1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34
__reverse_ulong(unsigned char * str)35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 unsigned long tmp = 0;
38 int shift = 24, idx = 0;
39
40 #if BITS_PER_LONG == 64
41 shift = 56;
42 #endif
43 while (shift >= 0) {
44 tmp |= (unsigned long)str[idx++] << shift;
45 shift -= BITS_PER_BYTE;
46 }
47 return tmp;
48 }
49
50 /*
51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52 * MSB and LSB are reversed in a byte by f2fs_set_bit.
53 */
__reverse_ffs(unsigned long word)54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 int num = 0;
57
58 #if BITS_PER_LONG == 64
59 if ((word & 0xffffffff00000000UL) == 0)
60 num += 32;
61 else
62 word >>= 32;
63 #endif
64 if ((word & 0xffff0000) == 0)
65 num += 16;
66 else
67 word >>= 16;
68
69 if ((word & 0xff00) == 0)
70 num += 8;
71 else
72 word >>= 8;
73
74 if ((word & 0xf0) == 0)
75 num += 4;
76 else
77 word >>= 4;
78
79 if ((word & 0xc) == 0)
80 num += 2;
81 else
82 word >>= 2;
83
84 if ((word & 0x2) == 0)
85 num += 1;
86 return num;
87 }
88
89 /*
90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91 * f2fs_set_bit makes MSB and LSB reversed in a byte.
92 * @size must be integral times of unsigned long.
93 * Example:
94 * MSB <--> LSB
95 * f2fs_set_bit(0, bitmap) => 1000 0000
96 * f2fs_set_bit(7, bitmap) => 0000 0001
97 */
__find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 unsigned long size, unsigned long offset)
100 {
101 const unsigned long *p = addr + BIT_WORD(offset);
102 unsigned long result = size;
103 unsigned long tmp;
104
105 if (offset >= size)
106 return size;
107
108 size -= (offset & ~(BITS_PER_LONG - 1));
109 offset %= BITS_PER_LONG;
110
111 while (1) {
112 if (*p == 0)
113 goto pass;
114
115 tmp = __reverse_ulong((unsigned char *)p);
116
117 tmp &= ~0UL >> offset;
118 if (size < BITS_PER_LONG)
119 tmp &= (~0UL << (BITS_PER_LONG - size));
120 if (tmp)
121 goto found;
122 pass:
123 if (size <= BITS_PER_LONG)
124 break;
125 size -= BITS_PER_LONG;
126 offset = 0;
127 p++;
128 }
129 return result;
130 found:
131 return result - size + __reverse_ffs(tmp);
132 }
133
__find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 unsigned long size, unsigned long offset)
136 {
137 const unsigned long *p = addr + BIT_WORD(offset);
138 unsigned long result = size;
139 unsigned long tmp;
140
141 if (offset >= size)
142 return size;
143
144 size -= (offset & ~(BITS_PER_LONG - 1));
145 offset %= BITS_PER_LONG;
146
147 while (1) {
148 if (*p == ~0UL)
149 goto pass;
150
151 tmp = __reverse_ulong((unsigned char *)p);
152
153 if (offset)
154 tmp |= ~0UL << (BITS_PER_LONG - offset);
155 if (size < BITS_PER_LONG)
156 tmp |= ~0UL >> size;
157 if (tmp != ~0UL)
158 goto found;
159 pass:
160 if (size <= BITS_PER_LONG)
161 break;
162 size -= BITS_PER_LONG;
163 offset = 0;
164 p++;
165 }
166 return result;
167 found:
168 return result - size + __reverse_ffz(tmp);
169 }
170
f2fs_need_SSR(struct f2fs_sb_info * sbi)171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176
177 if (f2fs_lfs_mode(sbi))
178 return false;
179 if (sbi->gc_mode == GC_URGENT_HIGH)
180 return true;
181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 return true;
183
184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187
f2fs_abort_atomic_write(struct inode * inode,bool clean)188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 struct f2fs_inode_info *fi = F2FS_I(inode);
191
192 if (!f2fs_is_atomic_file(inode))
193 return;
194
195 if (clean)
196 truncate_inode_pages_final(inode->i_mapping);
197
198 release_atomic_write_cnt(inode);
199 clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200 clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201 clear_inode_flag(inode, FI_ATOMIC_FILE);
202 if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
203 clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
204 f2fs_mark_inode_dirty_sync(inode, true);
205 }
206 stat_dec_atomic_inode(inode);
207
208 F2FS_I(inode)->atomic_write_task = NULL;
209
210 if (clean) {
211 f2fs_i_size_write(inode, fi->original_i_size);
212 fi->original_i_size = 0;
213 }
214 /* avoid stale dirty inode during eviction */
215 sync_inode_metadata(inode, 0);
216 }
217
__replace_atomic_write_block(struct inode * inode,pgoff_t index,block_t new_addr,block_t * old_addr,bool recover)218 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
219 block_t new_addr, block_t *old_addr, bool recover)
220 {
221 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
222 struct dnode_of_data dn;
223 struct node_info ni;
224 int err;
225
226 retry:
227 set_new_dnode(&dn, inode, NULL, NULL, 0);
228 err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
229 if (err) {
230 if (err == -ENOMEM) {
231 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
232 goto retry;
233 }
234 return err;
235 }
236
237 err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
238 if (err) {
239 f2fs_put_dnode(&dn);
240 return err;
241 }
242
243 if (recover) {
244 /* dn.data_blkaddr is always valid */
245 if (!__is_valid_data_blkaddr(new_addr)) {
246 if (new_addr == NULL_ADDR)
247 dec_valid_block_count(sbi, inode, 1);
248 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
249 f2fs_update_data_blkaddr(&dn, new_addr);
250 } else {
251 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
252 new_addr, ni.version, true, true);
253 }
254 } else {
255 blkcnt_t count = 1;
256
257 err = inc_valid_block_count(sbi, inode, &count, true);
258 if (err) {
259 f2fs_put_dnode(&dn);
260 return err;
261 }
262
263 *old_addr = dn.data_blkaddr;
264 f2fs_truncate_data_blocks_range(&dn, 1);
265 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
266
267 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
268 ni.version, true, false);
269 }
270
271 f2fs_put_dnode(&dn);
272
273 trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
274 index, old_addr ? *old_addr : 0, new_addr, recover);
275 return 0;
276 }
277
__complete_revoke_list(struct inode * inode,struct list_head * head,bool revoke)278 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
279 bool revoke)
280 {
281 struct revoke_entry *cur, *tmp;
282 pgoff_t start_index = 0;
283 bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
284
285 list_for_each_entry_safe(cur, tmp, head, list) {
286 if (revoke) {
287 __replace_atomic_write_block(inode, cur->index,
288 cur->old_addr, NULL, true);
289 } else if (truncate) {
290 f2fs_truncate_hole(inode, start_index, cur->index);
291 start_index = cur->index + 1;
292 }
293
294 list_del(&cur->list);
295 kmem_cache_free(revoke_entry_slab, cur);
296 }
297
298 if (!revoke && truncate)
299 f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
300 }
301
__f2fs_commit_atomic_write(struct inode * inode)302 static int __f2fs_commit_atomic_write(struct inode *inode)
303 {
304 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
305 struct f2fs_inode_info *fi = F2FS_I(inode);
306 struct inode *cow_inode = fi->cow_inode;
307 struct revoke_entry *new;
308 struct list_head revoke_list;
309 block_t blkaddr;
310 struct dnode_of_data dn;
311 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
312 pgoff_t off = 0, blen, index;
313 int ret = 0, i;
314
315 INIT_LIST_HEAD(&revoke_list);
316
317 while (len) {
318 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
319
320 set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
321 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
322 if (ret && ret != -ENOENT) {
323 goto out;
324 } else if (ret == -ENOENT) {
325 ret = 0;
326 if (dn.max_level == 0)
327 goto out;
328 goto next;
329 }
330
331 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
332 len);
333 index = off;
334 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
335 blkaddr = f2fs_data_blkaddr(&dn);
336
337 if (!__is_valid_data_blkaddr(blkaddr)) {
338 continue;
339 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
340 DATA_GENERIC_ENHANCE)) {
341 f2fs_put_dnode(&dn);
342 ret = -EFSCORRUPTED;
343 f2fs_handle_error(sbi,
344 ERROR_INVALID_BLKADDR);
345 goto out;
346 }
347
348 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
349 true, NULL);
350
351 ret = __replace_atomic_write_block(inode, index, blkaddr,
352 &new->old_addr, false);
353 if (ret) {
354 f2fs_put_dnode(&dn);
355 kmem_cache_free(revoke_entry_slab, new);
356 goto out;
357 }
358
359 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
360 new->index = index;
361 list_add_tail(&new->list, &revoke_list);
362 }
363 f2fs_put_dnode(&dn);
364 next:
365 off += blen;
366 len -= blen;
367 }
368
369 out:
370 if (ret) {
371 sbi->revoked_atomic_block += fi->atomic_write_cnt;
372 } else {
373 sbi->committed_atomic_block += fi->atomic_write_cnt;
374 set_inode_flag(inode, FI_ATOMIC_COMMITTED);
375 if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
376 clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
377 f2fs_mark_inode_dirty_sync(inode, true);
378 }
379 }
380
381 __complete_revoke_list(inode, &revoke_list, ret ? true : false);
382
383 return ret;
384 }
385
f2fs_commit_atomic_write(struct inode * inode)386 int f2fs_commit_atomic_write(struct inode *inode)
387 {
388 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
389 struct f2fs_inode_info *fi = F2FS_I(inode);
390 int err;
391
392 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
393 if (err)
394 return err;
395
396 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
397 f2fs_lock_op(sbi);
398
399 err = __f2fs_commit_atomic_write(inode);
400
401 f2fs_unlock_op(sbi);
402 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
403
404 return err;
405 }
406
407 /*
408 * This function balances dirty node and dentry pages.
409 * In addition, it controls garbage collection.
410 */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)411 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
412 {
413 if (time_to_inject(sbi, FAULT_CHECKPOINT))
414 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
415
416 /* balance_fs_bg is able to be pending */
417 if (need && excess_cached_nats(sbi))
418 f2fs_balance_fs_bg(sbi, false);
419
420 if (!f2fs_is_checkpoint_ready(sbi))
421 return;
422
423 /*
424 * We should do GC or end up with checkpoint, if there are so many dirty
425 * dir/node pages without enough free segments.
426 */
427 if (has_enough_free_secs(sbi, 0, 0))
428 return;
429
430 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
431 sbi->gc_thread->f2fs_gc_task) {
432 DEFINE_WAIT(wait);
433
434 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
435 TASK_UNINTERRUPTIBLE);
436 wake_up(&sbi->gc_thread->gc_wait_queue_head);
437 io_schedule();
438 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
439 } else {
440 struct f2fs_gc_control gc_control = {
441 .victim_segno = NULL_SEGNO,
442 .init_gc_type = BG_GC,
443 .no_bg_gc = true,
444 .should_migrate_blocks = false,
445 .err_gc_skipped = false,
446 .nr_free_secs = 1 };
447 f2fs_down_write(&sbi->gc_lock);
448 stat_inc_gc_call_count(sbi, FOREGROUND);
449 f2fs_gc(sbi, &gc_control);
450 }
451 }
452
excess_dirty_threshold(struct f2fs_sb_info * sbi)453 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
454 {
455 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
456 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
457 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
458 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
459 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
460 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
461 unsigned int threshold = (factor * DEFAULT_DIRTY_THRESHOLD) <<
462 sbi->log_blocks_per_seg;
463 unsigned int global_threshold = threshold * 3 / 2;
464
465 if (dents >= threshold || qdata >= threshold ||
466 nodes >= threshold || meta >= threshold ||
467 imeta >= threshold)
468 return true;
469 return dents + qdata + nodes + meta + imeta > global_threshold;
470 }
471
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi,bool from_bg)472 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
473 {
474 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
475 return;
476
477 /* try to shrink extent cache when there is no enough memory */
478 if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
479 f2fs_shrink_read_extent_tree(sbi,
480 READ_EXTENT_CACHE_SHRINK_NUMBER);
481
482 /* try to shrink age extent cache when there is no enough memory */
483 if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
484 f2fs_shrink_age_extent_tree(sbi,
485 AGE_EXTENT_CACHE_SHRINK_NUMBER);
486
487 /* check the # of cached NAT entries */
488 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
489 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
490
491 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
492 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
493 else
494 f2fs_build_free_nids(sbi, false, false);
495
496 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
497 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
498 goto do_sync;
499
500 /* there is background inflight IO or foreground operation recently */
501 if (is_inflight_io(sbi, REQ_TIME) ||
502 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
503 return;
504
505 /* exceed periodical checkpoint timeout threshold */
506 if (f2fs_time_over(sbi, CP_TIME))
507 goto do_sync;
508
509 /* checkpoint is the only way to shrink partial cached entries */
510 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
511 f2fs_available_free_memory(sbi, INO_ENTRIES))
512 return;
513
514 do_sync:
515 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
516 struct blk_plug plug;
517
518 mutex_lock(&sbi->flush_lock);
519
520 blk_start_plug(&plug);
521 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
522 blk_finish_plug(&plug);
523
524 mutex_unlock(&sbi->flush_lock);
525 }
526 stat_inc_cp_call_count(sbi, BACKGROUND);
527 f2fs_sync_fs(sbi->sb, 1);
528 }
529
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)530 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
531 struct block_device *bdev)
532 {
533 int ret = blkdev_issue_flush(bdev);
534
535 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
536 test_opt(sbi, FLUSH_MERGE), ret);
537 if (!ret)
538 f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
539 return ret;
540 }
541
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)542 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
543 {
544 int ret = 0;
545 int i;
546
547 if (!f2fs_is_multi_device(sbi))
548 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
549
550 for (i = 0; i < sbi->s_ndevs; i++) {
551 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
552 continue;
553 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
554 if (ret)
555 break;
556 }
557 return ret;
558 }
559
issue_flush_thread(void * data)560 static int issue_flush_thread(void *data)
561 {
562 struct f2fs_sb_info *sbi = data;
563 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
564 wait_queue_head_t *q = &fcc->flush_wait_queue;
565 repeat:
566 if (kthread_should_stop())
567 return 0;
568
569 if (!llist_empty(&fcc->issue_list)) {
570 struct flush_cmd *cmd, *next;
571 int ret;
572
573 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
574 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
575
576 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
577
578 ret = submit_flush_wait(sbi, cmd->ino);
579 atomic_inc(&fcc->issued_flush);
580
581 llist_for_each_entry_safe(cmd, next,
582 fcc->dispatch_list, llnode) {
583 cmd->ret = ret;
584 complete(&cmd->wait);
585 }
586 fcc->dispatch_list = NULL;
587 }
588
589 wait_event_interruptible(*q,
590 kthread_should_stop() || !llist_empty(&fcc->issue_list));
591 goto repeat;
592 }
593
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)594 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
595 {
596 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
597 struct flush_cmd cmd;
598 int ret;
599
600 if (test_opt(sbi, NOBARRIER))
601 return 0;
602
603 if (!test_opt(sbi, FLUSH_MERGE)) {
604 atomic_inc(&fcc->queued_flush);
605 ret = submit_flush_wait(sbi, ino);
606 atomic_dec(&fcc->queued_flush);
607 atomic_inc(&fcc->issued_flush);
608 return ret;
609 }
610
611 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
612 f2fs_is_multi_device(sbi)) {
613 ret = submit_flush_wait(sbi, ino);
614 atomic_dec(&fcc->queued_flush);
615
616 atomic_inc(&fcc->issued_flush);
617 return ret;
618 }
619
620 cmd.ino = ino;
621 init_completion(&cmd.wait);
622
623 llist_add(&cmd.llnode, &fcc->issue_list);
624
625 /*
626 * update issue_list before we wake up issue_flush thread, this
627 * smp_mb() pairs with another barrier in ___wait_event(), see
628 * more details in comments of waitqueue_active().
629 */
630 smp_mb();
631
632 if (waitqueue_active(&fcc->flush_wait_queue))
633 wake_up(&fcc->flush_wait_queue);
634
635 if (fcc->f2fs_issue_flush) {
636 wait_for_completion(&cmd.wait);
637 atomic_dec(&fcc->queued_flush);
638 } else {
639 struct llist_node *list;
640
641 list = llist_del_all(&fcc->issue_list);
642 if (!list) {
643 wait_for_completion(&cmd.wait);
644 atomic_dec(&fcc->queued_flush);
645 } else {
646 struct flush_cmd *tmp, *next;
647
648 ret = submit_flush_wait(sbi, ino);
649
650 llist_for_each_entry_safe(tmp, next, list, llnode) {
651 if (tmp == &cmd) {
652 cmd.ret = ret;
653 atomic_dec(&fcc->queued_flush);
654 continue;
655 }
656 tmp->ret = ret;
657 complete(&tmp->wait);
658 }
659 }
660 }
661
662 return cmd.ret;
663 }
664
f2fs_create_flush_cmd_control(struct f2fs_sb_info * sbi)665 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
666 {
667 dev_t dev = sbi->sb->s_bdev->bd_dev;
668 struct flush_cmd_control *fcc;
669
670 if (SM_I(sbi)->fcc_info) {
671 fcc = SM_I(sbi)->fcc_info;
672 if (fcc->f2fs_issue_flush)
673 return 0;
674 goto init_thread;
675 }
676
677 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
678 if (!fcc)
679 return -ENOMEM;
680 atomic_set(&fcc->issued_flush, 0);
681 atomic_set(&fcc->queued_flush, 0);
682 init_waitqueue_head(&fcc->flush_wait_queue);
683 init_llist_head(&fcc->issue_list);
684 SM_I(sbi)->fcc_info = fcc;
685 if (!test_opt(sbi, FLUSH_MERGE))
686 return 0;
687
688 init_thread:
689 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
690 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
691 if (IS_ERR(fcc->f2fs_issue_flush)) {
692 int err = PTR_ERR(fcc->f2fs_issue_flush);
693
694 fcc->f2fs_issue_flush = NULL;
695 return err;
696 }
697
698 return 0;
699 }
700
f2fs_destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)701 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
702 {
703 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
704
705 if (fcc && fcc->f2fs_issue_flush) {
706 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
707
708 fcc->f2fs_issue_flush = NULL;
709 kthread_stop(flush_thread);
710 }
711 if (free) {
712 kfree(fcc);
713 SM_I(sbi)->fcc_info = NULL;
714 }
715 }
716
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)717 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
718 {
719 int ret = 0, i;
720
721 if (!f2fs_is_multi_device(sbi))
722 return 0;
723
724 if (test_opt(sbi, NOBARRIER))
725 return 0;
726
727 for (i = 1; i < sbi->s_ndevs; i++) {
728 int count = DEFAULT_RETRY_IO_COUNT;
729
730 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
731 continue;
732
733 do {
734 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
735 if (ret)
736 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
737 } while (ret && --count);
738
739 if (ret) {
740 f2fs_stop_checkpoint(sbi, false,
741 STOP_CP_REASON_FLUSH_FAIL);
742 break;
743 }
744
745 spin_lock(&sbi->dev_lock);
746 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
747 spin_unlock(&sbi->dev_lock);
748 }
749
750 return ret;
751 }
752
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)753 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
754 enum dirty_type dirty_type)
755 {
756 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
757
758 /* need not be added */
759 if (IS_CURSEG(sbi, segno))
760 return;
761
762 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
763 dirty_i->nr_dirty[dirty_type]++;
764
765 if (dirty_type == DIRTY) {
766 struct seg_entry *sentry = get_seg_entry(sbi, segno);
767 enum dirty_type t = sentry->type;
768
769 if (unlikely(t >= DIRTY)) {
770 f2fs_bug_on(sbi, 1);
771 return;
772 }
773 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
774 dirty_i->nr_dirty[t]++;
775
776 if (__is_large_section(sbi)) {
777 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
778 block_t valid_blocks =
779 get_valid_blocks(sbi, segno, true);
780
781 f2fs_bug_on(sbi, unlikely(!valid_blocks ||
782 valid_blocks == CAP_BLKS_PER_SEC(sbi)));
783
784 if (!IS_CURSEC(sbi, secno))
785 set_bit(secno, dirty_i->dirty_secmap);
786 }
787 }
788 }
789
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)790 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
791 enum dirty_type dirty_type)
792 {
793 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
794 block_t valid_blocks;
795
796 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
797 dirty_i->nr_dirty[dirty_type]--;
798
799 if (dirty_type == DIRTY) {
800 struct seg_entry *sentry = get_seg_entry(sbi, segno);
801 enum dirty_type t = sentry->type;
802
803 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
804 dirty_i->nr_dirty[t]--;
805
806 valid_blocks = get_valid_blocks(sbi, segno, true);
807 if (valid_blocks == 0) {
808 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
809 dirty_i->victim_secmap);
810 #ifdef CONFIG_F2FS_CHECK_FS
811 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
812 #endif
813 }
814 if (__is_large_section(sbi)) {
815 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
816
817 if (!valid_blocks ||
818 valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
819 clear_bit(secno, dirty_i->dirty_secmap);
820 return;
821 }
822
823 if (!IS_CURSEC(sbi, secno))
824 set_bit(secno, dirty_i->dirty_secmap);
825 }
826 }
827 }
828
829 /*
830 * Should not occur error such as -ENOMEM.
831 * Adding dirty entry into seglist is not critical operation.
832 * If a given segment is one of current working segments, it won't be added.
833 */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)834 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
835 {
836 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
837 unsigned short valid_blocks, ckpt_valid_blocks;
838 unsigned int usable_blocks;
839
840 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
841 return;
842
843 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
844 mutex_lock(&dirty_i->seglist_lock);
845
846 valid_blocks = get_valid_blocks(sbi, segno, false);
847 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
848
849 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
850 ckpt_valid_blocks == usable_blocks)) {
851 __locate_dirty_segment(sbi, segno, PRE);
852 __remove_dirty_segment(sbi, segno, DIRTY);
853 } else if (valid_blocks < usable_blocks) {
854 __locate_dirty_segment(sbi, segno, DIRTY);
855 } else {
856 /* Recovery routine with SSR needs this */
857 __remove_dirty_segment(sbi, segno, DIRTY);
858 }
859
860 mutex_unlock(&dirty_i->seglist_lock);
861 }
862
863 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
f2fs_dirty_to_prefree(struct f2fs_sb_info * sbi)864 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
865 {
866 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
867 unsigned int segno;
868
869 mutex_lock(&dirty_i->seglist_lock);
870 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
871 if (get_valid_blocks(sbi, segno, false))
872 continue;
873 if (IS_CURSEG(sbi, segno))
874 continue;
875 __locate_dirty_segment(sbi, segno, PRE);
876 __remove_dirty_segment(sbi, segno, DIRTY);
877 }
878 mutex_unlock(&dirty_i->seglist_lock);
879 }
880
f2fs_get_unusable_blocks(struct f2fs_sb_info * sbi)881 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
882 {
883 int ovp_hole_segs =
884 (overprovision_segments(sbi) - reserved_segments(sbi));
885 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
886 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
887 block_t holes[2] = {0, 0}; /* DATA and NODE */
888 block_t unusable;
889 struct seg_entry *se;
890 unsigned int segno;
891
892 mutex_lock(&dirty_i->seglist_lock);
893 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
894 se = get_seg_entry(sbi, segno);
895 if (IS_NODESEG(se->type))
896 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
897 se->valid_blocks;
898 else
899 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
900 se->valid_blocks;
901 }
902 mutex_unlock(&dirty_i->seglist_lock);
903
904 unusable = max(holes[DATA], holes[NODE]);
905 if (unusable > ovp_holes)
906 return unusable - ovp_holes;
907 return 0;
908 }
909
f2fs_disable_cp_again(struct f2fs_sb_info * sbi,block_t unusable)910 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
911 {
912 int ovp_hole_segs =
913 (overprovision_segments(sbi) - reserved_segments(sbi));
914 if (unusable > F2FS_OPTION(sbi).unusable_cap)
915 return -EAGAIN;
916 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
917 dirty_segments(sbi) > ovp_hole_segs)
918 return -EAGAIN;
919 return 0;
920 }
921
922 /* This is only used by SBI_CP_DISABLED */
get_free_segment(struct f2fs_sb_info * sbi)923 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
924 {
925 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
926 unsigned int segno = 0;
927
928 mutex_lock(&dirty_i->seglist_lock);
929 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
930 if (get_valid_blocks(sbi, segno, false))
931 continue;
932 if (get_ckpt_valid_blocks(sbi, segno, false))
933 continue;
934 mutex_unlock(&dirty_i->seglist_lock);
935 return segno;
936 }
937 mutex_unlock(&dirty_i->seglist_lock);
938 return NULL_SEGNO;
939 }
940
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)941 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
942 struct block_device *bdev, block_t lstart,
943 block_t start, block_t len)
944 {
945 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
946 struct list_head *pend_list;
947 struct discard_cmd *dc;
948
949 f2fs_bug_on(sbi, !len);
950
951 pend_list = &dcc->pend_list[plist_idx(len)];
952
953 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
954 INIT_LIST_HEAD(&dc->list);
955 dc->bdev = bdev;
956 dc->di.lstart = lstart;
957 dc->di.start = start;
958 dc->di.len = len;
959 dc->ref = 0;
960 dc->state = D_PREP;
961 dc->queued = 0;
962 dc->error = 0;
963 init_completion(&dc->wait);
964 list_add_tail(&dc->list, pend_list);
965 spin_lock_init(&dc->lock);
966 dc->bio_ref = 0;
967 atomic_inc(&dcc->discard_cmd_cnt);
968 dcc->undiscard_blks += len;
969
970 return dc;
971 }
972
f2fs_check_discard_tree(struct f2fs_sb_info * sbi)973 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
974 {
975 #ifdef CONFIG_F2FS_CHECK_FS
976 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
977 struct rb_node *cur = rb_first_cached(&dcc->root), *next;
978 struct discard_cmd *cur_dc, *next_dc;
979
980 while (cur) {
981 next = rb_next(cur);
982 if (!next)
983 return true;
984
985 cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
986 next_dc = rb_entry(next, struct discard_cmd, rb_node);
987
988 if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
989 f2fs_info(sbi, "broken discard_rbtree, "
990 "cur(%u, %u) next(%u, %u)",
991 cur_dc->di.lstart, cur_dc->di.len,
992 next_dc->di.lstart, next_dc->di.len);
993 return false;
994 }
995 cur = next;
996 }
997 #endif
998 return true;
999 }
1000
__lookup_discard_cmd(struct f2fs_sb_info * sbi,block_t blkaddr)1001 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
1002 block_t blkaddr)
1003 {
1004 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1005 struct rb_node *node = dcc->root.rb_root.rb_node;
1006 struct discard_cmd *dc;
1007
1008 while (node) {
1009 dc = rb_entry(node, struct discard_cmd, rb_node);
1010
1011 if (blkaddr < dc->di.lstart)
1012 node = node->rb_left;
1013 else if (blkaddr >= dc->di.lstart + dc->di.len)
1014 node = node->rb_right;
1015 else
1016 return dc;
1017 }
1018 return NULL;
1019 }
1020
__lookup_discard_cmd_ret(struct rb_root_cached * root,block_t blkaddr,struct discard_cmd ** prev_entry,struct discard_cmd ** next_entry,struct rb_node *** insert_p,struct rb_node ** insert_parent)1021 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1022 block_t blkaddr,
1023 struct discard_cmd **prev_entry,
1024 struct discard_cmd **next_entry,
1025 struct rb_node ***insert_p,
1026 struct rb_node **insert_parent)
1027 {
1028 struct rb_node **pnode = &root->rb_root.rb_node;
1029 struct rb_node *parent = NULL, *tmp_node;
1030 struct discard_cmd *dc;
1031
1032 *insert_p = NULL;
1033 *insert_parent = NULL;
1034 *prev_entry = NULL;
1035 *next_entry = NULL;
1036
1037 if (RB_EMPTY_ROOT(&root->rb_root))
1038 return NULL;
1039
1040 while (*pnode) {
1041 parent = *pnode;
1042 dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1043
1044 if (blkaddr < dc->di.lstart)
1045 pnode = &(*pnode)->rb_left;
1046 else if (blkaddr >= dc->di.lstart + dc->di.len)
1047 pnode = &(*pnode)->rb_right;
1048 else
1049 goto lookup_neighbors;
1050 }
1051
1052 *insert_p = pnode;
1053 *insert_parent = parent;
1054
1055 dc = rb_entry(parent, struct discard_cmd, rb_node);
1056 tmp_node = parent;
1057 if (parent && blkaddr > dc->di.lstart)
1058 tmp_node = rb_next(parent);
1059 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1060
1061 tmp_node = parent;
1062 if (parent && blkaddr < dc->di.lstart)
1063 tmp_node = rb_prev(parent);
1064 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1065 return NULL;
1066
1067 lookup_neighbors:
1068 /* lookup prev node for merging backward later */
1069 tmp_node = rb_prev(&dc->rb_node);
1070 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1071
1072 /* lookup next node for merging frontward later */
1073 tmp_node = rb_next(&dc->rb_node);
1074 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1075 return dc;
1076 }
1077
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1078 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1079 struct discard_cmd *dc)
1080 {
1081 if (dc->state == D_DONE)
1082 atomic_sub(dc->queued, &dcc->queued_discard);
1083
1084 list_del(&dc->list);
1085 rb_erase_cached(&dc->rb_node, &dcc->root);
1086 dcc->undiscard_blks -= dc->di.len;
1087
1088 kmem_cache_free(discard_cmd_slab, dc);
1089
1090 atomic_dec(&dcc->discard_cmd_cnt);
1091 }
1092
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1093 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1094 struct discard_cmd *dc)
1095 {
1096 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1097 unsigned long flags;
1098
1099 trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1100
1101 spin_lock_irqsave(&dc->lock, flags);
1102 if (dc->bio_ref) {
1103 spin_unlock_irqrestore(&dc->lock, flags);
1104 return;
1105 }
1106 spin_unlock_irqrestore(&dc->lock, flags);
1107
1108 f2fs_bug_on(sbi, dc->ref);
1109
1110 if (dc->error == -EOPNOTSUPP)
1111 dc->error = 0;
1112
1113 if (dc->error)
1114 f2fs_info_ratelimited(sbi,
1115 "Issue discard(%u, %u, %u) failed, ret: %d",
1116 dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1117 __detach_discard_cmd(dcc, dc);
1118 }
1119
f2fs_submit_discard_endio(struct bio * bio)1120 static void f2fs_submit_discard_endio(struct bio *bio)
1121 {
1122 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1123 unsigned long flags;
1124
1125 spin_lock_irqsave(&dc->lock, flags);
1126 if (!dc->error)
1127 dc->error = blk_status_to_errno(bio->bi_status);
1128 dc->bio_ref--;
1129 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1130 dc->state = D_DONE;
1131 complete_all(&dc->wait);
1132 }
1133 spin_unlock_irqrestore(&dc->lock, flags);
1134 bio_put(bio);
1135 }
1136
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)1137 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1138 block_t start, block_t end)
1139 {
1140 #ifdef CONFIG_F2FS_CHECK_FS
1141 struct seg_entry *sentry;
1142 unsigned int segno;
1143 block_t blk = start;
1144 unsigned long offset, size, *map;
1145
1146 while (blk < end) {
1147 segno = GET_SEGNO(sbi, blk);
1148 sentry = get_seg_entry(sbi, segno);
1149 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1150
1151 if (end < START_BLOCK(sbi, segno + 1))
1152 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1153 else
1154 size = BLKS_PER_SEG(sbi);
1155 map = (unsigned long *)(sentry->cur_valid_map);
1156 offset = __find_rev_next_bit(map, size, offset);
1157 f2fs_bug_on(sbi, offset != size);
1158 blk = START_BLOCK(sbi, segno + 1);
1159 }
1160 #endif
1161 }
1162
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int discard_type,unsigned int granularity)1163 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1164 struct discard_policy *dpolicy,
1165 int discard_type, unsigned int granularity)
1166 {
1167 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1168
1169 /* common policy */
1170 dpolicy->type = discard_type;
1171 dpolicy->sync = true;
1172 dpolicy->ordered = false;
1173 dpolicy->granularity = granularity;
1174
1175 dpolicy->max_requests = dcc->max_discard_request;
1176 dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1177 dpolicy->timeout = false;
1178
1179 if (discard_type == DPOLICY_BG) {
1180 dpolicy->min_interval = dcc->min_discard_issue_time;
1181 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1182 dpolicy->max_interval = dcc->max_discard_issue_time;
1183 dpolicy->io_aware = true;
1184 dpolicy->sync = false;
1185 dpolicy->ordered = true;
1186 if (utilization(sbi) > dcc->discard_urgent_util) {
1187 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1188 if (atomic_read(&dcc->discard_cmd_cnt))
1189 dpolicy->max_interval =
1190 dcc->min_discard_issue_time;
1191 }
1192 } else if (discard_type == DPOLICY_FORCE) {
1193 dpolicy->min_interval = dcc->min_discard_issue_time;
1194 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1195 dpolicy->max_interval = dcc->max_discard_issue_time;
1196 dpolicy->io_aware = false;
1197 } else if (discard_type == DPOLICY_FSTRIM) {
1198 dpolicy->io_aware = false;
1199 } else if (discard_type == DPOLICY_UMOUNT) {
1200 dpolicy->io_aware = false;
1201 /* we need to issue all to keep CP_TRIMMED_FLAG */
1202 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1203 dpolicy->timeout = true;
1204 }
1205 }
1206
1207 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1208 struct block_device *bdev, block_t lstart,
1209 block_t start, block_t len);
1210
1211 #ifdef CONFIG_BLK_DEV_ZONED
__submit_zone_reset_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,blk_opf_t flag,struct list_head * wait_list,unsigned int * issued)1212 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1213 struct discard_cmd *dc, blk_opf_t flag,
1214 struct list_head *wait_list,
1215 unsigned int *issued)
1216 {
1217 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1218 struct block_device *bdev = dc->bdev;
1219 struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1220 unsigned long flags;
1221
1222 trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1223
1224 spin_lock_irqsave(&dc->lock, flags);
1225 dc->state = D_SUBMIT;
1226 dc->bio_ref++;
1227 spin_unlock_irqrestore(&dc->lock, flags);
1228
1229 if (issued)
1230 (*issued)++;
1231
1232 atomic_inc(&dcc->queued_discard);
1233 dc->queued++;
1234 list_move_tail(&dc->list, wait_list);
1235
1236 /* sanity check on discard range */
1237 __check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1238
1239 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1240 bio->bi_private = dc;
1241 bio->bi_end_io = f2fs_submit_discard_endio;
1242 submit_bio(bio);
1243
1244 atomic_inc(&dcc->issued_discard);
1245 f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1246 }
1247 #endif
1248
1249 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,struct discard_cmd * dc,int * issued)1250 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1251 struct discard_policy *dpolicy,
1252 struct discard_cmd *dc, int *issued)
1253 {
1254 struct block_device *bdev = dc->bdev;
1255 unsigned int max_discard_blocks =
1256 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1257 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1258 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1259 &(dcc->fstrim_list) : &(dcc->wait_list);
1260 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1261 block_t lstart, start, len, total_len;
1262 int err = 0;
1263
1264 if (dc->state != D_PREP)
1265 return 0;
1266
1267 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1268 return 0;
1269
1270 #ifdef CONFIG_BLK_DEV_ZONED
1271 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1272 int devi = f2fs_bdev_index(sbi, bdev);
1273
1274 if (devi < 0)
1275 return -EINVAL;
1276
1277 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1278 __submit_zone_reset_cmd(sbi, dc, flag,
1279 wait_list, issued);
1280 return 0;
1281 }
1282 }
1283 #endif
1284
1285 /*
1286 * stop issuing discard for any of below cases:
1287 * 1. device is conventional zone, but it doesn't support discard.
1288 * 2. device is regulare device, after snapshot it doesn't support
1289 * discard.
1290 */
1291 if (!bdev_max_discard_sectors(bdev))
1292 return -EOPNOTSUPP;
1293
1294 trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1295
1296 lstart = dc->di.lstart;
1297 start = dc->di.start;
1298 len = dc->di.len;
1299 total_len = len;
1300
1301 dc->di.len = 0;
1302
1303 while (total_len && *issued < dpolicy->max_requests && !err) {
1304 struct bio *bio = NULL;
1305 unsigned long flags;
1306 bool last = true;
1307
1308 if (len > max_discard_blocks) {
1309 len = max_discard_blocks;
1310 last = false;
1311 }
1312
1313 (*issued)++;
1314 if (*issued == dpolicy->max_requests)
1315 last = true;
1316
1317 dc->di.len += len;
1318
1319 if (time_to_inject(sbi, FAULT_DISCARD)) {
1320 err = -EIO;
1321 } else {
1322 err = __blkdev_issue_discard(bdev,
1323 SECTOR_FROM_BLOCK(start),
1324 SECTOR_FROM_BLOCK(len),
1325 GFP_NOFS, &bio);
1326 }
1327 if (err) {
1328 spin_lock_irqsave(&dc->lock, flags);
1329 if (dc->state == D_PARTIAL)
1330 dc->state = D_SUBMIT;
1331 spin_unlock_irqrestore(&dc->lock, flags);
1332
1333 break;
1334 }
1335
1336 f2fs_bug_on(sbi, !bio);
1337
1338 /*
1339 * should keep before submission to avoid D_DONE
1340 * right away
1341 */
1342 spin_lock_irqsave(&dc->lock, flags);
1343 if (last)
1344 dc->state = D_SUBMIT;
1345 else
1346 dc->state = D_PARTIAL;
1347 dc->bio_ref++;
1348 spin_unlock_irqrestore(&dc->lock, flags);
1349
1350 atomic_inc(&dcc->queued_discard);
1351 dc->queued++;
1352 list_move_tail(&dc->list, wait_list);
1353
1354 /* sanity check on discard range */
1355 __check_sit_bitmap(sbi, lstart, lstart + len);
1356
1357 bio->bi_private = dc;
1358 bio->bi_end_io = f2fs_submit_discard_endio;
1359 bio->bi_opf |= flag;
1360 submit_bio(bio);
1361
1362 atomic_inc(&dcc->issued_discard);
1363
1364 f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1365
1366 lstart += len;
1367 start += len;
1368 total_len -= len;
1369 len = total_len;
1370 }
1371
1372 if (!err && len) {
1373 dcc->undiscard_blks -= len;
1374 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1375 }
1376 return err;
1377 }
1378
__insert_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1379 static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1380 struct block_device *bdev, block_t lstart,
1381 block_t start, block_t len)
1382 {
1383 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1384 struct rb_node **p = &dcc->root.rb_root.rb_node;
1385 struct rb_node *parent = NULL;
1386 struct discard_cmd *dc;
1387 bool leftmost = true;
1388
1389 /* look up rb tree to find parent node */
1390 while (*p) {
1391 parent = *p;
1392 dc = rb_entry(parent, struct discard_cmd, rb_node);
1393
1394 if (lstart < dc->di.lstart) {
1395 p = &(*p)->rb_left;
1396 } else if (lstart >= dc->di.lstart + dc->di.len) {
1397 p = &(*p)->rb_right;
1398 leftmost = false;
1399 } else {
1400 f2fs_bug_on(sbi, 1);
1401 }
1402 }
1403
1404 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1405
1406 rb_link_node(&dc->rb_node, parent, p);
1407 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1408 }
1409
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1410 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1411 struct discard_cmd *dc)
1412 {
1413 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1414 }
1415
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1416 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1417 struct discard_cmd *dc, block_t blkaddr)
1418 {
1419 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1420 struct discard_info di = dc->di;
1421 bool modified = false;
1422
1423 if (dc->state == D_DONE || dc->di.len == 1) {
1424 __remove_discard_cmd(sbi, dc);
1425 return;
1426 }
1427
1428 dcc->undiscard_blks -= di.len;
1429
1430 if (blkaddr > di.lstart) {
1431 dc->di.len = blkaddr - dc->di.lstart;
1432 dcc->undiscard_blks += dc->di.len;
1433 __relocate_discard_cmd(dcc, dc);
1434 modified = true;
1435 }
1436
1437 if (blkaddr < di.lstart + di.len - 1) {
1438 if (modified) {
1439 __insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1440 di.start + blkaddr + 1 - di.lstart,
1441 di.lstart + di.len - 1 - blkaddr);
1442 } else {
1443 dc->di.lstart++;
1444 dc->di.len--;
1445 dc->di.start++;
1446 dcc->undiscard_blks += dc->di.len;
1447 __relocate_discard_cmd(dcc, dc);
1448 }
1449 }
1450 }
1451
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1452 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1453 struct block_device *bdev, block_t lstart,
1454 block_t start, block_t len)
1455 {
1456 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1457 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1458 struct discard_cmd *dc;
1459 struct discard_info di = {0};
1460 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1461 unsigned int max_discard_blocks =
1462 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1463 block_t end = lstart + len;
1464
1465 dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1466 &prev_dc, &next_dc, &insert_p, &insert_parent);
1467 if (dc)
1468 prev_dc = dc;
1469
1470 if (!prev_dc) {
1471 di.lstart = lstart;
1472 di.len = next_dc ? next_dc->di.lstart - lstart : len;
1473 di.len = min(di.len, len);
1474 di.start = start;
1475 }
1476
1477 while (1) {
1478 struct rb_node *node;
1479 bool merged = false;
1480 struct discard_cmd *tdc = NULL;
1481
1482 if (prev_dc) {
1483 di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1484 if (di.lstart < lstart)
1485 di.lstart = lstart;
1486 if (di.lstart >= end)
1487 break;
1488
1489 if (!next_dc || next_dc->di.lstart > end)
1490 di.len = end - di.lstart;
1491 else
1492 di.len = next_dc->di.lstart - di.lstart;
1493 di.start = start + di.lstart - lstart;
1494 }
1495
1496 if (!di.len)
1497 goto next;
1498
1499 if (prev_dc && prev_dc->state == D_PREP &&
1500 prev_dc->bdev == bdev &&
1501 __is_discard_back_mergeable(&di, &prev_dc->di,
1502 max_discard_blocks)) {
1503 prev_dc->di.len += di.len;
1504 dcc->undiscard_blks += di.len;
1505 __relocate_discard_cmd(dcc, prev_dc);
1506 di = prev_dc->di;
1507 tdc = prev_dc;
1508 merged = true;
1509 }
1510
1511 if (next_dc && next_dc->state == D_PREP &&
1512 next_dc->bdev == bdev &&
1513 __is_discard_front_mergeable(&di, &next_dc->di,
1514 max_discard_blocks)) {
1515 next_dc->di.lstart = di.lstart;
1516 next_dc->di.len += di.len;
1517 next_dc->di.start = di.start;
1518 dcc->undiscard_blks += di.len;
1519 __relocate_discard_cmd(dcc, next_dc);
1520 if (tdc)
1521 __remove_discard_cmd(sbi, tdc);
1522 merged = true;
1523 }
1524
1525 if (!merged)
1526 __insert_discard_cmd(sbi, bdev,
1527 di.lstart, di.start, di.len);
1528 next:
1529 prev_dc = next_dc;
1530 if (!prev_dc)
1531 break;
1532
1533 node = rb_next(&prev_dc->rb_node);
1534 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1535 }
1536 }
1537
1538 #ifdef CONFIG_BLK_DEV_ZONED
__queue_zone_reset_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t lblkstart,block_t blklen)1539 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1540 struct block_device *bdev, block_t blkstart, block_t lblkstart,
1541 block_t blklen)
1542 {
1543 trace_f2fs_queue_reset_zone(bdev, blkstart);
1544
1545 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1546 __insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1547 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1548 }
1549 #endif
1550
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1551 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1552 struct block_device *bdev, block_t blkstart, block_t blklen)
1553 {
1554 block_t lblkstart = blkstart;
1555
1556 if (!f2fs_bdev_support_discard(bdev))
1557 return;
1558
1559 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1560
1561 if (f2fs_is_multi_device(sbi)) {
1562 int devi = f2fs_target_device_index(sbi, blkstart);
1563
1564 blkstart -= FDEV(devi).start_blk;
1565 }
1566 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1567 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1568 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1569 }
1570
__issue_discard_cmd_orderly(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int * issued)1571 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1572 struct discard_policy *dpolicy, int *issued)
1573 {
1574 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1575 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1576 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1577 struct discard_cmd *dc;
1578 struct blk_plug plug;
1579 bool io_interrupted = false;
1580
1581 mutex_lock(&dcc->cmd_lock);
1582 dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1583 &prev_dc, &next_dc, &insert_p, &insert_parent);
1584 if (!dc)
1585 dc = next_dc;
1586
1587 blk_start_plug(&plug);
1588
1589 while (dc) {
1590 struct rb_node *node;
1591 int err = 0;
1592
1593 if (dc->state != D_PREP)
1594 goto next;
1595
1596 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1597 io_interrupted = true;
1598 break;
1599 }
1600
1601 dcc->next_pos = dc->di.lstart + dc->di.len;
1602 err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1603
1604 if (*issued >= dpolicy->max_requests)
1605 break;
1606 next:
1607 node = rb_next(&dc->rb_node);
1608 if (err)
1609 __remove_discard_cmd(sbi, dc);
1610 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1611 }
1612
1613 blk_finish_plug(&plug);
1614
1615 if (!dc)
1616 dcc->next_pos = 0;
1617
1618 mutex_unlock(&dcc->cmd_lock);
1619
1620 if (!(*issued) && io_interrupted)
1621 *issued = -1;
1622 }
1623 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1624 struct discard_policy *dpolicy);
1625
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1626 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1627 struct discard_policy *dpolicy)
1628 {
1629 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1630 struct list_head *pend_list;
1631 struct discard_cmd *dc, *tmp;
1632 struct blk_plug plug;
1633 int i, issued;
1634 bool io_interrupted = false;
1635
1636 if (dpolicy->timeout)
1637 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1638
1639 retry:
1640 issued = 0;
1641 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1642 if (dpolicy->timeout &&
1643 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1644 break;
1645
1646 if (i + 1 < dpolicy->granularity)
1647 break;
1648
1649 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1650 __issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1651 return issued;
1652 }
1653
1654 pend_list = &dcc->pend_list[i];
1655
1656 mutex_lock(&dcc->cmd_lock);
1657 if (list_empty(pend_list))
1658 goto next;
1659 if (unlikely(dcc->rbtree_check))
1660 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1661 blk_start_plug(&plug);
1662 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1663 f2fs_bug_on(sbi, dc->state != D_PREP);
1664
1665 if (dpolicy->timeout &&
1666 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1667 break;
1668
1669 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1670 !is_idle(sbi, DISCARD_TIME)) {
1671 io_interrupted = true;
1672 break;
1673 }
1674
1675 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1676
1677 if (issued >= dpolicy->max_requests)
1678 break;
1679 }
1680 blk_finish_plug(&plug);
1681 next:
1682 mutex_unlock(&dcc->cmd_lock);
1683
1684 if (issued >= dpolicy->max_requests || io_interrupted)
1685 break;
1686 }
1687
1688 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1689 __wait_all_discard_cmd(sbi, dpolicy);
1690 goto retry;
1691 }
1692
1693 if (!issued && io_interrupted)
1694 issued = -1;
1695
1696 return issued;
1697 }
1698
__drop_discard_cmd(struct f2fs_sb_info * sbi)1699 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1700 {
1701 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1702 struct list_head *pend_list;
1703 struct discard_cmd *dc, *tmp;
1704 int i;
1705 bool dropped = false;
1706
1707 mutex_lock(&dcc->cmd_lock);
1708 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1709 pend_list = &dcc->pend_list[i];
1710 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1711 f2fs_bug_on(sbi, dc->state != D_PREP);
1712 __remove_discard_cmd(sbi, dc);
1713 dropped = true;
1714 }
1715 }
1716 mutex_unlock(&dcc->cmd_lock);
1717
1718 return dropped;
1719 }
1720
f2fs_drop_discard_cmd(struct f2fs_sb_info * sbi)1721 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1722 {
1723 __drop_discard_cmd(sbi);
1724 }
1725
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1726 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1727 struct discard_cmd *dc)
1728 {
1729 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1730 unsigned int len = 0;
1731
1732 wait_for_completion_io(&dc->wait);
1733 mutex_lock(&dcc->cmd_lock);
1734 f2fs_bug_on(sbi, dc->state != D_DONE);
1735 dc->ref--;
1736 if (!dc->ref) {
1737 if (!dc->error)
1738 len = dc->di.len;
1739 __remove_discard_cmd(sbi, dc);
1740 }
1741 mutex_unlock(&dcc->cmd_lock);
1742
1743 return len;
1744 }
1745
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1746 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1747 struct discard_policy *dpolicy,
1748 block_t start, block_t end)
1749 {
1750 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1751 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1752 &(dcc->fstrim_list) : &(dcc->wait_list);
1753 struct discard_cmd *dc = NULL, *iter, *tmp;
1754 unsigned int trimmed = 0;
1755
1756 next:
1757 dc = NULL;
1758
1759 mutex_lock(&dcc->cmd_lock);
1760 list_for_each_entry_safe(iter, tmp, wait_list, list) {
1761 if (iter->di.lstart + iter->di.len <= start ||
1762 end <= iter->di.lstart)
1763 continue;
1764 if (iter->di.len < dpolicy->granularity)
1765 continue;
1766 if (iter->state == D_DONE && !iter->ref) {
1767 wait_for_completion_io(&iter->wait);
1768 if (!iter->error)
1769 trimmed += iter->di.len;
1770 __remove_discard_cmd(sbi, iter);
1771 } else {
1772 iter->ref++;
1773 dc = iter;
1774 break;
1775 }
1776 }
1777 mutex_unlock(&dcc->cmd_lock);
1778
1779 if (dc) {
1780 trimmed += __wait_one_discard_bio(sbi, dc);
1781 goto next;
1782 }
1783
1784 return trimmed;
1785 }
1786
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1787 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1788 struct discard_policy *dpolicy)
1789 {
1790 struct discard_policy dp;
1791 unsigned int discard_blks;
1792
1793 if (dpolicy)
1794 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1795
1796 /* wait all */
1797 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1798 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1799 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1800 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1801
1802 return discard_blks;
1803 }
1804
1805 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1806 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1807 {
1808 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1809 struct discard_cmd *dc;
1810 bool need_wait = false;
1811
1812 mutex_lock(&dcc->cmd_lock);
1813 dc = __lookup_discard_cmd(sbi, blkaddr);
1814 #ifdef CONFIG_BLK_DEV_ZONED
1815 if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1816 int devi = f2fs_bdev_index(sbi, dc->bdev);
1817
1818 if (devi < 0) {
1819 mutex_unlock(&dcc->cmd_lock);
1820 return;
1821 }
1822
1823 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1824 /* force submit zone reset */
1825 if (dc->state == D_PREP)
1826 __submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1827 &dcc->wait_list, NULL);
1828 dc->ref++;
1829 mutex_unlock(&dcc->cmd_lock);
1830 /* wait zone reset */
1831 __wait_one_discard_bio(sbi, dc);
1832 return;
1833 }
1834 }
1835 #endif
1836 if (dc) {
1837 if (dc->state == D_PREP) {
1838 __punch_discard_cmd(sbi, dc, blkaddr);
1839 } else {
1840 dc->ref++;
1841 need_wait = true;
1842 }
1843 }
1844 mutex_unlock(&dcc->cmd_lock);
1845
1846 if (need_wait)
1847 __wait_one_discard_bio(sbi, dc);
1848 }
1849
f2fs_stop_discard_thread(struct f2fs_sb_info * sbi)1850 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1851 {
1852 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1853
1854 if (dcc && dcc->f2fs_issue_discard) {
1855 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1856
1857 dcc->f2fs_issue_discard = NULL;
1858 kthread_stop(discard_thread);
1859 }
1860 }
1861
1862 /**
1863 * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1864 * @sbi: the f2fs_sb_info data for discard cmd to issue
1865 *
1866 * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1867 *
1868 * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1869 */
f2fs_issue_discard_timeout(struct f2fs_sb_info * sbi)1870 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1871 {
1872 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1873 struct discard_policy dpolicy;
1874 bool dropped;
1875
1876 if (!atomic_read(&dcc->discard_cmd_cnt))
1877 return true;
1878
1879 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1880 dcc->discard_granularity);
1881 __issue_discard_cmd(sbi, &dpolicy);
1882 dropped = __drop_discard_cmd(sbi);
1883
1884 /* just to make sure there is no pending discard commands */
1885 __wait_all_discard_cmd(sbi, NULL);
1886
1887 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1888 return !dropped;
1889 }
1890
issue_discard_thread(void * data)1891 static int issue_discard_thread(void *data)
1892 {
1893 struct f2fs_sb_info *sbi = data;
1894 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1895 wait_queue_head_t *q = &dcc->discard_wait_queue;
1896 struct discard_policy dpolicy;
1897 unsigned int wait_ms = dcc->min_discard_issue_time;
1898 int issued;
1899
1900 set_freezable();
1901
1902 do {
1903 wait_event_interruptible_timeout(*q,
1904 kthread_should_stop() || freezing(current) ||
1905 dcc->discard_wake,
1906 msecs_to_jiffies(wait_ms));
1907
1908 if (sbi->gc_mode == GC_URGENT_HIGH ||
1909 !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1910 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1911 MIN_DISCARD_GRANULARITY);
1912 else
1913 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1914 dcc->discard_granularity);
1915
1916 if (dcc->discard_wake)
1917 dcc->discard_wake = false;
1918
1919 /* clean up pending candidates before going to sleep */
1920 if (atomic_read(&dcc->queued_discard))
1921 __wait_all_discard_cmd(sbi, NULL);
1922
1923 if (try_to_freeze())
1924 continue;
1925 if (f2fs_readonly(sbi->sb))
1926 continue;
1927 if (kthread_should_stop())
1928 return 0;
1929 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1930 !atomic_read(&dcc->discard_cmd_cnt)) {
1931 wait_ms = dpolicy.max_interval;
1932 continue;
1933 }
1934
1935 sb_start_intwrite(sbi->sb);
1936
1937 issued = __issue_discard_cmd(sbi, &dpolicy);
1938 if (issued > 0) {
1939 __wait_all_discard_cmd(sbi, &dpolicy);
1940 wait_ms = dpolicy.min_interval;
1941 } else if (issued == -1) {
1942 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1943 if (!wait_ms)
1944 wait_ms = dpolicy.mid_interval;
1945 } else {
1946 wait_ms = dpolicy.max_interval;
1947 }
1948 if (!atomic_read(&dcc->discard_cmd_cnt))
1949 wait_ms = dpolicy.max_interval;
1950
1951 sb_end_intwrite(sbi->sb);
1952
1953 } while (!kthread_should_stop());
1954 return 0;
1955 }
1956
1957 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1958 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1959 struct block_device *bdev, block_t blkstart, block_t blklen)
1960 {
1961 sector_t sector, nr_sects;
1962 block_t lblkstart = blkstart;
1963 int devi = 0;
1964 u64 remainder = 0;
1965
1966 if (f2fs_is_multi_device(sbi)) {
1967 devi = f2fs_target_device_index(sbi, blkstart);
1968 if (blkstart < FDEV(devi).start_blk ||
1969 blkstart > FDEV(devi).end_blk) {
1970 f2fs_err(sbi, "Invalid block %x", blkstart);
1971 return -EIO;
1972 }
1973 blkstart -= FDEV(devi).start_blk;
1974 }
1975
1976 /* For sequential zones, reset the zone write pointer */
1977 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1978 sector = SECTOR_FROM_BLOCK(blkstart);
1979 nr_sects = SECTOR_FROM_BLOCK(blklen);
1980 div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
1981
1982 if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
1983 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1984 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1985 blkstart, blklen);
1986 return -EIO;
1987 }
1988
1989 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
1990 trace_f2fs_issue_reset_zone(bdev, blkstart);
1991 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1992 sector, nr_sects, GFP_NOFS);
1993 }
1994
1995 __queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
1996 return 0;
1997 }
1998
1999 /* For conventional zones, use regular discard if supported */
2000 __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
2001 return 0;
2002 }
2003 #endif
2004
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)2005 static int __issue_discard_async(struct f2fs_sb_info *sbi,
2006 struct block_device *bdev, block_t blkstart, block_t blklen)
2007 {
2008 #ifdef CONFIG_BLK_DEV_ZONED
2009 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
2010 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
2011 #endif
2012 __queue_discard_cmd(sbi, bdev, blkstart, blklen);
2013 return 0;
2014 }
2015
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)2016 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2017 block_t blkstart, block_t blklen)
2018 {
2019 sector_t start = blkstart, len = 0;
2020 struct block_device *bdev;
2021 struct seg_entry *se;
2022 unsigned int offset;
2023 block_t i;
2024 int err = 0;
2025
2026 bdev = f2fs_target_device(sbi, blkstart, NULL);
2027
2028 for (i = blkstart; i < blkstart + blklen; i++, len++) {
2029 if (i != start) {
2030 struct block_device *bdev2 =
2031 f2fs_target_device(sbi, i, NULL);
2032
2033 if (bdev2 != bdev) {
2034 err = __issue_discard_async(sbi, bdev,
2035 start, len);
2036 if (err)
2037 return err;
2038 bdev = bdev2;
2039 start = i;
2040 len = 0;
2041 }
2042 }
2043
2044 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2045 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2046
2047 if (f2fs_block_unit_discard(sbi) &&
2048 !f2fs_test_and_set_bit(offset, se->discard_map))
2049 sbi->discard_blks--;
2050 }
2051
2052 if (len)
2053 err = __issue_discard_async(sbi, bdev, start, len);
2054 return err;
2055 }
2056
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)2057 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2058 bool check_only)
2059 {
2060 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2061 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2062 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2063 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2064 unsigned long *discard_map = (unsigned long *)se->discard_map;
2065 unsigned long *dmap = SIT_I(sbi)->tmp_map;
2066 unsigned int start = 0, end = -1;
2067 bool force = (cpc->reason & CP_DISCARD);
2068 struct discard_entry *de = NULL;
2069 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2070 int i;
2071
2072 if (se->valid_blocks == BLKS_PER_SEG(sbi) ||
2073 !f2fs_hw_support_discard(sbi) ||
2074 !f2fs_block_unit_discard(sbi))
2075 return false;
2076
2077 if (!force) {
2078 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
2079 SM_I(sbi)->dcc_info->nr_discards >=
2080 SM_I(sbi)->dcc_info->max_discards)
2081 return false;
2082 }
2083
2084 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2085 for (i = 0; i < entries; i++)
2086 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2087 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2088
2089 while (force || SM_I(sbi)->dcc_info->nr_discards <=
2090 SM_I(sbi)->dcc_info->max_discards) {
2091 start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1);
2092 if (start >= BLKS_PER_SEG(sbi))
2093 break;
2094
2095 end = __find_rev_next_zero_bit(dmap,
2096 BLKS_PER_SEG(sbi), start + 1);
2097 if (force && start && end != BLKS_PER_SEG(sbi) &&
2098 (end - start) < cpc->trim_minlen)
2099 continue;
2100
2101 if (check_only)
2102 return true;
2103
2104 if (!de) {
2105 de = f2fs_kmem_cache_alloc(discard_entry_slab,
2106 GFP_F2FS_ZERO, true, NULL);
2107 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2108 list_add_tail(&de->list, head);
2109 }
2110
2111 for (i = start; i < end; i++)
2112 __set_bit_le(i, (void *)de->discard_map);
2113
2114 SM_I(sbi)->dcc_info->nr_discards += end - start;
2115 }
2116 return false;
2117 }
2118
release_discard_addr(struct discard_entry * entry)2119 static void release_discard_addr(struct discard_entry *entry)
2120 {
2121 list_del(&entry->list);
2122 kmem_cache_free(discard_entry_slab, entry);
2123 }
2124
f2fs_release_discard_addrs(struct f2fs_sb_info * sbi)2125 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2126 {
2127 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2128 struct discard_entry *entry, *this;
2129
2130 /* drop caches */
2131 list_for_each_entry_safe(entry, this, head, list)
2132 release_discard_addr(entry);
2133 }
2134
2135 /*
2136 * Should call f2fs_clear_prefree_segments after checkpoint is done.
2137 */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)2138 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2139 {
2140 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2141 unsigned int segno;
2142
2143 mutex_lock(&dirty_i->seglist_lock);
2144 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2145 __set_test_and_free(sbi, segno, false);
2146 mutex_unlock(&dirty_i->seglist_lock);
2147 }
2148
f2fs_clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)2149 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2150 struct cp_control *cpc)
2151 {
2152 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2153 struct list_head *head = &dcc->entry_list;
2154 struct discard_entry *entry, *this;
2155 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2156 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2157 unsigned int start = 0, end = -1;
2158 unsigned int secno, start_segno;
2159 bool force = (cpc->reason & CP_DISCARD);
2160 bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2161 DISCARD_UNIT_SECTION;
2162
2163 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2164 section_alignment = true;
2165
2166 mutex_lock(&dirty_i->seglist_lock);
2167
2168 while (1) {
2169 int i;
2170
2171 if (section_alignment && end != -1)
2172 end--;
2173 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2174 if (start >= MAIN_SEGS(sbi))
2175 break;
2176 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2177 start + 1);
2178
2179 if (section_alignment) {
2180 start = rounddown(start, SEGS_PER_SEC(sbi));
2181 end = roundup(end, SEGS_PER_SEC(sbi));
2182 }
2183
2184 for (i = start; i < end; i++) {
2185 if (test_and_clear_bit(i, prefree_map))
2186 dirty_i->nr_dirty[PRE]--;
2187 }
2188
2189 if (!f2fs_realtime_discard_enable(sbi))
2190 continue;
2191
2192 if (force && start >= cpc->trim_start &&
2193 (end - 1) <= cpc->trim_end)
2194 continue;
2195
2196 /* Should cover 2MB zoned device for zone-based reset */
2197 if (!f2fs_sb_has_blkzoned(sbi) &&
2198 (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2199 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2200 (end - start) << sbi->log_blocks_per_seg);
2201 continue;
2202 }
2203 next:
2204 secno = GET_SEC_FROM_SEG(sbi, start);
2205 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2206 if (!IS_CURSEC(sbi, secno) &&
2207 !get_valid_blocks(sbi, start, true))
2208 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2209 BLKS_PER_SEC(sbi));
2210
2211 start = start_segno + SEGS_PER_SEC(sbi);
2212 if (start < end)
2213 goto next;
2214 else
2215 end = start - 1;
2216 }
2217 mutex_unlock(&dirty_i->seglist_lock);
2218
2219 if (!f2fs_block_unit_discard(sbi))
2220 goto wakeup;
2221
2222 /* send small discards */
2223 list_for_each_entry_safe(entry, this, head, list) {
2224 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2225 bool is_valid = test_bit_le(0, entry->discard_map);
2226
2227 find_next:
2228 if (is_valid) {
2229 next_pos = find_next_zero_bit_le(entry->discard_map,
2230 BLKS_PER_SEG(sbi), cur_pos);
2231 len = next_pos - cur_pos;
2232
2233 if (f2fs_sb_has_blkzoned(sbi) ||
2234 (force && len < cpc->trim_minlen))
2235 goto skip;
2236
2237 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2238 len);
2239 total_len += len;
2240 } else {
2241 next_pos = find_next_bit_le(entry->discard_map,
2242 BLKS_PER_SEG(sbi), cur_pos);
2243 }
2244 skip:
2245 cur_pos = next_pos;
2246 is_valid = !is_valid;
2247
2248 if (cur_pos < BLKS_PER_SEG(sbi))
2249 goto find_next;
2250
2251 release_discard_addr(entry);
2252 dcc->nr_discards -= total_len;
2253 }
2254
2255 wakeup:
2256 wake_up_discard_thread(sbi, false);
2257 }
2258
f2fs_start_discard_thread(struct f2fs_sb_info * sbi)2259 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2260 {
2261 dev_t dev = sbi->sb->s_bdev->bd_dev;
2262 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2263 int err = 0;
2264
2265 if (!f2fs_realtime_discard_enable(sbi))
2266 return 0;
2267
2268 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2269 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2270 if (IS_ERR(dcc->f2fs_issue_discard)) {
2271 err = PTR_ERR(dcc->f2fs_issue_discard);
2272 dcc->f2fs_issue_discard = NULL;
2273 }
2274
2275 return err;
2276 }
2277
create_discard_cmd_control(struct f2fs_sb_info * sbi)2278 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2279 {
2280 struct discard_cmd_control *dcc;
2281 int err = 0, i;
2282
2283 if (SM_I(sbi)->dcc_info) {
2284 dcc = SM_I(sbi)->dcc_info;
2285 goto init_thread;
2286 }
2287
2288 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2289 if (!dcc)
2290 return -ENOMEM;
2291
2292 dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2293 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2294 dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2295 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2296 dcc->discard_granularity = BLKS_PER_SEG(sbi);
2297 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2298 dcc->discard_granularity = BLKS_PER_SEC(sbi);
2299
2300 INIT_LIST_HEAD(&dcc->entry_list);
2301 for (i = 0; i < MAX_PLIST_NUM; i++)
2302 INIT_LIST_HEAD(&dcc->pend_list[i]);
2303 INIT_LIST_HEAD(&dcc->wait_list);
2304 INIT_LIST_HEAD(&dcc->fstrim_list);
2305 mutex_init(&dcc->cmd_lock);
2306 atomic_set(&dcc->issued_discard, 0);
2307 atomic_set(&dcc->queued_discard, 0);
2308 atomic_set(&dcc->discard_cmd_cnt, 0);
2309 dcc->nr_discards = 0;
2310 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2311 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2312 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2313 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2314 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2315 dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2316 dcc->undiscard_blks = 0;
2317 dcc->next_pos = 0;
2318 dcc->root = RB_ROOT_CACHED;
2319 dcc->rbtree_check = false;
2320
2321 init_waitqueue_head(&dcc->discard_wait_queue);
2322 SM_I(sbi)->dcc_info = dcc;
2323 init_thread:
2324 err = f2fs_start_discard_thread(sbi);
2325 if (err) {
2326 kfree(dcc);
2327 SM_I(sbi)->dcc_info = NULL;
2328 }
2329
2330 return err;
2331 }
2332
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)2333 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2334 {
2335 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2336
2337 if (!dcc)
2338 return;
2339
2340 f2fs_stop_discard_thread(sbi);
2341
2342 /*
2343 * Recovery can cache discard commands, so in error path of
2344 * fill_super(), it needs to give a chance to handle them.
2345 */
2346 f2fs_issue_discard_timeout(sbi);
2347
2348 kfree(dcc);
2349 SM_I(sbi)->dcc_info = NULL;
2350 }
2351
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)2352 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2353 {
2354 struct sit_info *sit_i = SIT_I(sbi);
2355
2356 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2357 sit_i->dirty_sentries++;
2358 return false;
2359 }
2360
2361 return true;
2362 }
2363
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)2364 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2365 unsigned int segno, int modified)
2366 {
2367 struct seg_entry *se = get_seg_entry(sbi, segno);
2368
2369 se->type = type;
2370 if (modified)
2371 __mark_sit_entry_dirty(sbi, segno);
2372 }
2373
get_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr)2374 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2375 block_t blkaddr)
2376 {
2377 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2378
2379 if (segno == NULL_SEGNO)
2380 return 0;
2381 return get_seg_entry(sbi, segno)->mtime;
2382 }
2383
update_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned long long old_mtime)2384 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2385 unsigned long long old_mtime)
2386 {
2387 struct seg_entry *se;
2388 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2389 unsigned long long ctime = get_mtime(sbi, false);
2390 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2391
2392 if (segno == NULL_SEGNO)
2393 return;
2394
2395 se = get_seg_entry(sbi, segno);
2396
2397 if (!se->mtime)
2398 se->mtime = mtime;
2399 else
2400 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2401 se->valid_blocks + 1);
2402
2403 if (ctime > SIT_I(sbi)->max_mtime)
2404 SIT_I(sbi)->max_mtime = ctime;
2405 }
2406
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)2407 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2408 {
2409 struct seg_entry *se;
2410 unsigned int segno, offset;
2411 long int new_vblocks;
2412 bool exist;
2413 #ifdef CONFIG_F2FS_CHECK_FS
2414 bool mir_exist;
2415 #endif
2416
2417 segno = GET_SEGNO(sbi, blkaddr);
2418 if (segno == NULL_SEGNO)
2419 return;
2420
2421 se = get_seg_entry(sbi, segno);
2422 new_vblocks = se->valid_blocks + del;
2423 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2424
2425 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2426 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2427
2428 se->valid_blocks = new_vblocks;
2429
2430 /* Update valid block bitmap */
2431 if (del > 0) {
2432 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2433 #ifdef CONFIG_F2FS_CHECK_FS
2434 mir_exist = f2fs_test_and_set_bit(offset,
2435 se->cur_valid_map_mir);
2436 if (unlikely(exist != mir_exist)) {
2437 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2438 blkaddr, exist);
2439 f2fs_bug_on(sbi, 1);
2440 }
2441 #endif
2442 if (unlikely(exist)) {
2443 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2444 blkaddr);
2445 f2fs_bug_on(sbi, 1);
2446 se->valid_blocks--;
2447 del = 0;
2448 }
2449
2450 if (f2fs_block_unit_discard(sbi) &&
2451 !f2fs_test_and_set_bit(offset, se->discard_map))
2452 sbi->discard_blks--;
2453
2454 /*
2455 * SSR should never reuse block which is checkpointed
2456 * or newly invalidated.
2457 */
2458 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2459 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2460 se->ckpt_valid_blocks++;
2461 }
2462 } else {
2463 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2464 #ifdef CONFIG_F2FS_CHECK_FS
2465 mir_exist = f2fs_test_and_clear_bit(offset,
2466 se->cur_valid_map_mir);
2467 if (unlikely(exist != mir_exist)) {
2468 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2469 blkaddr, exist);
2470 f2fs_bug_on(sbi, 1);
2471 }
2472 #endif
2473 if (unlikely(!exist)) {
2474 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2475 blkaddr);
2476 f2fs_bug_on(sbi, 1);
2477 se->valid_blocks++;
2478 del = 0;
2479 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2480 /*
2481 * If checkpoints are off, we must not reuse data that
2482 * was used in the previous checkpoint. If it was used
2483 * before, we must track that to know how much space we
2484 * really have.
2485 */
2486 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2487 spin_lock(&sbi->stat_lock);
2488 sbi->unusable_block_count++;
2489 spin_unlock(&sbi->stat_lock);
2490 }
2491 }
2492
2493 if (f2fs_block_unit_discard(sbi) &&
2494 f2fs_test_and_clear_bit(offset, se->discard_map))
2495 sbi->discard_blks++;
2496 }
2497 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2498 se->ckpt_valid_blocks += del;
2499
2500 __mark_sit_entry_dirty(sbi, segno);
2501
2502 /* update total number of valid blocks to be written in ckpt area */
2503 SIT_I(sbi)->written_valid_blocks += del;
2504
2505 if (__is_large_section(sbi))
2506 get_sec_entry(sbi, segno)->valid_blocks += del;
2507 }
2508
f2fs_invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr)2509 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2510 {
2511 unsigned int segno = GET_SEGNO(sbi, addr);
2512 struct sit_info *sit_i = SIT_I(sbi);
2513
2514 f2fs_bug_on(sbi, addr == NULL_ADDR);
2515 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2516 return;
2517
2518 f2fs_invalidate_internal_cache(sbi, addr);
2519
2520 /* add it into sit main buffer */
2521 down_write(&sit_i->sentry_lock);
2522
2523 update_segment_mtime(sbi, addr, 0);
2524 update_sit_entry(sbi, addr, -1);
2525
2526 /* add it into dirty seglist */
2527 locate_dirty_segment(sbi, segno);
2528
2529 up_write(&sit_i->sentry_lock);
2530 }
2531
f2fs_is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)2532 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2533 {
2534 struct sit_info *sit_i = SIT_I(sbi);
2535 unsigned int segno, offset;
2536 struct seg_entry *se;
2537 bool is_cp = false;
2538
2539 if (!__is_valid_data_blkaddr(blkaddr))
2540 return true;
2541
2542 down_read(&sit_i->sentry_lock);
2543
2544 segno = GET_SEGNO(sbi, blkaddr);
2545 se = get_seg_entry(sbi, segno);
2546 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2547
2548 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2549 is_cp = true;
2550
2551 up_read(&sit_i->sentry_lock);
2552
2553 return is_cp;
2554 }
2555
f2fs_curseg_valid_blocks(struct f2fs_sb_info * sbi,int type)2556 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2557 {
2558 struct curseg_info *curseg = CURSEG_I(sbi, type);
2559
2560 if (sbi->ckpt->alloc_type[type] == SSR)
2561 return BLKS_PER_SEG(sbi);
2562 return curseg->next_blkoff;
2563 }
2564
2565 /*
2566 * Calculate the number of current summary pages for writing
2567 */
f2fs_npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2568 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2569 {
2570 int valid_sum_count = 0;
2571 int i, sum_in_page;
2572
2573 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2574 if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2575 valid_sum_count +=
2576 le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2577 else
2578 valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2579 }
2580
2581 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2582 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2583 if (valid_sum_count <= sum_in_page)
2584 return 1;
2585 else if ((valid_sum_count - sum_in_page) <=
2586 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2587 return 2;
2588 return 3;
2589 }
2590
2591 /*
2592 * Caller should put this summary page
2593 */
f2fs_get_sum_page(struct f2fs_sb_info * sbi,unsigned int segno)2594 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2595 {
2596 if (unlikely(f2fs_cp_error(sbi)))
2597 return ERR_PTR(-EIO);
2598 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2599 }
2600
f2fs_update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2601 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2602 void *src, block_t blk_addr)
2603 {
2604 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2605
2606 memcpy(page_address(page), src, PAGE_SIZE);
2607 set_page_dirty(page);
2608 f2fs_put_page(page, 1);
2609 }
2610
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,block_t blk_addr)2611 static void write_sum_page(struct f2fs_sb_info *sbi,
2612 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2613 {
2614 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2615 }
2616
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2617 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2618 int type, block_t blk_addr)
2619 {
2620 struct curseg_info *curseg = CURSEG_I(sbi, type);
2621 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2622 struct f2fs_summary_block *src = curseg->sum_blk;
2623 struct f2fs_summary_block *dst;
2624
2625 dst = (struct f2fs_summary_block *)page_address(page);
2626 memset(dst, 0, PAGE_SIZE);
2627
2628 mutex_lock(&curseg->curseg_mutex);
2629
2630 down_read(&curseg->journal_rwsem);
2631 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2632 up_read(&curseg->journal_rwsem);
2633
2634 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2635 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2636
2637 mutex_unlock(&curseg->curseg_mutex);
2638
2639 set_page_dirty(page);
2640 f2fs_put_page(page, 1);
2641 }
2642
is_next_segment_free(struct f2fs_sb_info * sbi,struct curseg_info * curseg,int type)2643 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2644 struct curseg_info *curseg, int type)
2645 {
2646 unsigned int segno = curseg->segno + 1;
2647 struct free_segmap_info *free_i = FREE_I(sbi);
2648
2649 if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi))
2650 return !test_bit(segno, free_i->free_segmap);
2651 return 0;
2652 }
2653
2654 /*
2655 * Find a new segment from the free segments bitmap to right order
2656 * This function should be returned with success, otherwise BUG
2657 */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,bool pinning)2658 static void get_new_segment(struct f2fs_sb_info *sbi,
2659 unsigned int *newseg, bool new_sec, bool pinning)
2660 {
2661 struct free_segmap_info *free_i = FREE_I(sbi);
2662 unsigned int segno, secno, zoneno;
2663 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2664 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2665 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2666 bool init = true;
2667 int i;
2668 int ret = 0;
2669
2670 spin_lock(&free_i->segmap_lock);
2671
2672 if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) {
2673 segno = find_next_zero_bit(free_i->free_segmap,
2674 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2675 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2676 goto got_it;
2677 }
2678
2679 /*
2680 * If we format f2fs on zoned storage, let's try to get pinned sections
2681 * from beginning of the storage, which should be a conventional one.
2682 */
2683 if (f2fs_sb_has_blkzoned(sbi)) {
2684 segno = pinning ? 0 : max(first_zoned_segno(sbi), *newseg);
2685 hint = GET_SEC_FROM_SEG(sbi, segno);
2686 }
2687
2688 find_other_zone:
2689 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2690 if (secno >= MAIN_SECS(sbi)) {
2691 secno = find_first_zero_bit(free_i->free_secmap,
2692 MAIN_SECS(sbi));
2693 if (secno >= MAIN_SECS(sbi)) {
2694 ret = -ENOSPC;
2695 goto out_unlock;
2696 }
2697 }
2698 segno = GET_SEG_FROM_SEC(sbi, secno);
2699 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2700
2701 /* give up on finding another zone */
2702 if (!init)
2703 goto got_it;
2704 if (sbi->secs_per_zone == 1)
2705 goto got_it;
2706 if (zoneno == old_zoneno)
2707 goto got_it;
2708 for (i = 0; i < NR_CURSEG_TYPE; i++)
2709 if (CURSEG_I(sbi, i)->zone == zoneno)
2710 break;
2711
2712 if (i < NR_CURSEG_TYPE) {
2713 /* zone is in user, try another */
2714 if (zoneno + 1 >= total_zones)
2715 hint = 0;
2716 else
2717 hint = (zoneno + 1) * sbi->secs_per_zone;
2718 init = false;
2719 goto find_other_zone;
2720 }
2721 got_it:
2722 /* set it as dirty segment in free segmap */
2723 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2724 __set_inuse(sbi, segno);
2725 *newseg = segno;
2726 out_unlock:
2727 spin_unlock(&free_i->segmap_lock);
2728
2729 if (ret) {
2730 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT);
2731 f2fs_bug_on(sbi, 1);
2732 }
2733 }
2734
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2735 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2736 {
2737 struct curseg_info *curseg = CURSEG_I(sbi, type);
2738 struct summary_footer *sum_footer;
2739 unsigned short seg_type = curseg->seg_type;
2740
2741 curseg->inited = true;
2742 curseg->segno = curseg->next_segno;
2743 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2744 curseg->next_blkoff = 0;
2745 curseg->next_segno = NULL_SEGNO;
2746
2747 sum_footer = &(curseg->sum_blk->footer);
2748 memset(sum_footer, 0, sizeof(struct summary_footer));
2749
2750 sanity_check_seg_type(sbi, seg_type);
2751
2752 if (IS_DATASEG(seg_type))
2753 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2754 if (IS_NODESEG(seg_type))
2755 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2756 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2757 }
2758
__get_next_segno(struct f2fs_sb_info * sbi,int type)2759 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2760 {
2761 struct curseg_info *curseg = CURSEG_I(sbi, type);
2762 unsigned short seg_type = curseg->seg_type;
2763
2764 sanity_check_seg_type(sbi, seg_type);
2765 if (f2fs_need_rand_seg(sbi))
2766 return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
2767
2768 if (__is_large_section(sbi))
2769 return curseg->segno;
2770
2771 /* inmem log may not locate on any segment after mount */
2772 if (!curseg->inited)
2773 return 0;
2774
2775 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2776 return 0;
2777
2778 if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))
2779 return 0;
2780
2781 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2782 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2783
2784 /* find segments from 0 to reuse freed segments */
2785 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2786 return 0;
2787
2788 return curseg->segno;
2789 }
2790
2791 /*
2792 * Allocate a current working segment.
2793 * This function always allocates a free segment in LFS manner.
2794 */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2795 static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2796 {
2797 struct curseg_info *curseg = CURSEG_I(sbi, type);
2798 unsigned int segno = curseg->segno;
2799 bool pinning = type == CURSEG_COLD_DATA_PINNED;
2800
2801 if (curseg->inited)
2802 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno));
2803
2804 segno = __get_next_segno(sbi, type);
2805 get_new_segment(sbi, &segno, new_sec, pinning);
2806 if (new_sec && pinning &&
2807 !f2fs_valid_pinned_area(sbi, START_BLOCK(sbi, segno))) {
2808 __set_free(sbi, segno);
2809 return -EAGAIN;
2810 }
2811
2812 curseg->next_segno = segno;
2813 reset_curseg(sbi, type, 1);
2814 curseg->alloc_type = LFS;
2815 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2816 curseg->fragment_remained_chunk =
2817 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2818 return 0;
2819 }
2820
__next_free_blkoff(struct f2fs_sb_info * sbi,int segno,block_t start)2821 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2822 int segno, block_t start)
2823 {
2824 struct seg_entry *se = get_seg_entry(sbi, segno);
2825 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2826 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2827 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2828 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2829 int i;
2830
2831 for (i = 0; i < entries; i++)
2832 target_map[i] = ckpt_map[i] | cur_map[i];
2833
2834 return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start);
2835 }
2836
f2fs_find_next_ssr_block(struct f2fs_sb_info * sbi,struct curseg_info * seg)2837 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
2838 struct curseg_info *seg)
2839 {
2840 return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
2841 }
2842
f2fs_segment_has_free_slot(struct f2fs_sb_info * sbi,int segno)2843 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2844 {
2845 return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi);
2846 }
2847
2848 /*
2849 * This function always allocates a used segment(from dirty seglist) by SSR
2850 * manner, so it should recover the existing segment information of valid blocks
2851 */
change_curseg(struct f2fs_sb_info * sbi,int type)2852 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2853 {
2854 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2855 struct curseg_info *curseg = CURSEG_I(sbi, type);
2856 unsigned int new_segno = curseg->next_segno;
2857 struct f2fs_summary_block *sum_node;
2858 struct page *sum_page;
2859
2860 if (curseg->inited)
2861 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2862
2863 __set_test_and_inuse(sbi, new_segno);
2864
2865 mutex_lock(&dirty_i->seglist_lock);
2866 __remove_dirty_segment(sbi, new_segno, PRE);
2867 __remove_dirty_segment(sbi, new_segno, DIRTY);
2868 mutex_unlock(&dirty_i->seglist_lock);
2869
2870 reset_curseg(sbi, type, 1);
2871 curseg->alloc_type = SSR;
2872 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2873
2874 sum_page = f2fs_get_sum_page(sbi, new_segno);
2875 if (IS_ERR(sum_page)) {
2876 /* GC won't be able to use stale summary pages by cp_error */
2877 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2878 return;
2879 }
2880 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2881 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2882 f2fs_put_page(sum_page, 1);
2883 }
2884
2885 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2886 int alloc_mode, unsigned long long age);
2887
get_atssr_segment(struct f2fs_sb_info * sbi,int type,int target_type,int alloc_mode,unsigned long long age)2888 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2889 int target_type, int alloc_mode,
2890 unsigned long long age)
2891 {
2892 struct curseg_info *curseg = CURSEG_I(sbi, type);
2893
2894 curseg->seg_type = target_type;
2895
2896 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2897 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2898
2899 curseg->seg_type = se->type;
2900 change_curseg(sbi, type);
2901 } else {
2902 /* allocate cold segment by default */
2903 curseg->seg_type = CURSEG_COLD_DATA;
2904 new_curseg(sbi, type, true);
2905 }
2906 stat_inc_seg_type(sbi, curseg);
2907 }
2908
__f2fs_init_atgc_curseg(struct f2fs_sb_info * sbi)2909 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2910 {
2911 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2912
2913 if (!sbi->am.atgc_enabled)
2914 return;
2915
2916 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2917
2918 mutex_lock(&curseg->curseg_mutex);
2919 down_write(&SIT_I(sbi)->sentry_lock);
2920
2921 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2922
2923 up_write(&SIT_I(sbi)->sentry_lock);
2924 mutex_unlock(&curseg->curseg_mutex);
2925
2926 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2927
2928 }
f2fs_init_inmem_curseg(struct f2fs_sb_info * sbi)2929 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2930 {
2931 __f2fs_init_atgc_curseg(sbi);
2932 }
2933
__f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi,int type)2934 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2935 {
2936 struct curseg_info *curseg = CURSEG_I(sbi, type);
2937
2938 mutex_lock(&curseg->curseg_mutex);
2939 if (!curseg->inited)
2940 goto out;
2941
2942 if (get_valid_blocks(sbi, curseg->segno, false)) {
2943 write_sum_page(sbi, curseg->sum_blk,
2944 GET_SUM_BLOCK(sbi, curseg->segno));
2945 } else {
2946 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2947 __set_test_and_free(sbi, curseg->segno, true);
2948 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2949 }
2950 out:
2951 mutex_unlock(&curseg->curseg_mutex);
2952 }
2953
f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi)2954 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2955 {
2956 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2957
2958 if (sbi->am.atgc_enabled)
2959 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2960 }
2961
__f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi,int type)2962 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2963 {
2964 struct curseg_info *curseg = CURSEG_I(sbi, type);
2965
2966 mutex_lock(&curseg->curseg_mutex);
2967 if (!curseg->inited)
2968 goto out;
2969 if (get_valid_blocks(sbi, curseg->segno, false))
2970 goto out;
2971
2972 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2973 __set_test_and_inuse(sbi, curseg->segno);
2974 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2975 out:
2976 mutex_unlock(&curseg->curseg_mutex);
2977 }
2978
f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi)2979 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2980 {
2981 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2982
2983 if (sbi->am.atgc_enabled)
2984 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2985 }
2986
get_ssr_segment(struct f2fs_sb_info * sbi,int type,int alloc_mode,unsigned long long age)2987 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2988 int alloc_mode, unsigned long long age)
2989 {
2990 struct curseg_info *curseg = CURSEG_I(sbi, type);
2991 unsigned segno = NULL_SEGNO;
2992 unsigned short seg_type = curseg->seg_type;
2993 int i, cnt;
2994 bool reversed = false;
2995
2996 sanity_check_seg_type(sbi, seg_type);
2997
2998 /* f2fs_need_SSR() already forces to do this */
2999 if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
3000 curseg->next_segno = segno;
3001 return 1;
3002 }
3003
3004 /* For node segments, let's do SSR more intensively */
3005 if (IS_NODESEG(seg_type)) {
3006 if (seg_type >= CURSEG_WARM_NODE) {
3007 reversed = true;
3008 i = CURSEG_COLD_NODE;
3009 } else {
3010 i = CURSEG_HOT_NODE;
3011 }
3012 cnt = NR_CURSEG_NODE_TYPE;
3013 } else {
3014 if (seg_type >= CURSEG_WARM_DATA) {
3015 reversed = true;
3016 i = CURSEG_COLD_DATA;
3017 } else {
3018 i = CURSEG_HOT_DATA;
3019 }
3020 cnt = NR_CURSEG_DATA_TYPE;
3021 }
3022
3023 for (; cnt-- > 0; reversed ? i-- : i++) {
3024 if (i == seg_type)
3025 continue;
3026 if (!f2fs_get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
3027 curseg->next_segno = segno;
3028 return 1;
3029 }
3030 }
3031
3032 /* find valid_blocks=0 in dirty list */
3033 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3034 segno = get_free_segment(sbi);
3035 if (segno != NULL_SEGNO) {
3036 curseg->next_segno = segno;
3037 return 1;
3038 }
3039 }
3040 return 0;
3041 }
3042
need_new_seg(struct f2fs_sb_info * sbi,int type)3043 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3044 {
3045 struct curseg_info *curseg = CURSEG_I(sbi, type);
3046
3047 if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3048 curseg->seg_type == CURSEG_WARM_NODE)
3049 return true;
3050 if (curseg->alloc_type == LFS &&
3051 is_next_segment_free(sbi, curseg, type) &&
3052 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3053 return true;
3054 if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3055 return true;
3056 return false;
3057 }
3058
f2fs_allocate_segment_for_resize(struct f2fs_sb_info * sbi,int type,unsigned int start,unsigned int end)3059 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3060 unsigned int start, unsigned int end)
3061 {
3062 struct curseg_info *curseg = CURSEG_I(sbi, type);
3063 unsigned int segno;
3064
3065 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3066 mutex_lock(&curseg->curseg_mutex);
3067 down_write(&SIT_I(sbi)->sentry_lock);
3068
3069 segno = CURSEG_I(sbi, type)->segno;
3070 if (segno < start || segno > end)
3071 goto unlock;
3072
3073 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3074 change_curseg(sbi, type);
3075 else
3076 new_curseg(sbi, type, true);
3077
3078 stat_inc_seg_type(sbi, curseg);
3079
3080 locate_dirty_segment(sbi, segno);
3081 unlock:
3082 up_write(&SIT_I(sbi)->sentry_lock);
3083
3084 if (segno != curseg->segno)
3085 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3086 type, segno, curseg->segno);
3087
3088 mutex_unlock(&curseg->curseg_mutex);
3089 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3090 }
3091
__allocate_new_segment(struct f2fs_sb_info * sbi,int type,bool new_sec,bool force)3092 static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3093 bool new_sec, bool force)
3094 {
3095 struct curseg_info *curseg = CURSEG_I(sbi, type);
3096 unsigned int old_segno;
3097
3098 if (!force && curseg->inited &&
3099 !curseg->next_blkoff &&
3100 !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3101 !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3102 return 0;
3103
3104 old_segno = curseg->segno;
3105 if (new_curseg(sbi, type, true))
3106 return -EAGAIN;
3107 stat_inc_seg_type(sbi, curseg);
3108 locate_dirty_segment(sbi, old_segno);
3109 return 0;
3110 }
3111
f2fs_allocate_new_section(struct f2fs_sb_info * sbi,int type,bool force)3112 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3113 {
3114 int ret;
3115
3116 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3117 down_write(&SIT_I(sbi)->sentry_lock);
3118 ret = __allocate_new_segment(sbi, type, true, force);
3119 up_write(&SIT_I(sbi)->sentry_lock);
3120 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3121
3122 return ret;
3123 }
3124
f2fs_allocate_pinning_section(struct f2fs_sb_info * sbi)3125 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi)
3126 {
3127 int err;
3128 bool gc_required = true;
3129
3130 retry:
3131 f2fs_lock_op(sbi);
3132 err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3133 f2fs_unlock_op(sbi);
3134
3135 if (f2fs_sb_has_blkzoned(sbi) && err && gc_required) {
3136 f2fs_down_write(&sbi->gc_lock);
3137 f2fs_gc_range(sbi, 0, GET_SEGNO(sbi, FDEV(0).end_blk), true, 1);
3138 f2fs_up_write(&sbi->gc_lock);
3139
3140 gc_required = false;
3141 goto retry;
3142 }
3143
3144 return err;
3145 }
3146
f2fs_allocate_new_segments(struct f2fs_sb_info * sbi)3147 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3148 {
3149 int i;
3150
3151 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3152 down_write(&SIT_I(sbi)->sentry_lock);
3153 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3154 __allocate_new_segment(sbi, i, false, false);
3155 up_write(&SIT_I(sbi)->sentry_lock);
3156 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3157 }
3158
f2fs_exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)3159 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3160 struct cp_control *cpc)
3161 {
3162 __u64 trim_start = cpc->trim_start;
3163 bool has_candidate = false;
3164
3165 down_write(&SIT_I(sbi)->sentry_lock);
3166 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3167 if (add_discard_addrs(sbi, cpc, true)) {
3168 has_candidate = true;
3169 break;
3170 }
3171 }
3172 up_write(&SIT_I(sbi)->sentry_lock);
3173
3174 cpc->trim_start = trim_start;
3175 return has_candidate;
3176 }
3177
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)3178 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3179 struct discard_policy *dpolicy,
3180 unsigned int start, unsigned int end)
3181 {
3182 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3183 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3184 struct rb_node **insert_p = NULL, *insert_parent = NULL;
3185 struct discard_cmd *dc;
3186 struct blk_plug plug;
3187 int issued;
3188 unsigned int trimmed = 0;
3189
3190 next:
3191 issued = 0;
3192
3193 mutex_lock(&dcc->cmd_lock);
3194 if (unlikely(dcc->rbtree_check))
3195 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3196
3197 dc = __lookup_discard_cmd_ret(&dcc->root, start,
3198 &prev_dc, &next_dc, &insert_p, &insert_parent);
3199 if (!dc)
3200 dc = next_dc;
3201
3202 blk_start_plug(&plug);
3203
3204 while (dc && dc->di.lstart <= end) {
3205 struct rb_node *node;
3206 int err = 0;
3207
3208 if (dc->di.len < dpolicy->granularity)
3209 goto skip;
3210
3211 if (dc->state != D_PREP) {
3212 list_move_tail(&dc->list, &dcc->fstrim_list);
3213 goto skip;
3214 }
3215
3216 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3217
3218 if (issued >= dpolicy->max_requests) {
3219 start = dc->di.lstart + dc->di.len;
3220
3221 if (err)
3222 __remove_discard_cmd(sbi, dc);
3223
3224 blk_finish_plug(&plug);
3225 mutex_unlock(&dcc->cmd_lock);
3226 trimmed += __wait_all_discard_cmd(sbi, NULL);
3227 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3228 goto next;
3229 }
3230 skip:
3231 node = rb_next(&dc->rb_node);
3232 if (err)
3233 __remove_discard_cmd(sbi, dc);
3234 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3235
3236 if (fatal_signal_pending(current))
3237 break;
3238 }
3239
3240 blk_finish_plug(&plug);
3241 mutex_unlock(&dcc->cmd_lock);
3242
3243 return trimmed;
3244 }
3245
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)3246 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3247 {
3248 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3249 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3250 unsigned int start_segno, end_segno;
3251 block_t start_block, end_block;
3252 struct cp_control cpc;
3253 struct discard_policy dpolicy;
3254 unsigned long long trimmed = 0;
3255 int err = 0;
3256 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3257
3258 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3259 return -EINVAL;
3260
3261 if (end < MAIN_BLKADDR(sbi))
3262 goto out;
3263
3264 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3265 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3266 return -EFSCORRUPTED;
3267 }
3268
3269 /* start/end segment number in main_area */
3270 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3271 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3272 GET_SEGNO(sbi, end);
3273 if (need_align) {
3274 start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi));
3275 end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1;
3276 }
3277
3278 cpc.reason = CP_DISCARD;
3279 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3280 cpc.trim_start = start_segno;
3281 cpc.trim_end = end_segno;
3282
3283 if (sbi->discard_blks == 0)
3284 goto out;
3285
3286 f2fs_down_write(&sbi->gc_lock);
3287 stat_inc_cp_call_count(sbi, TOTAL_CALL);
3288 err = f2fs_write_checkpoint(sbi, &cpc);
3289 f2fs_up_write(&sbi->gc_lock);
3290 if (err)
3291 goto out;
3292
3293 /*
3294 * We filed discard candidates, but actually we don't need to wait for
3295 * all of them, since they'll be issued in idle time along with runtime
3296 * discard option. User configuration looks like using runtime discard
3297 * or periodic fstrim instead of it.
3298 */
3299 if (f2fs_realtime_discard_enable(sbi))
3300 goto out;
3301
3302 start_block = START_BLOCK(sbi, start_segno);
3303 end_block = START_BLOCK(sbi, end_segno + 1);
3304
3305 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3306 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3307 start_block, end_block);
3308
3309 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3310 start_block, end_block);
3311 out:
3312 if (!err)
3313 range->len = F2FS_BLK_TO_BYTES(trimmed);
3314 return err;
3315 }
3316
f2fs_rw_hint_to_seg_type(enum rw_hint hint)3317 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3318 {
3319 switch (hint) {
3320 case WRITE_LIFE_SHORT:
3321 return CURSEG_HOT_DATA;
3322 case WRITE_LIFE_EXTREME:
3323 return CURSEG_COLD_DATA;
3324 default:
3325 return CURSEG_WARM_DATA;
3326 }
3327 }
3328
__get_segment_type_2(struct f2fs_io_info * fio)3329 static int __get_segment_type_2(struct f2fs_io_info *fio)
3330 {
3331 if (fio->type == DATA)
3332 return CURSEG_HOT_DATA;
3333 else
3334 return CURSEG_HOT_NODE;
3335 }
3336
__get_segment_type_4(struct f2fs_io_info * fio)3337 static int __get_segment_type_4(struct f2fs_io_info *fio)
3338 {
3339 if (fio->type == DATA) {
3340 struct inode *inode = fio->page->mapping->host;
3341
3342 if (S_ISDIR(inode->i_mode))
3343 return CURSEG_HOT_DATA;
3344 else
3345 return CURSEG_COLD_DATA;
3346 } else {
3347 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3348 return CURSEG_WARM_NODE;
3349 else
3350 return CURSEG_COLD_NODE;
3351 }
3352 }
3353
__get_age_segment_type(struct inode * inode,pgoff_t pgofs)3354 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3355 {
3356 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3357 struct extent_info ei = {};
3358
3359 if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3360 if (!ei.age)
3361 return NO_CHECK_TYPE;
3362 if (ei.age <= sbi->hot_data_age_threshold)
3363 return CURSEG_HOT_DATA;
3364 if (ei.age <= sbi->warm_data_age_threshold)
3365 return CURSEG_WARM_DATA;
3366 return CURSEG_COLD_DATA;
3367 }
3368 return NO_CHECK_TYPE;
3369 }
3370
__get_segment_type_6(struct f2fs_io_info * fio)3371 static int __get_segment_type_6(struct f2fs_io_info *fio)
3372 {
3373 if (fio->type == DATA) {
3374 struct inode *inode = fio->page->mapping->host;
3375 int type;
3376
3377 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3378 return CURSEG_COLD_DATA_PINNED;
3379
3380 if (page_private_gcing(fio->page)) {
3381 if (fio->sbi->am.atgc_enabled &&
3382 (fio->io_type == FS_DATA_IO) &&
3383 (fio->sbi->gc_mode != GC_URGENT_HIGH) &&
3384 __is_valid_data_blkaddr(fio->old_blkaddr) &&
3385 !is_inode_flag_set(inode, FI_OPU_WRITE))
3386 return CURSEG_ALL_DATA_ATGC;
3387 else
3388 return CURSEG_COLD_DATA;
3389 }
3390 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3391 return CURSEG_COLD_DATA;
3392
3393 type = __get_age_segment_type(inode, fio->page->index);
3394 if (type != NO_CHECK_TYPE)
3395 return type;
3396
3397 if (file_is_hot(inode) ||
3398 is_inode_flag_set(inode, FI_HOT_DATA) ||
3399 f2fs_is_cow_file(inode))
3400 return CURSEG_HOT_DATA;
3401 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3402 } else {
3403 if (IS_DNODE(fio->page))
3404 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3405 CURSEG_HOT_NODE;
3406 return CURSEG_COLD_NODE;
3407 }
3408 }
3409
__get_segment_type(struct f2fs_io_info * fio)3410 static int __get_segment_type(struct f2fs_io_info *fio)
3411 {
3412 int type = 0;
3413
3414 switch (F2FS_OPTION(fio->sbi).active_logs) {
3415 case 2:
3416 type = __get_segment_type_2(fio);
3417 break;
3418 case 4:
3419 type = __get_segment_type_4(fio);
3420 break;
3421 case 6:
3422 type = __get_segment_type_6(fio);
3423 break;
3424 default:
3425 f2fs_bug_on(fio->sbi, true);
3426 }
3427
3428 if (IS_HOT(type))
3429 fio->temp = HOT;
3430 else if (IS_WARM(type))
3431 fio->temp = WARM;
3432 else
3433 fio->temp = COLD;
3434 return type;
3435 }
3436
f2fs_randomize_chunk(struct f2fs_sb_info * sbi,struct curseg_info * seg)3437 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3438 struct curseg_info *seg)
3439 {
3440 /* To allocate block chunks in different sizes, use random number */
3441 if (--seg->fragment_remained_chunk > 0)
3442 return;
3443
3444 seg->fragment_remained_chunk =
3445 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3446 seg->next_blkoff +=
3447 get_random_u32_inclusive(1, sbi->max_fragment_hole);
3448 }
3449
f2fs_allocate_data_block(struct f2fs_sb_info * sbi,struct page * page,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio)3450 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3451 block_t old_blkaddr, block_t *new_blkaddr,
3452 struct f2fs_summary *sum, int type,
3453 struct f2fs_io_info *fio)
3454 {
3455 struct sit_info *sit_i = SIT_I(sbi);
3456 struct curseg_info *curseg = CURSEG_I(sbi, type);
3457 unsigned long long old_mtime;
3458 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3459 struct seg_entry *se = NULL;
3460 bool segment_full = false;
3461
3462 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3463
3464 mutex_lock(&curseg->curseg_mutex);
3465 down_write(&sit_i->sentry_lock);
3466
3467 if (from_gc) {
3468 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3469 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3470 sanity_check_seg_type(sbi, se->type);
3471 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3472 }
3473 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3474
3475 f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi));
3476
3477 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3478
3479 curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3480 if (curseg->alloc_type == SSR) {
3481 curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3482 } else {
3483 curseg->next_blkoff++;
3484 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3485 f2fs_randomize_chunk(sbi, curseg);
3486 }
3487 if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3488 segment_full = true;
3489 stat_inc_block_count(sbi, curseg);
3490
3491 if (from_gc) {
3492 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3493 } else {
3494 update_segment_mtime(sbi, old_blkaddr, 0);
3495 old_mtime = 0;
3496 }
3497 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3498
3499 /*
3500 * SIT information should be updated before segment allocation,
3501 * since SSR needs latest valid block information.
3502 */
3503 update_sit_entry(sbi, *new_blkaddr, 1);
3504 update_sit_entry(sbi, old_blkaddr, -1);
3505
3506 /*
3507 * If the current segment is full, flush it out and replace it with a
3508 * new segment.
3509 */
3510 if (segment_full) {
3511 if (type == CURSEG_COLD_DATA_PINNED &&
3512 !((curseg->segno + 1) % sbi->segs_per_sec)) {
3513 write_sum_page(sbi, curseg->sum_blk,
3514 GET_SUM_BLOCK(sbi, curseg->segno));
3515 goto skip_new_segment;
3516 }
3517
3518 if (from_gc) {
3519 get_atssr_segment(sbi, type, se->type,
3520 AT_SSR, se->mtime);
3521 } else {
3522 if (need_new_seg(sbi, type))
3523 new_curseg(sbi, type, false);
3524 else
3525 change_curseg(sbi, type);
3526 stat_inc_seg_type(sbi, curseg);
3527 }
3528 }
3529
3530 skip_new_segment:
3531 /*
3532 * segment dirty status should be updated after segment allocation,
3533 * so we just need to update status only one time after previous
3534 * segment being closed.
3535 */
3536 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3537 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3538
3539 if (IS_DATASEG(curseg->seg_type))
3540 atomic64_inc(&sbi->allocated_data_blocks);
3541
3542 up_write(&sit_i->sentry_lock);
3543
3544 if (page && IS_NODESEG(curseg->seg_type)) {
3545 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3546
3547 f2fs_inode_chksum_set(sbi, page);
3548 }
3549
3550 if (fio) {
3551 struct f2fs_bio_info *io;
3552
3553 INIT_LIST_HEAD(&fio->list);
3554 fio->in_list = 1;
3555 io = sbi->write_io[fio->type] + fio->temp;
3556 spin_lock(&io->io_lock);
3557 list_add_tail(&fio->list, &io->io_list);
3558 spin_unlock(&io->io_lock);
3559 }
3560
3561 mutex_unlock(&curseg->curseg_mutex);
3562
3563 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3564 }
3565
f2fs_update_device_state(struct f2fs_sb_info * sbi,nid_t ino,block_t blkaddr,unsigned int blkcnt)3566 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3567 block_t blkaddr, unsigned int blkcnt)
3568 {
3569 if (!f2fs_is_multi_device(sbi))
3570 return;
3571
3572 while (1) {
3573 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3574 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3575
3576 /* update device state for fsync */
3577 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3578
3579 /* update device state for checkpoint */
3580 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3581 spin_lock(&sbi->dev_lock);
3582 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3583 spin_unlock(&sbi->dev_lock);
3584 }
3585
3586 if (blkcnt <= blks)
3587 break;
3588 blkcnt -= blks;
3589 blkaddr += blks;
3590 }
3591 }
3592
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)3593 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3594 {
3595 int type = __get_segment_type(fio);
3596 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3597
3598 if (keep_order)
3599 f2fs_down_read(&fio->sbi->io_order_lock);
3600
3601 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3602 &fio->new_blkaddr, sum, type, fio);
3603 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3604 f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr);
3605
3606 /* writeout dirty page into bdev */
3607 f2fs_submit_page_write(fio);
3608
3609 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3610
3611 if (keep_order)
3612 f2fs_up_read(&fio->sbi->io_order_lock);
3613 }
3614
f2fs_do_write_meta_page(struct f2fs_sb_info * sbi,struct page * page,enum iostat_type io_type)3615 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3616 enum iostat_type io_type)
3617 {
3618 struct f2fs_io_info fio = {
3619 .sbi = sbi,
3620 .type = META,
3621 .temp = HOT,
3622 .op = REQ_OP_WRITE,
3623 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3624 .old_blkaddr = page->index,
3625 .new_blkaddr = page->index,
3626 .page = page,
3627 .encrypted_page = NULL,
3628 .in_list = 0,
3629 };
3630
3631 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3632 fio.op_flags &= ~REQ_META;
3633
3634 set_page_writeback(page);
3635 f2fs_submit_page_write(&fio);
3636
3637 stat_inc_meta_count(sbi, page->index);
3638 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3639 }
3640
f2fs_do_write_node_page(unsigned int nid,struct f2fs_io_info * fio)3641 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3642 {
3643 struct f2fs_summary sum;
3644
3645 set_summary(&sum, nid, 0, 0);
3646 do_write_page(&sum, fio);
3647
3648 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3649 }
3650
f2fs_outplace_write_data(struct dnode_of_data * dn,struct f2fs_io_info * fio)3651 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3652 struct f2fs_io_info *fio)
3653 {
3654 struct f2fs_sb_info *sbi = fio->sbi;
3655 struct f2fs_summary sum;
3656
3657 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3658 if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3659 f2fs_update_age_extent_cache(dn);
3660 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3661 do_write_page(&sum, fio);
3662 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3663
3664 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3665 }
3666
f2fs_inplace_write_data(struct f2fs_io_info * fio)3667 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3668 {
3669 int err;
3670 struct f2fs_sb_info *sbi = fio->sbi;
3671 unsigned int segno;
3672
3673 fio->new_blkaddr = fio->old_blkaddr;
3674 /* i/o temperature is needed for passing down write hints */
3675 __get_segment_type(fio);
3676
3677 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3678
3679 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3680 set_sbi_flag(sbi, SBI_NEED_FSCK);
3681 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3682 __func__, segno);
3683 err = -EFSCORRUPTED;
3684 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3685 goto drop_bio;
3686 }
3687
3688 if (f2fs_cp_error(sbi)) {
3689 err = -EIO;
3690 goto drop_bio;
3691 }
3692
3693 if (fio->meta_gc)
3694 f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1);
3695
3696 stat_inc_inplace_blocks(fio->sbi);
3697
3698 if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
3699 err = f2fs_merge_page_bio(fio);
3700 else
3701 err = f2fs_submit_page_bio(fio);
3702 if (!err) {
3703 f2fs_update_device_state(fio->sbi, fio->ino,
3704 fio->new_blkaddr, 1);
3705 f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3706 fio->io_type, F2FS_BLKSIZE);
3707 }
3708
3709 return err;
3710 drop_bio:
3711 if (fio->bio && *(fio->bio)) {
3712 struct bio *bio = *(fio->bio);
3713
3714 bio->bi_status = BLK_STS_IOERR;
3715 bio_endio(bio);
3716 *(fio->bio) = NULL;
3717 }
3718 return err;
3719 }
3720
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)3721 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3722 unsigned int segno)
3723 {
3724 int i;
3725
3726 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3727 if (CURSEG_I(sbi, i)->segno == segno)
3728 break;
3729 }
3730 return i;
3731 }
3732
f2fs_do_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr,bool from_gc)3733 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3734 block_t old_blkaddr, block_t new_blkaddr,
3735 bool recover_curseg, bool recover_newaddr,
3736 bool from_gc)
3737 {
3738 struct sit_info *sit_i = SIT_I(sbi);
3739 struct curseg_info *curseg;
3740 unsigned int segno, old_cursegno;
3741 struct seg_entry *se;
3742 int type;
3743 unsigned short old_blkoff;
3744 unsigned char old_alloc_type;
3745
3746 segno = GET_SEGNO(sbi, new_blkaddr);
3747 se = get_seg_entry(sbi, segno);
3748 type = se->type;
3749
3750 f2fs_down_write(&SM_I(sbi)->curseg_lock);
3751
3752 if (!recover_curseg) {
3753 /* for recovery flow */
3754 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3755 if (old_blkaddr == NULL_ADDR)
3756 type = CURSEG_COLD_DATA;
3757 else
3758 type = CURSEG_WARM_DATA;
3759 }
3760 } else {
3761 if (IS_CURSEG(sbi, segno)) {
3762 /* se->type is volatile as SSR allocation */
3763 type = __f2fs_get_curseg(sbi, segno);
3764 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3765 } else {
3766 type = CURSEG_WARM_DATA;
3767 }
3768 }
3769
3770 curseg = CURSEG_I(sbi, type);
3771 f2fs_bug_on(sbi, !IS_DATASEG(curseg->seg_type));
3772
3773 mutex_lock(&curseg->curseg_mutex);
3774 down_write(&sit_i->sentry_lock);
3775
3776 old_cursegno = curseg->segno;
3777 old_blkoff = curseg->next_blkoff;
3778 old_alloc_type = curseg->alloc_type;
3779
3780 /* change the current segment */
3781 if (segno != curseg->segno) {
3782 curseg->next_segno = segno;
3783 change_curseg(sbi, type);
3784 }
3785
3786 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3787 curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3788
3789 if (!recover_curseg || recover_newaddr) {
3790 if (!from_gc)
3791 update_segment_mtime(sbi, new_blkaddr, 0);
3792 update_sit_entry(sbi, new_blkaddr, 1);
3793 }
3794 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3795 f2fs_invalidate_internal_cache(sbi, old_blkaddr);
3796 if (!from_gc)
3797 update_segment_mtime(sbi, old_blkaddr, 0);
3798 update_sit_entry(sbi, old_blkaddr, -1);
3799 }
3800
3801 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3802 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3803
3804 locate_dirty_segment(sbi, old_cursegno);
3805
3806 if (recover_curseg) {
3807 if (old_cursegno != curseg->segno) {
3808 curseg->next_segno = old_cursegno;
3809 change_curseg(sbi, type);
3810 }
3811 curseg->next_blkoff = old_blkoff;
3812 curseg->alloc_type = old_alloc_type;
3813 }
3814
3815 up_write(&sit_i->sentry_lock);
3816 mutex_unlock(&curseg->curseg_mutex);
3817 f2fs_up_write(&SM_I(sbi)->curseg_lock);
3818 }
3819
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)3820 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3821 block_t old_addr, block_t new_addr,
3822 unsigned char version, bool recover_curseg,
3823 bool recover_newaddr)
3824 {
3825 struct f2fs_summary sum;
3826
3827 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3828
3829 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3830 recover_curseg, recover_newaddr, false);
3831
3832 f2fs_update_data_blkaddr(dn, new_addr);
3833 }
3834
f2fs_wait_on_page_writeback(struct page * page,enum page_type type,bool ordered,bool locked)3835 void f2fs_wait_on_page_writeback(struct page *page,
3836 enum page_type type, bool ordered, bool locked)
3837 {
3838 if (PageWriteback(page)) {
3839 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3840
3841 /* submit cached LFS IO */
3842 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3843 /* submit cached IPU IO */
3844 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3845 if (ordered) {
3846 wait_on_page_writeback(page);
3847 f2fs_bug_on(sbi, locked && PageWriteback(page));
3848 } else {
3849 wait_for_stable_page(page);
3850 }
3851 }
3852 }
3853
f2fs_wait_on_block_writeback(struct inode * inode,block_t blkaddr)3854 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3855 {
3856 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3857 struct page *cpage;
3858
3859 if (!f2fs_meta_inode_gc_required(inode))
3860 return;
3861
3862 if (!__is_valid_data_blkaddr(blkaddr))
3863 return;
3864
3865 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3866 if (cpage) {
3867 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3868 f2fs_put_page(cpage, 1);
3869 }
3870 }
3871
f2fs_wait_on_block_writeback_range(struct inode * inode,block_t blkaddr,block_t len)3872 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3873 block_t len)
3874 {
3875 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3876 block_t i;
3877
3878 if (!f2fs_meta_inode_gc_required(inode))
3879 return;
3880
3881 for (i = 0; i < len; i++)
3882 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3883
3884 f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
3885 }
3886
read_compacted_summaries(struct f2fs_sb_info * sbi)3887 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3888 {
3889 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3890 struct curseg_info *seg_i;
3891 unsigned char *kaddr;
3892 struct page *page;
3893 block_t start;
3894 int i, j, offset;
3895
3896 start = start_sum_block(sbi);
3897
3898 page = f2fs_get_meta_page(sbi, start++);
3899 if (IS_ERR(page))
3900 return PTR_ERR(page);
3901 kaddr = (unsigned char *)page_address(page);
3902
3903 /* Step 1: restore nat cache */
3904 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3905 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3906
3907 /* Step 2: restore sit cache */
3908 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3909 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3910 offset = 2 * SUM_JOURNAL_SIZE;
3911
3912 /* Step 3: restore summary entries */
3913 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3914 unsigned short blk_off;
3915 unsigned int segno;
3916
3917 seg_i = CURSEG_I(sbi, i);
3918 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3919 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3920 seg_i->next_segno = segno;
3921 reset_curseg(sbi, i, 0);
3922 seg_i->alloc_type = ckpt->alloc_type[i];
3923 seg_i->next_blkoff = blk_off;
3924
3925 if (seg_i->alloc_type == SSR)
3926 blk_off = BLKS_PER_SEG(sbi);
3927
3928 for (j = 0; j < blk_off; j++) {
3929 struct f2fs_summary *s;
3930
3931 s = (struct f2fs_summary *)(kaddr + offset);
3932 seg_i->sum_blk->entries[j] = *s;
3933 offset += SUMMARY_SIZE;
3934 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3935 SUM_FOOTER_SIZE)
3936 continue;
3937
3938 f2fs_put_page(page, 1);
3939 page = NULL;
3940
3941 page = f2fs_get_meta_page(sbi, start++);
3942 if (IS_ERR(page))
3943 return PTR_ERR(page);
3944 kaddr = (unsigned char *)page_address(page);
3945 offset = 0;
3946 }
3947 }
3948 f2fs_put_page(page, 1);
3949 return 0;
3950 }
3951
read_normal_summaries(struct f2fs_sb_info * sbi,int type)3952 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3953 {
3954 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3955 struct f2fs_summary_block *sum;
3956 struct curseg_info *curseg;
3957 struct page *new;
3958 unsigned short blk_off;
3959 unsigned int segno = 0;
3960 block_t blk_addr = 0;
3961 int err = 0;
3962
3963 /* get segment number and block addr */
3964 if (IS_DATASEG(type)) {
3965 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3966 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3967 CURSEG_HOT_DATA]);
3968 if (__exist_node_summaries(sbi))
3969 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3970 else
3971 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3972 } else {
3973 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3974 CURSEG_HOT_NODE]);
3975 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3976 CURSEG_HOT_NODE]);
3977 if (__exist_node_summaries(sbi))
3978 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3979 type - CURSEG_HOT_NODE);
3980 else
3981 blk_addr = GET_SUM_BLOCK(sbi, segno);
3982 }
3983
3984 new = f2fs_get_meta_page(sbi, blk_addr);
3985 if (IS_ERR(new))
3986 return PTR_ERR(new);
3987 sum = (struct f2fs_summary_block *)page_address(new);
3988
3989 if (IS_NODESEG(type)) {
3990 if (__exist_node_summaries(sbi)) {
3991 struct f2fs_summary *ns = &sum->entries[0];
3992 int i;
3993
3994 for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) {
3995 ns->version = 0;
3996 ns->ofs_in_node = 0;
3997 }
3998 } else {
3999 err = f2fs_restore_node_summary(sbi, segno, sum);
4000 if (err)
4001 goto out;
4002 }
4003 }
4004
4005 /* set uncompleted segment to curseg */
4006 curseg = CURSEG_I(sbi, type);
4007 mutex_lock(&curseg->curseg_mutex);
4008
4009 /* update journal info */
4010 down_write(&curseg->journal_rwsem);
4011 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
4012 up_write(&curseg->journal_rwsem);
4013
4014 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
4015 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
4016 curseg->next_segno = segno;
4017 reset_curseg(sbi, type, 0);
4018 curseg->alloc_type = ckpt->alloc_type[type];
4019 curseg->next_blkoff = blk_off;
4020 mutex_unlock(&curseg->curseg_mutex);
4021 out:
4022 f2fs_put_page(new, 1);
4023 return err;
4024 }
4025
restore_curseg_summaries(struct f2fs_sb_info * sbi)4026 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
4027 {
4028 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
4029 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
4030 int type = CURSEG_HOT_DATA;
4031 int err;
4032
4033 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4034 int npages = f2fs_npages_for_summary_flush(sbi, true);
4035
4036 if (npages >= 2)
4037 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4038 META_CP, true);
4039
4040 /* restore for compacted data summary */
4041 err = read_compacted_summaries(sbi);
4042 if (err)
4043 return err;
4044 type = CURSEG_HOT_NODE;
4045 }
4046
4047 if (__exist_node_summaries(sbi))
4048 f2fs_ra_meta_pages(sbi,
4049 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4050 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4051
4052 for (; type <= CURSEG_COLD_NODE; type++) {
4053 err = read_normal_summaries(sbi, type);
4054 if (err)
4055 return err;
4056 }
4057
4058 /* sanity check for summary blocks */
4059 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4060 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4061 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4062 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4063 return -EINVAL;
4064 }
4065
4066 return 0;
4067 }
4068
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)4069 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4070 {
4071 struct page *page;
4072 unsigned char *kaddr;
4073 struct f2fs_summary *summary;
4074 struct curseg_info *seg_i;
4075 int written_size = 0;
4076 int i, j;
4077
4078 page = f2fs_grab_meta_page(sbi, blkaddr++);
4079 kaddr = (unsigned char *)page_address(page);
4080 memset(kaddr, 0, PAGE_SIZE);
4081
4082 /* Step 1: write nat cache */
4083 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4084 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4085 written_size += SUM_JOURNAL_SIZE;
4086
4087 /* Step 2: write sit cache */
4088 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4089 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4090 written_size += SUM_JOURNAL_SIZE;
4091
4092 /* Step 3: write summary entries */
4093 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4094 seg_i = CURSEG_I(sbi, i);
4095 for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4096 if (!page) {
4097 page = f2fs_grab_meta_page(sbi, blkaddr++);
4098 kaddr = (unsigned char *)page_address(page);
4099 memset(kaddr, 0, PAGE_SIZE);
4100 written_size = 0;
4101 }
4102 summary = (struct f2fs_summary *)(kaddr + written_size);
4103 *summary = seg_i->sum_blk->entries[j];
4104 written_size += SUMMARY_SIZE;
4105
4106 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4107 SUM_FOOTER_SIZE)
4108 continue;
4109
4110 set_page_dirty(page);
4111 f2fs_put_page(page, 1);
4112 page = NULL;
4113 }
4114 }
4115 if (page) {
4116 set_page_dirty(page);
4117 f2fs_put_page(page, 1);
4118 }
4119 }
4120
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)4121 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4122 block_t blkaddr, int type)
4123 {
4124 int i, end;
4125
4126 if (IS_DATASEG(type))
4127 end = type + NR_CURSEG_DATA_TYPE;
4128 else
4129 end = type + NR_CURSEG_NODE_TYPE;
4130
4131 for (i = type; i < end; i++)
4132 write_current_sum_page(sbi, i, blkaddr + (i - type));
4133 }
4134
f2fs_write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4135 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4136 {
4137 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4138 write_compacted_summaries(sbi, start_blk);
4139 else
4140 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4141 }
4142
f2fs_write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4143 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4144 {
4145 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4146 }
4147
f2fs_lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)4148 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4149 unsigned int val, int alloc)
4150 {
4151 int i;
4152
4153 if (type == NAT_JOURNAL) {
4154 for (i = 0; i < nats_in_cursum(journal); i++) {
4155 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4156 return i;
4157 }
4158 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4159 return update_nats_in_cursum(journal, 1);
4160 } else if (type == SIT_JOURNAL) {
4161 for (i = 0; i < sits_in_cursum(journal); i++)
4162 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4163 return i;
4164 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4165 return update_sits_in_cursum(journal, 1);
4166 }
4167 return -1;
4168 }
4169
get_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno)4170 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4171 unsigned int segno)
4172 {
4173 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4174 }
4175
get_next_sit_page(struct f2fs_sb_info * sbi,unsigned int start)4176 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4177 unsigned int start)
4178 {
4179 struct sit_info *sit_i = SIT_I(sbi);
4180 struct page *page;
4181 pgoff_t src_off, dst_off;
4182
4183 src_off = current_sit_addr(sbi, start);
4184 dst_off = next_sit_addr(sbi, src_off);
4185
4186 page = f2fs_grab_meta_page(sbi, dst_off);
4187 seg_info_to_sit_page(sbi, page, start);
4188
4189 set_page_dirty(page);
4190 set_to_next_sit(sit_i, start);
4191
4192 return page;
4193 }
4194
grab_sit_entry_set(void)4195 static struct sit_entry_set *grab_sit_entry_set(void)
4196 {
4197 struct sit_entry_set *ses =
4198 f2fs_kmem_cache_alloc(sit_entry_set_slab,
4199 GFP_NOFS, true, NULL);
4200
4201 ses->entry_cnt = 0;
4202 INIT_LIST_HEAD(&ses->set_list);
4203 return ses;
4204 }
4205
release_sit_entry_set(struct sit_entry_set * ses)4206 static void release_sit_entry_set(struct sit_entry_set *ses)
4207 {
4208 list_del(&ses->set_list);
4209 kmem_cache_free(sit_entry_set_slab, ses);
4210 }
4211
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)4212 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4213 struct list_head *head)
4214 {
4215 struct sit_entry_set *next = ses;
4216
4217 if (list_is_last(&ses->set_list, head))
4218 return;
4219
4220 list_for_each_entry_continue(next, head, set_list)
4221 if (ses->entry_cnt <= next->entry_cnt) {
4222 list_move_tail(&ses->set_list, &next->set_list);
4223 return;
4224 }
4225
4226 list_move_tail(&ses->set_list, head);
4227 }
4228
add_sit_entry(unsigned int segno,struct list_head * head)4229 static void add_sit_entry(unsigned int segno, struct list_head *head)
4230 {
4231 struct sit_entry_set *ses;
4232 unsigned int start_segno = START_SEGNO(segno);
4233
4234 list_for_each_entry(ses, head, set_list) {
4235 if (ses->start_segno == start_segno) {
4236 ses->entry_cnt++;
4237 adjust_sit_entry_set(ses, head);
4238 return;
4239 }
4240 }
4241
4242 ses = grab_sit_entry_set();
4243
4244 ses->start_segno = start_segno;
4245 ses->entry_cnt++;
4246 list_add(&ses->set_list, head);
4247 }
4248
add_sits_in_set(struct f2fs_sb_info * sbi)4249 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4250 {
4251 struct f2fs_sm_info *sm_info = SM_I(sbi);
4252 struct list_head *set_list = &sm_info->sit_entry_set;
4253 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4254 unsigned int segno;
4255
4256 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4257 add_sit_entry(segno, set_list);
4258 }
4259
remove_sits_in_journal(struct f2fs_sb_info * sbi)4260 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4261 {
4262 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4263 struct f2fs_journal *journal = curseg->journal;
4264 int i;
4265
4266 down_write(&curseg->journal_rwsem);
4267 for (i = 0; i < sits_in_cursum(journal); i++) {
4268 unsigned int segno;
4269 bool dirtied;
4270
4271 segno = le32_to_cpu(segno_in_journal(journal, i));
4272 dirtied = __mark_sit_entry_dirty(sbi, segno);
4273
4274 if (!dirtied)
4275 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4276 }
4277 update_sits_in_cursum(journal, -i);
4278 up_write(&curseg->journal_rwsem);
4279 }
4280
4281 /*
4282 * CP calls this function, which flushes SIT entries including sit_journal,
4283 * and moves prefree segs to free segs.
4284 */
f2fs_flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)4285 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4286 {
4287 struct sit_info *sit_i = SIT_I(sbi);
4288 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4289 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4290 struct f2fs_journal *journal = curseg->journal;
4291 struct sit_entry_set *ses, *tmp;
4292 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4293 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4294 struct seg_entry *se;
4295
4296 down_write(&sit_i->sentry_lock);
4297
4298 if (!sit_i->dirty_sentries)
4299 goto out;
4300
4301 /*
4302 * add and account sit entries of dirty bitmap in sit entry
4303 * set temporarily
4304 */
4305 add_sits_in_set(sbi);
4306
4307 /*
4308 * if there are no enough space in journal to store dirty sit
4309 * entries, remove all entries from journal and add and account
4310 * them in sit entry set.
4311 */
4312 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4313 !to_journal)
4314 remove_sits_in_journal(sbi);
4315
4316 /*
4317 * there are two steps to flush sit entries:
4318 * #1, flush sit entries to journal in current cold data summary block.
4319 * #2, flush sit entries to sit page.
4320 */
4321 list_for_each_entry_safe(ses, tmp, head, set_list) {
4322 struct page *page = NULL;
4323 struct f2fs_sit_block *raw_sit = NULL;
4324 unsigned int start_segno = ses->start_segno;
4325 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4326 (unsigned long)MAIN_SEGS(sbi));
4327 unsigned int segno = start_segno;
4328
4329 if (to_journal &&
4330 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4331 to_journal = false;
4332
4333 if (to_journal) {
4334 down_write(&curseg->journal_rwsem);
4335 } else {
4336 page = get_next_sit_page(sbi, start_segno);
4337 raw_sit = page_address(page);
4338 }
4339
4340 /* flush dirty sit entries in region of current sit set */
4341 for_each_set_bit_from(segno, bitmap, end) {
4342 int offset, sit_offset;
4343
4344 se = get_seg_entry(sbi, segno);
4345 #ifdef CONFIG_F2FS_CHECK_FS
4346 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4347 SIT_VBLOCK_MAP_SIZE))
4348 f2fs_bug_on(sbi, 1);
4349 #endif
4350
4351 /* add discard candidates */
4352 if (!(cpc->reason & CP_DISCARD)) {
4353 cpc->trim_start = segno;
4354 add_discard_addrs(sbi, cpc, false);
4355 }
4356
4357 if (to_journal) {
4358 offset = f2fs_lookup_journal_in_cursum(journal,
4359 SIT_JOURNAL, segno, 1);
4360 f2fs_bug_on(sbi, offset < 0);
4361 segno_in_journal(journal, offset) =
4362 cpu_to_le32(segno);
4363 seg_info_to_raw_sit(se,
4364 &sit_in_journal(journal, offset));
4365 check_block_count(sbi, segno,
4366 &sit_in_journal(journal, offset));
4367 } else {
4368 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4369 seg_info_to_raw_sit(se,
4370 &raw_sit->entries[sit_offset]);
4371 check_block_count(sbi, segno,
4372 &raw_sit->entries[sit_offset]);
4373 }
4374
4375 __clear_bit(segno, bitmap);
4376 sit_i->dirty_sentries--;
4377 ses->entry_cnt--;
4378 }
4379
4380 if (to_journal)
4381 up_write(&curseg->journal_rwsem);
4382 else
4383 f2fs_put_page(page, 1);
4384
4385 f2fs_bug_on(sbi, ses->entry_cnt);
4386 release_sit_entry_set(ses);
4387 }
4388
4389 f2fs_bug_on(sbi, !list_empty(head));
4390 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4391 out:
4392 if (cpc->reason & CP_DISCARD) {
4393 __u64 trim_start = cpc->trim_start;
4394
4395 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4396 add_discard_addrs(sbi, cpc, false);
4397
4398 cpc->trim_start = trim_start;
4399 }
4400 up_write(&sit_i->sentry_lock);
4401
4402 set_prefree_as_free_segments(sbi);
4403 }
4404
build_sit_info(struct f2fs_sb_info * sbi)4405 static int build_sit_info(struct f2fs_sb_info *sbi)
4406 {
4407 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4408 struct sit_info *sit_i;
4409 unsigned int sit_segs, start;
4410 char *src_bitmap, *bitmap;
4411 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4412 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4413
4414 /* allocate memory for SIT information */
4415 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4416 if (!sit_i)
4417 return -ENOMEM;
4418
4419 SM_I(sbi)->sit_info = sit_i;
4420
4421 sit_i->sentries =
4422 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4423 MAIN_SEGS(sbi)),
4424 GFP_KERNEL);
4425 if (!sit_i->sentries)
4426 return -ENOMEM;
4427
4428 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4429 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4430 GFP_KERNEL);
4431 if (!sit_i->dirty_sentries_bitmap)
4432 return -ENOMEM;
4433
4434 #ifdef CONFIG_F2FS_CHECK_FS
4435 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4436 #else
4437 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4438 #endif
4439 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4440 if (!sit_i->bitmap)
4441 return -ENOMEM;
4442
4443 bitmap = sit_i->bitmap;
4444
4445 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4446 sit_i->sentries[start].cur_valid_map = bitmap;
4447 bitmap += SIT_VBLOCK_MAP_SIZE;
4448
4449 sit_i->sentries[start].ckpt_valid_map = bitmap;
4450 bitmap += SIT_VBLOCK_MAP_SIZE;
4451
4452 #ifdef CONFIG_F2FS_CHECK_FS
4453 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4454 bitmap += SIT_VBLOCK_MAP_SIZE;
4455 #endif
4456
4457 if (discard_map) {
4458 sit_i->sentries[start].discard_map = bitmap;
4459 bitmap += SIT_VBLOCK_MAP_SIZE;
4460 }
4461 }
4462
4463 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4464 if (!sit_i->tmp_map)
4465 return -ENOMEM;
4466
4467 if (__is_large_section(sbi)) {
4468 sit_i->sec_entries =
4469 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4470 MAIN_SECS(sbi)),
4471 GFP_KERNEL);
4472 if (!sit_i->sec_entries)
4473 return -ENOMEM;
4474 }
4475
4476 /* get information related with SIT */
4477 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4478
4479 /* setup SIT bitmap from ckeckpoint pack */
4480 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4481 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4482
4483 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4484 if (!sit_i->sit_bitmap)
4485 return -ENOMEM;
4486
4487 #ifdef CONFIG_F2FS_CHECK_FS
4488 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4489 sit_bitmap_size, GFP_KERNEL);
4490 if (!sit_i->sit_bitmap_mir)
4491 return -ENOMEM;
4492
4493 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4494 main_bitmap_size, GFP_KERNEL);
4495 if (!sit_i->invalid_segmap)
4496 return -ENOMEM;
4497 #endif
4498
4499 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4500 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4501 sit_i->written_valid_blocks = 0;
4502 sit_i->bitmap_size = sit_bitmap_size;
4503 sit_i->dirty_sentries = 0;
4504 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4505 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4506 sit_i->mounted_time = ktime_get_boottime_seconds();
4507 init_rwsem(&sit_i->sentry_lock);
4508 return 0;
4509 }
4510
build_free_segmap(struct f2fs_sb_info * sbi)4511 static int build_free_segmap(struct f2fs_sb_info *sbi)
4512 {
4513 struct free_segmap_info *free_i;
4514 unsigned int bitmap_size, sec_bitmap_size;
4515
4516 /* allocate memory for free segmap information */
4517 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4518 if (!free_i)
4519 return -ENOMEM;
4520
4521 SM_I(sbi)->free_info = free_i;
4522
4523 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4524 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4525 if (!free_i->free_segmap)
4526 return -ENOMEM;
4527
4528 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4529 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4530 if (!free_i->free_secmap)
4531 return -ENOMEM;
4532
4533 /* set all segments as dirty temporarily */
4534 memset(free_i->free_segmap, 0xff, bitmap_size);
4535 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4536
4537 /* init free segmap information */
4538 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4539 free_i->free_segments = 0;
4540 free_i->free_sections = 0;
4541 spin_lock_init(&free_i->segmap_lock);
4542 return 0;
4543 }
4544
build_curseg(struct f2fs_sb_info * sbi)4545 static int build_curseg(struct f2fs_sb_info *sbi)
4546 {
4547 struct curseg_info *array;
4548 int i;
4549
4550 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4551 sizeof(*array)), GFP_KERNEL);
4552 if (!array)
4553 return -ENOMEM;
4554
4555 SM_I(sbi)->curseg_array = array;
4556
4557 for (i = 0; i < NO_CHECK_TYPE; i++) {
4558 mutex_init(&array[i].curseg_mutex);
4559 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4560 if (!array[i].sum_blk)
4561 return -ENOMEM;
4562 init_rwsem(&array[i].journal_rwsem);
4563 array[i].journal = f2fs_kzalloc(sbi,
4564 sizeof(struct f2fs_journal), GFP_KERNEL);
4565 if (!array[i].journal)
4566 return -ENOMEM;
4567 if (i < NR_PERSISTENT_LOG)
4568 array[i].seg_type = CURSEG_HOT_DATA + i;
4569 else if (i == CURSEG_COLD_DATA_PINNED)
4570 array[i].seg_type = CURSEG_COLD_DATA;
4571 else if (i == CURSEG_ALL_DATA_ATGC)
4572 array[i].seg_type = CURSEG_COLD_DATA;
4573 array[i].segno = NULL_SEGNO;
4574 array[i].next_blkoff = 0;
4575 array[i].inited = false;
4576 }
4577 return restore_curseg_summaries(sbi);
4578 }
4579
build_sit_entries(struct f2fs_sb_info * sbi)4580 static int build_sit_entries(struct f2fs_sb_info *sbi)
4581 {
4582 struct sit_info *sit_i = SIT_I(sbi);
4583 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4584 struct f2fs_journal *journal = curseg->journal;
4585 struct seg_entry *se;
4586 struct f2fs_sit_entry sit;
4587 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4588 unsigned int i, start, end;
4589 unsigned int readed, start_blk = 0;
4590 int err = 0;
4591 block_t sit_valid_blocks[2] = {0, 0};
4592
4593 do {
4594 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4595 META_SIT, true);
4596
4597 start = start_blk * sit_i->sents_per_block;
4598 end = (start_blk + readed) * sit_i->sents_per_block;
4599
4600 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4601 struct f2fs_sit_block *sit_blk;
4602 struct page *page;
4603
4604 se = &sit_i->sentries[start];
4605 page = get_current_sit_page(sbi, start);
4606 if (IS_ERR(page))
4607 return PTR_ERR(page);
4608 sit_blk = (struct f2fs_sit_block *)page_address(page);
4609 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4610 f2fs_put_page(page, 1);
4611
4612 err = check_block_count(sbi, start, &sit);
4613 if (err)
4614 return err;
4615 seg_info_from_raw_sit(se, &sit);
4616
4617 if (se->type >= NR_PERSISTENT_LOG) {
4618 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4619 se->type, start);
4620 f2fs_handle_error(sbi,
4621 ERROR_INCONSISTENT_SUM_TYPE);
4622 return -EFSCORRUPTED;
4623 }
4624
4625 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4626
4627 if (!f2fs_block_unit_discard(sbi))
4628 goto init_discard_map_done;
4629
4630 /* build discard map only one time */
4631 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4632 memset(se->discard_map, 0xff,
4633 SIT_VBLOCK_MAP_SIZE);
4634 goto init_discard_map_done;
4635 }
4636 memcpy(se->discard_map, se->cur_valid_map,
4637 SIT_VBLOCK_MAP_SIZE);
4638 sbi->discard_blks += BLKS_PER_SEG(sbi) -
4639 se->valid_blocks;
4640 init_discard_map_done:
4641 if (__is_large_section(sbi))
4642 get_sec_entry(sbi, start)->valid_blocks +=
4643 se->valid_blocks;
4644 }
4645 start_blk += readed;
4646 } while (start_blk < sit_blk_cnt);
4647
4648 down_read(&curseg->journal_rwsem);
4649 for (i = 0; i < sits_in_cursum(journal); i++) {
4650 unsigned int old_valid_blocks;
4651
4652 start = le32_to_cpu(segno_in_journal(journal, i));
4653 if (start >= MAIN_SEGS(sbi)) {
4654 f2fs_err(sbi, "Wrong journal entry on segno %u",
4655 start);
4656 err = -EFSCORRUPTED;
4657 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4658 break;
4659 }
4660
4661 se = &sit_i->sentries[start];
4662 sit = sit_in_journal(journal, i);
4663
4664 old_valid_blocks = se->valid_blocks;
4665
4666 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4667
4668 err = check_block_count(sbi, start, &sit);
4669 if (err)
4670 break;
4671 seg_info_from_raw_sit(se, &sit);
4672
4673 if (se->type >= NR_PERSISTENT_LOG) {
4674 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4675 se->type, start);
4676 err = -EFSCORRUPTED;
4677 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4678 break;
4679 }
4680
4681 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4682
4683 if (f2fs_block_unit_discard(sbi)) {
4684 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4685 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4686 } else {
4687 memcpy(se->discard_map, se->cur_valid_map,
4688 SIT_VBLOCK_MAP_SIZE);
4689 sbi->discard_blks += old_valid_blocks;
4690 sbi->discard_blks -= se->valid_blocks;
4691 }
4692 }
4693
4694 if (__is_large_section(sbi)) {
4695 get_sec_entry(sbi, start)->valid_blocks +=
4696 se->valid_blocks;
4697 get_sec_entry(sbi, start)->valid_blocks -=
4698 old_valid_blocks;
4699 }
4700 }
4701 up_read(&curseg->journal_rwsem);
4702
4703 if (err)
4704 return err;
4705
4706 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4707 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4708 sit_valid_blocks[NODE], valid_node_count(sbi));
4709 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4710 return -EFSCORRUPTED;
4711 }
4712
4713 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4714 valid_user_blocks(sbi)) {
4715 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4716 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4717 valid_user_blocks(sbi));
4718 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4719 return -EFSCORRUPTED;
4720 }
4721
4722 return 0;
4723 }
4724
init_free_segmap(struct f2fs_sb_info * sbi)4725 static void init_free_segmap(struct f2fs_sb_info *sbi)
4726 {
4727 unsigned int start;
4728 int type;
4729 struct seg_entry *sentry;
4730
4731 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4732 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4733 continue;
4734 sentry = get_seg_entry(sbi, start);
4735 if (!sentry->valid_blocks)
4736 __set_free(sbi, start);
4737 else
4738 SIT_I(sbi)->written_valid_blocks +=
4739 sentry->valid_blocks;
4740 }
4741
4742 /* set use the current segments */
4743 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4744 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4745
4746 __set_test_and_inuse(sbi, curseg_t->segno);
4747 }
4748 }
4749
init_dirty_segmap(struct f2fs_sb_info * sbi)4750 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4751 {
4752 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4753 struct free_segmap_info *free_i = FREE_I(sbi);
4754 unsigned int segno = 0, offset = 0, secno;
4755 block_t valid_blocks, usable_blks_in_seg;
4756
4757 while (1) {
4758 /* find dirty segment based on free segmap */
4759 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4760 if (segno >= MAIN_SEGS(sbi))
4761 break;
4762 offset = segno + 1;
4763 valid_blocks = get_valid_blocks(sbi, segno, false);
4764 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4765 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4766 continue;
4767 if (valid_blocks > usable_blks_in_seg) {
4768 f2fs_bug_on(sbi, 1);
4769 continue;
4770 }
4771 mutex_lock(&dirty_i->seglist_lock);
4772 __locate_dirty_segment(sbi, segno, DIRTY);
4773 mutex_unlock(&dirty_i->seglist_lock);
4774 }
4775
4776 if (!__is_large_section(sbi))
4777 return;
4778
4779 mutex_lock(&dirty_i->seglist_lock);
4780 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
4781 valid_blocks = get_valid_blocks(sbi, segno, true);
4782 secno = GET_SEC_FROM_SEG(sbi, segno);
4783
4784 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4785 continue;
4786 if (IS_CURSEC(sbi, secno))
4787 continue;
4788 set_bit(secno, dirty_i->dirty_secmap);
4789 }
4790 mutex_unlock(&dirty_i->seglist_lock);
4791 }
4792
init_victim_secmap(struct f2fs_sb_info * sbi)4793 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4794 {
4795 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4796 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4797
4798 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4799 if (!dirty_i->victim_secmap)
4800 return -ENOMEM;
4801
4802 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4803 if (!dirty_i->pinned_secmap)
4804 return -ENOMEM;
4805
4806 dirty_i->pinned_secmap_cnt = 0;
4807 dirty_i->enable_pin_section = true;
4808 return 0;
4809 }
4810
build_dirty_segmap(struct f2fs_sb_info * sbi)4811 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4812 {
4813 struct dirty_seglist_info *dirty_i;
4814 unsigned int bitmap_size, i;
4815
4816 /* allocate memory for dirty segments list information */
4817 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4818 GFP_KERNEL);
4819 if (!dirty_i)
4820 return -ENOMEM;
4821
4822 SM_I(sbi)->dirty_info = dirty_i;
4823 mutex_init(&dirty_i->seglist_lock);
4824
4825 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4826
4827 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4828 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4829 GFP_KERNEL);
4830 if (!dirty_i->dirty_segmap[i])
4831 return -ENOMEM;
4832 }
4833
4834 if (__is_large_section(sbi)) {
4835 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4836 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4837 bitmap_size, GFP_KERNEL);
4838 if (!dirty_i->dirty_secmap)
4839 return -ENOMEM;
4840 }
4841
4842 init_dirty_segmap(sbi);
4843 return init_victim_secmap(sbi);
4844 }
4845
sanity_check_curseg(struct f2fs_sb_info * sbi)4846 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4847 {
4848 int i;
4849
4850 /*
4851 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4852 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4853 */
4854 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4855 struct curseg_info *curseg = CURSEG_I(sbi, i);
4856 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4857 unsigned int blkofs = curseg->next_blkoff;
4858
4859 if (f2fs_sb_has_readonly(sbi) &&
4860 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4861 continue;
4862
4863 sanity_check_seg_type(sbi, curseg->seg_type);
4864
4865 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4866 f2fs_err(sbi,
4867 "Current segment has invalid alloc_type:%d",
4868 curseg->alloc_type);
4869 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4870 return -EFSCORRUPTED;
4871 }
4872
4873 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4874 goto out;
4875
4876 if (curseg->alloc_type == SSR)
4877 continue;
4878
4879 for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) {
4880 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4881 continue;
4882 out:
4883 f2fs_err(sbi,
4884 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4885 i, curseg->segno, curseg->alloc_type,
4886 curseg->next_blkoff, blkofs);
4887 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4888 return -EFSCORRUPTED;
4889 }
4890 }
4891 return 0;
4892 }
4893
4894 #ifdef CONFIG_BLK_DEV_ZONED
4895
check_zone_write_pointer(struct f2fs_sb_info * sbi,struct f2fs_dev_info * fdev,struct blk_zone * zone)4896 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4897 struct f2fs_dev_info *fdev,
4898 struct blk_zone *zone)
4899 {
4900 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4901 block_t zone_block, wp_block, last_valid_block;
4902 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4903 int i, s, b, ret;
4904 struct seg_entry *se;
4905
4906 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4907 return 0;
4908
4909 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4910 wp_segno = GET_SEGNO(sbi, wp_block);
4911 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4912 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4913 zone_segno = GET_SEGNO(sbi, zone_block);
4914 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4915
4916 if (zone_segno >= MAIN_SEGS(sbi))
4917 return 0;
4918
4919 /*
4920 * Skip check of zones cursegs point to, since
4921 * fix_curseg_write_pointer() checks them.
4922 */
4923 for (i = 0; i < NO_CHECK_TYPE; i++)
4924 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4925 CURSEG_I(sbi, i)->segno))
4926 return 0;
4927
4928 /*
4929 * Get last valid block of the zone.
4930 */
4931 last_valid_block = zone_block - 1;
4932 for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4933 segno = zone_segno + s;
4934 se = get_seg_entry(sbi, segno);
4935 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4936 if (f2fs_test_bit(b, se->cur_valid_map)) {
4937 last_valid_block = START_BLOCK(sbi, segno) + b;
4938 break;
4939 }
4940 if (last_valid_block >= zone_block)
4941 break;
4942 }
4943
4944 /*
4945 * The write pointer matches with the valid blocks or
4946 * already points to the end of the zone.
4947 */
4948 if ((last_valid_block + 1 == wp_block) ||
4949 (zone->wp == zone->start + zone->len))
4950 return 0;
4951
4952 if (last_valid_block + 1 == zone_block) {
4953 /*
4954 * If there is no valid block in the zone and if write pointer
4955 * is not at zone start, reset the write pointer.
4956 */
4957 f2fs_notice(sbi,
4958 "Zone without valid block has non-zero write "
4959 "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4960 wp_segno, wp_blkoff);
4961 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4962 zone->len >> log_sectors_per_block);
4963 if (ret)
4964 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4965 fdev->path, ret);
4966
4967 return ret;
4968 }
4969
4970 /*
4971 * If there are valid blocks and the write pointer doesn't
4972 * match with them, we need to report the inconsistency and
4973 * fill the zone till the end to close the zone. This inconsistency
4974 * does not cause write error because the zone will not be selected
4975 * for write operation until it get discarded.
4976 */
4977 f2fs_notice(sbi, "Valid blocks are not aligned with write pointer: "
4978 "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4979 GET_SEGNO(sbi, last_valid_block),
4980 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4981 wp_segno, wp_blkoff);
4982
4983 ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
4984 zone->start, zone->len, GFP_NOFS);
4985 if (ret == -EOPNOTSUPP) {
4986 ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
4987 zone->len - (zone->wp - zone->start),
4988 GFP_NOFS, 0);
4989 if (ret)
4990 f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
4991 fdev->path, ret);
4992 } else if (ret) {
4993 f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
4994 fdev->path, ret);
4995 }
4996
4997 return ret;
4998 }
4999
get_target_zoned_dev(struct f2fs_sb_info * sbi,block_t zone_blkaddr)5000 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
5001 block_t zone_blkaddr)
5002 {
5003 int i;
5004
5005 for (i = 0; i < sbi->s_ndevs; i++) {
5006 if (!bdev_is_zoned(FDEV(i).bdev))
5007 continue;
5008 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
5009 zone_blkaddr <= FDEV(i).end_blk))
5010 return &FDEV(i);
5011 }
5012
5013 return NULL;
5014 }
5015
report_one_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)5016 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
5017 void *data)
5018 {
5019 memcpy(data, zone, sizeof(struct blk_zone));
5020 return 0;
5021 }
5022
fix_curseg_write_pointer(struct f2fs_sb_info * sbi,int type)5023 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
5024 {
5025 struct curseg_info *cs = CURSEG_I(sbi, type);
5026 struct f2fs_dev_info *zbd;
5027 struct blk_zone zone;
5028 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
5029 block_t cs_zone_block, wp_block;
5030 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5031 sector_t zone_sector;
5032 int err;
5033
5034 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5035 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5036
5037 zbd = get_target_zoned_dev(sbi, cs_zone_block);
5038 if (!zbd)
5039 return 0;
5040
5041 /* report zone for the sector the curseg points to */
5042 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5043 << log_sectors_per_block;
5044 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5045 report_one_zone_cb, &zone);
5046 if (err != 1) {
5047 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5048 zbd->path, err);
5049 return err;
5050 }
5051
5052 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5053 return 0;
5054
5055 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5056 wp_segno = GET_SEGNO(sbi, wp_block);
5057 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5058 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5059
5060 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5061 wp_sector_off == 0)
5062 return 0;
5063
5064 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5065 "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
5066 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
5067
5068 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5069 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
5070
5071 f2fs_allocate_new_section(sbi, type, true);
5072
5073 /* check consistency of the zone curseg pointed to */
5074 if (check_zone_write_pointer(sbi, zbd, &zone))
5075 return -EIO;
5076
5077 /* check newly assigned zone */
5078 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5079 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5080
5081 zbd = get_target_zoned_dev(sbi, cs_zone_block);
5082 if (!zbd)
5083 return 0;
5084
5085 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5086 << log_sectors_per_block;
5087 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5088 report_one_zone_cb, &zone);
5089 if (err != 1) {
5090 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5091 zbd->path, err);
5092 return err;
5093 }
5094
5095 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5096 return 0;
5097
5098 if (zone.wp != zone.start) {
5099 f2fs_notice(sbi,
5100 "New zone for curseg[%d] is not yet discarded. "
5101 "Reset the zone: curseg[0x%x,0x%x]",
5102 type, cs->segno, cs->next_blkoff);
5103 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, cs_zone_block,
5104 zone.len >> log_sectors_per_block);
5105 if (err) {
5106 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5107 zbd->path, err);
5108 return err;
5109 }
5110 }
5111
5112 return 0;
5113 }
5114
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)5115 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5116 {
5117 int i, ret;
5118
5119 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5120 ret = fix_curseg_write_pointer(sbi, i);
5121 if (ret)
5122 return ret;
5123 }
5124
5125 return 0;
5126 }
5127
5128 struct check_zone_write_pointer_args {
5129 struct f2fs_sb_info *sbi;
5130 struct f2fs_dev_info *fdev;
5131 };
5132
check_zone_write_pointer_cb(struct blk_zone * zone,unsigned int idx,void * data)5133 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5134 void *data)
5135 {
5136 struct check_zone_write_pointer_args *args;
5137
5138 args = (struct check_zone_write_pointer_args *)data;
5139
5140 return check_zone_write_pointer(args->sbi, args->fdev, zone);
5141 }
5142
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)5143 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5144 {
5145 int i, ret;
5146 struct check_zone_write_pointer_args args;
5147
5148 for (i = 0; i < sbi->s_ndevs; i++) {
5149 if (!bdev_is_zoned(FDEV(i).bdev))
5150 continue;
5151
5152 args.sbi = sbi;
5153 args.fdev = &FDEV(i);
5154 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5155 check_zone_write_pointer_cb, &args);
5156 if (ret < 0)
5157 return ret;
5158 }
5159
5160 return 0;
5161 }
5162
5163 /*
5164 * Return the number of usable blocks in a segment. The number of blocks
5165 * returned is always equal to the number of blocks in a segment for
5166 * segments fully contained within a sequential zone capacity or a
5167 * conventional zone. For segments partially contained in a sequential
5168 * zone capacity, the number of usable blocks up to the zone capacity
5169 * is returned. 0 is returned in all other cases.
5170 */
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5171 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5172 struct f2fs_sb_info *sbi, unsigned int segno)
5173 {
5174 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5175 unsigned int secno;
5176
5177 if (!sbi->unusable_blocks_per_sec)
5178 return BLKS_PER_SEG(sbi);
5179
5180 secno = GET_SEC_FROM_SEG(sbi, segno);
5181 seg_start = START_BLOCK(sbi, segno);
5182 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5183 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5184
5185 /*
5186 * If segment starts before zone capacity and spans beyond
5187 * zone capacity, then usable blocks are from seg start to
5188 * zone capacity. If the segment starts after the zone capacity,
5189 * then there are no usable blocks.
5190 */
5191 if (seg_start >= sec_cap_blkaddr)
5192 return 0;
5193 if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr)
5194 return sec_cap_blkaddr - seg_start;
5195
5196 return BLKS_PER_SEG(sbi);
5197 }
5198 #else
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)5199 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5200 {
5201 return 0;
5202 }
5203
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)5204 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5205 {
5206 return 0;
5207 }
5208
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5209 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5210 unsigned int segno)
5211 {
5212 return 0;
5213 }
5214
5215 #endif
f2fs_usable_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5216 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5217 unsigned int segno)
5218 {
5219 if (f2fs_sb_has_blkzoned(sbi))
5220 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5221
5222 return BLKS_PER_SEG(sbi);
5223 }
5224
f2fs_usable_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)5225 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5226 unsigned int segno)
5227 {
5228 if (f2fs_sb_has_blkzoned(sbi))
5229 return CAP_SEGS_PER_SEC(sbi);
5230
5231 return SEGS_PER_SEC(sbi);
5232 }
5233
5234 /*
5235 * Update min, max modified time for cost-benefit GC algorithm
5236 */
init_min_max_mtime(struct f2fs_sb_info * sbi)5237 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5238 {
5239 struct sit_info *sit_i = SIT_I(sbi);
5240 unsigned int segno;
5241
5242 down_write(&sit_i->sentry_lock);
5243
5244 sit_i->min_mtime = ULLONG_MAX;
5245
5246 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5247 unsigned int i;
5248 unsigned long long mtime = 0;
5249
5250 for (i = 0; i < SEGS_PER_SEC(sbi); i++)
5251 mtime += get_seg_entry(sbi, segno + i)->mtime;
5252
5253 mtime = div_u64(mtime, SEGS_PER_SEC(sbi));
5254
5255 if (sit_i->min_mtime > mtime)
5256 sit_i->min_mtime = mtime;
5257 }
5258 sit_i->max_mtime = get_mtime(sbi, false);
5259 sit_i->dirty_max_mtime = 0;
5260 up_write(&sit_i->sentry_lock);
5261 }
5262
f2fs_build_segment_manager(struct f2fs_sb_info * sbi)5263 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5264 {
5265 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5266 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5267 struct f2fs_sm_info *sm_info;
5268 int err;
5269
5270 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5271 if (!sm_info)
5272 return -ENOMEM;
5273
5274 /* init sm info */
5275 sbi->sm_info = sm_info;
5276 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5277 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5278 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5279 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5280 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5281 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5282 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5283 sm_info->rec_prefree_segments = sm_info->main_segments *
5284 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5285 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5286 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5287
5288 if (!f2fs_lfs_mode(sbi))
5289 sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5290 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5291 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5292 sm_info->min_seq_blocks = BLKS_PER_SEG(sbi);
5293 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5294 sm_info->min_ssr_sections = reserved_sections(sbi);
5295
5296 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5297
5298 init_f2fs_rwsem(&sm_info->curseg_lock);
5299
5300 err = f2fs_create_flush_cmd_control(sbi);
5301 if (err)
5302 return err;
5303
5304 err = create_discard_cmd_control(sbi);
5305 if (err)
5306 return err;
5307
5308 err = build_sit_info(sbi);
5309 if (err)
5310 return err;
5311 err = build_free_segmap(sbi);
5312 if (err)
5313 return err;
5314 err = build_curseg(sbi);
5315 if (err)
5316 return err;
5317
5318 /* reinit free segmap based on SIT */
5319 err = build_sit_entries(sbi);
5320 if (err)
5321 return err;
5322
5323 init_free_segmap(sbi);
5324 err = build_dirty_segmap(sbi);
5325 if (err)
5326 return err;
5327
5328 err = sanity_check_curseg(sbi);
5329 if (err)
5330 return err;
5331
5332 init_min_max_mtime(sbi);
5333 return 0;
5334 }
5335
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)5336 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5337 enum dirty_type dirty_type)
5338 {
5339 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5340
5341 mutex_lock(&dirty_i->seglist_lock);
5342 kvfree(dirty_i->dirty_segmap[dirty_type]);
5343 dirty_i->nr_dirty[dirty_type] = 0;
5344 mutex_unlock(&dirty_i->seglist_lock);
5345 }
5346
destroy_victim_secmap(struct f2fs_sb_info * sbi)5347 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5348 {
5349 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5350
5351 kvfree(dirty_i->pinned_secmap);
5352 kvfree(dirty_i->victim_secmap);
5353 }
5354
destroy_dirty_segmap(struct f2fs_sb_info * sbi)5355 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5356 {
5357 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5358 int i;
5359
5360 if (!dirty_i)
5361 return;
5362
5363 /* discard pre-free/dirty segments list */
5364 for (i = 0; i < NR_DIRTY_TYPE; i++)
5365 discard_dirty_segmap(sbi, i);
5366
5367 if (__is_large_section(sbi)) {
5368 mutex_lock(&dirty_i->seglist_lock);
5369 kvfree(dirty_i->dirty_secmap);
5370 mutex_unlock(&dirty_i->seglist_lock);
5371 }
5372
5373 destroy_victim_secmap(sbi);
5374 SM_I(sbi)->dirty_info = NULL;
5375 kfree(dirty_i);
5376 }
5377
destroy_curseg(struct f2fs_sb_info * sbi)5378 static void destroy_curseg(struct f2fs_sb_info *sbi)
5379 {
5380 struct curseg_info *array = SM_I(sbi)->curseg_array;
5381 int i;
5382
5383 if (!array)
5384 return;
5385 SM_I(sbi)->curseg_array = NULL;
5386 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5387 kfree(array[i].sum_blk);
5388 kfree(array[i].journal);
5389 }
5390 kfree(array);
5391 }
5392
destroy_free_segmap(struct f2fs_sb_info * sbi)5393 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5394 {
5395 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5396
5397 if (!free_i)
5398 return;
5399 SM_I(sbi)->free_info = NULL;
5400 kvfree(free_i->free_segmap);
5401 kvfree(free_i->free_secmap);
5402 kfree(free_i);
5403 }
5404
destroy_sit_info(struct f2fs_sb_info * sbi)5405 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5406 {
5407 struct sit_info *sit_i = SIT_I(sbi);
5408
5409 if (!sit_i)
5410 return;
5411
5412 if (sit_i->sentries)
5413 kvfree(sit_i->bitmap);
5414 kfree(sit_i->tmp_map);
5415
5416 kvfree(sit_i->sentries);
5417 kvfree(sit_i->sec_entries);
5418 kvfree(sit_i->dirty_sentries_bitmap);
5419
5420 SM_I(sbi)->sit_info = NULL;
5421 kvfree(sit_i->sit_bitmap);
5422 #ifdef CONFIG_F2FS_CHECK_FS
5423 kvfree(sit_i->sit_bitmap_mir);
5424 kvfree(sit_i->invalid_segmap);
5425 #endif
5426 kfree(sit_i);
5427 }
5428
f2fs_destroy_segment_manager(struct f2fs_sb_info * sbi)5429 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5430 {
5431 struct f2fs_sm_info *sm_info = SM_I(sbi);
5432
5433 if (!sm_info)
5434 return;
5435 f2fs_destroy_flush_cmd_control(sbi, true);
5436 destroy_discard_cmd_control(sbi);
5437 destroy_dirty_segmap(sbi);
5438 destroy_curseg(sbi);
5439 destroy_free_segmap(sbi);
5440 destroy_sit_info(sbi);
5441 sbi->sm_info = NULL;
5442 kfree(sm_info);
5443 }
5444
f2fs_create_segment_manager_caches(void)5445 int __init f2fs_create_segment_manager_caches(void)
5446 {
5447 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5448 sizeof(struct discard_entry));
5449 if (!discard_entry_slab)
5450 goto fail;
5451
5452 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5453 sizeof(struct discard_cmd));
5454 if (!discard_cmd_slab)
5455 goto destroy_discard_entry;
5456
5457 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5458 sizeof(struct sit_entry_set));
5459 if (!sit_entry_set_slab)
5460 goto destroy_discard_cmd;
5461
5462 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5463 sizeof(struct revoke_entry));
5464 if (!revoke_entry_slab)
5465 goto destroy_sit_entry_set;
5466 return 0;
5467
5468 destroy_sit_entry_set:
5469 kmem_cache_destroy(sit_entry_set_slab);
5470 destroy_discard_cmd:
5471 kmem_cache_destroy(discard_cmd_slab);
5472 destroy_discard_entry:
5473 kmem_cache_destroy(discard_entry_slab);
5474 fail:
5475 return -ENOMEM;
5476 }
5477
f2fs_destroy_segment_manager_caches(void)5478 void f2fs_destroy_segment_manager_caches(void)
5479 {
5480 kmem_cache_destroy(sit_entry_set_slab);
5481 kmem_cache_destroy(discard_cmd_slab);
5482 kmem_cache_destroy(discard_entry_slab);
5483 kmem_cache_destroy(revoke_entry_slab);
5484 }
5485