1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30
31 #define NUM_PREALLOC_POST_READ_CTXS 128
32
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37
38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
39
f2fs_init_bioset(void)40 int __init f2fs_init_bioset(void)
41 {
42 return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 0, BIOSET_NEED_BVECS);
44 }
45
f2fs_destroy_bioset(void)46 void f2fs_destroy_bioset(void)
47 {
48 bioset_exit(&f2fs_bioset);
49 }
50
f2fs_is_cp_guaranteed(struct page * page)51 bool f2fs_is_cp_guaranteed(struct page *page)
52 {
53 struct address_space *mapping = page->mapping;
54 struct inode *inode;
55 struct f2fs_sb_info *sbi;
56
57 if (!mapping)
58 return false;
59
60 inode = mapping->host;
61 sbi = F2FS_I_SB(inode);
62
63 if (inode->i_ino == F2FS_META_INO(sbi) ||
64 inode->i_ino == F2FS_NODE_INO(sbi) ||
65 S_ISDIR(inode->i_mode))
66 return true;
67
68 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
69 page_private_gcing(page))
70 return true;
71 return false;
72 }
73
__read_io_type(struct page * page)74 static enum count_type __read_io_type(struct page *page)
75 {
76 struct address_space *mapping = page_file_mapping(page);
77
78 if (mapping) {
79 struct inode *inode = mapping->host;
80 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
81
82 if (inode->i_ino == F2FS_META_INO(sbi))
83 return F2FS_RD_META;
84
85 if (inode->i_ino == F2FS_NODE_INO(sbi))
86 return F2FS_RD_NODE;
87 }
88 return F2FS_RD_DATA;
89 }
90
91 /* postprocessing steps for read bios */
92 enum bio_post_read_step {
93 #ifdef CONFIG_FS_ENCRYPTION
94 STEP_DECRYPT = BIT(0),
95 #else
96 STEP_DECRYPT = 0, /* compile out the decryption-related code */
97 #endif
98 #ifdef CONFIG_F2FS_FS_COMPRESSION
99 STEP_DECOMPRESS = BIT(1),
100 #else
101 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */
102 #endif
103 #ifdef CONFIG_FS_VERITY
104 STEP_VERITY = BIT(2),
105 #else
106 STEP_VERITY = 0, /* compile out the verity-related code */
107 #endif
108 };
109
110 struct bio_post_read_ctx {
111 struct bio *bio;
112 struct f2fs_sb_info *sbi;
113 struct work_struct work;
114 unsigned int enabled_steps;
115 /*
116 * decompression_attempted keeps track of whether
117 * f2fs_end_read_compressed_page() has been called on the pages in the
118 * bio that belong to a compressed cluster yet.
119 */
120 bool decompression_attempted;
121 block_t fs_blkaddr;
122 };
123
124 /*
125 * Update and unlock a bio's pages, and free the bio.
126 *
127 * This marks pages up-to-date only if there was no error in the bio (I/O error,
128 * decryption error, or verity error), as indicated by bio->bi_status.
129 *
130 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
131 * aren't marked up-to-date here, as decompression is done on a per-compression-
132 * cluster basis rather than a per-bio basis. Instead, we only must do two
133 * things for each compressed page here: call f2fs_end_read_compressed_page()
134 * with failed=true if an error occurred before it would have normally gotten
135 * called (i.e., I/O error or decryption error, but *not* verity error), and
136 * release the bio's reference to the decompress_io_ctx of the page's cluster.
137 */
f2fs_finish_read_bio(struct bio * bio,bool in_task)138 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
139 {
140 struct bio_vec *bv;
141 struct bvec_iter_all iter_all;
142 struct bio_post_read_ctx *ctx = bio->bi_private;
143
144 bio_for_each_segment_all(bv, bio, iter_all) {
145 struct page *page = bv->bv_page;
146
147 if (f2fs_is_compressed_page(page)) {
148 if (ctx && !ctx->decompression_attempted)
149 f2fs_end_read_compressed_page(page, true, 0,
150 in_task);
151 f2fs_put_page_dic(page, in_task);
152 continue;
153 }
154
155 if (bio->bi_status)
156 ClearPageUptodate(page);
157 else
158 SetPageUptodate(page);
159 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
160 unlock_page(page);
161 }
162
163 if (ctx)
164 mempool_free(ctx, bio_post_read_ctx_pool);
165 bio_put(bio);
166 }
167
f2fs_verify_bio(struct work_struct * work)168 static void f2fs_verify_bio(struct work_struct *work)
169 {
170 struct bio_post_read_ctx *ctx =
171 container_of(work, struct bio_post_read_ctx, work);
172 struct bio *bio = ctx->bio;
173 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
174
175 /*
176 * fsverity_verify_bio() may call readahead() again, and while verity
177 * will be disabled for this, decryption and/or decompression may still
178 * be needed, resulting in another bio_post_read_ctx being allocated.
179 * So to prevent deadlocks we need to release the current ctx to the
180 * mempool first. This assumes that verity is the last post-read step.
181 */
182 mempool_free(ctx, bio_post_read_ctx_pool);
183 bio->bi_private = NULL;
184
185 /*
186 * Verify the bio's pages with fs-verity. Exclude compressed pages,
187 * as those were handled separately by f2fs_end_read_compressed_page().
188 */
189 if (may_have_compressed_pages) {
190 struct bio_vec *bv;
191 struct bvec_iter_all iter_all;
192
193 bio_for_each_segment_all(bv, bio, iter_all) {
194 struct page *page = bv->bv_page;
195
196 if (!f2fs_is_compressed_page(page) &&
197 !fsverity_verify_page(page)) {
198 bio->bi_status = BLK_STS_IOERR;
199 break;
200 }
201 }
202 } else {
203 fsverity_verify_bio(bio);
204 }
205
206 f2fs_finish_read_bio(bio, true);
207 }
208
209 /*
210 * If the bio's data needs to be verified with fs-verity, then enqueue the
211 * verity work for the bio. Otherwise finish the bio now.
212 *
213 * Note that to avoid deadlocks, the verity work can't be done on the
214 * decryption/decompression workqueue. This is because verifying the data pages
215 * can involve reading verity metadata pages from the file, and these verity
216 * metadata pages may be encrypted and/or compressed.
217 */
f2fs_verify_and_finish_bio(struct bio * bio,bool in_task)218 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
219 {
220 struct bio_post_read_ctx *ctx = bio->bi_private;
221
222 if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
223 INIT_WORK(&ctx->work, f2fs_verify_bio);
224 fsverity_enqueue_verify_work(&ctx->work);
225 } else {
226 f2fs_finish_read_bio(bio, in_task);
227 }
228 }
229
230 /*
231 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
232 * remaining page was read by @ctx->bio.
233 *
234 * Note that a bio may span clusters (even a mix of compressed and uncompressed
235 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates
236 * that the bio includes at least one compressed page. The actual decompression
237 * is done on a per-cluster basis, not a per-bio basis.
238 */
f2fs_handle_step_decompress(struct bio_post_read_ctx * ctx,bool in_task)239 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
240 bool in_task)
241 {
242 struct bio_vec *bv;
243 struct bvec_iter_all iter_all;
244 bool all_compressed = true;
245 block_t blkaddr = ctx->fs_blkaddr;
246
247 bio_for_each_segment_all(bv, ctx->bio, iter_all) {
248 struct page *page = bv->bv_page;
249
250 if (f2fs_is_compressed_page(page))
251 f2fs_end_read_compressed_page(page, false, blkaddr,
252 in_task);
253 else
254 all_compressed = false;
255
256 blkaddr++;
257 }
258
259 ctx->decompression_attempted = true;
260
261 /*
262 * Optimization: if all the bio's pages are compressed, then scheduling
263 * the per-bio verity work is unnecessary, as verity will be fully
264 * handled at the compression cluster level.
265 */
266 if (all_compressed)
267 ctx->enabled_steps &= ~STEP_VERITY;
268 }
269
f2fs_post_read_work(struct work_struct * work)270 static void f2fs_post_read_work(struct work_struct *work)
271 {
272 struct bio_post_read_ctx *ctx =
273 container_of(work, struct bio_post_read_ctx, work);
274 struct bio *bio = ctx->bio;
275
276 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
277 f2fs_finish_read_bio(bio, true);
278 return;
279 }
280
281 if (ctx->enabled_steps & STEP_DECOMPRESS)
282 f2fs_handle_step_decompress(ctx, true);
283
284 f2fs_verify_and_finish_bio(bio, true);
285 }
286
f2fs_read_end_io(struct bio * bio)287 static void f2fs_read_end_io(struct bio *bio)
288 {
289 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
290 struct bio_post_read_ctx *ctx;
291 bool intask = in_task();
292
293 iostat_update_and_unbind_ctx(bio);
294 ctx = bio->bi_private;
295
296 if (time_to_inject(sbi, FAULT_READ_IO))
297 bio->bi_status = BLK_STS_IOERR;
298
299 if (bio->bi_status) {
300 f2fs_finish_read_bio(bio, intask);
301 return;
302 }
303
304 if (ctx) {
305 unsigned int enabled_steps = ctx->enabled_steps &
306 (STEP_DECRYPT | STEP_DECOMPRESS);
307
308 /*
309 * If we have only decompression step between decompression and
310 * decrypt, we don't need post processing for this.
311 */
312 if (enabled_steps == STEP_DECOMPRESS &&
313 !f2fs_low_mem_mode(sbi)) {
314 f2fs_handle_step_decompress(ctx, intask);
315 } else if (enabled_steps) {
316 INIT_WORK(&ctx->work, f2fs_post_read_work);
317 queue_work(ctx->sbi->post_read_wq, &ctx->work);
318 return;
319 }
320 }
321
322 f2fs_verify_and_finish_bio(bio, intask);
323 }
324
f2fs_write_end_io(struct bio * bio)325 static void f2fs_write_end_io(struct bio *bio)
326 {
327 struct f2fs_sb_info *sbi;
328 struct bio_vec *bvec;
329 struct bvec_iter_all iter_all;
330
331 iostat_update_and_unbind_ctx(bio);
332 sbi = bio->bi_private;
333
334 if (time_to_inject(sbi, FAULT_WRITE_IO))
335 bio->bi_status = BLK_STS_IOERR;
336
337 bio_for_each_segment_all(bvec, bio, iter_all) {
338 struct page *page = bvec->bv_page;
339 enum count_type type = WB_DATA_TYPE(page, false);
340
341 fscrypt_finalize_bounce_page(&page);
342
343 #ifdef CONFIG_F2FS_FS_COMPRESSION
344 if (f2fs_is_compressed_page(page)) {
345 f2fs_compress_write_end_io(bio, page);
346 continue;
347 }
348 #endif
349
350 if (unlikely(bio->bi_status)) {
351 mapping_set_error(page->mapping, -EIO);
352 if (type == F2FS_WB_CP_DATA)
353 f2fs_stop_checkpoint(sbi, true,
354 STOP_CP_REASON_WRITE_FAIL);
355 }
356
357 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
358 page->index != nid_of_node(page));
359
360 dec_page_count(sbi, type);
361 if (f2fs_in_warm_node_list(sbi, page))
362 f2fs_del_fsync_node_entry(sbi, page);
363 clear_page_private_gcing(page);
364 end_page_writeback(page);
365 }
366 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
367 wq_has_sleeper(&sbi->cp_wait))
368 wake_up(&sbi->cp_wait);
369
370 bio_put(bio);
371 }
372
373 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_zone_write_end_io(struct bio * bio)374 static void f2fs_zone_write_end_io(struct bio *bio)
375 {
376 struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
377
378 bio->bi_private = io->bi_private;
379 complete(&io->zone_wait);
380 f2fs_write_end_io(bio);
381 }
382 #endif
383
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,sector_t * sector)384 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
385 block_t blk_addr, sector_t *sector)
386 {
387 struct block_device *bdev = sbi->sb->s_bdev;
388 int i;
389
390 if (f2fs_is_multi_device(sbi)) {
391 for (i = 0; i < sbi->s_ndevs; i++) {
392 if (FDEV(i).start_blk <= blk_addr &&
393 FDEV(i).end_blk >= blk_addr) {
394 blk_addr -= FDEV(i).start_blk;
395 bdev = FDEV(i).bdev;
396 break;
397 }
398 }
399 }
400
401 if (sector)
402 *sector = SECTOR_FROM_BLOCK(blk_addr);
403 return bdev;
404 }
405
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)406 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
407 {
408 int i;
409
410 if (!f2fs_is_multi_device(sbi))
411 return 0;
412
413 for (i = 0; i < sbi->s_ndevs; i++)
414 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
415 return i;
416 return 0;
417 }
418
f2fs_io_flags(struct f2fs_io_info * fio)419 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
420 {
421 unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
422 unsigned int fua_flag, meta_flag, io_flag;
423 blk_opf_t op_flags = 0;
424
425 if (fio->op != REQ_OP_WRITE)
426 return 0;
427 if (fio->type == DATA)
428 io_flag = fio->sbi->data_io_flag;
429 else if (fio->type == NODE)
430 io_flag = fio->sbi->node_io_flag;
431 else
432 return 0;
433
434 fua_flag = io_flag & temp_mask;
435 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
436
437 /*
438 * data/node io flag bits per temp:
439 * REQ_META | REQ_FUA |
440 * 5 | 4 | 3 | 2 | 1 | 0 |
441 * Cold | Warm | Hot | Cold | Warm | Hot |
442 */
443 if (BIT(fio->temp) & meta_flag)
444 op_flags |= REQ_META;
445 if (BIT(fio->temp) & fua_flag)
446 op_flags |= REQ_FUA;
447 return op_flags;
448 }
449
__bio_alloc(struct f2fs_io_info * fio,int npages)450 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
451 {
452 struct f2fs_sb_info *sbi = fio->sbi;
453 struct block_device *bdev;
454 sector_t sector;
455 struct bio *bio;
456
457 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or);
458 bio = bio_alloc_bioset(bdev, npages,
459 fio->op | fio->op_flags | f2fs_io_flags(fio),
460 GFP_NOIO, &f2fs_bioset);
461 bio->bi_iter.bi_sector = sector;
462 if (is_read_io(fio->op)) {
463 bio->bi_end_io = f2fs_read_end_io;
464 bio->bi_private = NULL;
465 } else {
466 bio->bi_end_io = f2fs_write_end_io;
467 bio->bi_private = sbi;
468 }
469 iostat_alloc_and_bind_ctx(sbi, bio, NULL);
470
471 if (fio->io_wbc)
472 wbc_init_bio(fio->io_wbc, bio);
473
474 return bio;
475 }
476
f2fs_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,pgoff_t first_idx,const struct f2fs_io_info * fio,gfp_t gfp_mask)477 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
478 pgoff_t first_idx,
479 const struct f2fs_io_info *fio,
480 gfp_t gfp_mask)
481 {
482 /*
483 * The f2fs garbage collector sets ->encrypted_page when it wants to
484 * read/write raw data without encryption.
485 */
486 if (!fio || !fio->encrypted_page)
487 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
488 }
489
f2fs_crypt_mergeable_bio(struct bio * bio,const struct inode * inode,pgoff_t next_idx,const struct f2fs_io_info * fio)490 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
491 pgoff_t next_idx,
492 const struct f2fs_io_info *fio)
493 {
494 /*
495 * The f2fs garbage collector sets ->encrypted_page when it wants to
496 * read/write raw data without encryption.
497 */
498 if (fio && fio->encrypted_page)
499 return !bio_has_crypt_ctx(bio);
500
501 return fscrypt_mergeable_bio(bio, inode, next_idx);
502 }
503
f2fs_submit_read_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)504 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
505 enum page_type type)
506 {
507 WARN_ON_ONCE(!is_read_io(bio_op(bio)));
508 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
509
510 iostat_update_submit_ctx(bio, type);
511 submit_bio(bio);
512 }
513
f2fs_submit_write_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)514 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
515 enum page_type type)
516 {
517 WARN_ON_ONCE(is_read_io(bio_op(bio)));
518
519 if (f2fs_lfs_mode(sbi) && current->plug && PAGE_TYPE_ON_MAIN(type))
520 blk_finish_plug(current->plug);
521
522 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
523 iostat_update_submit_ctx(bio, type);
524 submit_bio(bio);
525 }
526
__submit_merged_bio(struct f2fs_bio_info * io)527 static void __submit_merged_bio(struct f2fs_bio_info *io)
528 {
529 struct f2fs_io_info *fio = &io->fio;
530
531 if (!io->bio)
532 return;
533
534 if (is_read_io(fio->op)) {
535 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
536 f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
537 } else {
538 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
539 f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
540 }
541 io->bio = NULL;
542 }
543
__has_merged_page(struct bio * bio,struct inode * inode,struct page * page,nid_t ino)544 static bool __has_merged_page(struct bio *bio, struct inode *inode,
545 struct page *page, nid_t ino)
546 {
547 struct bio_vec *bvec;
548 struct bvec_iter_all iter_all;
549
550 if (!bio)
551 return false;
552
553 if (!inode && !page && !ino)
554 return true;
555
556 bio_for_each_segment_all(bvec, bio, iter_all) {
557 struct page *target = bvec->bv_page;
558
559 if (fscrypt_is_bounce_page(target)) {
560 target = fscrypt_pagecache_page(target);
561 if (IS_ERR(target))
562 continue;
563 }
564 if (f2fs_is_compressed_page(target)) {
565 target = f2fs_compress_control_page(target);
566 if (IS_ERR(target))
567 continue;
568 }
569
570 if (inode && inode == target->mapping->host)
571 return true;
572 if (page && page == target)
573 return true;
574 if (ino && ino == ino_of_node(target))
575 return true;
576 }
577
578 return false;
579 }
580
f2fs_init_write_merge_io(struct f2fs_sb_info * sbi)581 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
582 {
583 int i;
584
585 for (i = 0; i < NR_PAGE_TYPE; i++) {
586 int n = (i == META) ? 1 : NR_TEMP_TYPE;
587 int j;
588
589 sbi->write_io[i] = f2fs_kmalloc(sbi,
590 array_size(n, sizeof(struct f2fs_bio_info)),
591 GFP_KERNEL);
592 if (!sbi->write_io[i])
593 return -ENOMEM;
594
595 for (j = HOT; j < n; j++) {
596 init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
597 sbi->write_io[i][j].sbi = sbi;
598 sbi->write_io[i][j].bio = NULL;
599 spin_lock_init(&sbi->write_io[i][j].io_lock);
600 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
601 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
602 init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
603 #ifdef CONFIG_BLK_DEV_ZONED
604 init_completion(&sbi->write_io[i][j].zone_wait);
605 sbi->write_io[i][j].zone_pending_bio = NULL;
606 sbi->write_io[i][j].bi_private = NULL;
607 #endif
608 }
609 }
610
611 return 0;
612 }
613
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)614 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
615 enum page_type type, enum temp_type temp)
616 {
617 enum page_type btype = PAGE_TYPE_OF_BIO(type);
618 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
619
620 f2fs_down_write(&io->io_rwsem);
621
622 if (!io->bio)
623 goto unlock_out;
624
625 /* change META to META_FLUSH in the checkpoint procedure */
626 if (type >= META_FLUSH) {
627 io->fio.type = META_FLUSH;
628 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
629 if (!test_opt(sbi, NOBARRIER))
630 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
631 }
632 __submit_merged_bio(io);
633 unlock_out:
634 f2fs_up_write(&io->io_rwsem);
635 }
636
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type,bool force)637 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
638 struct inode *inode, struct page *page,
639 nid_t ino, enum page_type type, bool force)
640 {
641 enum temp_type temp;
642 bool ret = true;
643
644 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
645 if (!force) {
646 enum page_type btype = PAGE_TYPE_OF_BIO(type);
647 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
648
649 f2fs_down_read(&io->io_rwsem);
650 ret = __has_merged_page(io->bio, inode, page, ino);
651 f2fs_up_read(&io->io_rwsem);
652 }
653 if (ret)
654 __f2fs_submit_merged_write(sbi, type, temp);
655
656 /* TODO: use HOT temp only for meta pages now. */
657 if (type >= META)
658 break;
659 }
660 }
661
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)662 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
663 {
664 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
665 }
666
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type)667 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
668 struct inode *inode, struct page *page,
669 nid_t ino, enum page_type type)
670 {
671 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
672 }
673
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)674 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
675 {
676 f2fs_submit_merged_write(sbi, DATA);
677 f2fs_submit_merged_write(sbi, NODE);
678 f2fs_submit_merged_write(sbi, META);
679 }
680
681 /*
682 * Fill the locked page with data located in the block address.
683 * A caller needs to unlock the page on failure.
684 */
f2fs_submit_page_bio(struct f2fs_io_info * fio)685 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
686 {
687 struct bio *bio;
688 struct page *page = fio->encrypted_page ?
689 fio->encrypted_page : fio->page;
690
691 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
692 fio->is_por ? META_POR : (__is_meta_io(fio) ?
693 META_GENERIC : DATA_GENERIC_ENHANCE))) {
694 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
695 return -EFSCORRUPTED;
696 }
697
698 trace_f2fs_submit_page_bio(page, fio);
699
700 /* Allocate a new bio */
701 bio = __bio_alloc(fio, 1);
702
703 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
704 fio->page->index, fio, GFP_NOIO);
705
706 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
707 bio_put(bio);
708 return -EFAULT;
709 }
710
711 if (fio->io_wbc && !is_read_io(fio->op))
712 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
713
714 inc_page_count(fio->sbi, is_read_io(fio->op) ?
715 __read_io_type(page) : WB_DATA_TYPE(fio->page, false));
716
717 if (is_read_io(bio_op(bio)))
718 f2fs_submit_read_bio(fio->sbi, bio, fio->type);
719 else
720 f2fs_submit_write_bio(fio->sbi, bio, fio->type);
721 return 0;
722 }
723
page_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,block_t last_blkaddr,block_t cur_blkaddr)724 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
725 block_t last_blkaddr, block_t cur_blkaddr)
726 {
727 if (unlikely(sbi->max_io_bytes &&
728 bio->bi_iter.bi_size >= sbi->max_io_bytes))
729 return false;
730 if (last_blkaddr + 1 != cur_blkaddr)
731 return false;
732 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
733 }
734
io_type_is_mergeable(struct f2fs_bio_info * io,struct f2fs_io_info * fio)735 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
736 struct f2fs_io_info *fio)
737 {
738 if (io->fio.op != fio->op)
739 return false;
740 return io->fio.op_flags == fio->op_flags;
741 }
742
io_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,struct f2fs_bio_info * io,struct f2fs_io_info * fio,block_t last_blkaddr,block_t cur_blkaddr)743 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
744 struct f2fs_bio_info *io,
745 struct f2fs_io_info *fio,
746 block_t last_blkaddr,
747 block_t cur_blkaddr)
748 {
749 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
750 return false;
751 return io_type_is_mergeable(io, fio);
752 }
753
add_bio_entry(struct f2fs_sb_info * sbi,struct bio * bio,struct page * page,enum temp_type temp)754 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
755 struct page *page, enum temp_type temp)
756 {
757 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
758 struct bio_entry *be;
759
760 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
761 be->bio = bio;
762 bio_get(bio);
763
764 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
765 f2fs_bug_on(sbi, 1);
766
767 f2fs_down_write(&io->bio_list_lock);
768 list_add_tail(&be->list, &io->bio_list);
769 f2fs_up_write(&io->bio_list_lock);
770 }
771
del_bio_entry(struct bio_entry * be)772 static void del_bio_entry(struct bio_entry *be)
773 {
774 list_del(&be->list);
775 kmem_cache_free(bio_entry_slab, be);
776 }
777
add_ipu_page(struct f2fs_io_info * fio,struct bio ** bio,struct page * page)778 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
779 struct page *page)
780 {
781 struct f2fs_sb_info *sbi = fio->sbi;
782 enum temp_type temp;
783 bool found = false;
784 int ret = -EAGAIN;
785
786 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
787 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
788 struct list_head *head = &io->bio_list;
789 struct bio_entry *be;
790
791 f2fs_down_write(&io->bio_list_lock);
792 list_for_each_entry(be, head, list) {
793 if (be->bio != *bio)
794 continue;
795
796 found = true;
797
798 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
799 *fio->last_block,
800 fio->new_blkaddr));
801 if (f2fs_crypt_mergeable_bio(*bio,
802 fio->page->mapping->host,
803 fio->page->index, fio) &&
804 bio_add_page(*bio, page, PAGE_SIZE, 0) ==
805 PAGE_SIZE) {
806 ret = 0;
807 break;
808 }
809
810 /* page can't be merged into bio; submit the bio */
811 del_bio_entry(be);
812 f2fs_submit_write_bio(sbi, *bio, DATA);
813 break;
814 }
815 f2fs_up_write(&io->bio_list_lock);
816 }
817
818 if (ret) {
819 bio_put(*bio);
820 *bio = NULL;
821 }
822
823 return ret;
824 }
825
f2fs_submit_merged_ipu_write(struct f2fs_sb_info * sbi,struct bio ** bio,struct page * page)826 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
827 struct bio **bio, struct page *page)
828 {
829 enum temp_type temp;
830 bool found = false;
831 struct bio *target = bio ? *bio : NULL;
832
833 f2fs_bug_on(sbi, !target && !page);
834
835 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
836 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
837 struct list_head *head = &io->bio_list;
838 struct bio_entry *be;
839
840 if (list_empty(head))
841 continue;
842
843 f2fs_down_read(&io->bio_list_lock);
844 list_for_each_entry(be, head, list) {
845 if (target)
846 found = (target == be->bio);
847 else
848 found = __has_merged_page(be->bio, NULL,
849 page, 0);
850 if (found)
851 break;
852 }
853 f2fs_up_read(&io->bio_list_lock);
854
855 if (!found)
856 continue;
857
858 found = false;
859
860 f2fs_down_write(&io->bio_list_lock);
861 list_for_each_entry(be, head, list) {
862 if (target)
863 found = (target == be->bio);
864 else
865 found = __has_merged_page(be->bio, NULL,
866 page, 0);
867 if (found) {
868 target = be->bio;
869 del_bio_entry(be);
870 break;
871 }
872 }
873 f2fs_up_write(&io->bio_list_lock);
874 }
875
876 if (found)
877 f2fs_submit_write_bio(sbi, target, DATA);
878 if (bio && *bio) {
879 bio_put(*bio);
880 *bio = NULL;
881 }
882 }
883
f2fs_merge_page_bio(struct f2fs_io_info * fio)884 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
885 {
886 struct bio *bio = *fio->bio;
887 struct page *page = fio->encrypted_page ?
888 fio->encrypted_page : fio->page;
889
890 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
891 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) {
892 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
893 return -EFSCORRUPTED;
894 }
895
896 trace_f2fs_submit_page_bio(page, fio);
897
898 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
899 fio->new_blkaddr))
900 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
901 alloc_new:
902 if (!bio) {
903 bio = __bio_alloc(fio, BIO_MAX_VECS);
904 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
905 fio->page->index, fio, GFP_NOIO);
906
907 add_bio_entry(fio->sbi, bio, page, fio->temp);
908 } else {
909 if (add_ipu_page(fio, &bio, page))
910 goto alloc_new;
911 }
912
913 if (fio->io_wbc)
914 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
915
916 inc_page_count(fio->sbi, WB_DATA_TYPE(page, false));
917
918 *fio->last_block = fio->new_blkaddr;
919 *fio->bio = bio;
920
921 return 0;
922 }
923
924 #ifdef CONFIG_BLK_DEV_ZONED
is_end_zone_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr)925 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
926 {
927 struct block_device *bdev = sbi->sb->s_bdev;
928 int devi = 0;
929
930 if (f2fs_is_multi_device(sbi)) {
931 devi = f2fs_target_device_index(sbi, blkaddr);
932 if (blkaddr < FDEV(devi).start_blk ||
933 blkaddr > FDEV(devi).end_blk) {
934 f2fs_err(sbi, "Invalid block %x", blkaddr);
935 return false;
936 }
937 blkaddr -= FDEV(devi).start_blk;
938 bdev = FDEV(devi).bdev;
939 }
940 return bdev_is_zoned(bdev) &&
941 f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
942 (blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
943 }
944 #endif
945
f2fs_submit_page_write(struct f2fs_io_info * fio)946 void f2fs_submit_page_write(struct f2fs_io_info *fio)
947 {
948 struct f2fs_sb_info *sbi = fio->sbi;
949 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
950 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
951 struct page *bio_page;
952 enum count_type type;
953
954 f2fs_bug_on(sbi, is_read_io(fio->op));
955
956 f2fs_down_write(&io->io_rwsem);
957 next:
958 #ifdef CONFIG_BLK_DEV_ZONED
959 if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
960 wait_for_completion_io(&io->zone_wait);
961 bio_put(io->zone_pending_bio);
962 io->zone_pending_bio = NULL;
963 io->bi_private = NULL;
964 }
965 #endif
966
967 if (fio->in_list) {
968 spin_lock(&io->io_lock);
969 if (list_empty(&io->io_list)) {
970 spin_unlock(&io->io_lock);
971 goto out;
972 }
973 fio = list_first_entry(&io->io_list,
974 struct f2fs_io_info, list);
975 list_del(&fio->list);
976 spin_unlock(&io->io_lock);
977 }
978
979 verify_fio_blkaddr(fio);
980
981 if (fio->encrypted_page)
982 bio_page = fio->encrypted_page;
983 else if (fio->compressed_page)
984 bio_page = fio->compressed_page;
985 else
986 bio_page = fio->page;
987
988 /* set submitted = true as a return value */
989 fio->submitted = 1;
990
991 type = WB_DATA_TYPE(bio_page, fio->compressed_page);
992 inc_page_count(sbi, type);
993
994 if (io->bio &&
995 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
996 fio->new_blkaddr) ||
997 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
998 bio_page->index, fio)))
999 __submit_merged_bio(io);
1000 alloc_new:
1001 if (io->bio == NULL) {
1002 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1003 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1004 bio_page->index, fio, GFP_NOIO);
1005 io->fio = *fio;
1006 }
1007
1008 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1009 __submit_merged_bio(io);
1010 goto alloc_new;
1011 }
1012
1013 if (fio->io_wbc)
1014 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1015
1016 io->last_block_in_bio = fio->new_blkaddr;
1017
1018 trace_f2fs_submit_page_write(fio->page, fio);
1019 #ifdef CONFIG_BLK_DEV_ZONED
1020 if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1021 is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1022 bio_get(io->bio);
1023 reinit_completion(&io->zone_wait);
1024 io->bi_private = io->bio->bi_private;
1025 io->bio->bi_private = io;
1026 io->bio->bi_end_io = f2fs_zone_write_end_io;
1027 io->zone_pending_bio = io->bio;
1028 __submit_merged_bio(io);
1029 }
1030 #endif
1031 if (fio->in_list)
1032 goto next;
1033 out:
1034 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1035 !f2fs_is_checkpoint_ready(sbi))
1036 __submit_merged_bio(io);
1037 f2fs_up_write(&io->io_rwsem);
1038 }
1039
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,blk_opf_t op_flag,pgoff_t first_idx,bool for_write)1040 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1041 unsigned nr_pages, blk_opf_t op_flag,
1042 pgoff_t first_idx, bool for_write)
1043 {
1044 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1045 struct bio *bio;
1046 struct bio_post_read_ctx *ctx = NULL;
1047 unsigned int post_read_steps = 0;
1048 sector_t sector;
1049 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or);
1050
1051 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1052 REQ_OP_READ | op_flag,
1053 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1054 if (!bio)
1055 return ERR_PTR(-ENOMEM);
1056 bio->bi_iter.bi_sector = sector;
1057 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1058 bio->bi_end_io = f2fs_read_end_io;
1059
1060 if (fscrypt_inode_uses_fs_layer_crypto(inode))
1061 post_read_steps |= STEP_DECRYPT;
1062
1063 if (f2fs_need_verity(inode, first_idx))
1064 post_read_steps |= STEP_VERITY;
1065
1066 /*
1067 * STEP_DECOMPRESS is handled specially, since a compressed file might
1068 * contain both compressed and uncompressed clusters. We'll allocate a
1069 * bio_post_read_ctx if the file is compressed, but the caller is
1070 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1071 */
1072
1073 if (post_read_steps || f2fs_compressed_file(inode)) {
1074 /* Due to the mempool, this never fails. */
1075 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1076 ctx->bio = bio;
1077 ctx->sbi = sbi;
1078 ctx->enabled_steps = post_read_steps;
1079 ctx->fs_blkaddr = blkaddr;
1080 ctx->decompression_attempted = false;
1081 bio->bi_private = ctx;
1082 }
1083 iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1084
1085 return bio;
1086 }
1087
1088 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct page * page,block_t blkaddr,blk_opf_t op_flags,bool for_write)1089 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1090 block_t blkaddr, blk_opf_t op_flags,
1091 bool for_write)
1092 {
1093 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1094 struct bio *bio;
1095
1096 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1097 page->index, for_write);
1098 if (IS_ERR(bio))
1099 return PTR_ERR(bio);
1100
1101 /* wait for GCed page writeback via META_MAPPING */
1102 f2fs_wait_on_block_writeback(inode, blkaddr);
1103
1104 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1105 iostat_update_and_unbind_ctx(bio);
1106 if (bio->bi_private)
1107 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1108 bio_put(bio);
1109 return -EFAULT;
1110 }
1111 inc_page_count(sbi, F2FS_RD_DATA);
1112 f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1113 f2fs_submit_read_bio(sbi, bio, DATA);
1114 return 0;
1115 }
1116
__set_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1117 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1118 {
1119 __le32 *addr = get_dnode_addr(dn->inode, dn->node_page);
1120
1121 dn->data_blkaddr = blkaddr;
1122 addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1123 }
1124
1125 /*
1126 * Lock ordering for the change of data block address:
1127 * ->data_page
1128 * ->node_page
1129 * update block addresses in the node page
1130 */
f2fs_set_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1131 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1132 {
1133 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1134 __set_data_blkaddr(dn, blkaddr);
1135 if (set_page_dirty(dn->node_page))
1136 dn->node_changed = true;
1137 }
1138
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1139 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1140 {
1141 f2fs_set_data_blkaddr(dn, blkaddr);
1142 f2fs_update_read_extent_cache(dn);
1143 }
1144
1145 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)1146 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1147 {
1148 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1149 int err;
1150
1151 if (!count)
1152 return 0;
1153
1154 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1155 return -EPERM;
1156 err = inc_valid_block_count(sbi, dn->inode, &count, true);
1157 if (unlikely(err))
1158 return err;
1159
1160 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1161 dn->ofs_in_node, count);
1162
1163 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1164
1165 for (; count > 0; dn->ofs_in_node++) {
1166 block_t blkaddr = f2fs_data_blkaddr(dn);
1167
1168 if (blkaddr == NULL_ADDR) {
1169 __set_data_blkaddr(dn, NEW_ADDR);
1170 count--;
1171 }
1172 }
1173
1174 if (set_page_dirty(dn->node_page))
1175 dn->node_changed = true;
1176 return 0;
1177 }
1178
1179 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)1180 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1181 {
1182 unsigned int ofs_in_node = dn->ofs_in_node;
1183 int ret;
1184
1185 ret = f2fs_reserve_new_blocks(dn, 1);
1186 dn->ofs_in_node = ofs_in_node;
1187 return ret;
1188 }
1189
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)1190 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1191 {
1192 bool need_put = dn->inode_page ? false : true;
1193 int err;
1194
1195 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1196 if (err)
1197 return err;
1198
1199 if (dn->data_blkaddr == NULL_ADDR)
1200 err = f2fs_reserve_new_block(dn);
1201 if (err || need_put)
1202 f2fs_put_dnode(dn);
1203 return err;
1204 }
1205
f2fs_get_read_data_page(struct inode * inode,pgoff_t index,blk_opf_t op_flags,bool for_write,pgoff_t * next_pgofs)1206 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1207 blk_opf_t op_flags, bool for_write,
1208 pgoff_t *next_pgofs)
1209 {
1210 struct address_space *mapping = inode->i_mapping;
1211 struct dnode_of_data dn;
1212 struct page *page;
1213 int err;
1214
1215 page = f2fs_grab_cache_page(mapping, index, for_write);
1216 if (!page)
1217 return ERR_PTR(-ENOMEM);
1218
1219 if (f2fs_lookup_read_extent_cache_block(inode, index,
1220 &dn.data_blkaddr)) {
1221 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1222 DATA_GENERIC_ENHANCE_READ)) {
1223 err = -EFSCORRUPTED;
1224 f2fs_handle_error(F2FS_I_SB(inode),
1225 ERROR_INVALID_BLKADDR);
1226 goto put_err;
1227 }
1228 goto got_it;
1229 }
1230
1231 set_new_dnode(&dn, inode, NULL, NULL, 0);
1232 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1233 if (err) {
1234 if (err == -ENOENT && next_pgofs)
1235 *next_pgofs = f2fs_get_next_page_offset(&dn, index);
1236 goto put_err;
1237 }
1238 f2fs_put_dnode(&dn);
1239
1240 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1241 err = -ENOENT;
1242 if (next_pgofs)
1243 *next_pgofs = index + 1;
1244 goto put_err;
1245 }
1246 if (dn.data_blkaddr != NEW_ADDR &&
1247 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1248 dn.data_blkaddr,
1249 DATA_GENERIC_ENHANCE)) {
1250 err = -EFSCORRUPTED;
1251 f2fs_handle_error(F2FS_I_SB(inode),
1252 ERROR_INVALID_BLKADDR);
1253 goto put_err;
1254 }
1255 got_it:
1256 if (PageUptodate(page)) {
1257 unlock_page(page);
1258 return page;
1259 }
1260
1261 /*
1262 * A new dentry page is allocated but not able to be written, since its
1263 * new inode page couldn't be allocated due to -ENOSPC.
1264 * In such the case, its blkaddr can be remained as NEW_ADDR.
1265 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1266 * f2fs_init_inode_metadata.
1267 */
1268 if (dn.data_blkaddr == NEW_ADDR) {
1269 zero_user_segment(page, 0, PAGE_SIZE);
1270 if (!PageUptodate(page))
1271 SetPageUptodate(page);
1272 unlock_page(page);
1273 return page;
1274 }
1275
1276 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1277 op_flags, for_write);
1278 if (err)
1279 goto put_err;
1280 return page;
1281
1282 put_err:
1283 f2fs_put_page(page, 1);
1284 return ERR_PTR(err);
1285 }
1286
f2fs_find_data_page(struct inode * inode,pgoff_t index,pgoff_t * next_pgofs)1287 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1288 pgoff_t *next_pgofs)
1289 {
1290 struct address_space *mapping = inode->i_mapping;
1291 struct page *page;
1292
1293 page = find_get_page(mapping, index);
1294 if (page && PageUptodate(page))
1295 return page;
1296 f2fs_put_page(page, 0);
1297
1298 page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1299 if (IS_ERR(page))
1300 return page;
1301
1302 if (PageUptodate(page))
1303 return page;
1304
1305 wait_on_page_locked(page);
1306 if (unlikely(!PageUptodate(page))) {
1307 f2fs_put_page(page, 0);
1308 return ERR_PTR(-EIO);
1309 }
1310 return page;
1311 }
1312
1313 /*
1314 * If it tries to access a hole, return an error.
1315 * Because, the callers, functions in dir.c and GC, should be able to know
1316 * whether this page exists or not.
1317 */
f2fs_get_lock_data_page(struct inode * inode,pgoff_t index,bool for_write)1318 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1319 bool for_write)
1320 {
1321 struct address_space *mapping = inode->i_mapping;
1322 struct page *page;
1323
1324 page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1325 if (IS_ERR(page))
1326 return page;
1327
1328 /* wait for read completion */
1329 lock_page(page);
1330 if (unlikely(page->mapping != mapping || !PageUptodate(page))) {
1331 f2fs_put_page(page, 1);
1332 return ERR_PTR(-EIO);
1333 }
1334 return page;
1335 }
1336
1337 /*
1338 * Caller ensures that this data page is never allocated.
1339 * A new zero-filled data page is allocated in the page cache.
1340 *
1341 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1342 * f2fs_unlock_op().
1343 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1344 * ipage should be released by this function.
1345 */
f2fs_get_new_data_page(struct inode * inode,struct page * ipage,pgoff_t index,bool new_i_size)1346 struct page *f2fs_get_new_data_page(struct inode *inode,
1347 struct page *ipage, pgoff_t index, bool new_i_size)
1348 {
1349 struct address_space *mapping = inode->i_mapping;
1350 struct page *page;
1351 struct dnode_of_data dn;
1352 int err;
1353
1354 page = f2fs_grab_cache_page(mapping, index, true);
1355 if (!page) {
1356 /*
1357 * before exiting, we should make sure ipage will be released
1358 * if any error occur.
1359 */
1360 f2fs_put_page(ipage, 1);
1361 return ERR_PTR(-ENOMEM);
1362 }
1363
1364 set_new_dnode(&dn, inode, ipage, NULL, 0);
1365 err = f2fs_reserve_block(&dn, index);
1366 if (err) {
1367 f2fs_put_page(page, 1);
1368 return ERR_PTR(err);
1369 }
1370 if (!ipage)
1371 f2fs_put_dnode(&dn);
1372
1373 if (PageUptodate(page))
1374 goto got_it;
1375
1376 if (dn.data_blkaddr == NEW_ADDR) {
1377 zero_user_segment(page, 0, PAGE_SIZE);
1378 if (!PageUptodate(page))
1379 SetPageUptodate(page);
1380 } else {
1381 f2fs_put_page(page, 1);
1382
1383 /* if ipage exists, blkaddr should be NEW_ADDR */
1384 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1385 page = f2fs_get_lock_data_page(inode, index, true);
1386 if (IS_ERR(page))
1387 return page;
1388 }
1389 got_it:
1390 if (new_i_size && i_size_read(inode) <
1391 ((loff_t)(index + 1) << PAGE_SHIFT))
1392 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1393 return page;
1394 }
1395
__allocate_data_block(struct dnode_of_data * dn,int seg_type)1396 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1397 {
1398 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1399 struct f2fs_summary sum;
1400 struct node_info ni;
1401 block_t old_blkaddr;
1402 blkcnt_t count = 1;
1403 int err;
1404
1405 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1406 return -EPERM;
1407
1408 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1409 if (err)
1410 return err;
1411
1412 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1413 if (dn->data_blkaddr == NULL_ADDR) {
1414 err = inc_valid_block_count(sbi, dn->inode, &count, true);
1415 if (unlikely(err))
1416 return err;
1417 }
1418
1419 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1420 old_blkaddr = dn->data_blkaddr;
1421 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1422 &sum, seg_type, NULL);
1423 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1424 f2fs_invalidate_internal_cache(sbi, old_blkaddr);
1425
1426 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1427 return 0;
1428 }
1429
f2fs_map_lock(struct f2fs_sb_info * sbi,int flag)1430 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1431 {
1432 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1433 f2fs_down_read(&sbi->node_change);
1434 else
1435 f2fs_lock_op(sbi);
1436 }
1437
f2fs_map_unlock(struct f2fs_sb_info * sbi,int flag)1438 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1439 {
1440 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1441 f2fs_up_read(&sbi->node_change);
1442 else
1443 f2fs_unlock_op(sbi);
1444 }
1445
f2fs_get_block_locked(struct dnode_of_data * dn,pgoff_t index)1446 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1447 {
1448 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1449 int err = 0;
1450
1451 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1452 if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1453 &dn->data_blkaddr))
1454 err = f2fs_reserve_block(dn, index);
1455 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1456
1457 return err;
1458 }
1459
f2fs_map_no_dnode(struct inode * inode,struct f2fs_map_blocks * map,struct dnode_of_data * dn,pgoff_t pgoff)1460 static int f2fs_map_no_dnode(struct inode *inode,
1461 struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1462 pgoff_t pgoff)
1463 {
1464 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1465
1466 /*
1467 * There is one exceptional case that read_node_page() may return
1468 * -ENOENT due to filesystem has been shutdown or cp_error, return
1469 * -EIO in that case.
1470 */
1471 if (map->m_may_create &&
1472 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1473 return -EIO;
1474
1475 if (map->m_next_pgofs)
1476 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1477 if (map->m_next_extent)
1478 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1479 return 0;
1480 }
1481
f2fs_map_blocks_cached(struct inode * inode,struct f2fs_map_blocks * map,int flag)1482 static bool f2fs_map_blocks_cached(struct inode *inode,
1483 struct f2fs_map_blocks *map, int flag)
1484 {
1485 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1486 unsigned int maxblocks = map->m_len;
1487 pgoff_t pgoff = (pgoff_t)map->m_lblk;
1488 struct extent_info ei = {};
1489
1490 if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1491 return false;
1492
1493 map->m_pblk = ei.blk + pgoff - ei.fofs;
1494 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1495 map->m_flags = F2FS_MAP_MAPPED;
1496 if (map->m_next_extent)
1497 *map->m_next_extent = pgoff + map->m_len;
1498
1499 /* for hardware encryption, but to avoid potential issue in future */
1500 if (flag == F2FS_GET_BLOCK_DIO)
1501 f2fs_wait_on_block_writeback_range(inode,
1502 map->m_pblk, map->m_len);
1503
1504 if (f2fs_allow_multi_device_dio(sbi, flag)) {
1505 int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1506 struct f2fs_dev_info *dev = &sbi->devs[bidx];
1507
1508 map->m_bdev = dev->bdev;
1509 map->m_pblk -= dev->start_blk;
1510 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1511 } else {
1512 map->m_bdev = inode->i_sb->s_bdev;
1513 }
1514 return true;
1515 }
1516
1517 /*
1518 * f2fs_map_blocks() tries to find or build mapping relationship which
1519 * maps continuous logical blocks to physical blocks, and return such
1520 * info via f2fs_map_blocks structure.
1521 */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int flag)1522 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1523 {
1524 unsigned int maxblocks = map->m_len;
1525 struct dnode_of_data dn;
1526 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1527 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1528 pgoff_t pgofs, end_offset, end;
1529 int err = 0, ofs = 1;
1530 unsigned int ofs_in_node, last_ofs_in_node;
1531 blkcnt_t prealloc;
1532 block_t blkaddr;
1533 unsigned int start_pgofs;
1534 int bidx = 0;
1535 bool is_hole;
1536
1537 if (!maxblocks)
1538 return 0;
1539
1540 if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1541 goto out;
1542
1543 map->m_bdev = inode->i_sb->s_bdev;
1544 map->m_multidev_dio =
1545 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1546
1547 map->m_len = 0;
1548 map->m_flags = 0;
1549
1550 /* it only supports block size == page size */
1551 pgofs = (pgoff_t)map->m_lblk;
1552 end = pgofs + maxblocks;
1553
1554 next_dnode:
1555 if (map->m_may_create)
1556 f2fs_map_lock(sbi, flag);
1557
1558 /* When reading holes, we need its node page */
1559 set_new_dnode(&dn, inode, NULL, NULL, 0);
1560 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1561 if (err) {
1562 if (flag == F2FS_GET_BLOCK_BMAP)
1563 map->m_pblk = 0;
1564 if (err == -ENOENT)
1565 err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1566 goto unlock_out;
1567 }
1568
1569 start_pgofs = pgofs;
1570 prealloc = 0;
1571 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1572 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1573
1574 next_block:
1575 blkaddr = f2fs_data_blkaddr(&dn);
1576 is_hole = !__is_valid_data_blkaddr(blkaddr);
1577 if (!is_hole &&
1578 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1579 err = -EFSCORRUPTED;
1580 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1581 goto sync_out;
1582 }
1583
1584 /* use out-place-update for direct IO under LFS mode */
1585 if (map->m_may_create &&
1586 (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) {
1587 if (unlikely(f2fs_cp_error(sbi))) {
1588 err = -EIO;
1589 goto sync_out;
1590 }
1591
1592 switch (flag) {
1593 case F2FS_GET_BLOCK_PRE_AIO:
1594 if (blkaddr == NULL_ADDR) {
1595 prealloc++;
1596 last_ofs_in_node = dn.ofs_in_node;
1597 }
1598 break;
1599 case F2FS_GET_BLOCK_PRE_DIO:
1600 case F2FS_GET_BLOCK_DIO:
1601 err = __allocate_data_block(&dn, map->m_seg_type);
1602 if (err)
1603 goto sync_out;
1604 if (flag == F2FS_GET_BLOCK_PRE_DIO)
1605 file_need_truncate(inode);
1606 set_inode_flag(inode, FI_APPEND_WRITE);
1607 break;
1608 default:
1609 WARN_ON_ONCE(1);
1610 err = -EIO;
1611 goto sync_out;
1612 }
1613
1614 blkaddr = dn.data_blkaddr;
1615 if (is_hole)
1616 map->m_flags |= F2FS_MAP_NEW;
1617 } else if (is_hole) {
1618 if (f2fs_compressed_file(inode) &&
1619 f2fs_sanity_check_cluster(&dn)) {
1620 err = -EFSCORRUPTED;
1621 f2fs_handle_error(sbi,
1622 ERROR_CORRUPTED_CLUSTER);
1623 goto sync_out;
1624 }
1625
1626 switch (flag) {
1627 case F2FS_GET_BLOCK_PRECACHE:
1628 goto sync_out;
1629 case F2FS_GET_BLOCK_BMAP:
1630 map->m_pblk = 0;
1631 goto sync_out;
1632 case F2FS_GET_BLOCK_FIEMAP:
1633 if (blkaddr == NULL_ADDR) {
1634 if (map->m_next_pgofs)
1635 *map->m_next_pgofs = pgofs + 1;
1636 goto sync_out;
1637 }
1638 break;
1639 default:
1640 /* for defragment case */
1641 if (map->m_next_pgofs)
1642 *map->m_next_pgofs = pgofs + 1;
1643 goto sync_out;
1644 }
1645 }
1646
1647 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1648 goto skip;
1649
1650 if (map->m_multidev_dio)
1651 bidx = f2fs_target_device_index(sbi, blkaddr);
1652
1653 if (map->m_len == 0) {
1654 /* reserved delalloc block should be mapped for fiemap. */
1655 if (blkaddr == NEW_ADDR)
1656 map->m_flags |= F2FS_MAP_DELALLOC;
1657 map->m_flags |= F2FS_MAP_MAPPED;
1658
1659 map->m_pblk = blkaddr;
1660 map->m_len = 1;
1661
1662 if (map->m_multidev_dio)
1663 map->m_bdev = FDEV(bidx).bdev;
1664 } else if ((map->m_pblk != NEW_ADDR &&
1665 blkaddr == (map->m_pblk + ofs)) ||
1666 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1667 flag == F2FS_GET_BLOCK_PRE_DIO) {
1668 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1669 goto sync_out;
1670 ofs++;
1671 map->m_len++;
1672 } else {
1673 goto sync_out;
1674 }
1675
1676 skip:
1677 dn.ofs_in_node++;
1678 pgofs++;
1679
1680 /* preallocate blocks in batch for one dnode page */
1681 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1682 (pgofs == end || dn.ofs_in_node == end_offset)) {
1683
1684 dn.ofs_in_node = ofs_in_node;
1685 err = f2fs_reserve_new_blocks(&dn, prealloc);
1686 if (err)
1687 goto sync_out;
1688
1689 map->m_len += dn.ofs_in_node - ofs_in_node;
1690 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1691 err = -ENOSPC;
1692 goto sync_out;
1693 }
1694 dn.ofs_in_node = end_offset;
1695 }
1696
1697 if (pgofs >= end)
1698 goto sync_out;
1699 else if (dn.ofs_in_node < end_offset)
1700 goto next_block;
1701
1702 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1703 if (map->m_flags & F2FS_MAP_MAPPED) {
1704 unsigned int ofs = start_pgofs - map->m_lblk;
1705
1706 f2fs_update_read_extent_cache_range(&dn,
1707 start_pgofs, map->m_pblk + ofs,
1708 map->m_len - ofs);
1709 }
1710 }
1711
1712 f2fs_put_dnode(&dn);
1713
1714 if (map->m_may_create) {
1715 f2fs_map_unlock(sbi, flag);
1716 f2fs_balance_fs(sbi, dn.node_changed);
1717 }
1718 goto next_dnode;
1719
1720 sync_out:
1721
1722 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1723 /*
1724 * for hardware encryption, but to avoid potential issue
1725 * in future
1726 */
1727 f2fs_wait_on_block_writeback_range(inode,
1728 map->m_pblk, map->m_len);
1729
1730 if (map->m_multidev_dio) {
1731 block_t blk_addr = map->m_pblk;
1732
1733 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1734
1735 map->m_bdev = FDEV(bidx).bdev;
1736 map->m_pblk -= FDEV(bidx).start_blk;
1737
1738 if (map->m_may_create)
1739 f2fs_update_device_state(sbi, inode->i_ino,
1740 blk_addr, map->m_len);
1741
1742 f2fs_bug_on(sbi, blk_addr + map->m_len >
1743 FDEV(bidx).end_blk + 1);
1744 }
1745 }
1746
1747 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1748 if (map->m_flags & F2FS_MAP_MAPPED) {
1749 unsigned int ofs = start_pgofs - map->m_lblk;
1750
1751 f2fs_update_read_extent_cache_range(&dn,
1752 start_pgofs, map->m_pblk + ofs,
1753 map->m_len - ofs);
1754 }
1755 if (map->m_next_extent)
1756 *map->m_next_extent = pgofs + 1;
1757 }
1758 f2fs_put_dnode(&dn);
1759 unlock_out:
1760 if (map->m_may_create) {
1761 f2fs_map_unlock(sbi, flag);
1762 f2fs_balance_fs(sbi, dn.node_changed);
1763 }
1764 out:
1765 trace_f2fs_map_blocks(inode, map, flag, err);
1766 return err;
1767 }
1768
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1769 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1770 {
1771 struct f2fs_map_blocks map;
1772 block_t last_lblk;
1773 int err;
1774
1775 if (pos + len > i_size_read(inode))
1776 return false;
1777
1778 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1779 map.m_next_pgofs = NULL;
1780 map.m_next_extent = NULL;
1781 map.m_seg_type = NO_CHECK_TYPE;
1782 map.m_may_create = false;
1783 last_lblk = F2FS_BLK_ALIGN(pos + len);
1784
1785 while (map.m_lblk < last_lblk) {
1786 map.m_len = last_lblk - map.m_lblk;
1787 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1788 if (err || map.m_len == 0)
1789 return false;
1790 map.m_lblk += map.m_len;
1791 }
1792 return true;
1793 }
1794
bytes_to_blks(struct inode * inode,u64 bytes)1795 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1796 {
1797 return (bytes >> inode->i_blkbits);
1798 }
1799
blks_to_bytes(struct inode * inode,u64 blks)1800 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1801 {
1802 return (blks << inode->i_blkbits);
1803 }
1804
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1805 static int f2fs_xattr_fiemap(struct inode *inode,
1806 struct fiemap_extent_info *fieinfo)
1807 {
1808 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1809 struct page *page;
1810 struct node_info ni;
1811 __u64 phys = 0, len;
1812 __u32 flags;
1813 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1814 int err = 0;
1815
1816 if (f2fs_has_inline_xattr(inode)) {
1817 int offset;
1818
1819 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1820 inode->i_ino, false);
1821 if (!page)
1822 return -ENOMEM;
1823
1824 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1825 if (err) {
1826 f2fs_put_page(page, 1);
1827 return err;
1828 }
1829
1830 phys = blks_to_bytes(inode, ni.blk_addr);
1831 offset = offsetof(struct f2fs_inode, i_addr) +
1832 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1833 get_inline_xattr_addrs(inode));
1834
1835 phys += offset;
1836 len = inline_xattr_size(inode);
1837
1838 f2fs_put_page(page, 1);
1839
1840 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1841
1842 if (!xnid)
1843 flags |= FIEMAP_EXTENT_LAST;
1844
1845 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1846 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1847 if (err)
1848 return err;
1849 }
1850
1851 if (xnid) {
1852 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1853 if (!page)
1854 return -ENOMEM;
1855
1856 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1857 if (err) {
1858 f2fs_put_page(page, 1);
1859 return err;
1860 }
1861
1862 phys = blks_to_bytes(inode, ni.blk_addr);
1863 len = inode->i_sb->s_blocksize;
1864
1865 f2fs_put_page(page, 1);
1866
1867 flags = FIEMAP_EXTENT_LAST;
1868 }
1869
1870 if (phys) {
1871 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1872 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1873 }
1874
1875 return (err < 0 ? err : 0);
1876 }
1877
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1878 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1879 u64 start, u64 len)
1880 {
1881 struct f2fs_map_blocks map;
1882 sector_t start_blk, last_blk;
1883 pgoff_t next_pgofs;
1884 u64 logical = 0, phys = 0, size = 0;
1885 u32 flags = 0;
1886 int ret = 0;
1887 bool compr_cluster = false, compr_appended;
1888 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1889 unsigned int count_in_cluster = 0;
1890 loff_t maxbytes;
1891
1892 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1893 ret = f2fs_precache_extents(inode);
1894 if (ret)
1895 return ret;
1896 }
1897
1898 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1899 if (ret)
1900 return ret;
1901
1902 inode_lock(inode);
1903
1904 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1905 if (start > maxbytes) {
1906 ret = -EFBIG;
1907 goto out;
1908 }
1909
1910 if (len > maxbytes || (maxbytes - len) < start)
1911 len = maxbytes - start;
1912
1913 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1914 ret = f2fs_xattr_fiemap(inode, fieinfo);
1915 goto out;
1916 }
1917
1918 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1919 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1920 if (ret != -EAGAIN)
1921 goto out;
1922 }
1923
1924 if (bytes_to_blks(inode, len) == 0)
1925 len = blks_to_bytes(inode, 1);
1926
1927 start_blk = bytes_to_blks(inode, start);
1928 last_blk = bytes_to_blks(inode, start + len - 1);
1929
1930 next:
1931 memset(&map, 0, sizeof(map));
1932 map.m_lblk = start_blk;
1933 map.m_len = bytes_to_blks(inode, len);
1934 map.m_next_pgofs = &next_pgofs;
1935 map.m_seg_type = NO_CHECK_TYPE;
1936
1937 if (compr_cluster) {
1938 map.m_lblk += 1;
1939 map.m_len = cluster_size - count_in_cluster;
1940 }
1941
1942 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
1943 if (ret)
1944 goto out;
1945
1946 /* HOLE */
1947 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1948 start_blk = next_pgofs;
1949
1950 if (blks_to_bytes(inode, start_blk) < maxbytes)
1951 goto prep_next;
1952
1953 flags |= FIEMAP_EXTENT_LAST;
1954 }
1955
1956 compr_appended = false;
1957 /* In a case of compressed cluster, append this to the last extent */
1958 if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
1959 !(map.m_flags & F2FS_MAP_FLAGS))) {
1960 compr_appended = true;
1961 goto skip_fill;
1962 }
1963
1964 if (size) {
1965 flags |= FIEMAP_EXTENT_MERGED;
1966 if (IS_ENCRYPTED(inode))
1967 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1968
1969 ret = fiemap_fill_next_extent(fieinfo, logical,
1970 phys, size, flags);
1971 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1972 if (ret)
1973 goto out;
1974 size = 0;
1975 }
1976
1977 if (start_blk > last_blk)
1978 goto out;
1979
1980 skip_fill:
1981 if (map.m_pblk == COMPRESS_ADDR) {
1982 compr_cluster = true;
1983 count_in_cluster = 1;
1984 } else if (compr_appended) {
1985 unsigned int appended_blks = cluster_size -
1986 count_in_cluster + 1;
1987 size += blks_to_bytes(inode, appended_blks);
1988 start_blk += appended_blks;
1989 compr_cluster = false;
1990 } else {
1991 logical = blks_to_bytes(inode, start_blk);
1992 phys = __is_valid_data_blkaddr(map.m_pblk) ?
1993 blks_to_bytes(inode, map.m_pblk) : 0;
1994 size = blks_to_bytes(inode, map.m_len);
1995 flags = 0;
1996
1997 if (compr_cluster) {
1998 flags = FIEMAP_EXTENT_ENCODED;
1999 count_in_cluster += map.m_len;
2000 if (count_in_cluster == cluster_size) {
2001 compr_cluster = false;
2002 size += blks_to_bytes(inode, 1);
2003 }
2004 } else if (map.m_flags & F2FS_MAP_DELALLOC) {
2005 flags = FIEMAP_EXTENT_UNWRITTEN;
2006 }
2007
2008 start_blk += bytes_to_blks(inode, size);
2009 }
2010
2011 prep_next:
2012 cond_resched();
2013 if (fatal_signal_pending(current))
2014 ret = -EINTR;
2015 else
2016 goto next;
2017 out:
2018 if (ret == 1)
2019 ret = 0;
2020
2021 inode_unlock(inode);
2022 return ret;
2023 }
2024
f2fs_readpage_limit(struct inode * inode)2025 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2026 {
2027 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2028 return inode->i_sb->s_maxbytes;
2029
2030 return i_size_read(inode);
2031 }
2032
f2fs_read_single_page(struct inode * inode,struct page * page,unsigned nr_pages,struct f2fs_map_blocks * map,struct bio ** bio_ret,sector_t * last_block_in_bio,bool is_readahead)2033 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2034 unsigned nr_pages,
2035 struct f2fs_map_blocks *map,
2036 struct bio **bio_ret,
2037 sector_t *last_block_in_bio,
2038 bool is_readahead)
2039 {
2040 struct bio *bio = *bio_ret;
2041 const unsigned blocksize = blks_to_bytes(inode, 1);
2042 sector_t block_in_file;
2043 sector_t last_block;
2044 sector_t last_block_in_file;
2045 sector_t block_nr;
2046 int ret = 0;
2047
2048 block_in_file = (sector_t)page_index(page);
2049 last_block = block_in_file + nr_pages;
2050 last_block_in_file = bytes_to_blks(inode,
2051 f2fs_readpage_limit(inode) + blocksize - 1);
2052 if (last_block > last_block_in_file)
2053 last_block = last_block_in_file;
2054
2055 /* just zeroing out page which is beyond EOF */
2056 if (block_in_file >= last_block)
2057 goto zero_out;
2058 /*
2059 * Map blocks using the previous result first.
2060 */
2061 if ((map->m_flags & F2FS_MAP_MAPPED) &&
2062 block_in_file > map->m_lblk &&
2063 block_in_file < (map->m_lblk + map->m_len))
2064 goto got_it;
2065
2066 /*
2067 * Then do more f2fs_map_blocks() calls until we are
2068 * done with this page.
2069 */
2070 map->m_lblk = block_in_file;
2071 map->m_len = last_block - block_in_file;
2072
2073 ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2074 if (ret)
2075 goto out;
2076 got_it:
2077 if ((map->m_flags & F2FS_MAP_MAPPED)) {
2078 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2079 SetPageMappedToDisk(page);
2080
2081 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2082 DATA_GENERIC_ENHANCE_READ)) {
2083 ret = -EFSCORRUPTED;
2084 f2fs_handle_error(F2FS_I_SB(inode),
2085 ERROR_INVALID_BLKADDR);
2086 goto out;
2087 }
2088 } else {
2089 zero_out:
2090 zero_user_segment(page, 0, PAGE_SIZE);
2091 if (f2fs_need_verity(inode, page->index) &&
2092 !fsverity_verify_page(page)) {
2093 ret = -EIO;
2094 goto out;
2095 }
2096 if (!PageUptodate(page))
2097 SetPageUptodate(page);
2098 unlock_page(page);
2099 goto out;
2100 }
2101
2102 /*
2103 * This page will go to BIO. Do we need to send this
2104 * BIO off first?
2105 */
2106 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2107 *last_block_in_bio, block_nr) ||
2108 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2109 submit_and_realloc:
2110 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2111 bio = NULL;
2112 }
2113 if (bio == NULL) {
2114 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2115 is_readahead ? REQ_RAHEAD : 0, page->index,
2116 false);
2117 if (IS_ERR(bio)) {
2118 ret = PTR_ERR(bio);
2119 bio = NULL;
2120 goto out;
2121 }
2122 }
2123
2124 /*
2125 * If the page is under writeback, we need to wait for
2126 * its completion to see the correct decrypted data.
2127 */
2128 f2fs_wait_on_block_writeback(inode, block_nr);
2129
2130 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2131 goto submit_and_realloc;
2132
2133 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2134 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2135 F2FS_BLKSIZE);
2136 *last_block_in_bio = block_nr;
2137 out:
2138 *bio_ret = bio;
2139 return ret;
2140 }
2141
2142 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_read_multi_pages(struct compress_ctx * cc,struct bio ** bio_ret,unsigned nr_pages,sector_t * last_block_in_bio,bool is_readahead,bool for_write)2143 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2144 unsigned nr_pages, sector_t *last_block_in_bio,
2145 bool is_readahead, bool for_write)
2146 {
2147 struct dnode_of_data dn;
2148 struct inode *inode = cc->inode;
2149 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2150 struct bio *bio = *bio_ret;
2151 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2152 sector_t last_block_in_file;
2153 const unsigned blocksize = blks_to_bytes(inode, 1);
2154 struct decompress_io_ctx *dic = NULL;
2155 struct extent_info ei = {};
2156 bool from_dnode = true;
2157 int i;
2158 int ret = 0;
2159
2160 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2161
2162 last_block_in_file = bytes_to_blks(inode,
2163 f2fs_readpage_limit(inode) + blocksize - 1);
2164
2165 /* get rid of pages beyond EOF */
2166 for (i = 0; i < cc->cluster_size; i++) {
2167 struct page *page = cc->rpages[i];
2168
2169 if (!page)
2170 continue;
2171 if ((sector_t)page->index >= last_block_in_file) {
2172 zero_user_segment(page, 0, PAGE_SIZE);
2173 if (!PageUptodate(page))
2174 SetPageUptodate(page);
2175 } else if (!PageUptodate(page)) {
2176 continue;
2177 }
2178 unlock_page(page);
2179 if (for_write)
2180 put_page(page);
2181 cc->rpages[i] = NULL;
2182 cc->nr_rpages--;
2183 }
2184
2185 /* we are done since all pages are beyond EOF */
2186 if (f2fs_cluster_is_empty(cc))
2187 goto out;
2188
2189 if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2190 from_dnode = false;
2191
2192 if (!from_dnode)
2193 goto skip_reading_dnode;
2194
2195 set_new_dnode(&dn, inode, NULL, NULL, 0);
2196 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2197 if (ret)
2198 goto out;
2199
2200 if (unlikely(f2fs_cp_error(sbi))) {
2201 ret = -EIO;
2202 goto out_put_dnode;
2203 }
2204 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2205
2206 skip_reading_dnode:
2207 for (i = 1; i < cc->cluster_size; i++) {
2208 block_t blkaddr;
2209
2210 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2211 dn.ofs_in_node + i) :
2212 ei.blk + i - 1;
2213
2214 if (!__is_valid_data_blkaddr(blkaddr))
2215 break;
2216
2217 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2218 ret = -EFAULT;
2219 goto out_put_dnode;
2220 }
2221 cc->nr_cpages++;
2222
2223 if (!from_dnode && i >= ei.c_len)
2224 break;
2225 }
2226
2227 /* nothing to decompress */
2228 if (cc->nr_cpages == 0) {
2229 ret = 0;
2230 goto out_put_dnode;
2231 }
2232
2233 dic = f2fs_alloc_dic(cc);
2234 if (IS_ERR(dic)) {
2235 ret = PTR_ERR(dic);
2236 goto out_put_dnode;
2237 }
2238
2239 for (i = 0; i < cc->nr_cpages; i++) {
2240 struct page *page = dic->cpages[i];
2241 block_t blkaddr;
2242 struct bio_post_read_ctx *ctx;
2243
2244 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2245 dn.ofs_in_node + i + 1) :
2246 ei.blk + i;
2247
2248 f2fs_wait_on_block_writeback(inode, blkaddr);
2249
2250 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2251 if (atomic_dec_and_test(&dic->remaining_pages)) {
2252 f2fs_decompress_cluster(dic, true);
2253 break;
2254 }
2255 continue;
2256 }
2257
2258 if (bio && (!page_is_mergeable(sbi, bio,
2259 *last_block_in_bio, blkaddr) ||
2260 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2261 submit_and_realloc:
2262 f2fs_submit_read_bio(sbi, bio, DATA);
2263 bio = NULL;
2264 }
2265
2266 if (!bio) {
2267 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2268 is_readahead ? REQ_RAHEAD : 0,
2269 page->index, for_write);
2270 if (IS_ERR(bio)) {
2271 ret = PTR_ERR(bio);
2272 f2fs_decompress_end_io(dic, ret, true);
2273 f2fs_put_dnode(&dn);
2274 *bio_ret = NULL;
2275 return ret;
2276 }
2277 }
2278
2279 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2280 goto submit_and_realloc;
2281
2282 ctx = get_post_read_ctx(bio);
2283 ctx->enabled_steps |= STEP_DECOMPRESS;
2284 refcount_inc(&dic->refcnt);
2285
2286 inc_page_count(sbi, F2FS_RD_DATA);
2287 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2288 *last_block_in_bio = blkaddr;
2289 }
2290
2291 if (from_dnode)
2292 f2fs_put_dnode(&dn);
2293
2294 *bio_ret = bio;
2295 return 0;
2296
2297 out_put_dnode:
2298 if (from_dnode)
2299 f2fs_put_dnode(&dn);
2300 out:
2301 for (i = 0; i < cc->cluster_size; i++) {
2302 if (cc->rpages[i]) {
2303 ClearPageUptodate(cc->rpages[i]);
2304 unlock_page(cc->rpages[i]);
2305 }
2306 }
2307 *bio_ret = bio;
2308 return ret;
2309 }
2310 #endif
2311
2312 /*
2313 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2314 * Major change was from block_size == page_size in f2fs by default.
2315 */
f2fs_mpage_readpages(struct inode * inode,struct readahead_control * rac,struct page * page)2316 static int f2fs_mpage_readpages(struct inode *inode,
2317 struct readahead_control *rac, struct page *page)
2318 {
2319 struct bio *bio = NULL;
2320 sector_t last_block_in_bio = 0;
2321 struct f2fs_map_blocks map;
2322 #ifdef CONFIG_F2FS_FS_COMPRESSION
2323 struct compress_ctx cc = {
2324 .inode = inode,
2325 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2326 .cluster_size = F2FS_I(inode)->i_cluster_size,
2327 .cluster_idx = NULL_CLUSTER,
2328 .rpages = NULL,
2329 .cpages = NULL,
2330 .nr_rpages = 0,
2331 .nr_cpages = 0,
2332 };
2333 pgoff_t nc_cluster_idx = NULL_CLUSTER;
2334 #endif
2335 unsigned nr_pages = rac ? readahead_count(rac) : 1;
2336 unsigned max_nr_pages = nr_pages;
2337 int ret = 0;
2338
2339 map.m_pblk = 0;
2340 map.m_lblk = 0;
2341 map.m_len = 0;
2342 map.m_flags = 0;
2343 map.m_next_pgofs = NULL;
2344 map.m_next_extent = NULL;
2345 map.m_seg_type = NO_CHECK_TYPE;
2346 map.m_may_create = false;
2347
2348 for (; nr_pages; nr_pages--) {
2349 if (rac) {
2350 page = readahead_page(rac);
2351 prefetchw(&page->flags);
2352 }
2353
2354 #ifdef CONFIG_F2FS_FS_COMPRESSION
2355 if (f2fs_compressed_file(inode)) {
2356 /* there are remained compressed pages, submit them */
2357 if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2358 ret = f2fs_read_multi_pages(&cc, &bio,
2359 max_nr_pages,
2360 &last_block_in_bio,
2361 rac != NULL, false);
2362 f2fs_destroy_compress_ctx(&cc, false);
2363 if (ret)
2364 goto set_error_page;
2365 }
2366 if (cc.cluster_idx == NULL_CLUSTER) {
2367 if (nc_cluster_idx ==
2368 page->index >> cc.log_cluster_size) {
2369 goto read_single_page;
2370 }
2371
2372 ret = f2fs_is_compressed_cluster(inode, page->index);
2373 if (ret < 0)
2374 goto set_error_page;
2375 else if (!ret) {
2376 nc_cluster_idx =
2377 page->index >> cc.log_cluster_size;
2378 goto read_single_page;
2379 }
2380
2381 nc_cluster_idx = NULL_CLUSTER;
2382 }
2383 ret = f2fs_init_compress_ctx(&cc);
2384 if (ret)
2385 goto set_error_page;
2386
2387 f2fs_compress_ctx_add_page(&cc, page);
2388
2389 goto next_page;
2390 }
2391 read_single_page:
2392 #endif
2393
2394 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2395 &bio, &last_block_in_bio, rac);
2396 if (ret) {
2397 #ifdef CONFIG_F2FS_FS_COMPRESSION
2398 set_error_page:
2399 #endif
2400 zero_user_segment(page, 0, PAGE_SIZE);
2401 unlock_page(page);
2402 }
2403 #ifdef CONFIG_F2FS_FS_COMPRESSION
2404 next_page:
2405 #endif
2406 if (rac)
2407 put_page(page);
2408
2409 #ifdef CONFIG_F2FS_FS_COMPRESSION
2410 if (f2fs_compressed_file(inode)) {
2411 /* last page */
2412 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2413 ret = f2fs_read_multi_pages(&cc, &bio,
2414 max_nr_pages,
2415 &last_block_in_bio,
2416 rac != NULL, false);
2417 f2fs_destroy_compress_ctx(&cc, false);
2418 }
2419 }
2420 #endif
2421 }
2422 if (bio)
2423 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2424 return ret;
2425 }
2426
f2fs_read_data_folio(struct file * file,struct folio * folio)2427 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2428 {
2429 struct page *page = &folio->page;
2430 struct inode *inode = page_file_mapping(page)->host;
2431 int ret = -EAGAIN;
2432
2433 trace_f2fs_readpage(page, DATA);
2434
2435 if (!f2fs_is_compress_backend_ready(inode)) {
2436 unlock_page(page);
2437 return -EOPNOTSUPP;
2438 }
2439
2440 /* If the file has inline data, try to read it directly */
2441 if (f2fs_has_inline_data(inode))
2442 ret = f2fs_read_inline_data(inode, page);
2443 if (ret == -EAGAIN)
2444 ret = f2fs_mpage_readpages(inode, NULL, page);
2445 return ret;
2446 }
2447
f2fs_readahead(struct readahead_control * rac)2448 static void f2fs_readahead(struct readahead_control *rac)
2449 {
2450 struct inode *inode = rac->mapping->host;
2451
2452 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2453
2454 if (!f2fs_is_compress_backend_ready(inode))
2455 return;
2456
2457 /* If the file has inline data, skip readahead */
2458 if (f2fs_has_inline_data(inode))
2459 return;
2460
2461 f2fs_mpage_readpages(inode, rac, NULL);
2462 }
2463
f2fs_encrypt_one_page(struct f2fs_io_info * fio)2464 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2465 {
2466 struct inode *inode = fio->page->mapping->host;
2467 struct page *mpage, *page;
2468 gfp_t gfp_flags = GFP_NOFS;
2469
2470 if (!f2fs_encrypted_file(inode))
2471 return 0;
2472
2473 page = fio->compressed_page ? fio->compressed_page : fio->page;
2474
2475 if (fscrypt_inode_uses_inline_crypto(inode))
2476 return 0;
2477
2478 retry_encrypt:
2479 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2480 PAGE_SIZE, 0, gfp_flags);
2481 if (IS_ERR(fio->encrypted_page)) {
2482 /* flush pending IOs and wait for a while in the ENOMEM case */
2483 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2484 f2fs_flush_merged_writes(fio->sbi);
2485 memalloc_retry_wait(GFP_NOFS);
2486 gfp_flags |= __GFP_NOFAIL;
2487 goto retry_encrypt;
2488 }
2489 return PTR_ERR(fio->encrypted_page);
2490 }
2491
2492 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2493 if (mpage) {
2494 if (PageUptodate(mpage))
2495 memcpy(page_address(mpage),
2496 page_address(fio->encrypted_page), PAGE_SIZE);
2497 f2fs_put_page(mpage, 1);
2498 }
2499 return 0;
2500 }
2501
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)2502 static inline bool check_inplace_update_policy(struct inode *inode,
2503 struct f2fs_io_info *fio)
2504 {
2505 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2506
2507 if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2508 is_inode_flag_set(inode, FI_OPU_WRITE))
2509 return false;
2510 if (IS_F2FS_IPU_FORCE(sbi))
2511 return true;
2512 if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2513 return true;
2514 if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2515 return true;
2516 if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2517 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2518 return true;
2519
2520 /*
2521 * IPU for rewrite async pages
2522 */
2523 if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2524 !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2525 return true;
2526
2527 /* this is only set during fdatasync */
2528 if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2529 return true;
2530
2531 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2532 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2533 return true;
2534
2535 return false;
2536 }
2537
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)2538 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2539 {
2540 /* swap file is migrating in aligned write mode */
2541 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2542 return false;
2543
2544 if (f2fs_is_pinned_file(inode))
2545 return true;
2546
2547 /* if this is cold file, we should overwrite to avoid fragmentation */
2548 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2549 return true;
2550
2551 return check_inplace_update_policy(inode, fio);
2552 }
2553
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)2554 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2555 {
2556 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2557
2558 /* The below cases were checked when setting it. */
2559 if (f2fs_is_pinned_file(inode))
2560 return false;
2561 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2562 return true;
2563 if (f2fs_lfs_mode(sbi))
2564 return true;
2565 if (S_ISDIR(inode->i_mode))
2566 return true;
2567 if (IS_NOQUOTA(inode))
2568 return true;
2569 if (f2fs_used_in_atomic_write(inode))
2570 return true;
2571
2572 /* swap file is migrating in aligned write mode */
2573 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2574 return true;
2575
2576 if (is_inode_flag_set(inode, FI_OPU_WRITE))
2577 return true;
2578
2579 if (fio) {
2580 if (page_private_gcing(fio->page))
2581 return true;
2582 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2583 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2584 return true;
2585 }
2586 return false;
2587 }
2588
need_inplace_update(struct f2fs_io_info * fio)2589 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2590 {
2591 struct inode *inode = fio->page->mapping->host;
2592
2593 if (f2fs_should_update_outplace(inode, fio))
2594 return false;
2595
2596 return f2fs_should_update_inplace(inode, fio);
2597 }
2598
f2fs_do_write_data_page(struct f2fs_io_info * fio)2599 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2600 {
2601 struct page *page = fio->page;
2602 struct inode *inode = page->mapping->host;
2603 struct dnode_of_data dn;
2604 struct node_info ni;
2605 bool ipu_force = false;
2606 bool atomic_commit;
2607 int err = 0;
2608
2609 /* Use COW inode to make dnode_of_data for atomic write */
2610 atomic_commit = f2fs_is_atomic_file(inode) &&
2611 page_private_atomic(fio->page);
2612 if (atomic_commit)
2613 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2614 else
2615 set_new_dnode(&dn, inode, NULL, NULL, 0);
2616
2617 if (need_inplace_update(fio) &&
2618 f2fs_lookup_read_extent_cache_block(inode, page->index,
2619 &fio->old_blkaddr)) {
2620 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2621 DATA_GENERIC_ENHANCE)) {
2622 f2fs_handle_error(fio->sbi,
2623 ERROR_INVALID_BLKADDR);
2624 return -EFSCORRUPTED;
2625 }
2626
2627 ipu_force = true;
2628 fio->need_lock = LOCK_DONE;
2629 goto got_it;
2630 }
2631
2632 /* Deadlock due to between page->lock and f2fs_lock_op */
2633 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2634 return -EAGAIN;
2635
2636 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2637 if (err)
2638 goto out;
2639
2640 fio->old_blkaddr = dn.data_blkaddr;
2641
2642 /* This page is already truncated */
2643 if (fio->old_blkaddr == NULL_ADDR) {
2644 ClearPageUptodate(page);
2645 clear_page_private_gcing(page);
2646 goto out_writepage;
2647 }
2648 got_it:
2649 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2650 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2651 DATA_GENERIC_ENHANCE)) {
2652 err = -EFSCORRUPTED;
2653 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
2654 goto out_writepage;
2655 }
2656
2657 /* wait for GCed page writeback via META_MAPPING */
2658 if (fio->meta_gc)
2659 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2660
2661 /*
2662 * If current allocation needs SSR,
2663 * it had better in-place writes for updated data.
2664 */
2665 if (ipu_force ||
2666 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2667 need_inplace_update(fio))) {
2668 err = f2fs_encrypt_one_page(fio);
2669 if (err)
2670 goto out_writepage;
2671
2672 set_page_writeback(page);
2673 f2fs_put_dnode(&dn);
2674 if (fio->need_lock == LOCK_REQ)
2675 f2fs_unlock_op(fio->sbi);
2676 err = f2fs_inplace_write_data(fio);
2677 if (err) {
2678 if (fscrypt_inode_uses_fs_layer_crypto(inode))
2679 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2680 if (PageWriteback(page))
2681 end_page_writeback(page);
2682 } else {
2683 set_inode_flag(inode, FI_UPDATE_WRITE);
2684 }
2685 trace_f2fs_do_write_data_page(fio->page, IPU);
2686 return err;
2687 }
2688
2689 if (fio->need_lock == LOCK_RETRY) {
2690 if (!f2fs_trylock_op(fio->sbi)) {
2691 err = -EAGAIN;
2692 goto out_writepage;
2693 }
2694 fio->need_lock = LOCK_REQ;
2695 }
2696
2697 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2698 if (err)
2699 goto out_writepage;
2700
2701 fio->version = ni.version;
2702
2703 err = f2fs_encrypt_one_page(fio);
2704 if (err)
2705 goto out_writepage;
2706
2707 set_page_writeback(page);
2708
2709 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2710 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2711
2712 /* LFS mode write path */
2713 f2fs_outplace_write_data(&dn, fio);
2714 trace_f2fs_do_write_data_page(page, OPU);
2715 set_inode_flag(inode, FI_APPEND_WRITE);
2716 if (atomic_commit)
2717 clear_page_private_atomic(page);
2718 out_writepage:
2719 f2fs_put_dnode(&dn);
2720 out:
2721 if (fio->need_lock == LOCK_REQ)
2722 f2fs_unlock_op(fio->sbi);
2723 return err;
2724 }
2725
f2fs_write_single_data_page(struct page * page,int * submitted,struct bio ** bio,sector_t * last_block,struct writeback_control * wbc,enum iostat_type io_type,int compr_blocks,bool allow_balance)2726 int f2fs_write_single_data_page(struct page *page, int *submitted,
2727 struct bio **bio,
2728 sector_t *last_block,
2729 struct writeback_control *wbc,
2730 enum iostat_type io_type,
2731 int compr_blocks,
2732 bool allow_balance)
2733 {
2734 struct inode *inode = page->mapping->host;
2735 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2736 loff_t i_size = i_size_read(inode);
2737 const pgoff_t end_index = ((unsigned long long)i_size)
2738 >> PAGE_SHIFT;
2739 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2740 unsigned offset = 0;
2741 bool need_balance_fs = false;
2742 bool quota_inode = IS_NOQUOTA(inode);
2743 int err = 0;
2744 struct f2fs_io_info fio = {
2745 .sbi = sbi,
2746 .ino = inode->i_ino,
2747 .type = DATA,
2748 .op = REQ_OP_WRITE,
2749 .op_flags = wbc_to_write_flags(wbc),
2750 .old_blkaddr = NULL_ADDR,
2751 .page = page,
2752 .encrypted_page = NULL,
2753 .submitted = 0,
2754 .compr_blocks = compr_blocks,
2755 .need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY,
2756 .meta_gc = f2fs_meta_inode_gc_required(inode) ? 1 : 0,
2757 .io_type = io_type,
2758 .io_wbc = wbc,
2759 .bio = bio,
2760 .last_block = last_block,
2761 };
2762
2763 trace_f2fs_writepage(page, DATA);
2764
2765 /* we should bypass data pages to proceed the kworker jobs */
2766 if (unlikely(f2fs_cp_error(sbi))) {
2767 mapping_set_error(page->mapping, -EIO);
2768 /*
2769 * don't drop any dirty dentry pages for keeping lastest
2770 * directory structure.
2771 */
2772 if (S_ISDIR(inode->i_mode) &&
2773 !is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2774 goto redirty_out;
2775
2776 /* keep data pages in remount-ro mode */
2777 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2778 goto redirty_out;
2779 goto out;
2780 }
2781
2782 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2783 goto redirty_out;
2784
2785 if (page->index < end_index ||
2786 f2fs_verity_in_progress(inode) ||
2787 compr_blocks)
2788 goto write;
2789
2790 /*
2791 * If the offset is out-of-range of file size,
2792 * this page does not have to be written to disk.
2793 */
2794 offset = i_size & (PAGE_SIZE - 1);
2795 if ((page->index >= end_index + 1) || !offset)
2796 goto out;
2797
2798 zero_user_segment(page, offset, PAGE_SIZE);
2799 write:
2800 /* Dentry/quota blocks are controlled by checkpoint */
2801 if (S_ISDIR(inode->i_mode) || quota_inode) {
2802 /*
2803 * We need to wait for node_write to avoid block allocation during
2804 * checkpoint. This can only happen to quota writes which can cause
2805 * the below discard race condition.
2806 */
2807 if (quota_inode)
2808 f2fs_down_read(&sbi->node_write);
2809
2810 fio.need_lock = LOCK_DONE;
2811 err = f2fs_do_write_data_page(&fio);
2812
2813 if (quota_inode)
2814 f2fs_up_read(&sbi->node_write);
2815
2816 goto done;
2817 }
2818
2819 if (!wbc->for_reclaim)
2820 need_balance_fs = true;
2821 else if (has_not_enough_free_secs(sbi, 0, 0))
2822 goto redirty_out;
2823 else
2824 set_inode_flag(inode, FI_HOT_DATA);
2825
2826 err = -EAGAIN;
2827 if (f2fs_has_inline_data(inode)) {
2828 err = f2fs_write_inline_data(inode, page);
2829 if (!err)
2830 goto out;
2831 }
2832
2833 if (err == -EAGAIN) {
2834 err = f2fs_do_write_data_page(&fio);
2835 if (err == -EAGAIN) {
2836 f2fs_bug_on(sbi, compr_blocks);
2837 fio.need_lock = LOCK_REQ;
2838 err = f2fs_do_write_data_page(&fio);
2839 }
2840 }
2841
2842 if (err) {
2843 file_set_keep_isize(inode);
2844 } else {
2845 spin_lock(&F2FS_I(inode)->i_size_lock);
2846 if (F2FS_I(inode)->last_disk_size < psize)
2847 F2FS_I(inode)->last_disk_size = psize;
2848 spin_unlock(&F2FS_I(inode)->i_size_lock);
2849 }
2850
2851 done:
2852 if (err && err != -ENOENT)
2853 goto redirty_out;
2854
2855 out:
2856 inode_dec_dirty_pages(inode);
2857 if (err) {
2858 ClearPageUptodate(page);
2859 clear_page_private_gcing(page);
2860 }
2861
2862 if (wbc->for_reclaim) {
2863 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2864 clear_inode_flag(inode, FI_HOT_DATA);
2865 f2fs_remove_dirty_inode(inode);
2866 submitted = NULL;
2867 }
2868 unlock_page(page);
2869 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2870 !F2FS_I(inode)->wb_task && allow_balance)
2871 f2fs_balance_fs(sbi, need_balance_fs);
2872
2873 if (unlikely(f2fs_cp_error(sbi))) {
2874 f2fs_submit_merged_write(sbi, DATA);
2875 if (bio && *bio)
2876 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2877 submitted = NULL;
2878 }
2879
2880 if (submitted)
2881 *submitted = fio.submitted;
2882
2883 return 0;
2884
2885 redirty_out:
2886 redirty_page_for_writepage(wbc, page);
2887 /*
2888 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2889 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2890 * file_write_and_wait_range() will see EIO error, which is critical
2891 * to return value of fsync() followed by atomic_write failure to user.
2892 */
2893 if (!err || wbc->for_reclaim)
2894 return AOP_WRITEPAGE_ACTIVATE;
2895 unlock_page(page);
2896 return err;
2897 }
2898
f2fs_write_data_page(struct page * page,struct writeback_control * wbc)2899 static int f2fs_write_data_page(struct page *page,
2900 struct writeback_control *wbc)
2901 {
2902 #ifdef CONFIG_F2FS_FS_COMPRESSION
2903 struct inode *inode = page->mapping->host;
2904
2905 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2906 goto out;
2907
2908 if (f2fs_compressed_file(inode)) {
2909 if (f2fs_is_compressed_cluster(inode, page->index)) {
2910 redirty_page_for_writepage(wbc, page);
2911 return AOP_WRITEPAGE_ACTIVATE;
2912 }
2913 }
2914 out:
2915 #endif
2916
2917 return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2918 wbc, FS_DATA_IO, 0, true);
2919 }
2920
2921 /*
2922 * This function was copied from write_cache_pages from mm/page-writeback.c.
2923 * The major change is making write step of cold data page separately from
2924 * warm/hot data page.
2925 */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2926 static int f2fs_write_cache_pages(struct address_space *mapping,
2927 struct writeback_control *wbc,
2928 enum iostat_type io_type)
2929 {
2930 int ret = 0;
2931 int done = 0, retry = 0;
2932 struct page *pages_local[F2FS_ONSTACK_PAGES];
2933 struct page **pages = pages_local;
2934 struct folio_batch fbatch;
2935 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2936 struct bio *bio = NULL;
2937 sector_t last_block;
2938 #ifdef CONFIG_F2FS_FS_COMPRESSION
2939 struct inode *inode = mapping->host;
2940 struct compress_ctx cc = {
2941 .inode = inode,
2942 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2943 .cluster_size = F2FS_I(inode)->i_cluster_size,
2944 .cluster_idx = NULL_CLUSTER,
2945 .rpages = NULL,
2946 .nr_rpages = 0,
2947 .cpages = NULL,
2948 .valid_nr_cpages = 0,
2949 .rbuf = NULL,
2950 .cbuf = NULL,
2951 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2952 .private = NULL,
2953 };
2954 #endif
2955 int nr_folios, p, idx;
2956 int nr_pages;
2957 unsigned int max_pages = F2FS_ONSTACK_PAGES;
2958 pgoff_t index;
2959 pgoff_t end; /* Inclusive */
2960 pgoff_t done_index;
2961 int range_whole = 0;
2962 xa_mark_t tag;
2963 int nwritten = 0;
2964 int submitted = 0;
2965 int i;
2966
2967 #ifdef CONFIG_F2FS_FS_COMPRESSION
2968 if (f2fs_compressed_file(inode) &&
2969 1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
2970 pages = f2fs_kzalloc(sbi, sizeof(struct page *) <<
2971 cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
2972 max_pages = 1 << cc.log_cluster_size;
2973 }
2974 #endif
2975
2976 folio_batch_init(&fbatch);
2977
2978 if (get_dirty_pages(mapping->host) <=
2979 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2980 set_inode_flag(mapping->host, FI_HOT_DATA);
2981 else
2982 clear_inode_flag(mapping->host, FI_HOT_DATA);
2983
2984 if (wbc->range_cyclic) {
2985 index = mapping->writeback_index; /* prev offset */
2986 end = -1;
2987 } else {
2988 index = wbc->range_start >> PAGE_SHIFT;
2989 end = wbc->range_end >> PAGE_SHIFT;
2990 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2991 range_whole = 1;
2992 }
2993 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2994 tag = PAGECACHE_TAG_TOWRITE;
2995 else
2996 tag = PAGECACHE_TAG_DIRTY;
2997 retry:
2998 retry = 0;
2999 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3000 tag_pages_for_writeback(mapping, index, end);
3001 done_index = index;
3002 while (!done && !retry && (index <= end)) {
3003 nr_pages = 0;
3004 again:
3005 nr_folios = filemap_get_folios_tag(mapping, &index, end,
3006 tag, &fbatch);
3007 if (nr_folios == 0) {
3008 if (nr_pages)
3009 goto write;
3010 break;
3011 }
3012
3013 for (i = 0; i < nr_folios; i++) {
3014 struct folio *folio = fbatch.folios[i];
3015
3016 idx = 0;
3017 p = folio_nr_pages(folio);
3018 add_more:
3019 pages[nr_pages] = folio_page(folio, idx);
3020 folio_get(folio);
3021 if (++nr_pages == max_pages) {
3022 index = folio->index + idx + 1;
3023 folio_batch_release(&fbatch);
3024 goto write;
3025 }
3026 if (++idx < p)
3027 goto add_more;
3028 }
3029 folio_batch_release(&fbatch);
3030 goto again;
3031 write:
3032 for (i = 0; i < nr_pages; i++) {
3033 struct page *page = pages[i];
3034 struct folio *folio = page_folio(page);
3035 bool need_readd;
3036 readd:
3037 need_readd = false;
3038 #ifdef CONFIG_F2FS_FS_COMPRESSION
3039 if (f2fs_compressed_file(inode)) {
3040 void *fsdata = NULL;
3041 struct page *pagep;
3042 int ret2;
3043
3044 ret = f2fs_init_compress_ctx(&cc);
3045 if (ret) {
3046 done = 1;
3047 break;
3048 }
3049
3050 if (!f2fs_cluster_can_merge_page(&cc,
3051 folio->index)) {
3052 ret = f2fs_write_multi_pages(&cc,
3053 &submitted, wbc, io_type);
3054 if (!ret)
3055 need_readd = true;
3056 goto result;
3057 }
3058
3059 if (unlikely(f2fs_cp_error(sbi)))
3060 goto lock_folio;
3061
3062 if (!f2fs_cluster_is_empty(&cc))
3063 goto lock_folio;
3064
3065 if (f2fs_all_cluster_page_ready(&cc,
3066 pages, i, nr_pages, true))
3067 goto lock_folio;
3068
3069 ret2 = f2fs_prepare_compress_overwrite(
3070 inode, &pagep,
3071 folio->index, &fsdata);
3072 if (ret2 < 0) {
3073 ret = ret2;
3074 done = 1;
3075 break;
3076 } else if (ret2 &&
3077 (!f2fs_compress_write_end(inode,
3078 fsdata, folio->index, 1) ||
3079 !f2fs_all_cluster_page_ready(&cc,
3080 pages, i, nr_pages,
3081 false))) {
3082 retry = 1;
3083 break;
3084 }
3085 }
3086 #endif
3087 /* give a priority to WB_SYNC threads */
3088 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3089 wbc->sync_mode == WB_SYNC_NONE) {
3090 done = 1;
3091 break;
3092 }
3093 #ifdef CONFIG_F2FS_FS_COMPRESSION
3094 lock_folio:
3095 #endif
3096 done_index = folio->index;
3097 retry_write:
3098 folio_lock(folio);
3099
3100 if (unlikely(folio->mapping != mapping)) {
3101 continue_unlock:
3102 folio_unlock(folio);
3103 continue;
3104 }
3105
3106 if (!folio_test_dirty(folio)) {
3107 /* someone wrote it for us */
3108 goto continue_unlock;
3109 }
3110
3111 if (folio_test_writeback(folio)) {
3112 if (wbc->sync_mode == WB_SYNC_NONE)
3113 goto continue_unlock;
3114 f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3115 }
3116
3117 if (!folio_clear_dirty_for_io(folio))
3118 goto continue_unlock;
3119
3120 #ifdef CONFIG_F2FS_FS_COMPRESSION
3121 if (f2fs_compressed_file(inode)) {
3122 folio_get(folio);
3123 f2fs_compress_ctx_add_page(&cc, &folio->page);
3124 continue;
3125 }
3126 #endif
3127 ret = f2fs_write_single_data_page(&folio->page,
3128 &submitted, &bio, &last_block,
3129 wbc, io_type, 0, true);
3130 if (ret == AOP_WRITEPAGE_ACTIVATE)
3131 folio_unlock(folio);
3132 #ifdef CONFIG_F2FS_FS_COMPRESSION
3133 result:
3134 #endif
3135 nwritten += submitted;
3136 wbc->nr_to_write -= submitted;
3137
3138 if (unlikely(ret)) {
3139 /*
3140 * keep nr_to_write, since vfs uses this to
3141 * get # of written pages.
3142 */
3143 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3144 ret = 0;
3145 goto next;
3146 } else if (ret == -EAGAIN) {
3147 ret = 0;
3148 if (wbc->sync_mode == WB_SYNC_ALL) {
3149 f2fs_io_schedule_timeout(
3150 DEFAULT_IO_TIMEOUT);
3151 goto retry_write;
3152 }
3153 goto next;
3154 }
3155 done_index = folio_next_index(folio);
3156 done = 1;
3157 break;
3158 }
3159
3160 if (wbc->nr_to_write <= 0 &&
3161 wbc->sync_mode == WB_SYNC_NONE) {
3162 done = 1;
3163 break;
3164 }
3165 next:
3166 if (need_readd)
3167 goto readd;
3168 }
3169 release_pages(pages, nr_pages);
3170 cond_resched();
3171 }
3172 #ifdef CONFIG_F2FS_FS_COMPRESSION
3173 /* flush remained pages in compress cluster */
3174 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3175 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3176 nwritten += submitted;
3177 wbc->nr_to_write -= submitted;
3178 if (ret) {
3179 done = 1;
3180 retry = 0;
3181 }
3182 }
3183 if (f2fs_compressed_file(inode))
3184 f2fs_destroy_compress_ctx(&cc, false);
3185 #endif
3186 if (retry) {
3187 index = 0;
3188 end = -1;
3189 goto retry;
3190 }
3191 if (wbc->range_cyclic && !done)
3192 done_index = 0;
3193 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3194 mapping->writeback_index = done_index;
3195
3196 if (nwritten)
3197 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3198 NULL, 0, DATA);
3199 /* submit cached bio of IPU write */
3200 if (bio)
3201 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3202
3203 #ifdef CONFIG_F2FS_FS_COMPRESSION
3204 if (pages != pages_local)
3205 kfree(pages);
3206 #endif
3207
3208 return ret;
3209 }
3210
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)3211 static inline bool __should_serialize_io(struct inode *inode,
3212 struct writeback_control *wbc)
3213 {
3214 /* to avoid deadlock in path of data flush */
3215 if (F2FS_I(inode)->wb_task)
3216 return false;
3217
3218 if (!S_ISREG(inode->i_mode))
3219 return false;
3220 if (IS_NOQUOTA(inode))
3221 return false;
3222
3223 if (f2fs_need_compress_data(inode))
3224 return true;
3225 if (wbc->sync_mode != WB_SYNC_ALL)
3226 return true;
3227 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3228 return true;
3229 return false;
3230 }
3231
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)3232 static int __f2fs_write_data_pages(struct address_space *mapping,
3233 struct writeback_control *wbc,
3234 enum iostat_type io_type)
3235 {
3236 struct inode *inode = mapping->host;
3237 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3238 struct blk_plug plug;
3239 int ret;
3240 bool locked = false;
3241
3242 /* deal with chardevs and other special file */
3243 if (!mapping->a_ops->writepage)
3244 return 0;
3245
3246 /* skip writing if there is no dirty page in this inode */
3247 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3248 return 0;
3249
3250 /* during POR, we don't need to trigger writepage at all. */
3251 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3252 goto skip_write;
3253
3254 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3255 wbc->sync_mode == WB_SYNC_NONE &&
3256 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3257 f2fs_available_free_memory(sbi, DIRTY_DENTS))
3258 goto skip_write;
3259
3260 /* skip writing in file defragment preparing stage */
3261 if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3262 goto skip_write;
3263
3264 trace_f2fs_writepages(mapping->host, wbc, DATA);
3265
3266 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3267 if (wbc->sync_mode == WB_SYNC_ALL)
3268 atomic_inc(&sbi->wb_sync_req[DATA]);
3269 else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3270 /* to avoid potential deadlock */
3271 if (current->plug)
3272 blk_finish_plug(current->plug);
3273 goto skip_write;
3274 }
3275
3276 if (__should_serialize_io(inode, wbc)) {
3277 mutex_lock(&sbi->writepages);
3278 locked = true;
3279 }
3280
3281 blk_start_plug(&plug);
3282 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3283 blk_finish_plug(&plug);
3284
3285 if (locked)
3286 mutex_unlock(&sbi->writepages);
3287
3288 if (wbc->sync_mode == WB_SYNC_ALL)
3289 atomic_dec(&sbi->wb_sync_req[DATA]);
3290 /*
3291 * if some pages were truncated, we cannot guarantee its mapping->host
3292 * to detect pending bios.
3293 */
3294
3295 f2fs_remove_dirty_inode(inode);
3296 return ret;
3297
3298 skip_write:
3299 wbc->pages_skipped += get_dirty_pages(inode);
3300 trace_f2fs_writepages(mapping->host, wbc, DATA);
3301 return 0;
3302 }
3303
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)3304 static int f2fs_write_data_pages(struct address_space *mapping,
3305 struct writeback_control *wbc)
3306 {
3307 struct inode *inode = mapping->host;
3308
3309 return __f2fs_write_data_pages(mapping, wbc,
3310 F2FS_I(inode)->cp_task == current ?
3311 FS_CP_DATA_IO : FS_DATA_IO);
3312 }
3313
f2fs_write_failed(struct inode * inode,loff_t to)3314 void f2fs_write_failed(struct inode *inode, loff_t to)
3315 {
3316 loff_t i_size = i_size_read(inode);
3317
3318 if (IS_NOQUOTA(inode))
3319 return;
3320
3321 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3322 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3323 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3324 filemap_invalidate_lock(inode->i_mapping);
3325
3326 truncate_pagecache(inode, i_size);
3327 f2fs_truncate_blocks(inode, i_size, true);
3328
3329 filemap_invalidate_unlock(inode->i_mapping);
3330 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3331 }
3332 }
3333
prepare_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned len,block_t * blk_addr,bool * node_changed)3334 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3335 struct page *page, loff_t pos, unsigned len,
3336 block_t *blk_addr, bool *node_changed)
3337 {
3338 struct inode *inode = page->mapping->host;
3339 pgoff_t index = page->index;
3340 struct dnode_of_data dn;
3341 struct page *ipage;
3342 bool locked = false;
3343 int flag = F2FS_GET_BLOCK_PRE_AIO;
3344 int err = 0;
3345
3346 /*
3347 * If a whole page is being written and we already preallocated all the
3348 * blocks, then there is no need to get a block address now.
3349 */
3350 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3351 return 0;
3352
3353 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3354 if (f2fs_has_inline_data(inode)) {
3355 if (pos + len > MAX_INLINE_DATA(inode))
3356 flag = F2FS_GET_BLOCK_DEFAULT;
3357 f2fs_map_lock(sbi, flag);
3358 locked = true;
3359 } else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3360 f2fs_map_lock(sbi, flag);
3361 locked = true;
3362 }
3363
3364 restart:
3365 /* check inline_data */
3366 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3367 if (IS_ERR(ipage)) {
3368 err = PTR_ERR(ipage);
3369 goto unlock_out;
3370 }
3371
3372 set_new_dnode(&dn, inode, ipage, ipage, 0);
3373
3374 if (f2fs_has_inline_data(inode)) {
3375 if (pos + len <= MAX_INLINE_DATA(inode)) {
3376 f2fs_do_read_inline_data(page, ipage);
3377 set_inode_flag(inode, FI_DATA_EXIST);
3378 if (inode->i_nlink)
3379 set_page_private_inline(ipage);
3380 goto out;
3381 }
3382 err = f2fs_convert_inline_page(&dn, page);
3383 if (err || dn.data_blkaddr != NULL_ADDR)
3384 goto out;
3385 }
3386
3387 if (!f2fs_lookup_read_extent_cache_block(inode, index,
3388 &dn.data_blkaddr)) {
3389 if (locked) {
3390 err = f2fs_reserve_block(&dn, index);
3391 goto out;
3392 }
3393
3394 /* hole case */
3395 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3396 if (!err && dn.data_blkaddr != NULL_ADDR)
3397 goto out;
3398 f2fs_put_dnode(&dn);
3399 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3400 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3401 locked = true;
3402 goto restart;
3403 }
3404 out:
3405 if (!err) {
3406 /* convert_inline_page can make node_changed */
3407 *blk_addr = dn.data_blkaddr;
3408 *node_changed = dn.node_changed;
3409 }
3410 f2fs_put_dnode(&dn);
3411 unlock_out:
3412 if (locked)
3413 f2fs_map_unlock(sbi, flag);
3414 return err;
3415 }
3416
__find_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr)3417 static int __find_data_block(struct inode *inode, pgoff_t index,
3418 block_t *blk_addr)
3419 {
3420 struct dnode_of_data dn;
3421 struct page *ipage;
3422 int err = 0;
3423
3424 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3425 if (IS_ERR(ipage))
3426 return PTR_ERR(ipage);
3427
3428 set_new_dnode(&dn, inode, ipage, ipage, 0);
3429
3430 if (!f2fs_lookup_read_extent_cache_block(inode, index,
3431 &dn.data_blkaddr)) {
3432 /* hole case */
3433 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3434 if (err) {
3435 dn.data_blkaddr = NULL_ADDR;
3436 err = 0;
3437 }
3438 }
3439 *blk_addr = dn.data_blkaddr;
3440 f2fs_put_dnode(&dn);
3441 return err;
3442 }
3443
__reserve_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr,bool * node_changed)3444 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3445 block_t *blk_addr, bool *node_changed)
3446 {
3447 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3448 struct dnode_of_data dn;
3449 struct page *ipage;
3450 int err = 0;
3451
3452 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3453
3454 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3455 if (IS_ERR(ipage)) {
3456 err = PTR_ERR(ipage);
3457 goto unlock_out;
3458 }
3459 set_new_dnode(&dn, inode, ipage, ipage, 0);
3460
3461 if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3462 &dn.data_blkaddr))
3463 err = f2fs_reserve_block(&dn, index);
3464
3465 *blk_addr = dn.data_blkaddr;
3466 *node_changed = dn.node_changed;
3467 f2fs_put_dnode(&dn);
3468
3469 unlock_out:
3470 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3471 return err;
3472 }
3473
prepare_atomic_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned int len,block_t * blk_addr,bool * node_changed,bool * use_cow)3474 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3475 struct page *page, loff_t pos, unsigned int len,
3476 block_t *blk_addr, bool *node_changed, bool *use_cow)
3477 {
3478 struct inode *inode = page->mapping->host;
3479 struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3480 pgoff_t index = page->index;
3481 int err = 0;
3482 block_t ori_blk_addr = NULL_ADDR;
3483
3484 /* If pos is beyond the end of file, reserve a new block in COW inode */
3485 if ((pos & PAGE_MASK) >= i_size_read(inode))
3486 goto reserve_block;
3487
3488 /* Look for the block in COW inode first */
3489 err = __find_data_block(cow_inode, index, blk_addr);
3490 if (err) {
3491 return err;
3492 } else if (*blk_addr != NULL_ADDR) {
3493 *use_cow = true;
3494 return 0;
3495 }
3496
3497 if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3498 goto reserve_block;
3499
3500 /* Look for the block in the original inode */
3501 err = __find_data_block(inode, index, &ori_blk_addr);
3502 if (err)
3503 return err;
3504
3505 reserve_block:
3506 /* Finally, we should reserve a new block in COW inode for the update */
3507 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3508 if (err)
3509 return err;
3510 inc_atomic_write_cnt(inode);
3511
3512 if (ori_blk_addr != NULL_ADDR)
3513 *blk_addr = ori_blk_addr;
3514 return 0;
3515 }
3516
f2fs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)3517 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3518 loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3519 {
3520 struct inode *inode = mapping->host;
3521 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3522 struct page *page = NULL;
3523 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3524 bool need_balance = false;
3525 bool use_cow = false;
3526 block_t blkaddr = NULL_ADDR;
3527 int err = 0;
3528
3529 trace_f2fs_write_begin(inode, pos, len);
3530
3531 if (!f2fs_is_checkpoint_ready(sbi)) {
3532 err = -ENOSPC;
3533 goto fail;
3534 }
3535
3536 /*
3537 * We should check this at this moment to avoid deadlock on inode page
3538 * and #0 page. The locking rule for inline_data conversion should be:
3539 * lock_page(page #0) -> lock_page(inode_page)
3540 */
3541 if (index != 0) {
3542 err = f2fs_convert_inline_inode(inode);
3543 if (err)
3544 goto fail;
3545 }
3546
3547 #ifdef CONFIG_F2FS_FS_COMPRESSION
3548 if (f2fs_compressed_file(inode)) {
3549 int ret;
3550
3551 *fsdata = NULL;
3552
3553 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3554 goto repeat;
3555
3556 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3557 index, fsdata);
3558 if (ret < 0) {
3559 err = ret;
3560 goto fail;
3561 } else if (ret) {
3562 return 0;
3563 }
3564 }
3565 #endif
3566
3567 repeat:
3568 /*
3569 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3570 * wait_for_stable_page. Will wait that below with our IO control.
3571 */
3572 page = f2fs_pagecache_get_page(mapping, index,
3573 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3574 if (!page) {
3575 err = -ENOMEM;
3576 goto fail;
3577 }
3578
3579 /* TODO: cluster can be compressed due to race with .writepage */
3580
3581 *pagep = page;
3582
3583 if (f2fs_is_atomic_file(inode))
3584 err = prepare_atomic_write_begin(sbi, page, pos, len,
3585 &blkaddr, &need_balance, &use_cow);
3586 else
3587 err = prepare_write_begin(sbi, page, pos, len,
3588 &blkaddr, &need_balance);
3589 if (err)
3590 goto fail;
3591
3592 if (need_balance && !IS_NOQUOTA(inode) &&
3593 has_not_enough_free_secs(sbi, 0, 0)) {
3594 unlock_page(page);
3595 f2fs_balance_fs(sbi, true);
3596 lock_page(page);
3597 if (page->mapping != mapping) {
3598 /* The page got truncated from under us */
3599 f2fs_put_page(page, 1);
3600 goto repeat;
3601 }
3602 }
3603
3604 f2fs_wait_on_page_writeback(page, DATA, false, true);
3605
3606 if (len == PAGE_SIZE || PageUptodate(page))
3607 return 0;
3608
3609 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3610 !f2fs_verity_in_progress(inode)) {
3611 zero_user_segment(page, len, PAGE_SIZE);
3612 return 0;
3613 }
3614
3615 if (blkaddr == NEW_ADDR) {
3616 zero_user_segment(page, 0, PAGE_SIZE);
3617 SetPageUptodate(page);
3618 } else {
3619 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3620 DATA_GENERIC_ENHANCE_READ)) {
3621 err = -EFSCORRUPTED;
3622 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3623 goto fail;
3624 }
3625 err = f2fs_submit_page_read(use_cow ?
3626 F2FS_I(inode)->cow_inode : inode, page,
3627 blkaddr, 0, true);
3628 if (err)
3629 goto fail;
3630
3631 lock_page(page);
3632 if (unlikely(page->mapping != mapping)) {
3633 f2fs_put_page(page, 1);
3634 goto repeat;
3635 }
3636 if (unlikely(!PageUptodate(page))) {
3637 err = -EIO;
3638 goto fail;
3639 }
3640 }
3641 return 0;
3642
3643 fail:
3644 f2fs_put_page(page, 1);
3645 f2fs_write_failed(inode, pos + len);
3646 return err;
3647 }
3648
f2fs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3649 static int f2fs_write_end(struct file *file,
3650 struct address_space *mapping,
3651 loff_t pos, unsigned len, unsigned copied,
3652 struct page *page, void *fsdata)
3653 {
3654 struct inode *inode = page->mapping->host;
3655
3656 trace_f2fs_write_end(inode, pos, len, copied);
3657
3658 /*
3659 * This should be come from len == PAGE_SIZE, and we expect copied
3660 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3661 * let generic_perform_write() try to copy data again through copied=0.
3662 */
3663 if (!PageUptodate(page)) {
3664 if (unlikely(copied != len))
3665 copied = 0;
3666 else
3667 SetPageUptodate(page);
3668 }
3669
3670 #ifdef CONFIG_F2FS_FS_COMPRESSION
3671 /* overwrite compressed file */
3672 if (f2fs_compressed_file(inode) && fsdata) {
3673 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3674 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3675
3676 if (pos + copied > i_size_read(inode) &&
3677 !f2fs_verity_in_progress(inode))
3678 f2fs_i_size_write(inode, pos + copied);
3679 return copied;
3680 }
3681 #endif
3682
3683 if (!copied)
3684 goto unlock_out;
3685
3686 set_page_dirty(page);
3687
3688 if (f2fs_is_atomic_file(inode))
3689 set_page_private_atomic(page);
3690
3691 if (pos + copied > i_size_read(inode) &&
3692 !f2fs_verity_in_progress(inode)) {
3693 f2fs_i_size_write(inode, pos + copied);
3694 if (f2fs_is_atomic_file(inode))
3695 f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3696 pos + copied);
3697 }
3698 unlock_out:
3699 f2fs_put_page(page, 1);
3700 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3701 return copied;
3702 }
3703
f2fs_invalidate_folio(struct folio * folio,size_t offset,size_t length)3704 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3705 {
3706 struct inode *inode = folio->mapping->host;
3707 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3708
3709 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3710 (offset || length != folio_size(folio)))
3711 return;
3712
3713 if (folio_test_dirty(folio)) {
3714 if (inode->i_ino == F2FS_META_INO(sbi)) {
3715 dec_page_count(sbi, F2FS_DIRTY_META);
3716 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3717 dec_page_count(sbi, F2FS_DIRTY_NODES);
3718 } else {
3719 inode_dec_dirty_pages(inode);
3720 f2fs_remove_dirty_inode(inode);
3721 }
3722 }
3723 clear_page_private_all(&folio->page);
3724 }
3725
f2fs_release_folio(struct folio * folio,gfp_t wait)3726 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3727 {
3728 /* If this is dirty folio, keep private data */
3729 if (folio_test_dirty(folio))
3730 return false;
3731
3732 clear_page_private_all(&folio->page);
3733 return true;
3734 }
3735
f2fs_dirty_data_folio(struct address_space * mapping,struct folio * folio)3736 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3737 struct folio *folio)
3738 {
3739 struct inode *inode = mapping->host;
3740
3741 trace_f2fs_set_page_dirty(&folio->page, DATA);
3742
3743 if (!folio_test_uptodate(folio))
3744 folio_mark_uptodate(folio);
3745 BUG_ON(folio_test_swapcache(folio));
3746
3747 if (filemap_dirty_folio(mapping, folio)) {
3748 f2fs_update_dirty_folio(inode, folio);
3749 return true;
3750 }
3751 return false;
3752 }
3753
3754
f2fs_bmap_compress(struct inode * inode,sector_t block)3755 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3756 {
3757 #ifdef CONFIG_F2FS_FS_COMPRESSION
3758 struct dnode_of_data dn;
3759 sector_t start_idx, blknr = 0;
3760 int ret;
3761
3762 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3763
3764 set_new_dnode(&dn, inode, NULL, NULL, 0);
3765 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3766 if (ret)
3767 return 0;
3768
3769 if (dn.data_blkaddr != COMPRESS_ADDR) {
3770 dn.ofs_in_node += block - start_idx;
3771 blknr = f2fs_data_blkaddr(&dn);
3772 if (!__is_valid_data_blkaddr(blknr))
3773 blknr = 0;
3774 }
3775
3776 f2fs_put_dnode(&dn);
3777 return blknr;
3778 #else
3779 return 0;
3780 #endif
3781 }
3782
3783
f2fs_bmap(struct address_space * mapping,sector_t block)3784 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3785 {
3786 struct inode *inode = mapping->host;
3787 sector_t blknr = 0;
3788
3789 if (f2fs_has_inline_data(inode))
3790 goto out;
3791
3792 /* make sure allocating whole blocks */
3793 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3794 filemap_write_and_wait(mapping);
3795
3796 /* Block number less than F2FS MAX BLOCKS */
3797 if (unlikely(block >= max_file_blocks(inode)))
3798 goto out;
3799
3800 if (f2fs_compressed_file(inode)) {
3801 blknr = f2fs_bmap_compress(inode, block);
3802 } else {
3803 struct f2fs_map_blocks map;
3804
3805 memset(&map, 0, sizeof(map));
3806 map.m_lblk = block;
3807 map.m_len = 1;
3808 map.m_next_pgofs = NULL;
3809 map.m_seg_type = NO_CHECK_TYPE;
3810
3811 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3812 blknr = map.m_pblk;
3813 }
3814 out:
3815 trace_f2fs_bmap(inode, block, blknr);
3816 return blknr;
3817 }
3818
3819 #ifdef CONFIG_SWAP
f2fs_migrate_blocks(struct inode * inode,block_t start_blk,unsigned int blkcnt)3820 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3821 unsigned int blkcnt)
3822 {
3823 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3824 unsigned int blkofs;
3825 unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3826 unsigned int secidx = start_blk / blk_per_sec;
3827 unsigned int end_sec;
3828 int ret = 0;
3829
3830 if (!blkcnt)
3831 return 0;
3832 end_sec = secidx + (blkcnt - 1) / blk_per_sec;
3833
3834 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3835 filemap_invalidate_lock(inode->i_mapping);
3836
3837 set_inode_flag(inode, FI_ALIGNED_WRITE);
3838 set_inode_flag(inode, FI_OPU_WRITE);
3839
3840 for (; secidx <= end_sec; secidx++) {
3841 unsigned int blkofs_end = secidx == end_sec ?
3842 (blkcnt - 1) % blk_per_sec : blk_per_sec - 1;
3843
3844 f2fs_down_write(&sbi->pin_sem);
3845
3846 ret = f2fs_allocate_pinning_section(sbi);
3847 if (ret) {
3848 f2fs_up_write(&sbi->pin_sem);
3849 break;
3850 }
3851
3852 set_inode_flag(inode, FI_SKIP_WRITES);
3853
3854 for (blkofs = 0; blkofs <= blkofs_end; blkofs++) {
3855 struct page *page;
3856 unsigned int blkidx = secidx * blk_per_sec + blkofs;
3857
3858 page = f2fs_get_lock_data_page(inode, blkidx, true);
3859 if (IS_ERR(page)) {
3860 f2fs_up_write(&sbi->pin_sem);
3861 ret = PTR_ERR(page);
3862 goto done;
3863 }
3864
3865 set_page_dirty(page);
3866 f2fs_put_page(page, 1);
3867 }
3868
3869 clear_inode_flag(inode, FI_SKIP_WRITES);
3870
3871 ret = filemap_fdatawrite(inode->i_mapping);
3872
3873 f2fs_up_write(&sbi->pin_sem);
3874
3875 if (ret)
3876 break;
3877 }
3878
3879 done:
3880 clear_inode_flag(inode, FI_SKIP_WRITES);
3881 clear_inode_flag(inode, FI_OPU_WRITE);
3882 clear_inode_flag(inode, FI_ALIGNED_WRITE);
3883
3884 filemap_invalidate_unlock(inode->i_mapping);
3885 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3886
3887 return ret;
3888 }
3889
check_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)3890 static int check_swap_activate(struct swap_info_struct *sis,
3891 struct file *swap_file, sector_t *span)
3892 {
3893 struct address_space *mapping = swap_file->f_mapping;
3894 struct inode *inode = mapping->host;
3895 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3896 block_t cur_lblock;
3897 block_t last_lblock;
3898 block_t pblock;
3899 block_t lowest_pblock = -1;
3900 block_t highest_pblock = 0;
3901 int nr_extents = 0;
3902 unsigned int nr_pblocks;
3903 unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3904 unsigned int not_aligned = 0;
3905 int ret = 0;
3906
3907 /*
3908 * Map all the blocks into the extent list. This code doesn't try
3909 * to be very smart.
3910 */
3911 cur_lblock = 0;
3912 last_lblock = bytes_to_blks(inode, i_size_read(inode));
3913
3914 while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3915 struct f2fs_map_blocks map;
3916 retry:
3917 cond_resched();
3918
3919 memset(&map, 0, sizeof(map));
3920 map.m_lblk = cur_lblock;
3921 map.m_len = last_lblock - cur_lblock;
3922 map.m_next_pgofs = NULL;
3923 map.m_next_extent = NULL;
3924 map.m_seg_type = NO_CHECK_TYPE;
3925 map.m_may_create = false;
3926
3927 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3928 if (ret)
3929 goto out;
3930
3931 /* hole */
3932 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3933 f2fs_err(sbi, "Swapfile has holes");
3934 ret = -EINVAL;
3935 goto out;
3936 }
3937
3938 pblock = map.m_pblk;
3939 nr_pblocks = map.m_len;
3940
3941 if ((pblock - SM_I(sbi)->main_blkaddr) % blks_per_sec ||
3942 nr_pblocks % blks_per_sec ||
3943 !f2fs_valid_pinned_area(sbi, pblock)) {
3944 bool last_extent = false;
3945
3946 not_aligned++;
3947
3948 nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3949 if (cur_lblock + nr_pblocks > sis->max)
3950 nr_pblocks -= blks_per_sec;
3951
3952 /* this extent is last one */
3953 if (!nr_pblocks) {
3954 nr_pblocks = last_lblock - cur_lblock;
3955 last_extent = true;
3956 }
3957
3958 ret = f2fs_migrate_blocks(inode, cur_lblock,
3959 nr_pblocks);
3960 if (ret) {
3961 if (ret == -ENOENT)
3962 ret = -EINVAL;
3963 goto out;
3964 }
3965
3966 if (!last_extent)
3967 goto retry;
3968 }
3969
3970 if (cur_lblock + nr_pblocks >= sis->max)
3971 nr_pblocks = sis->max - cur_lblock;
3972
3973 if (cur_lblock) { /* exclude the header page */
3974 if (pblock < lowest_pblock)
3975 lowest_pblock = pblock;
3976 if (pblock + nr_pblocks - 1 > highest_pblock)
3977 highest_pblock = pblock + nr_pblocks - 1;
3978 }
3979
3980 /*
3981 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3982 */
3983 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3984 if (ret < 0)
3985 goto out;
3986 nr_extents += ret;
3987 cur_lblock += nr_pblocks;
3988 }
3989 ret = nr_extents;
3990 *span = 1 + highest_pblock - lowest_pblock;
3991 if (cur_lblock == 0)
3992 cur_lblock = 1; /* force Empty message */
3993 sis->max = cur_lblock;
3994 sis->pages = cur_lblock - 1;
3995 sis->highest_bit = cur_lblock - 1;
3996 out:
3997 if (not_aligned)
3998 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
3999 not_aligned, blks_per_sec * F2FS_BLKSIZE);
4000 return ret;
4001 }
4002
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4003 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4004 sector_t *span)
4005 {
4006 struct inode *inode = file_inode(file);
4007 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4008 int ret;
4009
4010 if (!S_ISREG(inode->i_mode))
4011 return -EINVAL;
4012
4013 if (f2fs_readonly(sbi->sb))
4014 return -EROFS;
4015
4016 if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) {
4017 f2fs_err(sbi, "Swapfile not supported in LFS mode");
4018 return -EINVAL;
4019 }
4020
4021 ret = f2fs_convert_inline_inode(inode);
4022 if (ret)
4023 return ret;
4024
4025 if (!f2fs_disable_compressed_file(inode))
4026 return -EINVAL;
4027
4028 f2fs_precache_extents(inode);
4029
4030 ret = filemap_fdatawrite(inode->i_mapping);
4031 if (ret < 0)
4032 return ret;
4033
4034 ret = check_swap_activate(sis, file, span);
4035 if (ret < 0)
4036 return ret;
4037
4038 stat_inc_swapfile_inode(inode);
4039 set_inode_flag(inode, FI_PIN_FILE);
4040 f2fs_update_time(sbi, REQ_TIME);
4041 return ret;
4042 }
4043
f2fs_swap_deactivate(struct file * file)4044 static void f2fs_swap_deactivate(struct file *file)
4045 {
4046 struct inode *inode = file_inode(file);
4047
4048 stat_dec_swapfile_inode(inode);
4049 clear_inode_flag(inode, FI_PIN_FILE);
4050 }
4051 #else
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4052 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4053 sector_t *span)
4054 {
4055 return -EOPNOTSUPP;
4056 }
4057
f2fs_swap_deactivate(struct file * file)4058 static void f2fs_swap_deactivate(struct file *file)
4059 {
4060 }
4061 #endif
4062
4063 const struct address_space_operations f2fs_dblock_aops = {
4064 .read_folio = f2fs_read_data_folio,
4065 .readahead = f2fs_readahead,
4066 .writepage = f2fs_write_data_page,
4067 .writepages = f2fs_write_data_pages,
4068 .write_begin = f2fs_write_begin,
4069 .write_end = f2fs_write_end,
4070 .dirty_folio = f2fs_dirty_data_folio,
4071 .migrate_folio = filemap_migrate_folio,
4072 .invalidate_folio = f2fs_invalidate_folio,
4073 .release_folio = f2fs_release_folio,
4074 .bmap = f2fs_bmap,
4075 .swap_activate = f2fs_swap_activate,
4076 .swap_deactivate = f2fs_swap_deactivate,
4077 };
4078
f2fs_clear_page_cache_dirty_tag(struct page * page)4079 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4080 {
4081 struct address_space *mapping = page_mapping(page);
4082 unsigned long flags;
4083
4084 xa_lock_irqsave(&mapping->i_pages, flags);
4085 __xa_clear_mark(&mapping->i_pages, page_index(page),
4086 PAGECACHE_TAG_DIRTY);
4087 xa_unlock_irqrestore(&mapping->i_pages, flags);
4088 }
4089
f2fs_init_post_read_processing(void)4090 int __init f2fs_init_post_read_processing(void)
4091 {
4092 bio_post_read_ctx_cache =
4093 kmem_cache_create("f2fs_bio_post_read_ctx",
4094 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4095 if (!bio_post_read_ctx_cache)
4096 goto fail;
4097 bio_post_read_ctx_pool =
4098 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4099 bio_post_read_ctx_cache);
4100 if (!bio_post_read_ctx_pool)
4101 goto fail_free_cache;
4102 return 0;
4103
4104 fail_free_cache:
4105 kmem_cache_destroy(bio_post_read_ctx_cache);
4106 fail:
4107 return -ENOMEM;
4108 }
4109
f2fs_destroy_post_read_processing(void)4110 void f2fs_destroy_post_read_processing(void)
4111 {
4112 mempool_destroy(bio_post_read_ctx_pool);
4113 kmem_cache_destroy(bio_post_read_ctx_cache);
4114 }
4115
f2fs_init_post_read_wq(struct f2fs_sb_info * sbi)4116 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4117 {
4118 if (!f2fs_sb_has_encrypt(sbi) &&
4119 !f2fs_sb_has_verity(sbi) &&
4120 !f2fs_sb_has_compression(sbi))
4121 return 0;
4122
4123 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4124 WQ_UNBOUND | WQ_HIGHPRI,
4125 num_online_cpus());
4126 return sbi->post_read_wq ? 0 : -ENOMEM;
4127 }
4128
f2fs_destroy_post_read_wq(struct f2fs_sb_info * sbi)4129 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4130 {
4131 if (sbi->post_read_wq)
4132 destroy_workqueue(sbi->post_read_wq);
4133 }
4134
f2fs_init_bio_entry_cache(void)4135 int __init f2fs_init_bio_entry_cache(void)
4136 {
4137 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4138 sizeof(struct bio_entry));
4139 return bio_entry_slab ? 0 : -ENOMEM;
4140 }
4141
f2fs_destroy_bio_entry_cache(void)4142 void f2fs_destroy_bio_entry_cache(void)
4143 {
4144 kmem_cache_destroy(bio_entry_slab);
4145 }
4146
f2fs_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)4147 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4148 unsigned int flags, struct iomap *iomap,
4149 struct iomap *srcmap)
4150 {
4151 struct f2fs_map_blocks map = {};
4152 pgoff_t next_pgofs = 0;
4153 int err;
4154
4155 map.m_lblk = bytes_to_blks(inode, offset);
4156 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4157 map.m_next_pgofs = &next_pgofs;
4158 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4159 if (flags & IOMAP_WRITE)
4160 map.m_may_create = true;
4161
4162 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4163 if (err)
4164 return err;
4165
4166 iomap->offset = blks_to_bytes(inode, map.m_lblk);
4167
4168 /*
4169 * When inline encryption is enabled, sometimes I/O to an encrypted file
4170 * has to be broken up to guarantee DUN contiguity. Handle this by
4171 * limiting the length of the mapping returned.
4172 */
4173 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4174
4175 /*
4176 * We should never see delalloc or compressed extents here based on
4177 * prior flushing and checks.
4178 */
4179 if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4180 return -EINVAL;
4181 if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4182 return -EINVAL;
4183
4184 if (map.m_flags & F2FS_MAP_MAPPED) {
4185 iomap->length = blks_to_bytes(inode, map.m_len);
4186 iomap->type = IOMAP_MAPPED;
4187 iomap->flags |= IOMAP_F_MERGED;
4188 iomap->bdev = map.m_bdev;
4189 iomap->addr = blks_to_bytes(inode, map.m_pblk);
4190 } else {
4191 if (flags & IOMAP_WRITE)
4192 return -ENOTBLK;
4193 iomap->length = blks_to_bytes(inode, next_pgofs) -
4194 iomap->offset;
4195 iomap->type = IOMAP_HOLE;
4196 iomap->addr = IOMAP_NULL_ADDR;
4197 }
4198
4199 if (map.m_flags & F2FS_MAP_NEW)
4200 iomap->flags |= IOMAP_F_NEW;
4201 if ((inode->i_state & I_DIRTY_DATASYNC) ||
4202 offset + length > i_size_read(inode))
4203 iomap->flags |= IOMAP_F_DIRTY;
4204
4205 return 0;
4206 }
4207
4208 const struct iomap_ops f2fs_iomap_ops = {
4209 .iomap_begin = f2fs_iomap_begin,
4210 };
4211