xref: /openbmc/linux/kernel/cpu.c (revision aad29a73199b7fbccfbabea3f1ee627ad1924f52)
1  /* CPU control.
2   * (C) 2001, 2002, 2003, 2004 Rusty Russell
3   *
4   * This code is licenced under the GPL.
5   */
6  #include <linux/sched/mm.h>
7  #include <linux/proc_fs.h>
8  #include <linux/smp.h>
9  #include <linux/init.h>
10  #include <linux/notifier.h>
11  #include <linux/sched/signal.h>
12  #include <linux/sched/hotplug.h>
13  #include <linux/sched/isolation.h>
14  #include <linux/sched/task.h>
15  #include <linux/sched/smt.h>
16  #include <linux/unistd.h>
17  #include <linux/cpu.h>
18  #include <linux/oom.h>
19  #include <linux/rcupdate.h>
20  #include <linux/delay.h>
21  #include <linux/export.h>
22  #include <linux/bug.h>
23  #include <linux/kthread.h>
24  #include <linux/stop_machine.h>
25  #include <linux/mutex.h>
26  #include <linux/gfp.h>
27  #include <linux/suspend.h>
28  #include <linux/lockdep.h>
29  #include <linux/tick.h>
30  #include <linux/irq.h>
31  #include <linux/nmi.h>
32  #include <linux/smpboot.h>
33  #include <linux/relay.h>
34  #include <linux/slab.h>
35  #include <linux/scs.h>
36  #include <linux/percpu-rwsem.h>
37  #include <linux/cpuset.h>
38  #include <linux/random.h>
39  #include <linux/cc_platform.h>
40  
41  #include <trace/events/power.h>
42  #define CREATE_TRACE_POINTS
43  #include <trace/events/cpuhp.h>
44  
45  #include "smpboot.h"
46  
47  /**
48   * struct cpuhp_cpu_state - Per cpu hotplug state storage
49   * @state:	The current cpu state
50   * @target:	The target state
51   * @fail:	Current CPU hotplug callback state
52   * @thread:	Pointer to the hotplug thread
53   * @should_run:	Thread should execute
54   * @rollback:	Perform a rollback
55   * @single:	Single callback invocation
56   * @bringup:	Single callback bringup or teardown selector
57   * @cpu:	CPU number
58   * @node:	Remote CPU node; for multi-instance, do a
59   *		single entry callback for install/remove
60   * @last:	For multi-instance rollback, remember how far we got
61   * @cb_state:	The state for a single callback (install/uninstall)
62   * @result:	Result of the operation
63   * @ap_sync_state:	State for AP synchronization
64   * @done_up:	Signal completion to the issuer of the task for cpu-up
65   * @done_down:	Signal completion to the issuer of the task for cpu-down
66   */
67  struct cpuhp_cpu_state {
68  	enum cpuhp_state	state;
69  	enum cpuhp_state	target;
70  	enum cpuhp_state	fail;
71  #ifdef CONFIG_SMP
72  	struct task_struct	*thread;
73  	bool			should_run;
74  	bool			rollback;
75  	bool			single;
76  	bool			bringup;
77  	struct hlist_node	*node;
78  	struct hlist_node	*last;
79  	enum cpuhp_state	cb_state;
80  	int			result;
81  	atomic_t		ap_sync_state;
82  	struct completion	done_up;
83  	struct completion	done_down;
84  #endif
85  };
86  
87  static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
88  	.fail = CPUHP_INVALID,
89  };
90  
91  #ifdef CONFIG_SMP
92  cpumask_t cpus_booted_once_mask;
93  #endif
94  
95  #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
96  static struct lockdep_map cpuhp_state_up_map =
97  	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
98  static struct lockdep_map cpuhp_state_down_map =
99  	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
100  
101  
cpuhp_lock_acquire(bool bringup)102  static inline void cpuhp_lock_acquire(bool bringup)
103  {
104  	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
105  }
106  
cpuhp_lock_release(bool bringup)107  static inline void cpuhp_lock_release(bool bringup)
108  {
109  	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
110  }
111  #else
112  
cpuhp_lock_acquire(bool bringup)113  static inline void cpuhp_lock_acquire(bool bringup) { }
cpuhp_lock_release(bool bringup)114  static inline void cpuhp_lock_release(bool bringup) { }
115  
116  #endif
117  
118  /**
119   * struct cpuhp_step - Hotplug state machine step
120   * @name:	Name of the step
121   * @startup:	Startup function of the step
122   * @teardown:	Teardown function of the step
123   * @cant_stop:	Bringup/teardown can't be stopped at this step
124   * @multi_instance:	State has multiple instances which get added afterwards
125   */
126  struct cpuhp_step {
127  	const char		*name;
128  	union {
129  		int		(*single)(unsigned int cpu);
130  		int		(*multi)(unsigned int cpu,
131  					 struct hlist_node *node);
132  	} startup;
133  	union {
134  		int		(*single)(unsigned int cpu);
135  		int		(*multi)(unsigned int cpu,
136  					 struct hlist_node *node);
137  	} teardown;
138  	/* private: */
139  	struct hlist_head	list;
140  	/* public: */
141  	bool			cant_stop;
142  	bool			multi_instance;
143  };
144  
145  static DEFINE_MUTEX(cpuhp_state_mutex);
146  static struct cpuhp_step cpuhp_hp_states[];
147  
cpuhp_get_step(enum cpuhp_state state)148  static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
149  {
150  	return cpuhp_hp_states + state;
151  }
152  
cpuhp_step_empty(bool bringup,struct cpuhp_step * step)153  static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
154  {
155  	return bringup ? !step->startup.single : !step->teardown.single;
156  }
157  
158  /**
159   * cpuhp_invoke_callback - Invoke the callbacks for a given state
160   * @cpu:	The cpu for which the callback should be invoked
161   * @state:	The state to do callbacks for
162   * @bringup:	True if the bringup callback should be invoked
163   * @node:	For multi-instance, do a single entry callback for install/remove
164   * @lastp:	For multi-instance rollback, remember how far we got
165   *
166   * Called from cpu hotplug and from the state register machinery.
167   *
168   * Return: %0 on success or a negative errno code
169   */
cpuhp_invoke_callback(unsigned int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node,struct hlist_node ** lastp)170  static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
171  				 bool bringup, struct hlist_node *node,
172  				 struct hlist_node **lastp)
173  {
174  	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
175  	struct cpuhp_step *step = cpuhp_get_step(state);
176  	int (*cbm)(unsigned int cpu, struct hlist_node *node);
177  	int (*cb)(unsigned int cpu);
178  	int ret, cnt;
179  
180  	if (st->fail == state) {
181  		st->fail = CPUHP_INVALID;
182  		return -EAGAIN;
183  	}
184  
185  	if (cpuhp_step_empty(bringup, step)) {
186  		WARN_ON_ONCE(1);
187  		return 0;
188  	}
189  
190  	if (!step->multi_instance) {
191  		WARN_ON_ONCE(lastp && *lastp);
192  		cb = bringup ? step->startup.single : step->teardown.single;
193  
194  		trace_cpuhp_enter(cpu, st->target, state, cb);
195  		ret = cb(cpu);
196  		trace_cpuhp_exit(cpu, st->state, state, ret);
197  		return ret;
198  	}
199  	cbm = bringup ? step->startup.multi : step->teardown.multi;
200  
201  	/* Single invocation for instance add/remove */
202  	if (node) {
203  		WARN_ON_ONCE(lastp && *lastp);
204  		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
205  		ret = cbm(cpu, node);
206  		trace_cpuhp_exit(cpu, st->state, state, ret);
207  		return ret;
208  	}
209  
210  	/* State transition. Invoke on all instances */
211  	cnt = 0;
212  	hlist_for_each(node, &step->list) {
213  		if (lastp && node == *lastp)
214  			break;
215  
216  		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
217  		ret = cbm(cpu, node);
218  		trace_cpuhp_exit(cpu, st->state, state, ret);
219  		if (ret) {
220  			if (!lastp)
221  				goto err;
222  
223  			*lastp = node;
224  			return ret;
225  		}
226  		cnt++;
227  	}
228  	if (lastp)
229  		*lastp = NULL;
230  	return 0;
231  err:
232  	/* Rollback the instances if one failed */
233  	cbm = !bringup ? step->startup.multi : step->teardown.multi;
234  	if (!cbm)
235  		return ret;
236  
237  	hlist_for_each(node, &step->list) {
238  		if (!cnt--)
239  			break;
240  
241  		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
242  		ret = cbm(cpu, node);
243  		trace_cpuhp_exit(cpu, st->state, state, ret);
244  		/*
245  		 * Rollback must not fail,
246  		 */
247  		WARN_ON_ONCE(ret);
248  	}
249  	return ret;
250  }
251  
252  #ifdef CONFIG_SMP
cpuhp_is_ap_state(enum cpuhp_state state)253  static bool cpuhp_is_ap_state(enum cpuhp_state state)
254  {
255  	/*
256  	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
257  	 * purposes as that state is handled explicitly in cpu_down.
258  	 */
259  	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
260  }
261  
wait_for_ap_thread(struct cpuhp_cpu_state * st,bool bringup)262  static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
263  {
264  	struct completion *done = bringup ? &st->done_up : &st->done_down;
265  	wait_for_completion(done);
266  }
267  
complete_ap_thread(struct cpuhp_cpu_state * st,bool bringup)268  static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
269  {
270  	struct completion *done = bringup ? &st->done_up : &st->done_down;
271  	complete(done);
272  }
273  
274  /*
275   * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
276   */
cpuhp_is_atomic_state(enum cpuhp_state state)277  static bool cpuhp_is_atomic_state(enum cpuhp_state state)
278  {
279  	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
280  }
281  
282  /* Synchronization state management */
283  enum cpuhp_sync_state {
284  	SYNC_STATE_DEAD,
285  	SYNC_STATE_KICKED,
286  	SYNC_STATE_SHOULD_DIE,
287  	SYNC_STATE_ALIVE,
288  	SYNC_STATE_SHOULD_ONLINE,
289  	SYNC_STATE_ONLINE,
290  };
291  
292  #ifdef CONFIG_HOTPLUG_CORE_SYNC
293  /**
294   * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
295   * @state:	The synchronization state to set
296   *
297   * No synchronization point. Just update of the synchronization state, but implies
298   * a full barrier so that the AP changes are visible before the control CPU proceeds.
299   */
cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)300  static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
301  {
302  	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
303  
304  	(void)atomic_xchg(st, state);
305  }
306  
arch_cpuhp_sync_state_poll(void)307  void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
308  
cpuhp_wait_for_sync_state(unsigned int cpu,enum cpuhp_sync_state state,enum cpuhp_sync_state next_state)309  static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
310  				      enum cpuhp_sync_state next_state)
311  {
312  	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
313  	ktime_t now, end, start = ktime_get();
314  	int sync;
315  
316  	end = start + 10ULL * NSEC_PER_SEC;
317  
318  	sync = atomic_read(st);
319  	while (1) {
320  		if (sync == state) {
321  			if (!atomic_try_cmpxchg(st, &sync, next_state))
322  				continue;
323  			return true;
324  		}
325  
326  		now = ktime_get();
327  		if (now > end) {
328  			/* Timeout. Leave the state unchanged */
329  			return false;
330  		} else if (now - start < NSEC_PER_MSEC) {
331  			/* Poll for one millisecond */
332  			arch_cpuhp_sync_state_poll();
333  		} else {
334  			usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE);
335  		}
336  		sync = atomic_read(st);
337  	}
338  	return true;
339  }
340  #else  /* CONFIG_HOTPLUG_CORE_SYNC */
cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)341  static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
342  #endif /* !CONFIG_HOTPLUG_CORE_SYNC */
343  
344  #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
345  /**
346   * cpuhp_ap_report_dead - Update synchronization state to DEAD
347   *
348   * No synchronization point. Just update of the synchronization state.
349   */
cpuhp_ap_report_dead(void)350  void cpuhp_ap_report_dead(void)
351  {
352  	cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
353  }
354  
arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)355  void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
356  
357  /*
358   * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
359   * because the AP cannot issue complete() at this stage.
360   */
cpuhp_bp_sync_dead(unsigned int cpu)361  static void cpuhp_bp_sync_dead(unsigned int cpu)
362  {
363  	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
364  	int sync = atomic_read(st);
365  
366  	do {
367  		/* CPU can have reported dead already. Don't overwrite that! */
368  		if (sync == SYNC_STATE_DEAD)
369  			break;
370  	} while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
371  
372  	if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
373  		/* CPU reached dead state. Invoke the cleanup function */
374  		arch_cpuhp_cleanup_dead_cpu(cpu);
375  		return;
376  	}
377  
378  	/* No further action possible. Emit message and give up. */
379  	pr_err("CPU%u failed to report dead state\n", cpu);
380  }
381  #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
cpuhp_bp_sync_dead(unsigned int cpu)382  static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
383  #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
384  
385  #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
386  /**
387   * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
388   *
389   * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
390   * for the BP to release it.
391   */
cpuhp_ap_sync_alive(void)392  void cpuhp_ap_sync_alive(void)
393  {
394  	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
395  
396  	cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
397  
398  	/* Wait for the control CPU to release it. */
399  	while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
400  		cpu_relax();
401  }
402  
cpuhp_can_boot_ap(unsigned int cpu)403  static bool cpuhp_can_boot_ap(unsigned int cpu)
404  {
405  	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
406  	int sync = atomic_read(st);
407  
408  again:
409  	switch (sync) {
410  	case SYNC_STATE_DEAD:
411  		/* CPU is properly dead */
412  		break;
413  	case SYNC_STATE_KICKED:
414  		/* CPU did not come up in previous attempt */
415  		break;
416  	case SYNC_STATE_ALIVE:
417  		/* CPU is stuck cpuhp_ap_sync_alive(). */
418  		break;
419  	default:
420  		/* CPU failed to report online or dead and is in limbo state. */
421  		return false;
422  	}
423  
424  	/* Prepare for booting */
425  	if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
426  		goto again;
427  
428  	return true;
429  }
430  
arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)431  void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
432  
433  /*
434   * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
435   * because the AP cannot issue complete() so early in the bringup.
436   */
cpuhp_bp_sync_alive(unsigned int cpu)437  static int cpuhp_bp_sync_alive(unsigned int cpu)
438  {
439  	int ret = 0;
440  
441  	if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
442  		return 0;
443  
444  	if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
445  		pr_err("CPU%u failed to report alive state\n", cpu);
446  		ret = -EIO;
447  	}
448  
449  	/* Let the architecture cleanup the kick alive mechanics. */
450  	arch_cpuhp_cleanup_kick_cpu(cpu);
451  	return ret;
452  }
453  #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
cpuhp_bp_sync_alive(unsigned int cpu)454  static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
cpuhp_can_boot_ap(unsigned int cpu)455  static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
456  #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
457  
458  /* Serializes the updates to cpu_online_mask, cpu_present_mask */
459  static DEFINE_MUTEX(cpu_add_remove_lock);
460  bool cpuhp_tasks_frozen;
461  EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
462  
463  /*
464   * The following two APIs (cpu_maps_update_begin/done) must be used when
465   * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
466   */
cpu_maps_update_begin(void)467  void cpu_maps_update_begin(void)
468  {
469  	mutex_lock(&cpu_add_remove_lock);
470  }
471  
cpu_maps_update_done(void)472  void cpu_maps_update_done(void)
473  {
474  	mutex_unlock(&cpu_add_remove_lock);
475  }
476  
477  /*
478   * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
479   * Should always be manipulated under cpu_add_remove_lock
480   */
481  static int cpu_hotplug_disabled;
482  
483  #ifdef CONFIG_HOTPLUG_CPU
484  
485  DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
486  
cpus_read_lock(void)487  void cpus_read_lock(void)
488  {
489  	percpu_down_read(&cpu_hotplug_lock);
490  }
491  EXPORT_SYMBOL_GPL(cpus_read_lock);
492  
cpus_read_trylock(void)493  int cpus_read_trylock(void)
494  {
495  	return percpu_down_read_trylock(&cpu_hotplug_lock);
496  }
497  EXPORT_SYMBOL_GPL(cpus_read_trylock);
498  
cpus_read_unlock(void)499  void cpus_read_unlock(void)
500  {
501  	percpu_up_read(&cpu_hotplug_lock);
502  }
503  EXPORT_SYMBOL_GPL(cpus_read_unlock);
504  
cpus_write_lock(void)505  void cpus_write_lock(void)
506  {
507  	percpu_down_write(&cpu_hotplug_lock);
508  }
509  
cpus_write_unlock(void)510  void cpus_write_unlock(void)
511  {
512  	percpu_up_write(&cpu_hotplug_lock);
513  }
514  
lockdep_assert_cpus_held(void)515  void lockdep_assert_cpus_held(void)
516  {
517  	/*
518  	 * We can't have hotplug operations before userspace starts running,
519  	 * and some init codepaths will knowingly not take the hotplug lock.
520  	 * This is all valid, so mute lockdep until it makes sense to report
521  	 * unheld locks.
522  	 */
523  	if (system_state < SYSTEM_RUNNING)
524  		return;
525  
526  	percpu_rwsem_assert_held(&cpu_hotplug_lock);
527  }
528  
529  #ifdef CONFIG_LOCKDEP
lockdep_is_cpus_held(void)530  int lockdep_is_cpus_held(void)
531  {
532  	return percpu_rwsem_is_held(&cpu_hotplug_lock);
533  }
534  #endif
535  
lockdep_acquire_cpus_lock(void)536  static void lockdep_acquire_cpus_lock(void)
537  {
538  	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
539  }
540  
lockdep_release_cpus_lock(void)541  static void lockdep_release_cpus_lock(void)
542  {
543  	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
544  }
545  
546  /*
547   * Wait for currently running CPU hotplug operations to complete (if any) and
548   * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
549   * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
550   * hotplug path before performing hotplug operations. So acquiring that lock
551   * guarantees mutual exclusion from any currently running hotplug operations.
552   */
cpu_hotplug_disable(void)553  void cpu_hotplug_disable(void)
554  {
555  	cpu_maps_update_begin();
556  	cpu_hotplug_disabled++;
557  	cpu_maps_update_done();
558  }
559  EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
560  
__cpu_hotplug_enable(void)561  static void __cpu_hotplug_enable(void)
562  {
563  	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
564  		return;
565  	cpu_hotplug_disabled--;
566  }
567  
cpu_hotplug_enable(void)568  void cpu_hotplug_enable(void)
569  {
570  	cpu_maps_update_begin();
571  	__cpu_hotplug_enable();
572  	cpu_maps_update_done();
573  }
574  EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
575  
576  #else
577  
lockdep_acquire_cpus_lock(void)578  static void lockdep_acquire_cpus_lock(void)
579  {
580  }
581  
lockdep_release_cpus_lock(void)582  static void lockdep_release_cpus_lock(void)
583  {
584  }
585  
586  #endif	/* CONFIG_HOTPLUG_CPU */
587  
588  /*
589   * Architectures that need SMT-specific errata handling during SMT hotplug
590   * should override this.
591   */
arch_smt_update(void)592  void __weak arch_smt_update(void) { }
593  
594  #ifdef CONFIG_HOTPLUG_SMT
595  
596  enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
597  static unsigned int cpu_smt_max_threads __ro_after_init;
598  unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
599  
cpu_smt_disable(bool force)600  void __init cpu_smt_disable(bool force)
601  {
602  	if (!cpu_smt_possible())
603  		return;
604  
605  	if (force) {
606  		pr_info("SMT: Force disabled\n");
607  		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
608  	} else {
609  		pr_info("SMT: disabled\n");
610  		cpu_smt_control = CPU_SMT_DISABLED;
611  	}
612  	cpu_smt_num_threads = 1;
613  }
614  
615  /*
616   * The decision whether SMT is supported can only be done after the full
617   * CPU identification. Called from architecture code.
618   */
cpu_smt_set_num_threads(unsigned int num_threads,unsigned int max_threads)619  void __init cpu_smt_set_num_threads(unsigned int num_threads,
620  				    unsigned int max_threads)
621  {
622  	WARN_ON(!num_threads || (num_threads > max_threads));
623  
624  	if (max_threads == 1)
625  		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
626  
627  	cpu_smt_max_threads = max_threads;
628  
629  	/*
630  	 * If SMT has been disabled via the kernel command line or SMT is
631  	 * not supported, set cpu_smt_num_threads to 1 for consistency.
632  	 * If enabled, take the architecture requested number of threads
633  	 * to bring up into account.
634  	 */
635  	if (cpu_smt_control != CPU_SMT_ENABLED)
636  		cpu_smt_num_threads = 1;
637  	else if (num_threads < cpu_smt_num_threads)
638  		cpu_smt_num_threads = num_threads;
639  }
640  
smt_cmdline_disable(char * str)641  static int __init smt_cmdline_disable(char *str)
642  {
643  	cpu_smt_disable(str && !strcmp(str, "force"));
644  	return 0;
645  }
646  early_param("nosmt", smt_cmdline_disable);
647  
648  /*
649   * For Archicture supporting partial SMT states check if the thread is allowed.
650   * Otherwise this has already been checked through cpu_smt_max_threads when
651   * setting the SMT level.
652   */
cpu_smt_thread_allowed(unsigned int cpu)653  static inline bool cpu_smt_thread_allowed(unsigned int cpu)
654  {
655  #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
656  	return topology_smt_thread_allowed(cpu);
657  #else
658  	return true;
659  #endif
660  }
661  
cpu_bootable(unsigned int cpu)662  static inline bool cpu_bootable(unsigned int cpu)
663  {
664  	if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
665  		return true;
666  
667  	/* All CPUs are bootable if controls are not configured */
668  	if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED)
669  		return true;
670  
671  	/* All CPUs are bootable if CPU is not SMT capable */
672  	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
673  		return true;
674  
675  	if (topology_is_primary_thread(cpu))
676  		return true;
677  
678  	/*
679  	 * On x86 it's required to boot all logical CPUs at least once so
680  	 * that the init code can get a chance to set CR4.MCE on each
681  	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
682  	 * core will shutdown the machine.
683  	 */
684  	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
685  }
686  
687  /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
cpu_smt_possible(void)688  bool cpu_smt_possible(void)
689  {
690  	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
691  		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
692  }
693  EXPORT_SYMBOL_GPL(cpu_smt_possible);
694  
695  #else
cpu_bootable(unsigned int cpu)696  static inline bool cpu_bootable(unsigned int cpu) { return true; }
697  #endif
698  
699  static inline enum cpuhp_state
cpuhp_set_state(int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)700  cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
701  {
702  	enum cpuhp_state prev_state = st->state;
703  	bool bringup = st->state < target;
704  
705  	st->rollback = false;
706  	st->last = NULL;
707  
708  	st->target = target;
709  	st->single = false;
710  	st->bringup = bringup;
711  	if (cpu_dying(cpu) != !bringup)
712  		set_cpu_dying(cpu, !bringup);
713  
714  	return prev_state;
715  }
716  
717  static inline void
cpuhp_reset_state(int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state prev_state)718  cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
719  		  enum cpuhp_state prev_state)
720  {
721  	bool bringup = !st->bringup;
722  
723  	st->target = prev_state;
724  
725  	/*
726  	 * Already rolling back. No need invert the bringup value or to change
727  	 * the current state.
728  	 */
729  	if (st->rollback)
730  		return;
731  
732  	st->rollback = true;
733  
734  	/*
735  	 * If we have st->last we need to undo partial multi_instance of this
736  	 * state first. Otherwise start undo at the previous state.
737  	 */
738  	if (!st->last) {
739  		if (st->bringup)
740  			st->state--;
741  		else
742  			st->state++;
743  	}
744  
745  	st->bringup = bringup;
746  	if (cpu_dying(cpu) != !bringup)
747  		set_cpu_dying(cpu, !bringup);
748  }
749  
750  /* Regular hotplug invocation of the AP hotplug thread */
__cpuhp_kick_ap(struct cpuhp_cpu_state * st)751  static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
752  {
753  	if (!st->single && st->state == st->target)
754  		return;
755  
756  	st->result = 0;
757  	/*
758  	 * Make sure the above stores are visible before should_run becomes
759  	 * true. Paired with the mb() above in cpuhp_thread_fun()
760  	 */
761  	smp_mb();
762  	st->should_run = true;
763  	wake_up_process(st->thread);
764  	wait_for_ap_thread(st, st->bringup);
765  }
766  
cpuhp_kick_ap(int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)767  static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
768  			 enum cpuhp_state target)
769  {
770  	enum cpuhp_state prev_state;
771  	int ret;
772  
773  	prev_state = cpuhp_set_state(cpu, st, target);
774  	__cpuhp_kick_ap(st);
775  	if ((ret = st->result)) {
776  		cpuhp_reset_state(cpu, st, prev_state);
777  		__cpuhp_kick_ap(st);
778  	}
779  
780  	return ret;
781  }
782  
bringup_wait_for_ap_online(unsigned int cpu)783  static int bringup_wait_for_ap_online(unsigned int cpu)
784  {
785  	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
786  
787  	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
788  	wait_for_ap_thread(st, true);
789  	if (WARN_ON_ONCE((!cpu_online(cpu))))
790  		return -ECANCELED;
791  
792  	/* Unpark the hotplug thread of the target cpu */
793  	kthread_unpark(st->thread);
794  
795  	/*
796  	 * SMT soft disabling on X86 requires to bring the CPU out of the
797  	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
798  	 * CPU marked itself as booted_once in notify_cpu_starting() so the
799  	 * cpu_bootable() check will now return false if this is not the
800  	 * primary sibling.
801  	 */
802  	if (!cpu_bootable(cpu))
803  		return -ECANCELED;
804  	return 0;
805  }
806  
807  #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
cpuhp_kick_ap_alive(unsigned int cpu)808  static int cpuhp_kick_ap_alive(unsigned int cpu)
809  {
810  	if (!cpuhp_can_boot_ap(cpu))
811  		return -EAGAIN;
812  
813  	return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
814  }
815  
cpuhp_bringup_ap(unsigned int cpu)816  static int cpuhp_bringup_ap(unsigned int cpu)
817  {
818  	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
819  	int ret;
820  
821  	/*
822  	 * Some architectures have to walk the irq descriptors to
823  	 * setup the vector space for the cpu which comes online.
824  	 * Prevent irq alloc/free across the bringup.
825  	 */
826  	irq_lock_sparse();
827  
828  	ret = cpuhp_bp_sync_alive(cpu);
829  	if (ret)
830  		goto out_unlock;
831  
832  	ret = bringup_wait_for_ap_online(cpu);
833  	if (ret)
834  		goto out_unlock;
835  
836  	irq_unlock_sparse();
837  
838  	if (st->target <= CPUHP_AP_ONLINE_IDLE)
839  		return 0;
840  
841  	return cpuhp_kick_ap(cpu, st, st->target);
842  
843  out_unlock:
844  	irq_unlock_sparse();
845  	return ret;
846  }
847  #else
bringup_cpu(unsigned int cpu)848  static int bringup_cpu(unsigned int cpu)
849  {
850  	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
851  	struct task_struct *idle = idle_thread_get(cpu);
852  	int ret;
853  
854  	if (!cpuhp_can_boot_ap(cpu))
855  		return -EAGAIN;
856  
857  	/*
858  	 * Some architectures have to walk the irq descriptors to
859  	 * setup the vector space for the cpu which comes online.
860  	 *
861  	 * Prevent irq alloc/free across the bringup by acquiring the
862  	 * sparse irq lock. Hold it until the upcoming CPU completes the
863  	 * startup in cpuhp_online_idle() which allows to avoid
864  	 * intermediate synchronization points in the architecture code.
865  	 */
866  	irq_lock_sparse();
867  
868  	ret = __cpu_up(cpu, idle);
869  	if (ret)
870  		goto out_unlock;
871  
872  	ret = cpuhp_bp_sync_alive(cpu);
873  	if (ret)
874  		goto out_unlock;
875  
876  	ret = bringup_wait_for_ap_online(cpu);
877  	if (ret)
878  		goto out_unlock;
879  
880  	irq_unlock_sparse();
881  
882  	if (st->target <= CPUHP_AP_ONLINE_IDLE)
883  		return 0;
884  
885  	return cpuhp_kick_ap(cpu, st, st->target);
886  
887  out_unlock:
888  	irq_unlock_sparse();
889  	return ret;
890  }
891  #endif
892  
finish_cpu(unsigned int cpu)893  static int finish_cpu(unsigned int cpu)
894  {
895  	struct task_struct *idle = idle_thread_get(cpu);
896  	struct mm_struct *mm = idle->active_mm;
897  
898  	/*
899  	 * idle_task_exit() will have switched to &init_mm, now
900  	 * clean up any remaining active_mm state.
901  	 */
902  	if (mm != &init_mm)
903  		idle->active_mm = &init_mm;
904  	mmdrop_lazy_tlb(mm);
905  	return 0;
906  }
907  
908  /*
909   * Hotplug state machine related functions
910   */
911  
912  /*
913   * Get the next state to run. Empty ones will be skipped. Returns true if a
914   * state must be run.
915   *
916   * st->state will be modified ahead of time, to match state_to_run, as if it
917   * has already ran.
918   */
cpuhp_next_state(bool bringup,enum cpuhp_state * state_to_run,struct cpuhp_cpu_state * st,enum cpuhp_state target)919  static bool cpuhp_next_state(bool bringup,
920  			     enum cpuhp_state *state_to_run,
921  			     struct cpuhp_cpu_state *st,
922  			     enum cpuhp_state target)
923  {
924  	do {
925  		if (bringup) {
926  			if (st->state >= target)
927  				return false;
928  
929  			*state_to_run = ++st->state;
930  		} else {
931  			if (st->state <= target)
932  				return false;
933  
934  			*state_to_run = st->state--;
935  		}
936  
937  		if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
938  			break;
939  	} while (true);
940  
941  	return true;
942  }
943  
__cpuhp_invoke_callback_range(bool bringup,unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target,bool nofail)944  static int __cpuhp_invoke_callback_range(bool bringup,
945  					 unsigned int cpu,
946  					 struct cpuhp_cpu_state *st,
947  					 enum cpuhp_state target,
948  					 bool nofail)
949  {
950  	enum cpuhp_state state;
951  	int ret = 0;
952  
953  	while (cpuhp_next_state(bringup, &state, st, target)) {
954  		int err;
955  
956  		err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
957  		if (!err)
958  			continue;
959  
960  		if (nofail) {
961  			pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
962  				cpu, bringup ? "UP" : "DOWN",
963  				cpuhp_get_step(st->state)->name,
964  				st->state, err);
965  			ret = -1;
966  		} else {
967  			ret = err;
968  			break;
969  		}
970  	}
971  
972  	return ret;
973  }
974  
cpuhp_invoke_callback_range(bool bringup,unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)975  static inline int cpuhp_invoke_callback_range(bool bringup,
976  					      unsigned int cpu,
977  					      struct cpuhp_cpu_state *st,
978  					      enum cpuhp_state target)
979  {
980  	return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
981  }
982  
cpuhp_invoke_callback_range_nofail(bool bringup,unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)983  static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
984  						      unsigned int cpu,
985  						      struct cpuhp_cpu_state *st,
986  						      enum cpuhp_state target)
987  {
988  	__cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
989  }
990  
can_rollback_cpu(struct cpuhp_cpu_state * st)991  static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
992  {
993  	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
994  		return true;
995  	/*
996  	 * When CPU hotplug is disabled, then taking the CPU down is not
997  	 * possible because takedown_cpu() and the architecture and
998  	 * subsystem specific mechanisms are not available. So the CPU
999  	 * which would be completely unplugged again needs to stay around
1000  	 * in the current state.
1001  	 */
1002  	return st->state <= CPUHP_BRINGUP_CPU;
1003  }
1004  
cpuhp_up_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)1005  static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1006  			      enum cpuhp_state target)
1007  {
1008  	enum cpuhp_state prev_state = st->state;
1009  	int ret = 0;
1010  
1011  	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1012  	if (ret) {
1013  		pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1014  			 ret, cpu, cpuhp_get_step(st->state)->name,
1015  			 st->state);
1016  
1017  		cpuhp_reset_state(cpu, st, prev_state);
1018  		if (can_rollback_cpu(st))
1019  			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
1020  							    prev_state));
1021  	}
1022  	return ret;
1023  }
1024  
1025  /*
1026   * The cpu hotplug threads manage the bringup and teardown of the cpus
1027   */
cpuhp_should_run(unsigned int cpu)1028  static int cpuhp_should_run(unsigned int cpu)
1029  {
1030  	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1031  
1032  	return st->should_run;
1033  }
1034  
1035  /*
1036   * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1037   * callbacks when a state gets [un]installed at runtime.
1038   *
1039   * Each invocation of this function by the smpboot thread does a single AP
1040   * state callback.
1041   *
1042   * It has 3 modes of operation:
1043   *  - single: runs st->cb_state
1044   *  - up:     runs ++st->state, while st->state < st->target
1045   *  - down:   runs st->state--, while st->state > st->target
1046   *
1047   * When complete or on error, should_run is cleared and the completion is fired.
1048   */
cpuhp_thread_fun(unsigned int cpu)1049  static void cpuhp_thread_fun(unsigned int cpu)
1050  {
1051  	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1052  	bool bringup = st->bringup;
1053  	enum cpuhp_state state;
1054  
1055  	if (WARN_ON_ONCE(!st->should_run))
1056  		return;
1057  
1058  	/*
1059  	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1060  	 * that if we see ->should_run we also see the rest of the state.
1061  	 */
1062  	smp_mb();
1063  
1064  	/*
1065  	 * The BP holds the hotplug lock, but we're now running on the AP,
1066  	 * ensure that anybody asserting the lock is held, will actually find
1067  	 * it so.
1068  	 */
1069  	lockdep_acquire_cpus_lock();
1070  	cpuhp_lock_acquire(bringup);
1071  
1072  	if (st->single) {
1073  		state = st->cb_state;
1074  		st->should_run = false;
1075  	} else {
1076  		st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1077  		if (!st->should_run)
1078  			goto end;
1079  	}
1080  
1081  	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1082  
1083  	if (cpuhp_is_atomic_state(state)) {
1084  		local_irq_disable();
1085  		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1086  		local_irq_enable();
1087  
1088  		/*
1089  		 * STARTING/DYING must not fail!
1090  		 */
1091  		WARN_ON_ONCE(st->result);
1092  	} else {
1093  		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1094  	}
1095  
1096  	if (st->result) {
1097  		/*
1098  		 * If we fail on a rollback, we're up a creek without no
1099  		 * paddle, no way forward, no way back. We loose, thanks for
1100  		 * playing.
1101  		 */
1102  		WARN_ON_ONCE(st->rollback);
1103  		st->should_run = false;
1104  	}
1105  
1106  end:
1107  	cpuhp_lock_release(bringup);
1108  	lockdep_release_cpus_lock();
1109  
1110  	if (!st->should_run)
1111  		complete_ap_thread(st, bringup);
1112  }
1113  
1114  /* Invoke a single callback on a remote cpu */
1115  static int
cpuhp_invoke_ap_callback(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)1116  cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1117  			 struct hlist_node *node)
1118  {
1119  	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1120  	int ret;
1121  
1122  	if (!cpu_online(cpu))
1123  		return 0;
1124  
1125  	cpuhp_lock_acquire(false);
1126  	cpuhp_lock_release(false);
1127  
1128  	cpuhp_lock_acquire(true);
1129  	cpuhp_lock_release(true);
1130  
1131  	/*
1132  	 * If we are up and running, use the hotplug thread. For early calls
1133  	 * we invoke the thread function directly.
1134  	 */
1135  	if (!st->thread)
1136  		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1137  
1138  	st->rollback = false;
1139  	st->last = NULL;
1140  
1141  	st->node = node;
1142  	st->bringup = bringup;
1143  	st->cb_state = state;
1144  	st->single = true;
1145  
1146  	__cpuhp_kick_ap(st);
1147  
1148  	/*
1149  	 * If we failed and did a partial, do a rollback.
1150  	 */
1151  	if ((ret = st->result) && st->last) {
1152  		st->rollback = true;
1153  		st->bringup = !bringup;
1154  
1155  		__cpuhp_kick_ap(st);
1156  	}
1157  
1158  	/*
1159  	 * Clean up the leftovers so the next hotplug operation wont use stale
1160  	 * data.
1161  	 */
1162  	st->node = st->last = NULL;
1163  	return ret;
1164  }
1165  
cpuhp_kick_ap_work(unsigned int cpu)1166  static int cpuhp_kick_ap_work(unsigned int cpu)
1167  {
1168  	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1169  	enum cpuhp_state prev_state = st->state;
1170  	int ret;
1171  
1172  	cpuhp_lock_acquire(false);
1173  	cpuhp_lock_release(false);
1174  
1175  	cpuhp_lock_acquire(true);
1176  	cpuhp_lock_release(true);
1177  
1178  	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1179  	ret = cpuhp_kick_ap(cpu, st, st->target);
1180  	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1181  
1182  	return ret;
1183  }
1184  
1185  static struct smp_hotplug_thread cpuhp_threads = {
1186  	.store			= &cpuhp_state.thread,
1187  	.thread_should_run	= cpuhp_should_run,
1188  	.thread_fn		= cpuhp_thread_fun,
1189  	.thread_comm		= "cpuhp/%u",
1190  	.selfparking		= true,
1191  };
1192  
cpuhp_init_state(void)1193  static __init void cpuhp_init_state(void)
1194  {
1195  	struct cpuhp_cpu_state *st;
1196  	int cpu;
1197  
1198  	for_each_possible_cpu(cpu) {
1199  		st = per_cpu_ptr(&cpuhp_state, cpu);
1200  		init_completion(&st->done_up);
1201  		init_completion(&st->done_down);
1202  	}
1203  }
1204  
cpuhp_threads_init(void)1205  void __init cpuhp_threads_init(void)
1206  {
1207  	cpuhp_init_state();
1208  	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1209  	kthread_unpark(this_cpu_read(cpuhp_state.thread));
1210  }
1211  
1212  /*
1213   *
1214   * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
1215   * protected region.
1216   *
1217   * The operation is still serialized against concurrent CPU hotplug via
1218   * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
1219   * serialized against other hotplug related activity like adding or
1220   * removing of state callbacks and state instances, which invoke either the
1221   * startup or the teardown callback of the affected state.
1222   *
1223   * This is required for subsystems which are unfixable vs. CPU hotplug and
1224   * evade lock inversion problems by scheduling work which has to be
1225   * completed _before_ cpu_up()/_cpu_down() returns.
1226   *
1227   * Don't even think about adding anything to this for any new code or even
1228   * drivers. It's only purpose is to keep existing lock order trainwrecks
1229   * working.
1230   *
1231   * For cpu_down() there might be valid reasons to finish cleanups which are
1232   * not required to be done under cpu_hotplug_lock, but that's a different
1233   * story and would be not invoked via this.
1234   */
cpu_up_down_serialize_trainwrecks(bool tasks_frozen)1235  static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
1236  {
1237  	/*
1238  	 * cpusets delegate hotplug operations to a worker to "solve" the
1239  	 * lock order problems. Wait for the worker, but only if tasks are
1240  	 * _not_ frozen (suspend, hibernate) as that would wait forever.
1241  	 *
1242  	 * The wait is required because otherwise the hotplug operation
1243  	 * returns with inconsistent state, which could even be observed in
1244  	 * user space when a new CPU is brought up. The CPU plug uevent
1245  	 * would be delivered and user space reacting on it would fail to
1246  	 * move tasks to the newly plugged CPU up to the point where the
1247  	 * work has finished because up to that point the newly plugged CPU
1248  	 * is not assignable in cpusets/cgroups. On unplug that's not
1249  	 * necessarily a visible issue, but it is still inconsistent state,
1250  	 * which is the real problem which needs to be "fixed". This can't
1251  	 * prevent the transient state between scheduling the work and
1252  	 * returning from waiting for it.
1253  	 */
1254  	if (!tasks_frozen)
1255  		cpuset_wait_for_hotplug();
1256  }
1257  
1258  #ifdef CONFIG_HOTPLUG_CPU
1259  #ifndef arch_clear_mm_cpumask_cpu
1260  #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1261  #endif
1262  
1263  /**
1264   * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1265   * @cpu: a CPU id
1266   *
1267   * This function walks all processes, finds a valid mm struct for each one and
1268   * then clears a corresponding bit in mm's cpumask.  While this all sounds
1269   * trivial, there are various non-obvious corner cases, which this function
1270   * tries to solve in a safe manner.
1271   *
1272   * Also note that the function uses a somewhat relaxed locking scheme, so it may
1273   * be called only for an already offlined CPU.
1274   */
clear_tasks_mm_cpumask(int cpu)1275  void clear_tasks_mm_cpumask(int cpu)
1276  {
1277  	struct task_struct *p;
1278  
1279  	/*
1280  	 * This function is called after the cpu is taken down and marked
1281  	 * offline, so its not like new tasks will ever get this cpu set in
1282  	 * their mm mask. -- Peter Zijlstra
1283  	 * Thus, we may use rcu_read_lock() here, instead of grabbing
1284  	 * full-fledged tasklist_lock.
1285  	 */
1286  	WARN_ON(cpu_online(cpu));
1287  	rcu_read_lock();
1288  	for_each_process(p) {
1289  		struct task_struct *t;
1290  
1291  		/*
1292  		 * Main thread might exit, but other threads may still have
1293  		 * a valid mm. Find one.
1294  		 */
1295  		t = find_lock_task_mm(p);
1296  		if (!t)
1297  			continue;
1298  		arch_clear_mm_cpumask_cpu(cpu, t->mm);
1299  		task_unlock(t);
1300  	}
1301  	rcu_read_unlock();
1302  }
1303  
1304  /* Take this CPU down. */
take_cpu_down(void * _param)1305  static int take_cpu_down(void *_param)
1306  {
1307  	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1308  	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1309  	int err, cpu = smp_processor_id();
1310  
1311  	/* Ensure this CPU doesn't handle any more interrupts. */
1312  	err = __cpu_disable();
1313  	if (err < 0)
1314  		return err;
1315  
1316  	/*
1317  	 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1318  	 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1319  	 */
1320  	WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1321  
1322  	/*
1323  	 * Invoke the former CPU_DYING callbacks. DYING must not fail!
1324  	 */
1325  	cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1326  
1327  	/* Give up timekeeping duties */
1328  	tick_handover_do_timer();
1329  	/* Remove CPU from timer broadcasting */
1330  	tick_offline_cpu(cpu);
1331  	/* Park the stopper thread */
1332  	stop_machine_park(cpu);
1333  	return 0;
1334  }
1335  
takedown_cpu(unsigned int cpu)1336  static int takedown_cpu(unsigned int cpu)
1337  {
1338  	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1339  	int err;
1340  
1341  	/* Park the smpboot threads */
1342  	kthread_park(st->thread);
1343  
1344  	/*
1345  	 * Prevent irq alloc/free while the dying cpu reorganizes the
1346  	 * interrupt affinities.
1347  	 */
1348  	irq_lock_sparse();
1349  
1350  	/*
1351  	 * So now all preempt/rcu users must observe !cpu_active().
1352  	 */
1353  	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1354  	if (err) {
1355  		/* CPU refused to die */
1356  		irq_unlock_sparse();
1357  		/* Unpark the hotplug thread so we can rollback there */
1358  		kthread_unpark(st->thread);
1359  		return err;
1360  	}
1361  	BUG_ON(cpu_online(cpu));
1362  
1363  	/*
1364  	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1365  	 * all runnable tasks from the CPU, there's only the idle task left now
1366  	 * that the migration thread is done doing the stop_machine thing.
1367  	 *
1368  	 * Wait for the stop thread to go away.
1369  	 */
1370  	wait_for_ap_thread(st, false);
1371  	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1372  
1373  	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
1374  	irq_unlock_sparse();
1375  
1376  	hotplug_cpu__broadcast_tick_pull(cpu);
1377  	/* This actually kills the CPU. */
1378  	__cpu_die(cpu);
1379  
1380  	cpuhp_bp_sync_dead(cpu);
1381  
1382  	tick_cleanup_dead_cpu(cpu);
1383  	rcutree_migrate_callbacks(cpu);
1384  	return 0;
1385  }
1386  
cpuhp_complete_idle_dead(void * arg)1387  static void cpuhp_complete_idle_dead(void *arg)
1388  {
1389  	struct cpuhp_cpu_state *st = arg;
1390  
1391  	complete_ap_thread(st, false);
1392  }
1393  
cpuhp_report_idle_dead(void)1394  void cpuhp_report_idle_dead(void)
1395  {
1396  	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1397  
1398  	BUG_ON(st->state != CPUHP_AP_OFFLINE);
1399  	rcu_report_dead(smp_processor_id());
1400  	st->state = CPUHP_AP_IDLE_DEAD;
1401  	/*
1402  	 * We cannot call complete after rcu_report_dead() so we delegate it
1403  	 * to an online cpu.
1404  	 */
1405  	smp_call_function_single(cpumask_first(cpu_online_mask),
1406  				 cpuhp_complete_idle_dead, st, 0);
1407  }
1408  
cpuhp_down_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)1409  static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1410  				enum cpuhp_state target)
1411  {
1412  	enum cpuhp_state prev_state = st->state;
1413  	int ret = 0;
1414  
1415  	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1416  	if (ret) {
1417  		pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1418  			 ret, cpu, cpuhp_get_step(st->state)->name,
1419  			 st->state);
1420  
1421  		cpuhp_reset_state(cpu, st, prev_state);
1422  
1423  		if (st->state < prev_state)
1424  			WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1425  							    prev_state));
1426  	}
1427  
1428  	return ret;
1429  }
1430  
1431  /* Requires cpu_add_remove_lock to be held */
_cpu_down(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1432  static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1433  			   enum cpuhp_state target)
1434  {
1435  	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1436  	int prev_state, ret = 0;
1437  
1438  	if (num_online_cpus() == 1)
1439  		return -EBUSY;
1440  
1441  	if (!cpu_present(cpu))
1442  		return -EINVAL;
1443  
1444  	cpus_write_lock();
1445  
1446  	cpuhp_tasks_frozen = tasks_frozen;
1447  
1448  	prev_state = cpuhp_set_state(cpu, st, target);
1449  	/*
1450  	 * If the current CPU state is in the range of the AP hotplug thread,
1451  	 * then we need to kick the thread.
1452  	 */
1453  	if (st->state > CPUHP_TEARDOWN_CPU) {
1454  		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1455  		ret = cpuhp_kick_ap_work(cpu);
1456  		/*
1457  		 * The AP side has done the error rollback already. Just
1458  		 * return the error code..
1459  		 */
1460  		if (ret)
1461  			goto out;
1462  
1463  		/*
1464  		 * We might have stopped still in the range of the AP hotplug
1465  		 * thread. Nothing to do anymore.
1466  		 */
1467  		if (st->state > CPUHP_TEARDOWN_CPU)
1468  			goto out;
1469  
1470  		st->target = target;
1471  	}
1472  	/*
1473  	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1474  	 * to do the further cleanups.
1475  	 */
1476  	ret = cpuhp_down_callbacks(cpu, st, target);
1477  	if (ret && st->state < prev_state) {
1478  		if (st->state == CPUHP_TEARDOWN_CPU) {
1479  			cpuhp_reset_state(cpu, st, prev_state);
1480  			__cpuhp_kick_ap(st);
1481  		} else {
1482  			WARN(1, "DEAD callback error for CPU%d", cpu);
1483  		}
1484  	}
1485  
1486  out:
1487  	cpus_write_unlock();
1488  	/*
1489  	 * Do post unplug cleanup. This is still protected against
1490  	 * concurrent CPU hotplug via cpu_add_remove_lock.
1491  	 */
1492  	lockup_detector_cleanup();
1493  	arch_smt_update();
1494  	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1495  	return ret;
1496  }
1497  
1498  struct cpu_down_work {
1499  	unsigned int		cpu;
1500  	enum cpuhp_state	target;
1501  };
1502  
__cpu_down_maps_locked(void * arg)1503  static long __cpu_down_maps_locked(void *arg)
1504  {
1505  	struct cpu_down_work *work = arg;
1506  
1507  	return _cpu_down(work->cpu, 0, work->target);
1508  }
1509  
cpu_down_maps_locked(unsigned int cpu,enum cpuhp_state target)1510  static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1511  {
1512  	struct cpu_down_work work = { .cpu = cpu, .target = target, };
1513  
1514  	/*
1515  	 * If the platform does not support hotplug, report it explicitly to
1516  	 * differentiate it from a transient offlining failure.
1517  	 */
1518  	if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED))
1519  		return -EOPNOTSUPP;
1520  	if (cpu_hotplug_disabled)
1521  		return -EBUSY;
1522  
1523  	/*
1524  	 * Ensure that the control task does not run on the to be offlined
1525  	 * CPU to prevent a deadlock against cfs_b->period_timer.
1526  	 * Also keep at least one housekeeping cpu onlined to avoid generating
1527  	 * an empty sched_domain span.
1528  	 */
1529  	for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) {
1530  		if (cpu != work.cpu)
1531  			return work_on_cpu(cpu, __cpu_down_maps_locked, &work);
1532  	}
1533  	return -EBUSY;
1534  }
1535  
cpu_down(unsigned int cpu,enum cpuhp_state target)1536  static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1537  {
1538  	int err;
1539  
1540  	cpu_maps_update_begin();
1541  	err = cpu_down_maps_locked(cpu, target);
1542  	cpu_maps_update_done();
1543  	return err;
1544  }
1545  
1546  /**
1547   * cpu_device_down - Bring down a cpu device
1548   * @dev: Pointer to the cpu device to offline
1549   *
1550   * This function is meant to be used by device core cpu subsystem only.
1551   *
1552   * Other subsystems should use remove_cpu() instead.
1553   *
1554   * Return: %0 on success or a negative errno code
1555   */
cpu_device_down(struct device * dev)1556  int cpu_device_down(struct device *dev)
1557  {
1558  	return cpu_down(dev->id, CPUHP_OFFLINE);
1559  }
1560  
remove_cpu(unsigned int cpu)1561  int remove_cpu(unsigned int cpu)
1562  {
1563  	int ret;
1564  
1565  	lock_device_hotplug();
1566  	ret = device_offline(get_cpu_device(cpu));
1567  	unlock_device_hotplug();
1568  
1569  	return ret;
1570  }
1571  EXPORT_SYMBOL_GPL(remove_cpu);
1572  
smp_shutdown_nonboot_cpus(unsigned int primary_cpu)1573  void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1574  {
1575  	unsigned int cpu;
1576  	int error;
1577  
1578  	cpu_maps_update_begin();
1579  
1580  	/*
1581  	 * Make certain the cpu I'm about to reboot on is online.
1582  	 *
1583  	 * This is inline to what migrate_to_reboot_cpu() already do.
1584  	 */
1585  	if (!cpu_online(primary_cpu))
1586  		primary_cpu = cpumask_first(cpu_online_mask);
1587  
1588  	for_each_online_cpu(cpu) {
1589  		if (cpu == primary_cpu)
1590  			continue;
1591  
1592  		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1593  		if (error) {
1594  			pr_err("Failed to offline CPU%d - error=%d",
1595  				cpu, error);
1596  			break;
1597  		}
1598  	}
1599  
1600  	/*
1601  	 * Ensure all but the reboot CPU are offline.
1602  	 */
1603  	BUG_ON(num_online_cpus() > 1);
1604  
1605  	/*
1606  	 * Make sure the CPUs won't be enabled by someone else after this
1607  	 * point. Kexec will reboot to a new kernel shortly resetting
1608  	 * everything along the way.
1609  	 */
1610  	cpu_hotplug_disabled++;
1611  
1612  	cpu_maps_update_done();
1613  }
1614  
1615  #else
1616  #define takedown_cpu		NULL
1617  #endif /*CONFIG_HOTPLUG_CPU*/
1618  
1619  /**
1620   * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1621   * @cpu: cpu that just started
1622   *
1623   * It must be called by the arch code on the new cpu, before the new cpu
1624   * enables interrupts and before the "boot" cpu returns from __cpu_up().
1625   */
notify_cpu_starting(unsigned int cpu)1626  void notify_cpu_starting(unsigned int cpu)
1627  {
1628  	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1629  	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1630  
1631  	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1632  	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1633  
1634  	/*
1635  	 * STARTING must not fail!
1636  	 */
1637  	cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1638  }
1639  
1640  /*
1641   * Called from the idle task. Wake up the controlling task which brings the
1642   * hotplug thread of the upcoming CPU up and then delegates the rest of the
1643   * online bringup to the hotplug thread.
1644   */
cpuhp_online_idle(enum cpuhp_state state)1645  void cpuhp_online_idle(enum cpuhp_state state)
1646  {
1647  	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1648  
1649  	/* Happens for the boot cpu */
1650  	if (state != CPUHP_AP_ONLINE_IDLE)
1651  		return;
1652  
1653  	cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1654  
1655  	/*
1656  	 * Unpark the stopper thread before we start the idle loop (and start
1657  	 * scheduling); this ensures the stopper task is always available.
1658  	 */
1659  	stop_machine_unpark(smp_processor_id());
1660  
1661  	st->state = CPUHP_AP_ONLINE_IDLE;
1662  	complete_ap_thread(st, true);
1663  }
1664  
1665  /* Requires cpu_add_remove_lock to be held */
_cpu_up(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1666  static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1667  {
1668  	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1669  	struct task_struct *idle;
1670  	int ret = 0;
1671  
1672  	cpus_write_lock();
1673  
1674  	if (!cpu_present(cpu)) {
1675  		ret = -EINVAL;
1676  		goto out;
1677  	}
1678  
1679  	/*
1680  	 * The caller of cpu_up() might have raced with another
1681  	 * caller. Nothing to do.
1682  	 */
1683  	if (st->state >= target)
1684  		goto out;
1685  
1686  	if (st->state == CPUHP_OFFLINE) {
1687  		/* Let it fail before we try to bring the cpu up */
1688  		idle = idle_thread_get(cpu);
1689  		if (IS_ERR(idle)) {
1690  			ret = PTR_ERR(idle);
1691  			goto out;
1692  		}
1693  
1694  		/*
1695  		 * Reset stale stack state from the last time this CPU was online.
1696  		 */
1697  		scs_task_reset(idle);
1698  		kasan_unpoison_task_stack(idle);
1699  	}
1700  
1701  	cpuhp_tasks_frozen = tasks_frozen;
1702  
1703  	cpuhp_set_state(cpu, st, target);
1704  	/*
1705  	 * If the current CPU state is in the range of the AP hotplug thread,
1706  	 * then we need to kick the thread once more.
1707  	 */
1708  	if (st->state > CPUHP_BRINGUP_CPU) {
1709  		ret = cpuhp_kick_ap_work(cpu);
1710  		/*
1711  		 * The AP side has done the error rollback already. Just
1712  		 * return the error code..
1713  		 */
1714  		if (ret)
1715  			goto out;
1716  	}
1717  
1718  	/*
1719  	 * Try to reach the target state. We max out on the BP at
1720  	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1721  	 * responsible for bringing it up to the target state.
1722  	 */
1723  	target = min((int)target, CPUHP_BRINGUP_CPU);
1724  	ret = cpuhp_up_callbacks(cpu, st, target);
1725  out:
1726  	cpus_write_unlock();
1727  	arch_smt_update();
1728  	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1729  	return ret;
1730  }
1731  
cpu_up(unsigned int cpu,enum cpuhp_state target)1732  static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1733  {
1734  	int err = 0;
1735  
1736  	if (!cpu_possible(cpu)) {
1737  		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1738  		       cpu);
1739  #if defined(CONFIG_IA64)
1740  		pr_err("please check additional_cpus= boot parameter\n");
1741  #endif
1742  		return -EINVAL;
1743  	}
1744  
1745  	err = try_online_node(cpu_to_node(cpu));
1746  	if (err)
1747  		return err;
1748  
1749  	cpu_maps_update_begin();
1750  
1751  	if (cpu_hotplug_disabled) {
1752  		err = -EBUSY;
1753  		goto out;
1754  	}
1755  	if (!cpu_bootable(cpu)) {
1756  		err = -EPERM;
1757  		goto out;
1758  	}
1759  
1760  	err = _cpu_up(cpu, 0, target);
1761  out:
1762  	cpu_maps_update_done();
1763  	return err;
1764  }
1765  
1766  /**
1767   * cpu_device_up - Bring up a cpu device
1768   * @dev: Pointer to the cpu device to online
1769   *
1770   * This function is meant to be used by device core cpu subsystem only.
1771   *
1772   * Other subsystems should use add_cpu() instead.
1773   *
1774   * Return: %0 on success or a negative errno code
1775   */
cpu_device_up(struct device * dev)1776  int cpu_device_up(struct device *dev)
1777  {
1778  	return cpu_up(dev->id, CPUHP_ONLINE);
1779  }
1780  
add_cpu(unsigned int cpu)1781  int add_cpu(unsigned int cpu)
1782  {
1783  	int ret;
1784  
1785  	lock_device_hotplug();
1786  	ret = device_online(get_cpu_device(cpu));
1787  	unlock_device_hotplug();
1788  
1789  	return ret;
1790  }
1791  EXPORT_SYMBOL_GPL(add_cpu);
1792  
1793  /**
1794   * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1795   * @sleep_cpu: The cpu we hibernated on and should be brought up.
1796   *
1797   * On some architectures like arm64, we can hibernate on any CPU, but on
1798   * wake up the CPU we hibernated on might be offline as a side effect of
1799   * using maxcpus= for example.
1800   *
1801   * Return: %0 on success or a negative errno code
1802   */
bringup_hibernate_cpu(unsigned int sleep_cpu)1803  int bringup_hibernate_cpu(unsigned int sleep_cpu)
1804  {
1805  	int ret;
1806  
1807  	if (!cpu_online(sleep_cpu)) {
1808  		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1809  		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1810  		if (ret) {
1811  			pr_err("Failed to bring hibernate-CPU up!\n");
1812  			return ret;
1813  		}
1814  	}
1815  	return 0;
1816  }
1817  
cpuhp_bringup_mask(const struct cpumask * mask,unsigned int ncpus,enum cpuhp_state target)1818  static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1819  				      enum cpuhp_state target)
1820  {
1821  	unsigned int cpu;
1822  
1823  	for_each_cpu(cpu, mask) {
1824  		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1825  
1826  		if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1827  			/*
1828  			 * If this failed then cpu_up() might have only
1829  			 * rolled back to CPUHP_BP_KICK_AP for the final
1830  			 * online. Clean it up. NOOP if already rolled back.
1831  			 */
1832  			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1833  		}
1834  
1835  		if (!--ncpus)
1836  			break;
1837  	}
1838  }
1839  
1840  #ifdef CONFIG_HOTPLUG_PARALLEL
1841  static bool __cpuhp_parallel_bringup __ro_after_init = true;
1842  
parallel_bringup_parse_param(char * arg)1843  static int __init parallel_bringup_parse_param(char *arg)
1844  {
1845  	return kstrtobool(arg, &__cpuhp_parallel_bringup);
1846  }
1847  early_param("cpuhp.parallel", parallel_bringup_parse_param);
1848  
cpuhp_smt_aware(void)1849  static inline bool cpuhp_smt_aware(void)
1850  {
1851  	return cpu_smt_max_threads > 1;
1852  }
1853  
cpuhp_get_primary_thread_mask(void)1854  static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1855  {
1856  	return cpu_primary_thread_mask;
1857  }
1858  
1859  /*
1860   * On architectures which have enabled parallel bringup this invokes all BP
1861   * prepare states for each of the to be onlined APs first. The last state
1862   * sends the startup IPI to the APs. The APs proceed through the low level
1863   * bringup code in parallel and then wait for the control CPU to release
1864   * them one by one for the final onlining procedure.
1865   *
1866   * This avoids waiting for each AP to respond to the startup IPI in
1867   * CPUHP_BRINGUP_CPU.
1868   */
cpuhp_bringup_cpus_parallel(unsigned int ncpus)1869  static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1870  {
1871  	const struct cpumask *mask = cpu_present_mask;
1872  
1873  	if (__cpuhp_parallel_bringup)
1874  		__cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1875  	if (!__cpuhp_parallel_bringup)
1876  		return false;
1877  
1878  	if (cpuhp_smt_aware()) {
1879  		const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1880  		static struct cpumask tmp_mask __initdata;
1881  
1882  		/*
1883  		 * X86 requires to prevent that SMT siblings stopped while
1884  		 * the primary thread does a microcode update for various
1885  		 * reasons. Bring the primary threads up first.
1886  		 */
1887  		cpumask_and(&tmp_mask, mask, pmask);
1888  		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1889  		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1890  		/* Account for the online CPUs */
1891  		ncpus -= num_online_cpus();
1892  		if (!ncpus)
1893  			return true;
1894  		/* Create the mask for secondary CPUs */
1895  		cpumask_andnot(&tmp_mask, mask, pmask);
1896  		mask = &tmp_mask;
1897  	}
1898  
1899  	/* Bring the not-yet started CPUs up */
1900  	cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1901  	cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1902  	return true;
1903  }
1904  #else
cpuhp_bringup_cpus_parallel(unsigned int ncpus)1905  static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1906  #endif /* CONFIG_HOTPLUG_PARALLEL */
1907  
bringup_nonboot_cpus(unsigned int setup_max_cpus)1908  void __init bringup_nonboot_cpus(unsigned int setup_max_cpus)
1909  {
1910  	if (!setup_max_cpus)
1911  		return;
1912  
1913  	/* Try parallel bringup optimization if enabled */
1914  	if (cpuhp_bringup_cpus_parallel(setup_max_cpus))
1915  		return;
1916  
1917  	/* Full per CPU serialized bringup */
1918  	cpuhp_bringup_mask(cpu_present_mask, setup_max_cpus, CPUHP_ONLINE);
1919  }
1920  
1921  #ifdef CONFIG_PM_SLEEP_SMP
1922  static cpumask_var_t frozen_cpus;
1923  
freeze_secondary_cpus(int primary)1924  int freeze_secondary_cpus(int primary)
1925  {
1926  	int cpu, error = 0;
1927  
1928  	cpu_maps_update_begin();
1929  	if (primary == -1) {
1930  		primary = cpumask_first(cpu_online_mask);
1931  		if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1932  			primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1933  	} else {
1934  		if (!cpu_online(primary))
1935  			primary = cpumask_first(cpu_online_mask);
1936  	}
1937  
1938  	/*
1939  	 * We take down all of the non-boot CPUs in one shot to avoid races
1940  	 * with the userspace trying to use the CPU hotplug at the same time
1941  	 */
1942  	cpumask_clear(frozen_cpus);
1943  
1944  	pr_info("Disabling non-boot CPUs ...\n");
1945  	for_each_online_cpu(cpu) {
1946  		if (cpu == primary)
1947  			continue;
1948  
1949  		if (pm_wakeup_pending()) {
1950  			pr_info("Wakeup pending. Abort CPU freeze\n");
1951  			error = -EBUSY;
1952  			break;
1953  		}
1954  
1955  		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1956  		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1957  		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1958  		if (!error)
1959  			cpumask_set_cpu(cpu, frozen_cpus);
1960  		else {
1961  			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1962  			break;
1963  		}
1964  	}
1965  
1966  	if (!error)
1967  		BUG_ON(num_online_cpus() > 1);
1968  	else
1969  		pr_err("Non-boot CPUs are not disabled\n");
1970  
1971  	/*
1972  	 * Make sure the CPUs won't be enabled by someone else. We need to do
1973  	 * this even in case of failure as all freeze_secondary_cpus() users are
1974  	 * supposed to do thaw_secondary_cpus() on the failure path.
1975  	 */
1976  	cpu_hotplug_disabled++;
1977  
1978  	cpu_maps_update_done();
1979  	return error;
1980  }
1981  
arch_thaw_secondary_cpus_begin(void)1982  void __weak arch_thaw_secondary_cpus_begin(void)
1983  {
1984  }
1985  
arch_thaw_secondary_cpus_end(void)1986  void __weak arch_thaw_secondary_cpus_end(void)
1987  {
1988  }
1989  
thaw_secondary_cpus(void)1990  void thaw_secondary_cpus(void)
1991  {
1992  	int cpu, error;
1993  
1994  	/* Allow everyone to use the CPU hotplug again */
1995  	cpu_maps_update_begin();
1996  	__cpu_hotplug_enable();
1997  	if (cpumask_empty(frozen_cpus))
1998  		goto out;
1999  
2000  	pr_info("Enabling non-boot CPUs ...\n");
2001  
2002  	arch_thaw_secondary_cpus_begin();
2003  
2004  	for_each_cpu(cpu, frozen_cpus) {
2005  		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
2006  		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
2007  		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
2008  		if (!error) {
2009  			pr_info("CPU%d is up\n", cpu);
2010  			continue;
2011  		}
2012  		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
2013  	}
2014  
2015  	arch_thaw_secondary_cpus_end();
2016  
2017  	cpumask_clear(frozen_cpus);
2018  out:
2019  	cpu_maps_update_done();
2020  }
2021  
alloc_frozen_cpus(void)2022  static int __init alloc_frozen_cpus(void)
2023  {
2024  	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
2025  		return -ENOMEM;
2026  	return 0;
2027  }
2028  core_initcall(alloc_frozen_cpus);
2029  
2030  /*
2031   * When callbacks for CPU hotplug notifications are being executed, we must
2032   * ensure that the state of the system with respect to the tasks being frozen
2033   * or not, as reported by the notification, remains unchanged *throughout the
2034   * duration* of the execution of the callbacks.
2035   * Hence we need to prevent the freezer from racing with regular CPU hotplug.
2036   *
2037   * This synchronization is implemented by mutually excluding regular CPU
2038   * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
2039   * Hibernate notifications.
2040   */
2041  static int
cpu_hotplug_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)2042  cpu_hotplug_pm_callback(struct notifier_block *nb,
2043  			unsigned long action, void *ptr)
2044  {
2045  	switch (action) {
2046  
2047  	case PM_SUSPEND_PREPARE:
2048  	case PM_HIBERNATION_PREPARE:
2049  		cpu_hotplug_disable();
2050  		break;
2051  
2052  	case PM_POST_SUSPEND:
2053  	case PM_POST_HIBERNATION:
2054  		cpu_hotplug_enable();
2055  		break;
2056  
2057  	default:
2058  		return NOTIFY_DONE;
2059  	}
2060  
2061  	return NOTIFY_OK;
2062  }
2063  
2064  
cpu_hotplug_pm_sync_init(void)2065  static int __init cpu_hotplug_pm_sync_init(void)
2066  {
2067  	/*
2068  	 * cpu_hotplug_pm_callback has higher priority than x86
2069  	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2070  	 * to disable cpu hotplug to avoid cpu hotplug race.
2071  	 */
2072  	pm_notifier(cpu_hotplug_pm_callback, 0);
2073  	return 0;
2074  }
2075  core_initcall(cpu_hotplug_pm_sync_init);
2076  
2077  #endif /* CONFIG_PM_SLEEP_SMP */
2078  
2079  int __boot_cpu_id;
2080  
2081  #endif /* CONFIG_SMP */
2082  
2083  /* Boot processor state steps */
2084  static struct cpuhp_step cpuhp_hp_states[] = {
2085  	[CPUHP_OFFLINE] = {
2086  		.name			= "offline",
2087  		.startup.single		= NULL,
2088  		.teardown.single	= NULL,
2089  	},
2090  #ifdef CONFIG_SMP
2091  	[CPUHP_CREATE_THREADS]= {
2092  		.name			= "threads:prepare",
2093  		.startup.single		= smpboot_create_threads,
2094  		.teardown.single	= NULL,
2095  		.cant_stop		= true,
2096  	},
2097  	[CPUHP_PERF_PREPARE] = {
2098  		.name			= "perf:prepare",
2099  		.startup.single		= perf_event_init_cpu,
2100  		.teardown.single	= perf_event_exit_cpu,
2101  	},
2102  	[CPUHP_RANDOM_PREPARE] = {
2103  		.name			= "random:prepare",
2104  		.startup.single		= random_prepare_cpu,
2105  		.teardown.single	= NULL,
2106  	},
2107  	[CPUHP_WORKQUEUE_PREP] = {
2108  		.name			= "workqueue:prepare",
2109  		.startup.single		= workqueue_prepare_cpu,
2110  		.teardown.single	= NULL,
2111  	},
2112  	[CPUHP_HRTIMERS_PREPARE] = {
2113  		.name			= "hrtimers:prepare",
2114  		.startup.single		= hrtimers_prepare_cpu,
2115  		.teardown.single	= NULL,
2116  	},
2117  	[CPUHP_SMPCFD_PREPARE] = {
2118  		.name			= "smpcfd:prepare",
2119  		.startup.single		= smpcfd_prepare_cpu,
2120  		.teardown.single	= smpcfd_dead_cpu,
2121  	},
2122  	[CPUHP_RELAY_PREPARE] = {
2123  		.name			= "relay:prepare",
2124  		.startup.single		= relay_prepare_cpu,
2125  		.teardown.single	= NULL,
2126  	},
2127  	[CPUHP_SLAB_PREPARE] = {
2128  		.name			= "slab:prepare",
2129  		.startup.single		= slab_prepare_cpu,
2130  		.teardown.single	= slab_dead_cpu,
2131  	},
2132  	[CPUHP_RCUTREE_PREP] = {
2133  		.name			= "RCU/tree:prepare",
2134  		.startup.single		= rcutree_prepare_cpu,
2135  		.teardown.single	= rcutree_dead_cpu,
2136  	},
2137  	/*
2138  	 * On the tear-down path, timers_dead_cpu() must be invoked
2139  	 * before blk_mq_queue_reinit_notify() from notify_dead(),
2140  	 * otherwise a RCU stall occurs.
2141  	 */
2142  	[CPUHP_TIMERS_PREPARE] = {
2143  		.name			= "timers:prepare",
2144  		.startup.single		= timers_prepare_cpu,
2145  		.teardown.single	= timers_dead_cpu,
2146  	},
2147  
2148  #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2149  	/*
2150  	 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2151  	 * the next step will release it.
2152  	 */
2153  	[CPUHP_BP_KICK_AP] = {
2154  		.name			= "cpu:kick_ap",
2155  		.startup.single		= cpuhp_kick_ap_alive,
2156  	},
2157  
2158  	/*
2159  	 * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2160  	 * releases it for the complete bringup.
2161  	 */
2162  	[CPUHP_BRINGUP_CPU] = {
2163  		.name			= "cpu:bringup",
2164  		.startup.single		= cpuhp_bringup_ap,
2165  		.teardown.single	= finish_cpu,
2166  		.cant_stop		= true,
2167  	},
2168  #else
2169  	/*
2170  	 * All-in-one CPU bringup state which includes the kick alive.
2171  	 */
2172  	[CPUHP_BRINGUP_CPU] = {
2173  		.name			= "cpu:bringup",
2174  		.startup.single		= bringup_cpu,
2175  		.teardown.single	= finish_cpu,
2176  		.cant_stop		= true,
2177  	},
2178  #endif
2179  	/* Final state before CPU kills itself */
2180  	[CPUHP_AP_IDLE_DEAD] = {
2181  		.name			= "idle:dead",
2182  	},
2183  	/*
2184  	 * Last state before CPU enters the idle loop to die. Transient state
2185  	 * for synchronization.
2186  	 */
2187  	[CPUHP_AP_OFFLINE] = {
2188  		.name			= "ap:offline",
2189  		.cant_stop		= true,
2190  	},
2191  	/* First state is scheduler control. Interrupts are disabled */
2192  	[CPUHP_AP_SCHED_STARTING] = {
2193  		.name			= "sched:starting",
2194  		.startup.single		= sched_cpu_starting,
2195  		.teardown.single	= sched_cpu_dying,
2196  	},
2197  	[CPUHP_AP_RCUTREE_DYING] = {
2198  		.name			= "RCU/tree:dying",
2199  		.startup.single		= NULL,
2200  		.teardown.single	= rcutree_dying_cpu,
2201  	},
2202  	[CPUHP_AP_SMPCFD_DYING] = {
2203  		.name			= "smpcfd:dying",
2204  		.startup.single		= NULL,
2205  		.teardown.single	= smpcfd_dying_cpu,
2206  	},
2207  	[CPUHP_AP_HRTIMERS_DYING] = {
2208  		.name			= "hrtimers:dying",
2209  		.startup.single		= hrtimers_cpu_starting,
2210  		.teardown.single	= hrtimers_cpu_dying,
2211  	},
2212  
2213  	/* Entry state on starting. Interrupts enabled from here on. Transient
2214  	 * state for synchronsization */
2215  	[CPUHP_AP_ONLINE] = {
2216  		.name			= "ap:online",
2217  	},
2218  	/*
2219  	 * Handled on control processor until the plugged processor manages
2220  	 * this itself.
2221  	 */
2222  	[CPUHP_TEARDOWN_CPU] = {
2223  		.name			= "cpu:teardown",
2224  		.startup.single		= NULL,
2225  		.teardown.single	= takedown_cpu,
2226  		.cant_stop		= true,
2227  	},
2228  
2229  	[CPUHP_AP_SCHED_WAIT_EMPTY] = {
2230  		.name			= "sched:waitempty",
2231  		.startup.single		= NULL,
2232  		.teardown.single	= sched_cpu_wait_empty,
2233  	},
2234  
2235  	/* Handle smpboot threads park/unpark */
2236  	[CPUHP_AP_SMPBOOT_THREADS] = {
2237  		.name			= "smpboot/threads:online",
2238  		.startup.single		= smpboot_unpark_threads,
2239  		.teardown.single	= smpboot_park_threads,
2240  	},
2241  	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2242  		.name			= "irq/affinity:online",
2243  		.startup.single		= irq_affinity_online_cpu,
2244  		.teardown.single	= NULL,
2245  	},
2246  	[CPUHP_AP_PERF_ONLINE] = {
2247  		.name			= "perf:online",
2248  		.startup.single		= perf_event_init_cpu,
2249  		.teardown.single	= perf_event_exit_cpu,
2250  	},
2251  	[CPUHP_AP_WATCHDOG_ONLINE] = {
2252  		.name			= "lockup_detector:online",
2253  		.startup.single		= lockup_detector_online_cpu,
2254  		.teardown.single	= lockup_detector_offline_cpu,
2255  	},
2256  	[CPUHP_AP_WORKQUEUE_ONLINE] = {
2257  		.name			= "workqueue:online",
2258  		.startup.single		= workqueue_online_cpu,
2259  		.teardown.single	= workqueue_offline_cpu,
2260  	},
2261  	[CPUHP_AP_RANDOM_ONLINE] = {
2262  		.name			= "random:online",
2263  		.startup.single		= random_online_cpu,
2264  		.teardown.single	= NULL,
2265  	},
2266  	[CPUHP_AP_RCUTREE_ONLINE] = {
2267  		.name			= "RCU/tree:online",
2268  		.startup.single		= rcutree_online_cpu,
2269  		.teardown.single	= rcutree_offline_cpu,
2270  	},
2271  #endif
2272  	/*
2273  	 * The dynamically registered state space is here
2274  	 */
2275  
2276  #ifdef CONFIG_SMP
2277  	/* Last state is scheduler control setting the cpu active */
2278  	[CPUHP_AP_ACTIVE] = {
2279  		.name			= "sched:active",
2280  		.startup.single		= sched_cpu_activate,
2281  		.teardown.single	= sched_cpu_deactivate,
2282  	},
2283  #endif
2284  
2285  	/* CPU is fully up and running. */
2286  	[CPUHP_ONLINE] = {
2287  		.name			= "online",
2288  		.startup.single		= NULL,
2289  		.teardown.single	= NULL,
2290  	},
2291  };
2292  
2293  /* Sanity check for callbacks */
cpuhp_cb_check(enum cpuhp_state state)2294  static int cpuhp_cb_check(enum cpuhp_state state)
2295  {
2296  	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2297  		return -EINVAL;
2298  	return 0;
2299  }
2300  
2301  /*
2302   * Returns a free for dynamic slot assignment of the Online state. The states
2303   * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2304   * by having no name assigned.
2305   */
cpuhp_reserve_state(enum cpuhp_state state)2306  static int cpuhp_reserve_state(enum cpuhp_state state)
2307  {
2308  	enum cpuhp_state i, end;
2309  	struct cpuhp_step *step;
2310  
2311  	switch (state) {
2312  	case CPUHP_AP_ONLINE_DYN:
2313  		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2314  		end = CPUHP_AP_ONLINE_DYN_END;
2315  		break;
2316  	case CPUHP_BP_PREPARE_DYN:
2317  		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2318  		end = CPUHP_BP_PREPARE_DYN_END;
2319  		break;
2320  	default:
2321  		return -EINVAL;
2322  	}
2323  
2324  	for (i = state; i <= end; i++, step++) {
2325  		if (!step->name)
2326  			return i;
2327  	}
2328  	WARN(1, "No more dynamic states available for CPU hotplug\n");
2329  	return -ENOSPC;
2330  }
2331  
cpuhp_store_callbacks(enum cpuhp_state state,const char * name,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2332  static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2333  				 int (*startup)(unsigned int cpu),
2334  				 int (*teardown)(unsigned int cpu),
2335  				 bool multi_instance)
2336  {
2337  	/* (Un)Install the callbacks for further cpu hotplug operations */
2338  	struct cpuhp_step *sp;
2339  	int ret = 0;
2340  
2341  	/*
2342  	 * If name is NULL, then the state gets removed.
2343  	 *
2344  	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2345  	 * the first allocation from these dynamic ranges, so the removal
2346  	 * would trigger a new allocation and clear the wrong (already
2347  	 * empty) state, leaving the callbacks of the to be cleared state
2348  	 * dangling, which causes wreckage on the next hotplug operation.
2349  	 */
2350  	if (name && (state == CPUHP_AP_ONLINE_DYN ||
2351  		     state == CPUHP_BP_PREPARE_DYN)) {
2352  		ret = cpuhp_reserve_state(state);
2353  		if (ret < 0)
2354  			return ret;
2355  		state = ret;
2356  	}
2357  	sp = cpuhp_get_step(state);
2358  	if (name && sp->name)
2359  		return -EBUSY;
2360  
2361  	sp->startup.single = startup;
2362  	sp->teardown.single = teardown;
2363  	sp->name = name;
2364  	sp->multi_instance = multi_instance;
2365  	INIT_HLIST_HEAD(&sp->list);
2366  	return ret;
2367  }
2368  
cpuhp_get_teardown_cb(enum cpuhp_state state)2369  static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2370  {
2371  	return cpuhp_get_step(state)->teardown.single;
2372  }
2373  
2374  /*
2375   * Call the startup/teardown function for a step either on the AP or
2376   * on the current CPU.
2377   */
cpuhp_issue_call(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)2378  static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2379  			    struct hlist_node *node)
2380  {
2381  	struct cpuhp_step *sp = cpuhp_get_step(state);
2382  	int ret;
2383  
2384  	/*
2385  	 * If there's nothing to do, we done.
2386  	 * Relies on the union for multi_instance.
2387  	 */
2388  	if (cpuhp_step_empty(bringup, sp))
2389  		return 0;
2390  	/*
2391  	 * The non AP bound callbacks can fail on bringup. On teardown
2392  	 * e.g. module removal we crash for now.
2393  	 */
2394  #ifdef CONFIG_SMP
2395  	if (cpuhp_is_ap_state(state))
2396  		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2397  	else
2398  		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2399  #else
2400  	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2401  #endif
2402  	BUG_ON(ret && !bringup);
2403  	return ret;
2404  }
2405  
2406  /*
2407   * Called from __cpuhp_setup_state on a recoverable failure.
2408   *
2409   * Note: The teardown callbacks for rollback are not allowed to fail!
2410   */
cpuhp_rollback_install(int failedcpu,enum cpuhp_state state,struct hlist_node * node)2411  static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2412  				   struct hlist_node *node)
2413  {
2414  	int cpu;
2415  
2416  	/* Roll back the already executed steps on the other cpus */
2417  	for_each_present_cpu(cpu) {
2418  		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2419  		int cpustate = st->state;
2420  
2421  		if (cpu >= failedcpu)
2422  			break;
2423  
2424  		/* Did we invoke the startup call on that cpu ? */
2425  		if (cpustate >= state)
2426  			cpuhp_issue_call(cpu, state, false, node);
2427  	}
2428  }
2429  
__cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,struct hlist_node * node,bool invoke)2430  int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2431  					  struct hlist_node *node,
2432  					  bool invoke)
2433  {
2434  	struct cpuhp_step *sp;
2435  	int cpu;
2436  	int ret;
2437  
2438  	lockdep_assert_cpus_held();
2439  
2440  	sp = cpuhp_get_step(state);
2441  	if (sp->multi_instance == false)
2442  		return -EINVAL;
2443  
2444  	mutex_lock(&cpuhp_state_mutex);
2445  
2446  	if (!invoke || !sp->startup.multi)
2447  		goto add_node;
2448  
2449  	/*
2450  	 * Try to call the startup callback for each present cpu
2451  	 * depending on the hotplug state of the cpu.
2452  	 */
2453  	for_each_present_cpu(cpu) {
2454  		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2455  		int cpustate = st->state;
2456  
2457  		if (cpustate < state)
2458  			continue;
2459  
2460  		ret = cpuhp_issue_call(cpu, state, true, node);
2461  		if (ret) {
2462  			if (sp->teardown.multi)
2463  				cpuhp_rollback_install(cpu, state, node);
2464  			goto unlock;
2465  		}
2466  	}
2467  add_node:
2468  	ret = 0;
2469  	hlist_add_head(node, &sp->list);
2470  unlock:
2471  	mutex_unlock(&cpuhp_state_mutex);
2472  	return ret;
2473  }
2474  
__cpuhp_state_add_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2475  int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2476  			       bool invoke)
2477  {
2478  	int ret;
2479  
2480  	cpus_read_lock();
2481  	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2482  	cpus_read_unlock();
2483  	return ret;
2484  }
2485  EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2486  
2487  /**
2488   * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2489   * @state:		The state to setup
2490   * @name:		Name of the step
2491   * @invoke:		If true, the startup function is invoked for cpus where
2492   *			cpu state >= @state
2493   * @startup:		startup callback function
2494   * @teardown:		teardown callback function
2495   * @multi_instance:	State is set up for multiple instances which get
2496   *			added afterwards.
2497   *
2498   * The caller needs to hold cpus read locked while calling this function.
2499   * Return:
2500   *   On success:
2501   *      Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN;
2502   *      0 for all other states
2503   *   On failure: proper (negative) error code
2504   */
__cpuhp_setup_state_cpuslocked(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2505  int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2506  				   const char *name, bool invoke,
2507  				   int (*startup)(unsigned int cpu),
2508  				   int (*teardown)(unsigned int cpu),
2509  				   bool multi_instance)
2510  {
2511  	int cpu, ret = 0;
2512  	bool dynstate;
2513  
2514  	lockdep_assert_cpus_held();
2515  
2516  	if (cpuhp_cb_check(state) || !name)
2517  		return -EINVAL;
2518  
2519  	mutex_lock(&cpuhp_state_mutex);
2520  
2521  	ret = cpuhp_store_callbacks(state, name, startup, teardown,
2522  				    multi_instance);
2523  
2524  	dynstate = state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN;
2525  	if (ret > 0 && dynstate) {
2526  		state = ret;
2527  		ret = 0;
2528  	}
2529  
2530  	if (ret || !invoke || !startup)
2531  		goto out;
2532  
2533  	/*
2534  	 * Try to call the startup callback for each present cpu
2535  	 * depending on the hotplug state of the cpu.
2536  	 */
2537  	for_each_present_cpu(cpu) {
2538  		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2539  		int cpustate = st->state;
2540  
2541  		if (cpustate < state)
2542  			continue;
2543  
2544  		ret = cpuhp_issue_call(cpu, state, true, NULL);
2545  		if (ret) {
2546  			if (teardown)
2547  				cpuhp_rollback_install(cpu, state, NULL);
2548  			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2549  			goto out;
2550  		}
2551  	}
2552  out:
2553  	mutex_unlock(&cpuhp_state_mutex);
2554  	/*
2555  	 * If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN,
2556  	 * return the dynamically allocated state in case of success.
2557  	 */
2558  	if (!ret && dynstate)
2559  		return state;
2560  	return ret;
2561  }
2562  EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2563  
__cpuhp_setup_state(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2564  int __cpuhp_setup_state(enum cpuhp_state state,
2565  			const char *name, bool invoke,
2566  			int (*startup)(unsigned int cpu),
2567  			int (*teardown)(unsigned int cpu),
2568  			bool multi_instance)
2569  {
2570  	int ret;
2571  
2572  	cpus_read_lock();
2573  	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2574  					     teardown, multi_instance);
2575  	cpus_read_unlock();
2576  	return ret;
2577  }
2578  EXPORT_SYMBOL(__cpuhp_setup_state);
2579  
__cpuhp_state_remove_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2580  int __cpuhp_state_remove_instance(enum cpuhp_state state,
2581  				  struct hlist_node *node, bool invoke)
2582  {
2583  	struct cpuhp_step *sp = cpuhp_get_step(state);
2584  	int cpu;
2585  
2586  	BUG_ON(cpuhp_cb_check(state));
2587  
2588  	if (!sp->multi_instance)
2589  		return -EINVAL;
2590  
2591  	cpus_read_lock();
2592  	mutex_lock(&cpuhp_state_mutex);
2593  
2594  	if (!invoke || !cpuhp_get_teardown_cb(state))
2595  		goto remove;
2596  	/*
2597  	 * Call the teardown callback for each present cpu depending
2598  	 * on the hotplug state of the cpu. This function is not
2599  	 * allowed to fail currently!
2600  	 */
2601  	for_each_present_cpu(cpu) {
2602  		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2603  		int cpustate = st->state;
2604  
2605  		if (cpustate >= state)
2606  			cpuhp_issue_call(cpu, state, false, node);
2607  	}
2608  
2609  remove:
2610  	hlist_del(node);
2611  	mutex_unlock(&cpuhp_state_mutex);
2612  	cpus_read_unlock();
2613  
2614  	return 0;
2615  }
2616  EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2617  
2618  /**
2619   * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2620   * @state:	The state to remove
2621   * @invoke:	If true, the teardown function is invoked for cpus where
2622   *		cpu state >= @state
2623   *
2624   * The caller needs to hold cpus read locked while calling this function.
2625   * The teardown callback is currently not allowed to fail. Think
2626   * about module removal!
2627   */
__cpuhp_remove_state_cpuslocked(enum cpuhp_state state,bool invoke)2628  void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2629  {
2630  	struct cpuhp_step *sp = cpuhp_get_step(state);
2631  	int cpu;
2632  
2633  	BUG_ON(cpuhp_cb_check(state));
2634  
2635  	lockdep_assert_cpus_held();
2636  
2637  	mutex_lock(&cpuhp_state_mutex);
2638  	if (sp->multi_instance) {
2639  		WARN(!hlist_empty(&sp->list),
2640  		     "Error: Removing state %d which has instances left.\n",
2641  		     state);
2642  		goto remove;
2643  	}
2644  
2645  	if (!invoke || !cpuhp_get_teardown_cb(state))
2646  		goto remove;
2647  
2648  	/*
2649  	 * Call the teardown callback for each present cpu depending
2650  	 * on the hotplug state of the cpu. This function is not
2651  	 * allowed to fail currently!
2652  	 */
2653  	for_each_present_cpu(cpu) {
2654  		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2655  		int cpustate = st->state;
2656  
2657  		if (cpustate >= state)
2658  			cpuhp_issue_call(cpu, state, false, NULL);
2659  	}
2660  remove:
2661  	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2662  	mutex_unlock(&cpuhp_state_mutex);
2663  }
2664  EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2665  
__cpuhp_remove_state(enum cpuhp_state state,bool invoke)2666  void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2667  {
2668  	cpus_read_lock();
2669  	__cpuhp_remove_state_cpuslocked(state, invoke);
2670  	cpus_read_unlock();
2671  }
2672  EXPORT_SYMBOL(__cpuhp_remove_state);
2673  
2674  #ifdef CONFIG_HOTPLUG_SMT
cpuhp_offline_cpu_device(unsigned int cpu)2675  static void cpuhp_offline_cpu_device(unsigned int cpu)
2676  {
2677  	struct device *dev = get_cpu_device(cpu);
2678  
2679  	dev->offline = true;
2680  	/* Tell user space about the state change */
2681  	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2682  }
2683  
cpuhp_online_cpu_device(unsigned int cpu)2684  static void cpuhp_online_cpu_device(unsigned int cpu)
2685  {
2686  	struct device *dev = get_cpu_device(cpu);
2687  
2688  	dev->offline = false;
2689  	/* Tell user space about the state change */
2690  	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2691  }
2692  
cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)2693  int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2694  {
2695  	int cpu, ret = 0;
2696  
2697  	cpu_maps_update_begin();
2698  	for_each_online_cpu(cpu) {
2699  		if (topology_is_primary_thread(cpu))
2700  			continue;
2701  		/*
2702  		 * Disable can be called with CPU_SMT_ENABLED when changing
2703  		 * from a higher to lower number of SMT threads per core.
2704  		 */
2705  		if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
2706  			continue;
2707  		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2708  		if (ret)
2709  			break;
2710  		/*
2711  		 * As this needs to hold the cpu maps lock it's impossible
2712  		 * to call device_offline() because that ends up calling
2713  		 * cpu_down() which takes cpu maps lock. cpu maps lock
2714  		 * needs to be held as this might race against in kernel
2715  		 * abusers of the hotplug machinery (thermal management).
2716  		 *
2717  		 * So nothing would update device:offline state. That would
2718  		 * leave the sysfs entry stale and prevent onlining after
2719  		 * smt control has been changed to 'off' again. This is
2720  		 * called under the sysfs hotplug lock, so it is properly
2721  		 * serialized against the regular offline usage.
2722  		 */
2723  		cpuhp_offline_cpu_device(cpu);
2724  	}
2725  	if (!ret)
2726  		cpu_smt_control = ctrlval;
2727  	cpu_maps_update_done();
2728  	return ret;
2729  }
2730  
2731  /**
2732   * Check if the core a CPU belongs to is online
2733   */
2734  #if !defined(topology_is_core_online)
topology_is_core_online(unsigned int cpu)2735  static inline bool topology_is_core_online(unsigned int cpu)
2736  {
2737  	return true;
2738  }
2739  #endif
2740  
cpuhp_smt_enable(void)2741  int cpuhp_smt_enable(void)
2742  {
2743  	int cpu, ret = 0;
2744  
2745  	cpu_maps_update_begin();
2746  	cpu_smt_control = CPU_SMT_ENABLED;
2747  	for_each_present_cpu(cpu) {
2748  		/* Skip online CPUs and CPUs on offline nodes */
2749  		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2750  			continue;
2751  		if (!cpu_smt_thread_allowed(cpu) || !topology_is_core_online(cpu))
2752  			continue;
2753  		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2754  		if (ret)
2755  			break;
2756  		/* See comment in cpuhp_smt_disable() */
2757  		cpuhp_online_cpu_device(cpu);
2758  	}
2759  	cpu_maps_update_done();
2760  	return ret;
2761  }
2762  #endif
2763  
2764  #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
state_show(struct device * dev,struct device_attribute * attr,char * buf)2765  static ssize_t state_show(struct device *dev,
2766  			  struct device_attribute *attr, char *buf)
2767  {
2768  	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2769  
2770  	return sprintf(buf, "%d\n", st->state);
2771  }
2772  static DEVICE_ATTR_RO(state);
2773  
target_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2774  static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2775  			    const char *buf, size_t count)
2776  {
2777  	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2778  	struct cpuhp_step *sp;
2779  	int target, ret;
2780  
2781  	ret = kstrtoint(buf, 10, &target);
2782  	if (ret)
2783  		return ret;
2784  
2785  #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2786  	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2787  		return -EINVAL;
2788  #else
2789  	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2790  		return -EINVAL;
2791  #endif
2792  
2793  	ret = lock_device_hotplug_sysfs();
2794  	if (ret)
2795  		return ret;
2796  
2797  	mutex_lock(&cpuhp_state_mutex);
2798  	sp = cpuhp_get_step(target);
2799  	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2800  	mutex_unlock(&cpuhp_state_mutex);
2801  	if (ret)
2802  		goto out;
2803  
2804  	if (st->state < target)
2805  		ret = cpu_up(dev->id, target);
2806  	else if (st->state > target)
2807  		ret = cpu_down(dev->id, target);
2808  	else if (WARN_ON(st->target != target))
2809  		st->target = target;
2810  out:
2811  	unlock_device_hotplug();
2812  	return ret ? ret : count;
2813  }
2814  
target_show(struct device * dev,struct device_attribute * attr,char * buf)2815  static ssize_t target_show(struct device *dev,
2816  			   struct device_attribute *attr, char *buf)
2817  {
2818  	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2819  
2820  	return sprintf(buf, "%d\n", st->target);
2821  }
2822  static DEVICE_ATTR_RW(target);
2823  
fail_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2824  static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2825  			  const char *buf, size_t count)
2826  {
2827  	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2828  	struct cpuhp_step *sp;
2829  	int fail, ret;
2830  
2831  	ret = kstrtoint(buf, 10, &fail);
2832  	if (ret)
2833  		return ret;
2834  
2835  	if (fail == CPUHP_INVALID) {
2836  		st->fail = fail;
2837  		return count;
2838  	}
2839  
2840  	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2841  		return -EINVAL;
2842  
2843  	/*
2844  	 * Cannot fail STARTING/DYING callbacks.
2845  	 */
2846  	if (cpuhp_is_atomic_state(fail))
2847  		return -EINVAL;
2848  
2849  	/*
2850  	 * DEAD callbacks cannot fail...
2851  	 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2852  	 * triggering STARTING callbacks, a failure in this state would
2853  	 * hinder rollback.
2854  	 */
2855  	if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2856  		return -EINVAL;
2857  
2858  	/*
2859  	 * Cannot fail anything that doesn't have callbacks.
2860  	 */
2861  	mutex_lock(&cpuhp_state_mutex);
2862  	sp = cpuhp_get_step(fail);
2863  	if (!sp->startup.single && !sp->teardown.single)
2864  		ret = -EINVAL;
2865  	mutex_unlock(&cpuhp_state_mutex);
2866  	if (ret)
2867  		return ret;
2868  
2869  	st->fail = fail;
2870  
2871  	return count;
2872  }
2873  
fail_show(struct device * dev,struct device_attribute * attr,char * buf)2874  static ssize_t fail_show(struct device *dev,
2875  			 struct device_attribute *attr, char *buf)
2876  {
2877  	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2878  
2879  	return sprintf(buf, "%d\n", st->fail);
2880  }
2881  
2882  static DEVICE_ATTR_RW(fail);
2883  
2884  static struct attribute *cpuhp_cpu_attrs[] = {
2885  	&dev_attr_state.attr,
2886  	&dev_attr_target.attr,
2887  	&dev_attr_fail.attr,
2888  	NULL
2889  };
2890  
2891  static const struct attribute_group cpuhp_cpu_attr_group = {
2892  	.attrs = cpuhp_cpu_attrs,
2893  	.name = "hotplug",
2894  	NULL
2895  };
2896  
states_show(struct device * dev,struct device_attribute * attr,char * buf)2897  static ssize_t states_show(struct device *dev,
2898  				 struct device_attribute *attr, char *buf)
2899  {
2900  	ssize_t cur, res = 0;
2901  	int i;
2902  
2903  	mutex_lock(&cpuhp_state_mutex);
2904  	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2905  		struct cpuhp_step *sp = cpuhp_get_step(i);
2906  
2907  		if (sp->name) {
2908  			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2909  			buf += cur;
2910  			res += cur;
2911  		}
2912  	}
2913  	mutex_unlock(&cpuhp_state_mutex);
2914  	return res;
2915  }
2916  static DEVICE_ATTR_RO(states);
2917  
2918  static struct attribute *cpuhp_cpu_root_attrs[] = {
2919  	&dev_attr_states.attr,
2920  	NULL
2921  };
2922  
2923  static const struct attribute_group cpuhp_cpu_root_attr_group = {
2924  	.attrs = cpuhp_cpu_root_attrs,
2925  	.name = "hotplug",
2926  	NULL
2927  };
2928  
2929  #ifdef CONFIG_HOTPLUG_SMT
2930  
cpu_smt_num_threads_valid(unsigned int threads)2931  static bool cpu_smt_num_threads_valid(unsigned int threads)
2932  {
2933  	if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
2934  		return threads >= 1 && threads <= cpu_smt_max_threads;
2935  	return threads == 1 || threads == cpu_smt_max_threads;
2936  }
2937  
2938  static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2939  __store_smt_control(struct device *dev, struct device_attribute *attr,
2940  		    const char *buf, size_t count)
2941  {
2942  	int ctrlval, ret, num_threads, orig_threads;
2943  	bool force_off;
2944  
2945  	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2946  		return -EPERM;
2947  
2948  	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2949  		return -ENODEV;
2950  
2951  	if (sysfs_streq(buf, "on")) {
2952  		ctrlval = CPU_SMT_ENABLED;
2953  		num_threads = cpu_smt_max_threads;
2954  	} else if (sysfs_streq(buf, "off")) {
2955  		ctrlval = CPU_SMT_DISABLED;
2956  		num_threads = 1;
2957  	} else if (sysfs_streq(buf, "forceoff")) {
2958  		ctrlval = CPU_SMT_FORCE_DISABLED;
2959  		num_threads = 1;
2960  	} else if (kstrtoint(buf, 10, &num_threads) == 0) {
2961  		if (num_threads == 1)
2962  			ctrlval = CPU_SMT_DISABLED;
2963  		else if (cpu_smt_num_threads_valid(num_threads))
2964  			ctrlval = CPU_SMT_ENABLED;
2965  		else
2966  			return -EINVAL;
2967  	} else {
2968  		return -EINVAL;
2969  	}
2970  
2971  	ret = lock_device_hotplug_sysfs();
2972  	if (ret)
2973  		return ret;
2974  
2975  	orig_threads = cpu_smt_num_threads;
2976  	cpu_smt_num_threads = num_threads;
2977  
2978  	force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
2979  
2980  	if (num_threads > orig_threads)
2981  		ret = cpuhp_smt_enable();
2982  	else if (num_threads < orig_threads || force_off)
2983  		ret = cpuhp_smt_disable(ctrlval);
2984  
2985  	unlock_device_hotplug();
2986  	return ret ? ret : count;
2987  }
2988  
2989  #else /* !CONFIG_HOTPLUG_SMT */
2990  static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2991  __store_smt_control(struct device *dev, struct device_attribute *attr,
2992  		    const char *buf, size_t count)
2993  {
2994  	return -ENODEV;
2995  }
2996  #endif /* CONFIG_HOTPLUG_SMT */
2997  
2998  static const char *smt_states[] = {
2999  	[CPU_SMT_ENABLED]		= "on",
3000  	[CPU_SMT_DISABLED]		= "off",
3001  	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
3002  	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
3003  	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
3004  };
3005  
control_show(struct device * dev,struct device_attribute * attr,char * buf)3006  static ssize_t control_show(struct device *dev,
3007  			    struct device_attribute *attr, char *buf)
3008  {
3009  	const char *state = smt_states[cpu_smt_control];
3010  
3011  #ifdef CONFIG_HOTPLUG_SMT
3012  	/*
3013  	 * If SMT is enabled but not all threads are enabled then show the
3014  	 * number of threads. If all threads are enabled show "on". Otherwise
3015  	 * show the state name.
3016  	 */
3017  	if (cpu_smt_control == CPU_SMT_ENABLED &&
3018  	    cpu_smt_num_threads != cpu_smt_max_threads)
3019  		return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
3020  #endif
3021  
3022  	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
3023  }
3024  
control_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3025  static ssize_t control_store(struct device *dev, struct device_attribute *attr,
3026  			     const char *buf, size_t count)
3027  {
3028  	return __store_smt_control(dev, attr, buf, count);
3029  }
3030  static DEVICE_ATTR_RW(control);
3031  
active_show(struct device * dev,struct device_attribute * attr,char * buf)3032  static ssize_t active_show(struct device *dev,
3033  			   struct device_attribute *attr, char *buf)
3034  {
3035  	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
3036  }
3037  static DEVICE_ATTR_RO(active);
3038  
3039  static struct attribute *cpuhp_smt_attrs[] = {
3040  	&dev_attr_control.attr,
3041  	&dev_attr_active.attr,
3042  	NULL
3043  };
3044  
3045  static const struct attribute_group cpuhp_smt_attr_group = {
3046  	.attrs = cpuhp_smt_attrs,
3047  	.name = "smt",
3048  	NULL
3049  };
3050  
cpu_smt_sysfs_init(void)3051  static int __init cpu_smt_sysfs_init(void)
3052  {
3053  	struct device *dev_root;
3054  	int ret = -ENODEV;
3055  
3056  	dev_root = bus_get_dev_root(&cpu_subsys);
3057  	if (dev_root) {
3058  		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
3059  		put_device(dev_root);
3060  	}
3061  	return ret;
3062  }
3063  
cpuhp_sysfs_init(void)3064  static int __init cpuhp_sysfs_init(void)
3065  {
3066  	struct device *dev_root;
3067  	int cpu, ret;
3068  
3069  	ret = cpu_smt_sysfs_init();
3070  	if (ret)
3071  		return ret;
3072  
3073  	dev_root = bus_get_dev_root(&cpu_subsys);
3074  	if (dev_root) {
3075  		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
3076  		put_device(dev_root);
3077  		if (ret)
3078  			return ret;
3079  	}
3080  
3081  	for_each_possible_cpu(cpu) {
3082  		struct device *dev = get_cpu_device(cpu);
3083  
3084  		if (!dev)
3085  			continue;
3086  		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
3087  		if (ret)
3088  			return ret;
3089  	}
3090  	return 0;
3091  }
3092  device_initcall(cpuhp_sysfs_init);
3093  #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
3094  
3095  /*
3096   * cpu_bit_bitmap[] is a special, "compressed" data structure that
3097   * represents all NR_CPUS bits binary values of 1<<nr.
3098   *
3099   * It is used by cpumask_of() to get a constant address to a CPU
3100   * mask value that has a single bit set only.
3101   */
3102  
3103  /* cpu_bit_bitmap[0] is empty - so we can back into it */
3104  #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
3105  #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3106  #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3107  #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
3108  
3109  const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
3110  
3111  	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
3112  	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
3113  #if BITS_PER_LONG > 32
3114  	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
3115  	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
3116  #endif
3117  };
3118  EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3119  
3120  const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3121  EXPORT_SYMBOL(cpu_all_bits);
3122  
3123  #ifdef CONFIG_INIT_ALL_POSSIBLE
3124  struct cpumask __cpu_possible_mask __read_mostly
3125  	= {CPU_BITS_ALL};
3126  #else
3127  struct cpumask __cpu_possible_mask __read_mostly;
3128  #endif
3129  EXPORT_SYMBOL(__cpu_possible_mask);
3130  
3131  struct cpumask __cpu_online_mask __read_mostly;
3132  EXPORT_SYMBOL(__cpu_online_mask);
3133  
3134  struct cpumask __cpu_present_mask __read_mostly;
3135  EXPORT_SYMBOL(__cpu_present_mask);
3136  
3137  struct cpumask __cpu_active_mask __read_mostly;
3138  EXPORT_SYMBOL(__cpu_active_mask);
3139  
3140  struct cpumask __cpu_dying_mask __read_mostly;
3141  EXPORT_SYMBOL(__cpu_dying_mask);
3142  
3143  atomic_t __num_online_cpus __read_mostly;
3144  EXPORT_SYMBOL(__num_online_cpus);
3145  
init_cpu_present(const struct cpumask * src)3146  void init_cpu_present(const struct cpumask *src)
3147  {
3148  	cpumask_copy(&__cpu_present_mask, src);
3149  }
3150  
init_cpu_possible(const struct cpumask * src)3151  void init_cpu_possible(const struct cpumask *src)
3152  {
3153  	cpumask_copy(&__cpu_possible_mask, src);
3154  }
3155  
init_cpu_online(const struct cpumask * src)3156  void init_cpu_online(const struct cpumask *src)
3157  {
3158  	cpumask_copy(&__cpu_online_mask, src);
3159  }
3160  
set_cpu_online(unsigned int cpu,bool online)3161  void set_cpu_online(unsigned int cpu, bool online)
3162  {
3163  	/*
3164  	 * atomic_inc/dec() is required to handle the horrid abuse of this
3165  	 * function by the reboot and kexec code which invoke it from
3166  	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3167  	 * regular CPU hotplug is properly serialized.
3168  	 *
3169  	 * Note, that the fact that __num_online_cpus is of type atomic_t
3170  	 * does not protect readers which are not serialized against
3171  	 * concurrent hotplug operations.
3172  	 */
3173  	if (online) {
3174  		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3175  			atomic_inc(&__num_online_cpus);
3176  	} else {
3177  		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3178  			atomic_dec(&__num_online_cpus);
3179  	}
3180  }
3181  
3182  /*
3183   * Activate the first processor.
3184   */
boot_cpu_init(void)3185  void __init boot_cpu_init(void)
3186  {
3187  	int cpu = smp_processor_id();
3188  
3189  	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
3190  	set_cpu_online(cpu, true);
3191  	set_cpu_active(cpu, true);
3192  	set_cpu_present(cpu, true);
3193  	set_cpu_possible(cpu, true);
3194  
3195  #ifdef CONFIG_SMP
3196  	__boot_cpu_id = cpu;
3197  #endif
3198  }
3199  
3200  /*
3201   * Must be called _AFTER_ setting up the per_cpu areas
3202   */
boot_cpu_hotplug_init(void)3203  void __init boot_cpu_hotplug_init(void)
3204  {
3205  #ifdef CONFIG_SMP
3206  	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3207  	atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3208  #endif
3209  	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3210  	this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3211  }
3212  
3213  #ifdef CONFIG_CPU_MITIGATIONS
3214  /*
3215   * These are used for a global "mitigations=" cmdline option for toggling
3216   * optional CPU mitigations.
3217   */
3218  enum cpu_mitigations {
3219  	CPU_MITIGATIONS_OFF,
3220  	CPU_MITIGATIONS_AUTO,
3221  	CPU_MITIGATIONS_AUTO_NOSMT,
3222  };
3223  
3224  static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO;
3225  
mitigations_parse_cmdline(char * arg)3226  static int __init mitigations_parse_cmdline(char *arg)
3227  {
3228  	if (!strcmp(arg, "off"))
3229  		cpu_mitigations = CPU_MITIGATIONS_OFF;
3230  	else if (!strcmp(arg, "auto"))
3231  		cpu_mitigations = CPU_MITIGATIONS_AUTO;
3232  	else if (!strcmp(arg, "auto,nosmt"))
3233  		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
3234  	else
3235  		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
3236  			arg);
3237  
3238  	return 0;
3239  }
3240  
3241  /* mitigations=off */
cpu_mitigations_off(void)3242  bool cpu_mitigations_off(void)
3243  {
3244  	return cpu_mitigations == CPU_MITIGATIONS_OFF;
3245  }
3246  EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3247  
3248  /* mitigations=auto,nosmt */
cpu_mitigations_auto_nosmt(void)3249  bool cpu_mitigations_auto_nosmt(void)
3250  {
3251  	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3252  }
3253  EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
3254  #else
mitigations_parse_cmdline(char * arg)3255  static int __init mitigations_parse_cmdline(char *arg)
3256  {
3257  	pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n");
3258  	return 0;
3259  }
3260  #endif
3261  early_param("mitigations", mitigations_parse_cmdline);
3262