1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2020-2022 Loongson Technology Corporation Limited
4 *
5 * Derived from MIPS:
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
12 */
13 #include <linux/init.h>
14 #include <linux/acpi.h>
15 #include <linux/cpu.h>
16 #include <linux/dmi.h>
17 #include <linux/efi.h>
18 #include <linux/export.h>
19 #include <linux/screen_info.h>
20 #include <linux/memblock.h>
21 #include <linux/initrd.h>
22 #include <linux/ioport.h>
23 #include <linux/kexec.h>
24 #include <linux/crash_dump.h>
25 #include <linux/root_dev.h>
26 #include <linux/console.h>
27 #include <linux/pfn.h>
28 #include <linux/platform_device.h>
29 #include <linux/sizes.h>
30 #include <linux/device.h>
31 #include <linux/dma-map-ops.h>
32 #include <linux/libfdt.h>
33 #include <linux/of_fdt.h>
34 #include <linux/of_address.h>
35 #include <linux/suspend.h>
36 #include <linux/swiotlb.h>
37
38 #include <asm/addrspace.h>
39 #include <asm/alternative.h>
40 #include <asm/bootinfo.h>
41 #include <asm/cache.h>
42 #include <asm/cpu.h>
43 #include <asm/dma.h>
44 #include <asm/efi.h>
45 #include <asm/loongson.h>
46 #include <asm/numa.h>
47 #include <asm/pgalloc.h>
48 #include <asm/sections.h>
49 #include <asm/setup.h>
50 #include <asm/time.h>
51
52 #define SMBIOS_BIOSSIZE_OFFSET 0x09
53 #define SMBIOS_BIOSEXTERN_OFFSET 0x13
54 #define SMBIOS_FREQLOW_OFFSET 0x16
55 #define SMBIOS_FREQHIGH_OFFSET 0x17
56 #define SMBIOS_FREQLOW_MASK 0xFF
57 #define SMBIOS_CORE_PACKAGE_OFFSET 0x23
58 #define SMBIOS_THREAD_PACKAGE_OFFSET 0x25
59 #define LOONGSON_EFI_ENABLE (1 << 3)
60
61 #ifdef CONFIG_EFI
62 struct screen_info screen_info __section(".data");
63 #endif
64
65 unsigned long fw_arg0, fw_arg1, fw_arg2;
66 DEFINE_PER_CPU(unsigned long, kernelsp);
67 struct cpuinfo_loongarch cpu_data[NR_CPUS] __read_mostly;
68
69 EXPORT_SYMBOL(cpu_data);
70
71 struct loongson_board_info b_info;
72 static const char dmi_empty_string[] = " ";
73
74 /*
75 * Setup information
76 *
77 * These are initialized so they are in the .data section
78 */
79 char init_command_line[COMMAND_LINE_SIZE] __initdata;
80
81 static int num_standard_resources;
82 static struct resource *standard_resources;
83
84 static struct resource code_resource = { .name = "Kernel code", };
85 static struct resource data_resource = { .name = "Kernel data", };
86 static struct resource bss_resource = { .name = "Kernel bss", };
87
get_system_type(void)88 const char *get_system_type(void)
89 {
90 return "generic-loongson-machine";
91 }
92
arch_cpu_finalize_init(void)93 void __init arch_cpu_finalize_init(void)
94 {
95 alternative_instructions();
96 }
97
dmi_string_parse(const struct dmi_header * dm,u8 s)98 static const char *dmi_string_parse(const struct dmi_header *dm, u8 s)
99 {
100 const u8 *bp = ((u8 *) dm) + dm->length;
101
102 if (s) {
103 s--;
104 while (s > 0 && *bp) {
105 bp += strlen(bp) + 1;
106 s--;
107 }
108
109 if (*bp != 0) {
110 size_t len = strlen(bp)+1;
111 size_t cmp_len = len > 8 ? 8 : len;
112
113 if (!memcmp(bp, dmi_empty_string, cmp_len))
114 return dmi_empty_string;
115
116 return bp;
117 }
118 }
119
120 return "";
121 }
122
parse_cpu_table(const struct dmi_header * dm)123 static void __init parse_cpu_table(const struct dmi_header *dm)
124 {
125 long freq_temp = 0;
126 char *dmi_data = (char *)dm;
127
128 freq_temp = ((*(dmi_data + SMBIOS_FREQHIGH_OFFSET) << 8) +
129 ((*(dmi_data + SMBIOS_FREQLOW_OFFSET)) & SMBIOS_FREQLOW_MASK));
130 cpu_clock_freq = freq_temp * 1000000;
131
132 loongson_sysconf.cpuname = (void *)dmi_string_parse(dm, dmi_data[16]);
133 loongson_sysconf.cores_per_package = *(dmi_data + SMBIOS_THREAD_PACKAGE_OFFSET);
134
135 pr_info("CpuClock = %llu\n", cpu_clock_freq);
136 }
137
parse_bios_table(const struct dmi_header * dm)138 static void __init parse_bios_table(const struct dmi_header *dm)
139 {
140 char *dmi_data = (char *)dm;
141
142 b_info.bios_size = (*(dmi_data + SMBIOS_BIOSSIZE_OFFSET) + 1) << 6;
143 }
144
find_tokens(const struct dmi_header * dm,void * dummy)145 static void __init find_tokens(const struct dmi_header *dm, void *dummy)
146 {
147 switch (dm->type) {
148 case 0x0: /* Extern BIOS */
149 parse_bios_table(dm);
150 break;
151 case 0x4: /* Calling interface */
152 parse_cpu_table(dm);
153 break;
154 }
155 }
smbios_parse(void)156 static void __init smbios_parse(void)
157 {
158 b_info.bios_vendor = (void *)dmi_get_system_info(DMI_BIOS_VENDOR);
159 b_info.bios_version = (void *)dmi_get_system_info(DMI_BIOS_VERSION);
160 b_info.bios_release_date = (void *)dmi_get_system_info(DMI_BIOS_DATE);
161 b_info.board_vendor = (void *)dmi_get_system_info(DMI_BOARD_VENDOR);
162 b_info.board_name = (void *)dmi_get_system_info(DMI_BOARD_NAME);
163 dmi_walk(find_tokens, NULL);
164 }
165
166 #ifdef CONFIG_ARCH_WRITECOMBINE
167 bool wc_enabled = true;
168 #else
169 bool wc_enabled = false;
170 #endif
171
172 EXPORT_SYMBOL(wc_enabled);
173
setup_writecombine(char * p)174 static int __init setup_writecombine(char *p)
175 {
176 if (!strcmp(p, "on"))
177 wc_enabled = true;
178 else if (!strcmp(p, "off"))
179 wc_enabled = false;
180 else
181 pr_warn("Unknown writecombine setting \"%s\".\n", p);
182
183 return 0;
184 }
185 early_param("writecombine", setup_writecombine);
186
187 static int usermem __initdata;
188
early_parse_mem(char * p)189 static int __init early_parse_mem(char *p)
190 {
191 phys_addr_t start, size;
192
193 if (!p) {
194 pr_err("mem parameter is empty, do nothing\n");
195 return -EINVAL;
196 }
197
198 /*
199 * If a user specifies memory size, we
200 * blow away any automatically generated
201 * size.
202 */
203 if (usermem == 0) {
204 usermem = 1;
205 memblock_remove(memblock_start_of_DRAM(),
206 memblock_end_of_DRAM() - memblock_start_of_DRAM());
207 }
208 start = 0;
209 size = memparse(p, &p);
210 if (*p == '@')
211 start = memparse(p + 1, &p);
212 else {
213 pr_err("Invalid format!\n");
214 return -EINVAL;
215 }
216
217 if (!IS_ENABLED(CONFIG_NUMA))
218 memblock_add(start, size);
219 else
220 memblock_add_node(start, size, pa_to_nid(start), MEMBLOCK_NONE);
221
222 return 0;
223 }
224 early_param("mem", early_parse_mem);
225
arch_reserve_vmcore(void)226 static void __init arch_reserve_vmcore(void)
227 {
228 #ifdef CONFIG_PROC_VMCORE
229 u64 i;
230 phys_addr_t start, end;
231
232 if (!is_kdump_kernel())
233 return;
234
235 if (!elfcorehdr_size) {
236 for_each_mem_range(i, &start, &end) {
237 if (elfcorehdr_addr >= start && elfcorehdr_addr < end) {
238 /*
239 * Reserve from the elf core header to the end of
240 * the memory segment, that should all be kdump
241 * reserved memory.
242 */
243 elfcorehdr_size = end - elfcorehdr_addr;
244 break;
245 }
246 }
247 }
248
249 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
250 pr_warn("elfcorehdr is overlapped\n");
251 return;
252 }
253
254 memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
255
256 pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n",
257 elfcorehdr_size >> 10, elfcorehdr_addr);
258 #endif
259 }
260
261 /* 2MB alignment for crash kernel regions */
262 #define CRASH_ALIGN SZ_2M
263 #define CRASH_ADDR_MAX SZ_4G
264
arch_parse_crashkernel(void)265 static void __init arch_parse_crashkernel(void)
266 {
267 #ifdef CONFIG_KEXEC
268 int ret;
269 unsigned long long total_mem;
270 unsigned long long crash_base, crash_size;
271
272 total_mem = memblock_phys_mem_size();
273 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
274 if (ret < 0 || crash_size <= 0)
275 return;
276
277 if (crash_base <= 0) {
278 crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN, CRASH_ALIGN, CRASH_ADDR_MAX);
279 if (!crash_base) {
280 pr_warn("crashkernel reservation failed - No suitable area found.\n");
281 return;
282 }
283 } else if (!memblock_phys_alloc_range(crash_size, CRASH_ALIGN, crash_base, crash_base + crash_size)) {
284 pr_warn("Invalid memory region reserved for crash kernel\n");
285 return;
286 }
287
288 crashk_res.start = crash_base;
289 crashk_res.end = crash_base + crash_size - 1;
290 #endif
291 }
292
fdt_setup(void)293 static void __init fdt_setup(void)
294 {
295 #ifdef CONFIG_OF_EARLY_FLATTREE
296 void *fdt_pointer;
297
298 /* ACPI-based systems do not require parsing fdt */
299 if (acpi_os_get_root_pointer())
300 return;
301
302 /* Look for a device tree configuration table entry */
303 fdt_pointer = efi_fdt_pointer();
304 if (!fdt_pointer || fdt_check_header(fdt_pointer))
305 return;
306
307 early_init_dt_scan(fdt_pointer);
308 early_init_fdt_reserve_self();
309
310 max_low_pfn = PFN_PHYS(memblock_end_of_DRAM());
311 #endif
312 }
313
bootcmdline_init(char ** cmdline_p)314 static void __init bootcmdline_init(char **cmdline_p)
315 {
316 /*
317 * If CONFIG_CMDLINE_FORCE is enabled then initializing the command line
318 * is trivial - we simply use the built-in command line unconditionally &
319 * unmodified.
320 */
321 if (IS_ENABLED(CONFIG_CMDLINE_FORCE)) {
322 strscpy(boot_command_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
323 goto out;
324 }
325
326 #ifdef CONFIG_OF_FLATTREE
327 /*
328 * If CONFIG_CMDLINE_BOOTLOADER is enabled and we are in FDT-based system,
329 * the boot_command_line will be overwritten by early_init_dt_scan_chosen().
330 * So we need to append init_command_line (the original copy of boot_command_line)
331 * to boot_command_line.
332 */
333 if (initial_boot_params) {
334 if (boot_command_line[0])
335 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
336
337 strlcat(boot_command_line, init_command_line, COMMAND_LINE_SIZE);
338 goto out;
339 }
340 #endif
341
342 /*
343 * Append built-in command line to the bootloader command line if
344 * CONFIG_CMDLINE_EXTEND is enabled.
345 */
346 if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) && CONFIG_CMDLINE[0]) {
347 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
348 strlcat(boot_command_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
349 }
350
351 /*
352 * Use built-in command line if the bootloader command line is empty.
353 */
354 if (IS_ENABLED(CONFIG_CMDLINE_BOOTLOADER) && !boot_command_line[0])
355 strscpy(boot_command_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
356
357 out:
358 *cmdline_p = boot_command_line;
359 }
360
platform_init(void)361 void __init platform_init(void)
362 {
363 arch_reserve_vmcore();
364 arch_parse_crashkernel();
365
366 #ifdef CONFIG_ACPI_TABLE_UPGRADE
367 acpi_table_upgrade();
368 #endif
369 #ifdef CONFIG_ACPI
370 acpi_gbl_use_default_register_widths = false;
371 acpi_boot_table_init();
372 #endif
373
374 early_init_fdt_scan_reserved_mem();
375 unflatten_and_copy_device_tree();
376
377 #ifdef CONFIG_NUMA
378 init_numa_memory();
379 #endif
380 dmi_setup();
381 smbios_parse();
382 pr_info("The BIOS Version: %s\n", b_info.bios_version);
383
384 efi_runtime_init();
385 }
386
check_kernel_sections_mem(void)387 static void __init check_kernel_sections_mem(void)
388 {
389 phys_addr_t start = __pa_symbol(&_text);
390 phys_addr_t size = __pa_symbol(&_end) - start;
391
392 if (!memblock_is_region_memory(start, size)) {
393 pr_info("Kernel sections are not in the memory maps\n");
394 memblock_add(start, size);
395 }
396 }
397
398 /*
399 * arch_mem_init - initialize memory management subsystem
400 */
arch_mem_init(char ** cmdline_p)401 static void __init arch_mem_init(char **cmdline_p)
402 {
403 if (usermem)
404 pr_info("User-defined physical RAM map overwrite\n");
405
406 check_kernel_sections_mem();
407
408 /*
409 * In order to reduce the possibility of kernel panic when failed to
410 * get IO TLB memory under CONFIG_SWIOTLB, it is better to allocate
411 * low memory as small as possible before swiotlb_init(), so make
412 * sparse_init() using top-down allocation.
413 */
414 memblock_set_bottom_up(false);
415 sparse_init();
416 memblock_set_bottom_up(true);
417
418 swiotlb_init(true, SWIOTLB_VERBOSE);
419
420 dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
421
422 /* Reserve for hibernation. */
423 register_nosave_region(PFN_DOWN(__pa_symbol(&__nosave_begin)),
424 PFN_UP(__pa_symbol(&__nosave_end)));
425
426 memblock_dump_all();
427
428 early_memtest(PFN_PHYS(ARCH_PFN_OFFSET), PFN_PHYS(max_low_pfn));
429 }
430
resource_init(void)431 static void __init resource_init(void)
432 {
433 long i = 0;
434 size_t res_size;
435 struct resource *res;
436 struct memblock_region *region;
437
438 code_resource.start = __pa_symbol(&_text);
439 code_resource.end = __pa_symbol(&_etext) - 1;
440 data_resource.start = __pa_symbol(&_etext);
441 data_resource.end = __pa_symbol(&_edata) - 1;
442 bss_resource.start = __pa_symbol(&__bss_start);
443 bss_resource.end = __pa_symbol(&__bss_stop) - 1;
444
445 num_standard_resources = memblock.memory.cnt;
446 res_size = num_standard_resources * sizeof(*standard_resources);
447 standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES);
448
449 for_each_mem_region(region) {
450 res = &standard_resources[i++];
451 if (!memblock_is_nomap(region)) {
452 res->name = "System RAM";
453 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
454 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
455 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
456 } else {
457 res->name = "Reserved";
458 res->flags = IORESOURCE_MEM;
459 res->start = __pfn_to_phys(memblock_region_reserved_base_pfn(region));
460 res->end = __pfn_to_phys(memblock_region_reserved_end_pfn(region)) - 1;
461 }
462
463 request_resource(&iomem_resource, res);
464
465 /*
466 * We don't know which RAM region contains kernel data,
467 * so we try it repeatedly and let the resource manager
468 * test it.
469 */
470 request_resource(res, &code_resource);
471 request_resource(res, &data_resource);
472 request_resource(res, &bss_resource);
473 }
474
475 #ifdef CONFIG_KEXEC
476 if (crashk_res.start < crashk_res.end) {
477 insert_resource(&iomem_resource, &crashk_res);
478 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
479 (unsigned long)((crashk_res.end - crashk_res.start + 1) >> 20),
480 (unsigned long)(crashk_res.start >> 20));
481 }
482 #endif
483 }
484
add_legacy_isa_io(struct fwnode_handle * fwnode,resource_size_t hw_start,resource_size_t size)485 static int __init add_legacy_isa_io(struct fwnode_handle *fwnode,
486 resource_size_t hw_start, resource_size_t size)
487 {
488 int ret = 0;
489 unsigned long vaddr;
490 struct logic_pio_hwaddr *range;
491
492 range = kzalloc(sizeof(*range), GFP_ATOMIC);
493 if (!range)
494 return -ENOMEM;
495
496 range->fwnode = fwnode;
497 range->size = size = round_up(size, PAGE_SIZE);
498 range->hw_start = hw_start;
499 range->flags = LOGIC_PIO_CPU_MMIO;
500
501 ret = logic_pio_register_range(range);
502 if (ret) {
503 kfree(range);
504 return ret;
505 }
506
507 /* Legacy ISA must placed at the start of PCI_IOBASE */
508 if (range->io_start != 0) {
509 logic_pio_unregister_range(range);
510 kfree(range);
511 return -EINVAL;
512 }
513
514 vaddr = (unsigned long)(PCI_IOBASE + range->io_start);
515 ioremap_page_range(vaddr, vaddr + size, hw_start, pgprot_device(PAGE_KERNEL));
516
517 return 0;
518 }
519
arch_reserve_pio_range(void)520 static __init int arch_reserve_pio_range(void)
521 {
522 struct device_node *np;
523
524 for_each_node_by_name(np, "isa") {
525 struct of_range range;
526 struct of_range_parser parser;
527
528 pr_info("ISA Bridge: %pOF\n", np);
529
530 if (of_range_parser_init(&parser, np)) {
531 pr_info("Failed to parse resources.\n");
532 of_node_put(np);
533 break;
534 }
535
536 for_each_of_range(&parser, &range) {
537 switch (range.flags & IORESOURCE_TYPE_BITS) {
538 case IORESOURCE_IO:
539 pr_info(" IO 0x%016llx..0x%016llx -> 0x%016llx\n",
540 range.cpu_addr,
541 range.cpu_addr + range.size - 1,
542 range.bus_addr);
543 if (add_legacy_isa_io(&np->fwnode, range.cpu_addr, range.size))
544 pr_warn("Failed to reserve legacy IO in Logic PIO\n");
545 break;
546 case IORESOURCE_MEM:
547 pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx\n",
548 range.cpu_addr,
549 range.cpu_addr + range.size - 1,
550 range.bus_addr);
551 break;
552 }
553 }
554 }
555
556 return 0;
557 }
558 arch_initcall(arch_reserve_pio_range);
559
reserve_memblock_reserved_regions(void)560 static int __init reserve_memblock_reserved_regions(void)
561 {
562 u64 i, j;
563
564 for (i = 0; i < num_standard_resources; ++i) {
565 struct resource *mem = &standard_resources[i];
566 phys_addr_t r_start, r_end, mem_size = resource_size(mem);
567
568 if (!memblock_is_region_reserved(mem->start, mem_size))
569 continue;
570
571 for_each_reserved_mem_range(j, &r_start, &r_end) {
572 resource_size_t start, end;
573
574 start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
575 end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
576
577 if (start > mem->end || end < mem->start)
578 continue;
579
580 reserve_region_with_split(mem, start, end, "Reserved");
581 }
582 }
583
584 return 0;
585 }
586 arch_initcall(reserve_memblock_reserved_regions);
587
588 #ifdef CONFIG_SMP
prefill_possible_map(void)589 static void __init prefill_possible_map(void)
590 {
591 int i, possible;
592
593 possible = num_processors + disabled_cpus;
594 if (possible > nr_cpu_ids)
595 possible = nr_cpu_ids;
596
597 pr_info("SMP: Allowing %d CPUs, %d hotplug CPUs\n",
598 possible, max((possible - num_processors), 0));
599
600 for (i = 0; i < possible; i++)
601 set_cpu_possible(i, true);
602 for (; i < NR_CPUS; i++)
603 set_cpu_possible(i, false);
604
605 set_nr_cpu_ids(possible);
606 }
607 #endif
608
setup_arch(char ** cmdline_p)609 void __init setup_arch(char **cmdline_p)
610 {
611 cpu_probe();
612
613 init_environ();
614 efi_init();
615 fdt_setup();
616 memblock_init();
617 pagetable_init();
618 bootcmdline_init(cmdline_p);
619 parse_early_param();
620 reserve_initrd_mem();
621
622 platform_init();
623 arch_mem_init(cmdline_p);
624
625 resource_init();
626 #ifdef CONFIG_SMP
627 plat_smp_setup();
628 prefill_possible_map();
629 #endif
630
631 paging_init();
632
633 #ifdef CONFIG_KASAN
634 kasan_init();
635 #endif
636 }
637