xref: /openbmc/linux/drivers/net/ethernet/freescale/fec_main.c (revision 060f35a317ef09101b128f399dce7ed13d019461)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/page_pool/helpers.h>
42 #include <net/selftests.h>
43 #include <net/tso.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/icmp.h>
47 #include <linux/spinlock.h>
48 #include <linux/workqueue.h>
49 #include <linux/bitops.h>
50 #include <linux/io.h>
51 #include <linux/irq.h>
52 #include <linux/clk.h>
53 #include <linux/crc32.h>
54 #include <linux/platform_device.h>
55 #include <linux/mdio.h>
56 #include <linux/phy.h>
57 #include <linux/fec.h>
58 #include <linux/of.h>
59 #include <linux/of_device.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/gpio/consumer.h>
66 #include <linux/prefetch.h>
67 #include <linux/mfd/syscon.h>
68 #include <linux/regmap.h>
69 #include <soc/imx/cpuidle.h>
70 #include <linux/filter.h>
71 #include <linux/bpf.h>
72 #include <linux/bpf_trace.h>
73 
74 #include <asm/cacheflush.h>
75 
76 #include "fec.h"
77 
78 static void set_multicast_list(struct net_device *ndev);
79 static void fec_enet_itr_coal_set(struct net_device *ndev);
80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
81 				int cpu, struct xdp_buff *xdp,
82 				u32 dma_sync_len);
83 
84 #define DRIVER_NAME	"fec"
85 
86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
87 
88 /* Pause frame feild and FIFO threshold */
89 #define FEC_ENET_FCE	(1 << 5)
90 #define FEC_ENET_RSEM_V	0x84
91 #define FEC_ENET_RSFL_V	16
92 #define FEC_ENET_RAEM_V	0x8
93 #define FEC_ENET_RAFL_V	0x8
94 #define FEC_ENET_OPD_V	0xFFF0
95 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
96 
97 #define FEC_ENET_XDP_PASS          0
98 #define FEC_ENET_XDP_CONSUMED      BIT(0)
99 #define FEC_ENET_XDP_TX            BIT(1)
100 #define FEC_ENET_XDP_REDIR         BIT(2)
101 
102 struct fec_devinfo {
103 	u32 quirks;
104 };
105 
106 static const struct fec_devinfo fec_imx25_info = {
107 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
108 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
109 };
110 
111 static const struct fec_devinfo fec_imx27_info = {
112 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
113 		  FEC_QUIRK_HAS_MDIO_C45,
114 };
115 
116 static const struct fec_devinfo fec_imx28_info = {
117 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
118 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
119 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
120 		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
121 };
122 
123 static const struct fec_devinfo fec_imx6q_info = {
124 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
125 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
126 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
127 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
128 		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
129 };
130 
131 static const struct fec_devinfo fec_mvf600_info = {
132 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
133 		  FEC_QUIRK_HAS_MDIO_C45,
134 };
135 
136 static const struct fec_devinfo fec_imx6x_info = {
137 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
138 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
139 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
140 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
141 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
142 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
143 		  FEC_QUIRK_HAS_MDIO_C45,
144 };
145 
146 static const struct fec_devinfo fec_imx6ul_info = {
147 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
148 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
149 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
150 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
151 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
152 		  FEC_QUIRK_HAS_MDIO_C45,
153 };
154 
155 static const struct fec_devinfo fec_imx8mq_info = {
156 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
157 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
158 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
159 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
160 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
161 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
162 		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
163 		  FEC_QUIRK_HAS_MDIO_C45,
164 };
165 
166 static const struct fec_devinfo fec_imx8qm_info = {
167 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
168 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
169 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
170 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
171 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
172 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
173 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
174 };
175 
176 static const struct fec_devinfo fec_s32v234_info = {
177 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
178 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
179 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
180 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
181 		  FEC_QUIRK_HAS_MDIO_C45,
182 };
183 
184 static struct platform_device_id fec_devtype[] = {
185 	{
186 		/* keep it for coldfire */
187 		.name = DRIVER_NAME,
188 		.driver_data = 0,
189 	}, {
190 		.name = "imx25-fec",
191 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
192 	}, {
193 		.name = "imx27-fec",
194 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
195 	}, {
196 		.name = "imx28-fec",
197 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
198 	}, {
199 		.name = "imx6q-fec",
200 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
201 	}, {
202 		.name = "mvf600-fec",
203 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
204 	}, {
205 		.name = "imx6sx-fec",
206 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
207 	}, {
208 		.name = "imx6ul-fec",
209 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
210 	}, {
211 		.name = "imx8mq-fec",
212 		.driver_data = (kernel_ulong_t)&fec_imx8mq_info,
213 	}, {
214 		.name = "imx8qm-fec",
215 		.driver_data = (kernel_ulong_t)&fec_imx8qm_info,
216 	}, {
217 		.name = "s32v234-fec",
218 		.driver_data = (kernel_ulong_t)&fec_s32v234_info,
219 	}, {
220 		/* sentinel */
221 	}
222 };
223 MODULE_DEVICE_TABLE(platform, fec_devtype);
224 
225 enum imx_fec_type {
226 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
227 	IMX27_FEC,	/* runs on i.mx27/35/51 */
228 	IMX28_FEC,
229 	IMX6Q_FEC,
230 	MVF600_FEC,
231 	IMX6SX_FEC,
232 	IMX6UL_FEC,
233 	IMX8MQ_FEC,
234 	IMX8QM_FEC,
235 	S32V234_FEC,
236 };
237 
238 static const struct of_device_id fec_dt_ids[] = {
239 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
240 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
241 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
242 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
243 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
244 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
245 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
246 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], },
247 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], },
248 	{ .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], },
249 	{ /* sentinel */ }
250 };
251 MODULE_DEVICE_TABLE(of, fec_dt_ids);
252 
253 static unsigned char macaddr[ETH_ALEN];
254 module_param_array(macaddr, byte, NULL, 0);
255 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
256 
257 #if defined(CONFIG_M5272)
258 /*
259  * Some hardware gets it MAC address out of local flash memory.
260  * if this is non-zero then assume it is the address to get MAC from.
261  */
262 #if defined(CONFIG_NETtel)
263 #define	FEC_FLASHMAC	0xf0006006
264 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
265 #define	FEC_FLASHMAC	0xf0006000
266 #elif defined(CONFIG_CANCam)
267 #define	FEC_FLASHMAC	0xf0020000
268 #elif defined (CONFIG_M5272C3)
269 #define	FEC_FLASHMAC	(0xffe04000 + 4)
270 #elif defined(CONFIG_MOD5272)
271 #define FEC_FLASHMAC	0xffc0406b
272 #else
273 #define	FEC_FLASHMAC	0
274 #endif
275 #endif /* CONFIG_M5272 */
276 
277 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
278  *
279  * 2048 byte skbufs are allocated. However, alignment requirements
280  * varies between FEC variants. Worst case is 64, so round down by 64.
281  */
282 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
283 #define PKT_MINBUF_SIZE		64
284 
285 /* FEC receive acceleration */
286 #define FEC_RACC_IPDIS		BIT(1)
287 #define FEC_RACC_PRODIS		BIT(2)
288 #define FEC_RACC_SHIFT16	BIT(7)
289 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
290 
291 /* MIB Control Register */
292 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
293 
294 /*
295  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
296  * size bits. Other FEC hardware does not, so we need to take that into
297  * account when setting it.
298  */
299 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
300     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
301     defined(CONFIG_ARM64)
302 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
303 #else
304 #define	OPT_FRAME_SIZE	0
305 #endif
306 
307 /* FEC MII MMFR bits definition */
308 #define FEC_MMFR_ST		(1 << 30)
309 #define FEC_MMFR_ST_C45		(0)
310 #define FEC_MMFR_OP_READ	(2 << 28)
311 #define FEC_MMFR_OP_READ_C45	(3 << 28)
312 #define FEC_MMFR_OP_WRITE	(1 << 28)
313 #define FEC_MMFR_OP_ADDR_WRITE	(0)
314 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
315 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
316 #define FEC_MMFR_TA		(2 << 16)
317 #define FEC_MMFR_DATA(v)	(v & 0xffff)
318 /* FEC ECR bits definition */
319 #define FEC_ECR_RESET           BIT(0)
320 #define FEC_ECR_ETHEREN         BIT(1)
321 #define FEC_ECR_MAGICEN         BIT(2)
322 #define FEC_ECR_SLEEP           BIT(3)
323 #define FEC_ECR_EN1588          BIT(4)
324 #define FEC_ECR_BYTESWP         BIT(8)
325 /* FEC RCR bits definition */
326 #define FEC_RCR_LOOP            BIT(0)
327 #define FEC_RCR_HALFDPX         BIT(1)
328 #define FEC_RCR_MII             BIT(2)
329 #define FEC_RCR_PROMISC         BIT(3)
330 #define FEC_RCR_BC_REJ          BIT(4)
331 #define FEC_RCR_FLOWCTL         BIT(5)
332 #define FEC_RCR_RMII            BIT(8)
333 #define FEC_RCR_10BASET         BIT(9)
334 /* TX WMARK bits */
335 #define FEC_TXWMRK_STRFWD       BIT(8)
336 
337 #define FEC_MII_TIMEOUT		30000 /* us */
338 
339 /* Transmitter timeout */
340 #define TX_TIMEOUT (2 * HZ)
341 
342 #define FEC_PAUSE_FLAG_AUTONEG	0x1
343 #define FEC_PAUSE_FLAG_ENABLE	0x2
344 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
345 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
346 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
347 
348 /* Max number of allowed TCP segments for software TSO */
349 #define FEC_MAX_TSO_SEGS	100
350 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
351 
352 #define IS_TSO_HEADER(txq, addr) \
353 	((addr >= txq->tso_hdrs_dma) && \
354 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
355 
356 static int mii_cnt;
357 
fec_enet_get_nextdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)358 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
359 					     struct bufdesc_prop *bd)
360 {
361 	return (bdp >= bd->last) ? bd->base
362 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
363 }
364 
fec_enet_get_prevdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)365 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
366 					     struct bufdesc_prop *bd)
367 {
368 	return (bdp <= bd->base) ? bd->last
369 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
370 }
371 
fec_enet_get_bd_index(struct bufdesc * bdp,struct bufdesc_prop * bd)372 static int fec_enet_get_bd_index(struct bufdesc *bdp,
373 				 struct bufdesc_prop *bd)
374 {
375 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
376 }
377 
fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q * txq)378 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
379 {
380 	int entries;
381 
382 	entries = (((const char *)txq->dirty_tx -
383 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
384 
385 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
386 }
387 
swap_buffer(void * bufaddr,int len)388 static void swap_buffer(void *bufaddr, int len)
389 {
390 	int i;
391 	unsigned int *buf = bufaddr;
392 
393 	for (i = 0; i < len; i += 4, buf++)
394 		swab32s(buf);
395 }
396 
fec_dump(struct net_device * ndev)397 static void fec_dump(struct net_device *ndev)
398 {
399 	struct fec_enet_private *fep = netdev_priv(ndev);
400 	struct bufdesc *bdp;
401 	struct fec_enet_priv_tx_q *txq;
402 	int index = 0;
403 
404 	netdev_info(ndev, "TX ring dump\n");
405 	pr_info("Nr     SC     addr       len  SKB\n");
406 
407 	txq = fep->tx_queue[0];
408 	bdp = txq->bd.base;
409 
410 	do {
411 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
412 			index,
413 			bdp == txq->bd.cur ? 'S' : ' ',
414 			bdp == txq->dirty_tx ? 'H' : ' ',
415 			fec16_to_cpu(bdp->cbd_sc),
416 			fec32_to_cpu(bdp->cbd_bufaddr),
417 			fec16_to_cpu(bdp->cbd_datlen),
418 			txq->tx_buf[index].buf_p);
419 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
420 		index++;
421 	} while (bdp != txq->bd.base);
422 }
423 
is_ipv4_pkt(struct sk_buff * skb)424 static inline bool is_ipv4_pkt(struct sk_buff *skb)
425 {
426 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
427 }
428 
429 static int
fec_enet_clear_csum(struct sk_buff * skb,struct net_device * ndev)430 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
431 {
432 	/* Only run for packets requiring a checksum. */
433 	if (skb->ip_summed != CHECKSUM_PARTIAL)
434 		return 0;
435 
436 	if (unlikely(skb_cow_head(skb, 0)))
437 		return -1;
438 
439 	if (is_ipv4_pkt(skb))
440 		ip_hdr(skb)->check = 0;
441 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
442 
443 	return 0;
444 }
445 
446 static int
fec_enet_create_page_pool(struct fec_enet_private * fep,struct fec_enet_priv_rx_q * rxq,int size)447 fec_enet_create_page_pool(struct fec_enet_private *fep,
448 			  struct fec_enet_priv_rx_q *rxq, int size)
449 {
450 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
451 	struct page_pool_params pp_params = {
452 		.order = 0,
453 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
454 		.pool_size = size,
455 		.nid = dev_to_node(&fep->pdev->dev),
456 		.dev = &fep->pdev->dev,
457 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
458 		.offset = FEC_ENET_XDP_HEADROOM,
459 		.max_len = FEC_ENET_RX_FRSIZE,
460 	};
461 	int err;
462 
463 	rxq->page_pool = page_pool_create(&pp_params);
464 	if (IS_ERR(rxq->page_pool)) {
465 		err = PTR_ERR(rxq->page_pool);
466 		rxq->page_pool = NULL;
467 		return err;
468 	}
469 
470 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
471 	if (err < 0)
472 		goto err_free_pp;
473 
474 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
475 					 rxq->page_pool);
476 	if (err)
477 		goto err_unregister_rxq;
478 
479 	return 0;
480 
481 err_unregister_rxq:
482 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
483 err_free_pp:
484 	page_pool_destroy(rxq->page_pool);
485 	rxq->page_pool = NULL;
486 	return err;
487 }
488 
489 static struct bufdesc *
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)490 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
491 			     struct sk_buff *skb,
492 			     struct net_device *ndev)
493 {
494 	struct fec_enet_private *fep = netdev_priv(ndev);
495 	struct bufdesc *bdp = txq->bd.cur;
496 	struct bufdesc_ex *ebdp;
497 	int nr_frags = skb_shinfo(skb)->nr_frags;
498 	int frag, frag_len;
499 	unsigned short status;
500 	unsigned int estatus = 0;
501 	skb_frag_t *this_frag;
502 	unsigned int index;
503 	void *bufaddr;
504 	dma_addr_t addr;
505 	int i;
506 
507 	for (frag = 0; frag < nr_frags; frag++) {
508 		this_frag = &skb_shinfo(skb)->frags[frag];
509 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
510 		ebdp = (struct bufdesc_ex *)bdp;
511 
512 		status = fec16_to_cpu(bdp->cbd_sc);
513 		status &= ~BD_ENET_TX_STATS;
514 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
515 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
516 
517 		/* Handle the last BD specially */
518 		if (frag == nr_frags - 1) {
519 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
520 			if (fep->bufdesc_ex) {
521 				estatus |= BD_ENET_TX_INT;
522 				if (unlikely(skb_shinfo(skb)->tx_flags &
523 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
524 					estatus |= BD_ENET_TX_TS;
525 			}
526 		}
527 
528 		if (fep->bufdesc_ex) {
529 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
530 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
531 			if (skb->ip_summed == CHECKSUM_PARTIAL)
532 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
533 
534 			ebdp->cbd_bdu = 0;
535 			ebdp->cbd_esc = cpu_to_fec32(estatus);
536 		}
537 
538 		bufaddr = skb_frag_address(this_frag);
539 
540 		index = fec_enet_get_bd_index(bdp, &txq->bd);
541 		if (((unsigned long) bufaddr) & fep->tx_align ||
542 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
543 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
544 			bufaddr = txq->tx_bounce[index];
545 
546 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
547 				swap_buffer(bufaddr, frag_len);
548 		}
549 
550 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
551 				      DMA_TO_DEVICE);
552 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
553 			if (net_ratelimit())
554 				netdev_err(ndev, "Tx DMA memory map failed\n");
555 			goto dma_mapping_error;
556 		}
557 
558 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
559 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
560 		/* Make sure the updates to rest of the descriptor are
561 		 * performed before transferring ownership.
562 		 */
563 		wmb();
564 		bdp->cbd_sc = cpu_to_fec16(status);
565 	}
566 
567 	return bdp;
568 dma_mapping_error:
569 	bdp = txq->bd.cur;
570 	for (i = 0; i < frag; i++) {
571 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
572 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
573 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
574 	}
575 	return ERR_PTR(-ENOMEM);
576 }
577 
fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)578 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
579 				   struct sk_buff *skb, struct net_device *ndev)
580 {
581 	struct fec_enet_private *fep = netdev_priv(ndev);
582 	int nr_frags = skb_shinfo(skb)->nr_frags;
583 	struct bufdesc *bdp, *last_bdp;
584 	void *bufaddr;
585 	dma_addr_t addr;
586 	unsigned short status;
587 	unsigned short buflen;
588 	unsigned int estatus = 0;
589 	unsigned int index;
590 	int entries_free;
591 
592 	entries_free = fec_enet_get_free_txdesc_num(txq);
593 	if (entries_free < MAX_SKB_FRAGS + 1) {
594 		dev_kfree_skb_any(skb);
595 		if (net_ratelimit())
596 			netdev_err(ndev, "NOT enough BD for SG!\n");
597 		return NETDEV_TX_OK;
598 	}
599 
600 	/* Protocol checksum off-load for TCP and UDP. */
601 	if (fec_enet_clear_csum(skb, ndev)) {
602 		dev_kfree_skb_any(skb);
603 		return NETDEV_TX_OK;
604 	}
605 
606 	/* Fill in a Tx ring entry */
607 	bdp = txq->bd.cur;
608 	last_bdp = bdp;
609 	status = fec16_to_cpu(bdp->cbd_sc);
610 	status &= ~BD_ENET_TX_STATS;
611 
612 	/* Set buffer length and buffer pointer */
613 	bufaddr = skb->data;
614 	buflen = skb_headlen(skb);
615 
616 	index = fec_enet_get_bd_index(bdp, &txq->bd);
617 	if (((unsigned long) bufaddr) & fep->tx_align ||
618 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
619 		memcpy(txq->tx_bounce[index], skb->data, buflen);
620 		bufaddr = txq->tx_bounce[index];
621 
622 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
623 			swap_buffer(bufaddr, buflen);
624 	}
625 
626 	/* Push the data cache so the CPM does not get stale memory data. */
627 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
628 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
629 		dev_kfree_skb_any(skb);
630 		if (net_ratelimit())
631 			netdev_err(ndev, "Tx DMA memory map failed\n");
632 		return NETDEV_TX_OK;
633 	}
634 
635 	if (nr_frags) {
636 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
637 		if (IS_ERR(last_bdp)) {
638 			dma_unmap_single(&fep->pdev->dev, addr,
639 					 buflen, DMA_TO_DEVICE);
640 			dev_kfree_skb_any(skb);
641 			return NETDEV_TX_OK;
642 		}
643 	} else {
644 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
645 		if (fep->bufdesc_ex) {
646 			estatus = BD_ENET_TX_INT;
647 			if (unlikely(skb_shinfo(skb)->tx_flags &
648 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
649 				estatus |= BD_ENET_TX_TS;
650 		}
651 	}
652 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
653 	bdp->cbd_datlen = cpu_to_fec16(buflen);
654 
655 	if (fep->bufdesc_ex) {
656 
657 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
658 
659 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
660 			fep->hwts_tx_en))
661 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
662 
663 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
664 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
665 
666 		if (skb->ip_summed == CHECKSUM_PARTIAL)
667 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
668 
669 		ebdp->cbd_bdu = 0;
670 		ebdp->cbd_esc = cpu_to_fec32(estatus);
671 	}
672 
673 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
674 	/* Save skb pointer */
675 	txq->tx_buf[index].buf_p = skb;
676 
677 	/* Make sure the updates to rest of the descriptor are performed before
678 	 * transferring ownership.
679 	 */
680 	wmb();
681 
682 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
683 	 * it's the last BD of the frame, and to put the CRC on the end.
684 	 */
685 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
686 	bdp->cbd_sc = cpu_to_fec16(status);
687 
688 	/* If this was the last BD in the ring, start at the beginning again. */
689 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
690 
691 	skb_tx_timestamp(skb);
692 
693 	/* Make sure the update to bdp is performed before txq->bd.cur. */
694 	wmb();
695 	txq->bd.cur = bdp;
696 
697 	/* Trigger transmission start */
698 	writel(0, txq->bd.reg_desc_active);
699 
700 	return 0;
701 }
702 
703 static int
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index,char * data,int size,bool last_tcp,bool is_last)704 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
705 			  struct net_device *ndev,
706 			  struct bufdesc *bdp, int index, char *data,
707 			  int size, bool last_tcp, bool is_last)
708 {
709 	struct fec_enet_private *fep = netdev_priv(ndev);
710 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
711 	unsigned short status;
712 	unsigned int estatus = 0;
713 	dma_addr_t addr;
714 
715 	status = fec16_to_cpu(bdp->cbd_sc);
716 	status &= ~BD_ENET_TX_STATS;
717 
718 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
719 
720 	if (((unsigned long) data) & fep->tx_align ||
721 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
722 		memcpy(txq->tx_bounce[index], data, size);
723 		data = txq->tx_bounce[index];
724 
725 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
726 			swap_buffer(data, size);
727 	}
728 
729 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
730 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
731 		dev_kfree_skb_any(skb);
732 		if (net_ratelimit())
733 			netdev_err(ndev, "Tx DMA memory map failed\n");
734 		return NETDEV_TX_OK;
735 	}
736 
737 	bdp->cbd_datlen = cpu_to_fec16(size);
738 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
739 
740 	if (fep->bufdesc_ex) {
741 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
742 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
743 		if (skb->ip_summed == CHECKSUM_PARTIAL)
744 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
745 		ebdp->cbd_bdu = 0;
746 		ebdp->cbd_esc = cpu_to_fec32(estatus);
747 	}
748 
749 	/* Handle the last BD specially */
750 	if (last_tcp)
751 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
752 	if (is_last) {
753 		status |= BD_ENET_TX_INTR;
754 		if (fep->bufdesc_ex)
755 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
756 	}
757 
758 	bdp->cbd_sc = cpu_to_fec16(status);
759 
760 	return 0;
761 }
762 
763 static int
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index)764 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
765 			 struct sk_buff *skb, struct net_device *ndev,
766 			 struct bufdesc *bdp, int index)
767 {
768 	struct fec_enet_private *fep = netdev_priv(ndev);
769 	int hdr_len = skb_tcp_all_headers(skb);
770 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
771 	void *bufaddr;
772 	unsigned long dmabuf;
773 	unsigned short status;
774 	unsigned int estatus = 0;
775 
776 	status = fec16_to_cpu(bdp->cbd_sc);
777 	status &= ~BD_ENET_TX_STATS;
778 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
779 
780 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
781 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
782 	if (((unsigned long)bufaddr) & fep->tx_align ||
783 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
784 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
785 		bufaddr = txq->tx_bounce[index];
786 
787 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
788 			swap_buffer(bufaddr, hdr_len);
789 
790 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
791 					hdr_len, DMA_TO_DEVICE);
792 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
793 			dev_kfree_skb_any(skb);
794 			if (net_ratelimit())
795 				netdev_err(ndev, "Tx DMA memory map failed\n");
796 			return NETDEV_TX_OK;
797 		}
798 	}
799 
800 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
801 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
802 
803 	if (fep->bufdesc_ex) {
804 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
805 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
806 		if (skb->ip_summed == CHECKSUM_PARTIAL)
807 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
808 		ebdp->cbd_bdu = 0;
809 		ebdp->cbd_esc = cpu_to_fec32(estatus);
810 	}
811 
812 	bdp->cbd_sc = cpu_to_fec16(status);
813 
814 	return 0;
815 }
816 
fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)817 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
818 				   struct sk_buff *skb,
819 				   struct net_device *ndev)
820 {
821 	struct fec_enet_private *fep = netdev_priv(ndev);
822 	int hdr_len, total_len, data_left;
823 	struct bufdesc *bdp = txq->bd.cur;
824 	struct bufdesc *tmp_bdp;
825 	struct bufdesc_ex *ebdp;
826 	struct tso_t tso;
827 	unsigned int index = 0;
828 	int ret;
829 
830 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
831 		dev_kfree_skb_any(skb);
832 		if (net_ratelimit())
833 			netdev_err(ndev, "NOT enough BD for TSO!\n");
834 		return NETDEV_TX_OK;
835 	}
836 
837 	/* Protocol checksum off-load for TCP and UDP. */
838 	if (fec_enet_clear_csum(skb, ndev)) {
839 		dev_kfree_skb_any(skb);
840 		return NETDEV_TX_OK;
841 	}
842 
843 	/* Initialize the TSO handler, and prepare the first payload */
844 	hdr_len = tso_start(skb, &tso);
845 
846 	total_len = skb->len - hdr_len;
847 	while (total_len > 0) {
848 		char *hdr;
849 
850 		index = fec_enet_get_bd_index(bdp, &txq->bd);
851 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
852 		total_len -= data_left;
853 
854 		/* prepare packet headers: MAC + IP + TCP */
855 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
856 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
857 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
858 		if (ret)
859 			goto err_release;
860 
861 		while (data_left > 0) {
862 			int size;
863 
864 			size = min_t(int, tso.size, data_left);
865 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
866 			index = fec_enet_get_bd_index(bdp, &txq->bd);
867 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
868 							bdp, index,
869 							tso.data, size,
870 							size == data_left,
871 							total_len == 0);
872 			if (ret)
873 				goto err_release;
874 
875 			data_left -= size;
876 			tso_build_data(skb, &tso, size);
877 		}
878 
879 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
880 	}
881 
882 	/* Save skb pointer */
883 	txq->tx_buf[index].buf_p = skb;
884 
885 	skb_tx_timestamp(skb);
886 	txq->bd.cur = bdp;
887 
888 	/* Trigger transmission start */
889 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
890 	    !readl(txq->bd.reg_desc_active) ||
891 	    !readl(txq->bd.reg_desc_active) ||
892 	    !readl(txq->bd.reg_desc_active) ||
893 	    !readl(txq->bd.reg_desc_active))
894 		writel(0, txq->bd.reg_desc_active);
895 
896 	return 0;
897 
898 err_release:
899 	/* Release all used data descriptors for TSO */
900 	tmp_bdp = txq->bd.cur;
901 
902 	while (tmp_bdp != bdp) {
903 		/* Unmap data buffers */
904 		if (tmp_bdp->cbd_bufaddr &&
905 		    !IS_TSO_HEADER(txq, fec32_to_cpu(tmp_bdp->cbd_bufaddr)))
906 			dma_unmap_single(&fep->pdev->dev,
907 					 fec32_to_cpu(tmp_bdp->cbd_bufaddr),
908 					 fec16_to_cpu(tmp_bdp->cbd_datlen),
909 					 DMA_TO_DEVICE);
910 
911 		/* Clear standard buffer descriptor fields */
912 		tmp_bdp->cbd_sc = 0;
913 		tmp_bdp->cbd_datlen = 0;
914 		tmp_bdp->cbd_bufaddr = 0;
915 
916 		/* Handle extended descriptor if enabled */
917 		if (fep->bufdesc_ex) {
918 			ebdp = (struct bufdesc_ex *)tmp_bdp;
919 			ebdp->cbd_esc = 0;
920 		}
921 
922 		tmp_bdp = fec_enet_get_nextdesc(tmp_bdp, &txq->bd);
923 	}
924 
925 	dev_kfree_skb_any(skb);
926 
927 	return ret;
928 }
929 
930 static netdev_tx_t
fec_enet_start_xmit(struct sk_buff * skb,struct net_device * ndev)931 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
932 {
933 	struct fec_enet_private *fep = netdev_priv(ndev);
934 	int entries_free;
935 	unsigned short queue;
936 	struct fec_enet_priv_tx_q *txq;
937 	struct netdev_queue *nq;
938 	int ret;
939 
940 	queue = skb_get_queue_mapping(skb);
941 	txq = fep->tx_queue[queue];
942 	nq = netdev_get_tx_queue(ndev, queue);
943 
944 	if (skb_is_gso(skb))
945 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
946 	else
947 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
948 	if (ret)
949 		return ret;
950 
951 	entries_free = fec_enet_get_free_txdesc_num(txq);
952 	if (entries_free <= txq->tx_stop_threshold)
953 		netif_tx_stop_queue(nq);
954 
955 	return NETDEV_TX_OK;
956 }
957 
958 /* Init RX & TX buffer descriptors
959  */
fec_enet_bd_init(struct net_device * dev)960 static void fec_enet_bd_init(struct net_device *dev)
961 {
962 	struct fec_enet_private *fep = netdev_priv(dev);
963 	struct fec_enet_priv_tx_q *txq;
964 	struct fec_enet_priv_rx_q *rxq;
965 	struct bufdesc *bdp;
966 	unsigned int i;
967 	unsigned int q;
968 
969 	for (q = 0; q < fep->num_rx_queues; q++) {
970 		/* Initialize the receive buffer descriptors. */
971 		rxq = fep->rx_queue[q];
972 		bdp = rxq->bd.base;
973 
974 		for (i = 0; i < rxq->bd.ring_size; i++) {
975 
976 			/* Initialize the BD for every fragment in the page. */
977 			if (bdp->cbd_bufaddr)
978 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
979 			else
980 				bdp->cbd_sc = cpu_to_fec16(0);
981 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
982 		}
983 
984 		/* Set the last buffer to wrap */
985 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
986 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
987 
988 		rxq->bd.cur = rxq->bd.base;
989 	}
990 
991 	for (q = 0; q < fep->num_tx_queues; q++) {
992 		/* ...and the same for transmit */
993 		txq = fep->tx_queue[q];
994 		bdp = txq->bd.base;
995 		txq->bd.cur = bdp;
996 
997 		for (i = 0; i < txq->bd.ring_size; i++) {
998 			/* Initialize the BD for every fragment in the page. */
999 			bdp->cbd_sc = cpu_to_fec16(0);
1000 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
1001 				if (bdp->cbd_bufaddr &&
1002 				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1003 					dma_unmap_single(&fep->pdev->dev,
1004 							 fec32_to_cpu(bdp->cbd_bufaddr),
1005 							 fec16_to_cpu(bdp->cbd_datlen),
1006 							 DMA_TO_DEVICE);
1007 				if (txq->tx_buf[i].buf_p)
1008 					dev_kfree_skb_any(txq->tx_buf[i].buf_p);
1009 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
1010 				if (bdp->cbd_bufaddr)
1011 					dma_unmap_single(&fep->pdev->dev,
1012 							 fec32_to_cpu(bdp->cbd_bufaddr),
1013 							 fec16_to_cpu(bdp->cbd_datlen),
1014 							 DMA_TO_DEVICE);
1015 
1016 				if (txq->tx_buf[i].buf_p)
1017 					xdp_return_frame(txq->tx_buf[i].buf_p);
1018 			} else {
1019 				struct page *page = txq->tx_buf[i].buf_p;
1020 
1021 				if (page)
1022 					page_pool_put_page(page->pp, page, 0, false);
1023 			}
1024 
1025 			txq->tx_buf[i].buf_p = NULL;
1026 			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1027 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1028 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1029 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1030 		}
1031 
1032 		/* Set the last buffer to wrap */
1033 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1034 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1035 		txq->dirty_tx = bdp;
1036 	}
1037 }
1038 
fec_enet_active_rxring(struct net_device * ndev)1039 static void fec_enet_active_rxring(struct net_device *ndev)
1040 {
1041 	struct fec_enet_private *fep = netdev_priv(ndev);
1042 	int i;
1043 
1044 	for (i = 0; i < fep->num_rx_queues; i++)
1045 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1046 }
1047 
fec_enet_enable_ring(struct net_device * ndev)1048 static void fec_enet_enable_ring(struct net_device *ndev)
1049 {
1050 	struct fec_enet_private *fep = netdev_priv(ndev);
1051 	struct fec_enet_priv_tx_q *txq;
1052 	struct fec_enet_priv_rx_q *rxq;
1053 	int i;
1054 
1055 	for (i = 0; i < fep->num_rx_queues; i++) {
1056 		rxq = fep->rx_queue[i];
1057 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1058 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1059 
1060 		/* enable DMA1/2 */
1061 		if (i)
1062 			writel(RCMR_MATCHEN | RCMR_CMP(i),
1063 			       fep->hwp + FEC_RCMR(i));
1064 	}
1065 
1066 	for (i = 0; i < fep->num_tx_queues; i++) {
1067 		txq = fep->tx_queue[i];
1068 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1069 
1070 		/* enable DMA1/2 */
1071 		if (i)
1072 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1073 			       fep->hwp + FEC_DMA_CFG(i));
1074 	}
1075 }
1076 
1077 /*
1078  * This function is called to start or restart the FEC during a link
1079  * change, transmit timeout, or to reconfigure the FEC.  The network
1080  * packet processing for this device must be stopped before this call.
1081  */
1082 static void
fec_restart(struct net_device * ndev)1083 fec_restart(struct net_device *ndev)
1084 {
1085 	struct fec_enet_private *fep = netdev_priv(ndev);
1086 	u32 temp_mac[2];
1087 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
1088 	u32 ecntl = FEC_ECR_ETHEREN;
1089 
1090 	if (fep->bufdesc_ex)
1091 		fec_ptp_save_state(fep);
1092 
1093 	/* Whack a reset.  We should wait for this.
1094 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1095 	 * instead of reset MAC itself.
1096 	 */
1097 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1098 	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1099 		writel(0, fep->hwp + FEC_ECNTRL);
1100 	} else {
1101 		writel(1, fep->hwp + FEC_ECNTRL);
1102 		udelay(10);
1103 	}
1104 
1105 	/*
1106 	 * enet-mac reset will reset mac address registers too,
1107 	 * so need to reconfigure it.
1108 	 */
1109 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1110 	writel((__force u32)cpu_to_be32(temp_mac[0]),
1111 	       fep->hwp + FEC_ADDR_LOW);
1112 	writel((__force u32)cpu_to_be32(temp_mac[1]),
1113 	       fep->hwp + FEC_ADDR_HIGH);
1114 
1115 	/* Clear any outstanding interrupt, except MDIO. */
1116 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1117 
1118 	fec_enet_bd_init(ndev);
1119 
1120 	fec_enet_enable_ring(ndev);
1121 
1122 	/* Enable MII mode */
1123 	if (fep->full_duplex == DUPLEX_FULL) {
1124 		/* FD enable */
1125 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1126 	} else {
1127 		/* No Rcv on Xmit */
1128 		rcntl |= 0x02;
1129 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1130 	}
1131 
1132 	/* Set MII speed */
1133 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1134 
1135 #if !defined(CONFIG_M5272)
1136 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1137 		u32 val = readl(fep->hwp + FEC_RACC);
1138 
1139 		/* align IP header */
1140 		val |= FEC_RACC_SHIFT16;
1141 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1142 			/* set RX checksum */
1143 			val |= FEC_RACC_OPTIONS;
1144 		else
1145 			val &= ~FEC_RACC_OPTIONS;
1146 		writel(val, fep->hwp + FEC_RACC);
1147 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1148 	}
1149 #endif
1150 
1151 	/*
1152 	 * The phy interface and speed need to get configured
1153 	 * differently on enet-mac.
1154 	 */
1155 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1156 		/* Enable flow control and length check */
1157 		rcntl |= 0x40000000 | 0x00000020;
1158 
1159 		/* RGMII, RMII or MII */
1160 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1161 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1162 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1163 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1164 			rcntl |= (1 << 6);
1165 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1166 			rcntl |= FEC_RCR_RMII;
1167 		else
1168 			rcntl &= ~FEC_RCR_RMII;
1169 
1170 		/* 1G, 100M or 10M */
1171 		if (ndev->phydev) {
1172 			if (ndev->phydev->speed == SPEED_1000)
1173 				ecntl |= (1 << 5);
1174 			else if (ndev->phydev->speed == SPEED_100)
1175 				rcntl &= ~FEC_RCR_10BASET;
1176 			else
1177 				rcntl |= FEC_RCR_10BASET;
1178 		}
1179 	} else {
1180 #ifdef FEC_MIIGSK_ENR
1181 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1182 			u32 cfgr;
1183 			/* disable the gasket and wait */
1184 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1185 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1186 				udelay(1);
1187 
1188 			/*
1189 			 * configure the gasket:
1190 			 *   RMII, 50 MHz, no loopback, no echo
1191 			 *   MII, 25 MHz, no loopback, no echo
1192 			 */
1193 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1194 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1195 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1196 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1197 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1198 
1199 			/* re-enable the gasket */
1200 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1201 		}
1202 #endif
1203 	}
1204 
1205 #if !defined(CONFIG_M5272)
1206 	/* enable pause frame*/
1207 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1208 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1209 	     ndev->phydev && ndev->phydev->pause)) {
1210 		rcntl |= FEC_ENET_FCE;
1211 
1212 		/* set FIFO threshold parameter to reduce overrun */
1213 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1214 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1215 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1216 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1217 
1218 		/* OPD */
1219 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1220 	} else {
1221 		rcntl &= ~FEC_ENET_FCE;
1222 	}
1223 #endif /* !defined(CONFIG_M5272) */
1224 
1225 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1226 
1227 	/* Setup multicast filter. */
1228 	set_multicast_list(ndev);
1229 #ifndef CONFIG_M5272
1230 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1231 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1232 #endif
1233 
1234 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1235 		/* enable ENET endian swap */
1236 		ecntl |= FEC_ECR_BYTESWP;
1237 		/* enable ENET store and forward mode */
1238 		writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1239 	}
1240 
1241 	if (fep->bufdesc_ex)
1242 		ecntl |= FEC_ECR_EN1588;
1243 
1244 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1245 	    fep->rgmii_txc_dly)
1246 		ecntl |= FEC_ENET_TXC_DLY;
1247 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1248 	    fep->rgmii_rxc_dly)
1249 		ecntl |= FEC_ENET_RXC_DLY;
1250 
1251 #ifndef CONFIG_M5272
1252 	/* Enable the MIB statistic event counters */
1253 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1254 #endif
1255 
1256 	/* And last, enable the transmit and receive processing */
1257 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1258 	fec_enet_active_rxring(ndev);
1259 
1260 	if (fep->bufdesc_ex) {
1261 		fec_ptp_start_cyclecounter(ndev);
1262 		fec_ptp_restore_state(fep);
1263 	}
1264 
1265 	/* Enable interrupts we wish to service */
1266 	if (fep->link)
1267 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1268 	else
1269 		writel(0, fep->hwp + FEC_IMASK);
1270 
1271 	/* Init the interrupt coalescing */
1272 	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1273 		fec_enet_itr_coal_set(ndev);
1274 }
1275 
fec_enet_ipc_handle_init(struct fec_enet_private * fep)1276 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1277 {
1278 	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1279 	      of_machine_is_compatible("fsl,imx8qxp") ||
1280 	      of_machine_is_compatible("fsl,imx8dxl")))
1281 		return 0;
1282 
1283 	return imx_scu_get_handle(&fep->ipc_handle);
1284 }
1285 
fec_enet_ipg_stop_set(struct fec_enet_private * fep,bool enabled)1286 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1287 {
1288 	struct device_node *np = fep->pdev->dev.of_node;
1289 	u32 rsrc_id, val;
1290 	int idx;
1291 
1292 	if (!np || !fep->ipc_handle)
1293 		return;
1294 
1295 	idx = of_alias_get_id(np, "ethernet");
1296 	if (idx < 0)
1297 		idx = 0;
1298 	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1299 
1300 	val = enabled ? 1 : 0;
1301 	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1302 }
1303 
fec_enet_stop_mode(struct fec_enet_private * fep,bool enabled)1304 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1305 {
1306 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1307 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1308 
1309 	if (stop_gpr->gpr) {
1310 		if (enabled)
1311 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1312 					   BIT(stop_gpr->bit),
1313 					   BIT(stop_gpr->bit));
1314 		else
1315 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1316 					   BIT(stop_gpr->bit), 0);
1317 	} else if (pdata && pdata->sleep_mode_enable) {
1318 		pdata->sleep_mode_enable(enabled);
1319 	} else {
1320 		fec_enet_ipg_stop_set(fep, enabled);
1321 	}
1322 }
1323 
fec_irqs_disable(struct net_device * ndev)1324 static void fec_irqs_disable(struct net_device *ndev)
1325 {
1326 	struct fec_enet_private *fep = netdev_priv(ndev);
1327 
1328 	writel(0, fep->hwp + FEC_IMASK);
1329 }
1330 
fec_irqs_disable_except_wakeup(struct net_device * ndev)1331 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1332 {
1333 	struct fec_enet_private *fep = netdev_priv(ndev);
1334 
1335 	writel(0, fep->hwp + FEC_IMASK);
1336 	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1337 }
1338 
1339 static void
fec_stop(struct net_device * ndev)1340 fec_stop(struct net_device *ndev)
1341 {
1342 	struct fec_enet_private *fep = netdev_priv(ndev);
1343 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1344 	u32 val;
1345 
1346 	/* We cannot expect a graceful transmit stop without link !!! */
1347 	if (fep->link) {
1348 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1349 		udelay(10);
1350 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1351 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1352 	}
1353 
1354 	if (fep->bufdesc_ex)
1355 		fec_ptp_save_state(fep);
1356 
1357 	/* Whack a reset.  We should wait for this.
1358 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1359 	 * instead of reset MAC itself.
1360 	 */
1361 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1362 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1363 			writel(0, fep->hwp + FEC_ECNTRL);
1364 		} else {
1365 			writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1366 			udelay(10);
1367 		}
1368 	} else {
1369 		val = readl(fep->hwp + FEC_ECNTRL);
1370 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1371 		writel(val, fep->hwp + FEC_ECNTRL);
1372 	}
1373 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1374 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1375 
1376 	/* We have to keep ENET enabled to have MII interrupt stay working */
1377 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1378 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1379 		writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1380 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1381 	}
1382 
1383 	if (fep->bufdesc_ex) {
1384 		val = readl(fep->hwp + FEC_ECNTRL);
1385 		val |= FEC_ECR_EN1588;
1386 		writel(val, fep->hwp + FEC_ECNTRL);
1387 
1388 		fec_ptp_start_cyclecounter(ndev);
1389 		fec_ptp_restore_state(fep);
1390 	}
1391 }
1392 
1393 static void
fec_timeout(struct net_device * ndev,unsigned int txqueue)1394 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1395 {
1396 	struct fec_enet_private *fep = netdev_priv(ndev);
1397 
1398 	fec_dump(ndev);
1399 
1400 	ndev->stats.tx_errors++;
1401 
1402 	schedule_work(&fep->tx_timeout_work);
1403 }
1404 
fec_enet_timeout_work(struct work_struct * work)1405 static void fec_enet_timeout_work(struct work_struct *work)
1406 {
1407 	struct fec_enet_private *fep =
1408 		container_of(work, struct fec_enet_private, tx_timeout_work);
1409 	struct net_device *ndev = fep->netdev;
1410 
1411 	rtnl_lock();
1412 	if (netif_device_present(ndev) || netif_running(ndev)) {
1413 		napi_disable(&fep->napi);
1414 		netif_tx_lock_bh(ndev);
1415 		fec_restart(ndev);
1416 		netif_tx_wake_all_queues(ndev);
1417 		netif_tx_unlock_bh(ndev);
1418 		napi_enable(&fep->napi);
1419 	}
1420 	rtnl_unlock();
1421 }
1422 
1423 static void
fec_enet_hwtstamp(struct fec_enet_private * fep,unsigned ts,struct skb_shared_hwtstamps * hwtstamps)1424 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1425 	struct skb_shared_hwtstamps *hwtstamps)
1426 {
1427 	unsigned long flags;
1428 	u64 ns;
1429 
1430 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1431 	ns = timecounter_cyc2time(&fep->tc, ts);
1432 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1433 
1434 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1435 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1436 }
1437 
1438 static void
fec_enet_tx_queue(struct net_device * ndev,u16 queue_id,int budget)1439 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1440 {
1441 	struct	fec_enet_private *fep;
1442 	struct xdp_frame *xdpf;
1443 	struct bufdesc *bdp;
1444 	unsigned short status;
1445 	struct	sk_buff	*skb;
1446 	struct fec_enet_priv_tx_q *txq;
1447 	struct netdev_queue *nq;
1448 	int	index = 0;
1449 	int	entries_free;
1450 	struct page *page;
1451 	int frame_len;
1452 
1453 	fep = netdev_priv(ndev);
1454 
1455 	txq = fep->tx_queue[queue_id];
1456 	/* get next bdp of dirty_tx */
1457 	nq = netdev_get_tx_queue(ndev, queue_id);
1458 	bdp = txq->dirty_tx;
1459 
1460 	/* get next bdp of dirty_tx */
1461 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1462 
1463 	while (bdp != READ_ONCE(txq->bd.cur)) {
1464 		/* Order the load of bd.cur and cbd_sc */
1465 		rmb();
1466 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1467 		if (status & BD_ENET_TX_READY)
1468 			break;
1469 
1470 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1471 
1472 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1473 			skb = txq->tx_buf[index].buf_p;
1474 			if (bdp->cbd_bufaddr &&
1475 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1476 				dma_unmap_single(&fep->pdev->dev,
1477 						 fec32_to_cpu(bdp->cbd_bufaddr),
1478 						 fec16_to_cpu(bdp->cbd_datlen),
1479 						 DMA_TO_DEVICE);
1480 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1481 			if (!skb)
1482 				goto tx_buf_done;
1483 		} else {
1484 			/* Tx processing cannot call any XDP (or page pool) APIs if
1485 			 * the "budget" is 0. Because NAPI is called with budget of
1486 			 * 0 (such as netpoll) indicates we may be in an IRQ context,
1487 			 * however, we can't use the page pool from IRQ context.
1488 			 */
1489 			if (unlikely(!budget))
1490 				break;
1491 
1492 			if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1493 				xdpf = txq->tx_buf[index].buf_p;
1494 				if (bdp->cbd_bufaddr)
1495 					dma_unmap_single(&fep->pdev->dev,
1496 							 fec32_to_cpu(bdp->cbd_bufaddr),
1497 							 fec16_to_cpu(bdp->cbd_datlen),
1498 							 DMA_TO_DEVICE);
1499 			} else {
1500 				page = txq->tx_buf[index].buf_p;
1501 			}
1502 
1503 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1504 			if (unlikely(!txq->tx_buf[index].buf_p)) {
1505 				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1506 				goto tx_buf_done;
1507 			}
1508 
1509 			frame_len = fec16_to_cpu(bdp->cbd_datlen);
1510 		}
1511 
1512 		/* Check for errors. */
1513 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1514 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1515 				   BD_ENET_TX_CSL)) {
1516 			ndev->stats.tx_errors++;
1517 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1518 				ndev->stats.tx_heartbeat_errors++;
1519 			if (status & BD_ENET_TX_LC)  /* Late collision */
1520 				ndev->stats.tx_window_errors++;
1521 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1522 				ndev->stats.tx_aborted_errors++;
1523 			if (status & BD_ENET_TX_UN)  /* Underrun */
1524 				ndev->stats.tx_fifo_errors++;
1525 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1526 				ndev->stats.tx_carrier_errors++;
1527 		} else {
1528 			ndev->stats.tx_packets++;
1529 
1530 			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1531 				ndev->stats.tx_bytes += skb->len;
1532 			else
1533 				ndev->stats.tx_bytes += frame_len;
1534 		}
1535 
1536 		/* Deferred means some collisions occurred during transmit,
1537 		 * but we eventually sent the packet OK.
1538 		 */
1539 		if (status & BD_ENET_TX_DEF)
1540 			ndev->stats.collisions++;
1541 
1542 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1543 			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1544 			 * are to time stamp the packet, so we still need to check time
1545 			 * stamping enabled flag.
1546 			 */
1547 			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1548 				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1549 				struct skb_shared_hwtstamps shhwtstamps;
1550 				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1551 
1552 				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1553 				skb_tstamp_tx(skb, &shhwtstamps);
1554 			}
1555 
1556 			/* Free the sk buffer associated with this last transmit */
1557 			napi_consume_skb(skb, budget);
1558 		} else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1559 			xdp_return_frame_rx_napi(xdpf);
1560 		} else { /* recycle pages of XDP_TX frames */
1561 			/* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1562 			page_pool_put_page(page->pp, page, 0, true);
1563 		}
1564 
1565 		txq->tx_buf[index].buf_p = NULL;
1566 		/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1567 		txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1568 
1569 tx_buf_done:
1570 		/* Make sure the update to bdp and tx_buf are performed
1571 		 * before dirty_tx
1572 		 */
1573 		wmb();
1574 		txq->dirty_tx = bdp;
1575 
1576 		/* Update pointer to next buffer descriptor to be transmitted */
1577 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1578 
1579 		/* Since we have freed up a buffer, the ring is no longer full
1580 		 */
1581 		if (netif_tx_queue_stopped(nq)) {
1582 			entries_free = fec_enet_get_free_txdesc_num(txq);
1583 			if (entries_free >= txq->tx_wake_threshold)
1584 				netif_tx_wake_queue(nq);
1585 		}
1586 	}
1587 
1588 	/* ERR006358: Keep the transmitter going */
1589 	if (bdp != txq->bd.cur &&
1590 	    readl(txq->bd.reg_desc_active) == 0)
1591 		writel(0, txq->bd.reg_desc_active);
1592 }
1593 
fec_enet_tx(struct net_device * ndev,int budget)1594 static void fec_enet_tx(struct net_device *ndev, int budget)
1595 {
1596 	struct fec_enet_private *fep = netdev_priv(ndev);
1597 	int i;
1598 
1599 	/* Make sure that AVB queues are processed first. */
1600 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1601 		fec_enet_tx_queue(ndev, i, budget);
1602 }
1603 
fec_enet_update_cbd(struct fec_enet_priv_rx_q * rxq,struct bufdesc * bdp,int index)1604 static int fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1605 				struct bufdesc *bdp, int index)
1606 {
1607 	struct page *new_page;
1608 	dma_addr_t phys_addr;
1609 
1610 	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1611 	if (unlikely(!new_page))
1612 		return -ENOMEM;
1613 
1614 	rxq->rx_skb_info[index].page = new_page;
1615 	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1616 	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1617 	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1618 
1619 	return 0;
1620 }
1621 
1622 static u32
fec_enet_run_xdp(struct fec_enet_private * fep,struct bpf_prog * prog,struct xdp_buff * xdp,struct fec_enet_priv_rx_q * rxq,int cpu)1623 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1624 		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1625 {
1626 	unsigned int sync, len = xdp->data_end - xdp->data;
1627 	u32 ret = FEC_ENET_XDP_PASS;
1628 	struct page *page;
1629 	int err;
1630 	u32 act;
1631 
1632 	act = bpf_prog_run_xdp(prog, xdp);
1633 
1634 	/* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1635 	 * max len CPU touch
1636 	 */
1637 	sync = xdp->data_end - xdp->data;
1638 	sync = max(sync, len);
1639 
1640 	switch (act) {
1641 	case XDP_PASS:
1642 		rxq->stats[RX_XDP_PASS]++;
1643 		ret = FEC_ENET_XDP_PASS;
1644 		break;
1645 
1646 	case XDP_REDIRECT:
1647 		rxq->stats[RX_XDP_REDIRECT]++;
1648 		err = xdp_do_redirect(fep->netdev, xdp, prog);
1649 		if (unlikely(err))
1650 			goto xdp_err;
1651 
1652 		ret = FEC_ENET_XDP_REDIR;
1653 		break;
1654 
1655 	case XDP_TX:
1656 		rxq->stats[RX_XDP_TX]++;
1657 		err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1658 		if (unlikely(err)) {
1659 			rxq->stats[RX_XDP_TX_ERRORS]++;
1660 			goto xdp_err;
1661 		}
1662 
1663 		ret = FEC_ENET_XDP_TX;
1664 		break;
1665 
1666 	default:
1667 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1668 		fallthrough;
1669 
1670 	case XDP_ABORTED:
1671 		fallthrough;    /* handle aborts by dropping packet */
1672 
1673 	case XDP_DROP:
1674 		rxq->stats[RX_XDP_DROP]++;
1675 xdp_err:
1676 		ret = FEC_ENET_XDP_CONSUMED;
1677 		page = virt_to_head_page(xdp->data);
1678 		page_pool_put_page(rxq->page_pool, page, sync, true);
1679 		if (act != XDP_DROP)
1680 			trace_xdp_exception(fep->netdev, prog, act);
1681 		break;
1682 	}
1683 
1684 	return ret;
1685 }
1686 
1687 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1688  * When we update through the ring, if the next incoming buffer has
1689  * not been given to the system, we just set the empty indicator,
1690  * effectively tossing the packet.
1691  */
1692 static int
fec_enet_rx_queue(struct net_device * ndev,int budget,u16 queue_id)1693 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1694 {
1695 	struct fec_enet_private *fep = netdev_priv(ndev);
1696 	struct fec_enet_priv_rx_q *rxq;
1697 	struct bufdesc *bdp;
1698 	unsigned short status;
1699 	struct  sk_buff *skb;
1700 	ushort	pkt_len;
1701 	__u8 *data;
1702 	int	pkt_received = 0;
1703 	struct	bufdesc_ex *ebdp = NULL;
1704 	bool	vlan_packet_rcvd = false;
1705 	u16	vlan_tag;
1706 	int	index = 0;
1707 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1708 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1709 	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1710 	u32 data_start = FEC_ENET_XDP_HEADROOM;
1711 	int cpu = smp_processor_id();
1712 	struct xdp_buff xdp;
1713 	struct page *page;
1714 	__fec32 cbd_bufaddr;
1715 	u32 sub_len = 4;
1716 
1717 #if !defined(CONFIG_M5272)
1718 	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1719 	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1720 	 */
1721 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1722 		data_start += 2;
1723 		sub_len += 2;
1724 	}
1725 #endif
1726 
1727 #ifdef CONFIG_M532x
1728 	flush_cache_all();
1729 #endif
1730 	rxq = fep->rx_queue[queue_id];
1731 
1732 	/* First, grab all of the stats for the incoming packet.
1733 	 * These get messed up if we get called due to a busy condition.
1734 	 */
1735 	bdp = rxq->bd.cur;
1736 	xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1737 
1738 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1739 
1740 		if (pkt_received >= budget)
1741 			break;
1742 		pkt_received++;
1743 
1744 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1745 
1746 		/* Check for errors. */
1747 		status ^= BD_ENET_RX_LAST;
1748 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1749 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1750 			   BD_ENET_RX_CL)) {
1751 			ndev->stats.rx_errors++;
1752 			if (status & BD_ENET_RX_OV) {
1753 				/* FIFO overrun */
1754 				ndev->stats.rx_fifo_errors++;
1755 				goto rx_processing_done;
1756 			}
1757 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1758 						| BD_ENET_RX_LAST)) {
1759 				/* Frame too long or too short. */
1760 				ndev->stats.rx_length_errors++;
1761 				if (status & BD_ENET_RX_LAST)
1762 					netdev_err(ndev, "rcv is not +last\n");
1763 			}
1764 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1765 				ndev->stats.rx_crc_errors++;
1766 			/* Report late collisions as a frame error. */
1767 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1768 				ndev->stats.rx_frame_errors++;
1769 			goto rx_processing_done;
1770 		}
1771 
1772 		/* Process the incoming frame. */
1773 		ndev->stats.rx_packets++;
1774 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1775 		ndev->stats.rx_bytes += pkt_len;
1776 
1777 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1778 		page = rxq->rx_skb_info[index].page;
1779 		cbd_bufaddr = bdp->cbd_bufaddr;
1780 		if (fec_enet_update_cbd(rxq, bdp, index)) {
1781 			ndev->stats.rx_dropped++;
1782 			goto rx_processing_done;
1783 		}
1784 
1785 		dma_sync_single_for_cpu(&fep->pdev->dev,
1786 					fec32_to_cpu(cbd_bufaddr),
1787 					pkt_len,
1788 					DMA_FROM_DEVICE);
1789 		prefetch(page_address(page));
1790 
1791 		if (xdp_prog) {
1792 			xdp_buff_clear_frags_flag(&xdp);
1793 			/* subtract 16bit shift and FCS */
1794 			xdp_prepare_buff(&xdp, page_address(page),
1795 					 data_start, pkt_len - sub_len, false);
1796 			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1797 			xdp_result |= ret;
1798 			if (ret != FEC_ENET_XDP_PASS)
1799 				goto rx_processing_done;
1800 		}
1801 
1802 		/* The packet length includes FCS, but we don't want to
1803 		 * include that when passing upstream as it messes up
1804 		 * bridging applications.
1805 		 */
1806 		skb = build_skb(page_address(page), PAGE_SIZE);
1807 		if (unlikely(!skb)) {
1808 			page_pool_recycle_direct(rxq->page_pool, page);
1809 			ndev->stats.rx_dropped++;
1810 
1811 			netdev_err_once(ndev, "build_skb failed!\n");
1812 			goto rx_processing_done;
1813 		}
1814 
1815 		skb_reserve(skb, data_start);
1816 		skb_put(skb, pkt_len - sub_len);
1817 		skb_mark_for_recycle(skb);
1818 
1819 		if (unlikely(need_swap)) {
1820 			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1821 			swap_buffer(data, pkt_len);
1822 		}
1823 		data = skb->data;
1824 
1825 		/* Extract the enhanced buffer descriptor */
1826 		ebdp = NULL;
1827 		if (fep->bufdesc_ex)
1828 			ebdp = (struct bufdesc_ex *)bdp;
1829 
1830 		/* If this is a VLAN packet remove the VLAN Tag */
1831 		vlan_packet_rcvd = false;
1832 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1833 		    fep->bufdesc_ex &&
1834 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1835 			/* Push and remove the vlan tag */
1836 			struct vlan_hdr *vlan_header =
1837 					(struct vlan_hdr *) (data + ETH_HLEN);
1838 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1839 
1840 			vlan_packet_rcvd = true;
1841 
1842 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1843 			skb_pull(skb, VLAN_HLEN);
1844 		}
1845 
1846 		skb->protocol = eth_type_trans(skb, ndev);
1847 
1848 		/* Get receive timestamp from the skb */
1849 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1850 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1851 					  skb_hwtstamps(skb));
1852 
1853 		if (fep->bufdesc_ex &&
1854 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1855 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1856 				/* don't check it */
1857 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1858 			} else {
1859 				skb_checksum_none_assert(skb);
1860 			}
1861 		}
1862 
1863 		/* Handle received VLAN packets */
1864 		if (vlan_packet_rcvd)
1865 			__vlan_hwaccel_put_tag(skb,
1866 					       htons(ETH_P_8021Q),
1867 					       vlan_tag);
1868 
1869 		skb_record_rx_queue(skb, queue_id);
1870 		napi_gro_receive(&fep->napi, skb);
1871 
1872 rx_processing_done:
1873 		/* Clear the status flags for this buffer */
1874 		status &= ~BD_ENET_RX_STATS;
1875 
1876 		/* Mark the buffer empty */
1877 		status |= BD_ENET_RX_EMPTY;
1878 
1879 		if (fep->bufdesc_ex) {
1880 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1881 
1882 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1883 			ebdp->cbd_prot = 0;
1884 			ebdp->cbd_bdu = 0;
1885 		}
1886 		/* Make sure the updates to rest of the descriptor are
1887 		 * performed before transferring ownership.
1888 		 */
1889 		wmb();
1890 		bdp->cbd_sc = cpu_to_fec16(status);
1891 
1892 		/* Update BD pointer to next entry */
1893 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1894 
1895 		/* Doing this here will keep the FEC running while we process
1896 		 * incoming frames.  On a heavily loaded network, we should be
1897 		 * able to keep up at the expense of system resources.
1898 		 */
1899 		writel(0, rxq->bd.reg_desc_active);
1900 	}
1901 	rxq->bd.cur = bdp;
1902 
1903 	if (xdp_result & FEC_ENET_XDP_REDIR)
1904 		xdp_do_flush_map();
1905 
1906 	return pkt_received;
1907 }
1908 
fec_enet_rx(struct net_device * ndev,int budget)1909 static int fec_enet_rx(struct net_device *ndev, int budget)
1910 {
1911 	struct fec_enet_private *fep = netdev_priv(ndev);
1912 	int i, done = 0;
1913 
1914 	/* Make sure that AVB queues are processed first. */
1915 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1916 		done += fec_enet_rx_queue(ndev, budget - done, i);
1917 
1918 	return done;
1919 }
1920 
fec_enet_collect_events(struct fec_enet_private * fep)1921 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1922 {
1923 	uint int_events;
1924 
1925 	int_events = readl(fep->hwp + FEC_IEVENT);
1926 
1927 	/* Don't clear MDIO events, we poll for those */
1928 	int_events &= ~FEC_ENET_MII;
1929 
1930 	writel(int_events, fep->hwp + FEC_IEVENT);
1931 
1932 	return int_events != 0;
1933 }
1934 
1935 static irqreturn_t
fec_enet_interrupt(int irq,void * dev_id)1936 fec_enet_interrupt(int irq, void *dev_id)
1937 {
1938 	struct net_device *ndev = dev_id;
1939 	struct fec_enet_private *fep = netdev_priv(ndev);
1940 	irqreturn_t ret = IRQ_NONE;
1941 
1942 	if (fec_enet_collect_events(fep) && fep->link) {
1943 		ret = IRQ_HANDLED;
1944 
1945 		if (napi_schedule_prep(&fep->napi)) {
1946 			/* Disable interrupts */
1947 			writel(0, fep->hwp + FEC_IMASK);
1948 			__napi_schedule(&fep->napi);
1949 		}
1950 	}
1951 
1952 	return ret;
1953 }
1954 
fec_enet_rx_napi(struct napi_struct * napi,int budget)1955 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1956 {
1957 	struct net_device *ndev = napi->dev;
1958 	struct fec_enet_private *fep = netdev_priv(ndev);
1959 	int done = 0;
1960 
1961 	do {
1962 		done += fec_enet_rx(ndev, budget - done);
1963 		fec_enet_tx(ndev, budget);
1964 	} while ((done < budget) && fec_enet_collect_events(fep));
1965 
1966 	if (done < budget) {
1967 		napi_complete_done(napi, done);
1968 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1969 	}
1970 
1971 	return done;
1972 }
1973 
1974 /* ------------------------------------------------------------------------- */
fec_get_mac(struct net_device * ndev)1975 static int fec_get_mac(struct net_device *ndev)
1976 {
1977 	struct fec_enet_private *fep = netdev_priv(ndev);
1978 	unsigned char *iap, tmpaddr[ETH_ALEN];
1979 	int ret;
1980 
1981 	/*
1982 	 * try to get mac address in following order:
1983 	 *
1984 	 * 1) module parameter via kernel command line in form
1985 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1986 	 */
1987 	iap = macaddr;
1988 
1989 	/*
1990 	 * 2) from device tree data
1991 	 */
1992 	if (!is_valid_ether_addr(iap)) {
1993 		struct device_node *np = fep->pdev->dev.of_node;
1994 		if (np) {
1995 			ret = of_get_mac_address(np, tmpaddr);
1996 			if (!ret)
1997 				iap = tmpaddr;
1998 			else if (ret == -EPROBE_DEFER)
1999 				return ret;
2000 		}
2001 	}
2002 
2003 	/*
2004 	 * 3) from flash or fuse (via platform data)
2005 	 */
2006 	if (!is_valid_ether_addr(iap)) {
2007 #ifdef CONFIG_M5272
2008 		if (FEC_FLASHMAC)
2009 			iap = (unsigned char *)FEC_FLASHMAC;
2010 #else
2011 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
2012 
2013 		if (pdata)
2014 			iap = (unsigned char *)&pdata->mac;
2015 #endif
2016 	}
2017 
2018 	/*
2019 	 * 4) FEC mac registers set by bootloader
2020 	 */
2021 	if (!is_valid_ether_addr(iap)) {
2022 		*((__be32 *) &tmpaddr[0]) =
2023 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
2024 		*((__be16 *) &tmpaddr[4]) =
2025 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
2026 		iap = &tmpaddr[0];
2027 	}
2028 
2029 	/*
2030 	 * 5) random mac address
2031 	 */
2032 	if (!is_valid_ether_addr(iap)) {
2033 		/* Report it and use a random ethernet address instead */
2034 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
2035 		eth_hw_addr_random(ndev);
2036 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
2037 			 ndev->dev_addr);
2038 		return 0;
2039 	}
2040 
2041 	/* Adjust MAC if using macaddr */
2042 	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
2043 
2044 	return 0;
2045 }
2046 
2047 /* ------------------------------------------------------------------------- */
2048 
2049 /*
2050  * Phy section
2051  */
fec_enet_adjust_link(struct net_device * ndev)2052 static void fec_enet_adjust_link(struct net_device *ndev)
2053 {
2054 	struct fec_enet_private *fep = netdev_priv(ndev);
2055 	struct phy_device *phy_dev = ndev->phydev;
2056 	int status_change = 0;
2057 
2058 	/*
2059 	 * If the netdev is down, or is going down, we're not interested
2060 	 * in link state events, so just mark our idea of the link as down
2061 	 * and ignore the event.
2062 	 */
2063 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
2064 		fep->link = 0;
2065 	} else if (phy_dev->link) {
2066 		if (!fep->link) {
2067 			fep->link = phy_dev->link;
2068 			status_change = 1;
2069 		}
2070 
2071 		if (fep->full_duplex != phy_dev->duplex) {
2072 			fep->full_duplex = phy_dev->duplex;
2073 			status_change = 1;
2074 		}
2075 
2076 		if (phy_dev->speed != fep->speed) {
2077 			fep->speed = phy_dev->speed;
2078 			status_change = 1;
2079 		}
2080 
2081 		/* if any of the above changed restart the FEC */
2082 		if (status_change) {
2083 			netif_stop_queue(ndev);
2084 			napi_disable(&fep->napi);
2085 			netif_tx_lock_bh(ndev);
2086 			fec_restart(ndev);
2087 			netif_tx_wake_all_queues(ndev);
2088 			netif_tx_unlock_bh(ndev);
2089 			napi_enable(&fep->napi);
2090 		}
2091 	} else {
2092 		if (fep->link) {
2093 			netif_stop_queue(ndev);
2094 			napi_disable(&fep->napi);
2095 			netif_tx_lock_bh(ndev);
2096 			fec_stop(ndev);
2097 			netif_tx_unlock_bh(ndev);
2098 			napi_enable(&fep->napi);
2099 			fep->link = phy_dev->link;
2100 			status_change = 1;
2101 		}
2102 	}
2103 
2104 	if (status_change)
2105 		phy_print_status(phy_dev);
2106 }
2107 
fec_enet_mdio_wait(struct fec_enet_private * fep)2108 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2109 {
2110 	uint ievent;
2111 	int ret;
2112 
2113 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2114 					ievent & FEC_ENET_MII, 2, 30000);
2115 
2116 	if (!ret)
2117 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2118 
2119 	return ret;
2120 }
2121 
fec_enet_mdio_read_c22(struct mii_bus * bus,int mii_id,int regnum)2122 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2123 {
2124 	struct fec_enet_private *fep = bus->priv;
2125 	struct device *dev = &fep->pdev->dev;
2126 	int ret = 0, frame_start, frame_addr, frame_op;
2127 
2128 	ret = pm_runtime_resume_and_get(dev);
2129 	if (ret < 0)
2130 		return ret;
2131 
2132 	/* C22 read */
2133 	frame_op = FEC_MMFR_OP_READ;
2134 	frame_start = FEC_MMFR_ST;
2135 	frame_addr = regnum;
2136 
2137 	/* start a read op */
2138 	writel(frame_start | frame_op |
2139 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2140 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2141 
2142 	/* wait for end of transfer */
2143 	ret = fec_enet_mdio_wait(fep);
2144 	if (ret) {
2145 		netdev_err(fep->netdev, "MDIO read timeout\n");
2146 		goto out;
2147 	}
2148 
2149 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2150 
2151 out:
2152 	pm_runtime_mark_last_busy(dev);
2153 	pm_runtime_put_autosuspend(dev);
2154 
2155 	return ret;
2156 }
2157 
fec_enet_mdio_read_c45(struct mii_bus * bus,int mii_id,int devad,int regnum)2158 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2159 				  int devad, int regnum)
2160 {
2161 	struct fec_enet_private *fep = bus->priv;
2162 	struct device *dev = &fep->pdev->dev;
2163 	int ret = 0, frame_start, frame_op;
2164 
2165 	ret = pm_runtime_resume_and_get(dev);
2166 	if (ret < 0)
2167 		return ret;
2168 
2169 	frame_start = FEC_MMFR_ST_C45;
2170 
2171 	/* write address */
2172 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2173 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2174 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2175 	       fep->hwp + FEC_MII_DATA);
2176 
2177 	/* wait for end of transfer */
2178 	ret = fec_enet_mdio_wait(fep);
2179 	if (ret) {
2180 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2181 		goto out;
2182 	}
2183 
2184 	frame_op = FEC_MMFR_OP_READ_C45;
2185 
2186 	/* start a read op */
2187 	writel(frame_start | frame_op |
2188 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2189 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2190 
2191 	/* wait for end of transfer */
2192 	ret = fec_enet_mdio_wait(fep);
2193 	if (ret) {
2194 		netdev_err(fep->netdev, "MDIO read timeout\n");
2195 		goto out;
2196 	}
2197 
2198 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2199 
2200 out:
2201 	pm_runtime_mark_last_busy(dev);
2202 	pm_runtime_put_autosuspend(dev);
2203 
2204 	return ret;
2205 }
2206 
fec_enet_mdio_write_c22(struct mii_bus * bus,int mii_id,int regnum,u16 value)2207 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2208 				   u16 value)
2209 {
2210 	struct fec_enet_private *fep = bus->priv;
2211 	struct device *dev = &fep->pdev->dev;
2212 	int ret, frame_start, frame_addr;
2213 
2214 	ret = pm_runtime_resume_and_get(dev);
2215 	if (ret < 0)
2216 		return ret;
2217 
2218 	/* C22 write */
2219 	frame_start = FEC_MMFR_ST;
2220 	frame_addr = regnum;
2221 
2222 	/* start a write op */
2223 	writel(frame_start | FEC_MMFR_OP_WRITE |
2224 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2225 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2226 	       fep->hwp + FEC_MII_DATA);
2227 
2228 	/* wait for end of transfer */
2229 	ret = fec_enet_mdio_wait(fep);
2230 	if (ret)
2231 		netdev_err(fep->netdev, "MDIO write timeout\n");
2232 
2233 	pm_runtime_mark_last_busy(dev);
2234 	pm_runtime_put_autosuspend(dev);
2235 
2236 	return ret;
2237 }
2238 
fec_enet_mdio_write_c45(struct mii_bus * bus,int mii_id,int devad,int regnum,u16 value)2239 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2240 				   int devad, int regnum, u16 value)
2241 {
2242 	struct fec_enet_private *fep = bus->priv;
2243 	struct device *dev = &fep->pdev->dev;
2244 	int ret, frame_start;
2245 
2246 	ret = pm_runtime_resume_and_get(dev);
2247 	if (ret < 0)
2248 		return ret;
2249 
2250 	frame_start = FEC_MMFR_ST_C45;
2251 
2252 	/* write address */
2253 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2254 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2255 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2256 	       fep->hwp + FEC_MII_DATA);
2257 
2258 	/* wait for end of transfer */
2259 	ret = fec_enet_mdio_wait(fep);
2260 	if (ret) {
2261 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2262 		goto out;
2263 	}
2264 
2265 	/* start a write op */
2266 	writel(frame_start | FEC_MMFR_OP_WRITE |
2267 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2268 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2269 	       fep->hwp + FEC_MII_DATA);
2270 
2271 	/* wait for end of transfer */
2272 	ret = fec_enet_mdio_wait(fep);
2273 	if (ret)
2274 		netdev_err(fep->netdev, "MDIO write timeout\n");
2275 
2276 out:
2277 	pm_runtime_mark_last_busy(dev);
2278 	pm_runtime_put_autosuspend(dev);
2279 
2280 	return ret;
2281 }
2282 
fec_enet_phy_reset_after_clk_enable(struct net_device * ndev)2283 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2284 {
2285 	struct fec_enet_private *fep = netdev_priv(ndev);
2286 	struct phy_device *phy_dev = ndev->phydev;
2287 
2288 	if (phy_dev) {
2289 		phy_reset_after_clk_enable(phy_dev);
2290 	} else if (fep->phy_node) {
2291 		/*
2292 		 * If the PHY still is not bound to the MAC, but there is
2293 		 * OF PHY node and a matching PHY device instance already,
2294 		 * use the OF PHY node to obtain the PHY device instance,
2295 		 * and then use that PHY device instance when triggering
2296 		 * the PHY reset.
2297 		 */
2298 		phy_dev = of_phy_find_device(fep->phy_node);
2299 		phy_reset_after_clk_enable(phy_dev);
2300 		put_device(&phy_dev->mdio.dev);
2301 	}
2302 }
2303 
fec_enet_clk_enable(struct net_device * ndev,bool enable)2304 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2305 {
2306 	struct fec_enet_private *fep = netdev_priv(ndev);
2307 	int ret;
2308 
2309 	if (enable) {
2310 		ret = clk_prepare_enable(fep->clk_enet_out);
2311 		if (ret)
2312 			return ret;
2313 
2314 		if (fep->clk_ptp) {
2315 			mutex_lock(&fep->ptp_clk_mutex);
2316 			ret = clk_prepare_enable(fep->clk_ptp);
2317 			if (ret) {
2318 				mutex_unlock(&fep->ptp_clk_mutex);
2319 				goto failed_clk_ptp;
2320 			} else {
2321 				fep->ptp_clk_on = true;
2322 			}
2323 			mutex_unlock(&fep->ptp_clk_mutex);
2324 		}
2325 
2326 		ret = clk_prepare_enable(fep->clk_ref);
2327 		if (ret)
2328 			goto failed_clk_ref;
2329 
2330 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2331 		if (ret)
2332 			goto failed_clk_2x_txclk;
2333 
2334 		fec_enet_phy_reset_after_clk_enable(ndev);
2335 	} else {
2336 		clk_disable_unprepare(fep->clk_enet_out);
2337 		if (fep->clk_ptp) {
2338 			mutex_lock(&fep->ptp_clk_mutex);
2339 			clk_disable_unprepare(fep->clk_ptp);
2340 			fep->ptp_clk_on = false;
2341 			mutex_unlock(&fep->ptp_clk_mutex);
2342 		}
2343 		clk_disable_unprepare(fep->clk_ref);
2344 		clk_disable_unprepare(fep->clk_2x_txclk);
2345 	}
2346 
2347 	return 0;
2348 
2349 failed_clk_2x_txclk:
2350 	if (fep->clk_ref)
2351 		clk_disable_unprepare(fep->clk_ref);
2352 failed_clk_ref:
2353 	if (fep->clk_ptp) {
2354 		mutex_lock(&fep->ptp_clk_mutex);
2355 		clk_disable_unprepare(fep->clk_ptp);
2356 		fep->ptp_clk_on = false;
2357 		mutex_unlock(&fep->ptp_clk_mutex);
2358 	}
2359 failed_clk_ptp:
2360 	clk_disable_unprepare(fep->clk_enet_out);
2361 
2362 	return ret;
2363 }
2364 
fec_enet_parse_rgmii_delay(struct fec_enet_private * fep,struct device_node * np)2365 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2366 				      struct device_node *np)
2367 {
2368 	u32 rgmii_tx_delay, rgmii_rx_delay;
2369 
2370 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2371 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2372 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2373 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2374 			return -EINVAL;
2375 		} else if (rgmii_tx_delay == 2000) {
2376 			fep->rgmii_txc_dly = true;
2377 		}
2378 	}
2379 
2380 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2381 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2382 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2383 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2384 			return -EINVAL;
2385 		} else if (rgmii_rx_delay == 2000) {
2386 			fep->rgmii_rxc_dly = true;
2387 		}
2388 	}
2389 
2390 	return 0;
2391 }
2392 
fec_enet_mii_probe(struct net_device * ndev)2393 static int fec_enet_mii_probe(struct net_device *ndev)
2394 {
2395 	struct fec_enet_private *fep = netdev_priv(ndev);
2396 	struct phy_device *phy_dev = NULL;
2397 	char mdio_bus_id[MII_BUS_ID_SIZE];
2398 	char phy_name[MII_BUS_ID_SIZE + 3];
2399 	int phy_id;
2400 	int dev_id = fep->dev_id;
2401 
2402 	if (fep->phy_node) {
2403 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2404 					 &fec_enet_adjust_link, 0,
2405 					 fep->phy_interface);
2406 		if (!phy_dev) {
2407 			netdev_err(ndev, "Unable to connect to phy\n");
2408 			return -ENODEV;
2409 		}
2410 	} else {
2411 		/* check for attached phy */
2412 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2413 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2414 				continue;
2415 			if (dev_id--)
2416 				continue;
2417 			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2418 			break;
2419 		}
2420 
2421 		if (phy_id >= PHY_MAX_ADDR) {
2422 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2423 			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2424 			phy_id = 0;
2425 		}
2426 
2427 		snprintf(phy_name, sizeof(phy_name),
2428 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2429 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2430 				      fep->phy_interface);
2431 	}
2432 
2433 	if (IS_ERR(phy_dev)) {
2434 		netdev_err(ndev, "could not attach to PHY\n");
2435 		return PTR_ERR(phy_dev);
2436 	}
2437 
2438 	/* mask with MAC supported features */
2439 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2440 		phy_set_max_speed(phy_dev, 1000);
2441 		phy_remove_link_mode(phy_dev,
2442 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2443 #if !defined(CONFIG_M5272)
2444 		phy_support_sym_pause(phy_dev);
2445 #endif
2446 	}
2447 	else
2448 		phy_set_max_speed(phy_dev, 100);
2449 
2450 	fep->link = 0;
2451 	fep->full_duplex = 0;
2452 
2453 	phy_attached_info(phy_dev);
2454 
2455 	return 0;
2456 }
2457 
fec_enet_mii_init(struct platform_device * pdev)2458 static int fec_enet_mii_init(struct platform_device *pdev)
2459 {
2460 	static struct mii_bus *fec0_mii_bus;
2461 	struct net_device *ndev = platform_get_drvdata(pdev);
2462 	struct fec_enet_private *fep = netdev_priv(ndev);
2463 	bool suppress_preamble = false;
2464 	struct phy_device *phydev;
2465 	struct device_node *node;
2466 	int err = -ENXIO;
2467 	u32 mii_speed, holdtime;
2468 	u32 bus_freq;
2469 	int addr;
2470 
2471 	/*
2472 	 * The i.MX28 dual fec interfaces are not equal.
2473 	 * Here are the differences:
2474 	 *
2475 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2476 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2477 	 *  - external phys can only be configured by fec0
2478 	 *
2479 	 * That is to say fec1 can not work independently. It only works
2480 	 * when fec0 is working. The reason behind this design is that the
2481 	 * second interface is added primarily for Switch mode.
2482 	 *
2483 	 * Because of the last point above, both phys are attached on fec0
2484 	 * mdio interface in board design, and need to be configured by
2485 	 * fec0 mii_bus.
2486 	 */
2487 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2488 		/* fec1 uses fec0 mii_bus */
2489 		if (mii_cnt && fec0_mii_bus) {
2490 			fep->mii_bus = fec0_mii_bus;
2491 			mii_cnt++;
2492 			return 0;
2493 		}
2494 		return -ENOENT;
2495 	}
2496 
2497 	bus_freq = 2500000; /* 2.5MHz by default */
2498 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2499 	if (node) {
2500 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2501 		suppress_preamble = of_property_read_bool(node,
2502 							  "suppress-preamble");
2503 	}
2504 
2505 	/*
2506 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2507 	 *
2508 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2509 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2510 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2511 	 * document.
2512 	 */
2513 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2514 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2515 		mii_speed--;
2516 	if (mii_speed > 63) {
2517 		dev_err(&pdev->dev,
2518 			"fec clock (%lu) too fast to get right mii speed\n",
2519 			clk_get_rate(fep->clk_ipg));
2520 		err = -EINVAL;
2521 		goto err_out;
2522 	}
2523 
2524 	/*
2525 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2526 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2527 	 * versions are RAZ there, so just ignore the difference and write the
2528 	 * register always.
2529 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2530 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2531 	 * output.
2532 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2533 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2534 	 * holdtime cannot result in a value greater than 3.
2535 	 */
2536 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2537 
2538 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2539 
2540 	if (suppress_preamble)
2541 		fep->phy_speed |= BIT(7);
2542 
2543 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2544 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2545 		 * MII event generation condition:
2546 		 * - writing MSCR:
2547 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2548 		 *	  mscr_reg_data_in[7:0] != 0
2549 		 * - writing MMFR:
2550 		 *	- mscr[7:0]_not_zero
2551 		 */
2552 		writel(0, fep->hwp + FEC_MII_DATA);
2553 	}
2554 
2555 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2556 
2557 	/* Clear any pending transaction complete indication */
2558 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2559 
2560 	fep->mii_bus = mdiobus_alloc();
2561 	if (fep->mii_bus == NULL) {
2562 		err = -ENOMEM;
2563 		goto err_out;
2564 	}
2565 
2566 	fep->mii_bus->name = "fec_enet_mii_bus";
2567 	fep->mii_bus->read = fec_enet_mdio_read_c22;
2568 	fep->mii_bus->write = fec_enet_mdio_write_c22;
2569 	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2570 		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2571 		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2572 	}
2573 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2574 		pdev->name, fep->dev_id + 1);
2575 	fep->mii_bus->priv = fep;
2576 	fep->mii_bus->parent = &pdev->dev;
2577 
2578 	err = of_mdiobus_register(fep->mii_bus, node);
2579 	if (err)
2580 		goto err_out_free_mdiobus;
2581 	of_node_put(node);
2582 
2583 	/* find all the PHY devices on the bus and set mac_managed_pm to true */
2584 	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
2585 		phydev = mdiobus_get_phy(fep->mii_bus, addr);
2586 		if (phydev)
2587 			phydev->mac_managed_pm = true;
2588 	}
2589 
2590 	mii_cnt++;
2591 
2592 	/* save fec0 mii_bus */
2593 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2594 		fec0_mii_bus = fep->mii_bus;
2595 
2596 	return 0;
2597 
2598 err_out_free_mdiobus:
2599 	mdiobus_free(fep->mii_bus);
2600 err_out:
2601 	of_node_put(node);
2602 	return err;
2603 }
2604 
fec_enet_mii_remove(struct fec_enet_private * fep)2605 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2606 {
2607 	if (--mii_cnt == 0) {
2608 		mdiobus_unregister(fep->mii_bus);
2609 		mdiobus_free(fep->mii_bus);
2610 	}
2611 }
2612 
fec_enet_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)2613 static void fec_enet_get_drvinfo(struct net_device *ndev,
2614 				 struct ethtool_drvinfo *info)
2615 {
2616 	struct fec_enet_private *fep = netdev_priv(ndev);
2617 
2618 	strscpy(info->driver, fep->pdev->dev.driver->name,
2619 		sizeof(info->driver));
2620 	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2621 }
2622 
fec_enet_get_regs_len(struct net_device * ndev)2623 static int fec_enet_get_regs_len(struct net_device *ndev)
2624 {
2625 	struct fec_enet_private *fep = netdev_priv(ndev);
2626 	struct resource *r;
2627 	int s = 0;
2628 
2629 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2630 	if (r)
2631 		s = resource_size(r);
2632 
2633 	return s;
2634 }
2635 
2636 /* List of registers that can be safety be read to dump them with ethtool */
2637 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2638 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2639 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2640 static __u32 fec_enet_register_version = 2;
2641 static u32 fec_enet_register_offset[] = {
2642 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2643 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2644 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2645 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2646 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2647 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2648 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2649 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2650 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2651 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2652 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2653 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2654 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2655 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2656 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2657 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2658 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2659 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2660 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2661 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2662 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2663 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2664 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2665 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2666 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2667 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2668 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2669 };
2670 /* for i.MX6ul */
2671 static u32 fec_enet_register_offset_6ul[] = {
2672 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2673 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2674 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2675 	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2676 	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2677 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2678 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2679 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2680 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2681 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2682 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2683 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2684 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2685 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2686 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2687 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2688 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2689 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2690 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2691 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2692 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2693 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2694 };
2695 #else
2696 static __u32 fec_enet_register_version = 1;
2697 static u32 fec_enet_register_offset[] = {
2698 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2699 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2700 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2701 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2702 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2703 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2704 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2705 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2706 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2707 };
2708 #endif
2709 
fec_enet_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * regbuf)2710 static void fec_enet_get_regs(struct net_device *ndev,
2711 			      struct ethtool_regs *regs, void *regbuf)
2712 {
2713 	struct fec_enet_private *fep = netdev_priv(ndev);
2714 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2715 	struct device *dev = &fep->pdev->dev;
2716 	u32 *buf = (u32 *)regbuf;
2717 	u32 i, off;
2718 	int ret;
2719 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2720 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2721 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2722 	u32 *reg_list;
2723 	u32 reg_cnt;
2724 
2725 	if (!of_machine_is_compatible("fsl,imx6ul")) {
2726 		reg_list = fec_enet_register_offset;
2727 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2728 	} else {
2729 		reg_list = fec_enet_register_offset_6ul;
2730 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2731 	}
2732 #else
2733 	/* coldfire */
2734 	static u32 *reg_list = fec_enet_register_offset;
2735 	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2736 #endif
2737 	ret = pm_runtime_resume_and_get(dev);
2738 	if (ret < 0)
2739 		return;
2740 
2741 	regs->version = fec_enet_register_version;
2742 
2743 	memset(buf, 0, regs->len);
2744 
2745 	for (i = 0; i < reg_cnt; i++) {
2746 		off = reg_list[i];
2747 
2748 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2749 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2750 			continue;
2751 
2752 		off >>= 2;
2753 		buf[off] = readl(&theregs[off]);
2754 	}
2755 
2756 	pm_runtime_mark_last_busy(dev);
2757 	pm_runtime_put_autosuspend(dev);
2758 }
2759 
fec_enet_get_ts_info(struct net_device * ndev,struct ethtool_ts_info * info)2760 static int fec_enet_get_ts_info(struct net_device *ndev,
2761 				struct ethtool_ts_info *info)
2762 {
2763 	struct fec_enet_private *fep = netdev_priv(ndev);
2764 
2765 	if (fep->bufdesc_ex) {
2766 
2767 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2768 					SOF_TIMESTAMPING_RX_SOFTWARE |
2769 					SOF_TIMESTAMPING_SOFTWARE |
2770 					SOF_TIMESTAMPING_TX_HARDWARE |
2771 					SOF_TIMESTAMPING_RX_HARDWARE |
2772 					SOF_TIMESTAMPING_RAW_HARDWARE;
2773 		if (fep->ptp_clock)
2774 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2775 		else
2776 			info->phc_index = -1;
2777 
2778 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2779 				 (1 << HWTSTAMP_TX_ON);
2780 
2781 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2782 				   (1 << HWTSTAMP_FILTER_ALL);
2783 		return 0;
2784 	} else {
2785 		return ethtool_op_get_ts_info(ndev, info);
2786 	}
2787 }
2788 
2789 #if !defined(CONFIG_M5272)
2790 
fec_enet_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2791 static void fec_enet_get_pauseparam(struct net_device *ndev,
2792 				    struct ethtool_pauseparam *pause)
2793 {
2794 	struct fec_enet_private *fep = netdev_priv(ndev);
2795 
2796 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2797 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2798 	pause->rx_pause = pause->tx_pause;
2799 }
2800 
fec_enet_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2801 static int fec_enet_set_pauseparam(struct net_device *ndev,
2802 				   struct ethtool_pauseparam *pause)
2803 {
2804 	struct fec_enet_private *fep = netdev_priv(ndev);
2805 
2806 	if (!ndev->phydev)
2807 		return -ENODEV;
2808 
2809 	if (pause->tx_pause != pause->rx_pause) {
2810 		netdev_info(ndev,
2811 			"hardware only support enable/disable both tx and rx");
2812 		return -EINVAL;
2813 	}
2814 
2815 	fep->pause_flag = 0;
2816 
2817 	/* tx pause must be same as rx pause */
2818 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2819 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2820 
2821 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2822 			  pause->autoneg);
2823 
2824 	if (pause->autoneg) {
2825 		if (netif_running(ndev))
2826 			fec_stop(ndev);
2827 		phy_start_aneg(ndev->phydev);
2828 	}
2829 	if (netif_running(ndev)) {
2830 		napi_disable(&fep->napi);
2831 		netif_tx_lock_bh(ndev);
2832 		fec_restart(ndev);
2833 		netif_tx_wake_all_queues(ndev);
2834 		netif_tx_unlock_bh(ndev);
2835 		napi_enable(&fep->napi);
2836 	}
2837 
2838 	return 0;
2839 }
2840 
2841 static const struct fec_stat {
2842 	char name[ETH_GSTRING_LEN];
2843 	u16 offset;
2844 } fec_stats[] = {
2845 	/* RMON TX */
2846 	{ "tx_dropped", RMON_T_DROP },
2847 	{ "tx_packets", RMON_T_PACKETS },
2848 	{ "tx_broadcast", RMON_T_BC_PKT },
2849 	{ "tx_multicast", RMON_T_MC_PKT },
2850 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2851 	{ "tx_undersize", RMON_T_UNDERSIZE },
2852 	{ "tx_oversize", RMON_T_OVERSIZE },
2853 	{ "tx_fragment", RMON_T_FRAG },
2854 	{ "tx_jabber", RMON_T_JAB },
2855 	{ "tx_collision", RMON_T_COL },
2856 	{ "tx_64byte", RMON_T_P64 },
2857 	{ "tx_65to127byte", RMON_T_P65TO127 },
2858 	{ "tx_128to255byte", RMON_T_P128TO255 },
2859 	{ "tx_256to511byte", RMON_T_P256TO511 },
2860 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2861 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2862 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2863 	{ "tx_octets", RMON_T_OCTETS },
2864 
2865 	/* IEEE TX */
2866 	{ "IEEE_tx_drop", IEEE_T_DROP },
2867 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2868 	{ "IEEE_tx_1col", IEEE_T_1COL },
2869 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2870 	{ "IEEE_tx_def", IEEE_T_DEF },
2871 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2872 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2873 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2874 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2875 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2876 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2877 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2878 
2879 	/* RMON RX */
2880 	{ "rx_packets", RMON_R_PACKETS },
2881 	{ "rx_broadcast", RMON_R_BC_PKT },
2882 	{ "rx_multicast", RMON_R_MC_PKT },
2883 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2884 	{ "rx_undersize", RMON_R_UNDERSIZE },
2885 	{ "rx_oversize", RMON_R_OVERSIZE },
2886 	{ "rx_fragment", RMON_R_FRAG },
2887 	{ "rx_jabber", RMON_R_JAB },
2888 	{ "rx_64byte", RMON_R_P64 },
2889 	{ "rx_65to127byte", RMON_R_P65TO127 },
2890 	{ "rx_128to255byte", RMON_R_P128TO255 },
2891 	{ "rx_256to511byte", RMON_R_P256TO511 },
2892 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2893 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2894 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2895 	{ "rx_octets", RMON_R_OCTETS },
2896 
2897 	/* IEEE RX */
2898 	{ "IEEE_rx_drop", IEEE_R_DROP },
2899 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2900 	{ "IEEE_rx_crc", IEEE_R_CRC },
2901 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2902 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2903 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2904 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2905 };
2906 
2907 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2908 
2909 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2910 	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2911 	"rx_xdp_pass",               /* RX_XDP_PASS, */
2912 	"rx_xdp_drop",               /* RX_XDP_DROP, */
2913 	"rx_xdp_tx",                 /* RX_XDP_TX, */
2914 	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2915 	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2916 	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2917 };
2918 
fec_enet_update_ethtool_stats(struct net_device * dev)2919 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2920 {
2921 	struct fec_enet_private *fep = netdev_priv(dev);
2922 	int i;
2923 
2924 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2925 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2926 }
2927 
fec_enet_get_xdp_stats(struct fec_enet_private * fep,u64 * data)2928 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2929 {
2930 	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2931 	struct fec_enet_priv_rx_q *rxq;
2932 	int i, j;
2933 
2934 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2935 		rxq = fep->rx_queue[i];
2936 
2937 		for (j = 0; j < XDP_STATS_TOTAL; j++)
2938 			xdp_stats[j] += rxq->stats[j];
2939 	}
2940 
2941 	memcpy(data, xdp_stats, sizeof(xdp_stats));
2942 }
2943 
fec_enet_page_pool_stats(struct fec_enet_private * fep,u64 * data)2944 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
2945 {
2946 #ifdef CONFIG_PAGE_POOL_STATS
2947 	struct page_pool_stats stats = {};
2948 	struct fec_enet_priv_rx_q *rxq;
2949 	int i;
2950 
2951 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2952 		rxq = fep->rx_queue[i];
2953 
2954 		if (!rxq->page_pool)
2955 			continue;
2956 
2957 		page_pool_get_stats(rxq->page_pool, &stats);
2958 	}
2959 
2960 	page_pool_ethtool_stats_get(data, &stats);
2961 #endif
2962 }
2963 
fec_enet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)2964 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2965 				       struct ethtool_stats *stats, u64 *data)
2966 {
2967 	struct fec_enet_private *fep = netdev_priv(dev);
2968 
2969 	if (netif_running(dev))
2970 		fec_enet_update_ethtool_stats(dev);
2971 
2972 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2973 	data += FEC_STATS_SIZE / sizeof(u64);
2974 
2975 	fec_enet_get_xdp_stats(fep, data);
2976 	data += XDP_STATS_TOTAL;
2977 
2978 	fec_enet_page_pool_stats(fep, data);
2979 }
2980 
fec_enet_get_strings(struct net_device * netdev,u32 stringset,u8 * data)2981 static void fec_enet_get_strings(struct net_device *netdev,
2982 	u32 stringset, u8 *data)
2983 {
2984 	int i;
2985 	switch (stringset) {
2986 	case ETH_SS_STATS:
2987 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
2988 			memcpy(data, fec_stats[i].name, ETH_GSTRING_LEN);
2989 			data += ETH_GSTRING_LEN;
2990 		}
2991 		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
2992 			strncpy(data, fec_xdp_stat_strs[i], ETH_GSTRING_LEN);
2993 			data += ETH_GSTRING_LEN;
2994 		}
2995 		page_pool_ethtool_stats_get_strings(data);
2996 
2997 		break;
2998 	case ETH_SS_TEST:
2999 		net_selftest_get_strings(data);
3000 		break;
3001 	}
3002 }
3003 
fec_enet_get_sset_count(struct net_device * dev,int sset)3004 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
3005 {
3006 	int count;
3007 
3008 	switch (sset) {
3009 	case ETH_SS_STATS:
3010 		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
3011 		count += page_pool_ethtool_stats_get_count();
3012 		return count;
3013 
3014 	case ETH_SS_TEST:
3015 		return net_selftest_get_count();
3016 	default:
3017 		return -EOPNOTSUPP;
3018 	}
3019 }
3020 
fec_enet_clear_ethtool_stats(struct net_device * dev)3021 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
3022 {
3023 	struct fec_enet_private *fep = netdev_priv(dev);
3024 	struct fec_enet_priv_rx_q *rxq;
3025 	int i, j;
3026 
3027 	/* Disable MIB statistics counters */
3028 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
3029 
3030 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
3031 		writel(0, fep->hwp + fec_stats[i].offset);
3032 
3033 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3034 		rxq = fep->rx_queue[i];
3035 		for (j = 0; j < XDP_STATS_TOTAL; j++)
3036 			rxq->stats[j] = 0;
3037 	}
3038 
3039 	/* Don't disable MIB statistics counters */
3040 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
3041 }
3042 
3043 #else	/* !defined(CONFIG_M5272) */
3044 #define FEC_STATS_SIZE	0
fec_enet_update_ethtool_stats(struct net_device * dev)3045 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3046 {
3047 }
3048 
fec_enet_clear_ethtool_stats(struct net_device * dev)3049 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3050 {
3051 }
3052 #endif /* !defined(CONFIG_M5272) */
3053 
3054 /* ITR clock source is enet system clock (clk_ahb).
3055  * TCTT unit is cycle_ns * 64 cycle
3056  * So, the ICTT value = X us / (cycle_ns * 64)
3057  */
fec_enet_us_to_itr_clock(struct net_device * ndev,int us)3058 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3059 {
3060 	struct fec_enet_private *fep = netdev_priv(ndev);
3061 
3062 	return us * (fep->itr_clk_rate / 64000) / 1000;
3063 }
3064 
3065 /* Set threshold for interrupt coalescing */
fec_enet_itr_coal_set(struct net_device * ndev)3066 static void fec_enet_itr_coal_set(struct net_device *ndev)
3067 {
3068 	struct fec_enet_private *fep = netdev_priv(ndev);
3069 	int rx_itr, tx_itr;
3070 
3071 	/* Must be greater than zero to avoid unpredictable behavior */
3072 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
3073 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
3074 		return;
3075 
3076 	/* Select enet system clock as Interrupt Coalescing
3077 	 * timer Clock Source
3078 	 */
3079 	rx_itr = FEC_ITR_CLK_SEL;
3080 	tx_itr = FEC_ITR_CLK_SEL;
3081 
3082 	/* set ICFT and ICTT */
3083 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3084 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
3085 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3086 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
3087 
3088 	rx_itr |= FEC_ITR_EN;
3089 	tx_itr |= FEC_ITR_EN;
3090 
3091 	writel(tx_itr, fep->hwp + FEC_TXIC0);
3092 	writel(rx_itr, fep->hwp + FEC_RXIC0);
3093 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3094 		writel(tx_itr, fep->hwp + FEC_TXIC1);
3095 		writel(rx_itr, fep->hwp + FEC_RXIC1);
3096 		writel(tx_itr, fep->hwp + FEC_TXIC2);
3097 		writel(rx_itr, fep->hwp + FEC_RXIC2);
3098 	}
3099 }
3100 
fec_enet_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3101 static int fec_enet_get_coalesce(struct net_device *ndev,
3102 				 struct ethtool_coalesce *ec,
3103 				 struct kernel_ethtool_coalesce *kernel_coal,
3104 				 struct netlink_ext_ack *extack)
3105 {
3106 	struct fec_enet_private *fep = netdev_priv(ndev);
3107 
3108 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3109 		return -EOPNOTSUPP;
3110 
3111 	ec->rx_coalesce_usecs = fep->rx_time_itr;
3112 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3113 
3114 	ec->tx_coalesce_usecs = fep->tx_time_itr;
3115 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3116 
3117 	return 0;
3118 }
3119 
fec_enet_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3120 static int fec_enet_set_coalesce(struct net_device *ndev,
3121 				 struct ethtool_coalesce *ec,
3122 				 struct kernel_ethtool_coalesce *kernel_coal,
3123 				 struct netlink_ext_ack *extack)
3124 {
3125 	struct fec_enet_private *fep = netdev_priv(ndev);
3126 	struct device *dev = &fep->pdev->dev;
3127 	unsigned int cycle;
3128 
3129 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3130 		return -EOPNOTSUPP;
3131 
3132 	if (ec->rx_max_coalesced_frames > 255) {
3133 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3134 		return -EINVAL;
3135 	}
3136 
3137 	if (ec->tx_max_coalesced_frames > 255) {
3138 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3139 		return -EINVAL;
3140 	}
3141 
3142 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3143 	if (cycle > 0xFFFF) {
3144 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3145 		return -EINVAL;
3146 	}
3147 
3148 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3149 	if (cycle > 0xFFFF) {
3150 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3151 		return -EINVAL;
3152 	}
3153 
3154 	fep->rx_time_itr = ec->rx_coalesce_usecs;
3155 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3156 
3157 	fep->tx_time_itr = ec->tx_coalesce_usecs;
3158 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3159 
3160 	fec_enet_itr_coal_set(ndev);
3161 
3162 	return 0;
3163 }
3164 
3165 /* LPI Sleep Ts count base on tx clk (clk_ref).
3166  * The lpi sleep cnt value = X us / (cycle_ns).
3167  */
fec_enet_us_to_tx_cycle(struct net_device * ndev,int us)3168 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
3169 {
3170 	struct fec_enet_private *fep = netdev_priv(ndev);
3171 
3172 	return us * (fep->clk_ref_rate / 1000) / 1000;
3173 }
3174 
fec_enet_eee_mode_set(struct net_device * ndev,bool enable)3175 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
3176 {
3177 	struct fec_enet_private *fep = netdev_priv(ndev);
3178 	struct ethtool_eee *p = &fep->eee;
3179 	unsigned int sleep_cycle, wake_cycle;
3180 	int ret = 0;
3181 
3182 	if (enable) {
3183 		ret = phy_init_eee(ndev->phydev, false);
3184 		if (ret)
3185 			return ret;
3186 
3187 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
3188 		wake_cycle = sleep_cycle;
3189 	} else {
3190 		sleep_cycle = 0;
3191 		wake_cycle = 0;
3192 	}
3193 
3194 	p->tx_lpi_enabled = enable;
3195 	p->eee_enabled = enable;
3196 	p->eee_active = enable;
3197 
3198 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
3199 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
3200 
3201 	return 0;
3202 }
3203 
3204 static int
fec_enet_get_eee(struct net_device * ndev,struct ethtool_eee * edata)3205 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
3206 {
3207 	struct fec_enet_private *fep = netdev_priv(ndev);
3208 	struct ethtool_eee *p = &fep->eee;
3209 
3210 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3211 		return -EOPNOTSUPP;
3212 
3213 	if (!netif_running(ndev))
3214 		return -ENETDOWN;
3215 
3216 	edata->eee_enabled = p->eee_enabled;
3217 	edata->eee_active = p->eee_active;
3218 	edata->tx_lpi_timer = p->tx_lpi_timer;
3219 	edata->tx_lpi_enabled = p->tx_lpi_enabled;
3220 
3221 	return phy_ethtool_get_eee(ndev->phydev, edata);
3222 }
3223 
3224 static int
fec_enet_set_eee(struct net_device * ndev,struct ethtool_eee * edata)3225 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
3226 {
3227 	struct fec_enet_private *fep = netdev_priv(ndev);
3228 	struct ethtool_eee *p = &fep->eee;
3229 	int ret = 0;
3230 
3231 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3232 		return -EOPNOTSUPP;
3233 
3234 	if (!netif_running(ndev))
3235 		return -ENETDOWN;
3236 
3237 	p->tx_lpi_timer = edata->tx_lpi_timer;
3238 
3239 	if (!edata->eee_enabled || !edata->tx_lpi_enabled ||
3240 	    !edata->tx_lpi_timer)
3241 		ret = fec_enet_eee_mode_set(ndev, false);
3242 	else
3243 		ret = fec_enet_eee_mode_set(ndev, true);
3244 
3245 	if (ret)
3246 		return ret;
3247 
3248 	return phy_ethtool_set_eee(ndev->phydev, edata);
3249 }
3250 
3251 static void
fec_enet_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3252 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3253 {
3254 	struct fec_enet_private *fep = netdev_priv(ndev);
3255 
3256 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3257 		wol->supported = WAKE_MAGIC;
3258 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3259 	} else {
3260 		wol->supported = wol->wolopts = 0;
3261 	}
3262 }
3263 
3264 static int
fec_enet_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3265 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3266 {
3267 	struct fec_enet_private *fep = netdev_priv(ndev);
3268 
3269 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3270 		return -EINVAL;
3271 
3272 	if (wol->wolopts & ~WAKE_MAGIC)
3273 		return -EINVAL;
3274 
3275 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3276 	if (device_may_wakeup(&ndev->dev))
3277 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3278 	else
3279 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3280 
3281 	return 0;
3282 }
3283 
3284 static const struct ethtool_ops fec_enet_ethtool_ops = {
3285 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3286 				     ETHTOOL_COALESCE_MAX_FRAMES,
3287 	.get_drvinfo		= fec_enet_get_drvinfo,
3288 	.get_regs_len		= fec_enet_get_regs_len,
3289 	.get_regs		= fec_enet_get_regs,
3290 	.nway_reset		= phy_ethtool_nway_reset,
3291 	.get_link		= ethtool_op_get_link,
3292 	.get_coalesce		= fec_enet_get_coalesce,
3293 	.set_coalesce		= fec_enet_set_coalesce,
3294 #ifndef CONFIG_M5272
3295 	.get_pauseparam		= fec_enet_get_pauseparam,
3296 	.set_pauseparam		= fec_enet_set_pauseparam,
3297 	.get_strings		= fec_enet_get_strings,
3298 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3299 	.get_sset_count		= fec_enet_get_sset_count,
3300 #endif
3301 	.get_ts_info		= fec_enet_get_ts_info,
3302 	.get_wol		= fec_enet_get_wol,
3303 	.set_wol		= fec_enet_set_wol,
3304 	.get_eee		= fec_enet_get_eee,
3305 	.set_eee		= fec_enet_set_eee,
3306 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3307 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3308 	.self_test		= net_selftest,
3309 };
3310 
fec_enet_free_buffers(struct net_device * ndev)3311 static void fec_enet_free_buffers(struct net_device *ndev)
3312 {
3313 	struct fec_enet_private *fep = netdev_priv(ndev);
3314 	unsigned int i;
3315 	struct fec_enet_priv_tx_q *txq;
3316 	struct fec_enet_priv_rx_q *rxq;
3317 	unsigned int q;
3318 
3319 	for (q = 0; q < fep->num_rx_queues; q++) {
3320 		rxq = fep->rx_queue[q];
3321 		for (i = 0; i < rxq->bd.ring_size; i++)
3322 			page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3323 
3324 		for (i = 0; i < XDP_STATS_TOTAL; i++)
3325 			rxq->stats[i] = 0;
3326 
3327 		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3328 			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3329 		page_pool_destroy(rxq->page_pool);
3330 		rxq->page_pool = NULL;
3331 	}
3332 
3333 	for (q = 0; q < fep->num_tx_queues; q++) {
3334 		txq = fep->tx_queue[q];
3335 		for (i = 0; i < txq->bd.ring_size; i++) {
3336 			kfree(txq->tx_bounce[i]);
3337 			txq->tx_bounce[i] = NULL;
3338 
3339 			if (!txq->tx_buf[i].buf_p) {
3340 				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3341 				continue;
3342 			}
3343 
3344 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3345 				dev_kfree_skb(txq->tx_buf[i].buf_p);
3346 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3347 				xdp_return_frame(txq->tx_buf[i].buf_p);
3348 			} else {
3349 				struct page *page = txq->tx_buf[i].buf_p;
3350 
3351 				page_pool_put_page(page->pp, page, 0, false);
3352 			}
3353 
3354 			txq->tx_buf[i].buf_p = NULL;
3355 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3356 		}
3357 	}
3358 }
3359 
fec_enet_free_queue(struct net_device * ndev)3360 static void fec_enet_free_queue(struct net_device *ndev)
3361 {
3362 	struct fec_enet_private *fep = netdev_priv(ndev);
3363 	int i;
3364 	struct fec_enet_priv_tx_q *txq;
3365 
3366 	for (i = 0; i < fep->num_tx_queues; i++)
3367 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3368 			txq = fep->tx_queue[i];
3369 			dma_free_coherent(&fep->pdev->dev,
3370 					  txq->bd.ring_size * TSO_HEADER_SIZE,
3371 					  txq->tso_hdrs,
3372 					  txq->tso_hdrs_dma);
3373 		}
3374 
3375 	for (i = 0; i < fep->num_rx_queues; i++)
3376 		kfree(fep->rx_queue[i]);
3377 	for (i = 0; i < fep->num_tx_queues; i++)
3378 		kfree(fep->tx_queue[i]);
3379 }
3380 
fec_enet_alloc_queue(struct net_device * ndev)3381 static int fec_enet_alloc_queue(struct net_device *ndev)
3382 {
3383 	struct fec_enet_private *fep = netdev_priv(ndev);
3384 	int i;
3385 	int ret = 0;
3386 	struct fec_enet_priv_tx_q *txq;
3387 
3388 	for (i = 0; i < fep->num_tx_queues; i++) {
3389 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3390 		if (!txq) {
3391 			ret = -ENOMEM;
3392 			goto alloc_failed;
3393 		}
3394 
3395 		fep->tx_queue[i] = txq;
3396 		txq->bd.ring_size = TX_RING_SIZE;
3397 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3398 
3399 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3400 		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3401 
3402 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
3403 					txq->bd.ring_size * TSO_HEADER_SIZE,
3404 					&txq->tso_hdrs_dma,
3405 					GFP_KERNEL);
3406 		if (!txq->tso_hdrs) {
3407 			ret = -ENOMEM;
3408 			goto alloc_failed;
3409 		}
3410 	}
3411 
3412 	for (i = 0; i < fep->num_rx_queues; i++) {
3413 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3414 					   GFP_KERNEL);
3415 		if (!fep->rx_queue[i]) {
3416 			ret = -ENOMEM;
3417 			goto alloc_failed;
3418 		}
3419 
3420 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3421 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3422 	}
3423 	return ret;
3424 
3425 alloc_failed:
3426 	fec_enet_free_queue(ndev);
3427 	return ret;
3428 }
3429 
3430 static int
fec_enet_alloc_rxq_buffers(struct net_device * ndev,unsigned int queue)3431 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3432 {
3433 	struct fec_enet_private *fep = netdev_priv(ndev);
3434 	struct fec_enet_priv_rx_q *rxq;
3435 	dma_addr_t phys_addr;
3436 	struct bufdesc	*bdp;
3437 	struct page *page;
3438 	int i, err;
3439 
3440 	rxq = fep->rx_queue[queue];
3441 	bdp = rxq->bd.base;
3442 
3443 	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3444 	if (err < 0) {
3445 		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3446 		return err;
3447 	}
3448 
3449 	for (i = 0; i < rxq->bd.ring_size; i++) {
3450 		page = page_pool_dev_alloc_pages(rxq->page_pool);
3451 		if (!page)
3452 			goto err_alloc;
3453 
3454 		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3455 		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3456 
3457 		rxq->rx_skb_info[i].page = page;
3458 		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3459 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3460 
3461 		if (fep->bufdesc_ex) {
3462 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3463 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3464 		}
3465 
3466 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3467 	}
3468 
3469 	/* Set the last buffer to wrap. */
3470 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3471 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3472 	return 0;
3473 
3474  err_alloc:
3475 	fec_enet_free_buffers(ndev);
3476 	return -ENOMEM;
3477 }
3478 
3479 static int
fec_enet_alloc_txq_buffers(struct net_device * ndev,unsigned int queue)3480 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3481 {
3482 	struct fec_enet_private *fep = netdev_priv(ndev);
3483 	unsigned int i;
3484 	struct bufdesc  *bdp;
3485 	struct fec_enet_priv_tx_q *txq;
3486 
3487 	txq = fep->tx_queue[queue];
3488 	bdp = txq->bd.base;
3489 	for (i = 0; i < txq->bd.ring_size; i++) {
3490 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3491 		if (!txq->tx_bounce[i])
3492 			goto err_alloc;
3493 
3494 		bdp->cbd_sc = cpu_to_fec16(0);
3495 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3496 
3497 		if (fep->bufdesc_ex) {
3498 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3499 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3500 		}
3501 
3502 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3503 	}
3504 
3505 	/* Set the last buffer to wrap. */
3506 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3507 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3508 
3509 	return 0;
3510 
3511  err_alloc:
3512 	fec_enet_free_buffers(ndev);
3513 	return -ENOMEM;
3514 }
3515 
fec_enet_alloc_buffers(struct net_device * ndev)3516 static int fec_enet_alloc_buffers(struct net_device *ndev)
3517 {
3518 	struct fec_enet_private *fep = netdev_priv(ndev);
3519 	unsigned int i;
3520 
3521 	for (i = 0; i < fep->num_rx_queues; i++)
3522 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3523 			return -ENOMEM;
3524 
3525 	for (i = 0; i < fep->num_tx_queues; i++)
3526 		if (fec_enet_alloc_txq_buffers(ndev, i))
3527 			return -ENOMEM;
3528 	return 0;
3529 }
3530 
3531 static int
fec_enet_open(struct net_device * ndev)3532 fec_enet_open(struct net_device *ndev)
3533 {
3534 	struct fec_enet_private *fep = netdev_priv(ndev);
3535 	int ret;
3536 	bool reset_again;
3537 
3538 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3539 	if (ret < 0)
3540 		return ret;
3541 
3542 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3543 	ret = fec_enet_clk_enable(ndev, true);
3544 	if (ret)
3545 		goto clk_enable;
3546 
3547 	/* During the first fec_enet_open call the PHY isn't probed at this
3548 	 * point. Therefore the phy_reset_after_clk_enable() call within
3549 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3550 	 * sure the PHY is working correctly we check if we need to reset again
3551 	 * later when the PHY is probed
3552 	 */
3553 	if (ndev->phydev && ndev->phydev->drv)
3554 		reset_again = false;
3555 	else
3556 		reset_again = true;
3557 
3558 	/* I should reset the ring buffers here, but I don't yet know
3559 	 * a simple way to do that.
3560 	 */
3561 
3562 	ret = fec_enet_alloc_buffers(ndev);
3563 	if (ret)
3564 		goto err_enet_alloc;
3565 
3566 	/* Init MAC prior to mii bus probe */
3567 	fec_restart(ndev);
3568 
3569 	/* Call phy_reset_after_clk_enable() again if it failed during
3570 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3571 	 */
3572 	if (reset_again)
3573 		fec_enet_phy_reset_after_clk_enable(ndev);
3574 
3575 	/* Probe and connect to PHY when open the interface */
3576 	ret = fec_enet_mii_probe(ndev);
3577 	if (ret)
3578 		goto err_enet_mii_probe;
3579 
3580 	if (fep->quirks & FEC_QUIRK_ERR006687)
3581 		imx6q_cpuidle_fec_irqs_used();
3582 
3583 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3584 		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3585 
3586 	napi_enable(&fep->napi);
3587 	phy_start(ndev->phydev);
3588 	netif_tx_start_all_queues(ndev);
3589 
3590 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3591 				 FEC_WOL_FLAG_ENABLE);
3592 
3593 	return 0;
3594 
3595 err_enet_mii_probe:
3596 	fec_enet_free_buffers(ndev);
3597 err_enet_alloc:
3598 	fec_enet_clk_enable(ndev, false);
3599 clk_enable:
3600 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3601 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3602 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3603 	return ret;
3604 }
3605 
3606 static int
fec_enet_close(struct net_device * ndev)3607 fec_enet_close(struct net_device *ndev)
3608 {
3609 	struct fec_enet_private *fep = netdev_priv(ndev);
3610 
3611 	phy_stop(ndev->phydev);
3612 
3613 	if (netif_device_present(ndev)) {
3614 		napi_disable(&fep->napi);
3615 		netif_tx_disable(ndev);
3616 		fec_stop(ndev);
3617 	}
3618 
3619 	phy_disconnect(ndev->phydev);
3620 
3621 	if (fep->quirks & FEC_QUIRK_ERR006687)
3622 		imx6q_cpuidle_fec_irqs_unused();
3623 
3624 	fec_enet_update_ethtool_stats(ndev);
3625 
3626 	fec_enet_clk_enable(ndev, false);
3627 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3628 		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3629 
3630 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3631 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3632 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3633 
3634 	fec_enet_free_buffers(ndev);
3635 
3636 	return 0;
3637 }
3638 
3639 /* Set or clear the multicast filter for this adaptor.
3640  * Skeleton taken from sunlance driver.
3641  * The CPM Ethernet implementation allows Multicast as well as individual
3642  * MAC address filtering.  Some of the drivers check to make sure it is
3643  * a group multicast address, and discard those that are not.  I guess I
3644  * will do the same for now, but just remove the test if you want
3645  * individual filtering as well (do the upper net layers want or support
3646  * this kind of feature?).
3647  */
3648 
3649 #define FEC_HASH_BITS	6		/* #bits in hash */
3650 
set_multicast_list(struct net_device * ndev)3651 static void set_multicast_list(struct net_device *ndev)
3652 {
3653 	struct fec_enet_private *fep = netdev_priv(ndev);
3654 	struct netdev_hw_addr *ha;
3655 	unsigned int crc, tmp;
3656 	unsigned char hash;
3657 	unsigned int hash_high = 0, hash_low = 0;
3658 
3659 	if (ndev->flags & IFF_PROMISC) {
3660 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3661 		tmp |= 0x8;
3662 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3663 		return;
3664 	}
3665 
3666 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3667 	tmp &= ~0x8;
3668 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3669 
3670 	if (ndev->flags & IFF_ALLMULTI) {
3671 		/* Catch all multicast addresses, so set the
3672 		 * filter to all 1's
3673 		 */
3674 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3675 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3676 
3677 		return;
3678 	}
3679 
3680 	/* Add the addresses in hash register */
3681 	netdev_for_each_mc_addr(ha, ndev) {
3682 		/* calculate crc32 value of mac address */
3683 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3684 
3685 		/* only upper 6 bits (FEC_HASH_BITS) are used
3686 		 * which point to specific bit in the hash registers
3687 		 */
3688 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3689 
3690 		if (hash > 31)
3691 			hash_high |= 1 << (hash - 32);
3692 		else
3693 			hash_low |= 1 << hash;
3694 	}
3695 
3696 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3697 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3698 }
3699 
3700 /* Set a MAC change in hardware. */
3701 static int
fec_set_mac_address(struct net_device * ndev,void * p)3702 fec_set_mac_address(struct net_device *ndev, void *p)
3703 {
3704 	struct fec_enet_private *fep = netdev_priv(ndev);
3705 	struct sockaddr *addr = p;
3706 
3707 	if (addr) {
3708 		if (!is_valid_ether_addr(addr->sa_data))
3709 			return -EADDRNOTAVAIL;
3710 		eth_hw_addr_set(ndev, addr->sa_data);
3711 	}
3712 
3713 	/* Add netif status check here to avoid system hang in below case:
3714 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3715 	 * After ethx down, fec all clocks are gated off and then register
3716 	 * access causes system hang.
3717 	 */
3718 	if (!netif_running(ndev))
3719 		return 0;
3720 
3721 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3722 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3723 		fep->hwp + FEC_ADDR_LOW);
3724 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3725 		fep->hwp + FEC_ADDR_HIGH);
3726 	return 0;
3727 }
3728 
fec_enet_set_netdev_features(struct net_device * netdev,netdev_features_t features)3729 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3730 	netdev_features_t features)
3731 {
3732 	struct fec_enet_private *fep = netdev_priv(netdev);
3733 	netdev_features_t changed = features ^ netdev->features;
3734 
3735 	netdev->features = features;
3736 
3737 	/* Receive checksum has been changed */
3738 	if (changed & NETIF_F_RXCSUM) {
3739 		if (features & NETIF_F_RXCSUM)
3740 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3741 		else
3742 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3743 	}
3744 }
3745 
fec_set_features(struct net_device * netdev,netdev_features_t features)3746 static int fec_set_features(struct net_device *netdev,
3747 	netdev_features_t features)
3748 {
3749 	struct fec_enet_private *fep = netdev_priv(netdev);
3750 	netdev_features_t changed = features ^ netdev->features;
3751 
3752 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3753 		napi_disable(&fep->napi);
3754 		netif_tx_lock_bh(netdev);
3755 		fec_stop(netdev);
3756 		fec_enet_set_netdev_features(netdev, features);
3757 		fec_restart(netdev);
3758 		netif_tx_wake_all_queues(netdev);
3759 		netif_tx_unlock_bh(netdev);
3760 		napi_enable(&fep->napi);
3761 	} else {
3762 		fec_enet_set_netdev_features(netdev, features);
3763 	}
3764 
3765 	return 0;
3766 }
3767 
fec_enet_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)3768 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3769 				 struct net_device *sb_dev)
3770 {
3771 	struct fec_enet_private *fep = netdev_priv(ndev);
3772 	u16 vlan_tag = 0;
3773 
3774 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3775 		return netdev_pick_tx(ndev, skb, NULL);
3776 
3777 	/* VLAN is present in the payload.*/
3778 	if (eth_type_vlan(skb->protocol)) {
3779 		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3780 
3781 		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3782 	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3783 	} else if (skb_vlan_tag_present(skb)) {
3784 		vlan_tag = skb->vlan_tci;
3785 	} else {
3786 		return vlan_tag;
3787 	}
3788 
3789 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3790 }
3791 
fec_enet_bpf(struct net_device * dev,struct netdev_bpf * bpf)3792 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3793 {
3794 	struct fec_enet_private *fep = netdev_priv(dev);
3795 	bool is_run = netif_running(dev);
3796 	struct bpf_prog *old_prog;
3797 
3798 	switch (bpf->command) {
3799 	case XDP_SETUP_PROG:
3800 		/* No need to support the SoCs that require to
3801 		 * do the frame swap because the performance wouldn't be
3802 		 * better than the skb mode.
3803 		 */
3804 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3805 			return -EOPNOTSUPP;
3806 
3807 		if (!bpf->prog)
3808 			xdp_features_clear_redirect_target(dev);
3809 
3810 		if (is_run) {
3811 			napi_disable(&fep->napi);
3812 			netif_tx_disable(dev);
3813 		}
3814 
3815 		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3816 		if (old_prog)
3817 			bpf_prog_put(old_prog);
3818 
3819 		fec_restart(dev);
3820 
3821 		if (is_run) {
3822 			napi_enable(&fep->napi);
3823 			netif_tx_start_all_queues(dev);
3824 		}
3825 
3826 		if (bpf->prog)
3827 			xdp_features_set_redirect_target(dev, false);
3828 
3829 		return 0;
3830 
3831 	case XDP_SETUP_XSK_POOL:
3832 		return -EOPNOTSUPP;
3833 
3834 	default:
3835 		return -EOPNOTSUPP;
3836 	}
3837 }
3838 
3839 static int
fec_enet_xdp_get_tx_queue(struct fec_enet_private * fep,int index)3840 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3841 {
3842 	if (unlikely(index < 0))
3843 		return 0;
3844 
3845 	return (index % fep->num_tx_queues);
3846 }
3847 
fec_enet_txq_xmit_frame(struct fec_enet_private * fep,struct fec_enet_priv_tx_q * txq,void * frame,u32 dma_sync_len,bool ndo_xmit)3848 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3849 				   struct fec_enet_priv_tx_q *txq,
3850 				   void *frame, u32 dma_sync_len,
3851 				   bool ndo_xmit)
3852 {
3853 	unsigned int index, status, estatus;
3854 	struct bufdesc *bdp;
3855 	dma_addr_t dma_addr;
3856 	int entries_free;
3857 	u16 frame_len;
3858 
3859 	entries_free = fec_enet_get_free_txdesc_num(txq);
3860 	if (entries_free < MAX_SKB_FRAGS + 1) {
3861 		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3862 		return -EBUSY;
3863 	}
3864 
3865 	/* Fill in a Tx ring entry */
3866 	bdp = txq->bd.cur;
3867 	status = fec16_to_cpu(bdp->cbd_sc);
3868 	status &= ~BD_ENET_TX_STATS;
3869 
3870 	index = fec_enet_get_bd_index(bdp, &txq->bd);
3871 
3872 	if (ndo_xmit) {
3873 		struct xdp_frame *xdpf = frame;
3874 
3875 		dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3876 					  xdpf->len, DMA_TO_DEVICE);
3877 		if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3878 			return -ENOMEM;
3879 
3880 		frame_len = xdpf->len;
3881 		txq->tx_buf[index].buf_p = xdpf;
3882 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3883 	} else {
3884 		struct xdp_buff *xdpb = frame;
3885 		struct page *page;
3886 
3887 		page = virt_to_page(xdpb->data);
3888 		dma_addr = page_pool_get_dma_addr(page) +
3889 			   (xdpb->data - xdpb->data_hard_start);
3890 		dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3891 					   dma_sync_len, DMA_BIDIRECTIONAL);
3892 		frame_len = xdpb->data_end - xdpb->data;
3893 		txq->tx_buf[index].buf_p = page;
3894 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3895 	}
3896 
3897 	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3898 	if (fep->bufdesc_ex)
3899 		estatus = BD_ENET_TX_INT;
3900 
3901 	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3902 	bdp->cbd_datlen = cpu_to_fec16(frame_len);
3903 
3904 	if (fep->bufdesc_ex) {
3905 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3906 
3907 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3908 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3909 
3910 		ebdp->cbd_bdu = 0;
3911 		ebdp->cbd_esc = cpu_to_fec32(estatus);
3912 	}
3913 
3914 	/* Make sure the updates to rest of the descriptor are performed before
3915 	 * transferring ownership.
3916 	 */
3917 	dma_wmb();
3918 
3919 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3920 	 * it's the last BD of the frame, and to put the CRC on the end.
3921 	 */
3922 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3923 	bdp->cbd_sc = cpu_to_fec16(status);
3924 
3925 	/* If this was the last BD in the ring, start at the beginning again. */
3926 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3927 
3928 	/* Make sure the update to bdp are performed before txq->bd.cur. */
3929 	dma_wmb();
3930 
3931 	txq->bd.cur = bdp;
3932 
3933 	/* Trigger transmission start */
3934 	writel(0, txq->bd.reg_desc_active);
3935 
3936 	return 0;
3937 }
3938 
fec_enet_xdp_tx_xmit(struct fec_enet_private * fep,int cpu,struct xdp_buff * xdp,u32 dma_sync_len)3939 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3940 				int cpu, struct xdp_buff *xdp,
3941 				u32 dma_sync_len)
3942 {
3943 	struct fec_enet_priv_tx_q *txq;
3944 	struct netdev_queue *nq;
3945 	int queue, ret;
3946 
3947 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3948 	txq = fep->tx_queue[queue];
3949 	nq = netdev_get_tx_queue(fep->netdev, queue);
3950 
3951 	__netif_tx_lock(nq, cpu);
3952 
3953 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3954 	txq_trans_cond_update(nq);
3955 	ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3956 
3957 	__netif_tx_unlock(nq);
3958 
3959 	return ret;
3960 }
3961 
fec_enet_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)3962 static int fec_enet_xdp_xmit(struct net_device *dev,
3963 			     int num_frames,
3964 			     struct xdp_frame **frames,
3965 			     u32 flags)
3966 {
3967 	struct fec_enet_private *fep = netdev_priv(dev);
3968 	struct fec_enet_priv_tx_q *txq;
3969 	int cpu = smp_processor_id();
3970 	unsigned int sent_frames = 0;
3971 	struct netdev_queue *nq;
3972 	unsigned int queue;
3973 	int i;
3974 
3975 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3976 	txq = fep->tx_queue[queue];
3977 	nq = netdev_get_tx_queue(fep->netdev, queue);
3978 
3979 	__netif_tx_lock(nq, cpu);
3980 
3981 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3982 	txq_trans_cond_update(nq);
3983 	for (i = 0; i < num_frames; i++) {
3984 		if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3985 			break;
3986 		sent_frames++;
3987 	}
3988 
3989 	__netif_tx_unlock(nq);
3990 
3991 	return sent_frames;
3992 }
3993 
fec_hwtstamp_get(struct net_device * ndev,struct kernel_hwtstamp_config * config)3994 static int fec_hwtstamp_get(struct net_device *ndev,
3995 			    struct kernel_hwtstamp_config *config)
3996 {
3997 	struct fec_enet_private *fep = netdev_priv(ndev);
3998 
3999 	if (!netif_running(ndev))
4000 		return -EINVAL;
4001 
4002 	if (!fep->bufdesc_ex)
4003 		return -EOPNOTSUPP;
4004 
4005 	fec_ptp_get(ndev, config);
4006 
4007 	return 0;
4008 }
4009 
fec_hwtstamp_set(struct net_device * ndev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)4010 static int fec_hwtstamp_set(struct net_device *ndev,
4011 			    struct kernel_hwtstamp_config *config,
4012 			    struct netlink_ext_ack *extack)
4013 {
4014 	struct fec_enet_private *fep = netdev_priv(ndev);
4015 
4016 	if (!netif_running(ndev))
4017 		return -EINVAL;
4018 
4019 	if (!fep->bufdesc_ex)
4020 		return -EOPNOTSUPP;
4021 
4022 	return fec_ptp_set(ndev, config, extack);
4023 }
4024 
4025 static const struct net_device_ops fec_netdev_ops = {
4026 	.ndo_open		= fec_enet_open,
4027 	.ndo_stop		= fec_enet_close,
4028 	.ndo_start_xmit		= fec_enet_start_xmit,
4029 	.ndo_select_queue       = fec_enet_select_queue,
4030 	.ndo_set_rx_mode	= set_multicast_list,
4031 	.ndo_validate_addr	= eth_validate_addr,
4032 	.ndo_tx_timeout		= fec_timeout,
4033 	.ndo_set_mac_address	= fec_set_mac_address,
4034 	.ndo_eth_ioctl		= phy_do_ioctl_running,
4035 	.ndo_set_features	= fec_set_features,
4036 	.ndo_bpf		= fec_enet_bpf,
4037 	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
4038 	.ndo_hwtstamp_get	= fec_hwtstamp_get,
4039 	.ndo_hwtstamp_set	= fec_hwtstamp_set,
4040 };
4041 
4042 static const unsigned short offset_des_active_rxq[] = {
4043 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4044 };
4045 
4046 static const unsigned short offset_des_active_txq[] = {
4047 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4048 };
4049 
4050  /*
4051   * XXX:  We need to clean up on failure exits here.
4052   *
4053   */
fec_enet_init(struct net_device * ndev)4054 static int fec_enet_init(struct net_device *ndev)
4055 {
4056 	struct fec_enet_private *fep = netdev_priv(ndev);
4057 	struct bufdesc *cbd_base;
4058 	dma_addr_t bd_dma;
4059 	int bd_size;
4060 	unsigned int i;
4061 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4062 			sizeof(struct bufdesc);
4063 	unsigned dsize_log2 = __fls(dsize);
4064 	int ret;
4065 
4066 	WARN_ON(dsize != (1 << dsize_log2));
4067 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4068 	fep->rx_align = 0xf;
4069 	fep->tx_align = 0xf;
4070 #else
4071 	fep->rx_align = 0x3;
4072 	fep->tx_align = 0x3;
4073 #endif
4074 	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4075 	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4076 	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4077 	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4078 
4079 	/* Check mask of the streaming and coherent API */
4080 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4081 	if (ret < 0) {
4082 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4083 		return ret;
4084 	}
4085 
4086 	ret = fec_enet_alloc_queue(ndev);
4087 	if (ret)
4088 		return ret;
4089 
4090 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4091 
4092 	/* Allocate memory for buffer descriptors. */
4093 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
4094 				       GFP_KERNEL);
4095 	if (!cbd_base) {
4096 		ret = -ENOMEM;
4097 		goto free_queue_mem;
4098 	}
4099 
4100 	/* Get the Ethernet address */
4101 	ret = fec_get_mac(ndev);
4102 	if (ret)
4103 		goto free_queue_mem;
4104 
4105 	/* Set receive and transmit descriptor base. */
4106 	for (i = 0; i < fep->num_rx_queues; i++) {
4107 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4108 		unsigned size = dsize * rxq->bd.ring_size;
4109 
4110 		rxq->bd.qid = i;
4111 		rxq->bd.base = cbd_base;
4112 		rxq->bd.cur = cbd_base;
4113 		rxq->bd.dma = bd_dma;
4114 		rxq->bd.dsize = dsize;
4115 		rxq->bd.dsize_log2 = dsize_log2;
4116 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4117 		bd_dma += size;
4118 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4119 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4120 	}
4121 
4122 	for (i = 0; i < fep->num_tx_queues; i++) {
4123 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4124 		unsigned size = dsize * txq->bd.ring_size;
4125 
4126 		txq->bd.qid = i;
4127 		txq->bd.base = cbd_base;
4128 		txq->bd.cur = cbd_base;
4129 		txq->bd.dma = bd_dma;
4130 		txq->bd.dsize = dsize;
4131 		txq->bd.dsize_log2 = dsize_log2;
4132 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4133 		bd_dma += size;
4134 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4135 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4136 	}
4137 
4138 
4139 	/* The FEC Ethernet specific entries in the device structure */
4140 	ndev->watchdog_timeo = TX_TIMEOUT;
4141 	ndev->netdev_ops = &fec_netdev_ops;
4142 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4143 
4144 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4145 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4146 
4147 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4148 		/* enable hw VLAN support */
4149 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4150 
4151 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4152 		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4153 
4154 		/* enable hw accelerator */
4155 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4156 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4157 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4158 	}
4159 
4160 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4161 		fep->tx_align = 0;
4162 		fep->rx_align = 0x3f;
4163 	}
4164 
4165 	ndev->hw_features = ndev->features;
4166 
4167 	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4168 		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4169 				     NETDEV_XDP_ACT_REDIRECT;
4170 
4171 	fec_restart(ndev);
4172 
4173 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4174 		fec_enet_clear_ethtool_stats(ndev);
4175 	else
4176 		fec_enet_update_ethtool_stats(ndev);
4177 
4178 	return 0;
4179 
4180 free_queue_mem:
4181 	fec_enet_free_queue(ndev);
4182 	return ret;
4183 }
4184 
fec_enet_deinit(struct net_device * ndev)4185 static void fec_enet_deinit(struct net_device *ndev)
4186 {
4187 	struct fec_enet_private *fep = netdev_priv(ndev);
4188 
4189 	netif_napi_del(&fep->napi);
4190 	fec_enet_free_queue(ndev);
4191 }
4192 
4193 #ifdef CONFIG_OF
fec_reset_phy(struct platform_device * pdev)4194 static int fec_reset_phy(struct platform_device *pdev)
4195 {
4196 	struct gpio_desc *phy_reset;
4197 	int msec = 1, phy_post_delay = 0;
4198 	struct device_node *np = pdev->dev.of_node;
4199 	int err;
4200 
4201 	if (!np)
4202 		return 0;
4203 
4204 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4205 	/* A sane reset duration should not be longer than 1s */
4206 	if (!err && msec > 1000)
4207 		msec = 1;
4208 
4209 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4210 	/* valid reset duration should be less than 1s */
4211 	if (!err && phy_post_delay > 1000)
4212 		return -EINVAL;
4213 
4214 	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4215 					    GPIOD_OUT_HIGH);
4216 	if (IS_ERR(phy_reset))
4217 		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4218 				     "failed to get phy-reset-gpios\n");
4219 
4220 	if (!phy_reset)
4221 		return 0;
4222 
4223 	if (msec > 20)
4224 		msleep(msec);
4225 	else
4226 		usleep_range(msec * 1000, msec * 1000 + 1000);
4227 
4228 	gpiod_set_value_cansleep(phy_reset, 0);
4229 
4230 	if (!phy_post_delay)
4231 		return 0;
4232 
4233 	if (phy_post_delay > 20)
4234 		msleep(phy_post_delay);
4235 	else
4236 		usleep_range(phy_post_delay * 1000,
4237 			     phy_post_delay * 1000 + 1000);
4238 
4239 	return 0;
4240 }
4241 #else /* CONFIG_OF */
fec_reset_phy(struct platform_device * pdev)4242 static int fec_reset_phy(struct platform_device *pdev)
4243 {
4244 	/*
4245 	 * In case of platform probe, the reset has been done
4246 	 * by machine code.
4247 	 */
4248 	return 0;
4249 }
4250 #endif /* CONFIG_OF */
4251 
4252 static void
fec_enet_get_queue_num(struct platform_device * pdev,int * num_tx,int * num_rx)4253 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4254 {
4255 	struct device_node *np = pdev->dev.of_node;
4256 
4257 	*num_tx = *num_rx = 1;
4258 
4259 	if (!np || !of_device_is_available(np))
4260 		return;
4261 
4262 	/* parse the num of tx and rx queues */
4263 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4264 
4265 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4266 
4267 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4268 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4269 			 *num_tx);
4270 		*num_tx = 1;
4271 		return;
4272 	}
4273 
4274 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4275 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4276 			 *num_rx);
4277 		*num_rx = 1;
4278 		return;
4279 	}
4280 
4281 }
4282 
fec_enet_get_irq_cnt(struct platform_device * pdev)4283 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4284 {
4285 	int irq_cnt = platform_irq_count(pdev);
4286 
4287 	if (irq_cnt > FEC_IRQ_NUM)
4288 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4289 	else if (irq_cnt == 2)
4290 		irq_cnt = 1;	/* last for pps */
4291 	else if (irq_cnt <= 0)
4292 		irq_cnt = 1;	/* At least 1 irq is needed */
4293 	return irq_cnt;
4294 }
4295 
fec_enet_get_wakeup_irq(struct platform_device * pdev)4296 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4297 {
4298 	struct net_device *ndev = platform_get_drvdata(pdev);
4299 	struct fec_enet_private *fep = netdev_priv(ndev);
4300 
4301 	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4302 		fep->wake_irq = fep->irq[2];
4303 	else
4304 		fep->wake_irq = fep->irq[0];
4305 }
4306 
fec_enet_init_stop_mode(struct fec_enet_private * fep,struct device_node * np)4307 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4308 				   struct device_node *np)
4309 {
4310 	struct device_node *gpr_np;
4311 	u32 out_val[3];
4312 	int ret = 0;
4313 
4314 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4315 	if (!gpr_np)
4316 		return 0;
4317 
4318 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4319 					 ARRAY_SIZE(out_val));
4320 	if (ret) {
4321 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4322 		goto out;
4323 	}
4324 
4325 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4326 	if (IS_ERR(fep->stop_gpr.gpr)) {
4327 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4328 		ret = PTR_ERR(fep->stop_gpr.gpr);
4329 		fep->stop_gpr.gpr = NULL;
4330 		goto out;
4331 	}
4332 
4333 	fep->stop_gpr.reg = out_val[1];
4334 	fep->stop_gpr.bit = out_val[2];
4335 
4336 out:
4337 	of_node_put(gpr_np);
4338 
4339 	return ret;
4340 }
4341 
4342 static int
fec_probe(struct platform_device * pdev)4343 fec_probe(struct platform_device *pdev)
4344 {
4345 	struct fec_enet_private *fep;
4346 	struct fec_platform_data *pdata;
4347 	phy_interface_t interface;
4348 	struct net_device *ndev;
4349 	int i, irq, ret = 0;
4350 	const struct of_device_id *of_id;
4351 	static int dev_id;
4352 	struct device_node *np = pdev->dev.of_node, *phy_node;
4353 	int num_tx_qs;
4354 	int num_rx_qs;
4355 	char irq_name[8];
4356 	int irq_cnt;
4357 	struct fec_devinfo *dev_info;
4358 
4359 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4360 
4361 	/* Init network device */
4362 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4363 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4364 	if (!ndev)
4365 		return -ENOMEM;
4366 
4367 	SET_NETDEV_DEV(ndev, &pdev->dev);
4368 
4369 	/* setup board info structure */
4370 	fep = netdev_priv(ndev);
4371 
4372 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
4373 	if (of_id)
4374 		pdev->id_entry = of_id->data;
4375 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
4376 	if (dev_info)
4377 		fep->quirks = dev_info->quirks;
4378 
4379 	fep->netdev = ndev;
4380 	fep->num_rx_queues = num_rx_qs;
4381 	fep->num_tx_queues = num_tx_qs;
4382 
4383 #if !defined(CONFIG_M5272)
4384 	/* default enable pause frame auto negotiation */
4385 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4386 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4387 #endif
4388 
4389 	/* Select default pin state */
4390 	pinctrl_pm_select_default_state(&pdev->dev);
4391 
4392 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4393 	if (IS_ERR(fep->hwp)) {
4394 		ret = PTR_ERR(fep->hwp);
4395 		goto failed_ioremap;
4396 	}
4397 
4398 	fep->pdev = pdev;
4399 	fep->dev_id = dev_id++;
4400 
4401 	platform_set_drvdata(pdev, ndev);
4402 
4403 	if ((of_machine_is_compatible("fsl,imx6q") ||
4404 	     of_machine_is_compatible("fsl,imx6dl")) &&
4405 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4406 		fep->quirks |= FEC_QUIRK_ERR006687;
4407 
4408 	ret = fec_enet_ipc_handle_init(fep);
4409 	if (ret)
4410 		goto failed_ipc_init;
4411 
4412 	if (of_property_read_bool(np, "fsl,magic-packet"))
4413 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4414 
4415 	ret = fec_enet_init_stop_mode(fep, np);
4416 	if (ret)
4417 		goto failed_stop_mode;
4418 
4419 	phy_node = of_parse_phandle(np, "phy-handle", 0);
4420 	if (!phy_node && of_phy_is_fixed_link(np)) {
4421 		ret = of_phy_register_fixed_link(np);
4422 		if (ret < 0) {
4423 			dev_err(&pdev->dev,
4424 				"broken fixed-link specification\n");
4425 			goto failed_phy;
4426 		}
4427 		phy_node = of_node_get(np);
4428 	}
4429 	fep->phy_node = phy_node;
4430 
4431 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4432 	if (ret) {
4433 		pdata = dev_get_platdata(&pdev->dev);
4434 		if (pdata)
4435 			fep->phy_interface = pdata->phy;
4436 		else
4437 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4438 	} else {
4439 		fep->phy_interface = interface;
4440 	}
4441 
4442 	ret = fec_enet_parse_rgmii_delay(fep, np);
4443 	if (ret)
4444 		goto failed_rgmii_delay;
4445 
4446 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4447 	if (IS_ERR(fep->clk_ipg)) {
4448 		ret = PTR_ERR(fep->clk_ipg);
4449 		goto failed_clk;
4450 	}
4451 
4452 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4453 	if (IS_ERR(fep->clk_ahb)) {
4454 		ret = PTR_ERR(fep->clk_ahb);
4455 		goto failed_clk;
4456 	}
4457 
4458 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4459 
4460 	/* enet_out is optional, depends on board */
4461 	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4462 	if (IS_ERR(fep->clk_enet_out)) {
4463 		ret = PTR_ERR(fep->clk_enet_out);
4464 		goto failed_clk;
4465 	}
4466 
4467 	fep->ptp_clk_on = false;
4468 	mutex_init(&fep->ptp_clk_mutex);
4469 
4470 	/* clk_ref is optional, depends on board */
4471 	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4472 	if (IS_ERR(fep->clk_ref)) {
4473 		ret = PTR_ERR(fep->clk_ref);
4474 		goto failed_clk;
4475 	}
4476 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4477 
4478 	/* clk_2x_txclk is optional, depends on board */
4479 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4480 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4481 		if (IS_ERR(fep->clk_2x_txclk))
4482 			fep->clk_2x_txclk = NULL;
4483 	}
4484 
4485 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4486 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4487 	if (IS_ERR(fep->clk_ptp)) {
4488 		fep->clk_ptp = NULL;
4489 		fep->bufdesc_ex = false;
4490 	}
4491 
4492 	ret = fec_enet_clk_enable(ndev, true);
4493 	if (ret)
4494 		goto failed_clk;
4495 
4496 	ret = clk_prepare_enable(fep->clk_ipg);
4497 	if (ret)
4498 		goto failed_clk_ipg;
4499 	ret = clk_prepare_enable(fep->clk_ahb);
4500 	if (ret)
4501 		goto failed_clk_ahb;
4502 
4503 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4504 	if (!IS_ERR(fep->reg_phy)) {
4505 		ret = regulator_enable(fep->reg_phy);
4506 		if (ret) {
4507 			dev_err(&pdev->dev,
4508 				"Failed to enable phy regulator: %d\n", ret);
4509 			goto failed_regulator;
4510 		}
4511 	} else {
4512 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4513 			ret = -EPROBE_DEFER;
4514 			goto failed_regulator;
4515 		}
4516 		fep->reg_phy = NULL;
4517 	}
4518 
4519 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4520 	pm_runtime_use_autosuspend(&pdev->dev);
4521 	pm_runtime_get_noresume(&pdev->dev);
4522 	pm_runtime_set_active(&pdev->dev);
4523 	pm_runtime_enable(&pdev->dev);
4524 
4525 	ret = fec_reset_phy(pdev);
4526 	if (ret)
4527 		goto failed_reset;
4528 
4529 	irq_cnt = fec_enet_get_irq_cnt(pdev);
4530 	if (fep->bufdesc_ex)
4531 		fec_ptp_init(pdev, irq_cnt);
4532 
4533 	ret = fec_enet_init(ndev);
4534 	if (ret)
4535 		goto failed_init;
4536 
4537 	for (i = 0; i < irq_cnt; i++) {
4538 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4539 		irq = platform_get_irq_byname_optional(pdev, irq_name);
4540 		if (irq < 0)
4541 			irq = platform_get_irq(pdev, i);
4542 		if (irq < 0) {
4543 			ret = irq;
4544 			goto failed_irq;
4545 		}
4546 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4547 				       0, pdev->name, ndev);
4548 		if (ret)
4549 			goto failed_irq;
4550 
4551 		fep->irq[i] = irq;
4552 	}
4553 
4554 	/* Decide which interrupt line is wakeup capable */
4555 	fec_enet_get_wakeup_irq(pdev);
4556 
4557 	ret = fec_enet_mii_init(pdev);
4558 	if (ret)
4559 		goto failed_mii_init;
4560 
4561 	/* Carrier starts down, phylib will bring it up */
4562 	netif_carrier_off(ndev);
4563 	fec_enet_clk_enable(ndev, false);
4564 	pinctrl_pm_select_sleep_state(&pdev->dev);
4565 
4566 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4567 
4568 	ret = register_netdev(ndev);
4569 	if (ret)
4570 		goto failed_register;
4571 
4572 	device_init_wakeup(&ndev->dev, fep->wol_flag &
4573 			   FEC_WOL_HAS_MAGIC_PACKET);
4574 
4575 	if (fep->bufdesc_ex && fep->ptp_clock)
4576 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4577 
4578 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4579 
4580 	pm_runtime_mark_last_busy(&pdev->dev);
4581 	pm_runtime_put_autosuspend(&pdev->dev);
4582 
4583 	return 0;
4584 
4585 failed_register:
4586 	fec_enet_mii_remove(fep);
4587 failed_mii_init:
4588 failed_irq:
4589 	fec_enet_deinit(ndev);
4590 failed_init:
4591 	fec_ptp_stop(pdev);
4592 failed_reset:
4593 	pm_runtime_put_noidle(&pdev->dev);
4594 	pm_runtime_disable(&pdev->dev);
4595 	if (fep->reg_phy)
4596 		regulator_disable(fep->reg_phy);
4597 failed_regulator:
4598 	clk_disable_unprepare(fep->clk_ahb);
4599 failed_clk_ahb:
4600 	clk_disable_unprepare(fep->clk_ipg);
4601 failed_clk_ipg:
4602 	fec_enet_clk_enable(ndev, false);
4603 failed_clk:
4604 failed_rgmii_delay:
4605 	if (of_phy_is_fixed_link(np))
4606 		of_phy_deregister_fixed_link(np);
4607 	of_node_put(phy_node);
4608 failed_stop_mode:
4609 failed_ipc_init:
4610 failed_phy:
4611 	dev_id--;
4612 failed_ioremap:
4613 	free_netdev(ndev);
4614 
4615 	return ret;
4616 }
4617 
4618 static void
fec_drv_remove(struct platform_device * pdev)4619 fec_drv_remove(struct platform_device *pdev)
4620 {
4621 	struct net_device *ndev = platform_get_drvdata(pdev);
4622 	struct fec_enet_private *fep = netdev_priv(ndev);
4623 	struct device_node *np = pdev->dev.of_node;
4624 	int ret;
4625 
4626 	ret = pm_runtime_get_sync(&pdev->dev);
4627 	if (ret < 0)
4628 		dev_err(&pdev->dev,
4629 			"Failed to resume device in remove callback (%pe)\n",
4630 			ERR_PTR(ret));
4631 
4632 	cancel_work_sync(&fep->tx_timeout_work);
4633 	fec_ptp_stop(pdev);
4634 	unregister_netdev(ndev);
4635 	fec_enet_mii_remove(fep);
4636 	if (fep->reg_phy)
4637 		regulator_disable(fep->reg_phy);
4638 
4639 	if (of_phy_is_fixed_link(np))
4640 		of_phy_deregister_fixed_link(np);
4641 	of_node_put(fep->phy_node);
4642 
4643 	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4644 	 * disabling them again.
4645 	 */
4646 	if (ret >= 0) {
4647 		clk_disable_unprepare(fep->clk_ahb);
4648 		clk_disable_unprepare(fep->clk_ipg);
4649 	}
4650 	pm_runtime_put_noidle(&pdev->dev);
4651 	pm_runtime_disable(&pdev->dev);
4652 
4653 	fec_enet_deinit(ndev);
4654 	free_netdev(ndev);
4655 }
4656 
fec_suspend(struct device * dev)4657 static int __maybe_unused fec_suspend(struct device *dev)
4658 {
4659 	struct net_device *ndev = dev_get_drvdata(dev);
4660 	struct fec_enet_private *fep = netdev_priv(ndev);
4661 	int ret;
4662 
4663 	rtnl_lock();
4664 	if (netif_running(ndev)) {
4665 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4666 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4667 		phy_stop(ndev->phydev);
4668 		napi_disable(&fep->napi);
4669 		netif_tx_lock_bh(ndev);
4670 		netif_device_detach(ndev);
4671 		netif_tx_unlock_bh(ndev);
4672 		fec_stop(ndev);
4673 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4674 			fec_irqs_disable(ndev);
4675 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4676 		} else {
4677 			fec_irqs_disable_except_wakeup(ndev);
4678 			if (fep->wake_irq > 0) {
4679 				disable_irq(fep->wake_irq);
4680 				enable_irq_wake(fep->wake_irq);
4681 			}
4682 			fec_enet_stop_mode(fep, true);
4683 		}
4684 		/* It's safe to disable clocks since interrupts are masked */
4685 		fec_enet_clk_enable(ndev, false);
4686 
4687 		fep->rpm_active = !pm_runtime_status_suspended(dev);
4688 		if (fep->rpm_active) {
4689 			ret = pm_runtime_force_suspend(dev);
4690 			if (ret < 0) {
4691 				rtnl_unlock();
4692 				return ret;
4693 			}
4694 		}
4695 	}
4696 	rtnl_unlock();
4697 
4698 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4699 		regulator_disable(fep->reg_phy);
4700 
4701 	/* SOC supply clock to phy, when clock is disabled, phy link down
4702 	 * SOC control phy regulator, when regulator is disabled, phy link down
4703 	 */
4704 	if (fep->clk_enet_out || fep->reg_phy)
4705 		fep->link = 0;
4706 
4707 	return 0;
4708 }
4709 
fec_resume(struct device * dev)4710 static int __maybe_unused fec_resume(struct device *dev)
4711 {
4712 	struct net_device *ndev = dev_get_drvdata(dev);
4713 	struct fec_enet_private *fep = netdev_priv(ndev);
4714 	int ret;
4715 	int val;
4716 
4717 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4718 		ret = regulator_enable(fep->reg_phy);
4719 		if (ret)
4720 			return ret;
4721 	}
4722 
4723 	rtnl_lock();
4724 	if (netif_running(ndev)) {
4725 		if (fep->rpm_active)
4726 			pm_runtime_force_resume(dev);
4727 
4728 		ret = fec_enet_clk_enable(ndev, true);
4729 		if (ret) {
4730 			rtnl_unlock();
4731 			goto failed_clk;
4732 		}
4733 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4734 			fec_enet_stop_mode(fep, false);
4735 			if (fep->wake_irq) {
4736 				disable_irq_wake(fep->wake_irq);
4737 				enable_irq(fep->wake_irq);
4738 			}
4739 
4740 			val = readl(fep->hwp + FEC_ECNTRL);
4741 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4742 			writel(val, fep->hwp + FEC_ECNTRL);
4743 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4744 		} else {
4745 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4746 		}
4747 		fec_restart(ndev);
4748 		netif_tx_lock_bh(ndev);
4749 		netif_device_attach(ndev);
4750 		netif_tx_unlock_bh(ndev);
4751 		napi_enable(&fep->napi);
4752 		phy_init_hw(ndev->phydev);
4753 		phy_start(ndev->phydev);
4754 	}
4755 	rtnl_unlock();
4756 
4757 	return 0;
4758 
4759 failed_clk:
4760 	if (fep->reg_phy)
4761 		regulator_disable(fep->reg_phy);
4762 	return ret;
4763 }
4764 
fec_runtime_suspend(struct device * dev)4765 static int __maybe_unused fec_runtime_suspend(struct device *dev)
4766 {
4767 	struct net_device *ndev = dev_get_drvdata(dev);
4768 	struct fec_enet_private *fep = netdev_priv(ndev);
4769 
4770 	clk_disable_unprepare(fep->clk_ahb);
4771 	clk_disable_unprepare(fep->clk_ipg);
4772 
4773 	return 0;
4774 }
4775 
fec_runtime_resume(struct device * dev)4776 static int __maybe_unused fec_runtime_resume(struct device *dev)
4777 {
4778 	struct net_device *ndev = dev_get_drvdata(dev);
4779 	struct fec_enet_private *fep = netdev_priv(ndev);
4780 	int ret;
4781 
4782 	ret = clk_prepare_enable(fep->clk_ahb);
4783 	if (ret)
4784 		return ret;
4785 	ret = clk_prepare_enable(fep->clk_ipg);
4786 	if (ret)
4787 		goto failed_clk_ipg;
4788 
4789 	return 0;
4790 
4791 failed_clk_ipg:
4792 	clk_disable_unprepare(fep->clk_ahb);
4793 	return ret;
4794 }
4795 
4796 static const struct dev_pm_ops fec_pm_ops = {
4797 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4798 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4799 };
4800 
4801 static struct platform_driver fec_driver = {
4802 	.driver	= {
4803 		.name	= DRIVER_NAME,
4804 		.pm	= &fec_pm_ops,
4805 		.of_match_table = fec_dt_ids,
4806 		.suppress_bind_attrs = true,
4807 	},
4808 	.id_table = fec_devtype,
4809 	.probe	= fec_probe,
4810 	.remove_new = fec_drv_remove,
4811 };
4812 
4813 module_platform_driver(fec_driver);
4814 
4815 MODULE_LICENSE("GPL");
4816