for example. "file_name" is the name of the ELF
11121 * file inside the archive. "func_name" matches symbol name or name@@LIB for
11122 * library functions.
11123 *
11124 * An overview of the APK format specifically provided here:
11125 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
11126 */
elf_find_func_offset_from_archive(const char * archive_path,const char * file_name,const char * func_name)11127 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11128 const char *func_name)
11129 {
11130 struct zip_archive *archive;
11131 struct zip_entry entry;
11132 long ret;
11133 Elf *elf;
11134
11135 archive = zip_archive_open(archive_path);
11136 if (IS_ERR(archive)) {
11137 ret = PTR_ERR(archive);
11138 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11139 return ret;
11140 }
11141
11142 ret = zip_archive_find_entry(archive, file_name, &entry);
11143 if (ret) {
11144 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11145 archive_path, ret);
11146 goto out;
11147 }
11148 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11149 (unsigned long)entry.data_offset);
11150
11151 if (entry.compression) {
11152 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
11153 archive_path);
11154 ret = -LIBBPF_ERRNO__FORMAT;
11155 goto out;
11156 }
11157
11158 elf = elf_memory((void *)entry.data, entry.data_length);
11159 if (!elf) {
11160 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
11161 elf_errmsg(-1));
11162 ret = -LIBBPF_ERRNO__LIBELF;
11163 goto out;
11164 }
11165
11166 ret = elf_find_func_offset(elf, file_name, func_name);
11167 if (ret > 0) {
11168 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
11169 func_name, file_name, archive_path, entry.data_offset, ret,
11170 ret + entry.data_offset);
11171 ret += entry.data_offset;
11172 }
11173 elf_end(elf);
11174
11175 out:
11176 zip_archive_close(archive);
11177 return ret;
11178 }
11179
arch_specific_lib_paths(void)11180 static const char *arch_specific_lib_paths(void)
11181 {
11182 /*
11183 * Based on https://packages.debian.org/sid/libc6.
11184 *
11185 * Assume that the traced program is built for the same architecture
11186 * as libbpf, which should cover the vast majority of cases.
11187 */
11188 #if defined(__x86_64__)
11189 return "/lib/x86_64-linux-gnu";
11190 #elif defined(__i386__)
11191 return "/lib/i386-linux-gnu";
11192 #elif defined(__s390x__)
11193 return "/lib/s390x-linux-gnu";
11194 #elif defined(__s390__)
11195 return "/lib/s390-linux-gnu";
11196 #elif defined(__arm__) && defined(__SOFTFP__)
11197 return "/lib/arm-linux-gnueabi";
11198 #elif defined(__arm__) && !defined(__SOFTFP__)
11199 return "/lib/arm-linux-gnueabihf";
11200 #elif defined(__aarch64__)
11201 return "/lib/aarch64-linux-gnu";
11202 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
11203 return "/lib/mips64el-linux-gnuabi64";
11204 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
11205 return "/lib/mipsel-linux-gnu";
11206 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
11207 return "/lib/powerpc64le-linux-gnu";
11208 #elif defined(__sparc__) && defined(__arch64__)
11209 return "/lib/sparc64-linux-gnu";
11210 #elif defined(__riscv) && __riscv_xlen == 64
11211 return "/lib/riscv64-linux-gnu";
11212 #else
11213 return NULL;
11214 #endif
11215 }
11216
11217 /* Get full path to program/shared library. */
resolve_full_path(const char * file,char * result,size_t result_sz)11218 static int resolve_full_path(const char *file, char *result, size_t result_sz)
11219 {
11220 const char *search_paths[3] = {};
11221 int i, perm;
11222
11223 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
11224 search_paths[0] = getenv("LD_LIBRARY_PATH");
11225 search_paths[1] = "/usr/lib64:/usr/lib";
11226 search_paths[2] = arch_specific_lib_paths();
11227 perm = R_OK;
11228 } else {
11229 search_paths[0] = getenv("PATH");
11230 search_paths[1] = "/usr/bin:/usr/sbin";
11231 perm = R_OK | X_OK;
11232 }
11233
11234 for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
11235 const char *s;
11236
11237 if (!search_paths[i])
11238 continue;
11239 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
11240 char *next_path;
11241 int seg_len;
11242
11243 if (s[0] == ':')
11244 s++;
11245 next_path = strchr(s, ':');
11246 seg_len = next_path ? next_path - s : strlen(s);
11247 if (!seg_len)
11248 continue;
11249 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
11250 /* ensure it has required permissions */
11251 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
11252 continue;
11253 pr_debug("resolved '%s' to '%s'\n", file, result);
11254 return 0;
11255 }
11256 }
11257 return -ENOENT;
11258 }
11259
11260 struct bpf_link *
bpf_program__attach_uprobe_multi(const struct bpf_program * prog,pid_t pid,const char * path,const char * func_pattern,const struct bpf_uprobe_multi_opts * opts)11261 bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
11262 pid_t pid,
11263 const char *path,
11264 const char *func_pattern,
11265 const struct bpf_uprobe_multi_opts *opts)
11266 {
11267 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
11268 LIBBPF_OPTS(bpf_link_create_opts, lopts);
11269 unsigned long *resolved_offsets = NULL;
11270 int err = 0, link_fd, prog_fd;
11271 struct bpf_link *link = NULL;
11272 char errmsg[STRERR_BUFSIZE];
11273 char full_path[PATH_MAX];
11274 const __u64 *cookies;
11275 const char **syms;
11276 size_t cnt;
11277
11278 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
11279 return libbpf_err_ptr(-EINVAL);
11280
11281 syms = OPTS_GET(opts, syms, NULL);
11282 offsets = OPTS_GET(opts, offsets, NULL);
11283 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
11284 cookies = OPTS_GET(opts, cookies, NULL);
11285 cnt = OPTS_GET(opts, cnt, 0);
11286
11287 /*
11288 * User can specify 2 mutually exclusive set of inputs:
11289 *
11290 * 1) use only path/func_pattern/pid arguments
11291 *
11292 * 2) use path/pid with allowed combinations of:
11293 * syms/offsets/ref_ctr_offsets/cookies/cnt
11294 *
11295 * - syms and offsets are mutually exclusive
11296 * - ref_ctr_offsets and cookies are optional
11297 *
11298 * Any other usage results in error.
11299 */
11300
11301 if (!path)
11302 return libbpf_err_ptr(-EINVAL);
11303 if (!func_pattern && cnt == 0)
11304 return libbpf_err_ptr(-EINVAL);
11305
11306 if (func_pattern) {
11307 if (syms || offsets || ref_ctr_offsets || cookies || cnt)
11308 return libbpf_err_ptr(-EINVAL);
11309 } else {
11310 if (!!syms == !!offsets)
11311 return libbpf_err_ptr(-EINVAL);
11312 }
11313
11314 if (func_pattern) {
11315 if (!strchr(path, '/')) {
11316 err = resolve_full_path(path, full_path, sizeof(full_path));
11317 if (err) {
11318 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11319 prog->name, path, err);
11320 return libbpf_err_ptr(err);
11321 }
11322 path = full_path;
11323 }
11324
11325 err = elf_resolve_pattern_offsets(path, func_pattern,
11326 &resolved_offsets, &cnt);
11327 if (err < 0)
11328 return libbpf_err_ptr(err);
11329 offsets = resolved_offsets;
11330 } else if (syms) {
11331 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets);
11332 if (err < 0)
11333 return libbpf_err_ptr(err);
11334 offsets = resolved_offsets;
11335 }
11336
11337 lopts.uprobe_multi.path = path;
11338 lopts.uprobe_multi.offsets = offsets;
11339 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
11340 lopts.uprobe_multi.cookies = cookies;
11341 lopts.uprobe_multi.cnt = cnt;
11342 lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0;
11343
11344 if (pid == 0)
11345 pid = getpid();
11346 if (pid > 0)
11347 lopts.uprobe_multi.pid = pid;
11348
11349 link = calloc(1, sizeof(*link));
11350 if (!link) {
11351 err = -ENOMEM;
11352 goto error;
11353 }
11354 link->detach = &bpf_link__detach_fd;
11355
11356 prog_fd = bpf_program__fd(prog);
11357 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts);
11358 if (link_fd < 0) {
11359 err = -errno;
11360 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
11361 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11362 goto error;
11363 }
11364 link->fd = link_fd;
11365 free(resolved_offsets);
11366 return link;
11367
11368 error:
11369 free(resolved_offsets);
11370 free(link);
11371 return libbpf_err_ptr(err);
11372 }
11373
11374 LIBBPF_API struct bpf_link *
bpf_program__attach_uprobe_opts(const struct bpf_program * prog,pid_t pid,const char * binary_path,size_t func_offset,const struct bpf_uprobe_opts * opts)11375 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
11376 const char *binary_path, size_t func_offset,
11377 const struct bpf_uprobe_opts *opts)
11378 {
11379 const char *archive_path = NULL, *archive_sep = NULL;
11380 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
11381 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11382 enum probe_attach_mode attach_mode;
11383 char full_path[PATH_MAX];
11384 struct bpf_link *link;
11385 size_t ref_ctr_off;
11386 int pfd, err;
11387 bool retprobe, legacy;
11388 const char *func_name;
11389
11390 if (!OPTS_VALID(opts, bpf_uprobe_opts))
11391 return libbpf_err_ptr(-EINVAL);
11392
11393 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11394 retprobe = OPTS_GET(opts, retprobe, false);
11395 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
11396 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11397
11398 if (!binary_path)
11399 return libbpf_err_ptr(-EINVAL);
11400
11401 /* Check if "binary_path" refers to an archive. */
11402 archive_sep = strstr(binary_path, "!/");
11403 if (archive_sep) {
11404 full_path[0] = '\0';
11405 libbpf_strlcpy(full_path, binary_path,
11406 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
11407 archive_path = full_path;
11408 binary_path = archive_sep + 2;
11409 } else if (!strchr(binary_path, '/')) {
11410 err = resolve_full_path(binary_path, full_path, sizeof(full_path));
11411 if (err) {
11412 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11413 prog->name, binary_path, err);
11414 return libbpf_err_ptr(err);
11415 }
11416 binary_path = full_path;
11417 }
11418 func_name = OPTS_GET(opts, func_name, NULL);
11419 if (func_name) {
11420 long sym_off;
11421
11422 if (archive_path) {
11423 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
11424 func_name);
11425 binary_path = archive_path;
11426 } else {
11427 sym_off = elf_find_func_offset_from_file(binary_path, func_name);
11428 }
11429 if (sym_off < 0)
11430 return libbpf_err_ptr(sym_off);
11431 func_offset += sym_off;
11432 }
11433
11434 legacy = determine_uprobe_perf_type() < 0;
11435 switch (attach_mode) {
11436 case PROBE_ATTACH_MODE_LEGACY:
11437 legacy = true;
11438 pe_opts.force_ioctl_attach = true;
11439 break;
11440 case PROBE_ATTACH_MODE_PERF:
11441 if (legacy)
11442 return libbpf_err_ptr(-ENOTSUP);
11443 pe_opts.force_ioctl_attach = true;
11444 break;
11445 case PROBE_ATTACH_MODE_LINK:
11446 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11447 return libbpf_err_ptr(-ENOTSUP);
11448 break;
11449 case PROBE_ATTACH_MODE_DEFAULT:
11450 break;
11451 default:
11452 return libbpf_err_ptr(-EINVAL);
11453 }
11454
11455 if (!legacy) {
11456 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
11457 func_offset, pid, ref_ctr_off);
11458 } else {
11459 char probe_name[PATH_MAX + 64];
11460
11461 if (ref_ctr_off)
11462 return libbpf_err_ptr(-EINVAL);
11463
11464 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
11465 binary_path, func_offset);
11466
11467 legacy_probe = strdup(probe_name);
11468 if (!legacy_probe)
11469 return libbpf_err_ptr(-ENOMEM);
11470
11471 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
11472 binary_path, func_offset, pid);
11473 }
11474 if (pfd < 0) {
11475 err = -errno;
11476 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
11477 prog->name, retprobe ? "uretprobe" : "uprobe",
11478 binary_path, func_offset,
11479 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11480 goto err_out;
11481 }
11482
11483 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11484 err = libbpf_get_error(link);
11485 if (err) {
11486 close(pfd);
11487 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
11488 prog->name, retprobe ? "uretprobe" : "uprobe",
11489 binary_path, func_offset,
11490 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11491 goto err_clean_legacy;
11492 }
11493 if (legacy) {
11494 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11495
11496 perf_link->legacy_probe_name = legacy_probe;
11497 perf_link->legacy_is_kprobe = false;
11498 perf_link->legacy_is_retprobe = retprobe;
11499 }
11500 return link;
11501
11502 err_clean_legacy:
11503 if (legacy)
11504 remove_uprobe_event_legacy(legacy_probe, retprobe);
11505 err_out:
11506 free(legacy_probe);
11507 return libbpf_err_ptr(err);
11508 }
11509
11510 /* Format of u[ret]probe section definition supporting auto-attach:
11511 * u[ret]probe/binary:function[+offset]
11512 *
11513 * binary can be an absolute/relative path or a filename; the latter is resolved to a
11514 * full binary path via bpf_program__attach_uprobe_opts.
11515 *
11516 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
11517 * specified (and auto-attach is not possible) or the above format is specified for
11518 * auto-attach.
11519 */
attach_uprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11520 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11521 {
11522 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
11523 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11524 int n, ret = -EINVAL;
11525 long offset = 0;
11526
11527 *link = NULL;
11528
11529 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li",
11530 &probe_type, &binary_path, &func_name, &offset);
11531 switch (n) {
11532 case 1:
11533 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11534 ret = 0;
11535 break;
11536 case 2:
11537 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
11538 prog->name, prog->sec_name);
11539 break;
11540 case 3:
11541 case 4:
11542 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
11543 strcmp(probe_type, "uretprobe.s") == 0;
11544 if (opts.retprobe && offset != 0) {
11545 pr_warn("prog '%s': uretprobes do not support offset specification\n",
11546 prog->name);
11547 break;
11548 }
11549 opts.func_name = func_name;
11550 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
11551 ret = libbpf_get_error(*link);
11552 break;
11553 default:
11554 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11555 prog->sec_name);
11556 break;
11557 }
11558 free(probe_type);
11559 free(binary_path);
11560 free(func_name);
11561
11562 return ret;
11563 }
11564
bpf_program__attach_uprobe(const struct bpf_program * prog,bool retprobe,pid_t pid,const char * binary_path,size_t func_offset)11565 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
11566 bool retprobe, pid_t pid,
11567 const char *binary_path,
11568 size_t func_offset)
11569 {
11570 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
11571
11572 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
11573 }
11574
bpf_program__attach_usdt(const struct bpf_program * prog,pid_t pid,const char * binary_path,const char * usdt_provider,const char * usdt_name,const struct bpf_usdt_opts * opts)11575 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
11576 pid_t pid, const char *binary_path,
11577 const char *usdt_provider, const char *usdt_name,
11578 const struct bpf_usdt_opts *opts)
11579 {
11580 char resolved_path[512];
11581 struct bpf_object *obj = prog->obj;
11582 struct bpf_link *link;
11583 __u64 usdt_cookie;
11584 int err;
11585
11586 if (!OPTS_VALID(opts, bpf_uprobe_opts))
11587 return libbpf_err_ptr(-EINVAL);
11588
11589 if (bpf_program__fd(prog) < 0) {
11590 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
11591 prog->name);
11592 return libbpf_err_ptr(-EINVAL);
11593 }
11594
11595 if (!binary_path)
11596 return libbpf_err_ptr(-EINVAL);
11597
11598 if (!strchr(binary_path, '/')) {
11599 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
11600 if (err) {
11601 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11602 prog->name, binary_path, err);
11603 return libbpf_err_ptr(err);
11604 }
11605 binary_path = resolved_path;
11606 }
11607
11608 /* USDT manager is instantiated lazily on first USDT attach. It will
11609 * be destroyed together with BPF object in bpf_object__close().
11610 */
11611 if (IS_ERR(obj->usdt_man))
11612 return libbpf_ptr(obj->usdt_man);
11613 if (!obj->usdt_man) {
11614 obj->usdt_man = usdt_manager_new(obj);
11615 if (IS_ERR(obj->usdt_man))
11616 return libbpf_ptr(obj->usdt_man);
11617 }
11618
11619 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
11620 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
11621 usdt_provider, usdt_name, usdt_cookie);
11622 err = libbpf_get_error(link);
11623 if (err)
11624 return libbpf_err_ptr(err);
11625 return link;
11626 }
11627
attach_usdt(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11628 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11629 {
11630 char *path = NULL, *provider = NULL, *name = NULL;
11631 const char *sec_name;
11632 int n, err;
11633
11634 sec_name = bpf_program__section_name(prog);
11635 if (strcmp(sec_name, "usdt") == 0) {
11636 /* no auto-attach for just SEC("usdt") */
11637 *link = NULL;
11638 return 0;
11639 }
11640
11641 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
11642 if (n != 3) {
11643 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
11644 sec_name);
11645 err = -EINVAL;
11646 } else {
11647 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
11648 provider, name, NULL);
11649 err = libbpf_get_error(*link);
11650 }
11651 free(path);
11652 free(provider);
11653 free(name);
11654 return err;
11655 }
11656
determine_tracepoint_id(const char * tp_category,const char * tp_name)11657 static int determine_tracepoint_id(const char *tp_category,
11658 const char *tp_name)
11659 {
11660 char file[PATH_MAX];
11661 int ret;
11662
11663 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11664 tracefs_path(), tp_category, tp_name);
11665 if (ret < 0)
11666 return -errno;
11667 if (ret >= sizeof(file)) {
11668 pr_debug("tracepoint %s/%s path is too long\n",
11669 tp_category, tp_name);
11670 return -E2BIG;
11671 }
11672 return parse_uint_from_file(file, "%d\n");
11673 }
11674
perf_event_open_tracepoint(const char * tp_category,const char * tp_name)11675 static int perf_event_open_tracepoint(const char *tp_category,
11676 const char *tp_name)
11677 {
11678 const size_t attr_sz = sizeof(struct perf_event_attr);
11679 struct perf_event_attr attr;
11680 char errmsg[STRERR_BUFSIZE];
11681 int tp_id, pfd, err;
11682
11683 tp_id = determine_tracepoint_id(tp_category, tp_name);
11684 if (tp_id < 0) {
11685 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
11686 tp_category, tp_name,
11687 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
11688 return tp_id;
11689 }
11690
11691 memset(&attr, 0, attr_sz);
11692 attr.type = PERF_TYPE_TRACEPOINT;
11693 attr.size = attr_sz;
11694 attr.config = tp_id;
11695
11696 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
11697 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11698 if (pfd < 0) {
11699 err = -errno;
11700 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
11701 tp_category, tp_name,
11702 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11703 return err;
11704 }
11705 return pfd;
11706 }
11707
bpf_program__attach_tracepoint_opts(const struct bpf_program * prog,const char * tp_category,const char * tp_name,const struct bpf_tracepoint_opts * opts)11708 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
11709 const char *tp_category,
11710 const char *tp_name,
11711 const struct bpf_tracepoint_opts *opts)
11712 {
11713 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11714 char errmsg[STRERR_BUFSIZE];
11715 struct bpf_link *link;
11716 int pfd, err;
11717
11718 if (!OPTS_VALID(opts, bpf_tracepoint_opts))
11719 return libbpf_err_ptr(-EINVAL);
11720
11721 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11722
11723 pfd = perf_event_open_tracepoint(tp_category, tp_name);
11724 if (pfd < 0) {
11725 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
11726 prog->name, tp_category, tp_name,
11727 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11728 return libbpf_err_ptr(pfd);
11729 }
11730 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11731 err = libbpf_get_error(link);
11732 if (err) {
11733 close(pfd);
11734 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
11735 prog->name, tp_category, tp_name,
11736 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11737 return libbpf_err_ptr(err);
11738 }
11739 return link;
11740 }
11741
bpf_program__attach_tracepoint(const struct bpf_program * prog,const char * tp_category,const char * tp_name)11742 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
11743 const char *tp_category,
11744 const char *tp_name)
11745 {
11746 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
11747 }
11748
attach_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11749 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11750 {
11751 char *sec_name, *tp_cat, *tp_name;
11752
11753 *link = NULL;
11754
11755 /* no auto-attach for SEC("tp") or SEC("tracepoint") */
11756 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
11757 return 0;
11758
11759 sec_name = strdup(prog->sec_name);
11760 if (!sec_name)
11761 return -ENOMEM;
11762
11763 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
11764 if (str_has_pfx(prog->sec_name, "tp/"))
11765 tp_cat = sec_name + sizeof("tp/") - 1;
11766 else
11767 tp_cat = sec_name + sizeof("tracepoint/") - 1;
11768 tp_name = strchr(tp_cat, '/');
11769 if (!tp_name) {
11770 free(sec_name);
11771 return -EINVAL;
11772 }
11773 *tp_name = '\0';
11774 tp_name++;
11775
11776 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
11777 free(sec_name);
11778 return libbpf_get_error(*link);
11779 }
11780
bpf_program__attach_raw_tracepoint(const struct bpf_program * prog,const char * tp_name)11781 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
11782 const char *tp_name)
11783 {
11784 char errmsg[STRERR_BUFSIZE];
11785 struct bpf_link *link;
11786 int prog_fd, pfd;
11787
11788 prog_fd = bpf_program__fd(prog);
11789 if (prog_fd < 0) {
11790 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11791 return libbpf_err_ptr(-EINVAL);
11792 }
11793
11794 link = calloc(1, sizeof(*link));
11795 if (!link)
11796 return libbpf_err_ptr(-ENOMEM);
11797 link->detach = &bpf_link__detach_fd;
11798
11799 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
11800 if (pfd < 0) {
11801 pfd = -errno;
11802 free(link);
11803 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
11804 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11805 return libbpf_err_ptr(pfd);
11806 }
11807 link->fd = pfd;
11808 return link;
11809 }
11810
attach_raw_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11811 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11812 {
11813 static const char *const prefixes[] = {
11814 "raw_tp",
11815 "raw_tracepoint",
11816 "raw_tp.w",
11817 "raw_tracepoint.w",
11818 };
11819 size_t i;
11820 const char *tp_name = NULL;
11821
11822 *link = NULL;
11823
11824 for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
11825 size_t pfx_len;
11826
11827 if (!str_has_pfx(prog->sec_name, prefixes[i]))
11828 continue;
11829
11830 pfx_len = strlen(prefixes[i]);
11831 /* no auto-attach case of, e.g., SEC("raw_tp") */
11832 if (prog->sec_name[pfx_len] == '\0')
11833 return 0;
11834
11835 if (prog->sec_name[pfx_len] != '/')
11836 continue;
11837
11838 tp_name = prog->sec_name + pfx_len + 1;
11839 break;
11840 }
11841
11842 if (!tp_name) {
11843 pr_warn("prog '%s': invalid section name '%s'\n",
11844 prog->name, prog->sec_name);
11845 return -EINVAL;
11846 }
11847
11848 *link = bpf_program__attach_raw_tracepoint(prog, tp_name);
11849 return libbpf_get_error(*link);
11850 }
11851
11852 /* Common logic for all BPF program types that attach to a btf_id */
bpf_program__attach_btf_id(const struct bpf_program * prog,const struct bpf_trace_opts * opts)11853 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
11854 const struct bpf_trace_opts *opts)
11855 {
11856 LIBBPF_OPTS(bpf_link_create_opts, link_opts);
11857 char errmsg[STRERR_BUFSIZE];
11858 struct bpf_link *link;
11859 int prog_fd, pfd;
11860
11861 if (!OPTS_VALID(opts, bpf_trace_opts))
11862 return libbpf_err_ptr(-EINVAL);
11863
11864 prog_fd = bpf_program__fd(prog);
11865 if (prog_fd < 0) {
11866 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11867 return libbpf_err_ptr(-EINVAL);
11868 }
11869
11870 link = calloc(1, sizeof(*link));
11871 if (!link)
11872 return libbpf_err_ptr(-ENOMEM);
11873 link->detach = &bpf_link__detach_fd;
11874
11875 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
11876 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
11877 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
11878 if (pfd < 0) {
11879 pfd = -errno;
11880 free(link);
11881 pr_warn("prog '%s': failed to attach: %s\n",
11882 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11883 return libbpf_err_ptr(pfd);
11884 }
11885 link->fd = pfd;
11886 return link;
11887 }
11888
bpf_program__attach_trace(const struct bpf_program * prog)11889 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
11890 {
11891 return bpf_program__attach_btf_id(prog, NULL);
11892 }
11893
bpf_program__attach_trace_opts(const struct bpf_program * prog,const struct bpf_trace_opts * opts)11894 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
11895 const struct bpf_trace_opts *opts)
11896 {
11897 return bpf_program__attach_btf_id(prog, opts);
11898 }
11899
bpf_program__attach_lsm(const struct bpf_program * prog)11900 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
11901 {
11902 return bpf_program__attach_btf_id(prog, NULL);
11903 }
11904
attach_trace(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11905 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11906 {
11907 *link = bpf_program__attach_trace(prog);
11908 return libbpf_get_error(*link);
11909 }
11910
attach_lsm(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11911 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11912 {
11913 *link = bpf_program__attach_lsm(prog);
11914 return libbpf_get_error(*link);
11915 }
11916
11917 static struct bpf_link *
bpf_program_attach_fd(const struct bpf_program * prog,int target_fd,const char * target_name,const struct bpf_link_create_opts * opts)11918 bpf_program_attach_fd(const struct bpf_program *prog,
11919 int target_fd, const char *target_name,
11920 const struct bpf_link_create_opts *opts)
11921 {
11922 enum bpf_attach_type attach_type;
11923 char errmsg[STRERR_BUFSIZE];
11924 struct bpf_link *link;
11925 int prog_fd, link_fd;
11926
11927 prog_fd = bpf_program__fd(prog);
11928 if (prog_fd < 0) {
11929 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11930 return libbpf_err_ptr(-EINVAL);
11931 }
11932
11933 link = calloc(1, sizeof(*link));
11934 if (!link)
11935 return libbpf_err_ptr(-ENOMEM);
11936 link->detach = &bpf_link__detach_fd;
11937
11938 attach_type = bpf_program__expected_attach_type(prog);
11939 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
11940 if (link_fd < 0) {
11941 link_fd = -errno;
11942 free(link);
11943 pr_warn("prog '%s': failed to attach to %s: %s\n",
11944 prog->name, target_name,
11945 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11946 return libbpf_err_ptr(link_fd);
11947 }
11948 link->fd = link_fd;
11949 return link;
11950 }
11951
11952 struct bpf_link *
bpf_program__attach_cgroup(const struct bpf_program * prog,int cgroup_fd)11953 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
11954 {
11955 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
11956 }
11957
11958 struct bpf_link *
bpf_program__attach_netns(const struct bpf_program * prog,int netns_fd)11959 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
11960 {
11961 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
11962 }
11963
bpf_program__attach_xdp(const struct bpf_program * prog,int ifindex)11964 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
11965 {
11966 /* target_fd/target_ifindex use the same field in LINK_CREATE */
11967 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
11968 }
11969
11970 struct bpf_link *
bpf_program__attach_tcx(const struct bpf_program * prog,int ifindex,const struct bpf_tcx_opts * opts)11971 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
11972 const struct bpf_tcx_opts *opts)
11973 {
11974 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
11975 __u32 relative_id;
11976 int relative_fd;
11977
11978 if (!OPTS_VALID(opts, bpf_tcx_opts))
11979 return libbpf_err_ptr(-EINVAL);
11980
11981 relative_id = OPTS_GET(opts, relative_id, 0);
11982 relative_fd = OPTS_GET(opts, relative_fd, 0);
11983
11984 /* validate we don't have unexpected combinations of non-zero fields */
11985 if (!ifindex) {
11986 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
11987 prog->name);
11988 return libbpf_err_ptr(-EINVAL);
11989 }
11990 if (relative_fd && relative_id) {
11991 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
11992 prog->name);
11993 return libbpf_err_ptr(-EINVAL);
11994 }
11995
11996 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
11997 link_create_opts.tcx.relative_fd = relative_fd;
11998 link_create_opts.tcx.relative_id = relative_id;
11999 link_create_opts.flags = OPTS_GET(opts, flags, 0);
12000
12001 /* target_fd/target_ifindex use the same field in LINK_CREATE */
12002 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
12003 }
12004
bpf_program__attach_freplace(const struct bpf_program * prog,int target_fd,const char * attach_func_name)12005 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
12006 int target_fd,
12007 const char *attach_func_name)
12008 {
12009 int btf_id;
12010
12011 if (!!target_fd != !!attach_func_name) {
12012 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
12013 prog->name);
12014 return libbpf_err_ptr(-EINVAL);
12015 }
12016
12017 if (prog->type != BPF_PROG_TYPE_EXT) {
12018 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
12019 prog->name);
12020 return libbpf_err_ptr(-EINVAL);
12021 }
12022
12023 if (target_fd) {
12024 LIBBPF_OPTS(bpf_link_create_opts, target_opts);
12025
12026 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
12027 if (btf_id < 0)
12028 return libbpf_err_ptr(btf_id);
12029
12030 target_opts.target_btf_id = btf_id;
12031
12032 return bpf_program_attach_fd(prog, target_fd, "freplace",
12033 &target_opts);
12034 } else {
12035 /* no target, so use raw_tracepoint_open for compatibility
12036 * with old kernels
12037 */
12038 return bpf_program__attach_trace(prog);
12039 }
12040 }
12041
12042 struct bpf_link *
bpf_program__attach_iter(const struct bpf_program * prog,const struct bpf_iter_attach_opts * opts)12043 bpf_program__attach_iter(const struct bpf_program *prog,
12044 const struct bpf_iter_attach_opts *opts)
12045 {
12046 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12047 char errmsg[STRERR_BUFSIZE];
12048 struct bpf_link *link;
12049 int prog_fd, link_fd;
12050 __u32 target_fd = 0;
12051
12052 if (!OPTS_VALID(opts, bpf_iter_attach_opts))
12053 return libbpf_err_ptr(-EINVAL);
12054
12055 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
12056 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
12057
12058 prog_fd = bpf_program__fd(prog);
12059 if (prog_fd < 0) {
12060 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12061 return libbpf_err_ptr(-EINVAL);
12062 }
12063
12064 link = calloc(1, sizeof(*link));
12065 if (!link)
12066 return libbpf_err_ptr(-ENOMEM);
12067 link->detach = &bpf_link__detach_fd;
12068
12069 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
12070 &link_create_opts);
12071 if (link_fd < 0) {
12072 link_fd = -errno;
12073 free(link);
12074 pr_warn("prog '%s': failed to attach to iterator: %s\n",
12075 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12076 return libbpf_err_ptr(link_fd);
12077 }
12078 link->fd = link_fd;
12079 return link;
12080 }
12081
attach_iter(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12082 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12083 {
12084 *link = bpf_program__attach_iter(prog, NULL);
12085 return libbpf_get_error(*link);
12086 }
12087
bpf_program__attach_netfilter(const struct bpf_program * prog,const struct bpf_netfilter_opts * opts)12088 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
12089 const struct bpf_netfilter_opts *opts)
12090 {
12091 LIBBPF_OPTS(bpf_link_create_opts, lopts);
12092 struct bpf_link *link;
12093 int prog_fd, link_fd;
12094
12095 if (!OPTS_VALID(opts, bpf_netfilter_opts))
12096 return libbpf_err_ptr(-EINVAL);
12097
12098 prog_fd = bpf_program__fd(prog);
12099 if (prog_fd < 0) {
12100 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12101 return libbpf_err_ptr(-EINVAL);
12102 }
12103
12104 link = calloc(1, sizeof(*link));
12105 if (!link)
12106 return libbpf_err_ptr(-ENOMEM);
12107
12108 link->detach = &bpf_link__detach_fd;
12109
12110 lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
12111 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
12112 lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
12113 lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
12114
12115 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
12116 if (link_fd < 0) {
12117 char errmsg[STRERR_BUFSIZE];
12118
12119 link_fd = -errno;
12120 free(link);
12121 pr_warn("prog '%s': failed to attach to netfilter: %s\n",
12122 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12123 return libbpf_err_ptr(link_fd);
12124 }
12125 link->fd = link_fd;
12126
12127 return link;
12128 }
12129
bpf_program__attach(const struct bpf_program * prog)12130 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
12131 {
12132 struct bpf_link *link = NULL;
12133 int err;
12134
12135 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12136 return libbpf_err_ptr(-EOPNOTSUPP);
12137
12138 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
12139 if (err)
12140 return libbpf_err_ptr(err);
12141
12142 /* When calling bpf_program__attach() explicitly, auto-attach support
12143 * is expected to work, so NULL returned link is considered an error.
12144 * This is different for skeleton's attach, see comment in
12145 * bpf_object__attach_skeleton().
12146 */
12147 if (!link)
12148 return libbpf_err_ptr(-EOPNOTSUPP);
12149
12150 return link;
12151 }
12152
12153 struct bpf_link_struct_ops {
12154 struct bpf_link link;
12155 int map_fd;
12156 };
12157
bpf_link__detach_struct_ops(struct bpf_link * link)12158 static int bpf_link__detach_struct_ops(struct bpf_link *link)
12159 {
12160 struct bpf_link_struct_ops *st_link;
12161 __u32 zero = 0;
12162
12163 st_link = container_of(link, struct bpf_link_struct_ops, link);
12164
12165 if (st_link->map_fd < 0)
12166 /* w/o a real link */
12167 return bpf_map_delete_elem(link->fd, &zero);
12168
12169 return close(link->fd);
12170 }
12171
bpf_map__attach_struct_ops(const struct bpf_map * map)12172 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
12173 {
12174 struct bpf_link_struct_ops *link;
12175 __u32 zero = 0;
12176 int err, fd;
12177
12178 if (!bpf_map__is_struct_ops(map) || map->fd == -1)
12179 return libbpf_err_ptr(-EINVAL);
12180
12181 link = calloc(1, sizeof(*link));
12182 if (!link)
12183 return libbpf_err_ptr(-EINVAL);
12184
12185 /* kern_vdata should be prepared during the loading phase. */
12186 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12187 /* It can be EBUSY if the map has been used to create or
12188 * update a link before. We don't allow updating the value of
12189 * a struct_ops once it is set. That ensures that the value
12190 * never changed. So, it is safe to skip EBUSY.
12191 */
12192 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
12193 free(link);
12194 return libbpf_err_ptr(err);
12195 }
12196
12197 link->link.detach = bpf_link__detach_struct_ops;
12198
12199 if (!(map->def.map_flags & BPF_F_LINK)) {
12200 /* w/o a real link */
12201 link->link.fd = map->fd;
12202 link->map_fd = -1;
12203 return &link->link;
12204 }
12205
12206 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
12207 if (fd < 0) {
12208 free(link);
12209 return libbpf_err_ptr(fd);
12210 }
12211
12212 link->link.fd = fd;
12213 link->map_fd = map->fd;
12214
12215 return &link->link;
12216 }
12217
12218 /*
12219 * Swap the back struct_ops of a link with a new struct_ops map.
12220 */
bpf_link__update_map(struct bpf_link * link,const struct bpf_map * map)12221 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
12222 {
12223 struct bpf_link_struct_ops *st_ops_link;
12224 __u32 zero = 0;
12225 int err;
12226
12227 if (!bpf_map__is_struct_ops(map) || map->fd < 0)
12228 return -EINVAL;
12229
12230 st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
12231 /* Ensure the type of a link is correct */
12232 if (st_ops_link->map_fd < 0)
12233 return -EINVAL;
12234
12235 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12236 /* It can be EBUSY if the map has been used to create or
12237 * update a link before. We don't allow updating the value of
12238 * a struct_ops once it is set. That ensures that the value
12239 * never changed. So, it is safe to skip EBUSY.
12240 */
12241 if (err && err != -EBUSY)
12242 return err;
12243
12244 err = bpf_link_update(link->fd, map->fd, NULL);
12245 if (err < 0)
12246 return err;
12247
12248 st_ops_link->map_fd = map->fd;
12249
12250 return 0;
12251 }
12252
12253 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
12254 void *private_data);
12255
12256 static enum bpf_perf_event_ret
12257 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
12258 void **copy_mem, size_t *copy_size,
12259 bpf_perf_event_print_t fn, void *private_data)
12260 {
12261 struct perf_event_mmap_page *header = mmap_mem;
12262 __u64 data_head = ring_buffer_read_head(header);
12263 __u64 data_tail = header->data_tail;
12264 void *base = ((__u8 *)header) + page_size;
12265 int ret = LIBBPF_PERF_EVENT_CONT;
12266 struct perf_event_header *ehdr;
12267 size_t ehdr_size;
12268
12269 while (data_head != data_tail) {
12270 ehdr = base + (data_tail & (mmap_size - 1));
12271 ehdr_size = ehdr->size;
12272
12273 if (((void *)ehdr) + ehdr_size > base + mmap_size) {
12274 void *copy_start = ehdr;
12275 size_t len_first = base + mmap_size - copy_start;
12276 size_t len_secnd = ehdr_size - len_first;
12277
12278 if (*copy_size < ehdr_size) {
12279 free(*copy_mem);
12280 *copy_mem = malloc(ehdr_size);
12281 if (!*copy_mem) {
12282 *copy_size = 0;
12283 ret = LIBBPF_PERF_EVENT_ERROR;
12284 break;
12285 }
12286 *copy_size = ehdr_size;
12287 }
12288
12289 memcpy(*copy_mem, copy_start, len_first);
12290 memcpy(*copy_mem + len_first, base, len_secnd);
12291 ehdr = *copy_mem;
12292 }
12293
12294 ret = fn(ehdr, private_data);
12295 data_tail += ehdr_size;
12296 if (ret != LIBBPF_PERF_EVENT_CONT)
12297 break;
12298 }
12299
12300 ring_buffer_write_tail(header, data_tail);
12301 return libbpf_err(ret);
12302 }
12303
12304 struct perf_buffer;
12305
12306 struct perf_buffer_params {
12307 struct perf_event_attr *attr;
12308 /* if event_cb is specified, it takes precendence */
12309 perf_buffer_event_fn event_cb;
12310 /* sample_cb and lost_cb are higher-level common-case callbacks */
12311 perf_buffer_sample_fn sample_cb;
12312 perf_buffer_lost_fn lost_cb;
12313 void *ctx;
12314 int cpu_cnt;
12315 int *cpus;
12316 int *map_keys;
12317 };
12318
12319 struct perf_cpu_buf {
12320 struct perf_buffer *pb;
12321 void *base; /* mmap()'ed memory */
12322 void *buf; /* for reconstructing segmented data */
12323 size_t buf_size;
12324 int fd;
12325 int cpu;
12326 int map_key;
12327 };
12328
12329 struct perf_buffer {
12330 perf_buffer_event_fn event_cb;
12331 perf_buffer_sample_fn sample_cb;
12332 perf_buffer_lost_fn lost_cb;
12333 void *ctx; /* passed into callbacks */
12334
12335 size_t page_size;
12336 size_t mmap_size;
12337 struct perf_cpu_buf **cpu_bufs;
12338 struct epoll_event *events;
12339 int cpu_cnt; /* number of allocated CPU buffers */
12340 int epoll_fd; /* perf event FD */
12341 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
12342 };
12343
perf_buffer__free_cpu_buf(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)12344 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
12345 struct perf_cpu_buf *cpu_buf)
12346 {
12347 if (!cpu_buf)
12348 return;
12349 if (cpu_buf->base &&
12350 munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
12351 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
12352 if (cpu_buf->fd >= 0) {
12353 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
12354 close(cpu_buf->fd);
12355 }
12356 free(cpu_buf->buf);
12357 free(cpu_buf);
12358 }
12359
perf_buffer__free(struct perf_buffer * pb)12360 void perf_buffer__free(struct perf_buffer *pb)
12361 {
12362 int i;
12363
12364 if (IS_ERR_OR_NULL(pb))
12365 return;
12366 if (pb->cpu_bufs) {
12367 for (i = 0; i < pb->cpu_cnt; i++) {
12368 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12369
12370 if (!cpu_buf)
12371 continue;
12372
12373 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
12374 perf_buffer__free_cpu_buf(pb, cpu_buf);
12375 }
12376 free(pb->cpu_bufs);
12377 }
12378 if (pb->epoll_fd >= 0)
12379 close(pb->epoll_fd);
12380 free(pb->events);
12381 free(pb);
12382 }
12383
12384 static struct perf_cpu_buf *
perf_buffer__open_cpu_buf(struct perf_buffer * pb,struct perf_event_attr * attr,int cpu,int map_key)12385 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
12386 int cpu, int map_key)
12387 {
12388 struct perf_cpu_buf *cpu_buf;
12389 char msg[STRERR_BUFSIZE];
12390 int err;
12391
12392 cpu_buf = calloc(1, sizeof(*cpu_buf));
12393 if (!cpu_buf)
12394 return ERR_PTR(-ENOMEM);
12395
12396 cpu_buf->pb = pb;
12397 cpu_buf->cpu = cpu;
12398 cpu_buf->map_key = map_key;
12399
12400 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
12401 -1, PERF_FLAG_FD_CLOEXEC);
12402 if (cpu_buf->fd < 0) {
12403 err = -errno;
12404 pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
12405 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12406 goto error;
12407 }
12408
12409 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
12410 PROT_READ | PROT_WRITE, MAP_SHARED,
12411 cpu_buf->fd, 0);
12412 if (cpu_buf->base == MAP_FAILED) {
12413 cpu_buf->base = NULL;
12414 err = -errno;
12415 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
12416 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12417 goto error;
12418 }
12419
12420 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
12421 err = -errno;
12422 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
12423 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12424 goto error;
12425 }
12426
12427 return cpu_buf;
12428
12429 error:
12430 perf_buffer__free_cpu_buf(pb, cpu_buf);
12431 return (struct perf_cpu_buf *)ERR_PTR(err);
12432 }
12433
12434 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12435 struct perf_buffer_params *p);
12436
perf_buffer__new(int map_fd,size_t page_cnt,perf_buffer_sample_fn sample_cb,perf_buffer_lost_fn lost_cb,void * ctx,const struct perf_buffer_opts * opts)12437 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
12438 perf_buffer_sample_fn sample_cb,
12439 perf_buffer_lost_fn lost_cb,
12440 void *ctx,
12441 const struct perf_buffer_opts *opts)
12442 {
12443 const size_t attr_sz = sizeof(struct perf_event_attr);
12444 struct perf_buffer_params p = {};
12445 struct perf_event_attr attr;
12446 __u32 sample_period;
12447
12448 if (!OPTS_VALID(opts, perf_buffer_opts))
12449 return libbpf_err_ptr(-EINVAL);
12450
12451 sample_period = OPTS_GET(opts, sample_period, 1);
12452 if (!sample_period)
12453 sample_period = 1;
12454
12455 memset(&attr, 0, attr_sz);
12456 attr.size = attr_sz;
12457 attr.config = PERF_COUNT_SW_BPF_OUTPUT;
12458 attr.type = PERF_TYPE_SOFTWARE;
12459 attr.sample_type = PERF_SAMPLE_RAW;
12460 attr.wakeup_events = sample_period;
12461
12462 p.attr = &attr;
12463 p.sample_cb = sample_cb;
12464 p.lost_cb = lost_cb;
12465 p.ctx = ctx;
12466
12467 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12468 }
12469
perf_buffer__new_raw(int map_fd,size_t page_cnt,struct perf_event_attr * attr,perf_buffer_event_fn event_cb,void * ctx,const struct perf_buffer_raw_opts * opts)12470 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
12471 struct perf_event_attr *attr,
12472 perf_buffer_event_fn event_cb, void *ctx,
12473 const struct perf_buffer_raw_opts *opts)
12474 {
12475 struct perf_buffer_params p = {};
12476
12477 if (!attr)
12478 return libbpf_err_ptr(-EINVAL);
12479
12480 if (!OPTS_VALID(opts, perf_buffer_raw_opts))
12481 return libbpf_err_ptr(-EINVAL);
12482
12483 p.attr = attr;
12484 p.event_cb = event_cb;
12485 p.ctx = ctx;
12486 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
12487 p.cpus = OPTS_GET(opts, cpus, NULL);
12488 p.map_keys = OPTS_GET(opts, map_keys, NULL);
12489
12490 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12491 }
12492
__perf_buffer__new(int map_fd,size_t page_cnt,struct perf_buffer_params * p)12493 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12494 struct perf_buffer_params *p)
12495 {
12496 const char *online_cpus_file = "/sys/devices/system/cpu/online";
12497 struct bpf_map_info map;
12498 char msg[STRERR_BUFSIZE];
12499 struct perf_buffer *pb;
12500 bool *online = NULL;
12501 __u32 map_info_len;
12502 int err, i, j, n;
12503
12504 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
12505 pr_warn("page count should be power of two, but is %zu\n",
12506 page_cnt);
12507 return ERR_PTR(-EINVAL);
12508 }
12509
12510 /* best-effort sanity checks */
12511 memset(&map, 0, sizeof(map));
12512 map_info_len = sizeof(map);
12513 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
12514 if (err) {
12515 err = -errno;
12516 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
12517 * -EBADFD, -EFAULT, or -E2BIG on real error
12518 */
12519 if (err != -EINVAL) {
12520 pr_warn("failed to get map info for map FD %d: %s\n",
12521 map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
12522 return ERR_PTR(err);
12523 }
12524 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
12525 map_fd);
12526 } else {
12527 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
12528 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
12529 map.name);
12530 return ERR_PTR(-EINVAL);
12531 }
12532 }
12533
12534 pb = calloc(1, sizeof(*pb));
12535 if (!pb)
12536 return ERR_PTR(-ENOMEM);
12537
12538 pb->event_cb = p->event_cb;
12539 pb->sample_cb = p->sample_cb;
12540 pb->lost_cb = p->lost_cb;
12541 pb->ctx = p->ctx;
12542
12543 pb->page_size = getpagesize();
12544 pb->mmap_size = pb->page_size * page_cnt;
12545 pb->map_fd = map_fd;
12546
12547 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
12548 if (pb->epoll_fd < 0) {
12549 err = -errno;
12550 pr_warn("failed to create epoll instance: %s\n",
12551 libbpf_strerror_r(err, msg, sizeof(msg)));
12552 goto error;
12553 }
12554
12555 if (p->cpu_cnt > 0) {
12556 pb->cpu_cnt = p->cpu_cnt;
12557 } else {
12558 pb->cpu_cnt = libbpf_num_possible_cpus();
12559 if (pb->cpu_cnt < 0) {
12560 err = pb->cpu_cnt;
12561 goto error;
12562 }
12563 if (map.max_entries && map.max_entries < pb->cpu_cnt)
12564 pb->cpu_cnt = map.max_entries;
12565 }
12566
12567 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
12568 if (!pb->events) {
12569 err = -ENOMEM;
12570 pr_warn("failed to allocate events: out of memory\n");
12571 goto error;
12572 }
12573 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
12574 if (!pb->cpu_bufs) {
12575 err = -ENOMEM;
12576 pr_warn("failed to allocate buffers: out of memory\n");
12577 goto error;
12578 }
12579
12580 err = parse_cpu_mask_file(online_cpus_file, &online, &n);
12581 if (err) {
12582 pr_warn("failed to get online CPU mask: %d\n", err);
12583 goto error;
12584 }
12585
12586 for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
12587 struct perf_cpu_buf *cpu_buf;
12588 int cpu, map_key;
12589
12590 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
12591 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
12592
12593 /* in case user didn't explicitly requested particular CPUs to
12594 * be attached to, skip offline/not present CPUs
12595 */
12596 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
12597 continue;
12598
12599 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
12600 if (IS_ERR(cpu_buf)) {
12601 err = PTR_ERR(cpu_buf);
12602 goto error;
12603 }
12604
12605 pb->cpu_bufs[j] = cpu_buf;
12606
12607 err = bpf_map_update_elem(pb->map_fd, &map_key,
12608 &cpu_buf->fd, 0);
12609 if (err) {
12610 err = -errno;
12611 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
12612 cpu, map_key, cpu_buf->fd,
12613 libbpf_strerror_r(err, msg, sizeof(msg)));
12614 goto error;
12615 }
12616
12617 pb->events[j].events = EPOLLIN;
12618 pb->events[j].data.ptr = cpu_buf;
12619 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
12620 &pb->events[j]) < 0) {
12621 err = -errno;
12622 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
12623 cpu, cpu_buf->fd,
12624 libbpf_strerror_r(err, msg, sizeof(msg)));
12625 goto error;
12626 }
12627 j++;
12628 }
12629 pb->cpu_cnt = j;
12630 free(online);
12631
12632 return pb;
12633
12634 error:
12635 free(online);
12636 if (pb)
12637 perf_buffer__free(pb);
12638 return ERR_PTR(err);
12639 }
12640
12641 struct perf_sample_raw {
12642 struct perf_event_header header;
12643 uint32_t size;
12644 char data[];
12645 };
12646
12647 struct perf_sample_lost {
12648 struct perf_event_header header;
12649 uint64_t id;
12650 uint64_t lost;
12651 uint64_t sample_id;
12652 };
12653
12654 static enum bpf_perf_event_ret
perf_buffer__process_record(struct perf_event_header * e,void * ctx)12655 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
12656 {
12657 struct perf_cpu_buf *cpu_buf = ctx;
12658 struct perf_buffer *pb = cpu_buf->pb;
12659 void *data = e;
12660
12661 /* user wants full control over parsing perf event */
12662 if (pb->event_cb)
12663 return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
12664
12665 switch (e->type) {
12666 case PERF_RECORD_SAMPLE: {
12667 struct perf_sample_raw *s = data;
12668
12669 if (pb->sample_cb)
12670 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
12671 break;
12672 }
12673 case PERF_RECORD_LOST: {
12674 struct perf_sample_lost *s = data;
12675
12676 if (pb->lost_cb)
12677 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
12678 break;
12679 }
12680 default:
12681 pr_warn("unknown perf sample type %d\n", e->type);
12682 return LIBBPF_PERF_EVENT_ERROR;
12683 }
12684 return LIBBPF_PERF_EVENT_CONT;
12685 }
12686
perf_buffer__process_records(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)12687 static int perf_buffer__process_records(struct perf_buffer *pb,
12688 struct perf_cpu_buf *cpu_buf)
12689 {
12690 enum bpf_perf_event_ret ret;
12691
12692 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
12693 pb->page_size, &cpu_buf->buf,
12694 &cpu_buf->buf_size,
12695 perf_buffer__process_record, cpu_buf);
12696 if (ret != LIBBPF_PERF_EVENT_CONT)
12697 return ret;
12698 return 0;
12699 }
12700
perf_buffer__epoll_fd(const struct perf_buffer * pb)12701 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
12702 {
12703 return pb->epoll_fd;
12704 }
12705
perf_buffer__poll(struct perf_buffer * pb,int timeout_ms)12706 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
12707 {
12708 int i, cnt, err;
12709
12710 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
12711 if (cnt < 0)
12712 return -errno;
12713
12714 for (i = 0; i < cnt; i++) {
12715 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
12716
12717 err = perf_buffer__process_records(pb, cpu_buf);
12718 if (err) {
12719 pr_warn("error while processing records: %d\n", err);
12720 return libbpf_err(err);
12721 }
12722 }
12723 return cnt;
12724 }
12725
12726 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
12727 * manager.
12728 */
perf_buffer__buffer_cnt(const struct perf_buffer * pb)12729 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
12730 {
12731 return pb->cpu_cnt;
12732 }
12733
12734 /*
12735 * Return perf_event FD of a ring buffer in *buf_idx* slot of
12736 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
12737 * select()/poll()/epoll() Linux syscalls.
12738 */
perf_buffer__buffer_fd(const struct perf_buffer * pb,size_t buf_idx)12739 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
12740 {
12741 struct perf_cpu_buf *cpu_buf;
12742
12743 if (buf_idx >= pb->cpu_cnt)
12744 return libbpf_err(-EINVAL);
12745
12746 cpu_buf = pb->cpu_bufs[buf_idx];
12747 if (!cpu_buf)
12748 return libbpf_err(-ENOENT);
12749
12750 return cpu_buf->fd;
12751 }
12752
perf_buffer__buffer(struct perf_buffer * pb,int buf_idx,void ** buf,size_t * buf_size)12753 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
12754 {
12755 struct perf_cpu_buf *cpu_buf;
12756
12757 if (buf_idx >= pb->cpu_cnt)
12758 return libbpf_err(-EINVAL);
12759
12760 cpu_buf = pb->cpu_bufs[buf_idx];
12761 if (!cpu_buf)
12762 return libbpf_err(-ENOENT);
12763
12764 *buf = cpu_buf->base;
12765 *buf_size = pb->mmap_size;
12766 return 0;
12767 }
12768
12769 /*
12770 * Consume data from perf ring buffer corresponding to slot *buf_idx* in
12771 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
12772 * consume, do nothing and return success.
12773 * Returns:
12774 * - 0 on success;
12775 * - <0 on failure.
12776 */
perf_buffer__consume_buffer(struct perf_buffer * pb,size_t buf_idx)12777 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
12778 {
12779 struct perf_cpu_buf *cpu_buf;
12780
12781 if (buf_idx >= pb->cpu_cnt)
12782 return libbpf_err(-EINVAL);
12783
12784 cpu_buf = pb->cpu_bufs[buf_idx];
12785 if (!cpu_buf)
12786 return libbpf_err(-ENOENT);
12787
12788 return perf_buffer__process_records(pb, cpu_buf);
12789 }
12790
perf_buffer__consume(struct perf_buffer * pb)12791 int perf_buffer__consume(struct perf_buffer *pb)
12792 {
12793 int i, err;
12794
12795 for (i = 0; i < pb->cpu_cnt; i++) {
12796 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12797
12798 if (!cpu_buf)
12799 continue;
12800
12801 err = perf_buffer__process_records(pb, cpu_buf);
12802 if (err) {
12803 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
12804 return libbpf_err(err);
12805 }
12806 }
12807 return 0;
12808 }
12809
bpf_program__set_attach_target(struct bpf_program * prog,int attach_prog_fd,const char * attach_func_name)12810 int bpf_program__set_attach_target(struct bpf_program *prog,
12811 int attach_prog_fd,
12812 const char *attach_func_name)
12813 {
12814 int btf_obj_fd = 0, btf_id = 0, err;
12815
12816 if (!prog || attach_prog_fd < 0)
12817 return libbpf_err(-EINVAL);
12818
12819 if (prog->obj->loaded)
12820 return libbpf_err(-EINVAL);
12821
12822 if (attach_prog_fd && !attach_func_name) {
12823 /* remember attach_prog_fd and let bpf_program__load() find
12824 * BTF ID during the program load
12825 */
12826 prog->attach_prog_fd = attach_prog_fd;
12827 return 0;
12828 }
12829
12830 if (attach_prog_fd) {
12831 btf_id = libbpf_find_prog_btf_id(attach_func_name,
12832 attach_prog_fd);
12833 if (btf_id < 0)
12834 return libbpf_err(btf_id);
12835 } else {
12836 if (!attach_func_name)
12837 return libbpf_err(-EINVAL);
12838
12839 /* load btf_vmlinux, if not yet */
12840 err = bpf_object__load_vmlinux_btf(prog->obj, true);
12841 if (err)
12842 return libbpf_err(err);
12843 err = find_kernel_btf_id(prog->obj, attach_func_name,
12844 prog->expected_attach_type,
12845 &btf_obj_fd, &btf_id);
12846 if (err)
12847 return libbpf_err(err);
12848 }
12849
12850 prog->attach_btf_id = btf_id;
12851 prog->attach_btf_obj_fd = btf_obj_fd;
12852 prog->attach_prog_fd = attach_prog_fd;
12853 return 0;
12854 }
12855
parse_cpu_mask_str(const char * s,bool ** mask,int * mask_sz)12856 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
12857 {
12858 int err = 0, n, len, start, end = -1;
12859 bool *tmp;
12860
12861 *mask = NULL;
12862 *mask_sz = 0;
12863
12864 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
12865 while (*s) {
12866 if (*s == ',' || *s == '\n') {
12867 s++;
12868 continue;
12869 }
12870 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
12871 if (n <= 0 || n > 2) {
12872 pr_warn("Failed to get CPU range %s: %d\n", s, n);
12873 err = -EINVAL;
12874 goto cleanup;
12875 } else if (n == 1) {
12876 end = start;
12877 }
12878 if (start < 0 || start > end) {
12879 pr_warn("Invalid CPU range [%d,%d] in %s\n",
12880 start, end, s);
12881 err = -EINVAL;
12882 goto cleanup;
12883 }
12884 tmp = realloc(*mask, end + 1);
12885 if (!tmp) {
12886 err = -ENOMEM;
12887 goto cleanup;
12888 }
12889 *mask = tmp;
12890 memset(tmp + *mask_sz, 0, start - *mask_sz);
12891 memset(tmp + start, 1, end - start + 1);
12892 *mask_sz = end + 1;
12893 s += len;
12894 }
12895 if (!*mask_sz) {
12896 pr_warn("Empty CPU range\n");
12897 return -EINVAL;
12898 }
12899 return 0;
12900 cleanup:
12901 free(*mask);
12902 *mask = NULL;
12903 return err;
12904 }
12905
parse_cpu_mask_file(const char * fcpu,bool ** mask,int * mask_sz)12906 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
12907 {
12908 int fd, err = 0, len;
12909 char buf[128];
12910
12911 fd = open(fcpu, O_RDONLY | O_CLOEXEC);
12912 if (fd < 0) {
12913 err = -errno;
12914 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
12915 return err;
12916 }
12917 len = read(fd, buf, sizeof(buf));
12918 close(fd);
12919 if (len <= 0) {
12920 err = len ? -errno : -EINVAL;
12921 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
12922 return err;
12923 }
12924 if (len >= sizeof(buf)) {
12925 pr_warn("CPU mask is too big in file %s\n", fcpu);
12926 return -E2BIG;
12927 }
12928 buf[len] = '\0';
12929
12930 return parse_cpu_mask_str(buf, mask, mask_sz);
12931 }
12932
libbpf_num_possible_cpus(void)12933 int libbpf_num_possible_cpus(void)
12934 {
12935 static const char *fcpu = "/sys/devices/system/cpu/possible";
12936 static int cpus;
12937 int err, n, i, tmp_cpus;
12938 bool *mask;
12939
12940 tmp_cpus = READ_ONCE(cpus);
12941 if (tmp_cpus > 0)
12942 return tmp_cpus;
12943
12944 err = parse_cpu_mask_file(fcpu, &mask, &n);
12945 if (err)
12946 return libbpf_err(err);
12947
12948 tmp_cpus = 0;
12949 for (i = 0; i < n; i++) {
12950 if (mask[i])
12951 tmp_cpus++;
12952 }
12953 free(mask);
12954
12955 WRITE_ONCE(cpus, tmp_cpus);
12956 return tmp_cpus;
12957 }
12958
populate_skeleton_maps(const struct bpf_object * obj,struct bpf_map_skeleton * maps,size_t map_cnt)12959 static int populate_skeleton_maps(const struct bpf_object *obj,
12960 struct bpf_map_skeleton *maps,
12961 size_t map_cnt)
12962 {
12963 int i;
12964
12965 for (i = 0; i < map_cnt; i++) {
12966 struct bpf_map **map = maps[i].map;
12967 const char *name = maps[i].name;
12968 void **mmaped = maps[i].mmaped;
12969
12970 *map = bpf_object__find_map_by_name(obj, name);
12971 if (!*map) {
12972 pr_warn("failed to find skeleton map '%s'\n", name);
12973 return -ESRCH;
12974 }
12975
12976 /* externs shouldn't be pre-setup from user code */
12977 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
12978 *mmaped = (*map)->mmaped;
12979 }
12980 return 0;
12981 }
12982
populate_skeleton_progs(const struct bpf_object * obj,struct bpf_prog_skeleton * progs,size_t prog_cnt)12983 static int populate_skeleton_progs(const struct bpf_object *obj,
12984 struct bpf_prog_skeleton *progs,
12985 size_t prog_cnt)
12986 {
12987 int i;
12988
12989 for (i = 0; i < prog_cnt; i++) {
12990 struct bpf_program **prog = progs[i].prog;
12991 const char *name = progs[i].name;
12992
12993 *prog = bpf_object__find_program_by_name(obj, name);
12994 if (!*prog) {
12995 pr_warn("failed to find skeleton program '%s'\n", name);
12996 return -ESRCH;
12997 }
12998 }
12999 return 0;
13000 }
13001
bpf_object__open_skeleton(struct bpf_object_skeleton * s,const struct bpf_object_open_opts * opts)13002 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
13003 const struct bpf_object_open_opts *opts)
13004 {
13005 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
13006 .object_name = s->name,
13007 );
13008 struct bpf_object *obj;
13009 int err;
13010
13011 /* Attempt to preserve opts->object_name, unless overriden by user
13012 * explicitly. Overwriting object name for skeletons is discouraged,
13013 * as it breaks global data maps, because they contain object name
13014 * prefix as their own map name prefix. When skeleton is generated,
13015 * bpftool is making an assumption that this name will stay the same.
13016 */
13017 if (opts) {
13018 memcpy(&skel_opts, opts, sizeof(*opts));
13019 if (!opts->object_name)
13020 skel_opts.object_name = s->name;
13021 }
13022
13023 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
13024 err = libbpf_get_error(obj);
13025 if (err) {
13026 pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
13027 s->name, err);
13028 return libbpf_err(err);
13029 }
13030
13031 *s->obj = obj;
13032 err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
13033 if (err) {
13034 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
13035 return libbpf_err(err);
13036 }
13037
13038 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
13039 if (err) {
13040 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
13041 return libbpf_err(err);
13042 }
13043
13044 return 0;
13045 }
13046
bpf_object__open_subskeleton(struct bpf_object_subskeleton * s)13047 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13048 {
13049 int err, len, var_idx, i;
13050 const char *var_name;
13051 const struct bpf_map *map;
13052 struct btf *btf;
13053 __u32 map_type_id;
13054 const struct btf_type *map_type, *var_type;
13055 const struct bpf_var_skeleton *var_skel;
13056 struct btf_var_secinfo *var;
13057
13058 if (!s->obj)
13059 return libbpf_err(-EINVAL);
13060
13061 btf = bpf_object__btf(s->obj);
13062 if (!btf) {
13063 pr_warn("subskeletons require BTF at runtime (object %s)\n",
13064 bpf_object__name(s->obj));
13065 return libbpf_err(-errno);
13066 }
13067
13068 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
13069 if (err) {
13070 pr_warn("failed to populate subskeleton maps: %d\n", err);
13071 return libbpf_err(err);
13072 }
13073
13074 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
13075 if (err) {
13076 pr_warn("failed to populate subskeleton maps: %d\n", err);
13077 return libbpf_err(err);
13078 }
13079
13080 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
13081 var_skel = &s->vars[var_idx];
13082 map = *var_skel->map;
13083 map_type_id = bpf_map__btf_value_type_id(map);
13084 map_type = btf__type_by_id(btf, map_type_id);
13085
13086 if (!btf_is_datasec(map_type)) {
13087 pr_warn("type for map '%1$s' is not a datasec: %2$s",
13088 bpf_map__name(map),
13089 __btf_kind_str(btf_kind(map_type)));
13090 return libbpf_err(-EINVAL);
13091 }
13092
13093 len = btf_vlen(map_type);
13094 var = btf_var_secinfos(map_type);
13095 for (i = 0; i < len; i++, var++) {
13096 var_type = btf__type_by_id(btf, var->type);
13097 var_name = btf__name_by_offset(btf, var_type->name_off);
13098 if (strcmp(var_name, var_skel->name) == 0) {
13099 *var_skel->addr = map->mmaped + var->offset;
13100 break;
13101 }
13102 }
13103 }
13104 return 0;
13105 }
13106
bpf_object__destroy_subskeleton(struct bpf_object_subskeleton * s)13107 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
13108 {
13109 if (!s)
13110 return;
13111 free(s->maps);
13112 free(s->progs);
13113 free(s->vars);
13114 free(s);
13115 }
13116
bpf_object__load_skeleton(struct bpf_object_skeleton * s)13117 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
13118 {
13119 int i, err;
13120
13121 err = bpf_object__load(*s->obj);
13122 if (err) {
13123 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
13124 return libbpf_err(err);
13125 }
13126
13127 for (i = 0; i < s->map_cnt; i++) {
13128 struct bpf_map *map = *s->maps[i].map;
13129 size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
13130 int prot, map_fd = bpf_map__fd(map);
13131 void **mmaped = s->maps[i].mmaped;
13132
13133 if (!mmaped)
13134 continue;
13135
13136 if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
13137 *mmaped = NULL;
13138 continue;
13139 }
13140
13141 if (map->def.map_flags & BPF_F_RDONLY_PROG)
13142 prot = PROT_READ;
13143 else
13144 prot = PROT_READ | PROT_WRITE;
13145
13146 /* Remap anonymous mmap()-ed "map initialization image" as
13147 * a BPF map-backed mmap()-ed memory, but preserving the same
13148 * memory address. This will cause kernel to change process'
13149 * page table to point to a different piece of kernel memory,
13150 * but from userspace point of view memory address (and its
13151 * contents, being identical at this point) will stay the
13152 * same. This mapping will be released by bpf_object__close()
13153 * as per normal clean up procedure, so we don't need to worry
13154 * about it from skeleton's clean up perspective.
13155 */
13156 *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0);
13157 if (*mmaped == MAP_FAILED) {
13158 err = -errno;
13159 *mmaped = NULL;
13160 pr_warn("failed to re-mmap() map '%s': %d\n",
13161 bpf_map__name(map), err);
13162 return libbpf_err(err);
13163 }
13164 }
13165
13166 return 0;
13167 }
13168
bpf_object__attach_skeleton(struct bpf_object_skeleton * s)13169 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
13170 {
13171 int i, err;
13172
13173 for (i = 0; i < s->prog_cnt; i++) {
13174 struct bpf_program *prog = *s->progs[i].prog;
13175 struct bpf_link **link = s->progs[i].link;
13176
13177 if (!prog->autoload || !prog->autoattach)
13178 continue;
13179
13180 /* auto-attaching not supported for this program */
13181 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13182 continue;
13183
13184 /* if user already set the link manually, don't attempt auto-attach */
13185 if (*link)
13186 continue;
13187
13188 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
13189 if (err) {
13190 pr_warn("prog '%s': failed to auto-attach: %d\n",
13191 bpf_program__name(prog), err);
13192 return libbpf_err(err);
13193 }
13194
13195 /* It's possible that for some SEC() definitions auto-attach
13196 * is supported in some cases (e.g., if definition completely
13197 * specifies target information), but is not in other cases.
13198 * SEC("uprobe") is one such case. If user specified target
13199 * binary and function name, such BPF program can be
13200 * auto-attached. But if not, it shouldn't trigger skeleton's
13201 * attach to fail. It should just be skipped.
13202 * attach_fn signals such case with returning 0 (no error) and
13203 * setting link to NULL.
13204 */
13205 }
13206
13207 return 0;
13208 }
13209
bpf_object__detach_skeleton(struct bpf_object_skeleton * s)13210 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
13211 {
13212 int i;
13213
13214 for (i = 0; i < s->prog_cnt; i++) {
13215 struct bpf_link **link = s->progs[i].link;
13216
13217 bpf_link__destroy(*link);
13218 *link = NULL;
13219 }
13220 }
13221
bpf_object__destroy_skeleton(struct bpf_object_skeleton * s)13222 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
13223 {
13224 if (!s)
13225 return;
13226
13227 if (s->progs)
13228 bpf_object__detach_skeleton(s);
13229 if (s->obj)
13230 bpf_object__close(*s->obj);
13231 free(s->maps);
13232 free(s->progs);
13233 free(s);
13234 }
13235