1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 */
7
8 #include <linux/fiemap.h>
9 #include <linux/fs.h>
10 #include <linux/minmax.h>
11 #include <linux/vmalloc.h>
12
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16 #ifdef CONFIG_NTFS3_LZX_XPRESS
17 #include "lib/lib.h"
18 #endif
19
ni_ins_mi(struct ntfs_inode * ni,struct rb_root * tree,CLST ino,struct rb_node * ins)20 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree,
21 CLST ino, struct rb_node *ins)
22 {
23 struct rb_node **p = &tree->rb_node;
24 struct rb_node *pr = NULL;
25
26 while (*p) {
27 struct mft_inode *mi;
28
29 pr = *p;
30 mi = rb_entry(pr, struct mft_inode, node);
31 if (mi->rno > ino)
32 p = &pr->rb_left;
33 else if (mi->rno < ino)
34 p = &pr->rb_right;
35 else
36 return mi;
37 }
38
39 if (!ins)
40 return NULL;
41
42 rb_link_node(ins, pr, p);
43 rb_insert_color(ins, tree);
44 return rb_entry(ins, struct mft_inode, node);
45 }
46
47 /*
48 * ni_find_mi - Find mft_inode by record number.
49 */
ni_find_mi(struct ntfs_inode * ni,CLST rno)50 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno)
51 {
52 return ni_ins_mi(ni, &ni->mi_tree, rno, NULL);
53 }
54
55 /*
56 * ni_add_mi - Add new mft_inode into ntfs_inode.
57 */
ni_add_mi(struct ntfs_inode * ni,struct mft_inode * mi)58 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi)
59 {
60 ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node);
61 }
62
63 /*
64 * ni_remove_mi - Remove mft_inode from ntfs_inode.
65 */
ni_remove_mi(struct ntfs_inode * ni,struct mft_inode * mi)66 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi)
67 {
68 rb_erase(&mi->node, &ni->mi_tree);
69 }
70
71 /*
72 * ni_std - Return: Pointer into std_info from primary record.
73 */
ni_std(struct ntfs_inode * ni)74 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni)
75 {
76 const struct ATTRIB *attr;
77
78 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
79 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO)) :
80 NULL;
81 }
82
83 /*
84 * ni_std5
85 *
86 * Return: Pointer into std_info from primary record.
87 */
ni_std5(struct ntfs_inode * ni)88 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni)
89 {
90 const struct ATTRIB *attr;
91
92 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
93
94 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5)) :
95 NULL;
96 }
97
98 /*
99 * ni_clear - Clear resources allocated by ntfs_inode.
100 */
ni_clear(struct ntfs_inode * ni)101 void ni_clear(struct ntfs_inode *ni)
102 {
103 struct rb_node *node;
104
105 if (!ni->vfs_inode.i_nlink && ni->mi.mrec && is_rec_inuse(ni->mi.mrec))
106 ni_delete_all(ni);
107
108 al_destroy(ni);
109
110 for (node = rb_first(&ni->mi_tree); node;) {
111 struct rb_node *next = rb_next(node);
112 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
113
114 rb_erase(node, &ni->mi_tree);
115 mi_put(mi);
116 node = next;
117 }
118
119 /* Bad inode always has mode == S_IFREG. */
120 if (ni->ni_flags & NI_FLAG_DIR)
121 indx_clear(&ni->dir);
122 else {
123 run_close(&ni->file.run);
124 #ifdef CONFIG_NTFS3_LZX_XPRESS
125 if (ni->file.offs_page) {
126 /* On-demand allocated page for offsets. */
127 put_page(ni->file.offs_page);
128 ni->file.offs_page = NULL;
129 }
130 #endif
131 }
132
133 mi_clear(&ni->mi);
134 }
135
136 /*
137 * ni_load_mi_ex - Find mft_inode by record number.
138 */
ni_load_mi_ex(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)139 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
140 {
141 int err;
142 struct mft_inode *r;
143
144 r = ni_find_mi(ni, rno);
145 if (r)
146 goto out;
147
148 err = mi_get(ni->mi.sbi, rno, &r);
149 if (err)
150 return err;
151
152 ni_add_mi(ni, r);
153
154 out:
155 if (mi)
156 *mi = r;
157 return 0;
158 }
159
160 /*
161 * ni_load_mi - Load mft_inode corresponded list_entry.
162 */
ni_load_mi(struct ntfs_inode * ni,const struct ATTR_LIST_ENTRY * le,struct mft_inode ** mi)163 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le,
164 struct mft_inode **mi)
165 {
166 CLST rno;
167
168 if (!le) {
169 *mi = &ni->mi;
170 return 0;
171 }
172
173 rno = ino_get(&le->ref);
174 if (rno == ni->mi.rno) {
175 *mi = &ni->mi;
176 return 0;
177 }
178 return ni_load_mi_ex(ni, rno, mi);
179 }
180
181 /*
182 * ni_find_attr
183 *
184 * Return: Attribute and record this attribute belongs to.
185 */
ni_find_attr(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le_o,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const CLST * vcn,struct mft_inode ** mi)186 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr,
187 struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type,
188 const __le16 *name, u8 name_len, const CLST *vcn,
189 struct mft_inode **mi)
190 {
191 struct ATTR_LIST_ENTRY *le;
192 struct mft_inode *m;
193
194 if (!ni->attr_list.size ||
195 (!name_len && (type == ATTR_LIST || type == ATTR_STD))) {
196 if (le_o)
197 *le_o = NULL;
198 if (mi)
199 *mi = &ni->mi;
200
201 /* Look for required attribute in primary record. */
202 return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL);
203 }
204
205 /* First look for list entry of required type. */
206 le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn);
207 if (!le)
208 return NULL;
209
210 if (le_o)
211 *le_o = le;
212
213 /* Load record that contains this attribute. */
214 if (ni_load_mi(ni, le, &m))
215 return NULL;
216
217 /* Look for required attribute. */
218 attr = mi_find_attr(m, NULL, type, name, name_len, &le->id);
219
220 if (!attr)
221 goto out;
222
223 if (!attr->non_res) {
224 if (vcn && *vcn)
225 goto out;
226 } else if (!vcn) {
227 if (attr->nres.svcn)
228 goto out;
229 } else if (le64_to_cpu(attr->nres.svcn) > *vcn ||
230 *vcn > le64_to_cpu(attr->nres.evcn)) {
231 goto out;
232 }
233
234 if (mi)
235 *mi = m;
236 return attr;
237
238 out:
239 ntfs_inode_err(&ni->vfs_inode, "failed to parse mft record");
240 ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
241 return NULL;
242 }
243
244 /*
245 * ni_enum_attr_ex - Enumerates attributes in ntfs_inode.
246 */
ni_enum_attr_ex(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le,struct mft_inode ** mi)247 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr,
248 struct ATTR_LIST_ENTRY **le,
249 struct mft_inode **mi)
250 {
251 struct mft_inode *mi2;
252 struct ATTR_LIST_ENTRY *le2;
253
254 /* Do we have an attribute list? */
255 if (!ni->attr_list.size) {
256 *le = NULL;
257 if (mi)
258 *mi = &ni->mi;
259 /* Enum attributes in primary record. */
260 return mi_enum_attr(&ni->mi, attr);
261 }
262
263 /* Get next list entry. */
264 le2 = *le = al_enumerate(ni, attr ? *le : NULL);
265 if (!le2)
266 return NULL;
267
268 /* Load record that contains the required attribute. */
269 if (ni_load_mi(ni, le2, &mi2))
270 return NULL;
271
272 if (mi)
273 *mi = mi2;
274
275 /* Find attribute in loaded record. */
276 return rec_find_attr_le(mi2, le2);
277 }
278
279 /*
280 * ni_load_attr - Load attribute that contains given VCN.
281 */
ni_load_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,CLST vcn,struct mft_inode ** pmi)282 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
283 const __le16 *name, u8 name_len, CLST vcn,
284 struct mft_inode **pmi)
285 {
286 struct ATTR_LIST_ENTRY *le;
287 struct ATTRIB *attr;
288 struct mft_inode *mi;
289 struct ATTR_LIST_ENTRY *next;
290
291 if (!ni->attr_list.size) {
292 if (pmi)
293 *pmi = &ni->mi;
294 return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL);
295 }
296
297 le = al_find_ex(ni, NULL, type, name, name_len, NULL);
298 if (!le)
299 return NULL;
300
301 /*
302 * Unfortunately ATTR_LIST_ENTRY contains only start VCN.
303 * So to find the ATTRIB segment that contains 'vcn' we should
304 * enumerate some entries.
305 */
306 if (vcn) {
307 for (;; le = next) {
308 next = al_find_ex(ni, le, type, name, name_len, NULL);
309 if (!next || le64_to_cpu(next->vcn) > vcn)
310 break;
311 }
312 }
313
314 if (ni_load_mi(ni, le, &mi))
315 return NULL;
316
317 if (pmi)
318 *pmi = mi;
319
320 attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id);
321 if (!attr)
322 return NULL;
323
324 if (!attr->non_res)
325 return attr;
326
327 if (le64_to_cpu(attr->nres.svcn) <= vcn &&
328 vcn <= le64_to_cpu(attr->nres.evcn))
329 return attr;
330
331 return NULL;
332 }
333
334 /*
335 * ni_load_all_mi - Load all subrecords.
336 */
ni_load_all_mi(struct ntfs_inode * ni)337 int ni_load_all_mi(struct ntfs_inode *ni)
338 {
339 int err;
340 struct ATTR_LIST_ENTRY *le;
341
342 if (!ni->attr_list.size)
343 return 0;
344
345 le = NULL;
346
347 while ((le = al_enumerate(ni, le))) {
348 CLST rno = ino_get(&le->ref);
349
350 if (rno == ni->mi.rno)
351 continue;
352
353 err = ni_load_mi_ex(ni, rno, NULL);
354 if (err)
355 return err;
356 }
357
358 return 0;
359 }
360
361 /*
362 * ni_add_subrecord - Allocate + format + attach a new subrecord.
363 */
ni_add_subrecord(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)364 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
365 {
366 struct mft_inode *m;
367
368 m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
369 if (!m)
370 return false;
371
372 if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) {
373 mi_put(m);
374 return false;
375 }
376
377 mi_get_ref(&ni->mi, &m->mrec->parent_ref);
378
379 ni_add_mi(ni, m);
380 *mi = m;
381 return true;
382 }
383
384 /*
385 * ni_remove_attr - Remove all attributes for the given type/name/id.
386 */
ni_remove_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,bool base_only,const __le16 * id)387 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
388 const __le16 *name, u8 name_len, bool base_only,
389 const __le16 *id)
390 {
391 int err;
392 struct ATTRIB *attr;
393 struct ATTR_LIST_ENTRY *le;
394 struct mft_inode *mi;
395 u32 type_in;
396 int diff;
397
398 if (base_only || type == ATTR_LIST || !ni->attr_list.size) {
399 attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id);
400 if (!attr)
401 return -ENOENT;
402
403 mi_remove_attr(ni, &ni->mi, attr);
404 return 0;
405 }
406
407 type_in = le32_to_cpu(type);
408 le = NULL;
409
410 for (;;) {
411 le = al_enumerate(ni, le);
412 if (!le)
413 return 0;
414
415 next_le2:
416 diff = le32_to_cpu(le->type) - type_in;
417 if (diff < 0)
418 continue;
419
420 if (diff > 0)
421 return 0;
422
423 if (le->name_len != name_len)
424 continue;
425
426 if (name_len &&
427 memcmp(le_name(le), name, name_len * sizeof(short)))
428 continue;
429
430 if (id && le->id != *id)
431 continue;
432 err = ni_load_mi(ni, le, &mi);
433 if (err)
434 return err;
435
436 al_remove_le(ni, le);
437
438 attr = mi_find_attr(mi, NULL, type, name, name_len, id);
439 if (!attr)
440 return -ENOENT;
441
442 mi_remove_attr(ni, mi, attr);
443
444 if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size)
445 return 0;
446 goto next_le2;
447 }
448 }
449
450 /*
451 * ni_ins_new_attr - Insert the attribute into record.
452 *
453 * Return: Not full constructed attribute or NULL if not possible to create.
454 */
455 static struct ATTRIB *
ni_ins_new_attr(struct ntfs_inode * ni,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTR_LIST_ENTRY ** ins_le)456 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi,
457 struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type,
458 const __le16 *name, u8 name_len, u32 asize, u16 name_off,
459 CLST svcn, struct ATTR_LIST_ENTRY **ins_le)
460 {
461 int err;
462 struct ATTRIB *attr;
463 bool le_added = false;
464 struct MFT_REF ref;
465
466 mi_get_ref(mi, &ref);
467
468 if (type != ATTR_LIST && !le && ni->attr_list.size) {
469 err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1),
470 &ref, &le);
471 if (err) {
472 /* No memory or no space. */
473 return ERR_PTR(err);
474 }
475 le_added = true;
476
477 /*
478 * al_add_le -> attr_set_size (list) -> ni_expand_list
479 * which moves some attributes out of primary record
480 * this means that name may point into moved memory
481 * reinit 'name' from le.
482 */
483 name = le->name;
484 }
485
486 attr = mi_insert_attr(mi, type, name, name_len, asize, name_off);
487 if (!attr) {
488 if (le_added)
489 al_remove_le(ni, le);
490 return NULL;
491 }
492
493 if (type == ATTR_LIST) {
494 /* Attr list is not in list entry array. */
495 goto out;
496 }
497
498 if (!le)
499 goto out;
500
501 /* Update ATTRIB Id and record reference. */
502 le->id = attr->id;
503 ni->attr_list.dirty = true;
504 le->ref = ref;
505
506 out:
507 if (ins_le)
508 *ins_le = le;
509 return attr;
510 }
511
512 /*
513 * ni_repack
514 *
515 * Random write access to sparsed or compressed file may result to
516 * not optimized packed runs.
517 * Here is the place to optimize it.
518 */
ni_repack(struct ntfs_inode * ni)519 static int ni_repack(struct ntfs_inode *ni)
520 {
521 #if 1
522 return 0;
523 #else
524 int err = 0;
525 struct ntfs_sb_info *sbi = ni->mi.sbi;
526 struct mft_inode *mi, *mi_p = NULL;
527 struct ATTRIB *attr = NULL, *attr_p;
528 struct ATTR_LIST_ENTRY *le = NULL, *le_p;
529 CLST alloc = 0;
530 u8 cluster_bits = sbi->cluster_bits;
531 CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn;
532 u32 roff, rs = sbi->record_size;
533 struct runs_tree run;
534
535 run_init(&run);
536
537 while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) {
538 if (!attr->non_res)
539 continue;
540
541 svcn = le64_to_cpu(attr->nres.svcn);
542 if (svcn != le64_to_cpu(le->vcn)) {
543 err = -EINVAL;
544 break;
545 }
546
547 if (!svcn) {
548 alloc = le64_to_cpu(attr->nres.alloc_size) >>
549 cluster_bits;
550 mi_p = NULL;
551 } else if (svcn != evcn + 1) {
552 err = -EINVAL;
553 break;
554 }
555
556 evcn = le64_to_cpu(attr->nres.evcn);
557
558 if (svcn > evcn + 1) {
559 err = -EINVAL;
560 break;
561 }
562
563 if (!mi_p) {
564 /* Do not try if not enough free space. */
565 if (le32_to_cpu(mi->mrec->used) + 8 >= rs)
566 continue;
567
568 /* Do not try if last attribute segment. */
569 if (evcn + 1 == alloc)
570 continue;
571 run_close(&run);
572 }
573
574 roff = le16_to_cpu(attr->nres.run_off);
575
576 if (roff > le32_to_cpu(attr->size)) {
577 err = -EINVAL;
578 break;
579 }
580
581 err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn,
582 Add2Ptr(attr, roff),
583 le32_to_cpu(attr->size) - roff);
584 if (err < 0)
585 break;
586
587 if (!mi_p) {
588 mi_p = mi;
589 attr_p = attr;
590 svcn_p = svcn;
591 evcn_p = evcn;
592 le_p = le;
593 err = 0;
594 continue;
595 }
596
597 /*
598 * Run contains data from two records: mi_p and mi
599 * Try to pack in one.
600 */
601 err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p);
602 if (err)
603 break;
604
605 next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1;
606
607 if (next_svcn >= evcn + 1) {
608 /* We can remove this attribute segment. */
609 al_remove_le(ni, le);
610 mi_remove_attr(NULL, mi, attr);
611 le = le_p;
612 continue;
613 }
614
615 attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn);
616 mi->dirty = true;
617 ni->attr_list.dirty = true;
618
619 if (evcn + 1 == alloc) {
620 err = mi_pack_runs(mi, attr, &run,
621 evcn + 1 - next_svcn);
622 if (err)
623 break;
624 mi_p = NULL;
625 } else {
626 mi_p = mi;
627 attr_p = attr;
628 svcn_p = next_svcn;
629 evcn_p = evcn;
630 le_p = le;
631 run_truncate_head(&run, next_svcn);
632 }
633 }
634
635 if (err) {
636 ntfs_inode_warn(&ni->vfs_inode, "repack problem");
637 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
638
639 /* Pack loaded but not packed runs. */
640 if (mi_p)
641 mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p);
642 }
643
644 run_close(&run);
645 return err;
646 #endif
647 }
648
649 /*
650 * ni_try_remove_attr_list
651 *
652 * Can we remove attribute list?
653 * Check the case when primary record contains enough space for all attributes.
654 */
ni_try_remove_attr_list(struct ntfs_inode * ni)655 static int ni_try_remove_attr_list(struct ntfs_inode *ni)
656 {
657 int err = 0;
658 struct ntfs_sb_info *sbi = ni->mi.sbi;
659 struct ATTRIB *attr, *attr_list, *attr_ins;
660 struct ATTR_LIST_ENTRY *le;
661 struct mft_inode *mi;
662 u32 asize, free;
663 struct MFT_REF ref;
664 struct MFT_REC *mrec;
665 __le16 id;
666
667 if (!ni->attr_list.dirty)
668 return 0;
669
670 err = ni_repack(ni);
671 if (err)
672 return err;
673
674 attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL);
675 if (!attr_list)
676 return 0;
677
678 asize = le32_to_cpu(attr_list->size);
679
680 /* Free space in primary record without attribute list. */
681 free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize;
682 mi_get_ref(&ni->mi, &ref);
683
684 le = NULL;
685 while ((le = al_enumerate(ni, le))) {
686 if (!memcmp(&le->ref, &ref, sizeof(ref)))
687 continue;
688
689 if (le->vcn)
690 return 0;
691
692 mi = ni_find_mi(ni, ino_get(&le->ref));
693 if (!mi)
694 return 0;
695
696 attr = mi_find_attr(mi, NULL, le->type, le_name(le),
697 le->name_len, &le->id);
698 if (!attr)
699 return 0;
700
701 asize = le32_to_cpu(attr->size);
702 if (asize > free)
703 return 0;
704
705 free -= asize;
706 }
707
708 /* Make a copy of primary record to restore if error. */
709 mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS);
710 if (!mrec)
711 return 0; /* Not critical. */
712
713 /* It seems that attribute list can be removed from primary record. */
714 mi_remove_attr(NULL, &ni->mi, attr_list);
715
716 /*
717 * Repeat the cycle above and copy all attributes to primary record.
718 * Do not remove original attributes from subrecords!
719 * It should be success!
720 */
721 le = NULL;
722 while ((le = al_enumerate(ni, le))) {
723 if (!memcmp(&le->ref, &ref, sizeof(ref)))
724 continue;
725
726 mi = ni_find_mi(ni, ino_get(&le->ref));
727 if (!mi) {
728 /* Should never happened, 'cause already checked. */
729 goto out;
730 }
731
732 attr = mi_find_attr(mi, NULL, le->type, le_name(le),
733 le->name_len, &le->id);
734 if (!attr) {
735 /* Should never happened, 'cause already checked. */
736 goto out;
737 }
738 asize = le32_to_cpu(attr->size);
739
740 /* Insert into primary record. */
741 attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le),
742 le->name_len, asize,
743 le16_to_cpu(attr->name_off));
744 if (!attr_ins) {
745 /*
746 * No space in primary record (already checked).
747 */
748 goto out;
749 }
750
751 /* Copy all except id. */
752 id = attr_ins->id;
753 memcpy(attr_ins, attr, asize);
754 attr_ins->id = id;
755 }
756
757 /*
758 * Repeat the cycle above and remove all attributes from subrecords.
759 */
760 le = NULL;
761 while ((le = al_enumerate(ni, le))) {
762 if (!memcmp(&le->ref, &ref, sizeof(ref)))
763 continue;
764
765 mi = ni_find_mi(ni, ino_get(&le->ref));
766 if (!mi)
767 continue;
768
769 attr = mi_find_attr(mi, NULL, le->type, le_name(le),
770 le->name_len, &le->id);
771 if (!attr)
772 continue;
773
774 /* Remove from original record. */
775 mi_remove_attr(NULL, mi, attr);
776 }
777
778 run_deallocate(sbi, &ni->attr_list.run, true);
779 run_close(&ni->attr_list.run);
780 ni->attr_list.size = 0;
781 kvfree(ni->attr_list.le);
782 ni->attr_list.le = NULL;
783 ni->attr_list.dirty = false;
784
785 kfree(mrec);
786 return 0;
787 out:
788 /* Restore primary record. */
789 swap(mrec, ni->mi.mrec);
790 kfree(mrec);
791 return 0;
792 }
793
794 /*
795 * ni_create_attr_list - Generates an attribute list for this primary record.
796 */
ni_create_attr_list(struct ntfs_inode * ni)797 int ni_create_attr_list(struct ntfs_inode *ni)
798 {
799 struct ntfs_sb_info *sbi = ni->mi.sbi;
800 int err;
801 u32 lsize;
802 struct ATTRIB *attr;
803 struct ATTRIB *arr_move[7];
804 struct ATTR_LIST_ENTRY *le, *le_b[7];
805 struct MFT_REC *rec;
806 bool is_mft;
807 CLST rno = 0;
808 struct mft_inode *mi;
809 u32 free_b, nb, to_free, rs;
810 u16 sz;
811
812 is_mft = ni->mi.rno == MFT_REC_MFT;
813 rec = ni->mi.mrec;
814 rs = sbi->record_size;
815
816 /*
817 * Skip estimating exact memory requirement.
818 * Looks like one record_size is always enough.
819 */
820 le = kmalloc(al_aligned(rs), GFP_NOFS);
821 if (!le)
822 return -ENOMEM;
823
824 mi_get_ref(&ni->mi, &le->ref);
825 ni->attr_list.le = le;
826
827 attr = NULL;
828 nb = 0;
829 free_b = 0;
830 attr = NULL;
831
832 for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) {
833 sz = le_size(attr->name_len);
834 le->type = attr->type;
835 le->size = cpu_to_le16(sz);
836 le->name_len = attr->name_len;
837 le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
838 le->vcn = 0;
839 if (le != ni->attr_list.le)
840 le->ref = ni->attr_list.le->ref;
841 le->id = attr->id;
842
843 if (attr->name_len)
844 memcpy(le->name, attr_name(attr),
845 sizeof(short) * attr->name_len);
846 else if (attr->type == ATTR_STD)
847 continue;
848 else if (attr->type == ATTR_LIST)
849 continue;
850 else if (is_mft && attr->type == ATTR_DATA)
851 continue;
852
853 if (!nb || nb < ARRAY_SIZE(arr_move)) {
854 le_b[nb] = le;
855 arr_move[nb++] = attr;
856 free_b += le32_to_cpu(attr->size);
857 }
858 }
859
860 lsize = PtrOffset(ni->attr_list.le, le);
861 ni->attr_list.size = lsize;
862
863 to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT;
864 if (to_free <= rs) {
865 to_free = 0;
866 } else {
867 to_free -= rs;
868
869 if (to_free > free_b) {
870 err = -EINVAL;
871 goto out;
872 }
873 }
874
875 /* Allocate child MFT. */
876 err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi);
877 if (err)
878 goto out;
879
880 err = -EINVAL;
881 /* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */
882 while (to_free > 0) {
883 struct ATTRIB *b = arr_move[--nb];
884 u32 asize = le32_to_cpu(b->size);
885 u16 name_off = le16_to_cpu(b->name_off);
886
887 attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off),
888 b->name_len, asize, name_off);
889 if (!attr)
890 goto out;
891
892 mi_get_ref(mi, &le_b[nb]->ref);
893 le_b[nb]->id = attr->id;
894
895 /* Copy all except id. */
896 memcpy(attr, b, asize);
897 attr->id = le_b[nb]->id;
898
899 /* Remove from primary record. */
900 if (!mi_remove_attr(NULL, &ni->mi, b))
901 goto out;
902
903 if (to_free <= asize)
904 break;
905 to_free -= asize;
906 if (!nb)
907 goto out;
908 }
909
910 attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0,
911 lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT);
912 if (!attr)
913 goto out;
914
915 attr->non_res = 0;
916 attr->flags = 0;
917 attr->res.data_size = cpu_to_le32(lsize);
918 attr->res.data_off = SIZEOF_RESIDENT_LE;
919 attr->res.flags = 0;
920 attr->res.res = 0;
921
922 memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize);
923
924 ni->attr_list.dirty = false;
925
926 mark_inode_dirty(&ni->vfs_inode);
927 return 0;
928
929 out:
930 kvfree(ni->attr_list.le);
931 ni->attr_list.le = NULL;
932 ni->attr_list.size = 0;
933 return err;
934 }
935
936 /*
937 * ni_ins_attr_ext - Add an external attribute to the ntfs_inode.
938 */
ni_ins_attr_ext(struct ntfs_inode * ni,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,CLST svcn,u16 name_off,bool force_ext,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)939 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
940 enum ATTR_TYPE type, const __le16 *name, u8 name_len,
941 u32 asize, CLST svcn, u16 name_off, bool force_ext,
942 struct ATTRIB **ins_attr, struct mft_inode **ins_mi,
943 struct ATTR_LIST_ENTRY **ins_le)
944 {
945 struct ATTRIB *attr;
946 struct mft_inode *mi;
947 CLST rno;
948 u64 vbo;
949 struct rb_node *node;
950 int err;
951 bool is_mft, is_mft_data;
952 struct ntfs_sb_info *sbi = ni->mi.sbi;
953
954 is_mft = ni->mi.rno == MFT_REC_MFT;
955 is_mft_data = is_mft && type == ATTR_DATA && !name_len;
956
957 if (asize > sbi->max_bytes_per_attr) {
958 err = -EINVAL;
959 goto out;
960 }
961
962 /*
963 * Standard information and attr_list cannot be made external.
964 * The Log File cannot have any external attributes.
965 */
966 if (type == ATTR_STD || type == ATTR_LIST ||
967 ni->mi.rno == MFT_REC_LOG) {
968 err = -EINVAL;
969 goto out;
970 }
971
972 /* Create attribute list if it is not already existed. */
973 if (!ni->attr_list.size) {
974 err = ni_create_attr_list(ni);
975 if (err)
976 goto out;
977 }
978
979 vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0;
980
981 if (force_ext)
982 goto insert_ext;
983
984 /* Load all subrecords into memory. */
985 err = ni_load_all_mi(ni);
986 if (err)
987 goto out;
988
989 /* Check each of loaded subrecord. */
990 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
991 mi = rb_entry(node, struct mft_inode, node);
992
993 if (is_mft_data &&
994 (mi_enum_attr(mi, NULL) ||
995 vbo <= ((u64)mi->rno << sbi->record_bits))) {
996 /* We can't accept this record 'cause MFT's bootstrapping. */
997 continue;
998 }
999 if (is_mft &&
1000 mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) {
1001 /*
1002 * This child record already has a ATTR_DATA.
1003 * So it can't accept any other records.
1004 */
1005 continue;
1006 }
1007
1008 if ((type != ATTR_NAME || name_len) &&
1009 mi_find_attr(mi, NULL, type, name, name_len, NULL)) {
1010 /* Only indexed attributes can share same record. */
1011 continue;
1012 }
1013
1014 /*
1015 * Do not try to insert this attribute
1016 * if there is no room in record.
1017 */
1018 if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size)
1019 continue;
1020
1021 /* Try to insert attribute into this subrecord. */
1022 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1023 name_off, svcn, ins_le);
1024 if (!attr)
1025 continue;
1026 if (IS_ERR(attr))
1027 return PTR_ERR(attr);
1028
1029 if (ins_attr)
1030 *ins_attr = attr;
1031 if (ins_mi)
1032 *ins_mi = mi;
1033 return 0;
1034 }
1035
1036 insert_ext:
1037 /* We have to allocate a new child subrecord. */
1038 err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi);
1039 if (err)
1040 goto out;
1041
1042 if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) {
1043 err = -EINVAL;
1044 goto out1;
1045 }
1046
1047 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1048 name_off, svcn, ins_le);
1049 if (!attr) {
1050 err = -EINVAL;
1051 goto out2;
1052 }
1053
1054 if (IS_ERR(attr)) {
1055 err = PTR_ERR(attr);
1056 goto out2;
1057 }
1058
1059 if (ins_attr)
1060 *ins_attr = attr;
1061 if (ins_mi)
1062 *ins_mi = mi;
1063
1064 return 0;
1065
1066 out2:
1067 ni_remove_mi(ni, mi);
1068 mi_put(mi);
1069
1070 out1:
1071 ntfs_mark_rec_free(sbi, rno, is_mft);
1072
1073 out:
1074 return err;
1075 }
1076
1077 /*
1078 * ni_insert_attr - Insert an attribute into the file.
1079 *
1080 * If the primary record has room, it will just insert the attribute.
1081 * If not, it may make the attribute external.
1082 * For $MFT::Data it may make room for the attribute by
1083 * making other attributes external.
1084 *
1085 * NOTE:
1086 * The ATTR_LIST and ATTR_STD cannot be made external.
1087 * This function does not fill new attribute full.
1088 * It only fills 'size'/'type'/'id'/'name_len' fields.
1089 */
ni_insert_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)1090 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
1091 const __le16 *name, u8 name_len, u32 asize,
1092 u16 name_off, CLST svcn, struct ATTRIB **ins_attr,
1093 struct mft_inode **ins_mi,
1094 struct ATTR_LIST_ENTRY **ins_le)
1095 {
1096 struct ntfs_sb_info *sbi = ni->mi.sbi;
1097 int err;
1098 struct ATTRIB *attr, *eattr;
1099 struct MFT_REC *rec;
1100 bool is_mft;
1101 struct ATTR_LIST_ENTRY *le;
1102 u32 list_reserve, max_free, free, used, t32;
1103 __le16 id;
1104 u16 t16;
1105
1106 is_mft = ni->mi.rno == MFT_REC_MFT;
1107 rec = ni->mi.mrec;
1108
1109 list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32));
1110 used = le32_to_cpu(rec->used);
1111 free = sbi->record_size - used;
1112
1113 if (is_mft && type != ATTR_LIST) {
1114 /* Reserve space for the ATTRIB list. */
1115 if (free < list_reserve)
1116 free = 0;
1117 else
1118 free -= list_reserve;
1119 }
1120
1121 if (asize <= free) {
1122 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len,
1123 asize, name_off, svcn, ins_le);
1124 if (IS_ERR(attr)) {
1125 err = PTR_ERR(attr);
1126 goto out;
1127 }
1128
1129 if (attr) {
1130 if (ins_attr)
1131 *ins_attr = attr;
1132 if (ins_mi)
1133 *ins_mi = &ni->mi;
1134 err = 0;
1135 goto out;
1136 }
1137 }
1138
1139 if (!is_mft || type != ATTR_DATA || svcn) {
1140 /* This ATTRIB will be external. */
1141 err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize,
1142 svcn, name_off, false, ins_attr, ins_mi,
1143 ins_le);
1144 goto out;
1145 }
1146
1147 /*
1148 * Here we have: "is_mft && type == ATTR_DATA && !svcn"
1149 *
1150 * The first chunk of the $MFT::Data ATTRIB must be the base record.
1151 * Evict as many other attributes as possible.
1152 */
1153 max_free = free;
1154
1155 /* Estimate the result of moving all possible attributes away. */
1156 attr = NULL;
1157
1158 while ((attr = mi_enum_attr(&ni->mi, attr))) {
1159 if (attr->type == ATTR_STD)
1160 continue;
1161 if (attr->type == ATTR_LIST)
1162 continue;
1163 max_free += le32_to_cpu(attr->size);
1164 }
1165
1166 if (max_free < asize + list_reserve) {
1167 /* Impossible to insert this attribute into primary record. */
1168 err = -EINVAL;
1169 goto out;
1170 }
1171
1172 /* Start real attribute moving. */
1173 attr = NULL;
1174
1175 for (;;) {
1176 attr = mi_enum_attr(&ni->mi, attr);
1177 if (!attr) {
1178 /* We should never be here 'cause we have already check this case. */
1179 err = -EINVAL;
1180 goto out;
1181 }
1182
1183 /* Skip attributes that MUST be primary record. */
1184 if (attr->type == ATTR_STD || attr->type == ATTR_LIST)
1185 continue;
1186
1187 le = NULL;
1188 if (ni->attr_list.size) {
1189 le = al_find_le(ni, NULL, attr);
1190 if (!le) {
1191 /* Really this is a serious bug. */
1192 err = -EINVAL;
1193 goto out;
1194 }
1195 }
1196
1197 t32 = le32_to_cpu(attr->size);
1198 t16 = le16_to_cpu(attr->name_off);
1199 err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16),
1200 attr->name_len, t32, attr_svcn(attr), t16,
1201 false, &eattr, NULL, NULL);
1202 if (err)
1203 return err;
1204
1205 id = eattr->id;
1206 memcpy(eattr, attr, t32);
1207 eattr->id = id;
1208
1209 /* Remove from primary record. */
1210 mi_remove_attr(NULL, &ni->mi, attr);
1211
1212 /* attr now points to next attribute. */
1213 if (attr->type == ATTR_END)
1214 goto out;
1215 }
1216 while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used))
1217 ;
1218
1219 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize,
1220 name_off, svcn, ins_le);
1221 if (!attr) {
1222 err = -EINVAL;
1223 goto out;
1224 }
1225
1226 if (IS_ERR(attr)) {
1227 err = PTR_ERR(attr);
1228 goto out;
1229 }
1230
1231 if (ins_attr)
1232 *ins_attr = attr;
1233 if (ins_mi)
1234 *ins_mi = &ni->mi;
1235
1236 out:
1237 return err;
1238 }
1239
1240 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */
ni_expand_mft_list(struct ntfs_inode * ni)1241 static int ni_expand_mft_list(struct ntfs_inode *ni)
1242 {
1243 int err = 0;
1244 struct runs_tree *run = &ni->file.run;
1245 u32 asize, run_size, done = 0;
1246 struct ATTRIB *attr;
1247 struct rb_node *node;
1248 CLST mft_min, mft_new, svcn, evcn, plen;
1249 struct mft_inode *mi, *mi_min, *mi_new;
1250 struct ntfs_sb_info *sbi = ni->mi.sbi;
1251
1252 /* Find the nearest MFT. */
1253 mft_min = 0;
1254 mft_new = 0;
1255 mi_min = NULL;
1256
1257 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
1258 mi = rb_entry(node, struct mft_inode, node);
1259
1260 attr = mi_enum_attr(mi, NULL);
1261
1262 if (!attr) {
1263 mft_min = mi->rno;
1264 mi_min = mi;
1265 break;
1266 }
1267 }
1268
1269 if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) {
1270 mft_new = 0;
1271 /* Really this is not critical. */
1272 } else if (mft_min > mft_new) {
1273 mft_min = mft_new;
1274 mi_min = mi_new;
1275 } else {
1276 ntfs_mark_rec_free(sbi, mft_new, true);
1277 mft_new = 0;
1278 ni_remove_mi(ni, mi_new);
1279 }
1280
1281 attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL);
1282 if (!attr) {
1283 err = -EINVAL;
1284 goto out;
1285 }
1286
1287 asize = le32_to_cpu(attr->size);
1288
1289 evcn = le64_to_cpu(attr->nres.evcn);
1290 svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits);
1291 if (evcn + 1 >= svcn) {
1292 err = -EINVAL;
1293 goto out;
1294 }
1295
1296 /*
1297 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn].
1298 *
1299 * Update first part of ATTR_DATA in 'primary MFT.
1300 */
1301 err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1302 asize - SIZEOF_NONRESIDENT, &plen);
1303 if (err < 0)
1304 goto out;
1305
1306 run_size = ALIGN(err, 8);
1307 err = 0;
1308
1309 if (plen < svcn) {
1310 err = -EINVAL;
1311 goto out;
1312 }
1313
1314 attr->nres.evcn = cpu_to_le64(svcn - 1);
1315 attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT);
1316 /* 'done' - How many bytes of primary MFT becomes free. */
1317 done = asize - run_size - SIZEOF_NONRESIDENT;
1318 le32_sub_cpu(&ni->mi.mrec->used, done);
1319
1320 /* Estimate packed size (run_buf=NULL). */
1321 err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size,
1322 &plen);
1323 if (err < 0)
1324 goto out;
1325
1326 run_size = ALIGN(err, 8);
1327 err = 0;
1328
1329 if (plen < evcn + 1 - svcn) {
1330 err = -EINVAL;
1331 goto out;
1332 }
1333
1334 /*
1335 * This function may implicitly call expand attr_list.
1336 * Insert second part of ATTR_DATA in 'mi_min'.
1337 */
1338 attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0,
1339 SIZEOF_NONRESIDENT + run_size,
1340 SIZEOF_NONRESIDENT, svcn, NULL);
1341 if (!attr) {
1342 err = -EINVAL;
1343 goto out;
1344 }
1345
1346 if (IS_ERR(attr)) {
1347 err = PTR_ERR(attr);
1348 goto out;
1349 }
1350
1351 attr->non_res = 1;
1352 attr->name_off = SIZEOF_NONRESIDENT_LE;
1353 attr->flags = 0;
1354
1355 /* This function can't fail - cause already checked above. */
1356 run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1357 run_size, &plen);
1358
1359 attr->nres.svcn = cpu_to_le64(svcn);
1360 attr->nres.evcn = cpu_to_le64(evcn);
1361 attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT);
1362
1363 out:
1364 if (mft_new) {
1365 ntfs_mark_rec_free(sbi, mft_new, true);
1366 ni_remove_mi(ni, mi_new);
1367 }
1368
1369 return !err && !done ? -EOPNOTSUPP : err;
1370 }
1371
1372 /*
1373 * ni_expand_list - Move all possible attributes out of primary record.
1374 */
ni_expand_list(struct ntfs_inode * ni)1375 int ni_expand_list(struct ntfs_inode *ni)
1376 {
1377 int err = 0;
1378 u32 asize, done = 0;
1379 struct ATTRIB *attr, *ins_attr;
1380 struct ATTR_LIST_ENTRY *le;
1381 bool is_mft = ni->mi.rno == MFT_REC_MFT;
1382 struct MFT_REF ref;
1383
1384 mi_get_ref(&ni->mi, &ref);
1385 le = NULL;
1386
1387 while ((le = al_enumerate(ni, le))) {
1388 if (le->type == ATTR_STD)
1389 continue;
1390
1391 if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF)))
1392 continue;
1393
1394 if (is_mft && le->type == ATTR_DATA)
1395 continue;
1396
1397 /* Find attribute in primary record. */
1398 attr = rec_find_attr_le(&ni->mi, le);
1399 if (!attr) {
1400 err = -EINVAL;
1401 goto out;
1402 }
1403
1404 asize = le32_to_cpu(attr->size);
1405
1406 /* Always insert into new record to avoid collisions (deep recursive). */
1407 err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr),
1408 attr->name_len, asize, attr_svcn(attr),
1409 le16_to_cpu(attr->name_off), true,
1410 &ins_attr, NULL, NULL);
1411
1412 if (err)
1413 goto out;
1414
1415 memcpy(ins_attr, attr, asize);
1416 ins_attr->id = le->id;
1417 /* Remove from primary record. */
1418 mi_remove_attr(NULL, &ni->mi, attr);
1419
1420 done += asize;
1421 goto out;
1422 }
1423
1424 if (!is_mft) {
1425 err = -EFBIG; /* Attr list is too big(?) */
1426 goto out;
1427 }
1428
1429 /* Split MFT data as much as possible. */
1430 err = ni_expand_mft_list(ni);
1431
1432 out:
1433 return !err && !done ? -EOPNOTSUPP : err;
1434 }
1435
1436 /*
1437 * ni_insert_nonresident - Insert new nonresident attribute.
1438 */
ni_insert_nonresident(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const struct runs_tree * run,CLST svcn,CLST len,__le16 flags,struct ATTRIB ** new_attr,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1439 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type,
1440 const __le16 *name, u8 name_len,
1441 const struct runs_tree *run, CLST svcn, CLST len,
1442 __le16 flags, struct ATTRIB **new_attr,
1443 struct mft_inode **mi, struct ATTR_LIST_ENTRY **le)
1444 {
1445 int err;
1446 CLST plen;
1447 struct ATTRIB *attr;
1448 bool is_ext = (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) &&
1449 !svcn;
1450 u32 name_size = ALIGN(name_len * sizeof(short), 8);
1451 u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT;
1452 u32 run_off = name_off + name_size;
1453 u32 run_size, asize;
1454 struct ntfs_sb_info *sbi = ni->mi.sbi;
1455
1456 /* Estimate packed size (run_buf=NULL). */
1457 err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off,
1458 &plen);
1459 if (err < 0)
1460 goto out;
1461
1462 run_size = ALIGN(err, 8);
1463
1464 if (plen < len) {
1465 err = -EINVAL;
1466 goto out;
1467 }
1468
1469 asize = run_off + run_size;
1470
1471 if (asize > sbi->max_bytes_per_attr) {
1472 err = -EINVAL;
1473 goto out;
1474 }
1475
1476 err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn,
1477 &attr, mi, le);
1478
1479 if (err)
1480 goto out;
1481
1482 attr->non_res = 1;
1483 attr->name_off = cpu_to_le16(name_off);
1484 attr->flags = flags;
1485
1486 /* This function can't fail - cause already checked above. */
1487 run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen);
1488
1489 attr->nres.svcn = cpu_to_le64(svcn);
1490 attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1);
1491
1492 if (new_attr)
1493 *new_attr = attr;
1494
1495 *(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off);
1496
1497 attr->nres.alloc_size =
1498 svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits);
1499 attr->nres.data_size = attr->nres.alloc_size;
1500 attr->nres.valid_size = attr->nres.alloc_size;
1501
1502 if (is_ext) {
1503 if (flags & ATTR_FLAG_COMPRESSED)
1504 attr->nres.c_unit = NTFS_LZNT_CUNIT;
1505 attr->nres.total_size = attr->nres.alloc_size;
1506 }
1507
1508 out:
1509 return err;
1510 }
1511
1512 /*
1513 * ni_insert_resident - Inserts new resident attribute.
1514 */
ni_insert_resident(struct ntfs_inode * ni,u32 data_size,enum ATTR_TYPE type,const __le16 * name,u8 name_len,struct ATTRIB ** new_attr,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1515 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size,
1516 enum ATTR_TYPE type, const __le16 *name, u8 name_len,
1517 struct ATTRIB **new_attr, struct mft_inode **mi,
1518 struct ATTR_LIST_ENTRY **le)
1519 {
1520 int err;
1521 u32 name_size = ALIGN(name_len * sizeof(short), 8);
1522 u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8);
1523 struct ATTRIB *attr;
1524
1525 err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT,
1526 0, &attr, mi, le);
1527 if (err)
1528 return err;
1529
1530 attr->non_res = 0;
1531 attr->flags = 0;
1532
1533 attr->res.data_size = cpu_to_le32(data_size);
1534 attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size);
1535 if (type == ATTR_NAME) {
1536 attr->res.flags = RESIDENT_FLAG_INDEXED;
1537
1538 /* is_attr_indexed(attr)) == true */
1539 le16_add_cpu(&ni->mi.mrec->hard_links, 1);
1540 ni->mi.dirty = true;
1541 }
1542 attr->res.res = 0;
1543
1544 if (new_attr)
1545 *new_attr = attr;
1546
1547 return 0;
1548 }
1549
1550 /*
1551 * ni_remove_attr_le - Remove attribute from record.
1552 */
ni_remove_attr_le(struct ntfs_inode * ni,struct ATTRIB * attr,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le)1553 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr,
1554 struct mft_inode *mi, struct ATTR_LIST_ENTRY *le)
1555 {
1556 mi_remove_attr(ni, mi, attr);
1557
1558 if (le)
1559 al_remove_le(ni, le);
1560 }
1561
1562 /*
1563 * ni_delete_all - Remove all attributes and frees allocates space.
1564 *
1565 * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links).
1566 */
ni_delete_all(struct ntfs_inode * ni)1567 int ni_delete_all(struct ntfs_inode *ni)
1568 {
1569 int err;
1570 struct ATTR_LIST_ENTRY *le = NULL;
1571 struct ATTRIB *attr = NULL;
1572 struct rb_node *node;
1573 u16 roff;
1574 u32 asize;
1575 CLST svcn, evcn;
1576 struct ntfs_sb_info *sbi = ni->mi.sbi;
1577 bool nt3 = is_ntfs3(sbi);
1578 struct MFT_REF ref;
1579
1580 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
1581 if (!nt3 || attr->name_len) {
1582 ;
1583 } else if (attr->type == ATTR_REPARSE) {
1584 mi_get_ref(&ni->mi, &ref);
1585 ntfs_remove_reparse(sbi, 0, &ref);
1586 } else if (attr->type == ATTR_ID && !attr->non_res &&
1587 le32_to_cpu(attr->res.data_size) >=
1588 sizeof(struct GUID)) {
1589 ntfs_objid_remove(sbi, resident_data(attr));
1590 }
1591
1592 if (!attr->non_res)
1593 continue;
1594
1595 svcn = le64_to_cpu(attr->nres.svcn);
1596 evcn = le64_to_cpu(attr->nres.evcn);
1597
1598 if (evcn + 1 <= svcn)
1599 continue;
1600
1601 asize = le32_to_cpu(attr->size);
1602 roff = le16_to_cpu(attr->nres.run_off);
1603
1604 if (roff > asize) {
1605 _ntfs_bad_inode(&ni->vfs_inode);
1606 return -EINVAL;
1607 }
1608
1609 /* run==1 means unpack and deallocate. */
1610 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
1611 Add2Ptr(attr, roff), asize - roff);
1612 }
1613
1614 if (ni->attr_list.size) {
1615 run_deallocate(ni->mi.sbi, &ni->attr_list.run, true);
1616 al_destroy(ni);
1617 }
1618
1619 /* Free all subrecords. */
1620 for (node = rb_first(&ni->mi_tree); node;) {
1621 struct rb_node *next = rb_next(node);
1622 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
1623
1624 clear_rec_inuse(mi->mrec);
1625 mi->dirty = true;
1626 mi_write(mi, 0);
1627
1628 ntfs_mark_rec_free(sbi, mi->rno, false);
1629 ni_remove_mi(ni, mi);
1630 mi_put(mi);
1631 node = next;
1632 }
1633
1634 /* Free base record. */
1635 clear_rec_inuse(ni->mi.mrec);
1636 ni->mi.dirty = true;
1637 err = mi_write(&ni->mi, 0);
1638
1639 ntfs_mark_rec_free(sbi, ni->mi.rno, false);
1640
1641 return err;
1642 }
1643
1644 /* ni_fname_name
1645 *
1646 * Return: File name attribute by its value.
1647 */
ni_fname_name(struct ntfs_inode * ni,const struct le_str * uni,const struct MFT_REF * home_dir,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1648 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni,
1649 const struct le_str *uni,
1650 const struct MFT_REF *home_dir,
1651 struct mft_inode **mi,
1652 struct ATTR_LIST_ENTRY **le)
1653 {
1654 struct ATTRIB *attr = NULL;
1655 struct ATTR_FILE_NAME *fname;
1656
1657 if (le)
1658 *le = NULL;
1659
1660 /* Enumerate all names. */
1661 next:
1662 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1663 if (!attr)
1664 return NULL;
1665
1666 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1667 if (!fname)
1668 goto next;
1669
1670 if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir)))
1671 goto next;
1672
1673 if (!uni)
1674 return fname;
1675
1676 if (uni->len != fname->name_len)
1677 goto next;
1678
1679 if (ntfs_cmp_names(uni->name, uni->len, fname->name, uni->len, NULL,
1680 false))
1681 goto next;
1682 return fname;
1683 }
1684
1685 /*
1686 * ni_fname_type
1687 *
1688 * Return: File name attribute with given type.
1689 */
ni_fname_type(struct ntfs_inode * ni,u8 name_type,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1690 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type,
1691 struct mft_inode **mi,
1692 struct ATTR_LIST_ENTRY **le)
1693 {
1694 struct ATTRIB *attr = NULL;
1695 struct ATTR_FILE_NAME *fname;
1696
1697 *le = NULL;
1698
1699 if (name_type == FILE_NAME_POSIX)
1700 return NULL;
1701
1702 /* Enumerate all names. */
1703 for (;;) {
1704 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1705 if (!attr)
1706 return NULL;
1707
1708 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1709 if (fname && name_type == fname->type)
1710 return fname;
1711 }
1712 }
1713
1714 /*
1715 * ni_new_attr_flags
1716 *
1717 * Process compressed/sparsed in special way.
1718 * NOTE: You need to set ni->std_fa = new_fa
1719 * after this function to keep internal structures in consistency.
1720 */
ni_new_attr_flags(struct ntfs_inode * ni,enum FILE_ATTRIBUTE new_fa)1721 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa)
1722 {
1723 struct ATTRIB *attr;
1724 struct mft_inode *mi;
1725 __le16 new_aflags;
1726 u32 new_asize;
1727
1728 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
1729 if (!attr)
1730 return -EINVAL;
1731
1732 new_aflags = attr->flags;
1733
1734 if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE)
1735 new_aflags |= ATTR_FLAG_SPARSED;
1736 else
1737 new_aflags &= ~ATTR_FLAG_SPARSED;
1738
1739 if (new_fa & FILE_ATTRIBUTE_COMPRESSED)
1740 new_aflags |= ATTR_FLAG_COMPRESSED;
1741 else
1742 new_aflags &= ~ATTR_FLAG_COMPRESSED;
1743
1744 if (new_aflags == attr->flags)
1745 return 0;
1746
1747 if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ==
1748 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) {
1749 ntfs_inode_warn(&ni->vfs_inode,
1750 "file can't be sparsed and compressed");
1751 return -EOPNOTSUPP;
1752 }
1753
1754 if (!attr->non_res)
1755 goto out;
1756
1757 if (attr->nres.data_size) {
1758 ntfs_inode_warn(
1759 &ni->vfs_inode,
1760 "one can change sparsed/compressed only for empty files");
1761 return -EOPNOTSUPP;
1762 }
1763
1764 /* Resize nonresident empty attribute in-place only. */
1765 new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
1766 (SIZEOF_NONRESIDENT_EX + 8) :
1767 (SIZEOF_NONRESIDENT + 8);
1768
1769 if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size)))
1770 return -EOPNOTSUPP;
1771
1772 if (new_aflags & ATTR_FLAG_SPARSED) {
1773 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1774 /* Windows uses 16 clusters per frame but supports one cluster per frame too. */
1775 attr->nres.c_unit = 0;
1776 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1777 } else if (new_aflags & ATTR_FLAG_COMPRESSED) {
1778 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1779 /* The only allowed: 16 clusters per frame. */
1780 attr->nres.c_unit = NTFS_LZNT_CUNIT;
1781 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr;
1782 } else {
1783 attr->name_off = SIZEOF_NONRESIDENT_LE;
1784 /* Normal files. */
1785 attr->nres.c_unit = 0;
1786 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1787 }
1788 attr->nres.run_off = attr->name_off;
1789 out:
1790 attr->flags = new_aflags;
1791 mi->dirty = true;
1792
1793 return 0;
1794 }
1795
1796 /*
1797 * ni_parse_reparse
1798 *
1799 * buffer - memory for reparse buffer header
1800 */
ni_parse_reparse(struct ntfs_inode * ni,struct ATTRIB * attr,struct REPARSE_DATA_BUFFER * buffer)1801 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr,
1802 struct REPARSE_DATA_BUFFER *buffer)
1803 {
1804 const struct REPARSE_DATA_BUFFER *rp = NULL;
1805 u8 bits;
1806 u16 len;
1807 typeof(rp->CompressReparseBuffer) *cmpr;
1808
1809 /* Try to estimate reparse point. */
1810 if (!attr->non_res) {
1811 rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER));
1812 } else if (le64_to_cpu(attr->nres.data_size) >=
1813 sizeof(struct REPARSE_DATA_BUFFER)) {
1814 struct runs_tree run;
1815
1816 run_init(&run);
1817
1818 if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) &&
1819 !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer,
1820 sizeof(struct REPARSE_DATA_BUFFER),
1821 NULL)) {
1822 rp = buffer;
1823 }
1824
1825 run_close(&run);
1826 }
1827
1828 if (!rp)
1829 return REPARSE_NONE;
1830
1831 len = le16_to_cpu(rp->ReparseDataLength);
1832 switch (rp->ReparseTag) {
1833 case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK):
1834 break; /* Symbolic link. */
1835 case IO_REPARSE_TAG_MOUNT_POINT:
1836 break; /* Mount points and junctions. */
1837 case IO_REPARSE_TAG_SYMLINK:
1838 break;
1839 case IO_REPARSE_TAG_COMPRESS:
1840 /*
1841 * WOF - Windows Overlay Filter - Used to compress files with
1842 * LZX/Xpress.
1843 *
1844 * Unlike native NTFS file compression, the Windows
1845 * Overlay Filter supports only read operations. This means
1846 * that it doesn't need to sector-align each compressed chunk,
1847 * so the compressed data can be packed more tightly together.
1848 * If you open the file for writing, the WOF just decompresses
1849 * the entire file, turning it back into a plain file.
1850 *
1851 * Ntfs3 driver decompresses the entire file only on write or
1852 * change size requests.
1853 */
1854
1855 cmpr = &rp->CompressReparseBuffer;
1856 if (len < sizeof(*cmpr) ||
1857 cmpr->WofVersion != WOF_CURRENT_VERSION ||
1858 cmpr->WofProvider != WOF_PROVIDER_SYSTEM ||
1859 cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) {
1860 return REPARSE_NONE;
1861 }
1862
1863 switch (cmpr->CompressionFormat) {
1864 case WOF_COMPRESSION_XPRESS4K:
1865 bits = 0xc; // 4k
1866 break;
1867 case WOF_COMPRESSION_XPRESS8K:
1868 bits = 0xd; // 8k
1869 break;
1870 case WOF_COMPRESSION_XPRESS16K:
1871 bits = 0xe; // 16k
1872 break;
1873 case WOF_COMPRESSION_LZX32K:
1874 bits = 0xf; // 32k
1875 break;
1876 default:
1877 bits = 0x10; // 64k
1878 break;
1879 }
1880 ni_set_ext_compress_bits(ni, bits);
1881 return REPARSE_COMPRESSED;
1882
1883 case IO_REPARSE_TAG_DEDUP:
1884 ni->ni_flags |= NI_FLAG_DEDUPLICATED;
1885 return REPARSE_DEDUPLICATED;
1886
1887 default:
1888 if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE)
1889 break;
1890
1891 return REPARSE_NONE;
1892 }
1893
1894 if (buffer != rp)
1895 memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER));
1896
1897 /* Looks like normal symlink. */
1898 return REPARSE_LINK;
1899 }
1900
1901 /*
1902 * fiemap_fill_next_extent_k - a copy of fiemap_fill_next_extent
1903 * but it uses 'fe_k' instead of fieinfo->fi_extents_start
1904 */
fiemap_fill_next_extent_k(struct fiemap_extent_info * fieinfo,struct fiemap_extent * fe_k,u64 logical,u64 phys,u64 len,u32 flags)1905 static int fiemap_fill_next_extent_k(struct fiemap_extent_info *fieinfo,
1906 struct fiemap_extent *fe_k, u64 logical,
1907 u64 phys, u64 len, u32 flags)
1908 {
1909 struct fiemap_extent extent;
1910
1911 /* only count the extents */
1912 if (fieinfo->fi_extents_max == 0) {
1913 fieinfo->fi_extents_mapped++;
1914 return (flags & FIEMAP_EXTENT_LAST) ? 1 : 0;
1915 }
1916
1917 if (fieinfo->fi_extents_mapped >= fieinfo->fi_extents_max)
1918 return 1;
1919
1920 if (flags & FIEMAP_EXTENT_DELALLOC)
1921 flags |= FIEMAP_EXTENT_UNKNOWN;
1922 if (flags & FIEMAP_EXTENT_DATA_ENCRYPTED)
1923 flags |= FIEMAP_EXTENT_ENCODED;
1924 if (flags & (FIEMAP_EXTENT_DATA_TAIL | FIEMAP_EXTENT_DATA_INLINE))
1925 flags |= FIEMAP_EXTENT_NOT_ALIGNED;
1926
1927 memset(&extent, 0, sizeof(extent));
1928 extent.fe_logical = logical;
1929 extent.fe_physical = phys;
1930 extent.fe_length = len;
1931 extent.fe_flags = flags;
1932
1933 memcpy(fe_k + fieinfo->fi_extents_mapped, &extent, sizeof(extent));
1934
1935 fieinfo->fi_extents_mapped++;
1936 if (fieinfo->fi_extents_mapped == fieinfo->fi_extents_max)
1937 return 1;
1938 return (flags & FIEMAP_EXTENT_LAST) ? 1 : 0;
1939 }
1940
1941 /*
1942 * ni_fiemap - Helper for file_fiemap().
1943 *
1944 * Assumed ni_lock.
1945 * TODO: Less aggressive locks.
1946 */
ni_fiemap(struct ntfs_inode * ni,struct fiemap_extent_info * fieinfo,__u64 vbo,__u64 len)1947 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo,
1948 __u64 vbo, __u64 len)
1949 {
1950 int err = 0;
1951 struct fiemap_extent *fe_k = NULL;
1952 struct ntfs_sb_info *sbi = ni->mi.sbi;
1953 u8 cluster_bits = sbi->cluster_bits;
1954 struct runs_tree *run;
1955 struct rw_semaphore *run_lock;
1956 struct ATTRIB *attr;
1957 CLST vcn = vbo >> cluster_bits;
1958 CLST lcn, clen;
1959 u64 valid = ni->i_valid;
1960 u64 lbo, bytes;
1961 u64 end, alloc_size;
1962 size_t idx = -1;
1963 u32 flags;
1964 bool ok;
1965
1966 if (S_ISDIR(ni->vfs_inode.i_mode)) {
1967 run = &ni->dir.alloc_run;
1968 attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME,
1969 ARRAY_SIZE(I30_NAME), NULL, NULL);
1970 run_lock = &ni->dir.run_lock;
1971 } else {
1972 run = &ni->file.run;
1973 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL,
1974 NULL);
1975 if (!attr) {
1976 err = -EINVAL;
1977 goto out;
1978 }
1979 if (is_attr_compressed(attr)) {
1980 /* Unfortunately cp -r incorrectly treats compressed clusters. */
1981 err = -EOPNOTSUPP;
1982 ntfs_inode_warn(
1983 &ni->vfs_inode,
1984 "fiemap is not supported for compressed file (cp -r)");
1985 goto out;
1986 }
1987 run_lock = &ni->file.run_lock;
1988 }
1989
1990 if (!attr || !attr->non_res) {
1991 err = fiemap_fill_next_extent(
1992 fieinfo, 0, 0,
1993 attr ? le32_to_cpu(attr->res.data_size) : 0,
1994 FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST |
1995 FIEMAP_EXTENT_MERGED);
1996 goto out;
1997 }
1998
1999 /*
2000 * To avoid lock problems replace pointer to user memory by pointer to kernel memory.
2001 */
2002 fe_k = kmalloc_array(fieinfo->fi_extents_max,
2003 sizeof(struct fiemap_extent),
2004 GFP_NOFS | __GFP_ZERO);
2005 if (!fe_k) {
2006 err = -ENOMEM;
2007 goto out;
2008 }
2009
2010 end = vbo + len;
2011 alloc_size = le64_to_cpu(attr->nres.alloc_size);
2012 if (end > alloc_size)
2013 end = alloc_size;
2014
2015 down_read(run_lock);
2016
2017 while (vbo < end) {
2018 if (idx == -1) {
2019 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
2020 } else {
2021 CLST vcn_next = vcn;
2022
2023 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) &&
2024 vcn == vcn_next;
2025 if (!ok)
2026 vcn = vcn_next;
2027 }
2028
2029 if (!ok) {
2030 up_read(run_lock);
2031 down_write(run_lock);
2032
2033 err = attr_load_runs_vcn(ni, attr->type,
2034 attr_name(attr),
2035 attr->name_len, run, vcn);
2036
2037 up_write(run_lock);
2038 down_read(run_lock);
2039
2040 if (err)
2041 break;
2042
2043 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
2044
2045 if (!ok) {
2046 err = -EINVAL;
2047 break;
2048 }
2049 }
2050
2051 if (!clen) {
2052 err = -EINVAL; // ?
2053 break;
2054 }
2055
2056 if (lcn == SPARSE_LCN) {
2057 vcn += clen;
2058 vbo = (u64)vcn << cluster_bits;
2059 continue;
2060 }
2061
2062 flags = FIEMAP_EXTENT_MERGED;
2063 if (S_ISDIR(ni->vfs_inode.i_mode)) {
2064 ;
2065 } else if (is_attr_compressed(attr)) {
2066 CLST clst_data;
2067
2068 err = attr_is_frame_compressed(
2069 ni, attr, vcn >> attr->nres.c_unit, &clst_data);
2070 if (err)
2071 break;
2072 if (clst_data < NTFS_LZNT_CLUSTERS)
2073 flags |= FIEMAP_EXTENT_ENCODED;
2074 } else if (is_attr_encrypted(attr)) {
2075 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2076 }
2077
2078 vbo = (u64)vcn << cluster_bits;
2079 bytes = (u64)clen << cluster_bits;
2080 lbo = (u64)lcn << cluster_bits;
2081
2082 vcn += clen;
2083
2084 if (vbo + bytes >= end)
2085 bytes = end - vbo;
2086
2087 if (vbo + bytes <= valid) {
2088 ;
2089 } else if (vbo >= valid) {
2090 flags |= FIEMAP_EXTENT_UNWRITTEN;
2091 } else {
2092 /* vbo < valid && valid < vbo + bytes */
2093 u64 dlen = valid - vbo;
2094
2095 if (vbo + dlen >= end)
2096 flags |= FIEMAP_EXTENT_LAST;
2097
2098 err = fiemap_fill_next_extent_k(fieinfo, fe_k, vbo, lbo,
2099 dlen, flags);
2100
2101 if (err < 0)
2102 break;
2103 if (err == 1) {
2104 err = 0;
2105 break;
2106 }
2107
2108 vbo = valid;
2109 bytes -= dlen;
2110 if (!bytes)
2111 continue;
2112
2113 lbo += dlen;
2114 flags |= FIEMAP_EXTENT_UNWRITTEN;
2115 }
2116
2117 if (vbo + bytes >= end)
2118 flags |= FIEMAP_EXTENT_LAST;
2119
2120 err = fiemap_fill_next_extent_k(fieinfo, fe_k, vbo, lbo, bytes,
2121 flags);
2122 if (err < 0)
2123 break;
2124 if (err == 1) {
2125 err = 0;
2126 break;
2127 }
2128
2129 vbo += bytes;
2130 }
2131
2132 up_read(run_lock);
2133
2134 /*
2135 * Copy to user memory out of lock
2136 */
2137 if (copy_to_user(fieinfo->fi_extents_start, fe_k,
2138 fieinfo->fi_extents_max *
2139 sizeof(struct fiemap_extent))) {
2140 err = -EFAULT;
2141 }
2142
2143 out:
2144 kfree(fe_k);
2145 return err;
2146 }
2147
2148 /*
2149 * ni_readpage_cmpr
2150 *
2151 * When decompressing, we typically obtain more than one page per reference.
2152 * We inject the additional pages into the page cache.
2153 */
ni_readpage_cmpr(struct ntfs_inode * ni,struct page * page)2154 int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page)
2155 {
2156 int err;
2157 struct ntfs_sb_info *sbi = ni->mi.sbi;
2158 struct address_space *mapping = page->mapping;
2159 pgoff_t index = page->index;
2160 u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT;
2161 struct page **pages = NULL; /* Array of at most 16 pages. stack? */
2162 u8 frame_bits;
2163 CLST frame;
2164 u32 i, idx, frame_size, pages_per_frame;
2165 gfp_t gfp_mask;
2166 struct page *pg;
2167
2168 if (vbo >= i_size_read(&ni->vfs_inode)) {
2169 SetPageUptodate(page);
2170 err = 0;
2171 goto out;
2172 }
2173
2174 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2175 /* Xpress or LZX. */
2176 frame_bits = ni_ext_compress_bits(ni);
2177 } else {
2178 /* LZNT compression. */
2179 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2180 }
2181 frame_size = 1u << frame_bits;
2182 frame = vbo >> frame_bits;
2183 frame_vbo = (u64)frame << frame_bits;
2184 idx = (vbo - frame_vbo) >> PAGE_SHIFT;
2185
2186 pages_per_frame = frame_size >> PAGE_SHIFT;
2187 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2188 if (!pages) {
2189 err = -ENOMEM;
2190 goto out;
2191 }
2192
2193 pages[idx] = page;
2194 index = frame_vbo >> PAGE_SHIFT;
2195 gfp_mask = mapping_gfp_mask(mapping);
2196
2197 for (i = 0; i < pages_per_frame; i++, index++) {
2198 if (i == idx)
2199 continue;
2200
2201 pg = find_or_create_page(mapping, index, gfp_mask);
2202 if (!pg) {
2203 err = -ENOMEM;
2204 goto out1;
2205 }
2206 pages[i] = pg;
2207 }
2208
2209 err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame);
2210
2211 out1:
2212 if (err)
2213 SetPageError(page);
2214
2215 for (i = 0; i < pages_per_frame; i++) {
2216 pg = pages[i];
2217 if (i == idx || !pg)
2218 continue;
2219 unlock_page(pg);
2220 put_page(pg);
2221 }
2222
2223 out:
2224 /* At this point, err contains 0 or -EIO depending on the "critical" page. */
2225 kfree(pages);
2226 unlock_page(page);
2227
2228 return err;
2229 }
2230
2231 #ifdef CONFIG_NTFS3_LZX_XPRESS
2232 /*
2233 * ni_decompress_file - Decompress LZX/Xpress compressed file.
2234 *
2235 * Remove ATTR_DATA::WofCompressedData.
2236 * Remove ATTR_REPARSE.
2237 */
ni_decompress_file(struct ntfs_inode * ni)2238 int ni_decompress_file(struct ntfs_inode *ni)
2239 {
2240 struct ntfs_sb_info *sbi = ni->mi.sbi;
2241 struct inode *inode = &ni->vfs_inode;
2242 loff_t i_size = i_size_read(inode);
2243 struct address_space *mapping = inode->i_mapping;
2244 gfp_t gfp_mask = mapping_gfp_mask(mapping);
2245 struct page **pages = NULL;
2246 struct ATTR_LIST_ENTRY *le;
2247 struct ATTRIB *attr;
2248 CLST vcn, cend, lcn, clen, end;
2249 pgoff_t index;
2250 u64 vbo;
2251 u8 frame_bits;
2252 u32 i, frame_size, pages_per_frame, bytes;
2253 struct mft_inode *mi;
2254 int err;
2255
2256 /* Clusters for decompressed data. */
2257 cend = bytes_to_cluster(sbi, i_size);
2258
2259 if (!i_size)
2260 goto remove_wof;
2261
2262 /* Check in advance. */
2263 if (cend > wnd_zeroes(&sbi->used.bitmap)) {
2264 err = -ENOSPC;
2265 goto out;
2266 }
2267
2268 frame_bits = ni_ext_compress_bits(ni);
2269 frame_size = 1u << frame_bits;
2270 pages_per_frame = frame_size >> PAGE_SHIFT;
2271 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2272 if (!pages) {
2273 err = -ENOMEM;
2274 goto out;
2275 }
2276
2277 /*
2278 * Step 1: Decompress data and copy to new allocated clusters.
2279 */
2280 index = 0;
2281 for (vbo = 0; vbo < i_size; vbo += bytes) {
2282 u32 nr_pages;
2283 bool new;
2284
2285 if (vbo + frame_size > i_size) {
2286 bytes = i_size - vbo;
2287 nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT;
2288 } else {
2289 nr_pages = pages_per_frame;
2290 bytes = frame_size;
2291 }
2292
2293 end = bytes_to_cluster(sbi, vbo + bytes);
2294
2295 for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) {
2296 err = attr_data_get_block(ni, vcn, cend - vcn, &lcn,
2297 &clen, &new, false);
2298 if (err)
2299 goto out;
2300 }
2301
2302 for (i = 0; i < pages_per_frame; i++, index++) {
2303 struct page *pg;
2304
2305 pg = find_or_create_page(mapping, index, gfp_mask);
2306 if (!pg) {
2307 while (i--) {
2308 unlock_page(pages[i]);
2309 put_page(pages[i]);
2310 }
2311 err = -ENOMEM;
2312 goto out;
2313 }
2314 pages[i] = pg;
2315 }
2316
2317 err = ni_read_frame(ni, vbo, pages, pages_per_frame);
2318
2319 if (!err) {
2320 down_read(&ni->file.run_lock);
2321 err = ntfs_bio_pages(sbi, &ni->file.run, pages,
2322 nr_pages, vbo, bytes,
2323 REQ_OP_WRITE);
2324 up_read(&ni->file.run_lock);
2325 }
2326
2327 for (i = 0; i < pages_per_frame; i++) {
2328 unlock_page(pages[i]);
2329 put_page(pages[i]);
2330 }
2331
2332 if (err)
2333 goto out;
2334
2335 cond_resched();
2336 }
2337
2338 remove_wof:
2339 /*
2340 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData
2341 * and ATTR_REPARSE.
2342 */
2343 attr = NULL;
2344 le = NULL;
2345 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
2346 CLST svcn, evcn;
2347 u32 asize, roff;
2348
2349 if (attr->type == ATTR_REPARSE) {
2350 struct MFT_REF ref;
2351
2352 mi_get_ref(&ni->mi, &ref);
2353 ntfs_remove_reparse(sbi, 0, &ref);
2354 }
2355
2356 if (!attr->non_res)
2357 continue;
2358
2359 if (attr->type != ATTR_REPARSE &&
2360 (attr->type != ATTR_DATA ||
2361 attr->name_len != ARRAY_SIZE(WOF_NAME) ||
2362 memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME))))
2363 continue;
2364
2365 svcn = le64_to_cpu(attr->nres.svcn);
2366 evcn = le64_to_cpu(attr->nres.evcn);
2367
2368 if (evcn + 1 <= svcn)
2369 continue;
2370
2371 asize = le32_to_cpu(attr->size);
2372 roff = le16_to_cpu(attr->nres.run_off);
2373
2374 if (roff > asize) {
2375 err = -EINVAL;
2376 goto out;
2377 }
2378
2379 /*run==1 Means unpack and deallocate. */
2380 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
2381 Add2Ptr(attr, roff), asize - roff);
2382 }
2383
2384 /*
2385 * Step 3: Remove attribute ATTR_DATA::WofCompressedData.
2386 */
2387 err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME),
2388 false, NULL);
2389 if (err)
2390 goto out;
2391
2392 /*
2393 * Step 4: Remove ATTR_REPARSE.
2394 */
2395 err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL);
2396 if (err)
2397 goto out;
2398
2399 /*
2400 * Step 5: Remove sparse flag from data attribute.
2401 */
2402 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
2403 if (!attr) {
2404 err = -EINVAL;
2405 goto out;
2406 }
2407
2408 if (attr->non_res && is_attr_sparsed(attr)) {
2409 /* Sparsed attribute header is 8 bytes bigger than normal. */
2410 struct MFT_REC *rec = mi->mrec;
2411 u32 used = le32_to_cpu(rec->used);
2412 u32 asize = le32_to_cpu(attr->size);
2413 u16 roff = le16_to_cpu(attr->nres.run_off);
2414 char *rbuf = Add2Ptr(attr, roff);
2415
2416 memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf));
2417 attr->size = cpu_to_le32(asize - 8);
2418 attr->flags &= ~ATTR_FLAG_SPARSED;
2419 attr->nres.run_off = cpu_to_le16(roff - 8);
2420 attr->nres.c_unit = 0;
2421 rec->used = cpu_to_le32(used - 8);
2422 mi->dirty = true;
2423 ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE |
2424 FILE_ATTRIBUTE_REPARSE_POINT);
2425
2426 mark_inode_dirty(inode);
2427 }
2428
2429 /* Clear cached flag. */
2430 ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK;
2431 if (ni->file.offs_page) {
2432 put_page(ni->file.offs_page);
2433 ni->file.offs_page = NULL;
2434 }
2435 mapping->a_ops = &ntfs_aops;
2436
2437 out:
2438 kfree(pages);
2439 if (err)
2440 _ntfs_bad_inode(inode);
2441
2442 return err;
2443 }
2444
2445 /*
2446 * decompress_lzx_xpress - External compression LZX/Xpress.
2447 */
decompress_lzx_xpress(struct ntfs_sb_info * sbi,const char * cmpr,size_t cmpr_size,void * unc,size_t unc_size,u32 frame_size)2448 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr,
2449 size_t cmpr_size, void *unc, size_t unc_size,
2450 u32 frame_size)
2451 {
2452 int err;
2453 void *ctx;
2454
2455 if (cmpr_size == unc_size) {
2456 /* Frame not compressed. */
2457 memcpy(unc, cmpr, unc_size);
2458 return 0;
2459 }
2460
2461 err = 0;
2462 if (frame_size == 0x8000) {
2463 mutex_lock(&sbi->compress.mtx_lzx);
2464 /* LZX: Frame compressed. */
2465 ctx = sbi->compress.lzx;
2466 if (!ctx) {
2467 /* Lazy initialize LZX decompress context. */
2468 ctx = lzx_allocate_decompressor();
2469 if (!ctx) {
2470 err = -ENOMEM;
2471 goto out1;
2472 }
2473
2474 sbi->compress.lzx = ctx;
2475 }
2476
2477 if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2478 /* Treat all errors as "invalid argument". */
2479 err = -EINVAL;
2480 }
2481 out1:
2482 mutex_unlock(&sbi->compress.mtx_lzx);
2483 } else {
2484 /* XPRESS: Frame compressed. */
2485 mutex_lock(&sbi->compress.mtx_xpress);
2486 ctx = sbi->compress.xpress;
2487 if (!ctx) {
2488 /* Lazy initialize Xpress decompress context. */
2489 ctx = xpress_allocate_decompressor();
2490 if (!ctx) {
2491 err = -ENOMEM;
2492 goto out2;
2493 }
2494
2495 sbi->compress.xpress = ctx;
2496 }
2497
2498 if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2499 /* Treat all errors as "invalid argument". */
2500 err = -EINVAL;
2501 }
2502 out2:
2503 mutex_unlock(&sbi->compress.mtx_xpress);
2504 }
2505 return err;
2506 }
2507 #endif
2508
2509 /*
2510 * ni_read_frame
2511 *
2512 * Pages - Array of locked pages.
2513 */
ni_read_frame(struct ntfs_inode * ni,u64 frame_vbo,struct page ** pages,u32 pages_per_frame)2514 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages,
2515 u32 pages_per_frame)
2516 {
2517 int err;
2518 struct ntfs_sb_info *sbi = ni->mi.sbi;
2519 u8 cluster_bits = sbi->cluster_bits;
2520 char *frame_ondisk = NULL;
2521 char *frame_mem = NULL;
2522 struct page **pages_disk = NULL;
2523 struct ATTR_LIST_ENTRY *le = NULL;
2524 struct runs_tree *run = &ni->file.run;
2525 u64 valid_size = ni->i_valid;
2526 u64 vbo_disk;
2527 size_t unc_size;
2528 u32 frame_size, i, npages_disk, ondisk_size;
2529 struct page *pg;
2530 struct ATTRIB *attr;
2531 CLST frame, clst_data;
2532
2533 /*
2534 * To simplify decompress algorithm do vmap for source
2535 * and target pages.
2536 */
2537 for (i = 0; i < pages_per_frame; i++)
2538 kmap(pages[i]);
2539
2540 frame_size = pages_per_frame << PAGE_SHIFT;
2541 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL);
2542 if (!frame_mem) {
2543 err = -ENOMEM;
2544 goto out;
2545 }
2546
2547 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL);
2548 if (!attr) {
2549 err = -ENOENT;
2550 goto out1;
2551 }
2552
2553 if (!attr->non_res) {
2554 u32 data_size = le32_to_cpu(attr->res.data_size);
2555
2556 memset(frame_mem, 0, frame_size);
2557 if (frame_vbo < data_size) {
2558 ondisk_size = data_size - frame_vbo;
2559 memcpy(frame_mem, resident_data(attr) + frame_vbo,
2560 min(ondisk_size, frame_size));
2561 }
2562 err = 0;
2563 goto out1;
2564 }
2565
2566 if (frame_vbo >= valid_size) {
2567 memset(frame_mem, 0, frame_size);
2568 err = 0;
2569 goto out1;
2570 }
2571
2572 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2573 #ifndef CONFIG_NTFS3_LZX_XPRESS
2574 err = -EOPNOTSUPP;
2575 goto out1;
2576 #else
2577 loff_t i_size = i_size_read(&ni->vfs_inode);
2578 u32 frame_bits = ni_ext_compress_bits(ni);
2579 u64 frame64 = frame_vbo >> frame_bits;
2580 u64 frames, vbo_data;
2581
2582 if (frame_size != (1u << frame_bits)) {
2583 err = -EINVAL;
2584 goto out1;
2585 }
2586 switch (frame_size) {
2587 case 0x1000:
2588 case 0x2000:
2589 case 0x4000:
2590 case 0x8000:
2591 break;
2592 default:
2593 /* Unknown compression. */
2594 err = -EOPNOTSUPP;
2595 goto out1;
2596 }
2597
2598 attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME,
2599 ARRAY_SIZE(WOF_NAME), NULL, NULL);
2600 if (!attr) {
2601 ntfs_inode_err(
2602 &ni->vfs_inode,
2603 "external compressed file should contains data attribute \"WofCompressedData\"");
2604 err = -EINVAL;
2605 goto out1;
2606 }
2607
2608 if (!attr->non_res) {
2609 run = NULL;
2610 } else {
2611 run = run_alloc();
2612 if (!run) {
2613 err = -ENOMEM;
2614 goto out1;
2615 }
2616 }
2617
2618 frames = (i_size - 1) >> frame_bits;
2619
2620 err = attr_wof_frame_info(ni, attr, run, frame64, frames,
2621 frame_bits, &ondisk_size, &vbo_data);
2622 if (err)
2623 goto out2;
2624
2625 if (frame64 == frames) {
2626 unc_size = 1 + ((i_size - 1) & (frame_size - 1));
2627 ondisk_size = attr_size(attr) - vbo_data;
2628 } else {
2629 unc_size = frame_size;
2630 }
2631
2632 if (ondisk_size > frame_size) {
2633 err = -EINVAL;
2634 goto out2;
2635 }
2636
2637 if (!attr->non_res) {
2638 if (vbo_data + ondisk_size >
2639 le32_to_cpu(attr->res.data_size)) {
2640 err = -EINVAL;
2641 goto out1;
2642 }
2643
2644 err = decompress_lzx_xpress(
2645 sbi, Add2Ptr(resident_data(attr), vbo_data),
2646 ondisk_size, frame_mem, unc_size, frame_size);
2647 goto out1;
2648 }
2649 vbo_disk = vbo_data;
2650 /* Load all runs to read [vbo_disk-vbo_to). */
2651 err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
2652 ARRAY_SIZE(WOF_NAME), run, vbo_disk,
2653 vbo_data + ondisk_size);
2654 if (err)
2655 goto out2;
2656 npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) +
2657 PAGE_SIZE - 1) >>
2658 PAGE_SHIFT;
2659 #endif
2660 } else if (is_attr_compressed(attr)) {
2661 /* LZNT compression. */
2662 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2663 err = -EOPNOTSUPP;
2664 goto out1;
2665 }
2666
2667 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2668 err = -EOPNOTSUPP;
2669 goto out1;
2670 }
2671
2672 down_write(&ni->file.run_lock);
2673 run_truncate_around(run, le64_to_cpu(attr->nres.svcn));
2674 frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT);
2675 err = attr_is_frame_compressed(ni, attr, frame, &clst_data);
2676 up_write(&ni->file.run_lock);
2677 if (err)
2678 goto out1;
2679
2680 if (!clst_data) {
2681 memset(frame_mem, 0, frame_size);
2682 goto out1;
2683 }
2684
2685 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2686 ondisk_size = clst_data << cluster_bits;
2687
2688 if (clst_data >= NTFS_LZNT_CLUSTERS) {
2689 /* Frame is not compressed. */
2690 down_read(&ni->file.run_lock);
2691 err = ntfs_bio_pages(sbi, run, pages, pages_per_frame,
2692 frame_vbo, ondisk_size,
2693 REQ_OP_READ);
2694 up_read(&ni->file.run_lock);
2695 goto out1;
2696 }
2697 vbo_disk = frame_vbo;
2698 npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2699 } else {
2700 __builtin_unreachable();
2701 err = -EINVAL;
2702 goto out1;
2703 }
2704
2705 pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS);
2706 if (!pages_disk) {
2707 err = -ENOMEM;
2708 goto out2;
2709 }
2710
2711 for (i = 0; i < npages_disk; i++) {
2712 pg = alloc_page(GFP_KERNEL);
2713 if (!pg) {
2714 err = -ENOMEM;
2715 goto out3;
2716 }
2717 pages_disk[i] = pg;
2718 lock_page(pg);
2719 kmap(pg);
2720 }
2721
2722 /* Read 'ondisk_size' bytes from disk. */
2723 down_read(&ni->file.run_lock);
2724 err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk,
2725 ondisk_size, REQ_OP_READ);
2726 up_read(&ni->file.run_lock);
2727 if (err)
2728 goto out3;
2729
2730 /*
2731 * To simplify decompress algorithm do vmap for source and target pages.
2732 */
2733 frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO);
2734 if (!frame_ondisk) {
2735 err = -ENOMEM;
2736 goto out3;
2737 }
2738
2739 /* Decompress: Frame_ondisk -> frame_mem. */
2740 #ifdef CONFIG_NTFS3_LZX_XPRESS
2741 if (run != &ni->file.run) {
2742 /* LZX or XPRESS */
2743 err = decompress_lzx_xpress(
2744 sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)),
2745 ondisk_size, frame_mem, unc_size, frame_size);
2746 } else
2747 #endif
2748 {
2749 /* LZNT - Native NTFS compression. */
2750 unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem,
2751 frame_size);
2752 if ((ssize_t)unc_size < 0)
2753 err = unc_size;
2754 else if (!unc_size || unc_size > frame_size)
2755 err = -EINVAL;
2756 }
2757 if (!err && valid_size < frame_vbo + frame_size) {
2758 size_t ok = valid_size - frame_vbo;
2759
2760 memset(frame_mem + ok, 0, frame_size - ok);
2761 }
2762
2763 vunmap(frame_ondisk);
2764
2765 out3:
2766 for (i = 0; i < npages_disk; i++) {
2767 pg = pages_disk[i];
2768 if (pg) {
2769 kunmap(pg);
2770 unlock_page(pg);
2771 put_page(pg);
2772 }
2773 }
2774 kfree(pages_disk);
2775
2776 out2:
2777 #ifdef CONFIG_NTFS3_LZX_XPRESS
2778 if (run != &ni->file.run)
2779 run_free(run);
2780 #endif
2781 out1:
2782 vunmap(frame_mem);
2783 out:
2784 for (i = 0; i < pages_per_frame; i++) {
2785 pg = pages[i];
2786 kunmap(pg);
2787 ClearPageError(pg);
2788 SetPageUptodate(pg);
2789 }
2790
2791 return err;
2792 }
2793
2794 /*
2795 * ni_write_frame
2796 *
2797 * Pages - Array of locked pages.
2798 */
ni_write_frame(struct ntfs_inode * ni,struct page ** pages,u32 pages_per_frame)2799 int ni_write_frame(struct ntfs_inode *ni, struct page **pages,
2800 u32 pages_per_frame)
2801 {
2802 int err;
2803 struct ntfs_sb_info *sbi = ni->mi.sbi;
2804 u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2805 u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2806 u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT;
2807 CLST frame = frame_vbo >> frame_bits;
2808 char *frame_ondisk = NULL;
2809 struct page **pages_disk = NULL;
2810 struct ATTR_LIST_ENTRY *le = NULL;
2811 char *frame_mem;
2812 struct ATTRIB *attr;
2813 struct mft_inode *mi;
2814 u32 i;
2815 struct page *pg;
2816 size_t compr_size, ondisk_size;
2817 struct lznt *lznt;
2818
2819 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi);
2820 if (!attr) {
2821 err = -ENOENT;
2822 goto out;
2823 }
2824
2825 if (WARN_ON(!is_attr_compressed(attr))) {
2826 err = -EINVAL;
2827 goto out;
2828 }
2829
2830 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2831 err = -EOPNOTSUPP;
2832 goto out;
2833 }
2834
2835 if (!attr->non_res) {
2836 down_write(&ni->file.run_lock);
2837 err = attr_make_nonresident(ni, attr, le, mi,
2838 le32_to_cpu(attr->res.data_size),
2839 &ni->file.run, &attr, pages[0]);
2840 up_write(&ni->file.run_lock);
2841 if (err)
2842 goto out;
2843 }
2844
2845 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2846 err = -EOPNOTSUPP;
2847 goto out;
2848 }
2849
2850 pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2851 if (!pages_disk) {
2852 err = -ENOMEM;
2853 goto out;
2854 }
2855
2856 for (i = 0; i < pages_per_frame; i++) {
2857 pg = alloc_page(GFP_KERNEL);
2858 if (!pg) {
2859 err = -ENOMEM;
2860 goto out1;
2861 }
2862 pages_disk[i] = pg;
2863 lock_page(pg);
2864 kmap(pg);
2865 }
2866
2867 /* To simplify compress algorithm do vmap for source and target pages. */
2868 frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL);
2869 if (!frame_ondisk) {
2870 err = -ENOMEM;
2871 goto out1;
2872 }
2873
2874 for (i = 0; i < pages_per_frame; i++)
2875 kmap(pages[i]);
2876
2877 /* Map in-memory frame for read-only. */
2878 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO);
2879 if (!frame_mem) {
2880 err = -ENOMEM;
2881 goto out2;
2882 }
2883
2884 mutex_lock(&sbi->compress.mtx_lznt);
2885 lznt = NULL;
2886 if (!sbi->compress.lznt) {
2887 /*
2888 * LZNT implements two levels of compression:
2889 * 0 - Standard compression
2890 * 1 - Best compression, requires a lot of cpu
2891 * use mount option?
2892 */
2893 lznt = get_lznt_ctx(0);
2894 if (!lznt) {
2895 mutex_unlock(&sbi->compress.mtx_lznt);
2896 err = -ENOMEM;
2897 goto out3;
2898 }
2899
2900 sbi->compress.lznt = lznt;
2901 lznt = NULL;
2902 }
2903
2904 /* Compress: frame_mem -> frame_ondisk */
2905 compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk,
2906 frame_size, sbi->compress.lznt);
2907 mutex_unlock(&sbi->compress.mtx_lznt);
2908 kfree(lznt);
2909
2910 if (compr_size + sbi->cluster_size > frame_size) {
2911 /* Frame is not compressed. */
2912 compr_size = frame_size;
2913 ondisk_size = frame_size;
2914 } else if (compr_size) {
2915 /* Frame is compressed. */
2916 ondisk_size = ntfs_up_cluster(sbi, compr_size);
2917 memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size);
2918 } else {
2919 /* Frame is sparsed. */
2920 ondisk_size = 0;
2921 }
2922
2923 down_write(&ni->file.run_lock);
2924 run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn));
2925 err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid);
2926 up_write(&ni->file.run_lock);
2927 if (err)
2928 goto out2;
2929
2930 if (!ondisk_size)
2931 goto out2;
2932
2933 down_read(&ni->file.run_lock);
2934 err = ntfs_bio_pages(sbi, &ni->file.run,
2935 ondisk_size < frame_size ? pages_disk : pages,
2936 pages_per_frame, frame_vbo, ondisk_size,
2937 REQ_OP_WRITE);
2938 up_read(&ni->file.run_lock);
2939
2940 out3:
2941 vunmap(frame_mem);
2942
2943 out2:
2944 for (i = 0; i < pages_per_frame; i++)
2945 kunmap(pages[i]);
2946
2947 vunmap(frame_ondisk);
2948 out1:
2949 for (i = 0; i < pages_per_frame; i++) {
2950 pg = pages_disk[i];
2951 if (pg) {
2952 kunmap(pg);
2953 unlock_page(pg);
2954 put_page(pg);
2955 }
2956 }
2957 kfree(pages_disk);
2958 out:
2959 return err;
2960 }
2961
2962 /*
2963 * ni_remove_name - Removes name 'de' from MFT and from directory.
2964 * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs.
2965 */
ni_remove_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE ** de2,int * undo_step)2966 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2967 struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step)
2968 {
2969 int err;
2970 struct ntfs_sb_info *sbi = ni->mi.sbi;
2971 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2972 struct ATTR_FILE_NAME *fname;
2973 struct ATTR_LIST_ENTRY *le;
2974 struct mft_inode *mi;
2975 u16 de_key_size = le16_to_cpu(de->key_size);
2976 u8 name_type;
2977
2978 *undo_step = 0;
2979
2980 /* Find name in record. */
2981 mi_get_ref(&dir_ni->mi, &de_name->home);
2982
2983 fname = ni_fname_name(ni, (struct le_str *)&de_name->name_len,
2984 &de_name->home, &mi, &le);
2985 if (!fname)
2986 return -ENOENT;
2987
2988 memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO));
2989 name_type = paired_name(fname->type);
2990
2991 /* Mark ntfs as dirty. It will be cleared at umount. */
2992 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
2993
2994 /* Step 1: Remove name from directory. */
2995 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi);
2996 if (err)
2997 return err;
2998
2999 /* Step 2: Remove name from MFT. */
3000 ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
3001
3002 *undo_step = 2;
3003
3004 /* Get paired name. */
3005 fname = ni_fname_type(ni, name_type, &mi, &le);
3006 if (fname) {
3007 u16 de2_key_size = fname_full_size(fname);
3008
3009 *de2 = Add2Ptr(de, 1024);
3010 (*de2)->key_size = cpu_to_le16(de2_key_size);
3011
3012 memcpy(*de2 + 1, fname, de2_key_size);
3013
3014 /* Step 3: Remove paired name from directory. */
3015 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname,
3016 de2_key_size, sbi);
3017 if (err)
3018 return err;
3019
3020 /* Step 4: Remove paired name from MFT. */
3021 ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
3022
3023 *undo_step = 4;
3024 }
3025 return 0;
3026 }
3027
3028 /*
3029 * ni_remove_name_undo - Paired function for ni_remove_name.
3030 *
3031 * Return: True if ok
3032 */
ni_remove_name_undo(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * de2,int undo_step)3033 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
3034 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step)
3035 {
3036 struct ntfs_sb_info *sbi = ni->mi.sbi;
3037 struct ATTRIB *attr;
3038 u16 de_key_size;
3039
3040 switch (undo_step) {
3041 case 4:
3042 de_key_size = le16_to_cpu(de2->key_size);
3043 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
3044 &attr, NULL, NULL))
3045 return false;
3046 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size);
3047
3048 mi_get_ref(&ni->mi, &de2->ref);
3049 de2->size = cpu_to_le16(ALIGN(de_key_size, 8) +
3050 sizeof(struct NTFS_DE));
3051 de2->flags = 0;
3052 de2->res = 0;
3053
3054 if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL, 1))
3055 return false;
3056 fallthrough;
3057
3058 case 2:
3059 de_key_size = le16_to_cpu(de->key_size);
3060
3061 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
3062 &attr, NULL, NULL))
3063 return false;
3064
3065 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size);
3066 mi_get_ref(&ni->mi, &de->ref);
3067
3068 if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1))
3069 return false;
3070 }
3071
3072 return true;
3073 }
3074
3075 /*
3076 * ni_add_name - Add new name into MFT and into directory.
3077 */
ni_add_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de)3078 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
3079 struct NTFS_DE *de)
3080 {
3081 int err;
3082 struct ntfs_sb_info *sbi = ni->mi.sbi;
3083 struct ATTRIB *attr;
3084 struct ATTR_LIST_ENTRY *le;
3085 struct mft_inode *mi;
3086 struct ATTR_FILE_NAME *fname;
3087 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
3088 u16 de_key_size = le16_to_cpu(de->key_size);
3089
3090 if (sbi->options->windows_names &&
3091 !valid_windows_name(sbi, (struct le_str *)&de_name->name_len))
3092 return -EINVAL;
3093
3094 /* If option "hide_dot_files" then set hidden attribute for dot files. */
3095 if (ni->mi.sbi->options->hide_dot_files) {
3096 if (de_name->name_len > 0 &&
3097 le16_to_cpu(de_name->name[0]) == '.')
3098 ni->std_fa |= FILE_ATTRIBUTE_HIDDEN;
3099 else
3100 ni->std_fa &= ~FILE_ATTRIBUTE_HIDDEN;
3101 }
3102
3103 mi_get_ref(&ni->mi, &de->ref);
3104 mi_get_ref(&dir_ni->mi, &de_name->home);
3105
3106 /* Fill duplicate from any ATTR_NAME. */
3107 fname = ni_fname_name(ni, NULL, NULL, NULL, NULL);
3108 if (fname)
3109 memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup));
3110 de_name->dup.fa = ni->std_fa;
3111
3112 /* Insert new name into MFT. */
3113 err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr,
3114 &mi, &le);
3115 if (err)
3116 return err;
3117
3118 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size);
3119
3120 /* Insert new name into directory. */
3121 err = indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 0);
3122 if (err)
3123 ni_remove_attr_le(ni, attr, mi, le);
3124
3125 return err;
3126 }
3127
3128 /*
3129 * ni_rename - Remove one name and insert new name.
3130 */
ni_rename(struct ntfs_inode * dir_ni,struct ntfs_inode * new_dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * new_de,bool * is_bad)3131 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni,
3132 struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de,
3133 bool *is_bad)
3134 {
3135 int err;
3136 struct NTFS_DE *de2 = NULL;
3137 int undo = 0;
3138
3139 /*
3140 * There are two possible ways to rename:
3141 * 1) Add new name and remove old name.
3142 * 2) Remove old name and add new name.
3143 *
3144 * In most cases (not all!) adding new name into MFT and into directory can
3145 * allocate additional cluster(s).
3146 * Second way may result to bad inode if we can't add new name
3147 * and then can't restore (add) old name.
3148 */
3149
3150 /*
3151 * Way 1 - Add new + remove old.
3152 */
3153 err = ni_add_name(new_dir_ni, ni, new_de);
3154 if (!err) {
3155 err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3156 if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo))
3157 *is_bad = true;
3158 }
3159
3160 /*
3161 * Way 2 - Remove old + add new.
3162 */
3163 /*
3164 * err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3165 * if (!err) {
3166 * err = ni_add_name(new_dir_ni, ni, new_de);
3167 * if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo))
3168 * *is_bad = true;
3169 * }
3170 */
3171
3172 return err;
3173 }
3174
3175 /*
3176 * ni_is_dirty - Return: True if 'ni' requires ni_write_inode.
3177 */
ni_is_dirty(struct inode * inode)3178 bool ni_is_dirty(struct inode *inode)
3179 {
3180 struct ntfs_inode *ni = ntfs_i(inode);
3181 struct rb_node *node;
3182
3183 if (ni->mi.dirty || ni->attr_list.dirty ||
3184 (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3185 return true;
3186
3187 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
3188 if (rb_entry(node, struct mft_inode, node)->dirty)
3189 return true;
3190 }
3191
3192 return false;
3193 }
3194
3195 /*
3196 * ni_update_parent
3197 *
3198 * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories.
3199 */
ni_update_parent(struct ntfs_inode * ni,struct NTFS_DUP_INFO * dup,int sync)3200 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup,
3201 int sync)
3202 {
3203 struct ATTRIB *attr;
3204 struct mft_inode *mi;
3205 struct ATTR_LIST_ENTRY *le = NULL;
3206 struct ntfs_sb_info *sbi = ni->mi.sbi;
3207 struct super_block *sb = sbi->sb;
3208 bool re_dirty = false;
3209
3210 if (ni->mi.mrec->flags & RECORD_FLAG_DIR) {
3211 dup->fa |= FILE_ATTRIBUTE_DIRECTORY;
3212 attr = NULL;
3213 dup->alloc_size = 0;
3214 dup->data_size = 0;
3215 } else {
3216 dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY;
3217
3218 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL,
3219 &mi);
3220 if (!attr) {
3221 dup->alloc_size = dup->data_size = 0;
3222 } else if (!attr->non_res) {
3223 u32 data_size = le32_to_cpu(attr->res.data_size);
3224
3225 dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8));
3226 dup->data_size = cpu_to_le64(data_size);
3227 } else {
3228 u64 new_valid = ni->i_valid;
3229 u64 data_size = le64_to_cpu(attr->nres.data_size);
3230 __le64 valid_le;
3231
3232 dup->alloc_size = is_attr_ext(attr) ?
3233 attr->nres.total_size :
3234 attr->nres.alloc_size;
3235 dup->data_size = attr->nres.data_size;
3236
3237 if (new_valid > data_size)
3238 new_valid = data_size;
3239
3240 valid_le = cpu_to_le64(new_valid);
3241 if (valid_le != attr->nres.valid_size) {
3242 attr->nres.valid_size = valid_le;
3243 mi->dirty = true;
3244 }
3245 }
3246 }
3247
3248 /* TODO: Fill reparse info. */
3249 dup->reparse = 0;
3250 dup->ea_size = 0;
3251
3252 if (ni->ni_flags & NI_FLAG_EA) {
3253 attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL,
3254 NULL);
3255 if (attr) {
3256 const struct EA_INFO *info;
3257
3258 info = resident_data_ex(attr, sizeof(struct EA_INFO));
3259 /* If ATTR_EA_INFO exists 'info' can't be NULL. */
3260 if (info)
3261 dup->ea_size = info->size_pack;
3262 }
3263 }
3264
3265 attr = NULL;
3266 le = NULL;
3267
3268 while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL,
3269 &mi))) {
3270 struct inode *dir;
3271 struct ATTR_FILE_NAME *fname;
3272
3273 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
3274 if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup)))
3275 continue;
3276
3277 /* Check simple case when parent inode equals current inode. */
3278 if (ino_get(&fname->home) == ni->vfs_inode.i_ino) {
3279 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3280 continue;
3281 }
3282
3283 /* ntfs_iget5 may sleep. */
3284 dir = ntfs_iget5(sb, &fname->home, NULL);
3285 if (IS_ERR(dir)) {
3286 ntfs_inode_warn(
3287 &ni->vfs_inode,
3288 "failed to open parent directory r=%lx to update",
3289 (long)ino_get(&fname->home));
3290 continue;
3291 }
3292
3293 if (!is_bad_inode(dir)) {
3294 struct ntfs_inode *dir_ni = ntfs_i(dir);
3295
3296 if (!ni_trylock(dir_ni)) {
3297 re_dirty = true;
3298 } else {
3299 indx_update_dup(dir_ni, sbi, fname, dup, sync);
3300 ni_unlock(dir_ni);
3301 memcpy(&fname->dup, dup, sizeof(fname->dup));
3302 mi->dirty = true;
3303 }
3304 }
3305 iput(dir);
3306 }
3307
3308 return re_dirty;
3309 }
3310
3311 /*
3312 * ni_write_inode - Write MFT base record and all subrecords to disk.
3313 */
ni_write_inode(struct inode * inode,int sync,const char * hint)3314 int ni_write_inode(struct inode *inode, int sync, const char *hint)
3315 {
3316 int err = 0, err2;
3317 struct ntfs_inode *ni = ntfs_i(inode);
3318 struct super_block *sb = inode->i_sb;
3319 struct ntfs_sb_info *sbi = sb->s_fs_info;
3320 bool re_dirty = false;
3321 struct ATTR_STD_INFO *std;
3322 struct rb_node *node, *next;
3323 struct NTFS_DUP_INFO dup;
3324
3325 if (is_bad_inode(inode) || sb_rdonly(sb))
3326 return 0;
3327
3328 if (unlikely(ntfs3_forced_shutdown(sb)))
3329 return -EIO;
3330
3331 if (!ni_trylock(ni)) {
3332 /* 'ni' is under modification, skip for now. */
3333 mark_inode_dirty_sync(inode);
3334 return 0;
3335 }
3336
3337 if (!ni->mi.mrec)
3338 goto out;
3339
3340 if (is_rec_inuse(ni->mi.mrec) &&
3341 !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) {
3342 bool modified = false;
3343 struct timespec64 ctime = inode_get_ctime(inode);
3344
3345 /* Update times in standard attribute. */
3346 std = ni_std(ni);
3347 if (!std) {
3348 err = -EINVAL;
3349 goto out;
3350 }
3351
3352 /* Update the access times if they have changed. */
3353 dup.m_time = kernel2nt(&inode->i_mtime);
3354 if (std->m_time != dup.m_time) {
3355 std->m_time = dup.m_time;
3356 modified = true;
3357 }
3358
3359 dup.c_time = kernel2nt(&ctime);
3360 if (std->c_time != dup.c_time) {
3361 std->c_time = dup.c_time;
3362 modified = true;
3363 }
3364
3365 dup.a_time = kernel2nt(&inode->i_atime);
3366 if (std->a_time != dup.a_time) {
3367 std->a_time = dup.a_time;
3368 modified = true;
3369 }
3370
3371 dup.fa = ni->std_fa;
3372 if (std->fa != dup.fa) {
3373 std->fa = dup.fa;
3374 modified = true;
3375 }
3376
3377 /* std attribute is always in primary MFT record. */
3378 if (modified)
3379 ni->mi.dirty = true;
3380
3381 if (!ntfs_is_meta_file(sbi, inode->i_ino) &&
3382 (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3383 /* Avoid __wait_on_freeing_inode(inode). */
3384 && (sb->s_flags & SB_ACTIVE)) {
3385 dup.cr_time = std->cr_time;
3386 /* Not critical if this function fail. */
3387 re_dirty = ni_update_parent(ni, &dup, sync);
3388
3389 if (re_dirty)
3390 ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3391 else
3392 ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT;
3393 }
3394
3395 /* Update attribute list. */
3396 if (ni->attr_list.size && ni->attr_list.dirty) {
3397 if (inode->i_ino != MFT_REC_MFT || sync) {
3398 err = ni_try_remove_attr_list(ni);
3399 if (err)
3400 goto out;
3401 }
3402
3403 err = al_update(ni, sync);
3404 if (err)
3405 goto out;
3406 }
3407 }
3408
3409 for (node = rb_first(&ni->mi_tree); node; node = next) {
3410 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
3411 bool is_empty;
3412
3413 next = rb_next(node);
3414
3415 if (!mi->dirty)
3416 continue;
3417
3418 is_empty = !mi_enum_attr(mi, NULL);
3419
3420 if (is_empty)
3421 clear_rec_inuse(mi->mrec);
3422
3423 err2 = mi_write(mi, sync);
3424 if (!err && err2)
3425 err = err2;
3426
3427 if (is_empty) {
3428 ntfs_mark_rec_free(sbi, mi->rno, false);
3429 rb_erase(node, &ni->mi_tree);
3430 mi_put(mi);
3431 }
3432 }
3433
3434 if (ni->mi.dirty) {
3435 err2 = mi_write(&ni->mi, sync);
3436 if (!err && err2)
3437 err = err2;
3438 }
3439 out:
3440 ni_unlock(ni);
3441
3442 if (err) {
3443 ntfs_inode_err(inode, "%s failed, %d.", hint, err);
3444 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3445 return err;
3446 }
3447
3448 if (re_dirty)
3449 mark_inode_dirty_sync(inode);
3450
3451 return 0;
3452 }
3453