xref: /openbmc/linux/fs/f2fs/file.c (revision 4ebdac060e5e24a89a7b3ec33ec46a41621e57fe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38 
f2fs_zero_post_eof_page(struct inode * inode,loff_t new_size)39 static void f2fs_zero_post_eof_page(struct inode *inode, loff_t new_size)
40 {
41 	loff_t old_size = i_size_read(inode);
42 
43 	if (old_size >= new_size)
44 		return;
45 
46 	/* zero or drop pages only in range of [old_size, new_size] */
47 	truncate_pagecache(inode, old_size);
48 }
49 
f2fs_filemap_fault(struct vm_fault * vmf)50 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
51 {
52 	struct inode *inode = file_inode(vmf->vma->vm_file);
53 	vm_flags_t flags = vmf->vma->vm_flags;
54 	vm_fault_t ret;
55 
56 	ret = filemap_fault(vmf);
57 	if (ret & VM_FAULT_LOCKED)
58 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
59 					APP_MAPPED_READ_IO, F2FS_BLKSIZE);
60 
61 	trace_f2fs_filemap_fault(inode, vmf->pgoff, flags, ret);
62 
63 	return ret;
64 }
65 
f2fs_vm_page_mkwrite(struct vm_fault * vmf)66 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
67 {
68 	struct folio *folio = page_folio(vmf->page);
69 	struct inode *inode = file_inode(vmf->vma->vm_file);
70 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
71 	struct dnode_of_data dn;
72 	bool need_alloc = !f2fs_is_pinned_file(inode);
73 	int err = 0;
74 	vm_fault_t ret;
75 
76 	if (unlikely(IS_IMMUTABLE(inode)))
77 		return VM_FAULT_SIGBUS;
78 
79 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
80 		err = -EIO;
81 		goto out;
82 	}
83 
84 	if (unlikely(f2fs_cp_error(sbi))) {
85 		err = -EIO;
86 		goto out;
87 	}
88 
89 	if (!f2fs_is_checkpoint_ready(sbi)) {
90 		err = -ENOSPC;
91 		goto out;
92 	}
93 
94 	err = f2fs_convert_inline_inode(inode);
95 	if (err)
96 		goto out;
97 
98 #ifdef CONFIG_F2FS_FS_COMPRESSION
99 	if (f2fs_compressed_file(inode)) {
100 		int ret = f2fs_is_compressed_cluster(inode, folio->index);
101 
102 		if (ret < 0) {
103 			err = ret;
104 			goto out;
105 		} else if (ret) {
106 			need_alloc = false;
107 		}
108 	}
109 #endif
110 	/* should do out of any locked page */
111 	if (need_alloc)
112 		f2fs_balance_fs(sbi, true);
113 
114 	sb_start_pagefault(inode->i_sb);
115 
116 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
117 
118 	filemap_invalidate_lock(inode->i_mapping);
119 	f2fs_zero_post_eof_page(inode, (folio->index + 1) << PAGE_SHIFT);
120 	filemap_invalidate_unlock(inode->i_mapping);
121 
122 	file_update_time(vmf->vma->vm_file);
123 	filemap_invalidate_lock_shared(inode->i_mapping);
124 
125 	folio_lock(folio);
126 	if (unlikely(folio->mapping != inode->i_mapping ||
127 			folio_pos(folio) > i_size_read(inode) ||
128 			!folio_test_uptodate(folio))) {
129 		folio_unlock(folio);
130 		err = -EFAULT;
131 		goto out_sem;
132 	}
133 
134 	set_new_dnode(&dn, inode, NULL, NULL, 0);
135 	if (need_alloc) {
136 		/* block allocation */
137 		err = f2fs_get_block_locked(&dn, folio->index);
138 	} else {
139 		err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE);
140 		f2fs_put_dnode(&dn);
141 		if (f2fs_is_pinned_file(inode) &&
142 		    !__is_valid_data_blkaddr(dn.data_blkaddr))
143 			err = -EIO;
144 	}
145 
146 	if (err) {
147 		folio_unlock(folio);
148 		goto out_sem;
149 	}
150 
151 	f2fs_wait_on_page_writeback(folio_page(folio, 0), DATA, false, true);
152 
153 	/* wait for GCed page writeback via META_MAPPING */
154 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
155 
156 	/*
157 	 * check to see if the page is mapped already (no holes)
158 	 */
159 	if (folio_test_mappedtodisk(folio))
160 		goto out_sem;
161 
162 	/* page is wholly or partially inside EOF */
163 	if (((loff_t)(folio->index + 1) << PAGE_SHIFT) >
164 						i_size_read(inode)) {
165 		loff_t offset;
166 
167 		offset = i_size_read(inode) & ~PAGE_MASK;
168 		folio_zero_segment(folio, offset, folio_size(folio));
169 	}
170 	folio_mark_dirty(folio);
171 
172 	f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
173 	f2fs_update_time(sbi, REQ_TIME);
174 
175 out_sem:
176 	filemap_invalidate_unlock_shared(inode->i_mapping);
177 
178 	sb_end_pagefault(inode->i_sb);
179 out:
180 	ret = vmf_fs_error(err);
181 
182 	trace_f2fs_vm_page_mkwrite(inode, folio->index, vmf->vma->vm_flags, ret);
183 	return ret;
184 }
185 
186 static const struct vm_operations_struct f2fs_file_vm_ops = {
187 	.fault		= f2fs_filemap_fault,
188 	.map_pages	= filemap_map_pages,
189 	.page_mkwrite	= f2fs_vm_page_mkwrite,
190 };
191 
get_parent_ino(struct inode * inode,nid_t * pino)192 static int get_parent_ino(struct inode *inode, nid_t *pino)
193 {
194 	struct dentry *dentry;
195 
196 	/*
197 	 * Make sure to get the non-deleted alias.  The alias associated with
198 	 * the open file descriptor being fsync()'ed may be deleted already.
199 	 */
200 	dentry = d_find_alias(inode);
201 	if (!dentry)
202 		return 0;
203 
204 	*pino = parent_ino(dentry);
205 	dput(dentry);
206 	return 1;
207 }
208 
need_do_checkpoint(struct inode * inode)209 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
210 {
211 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
212 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
213 
214 	if (!S_ISREG(inode->i_mode))
215 		cp_reason = CP_NON_REGULAR;
216 	else if (f2fs_compressed_file(inode))
217 		cp_reason = CP_COMPRESSED;
218 	else if (inode->i_nlink != 1)
219 		cp_reason = CP_HARDLINK;
220 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
221 		cp_reason = CP_SB_NEED_CP;
222 	else if (file_wrong_pino(inode))
223 		cp_reason = CP_WRONG_PINO;
224 	else if (!f2fs_space_for_roll_forward(sbi))
225 		cp_reason = CP_NO_SPC_ROLL;
226 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
227 		cp_reason = CP_NODE_NEED_CP;
228 	else if (test_opt(sbi, FASTBOOT))
229 		cp_reason = CP_FASTBOOT_MODE;
230 	else if (F2FS_OPTION(sbi).active_logs == 2)
231 		cp_reason = CP_SPEC_LOG_NUM;
232 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
233 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
234 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
235 							TRANS_DIR_INO))
236 		cp_reason = CP_RECOVER_DIR;
237 	else if (f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
238 							XATTR_DIR_INO))
239 		cp_reason = CP_XATTR_DIR;
240 
241 	return cp_reason;
242 }
243 
need_inode_page_update(struct f2fs_sb_info * sbi,nid_t ino)244 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
245 {
246 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
247 	bool ret = false;
248 	/* But we need to avoid that there are some inode updates */
249 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
250 		ret = true;
251 	f2fs_put_page(i, 0);
252 	return ret;
253 }
254 
try_to_fix_pino(struct inode * inode)255 static void try_to_fix_pino(struct inode *inode)
256 {
257 	struct f2fs_inode_info *fi = F2FS_I(inode);
258 	nid_t pino;
259 
260 	f2fs_down_write(&fi->i_sem);
261 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
262 			get_parent_ino(inode, &pino)) {
263 		f2fs_i_pino_write(inode, pino);
264 		file_got_pino(inode);
265 	}
266 	f2fs_up_write(&fi->i_sem);
267 }
268 
f2fs_do_sync_file(struct file * file,loff_t start,loff_t end,int datasync,bool atomic)269 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
270 						int datasync, bool atomic)
271 {
272 	struct inode *inode = file->f_mapping->host;
273 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
274 	nid_t ino = inode->i_ino;
275 	int ret = 0;
276 	enum cp_reason_type cp_reason = 0;
277 	struct writeback_control wbc = {
278 		.sync_mode = WB_SYNC_ALL,
279 		.nr_to_write = LONG_MAX,
280 		.for_reclaim = 0,
281 	};
282 	unsigned int seq_id = 0;
283 
284 	if (unlikely(f2fs_readonly(inode->i_sb)))
285 		return 0;
286 
287 	trace_f2fs_sync_file_enter(inode);
288 
289 	if (S_ISDIR(inode->i_mode))
290 		goto go_write;
291 
292 	/* if fdatasync is triggered, let's do in-place-update */
293 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
294 		set_inode_flag(inode, FI_NEED_IPU);
295 	ret = file_write_and_wait_range(file, start, end);
296 	clear_inode_flag(inode, FI_NEED_IPU);
297 
298 	if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
299 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
300 		return ret;
301 	}
302 
303 	/* if the inode is dirty, let's recover all the time */
304 	if (!f2fs_skip_inode_update(inode, datasync)) {
305 		f2fs_write_inode(inode, NULL);
306 		goto go_write;
307 	}
308 
309 	/*
310 	 * if there is no written data, don't waste time to write recovery info.
311 	 */
312 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
313 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
314 
315 		/* it may call write_inode just prior to fsync */
316 		if (need_inode_page_update(sbi, ino))
317 			goto go_write;
318 
319 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
320 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
321 			goto flush_out;
322 		goto out;
323 	} else {
324 		/*
325 		 * for OPU case, during fsync(), node can be persisted before
326 		 * data when lower device doesn't support write barrier, result
327 		 * in data corruption after SPO.
328 		 * So for strict fsync mode, force to use atomic write semantics
329 		 * to keep write order in between data/node and last node to
330 		 * avoid potential data corruption.
331 		 */
332 		if (F2FS_OPTION(sbi).fsync_mode ==
333 				FSYNC_MODE_STRICT && !atomic)
334 			atomic = true;
335 	}
336 go_write:
337 	/*
338 	 * Both of fdatasync() and fsync() are able to be recovered from
339 	 * sudden-power-off.
340 	 */
341 	f2fs_down_read(&F2FS_I(inode)->i_sem);
342 	cp_reason = need_do_checkpoint(inode);
343 	f2fs_up_read(&F2FS_I(inode)->i_sem);
344 
345 	if (cp_reason) {
346 		/* all the dirty node pages should be flushed for POR */
347 		ret = f2fs_sync_fs(inode->i_sb, 1);
348 
349 		/*
350 		 * We've secured consistency through sync_fs. Following pino
351 		 * will be used only for fsynced inodes after checkpoint.
352 		 */
353 		try_to_fix_pino(inode);
354 		clear_inode_flag(inode, FI_APPEND_WRITE);
355 		clear_inode_flag(inode, FI_UPDATE_WRITE);
356 		goto out;
357 	}
358 sync_nodes:
359 	atomic_inc(&sbi->wb_sync_req[NODE]);
360 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
361 	atomic_dec(&sbi->wb_sync_req[NODE]);
362 	if (ret)
363 		goto out;
364 
365 	/* if cp_error was enabled, we should avoid infinite loop */
366 	if (unlikely(f2fs_cp_error(sbi))) {
367 		ret = -EIO;
368 		goto out;
369 	}
370 
371 	if (f2fs_need_inode_block_update(sbi, ino)) {
372 		f2fs_mark_inode_dirty_sync(inode, true);
373 		f2fs_write_inode(inode, NULL);
374 		goto sync_nodes;
375 	}
376 
377 	/*
378 	 * If it's atomic_write, it's just fine to keep write ordering. So
379 	 * here we don't need to wait for node write completion, since we use
380 	 * node chain which serializes node blocks. If one of node writes are
381 	 * reordered, we can see simply broken chain, resulting in stopping
382 	 * roll-forward recovery. It means we'll recover all or none node blocks
383 	 * given fsync mark.
384 	 */
385 	if (!atomic) {
386 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
387 		if (ret)
388 			goto out;
389 	}
390 
391 	/* once recovery info is written, don't need to tack this */
392 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
393 	clear_inode_flag(inode, FI_APPEND_WRITE);
394 flush_out:
395 	if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
396 	    (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
397 		ret = f2fs_issue_flush(sbi, inode->i_ino);
398 	if (!ret) {
399 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
400 		clear_inode_flag(inode, FI_UPDATE_WRITE);
401 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
402 	}
403 	f2fs_update_time(sbi, REQ_TIME);
404 out:
405 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
406 	return ret;
407 }
408 
f2fs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)409 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
410 {
411 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
412 		return -EIO;
413 	return f2fs_do_sync_file(file, start, end, datasync, false);
414 }
415 
__found_offset(struct address_space * mapping,block_t blkaddr,pgoff_t index,int whence)416 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
417 				pgoff_t index, int whence)
418 {
419 	switch (whence) {
420 	case SEEK_DATA:
421 		if (__is_valid_data_blkaddr(blkaddr))
422 			return true;
423 		if (blkaddr == NEW_ADDR &&
424 		    xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
425 			return true;
426 		break;
427 	case SEEK_HOLE:
428 		if (blkaddr == NULL_ADDR)
429 			return true;
430 		break;
431 	}
432 	return false;
433 }
434 
f2fs_seek_block(struct file * file,loff_t offset,int whence)435 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
436 {
437 	struct inode *inode = file->f_mapping->host;
438 	loff_t maxbytes = inode->i_sb->s_maxbytes;
439 	struct dnode_of_data dn;
440 	pgoff_t pgofs, end_offset;
441 	loff_t data_ofs = offset;
442 	loff_t isize;
443 	int err = 0;
444 
445 	inode_lock(inode);
446 
447 	isize = i_size_read(inode);
448 	if (offset >= isize)
449 		goto fail;
450 
451 	/* handle inline data case */
452 	if (f2fs_has_inline_data(inode)) {
453 		if (whence == SEEK_HOLE) {
454 			data_ofs = isize;
455 			goto found;
456 		} else if (whence == SEEK_DATA) {
457 			data_ofs = offset;
458 			goto found;
459 		}
460 	}
461 
462 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
463 
464 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
465 		set_new_dnode(&dn, inode, NULL, NULL, 0);
466 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
467 		if (err && err != -ENOENT) {
468 			goto fail;
469 		} else if (err == -ENOENT) {
470 			/* direct node does not exists */
471 			if (whence == SEEK_DATA) {
472 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
473 				continue;
474 			} else {
475 				goto found;
476 			}
477 		}
478 
479 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
480 
481 		/* find data/hole in dnode block */
482 		for (; dn.ofs_in_node < end_offset;
483 				dn.ofs_in_node++, pgofs++,
484 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
485 			block_t blkaddr;
486 
487 			blkaddr = f2fs_data_blkaddr(&dn);
488 
489 			if (__is_valid_data_blkaddr(blkaddr) &&
490 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
491 					blkaddr, DATA_GENERIC_ENHANCE)) {
492 				f2fs_put_dnode(&dn);
493 				goto fail;
494 			}
495 
496 			if (__found_offset(file->f_mapping, blkaddr,
497 							pgofs, whence)) {
498 				f2fs_put_dnode(&dn);
499 				goto found;
500 			}
501 		}
502 		f2fs_put_dnode(&dn);
503 	}
504 
505 	if (whence == SEEK_DATA)
506 		goto fail;
507 found:
508 	if (whence == SEEK_HOLE && data_ofs > isize)
509 		data_ofs = isize;
510 	inode_unlock(inode);
511 	return vfs_setpos(file, data_ofs, maxbytes);
512 fail:
513 	inode_unlock(inode);
514 	return -ENXIO;
515 }
516 
f2fs_llseek(struct file * file,loff_t offset,int whence)517 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
518 {
519 	struct inode *inode = file->f_mapping->host;
520 	loff_t maxbytes = inode->i_sb->s_maxbytes;
521 
522 	if (f2fs_compressed_file(inode))
523 		maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
524 
525 	switch (whence) {
526 	case SEEK_SET:
527 	case SEEK_CUR:
528 	case SEEK_END:
529 		return generic_file_llseek_size(file, offset, whence,
530 						maxbytes, i_size_read(inode));
531 	case SEEK_DATA:
532 	case SEEK_HOLE:
533 		if (offset < 0)
534 			return -ENXIO;
535 		return f2fs_seek_block(file, offset, whence);
536 	}
537 
538 	return -EINVAL;
539 }
540 
f2fs_file_mmap(struct file * file,struct vm_area_struct * vma)541 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
542 {
543 	struct inode *inode = file_inode(file);
544 
545 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
546 		return -EIO;
547 
548 	if (!f2fs_is_compress_backend_ready(inode))
549 		return -EOPNOTSUPP;
550 
551 	file_accessed(file);
552 	vma->vm_ops = &f2fs_file_vm_ops;
553 
554 	f2fs_down_read(&F2FS_I(inode)->i_sem);
555 	set_inode_flag(inode, FI_MMAP_FILE);
556 	f2fs_up_read(&F2FS_I(inode)->i_sem);
557 
558 	return 0;
559 }
560 
finish_preallocate_blocks(struct inode * inode)561 static int finish_preallocate_blocks(struct inode *inode)
562 {
563 	int ret;
564 
565 	inode_lock(inode);
566 	if (is_inode_flag_set(inode, FI_OPENED_FILE)) {
567 		inode_unlock(inode);
568 		return 0;
569 	}
570 
571 	if (!file_should_truncate(inode)) {
572 		set_inode_flag(inode, FI_OPENED_FILE);
573 		inode_unlock(inode);
574 		return 0;
575 	}
576 
577 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
578 	filemap_invalidate_lock(inode->i_mapping);
579 
580 	truncate_setsize(inode, i_size_read(inode));
581 	ret = f2fs_truncate(inode);
582 
583 	filemap_invalidate_unlock(inode->i_mapping);
584 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
585 
586 	if (!ret)
587 		set_inode_flag(inode, FI_OPENED_FILE);
588 
589 	inode_unlock(inode);
590 	if (ret)
591 		return ret;
592 
593 	file_dont_truncate(inode);
594 	return 0;
595 }
596 
f2fs_file_open(struct inode * inode,struct file * filp)597 static int f2fs_file_open(struct inode *inode, struct file *filp)
598 {
599 	int err = fscrypt_file_open(inode, filp);
600 
601 	if (err)
602 		return err;
603 
604 	if (!f2fs_is_compress_backend_ready(inode))
605 		return -EOPNOTSUPP;
606 
607 	err = fsverity_file_open(inode, filp);
608 	if (err)
609 		return err;
610 
611 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
612 	filp->f_mode |= FMODE_CAN_ODIRECT;
613 
614 	err = dquot_file_open(inode, filp);
615 	if (err)
616 		return err;
617 
618 	return finish_preallocate_blocks(inode);
619 }
620 
f2fs_truncate_data_blocks_range(struct dnode_of_data * dn,int count)621 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
622 {
623 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
624 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
625 	__le32 *addr;
626 	bool compressed_cluster = false;
627 	int cluster_index = 0, valid_blocks = 0;
628 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
629 	bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
630 
631 	addr = get_dnode_addr(dn->inode, dn->node_page) + ofs;
632 
633 	/* Assumption: truncation starts with cluster */
634 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
635 		block_t blkaddr = le32_to_cpu(*addr);
636 
637 		if (f2fs_compressed_file(dn->inode) &&
638 					!(cluster_index & (cluster_size - 1))) {
639 			if (compressed_cluster)
640 				f2fs_i_compr_blocks_update(dn->inode,
641 							valid_blocks, false);
642 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
643 			valid_blocks = 0;
644 		}
645 
646 		if (blkaddr == NULL_ADDR)
647 			continue;
648 
649 		f2fs_set_data_blkaddr(dn, NULL_ADDR);
650 
651 		if (__is_valid_data_blkaddr(blkaddr)) {
652 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
653 					DATA_GENERIC_ENHANCE))
654 				continue;
655 			if (compressed_cluster)
656 				valid_blocks++;
657 		}
658 
659 		f2fs_invalidate_blocks(sbi, blkaddr);
660 
661 		if (!released || blkaddr != COMPRESS_ADDR)
662 			nr_free++;
663 	}
664 
665 	if (compressed_cluster)
666 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
667 
668 	if (nr_free) {
669 		pgoff_t fofs;
670 		/*
671 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
672 		 * we will invalidate all blkaddr in the whole range.
673 		 */
674 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
675 							dn->inode) + ofs;
676 		f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
677 		f2fs_update_age_extent_cache_range(dn, fofs, len);
678 		dec_valid_block_count(sbi, dn->inode, nr_free);
679 	}
680 	dn->ofs_in_node = ofs;
681 
682 	f2fs_update_time(sbi, REQ_TIME);
683 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
684 					 dn->ofs_in_node, nr_free);
685 }
686 
truncate_partial_data_page(struct inode * inode,u64 from,bool cache_only)687 static int truncate_partial_data_page(struct inode *inode, u64 from,
688 								bool cache_only)
689 {
690 	loff_t offset = from & (PAGE_SIZE - 1);
691 	pgoff_t index = from >> PAGE_SHIFT;
692 	struct address_space *mapping = inode->i_mapping;
693 	struct page *page;
694 
695 	if (!offset && !cache_only)
696 		return 0;
697 
698 	if (cache_only) {
699 		page = find_lock_page(mapping, index);
700 		if (page && PageUptodate(page))
701 			goto truncate_out;
702 		f2fs_put_page(page, 1);
703 		return 0;
704 	}
705 
706 	page = f2fs_get_lock_data_page(inode, index, true);
707 	if (IS_ERR(page))
708 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
709 truncate_out:
710 	f2fs_wait_on_page_writeback(page, DATA, true, true);
711 	zero_user(page, offset, PAGE_SIZE - offset);
712 
713 	/* An encrypted inode should have a key and truncate the last page. */
714 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
715 	if (!cache_only)
716 		set_page_dirty(page);
717 	f2fs_put_page(page, 1);
718 	return 0;
719 }
720 
f2fs_do_truncate_blocks(struct inode * inode,u64 from,bool lock)721 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
722 {
723 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
724 	struct dnode_of_data dn;
725 	pgoff_t free_from;
726 	int count = 0, err = 0;
727 	struct page *ipage;
728 	bool truncate_page = false;
729 
730 	trace_f2fs_truncate_blocks_enter(inode, from);
731 
732 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
733 
734 	if (free_from >= max_file_blocks(inode))
735 		goto free_partial;
736 
737 	if (lock)
738 		f2fs_lock_op(sbi);
739 
740 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
741 	if (IS_ERR(ipage)) {
742 		err = PTR_ERR(ipage);
743 		goto out;
744 	}
745 
746 	if (f2fs_has_inline_data(inode)) {
747 		f2fs_truncate_inline_inode(inode, ipage, from);
748 		f2fs_put_page(ipage, 1);
749 		truncate_page = true;
750 		goto out;
751 	}
752 
753 	set_new_dnode(&dn, inode, ipage, NULL, 0);
754 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
755 	if (err) {
756 		if (err == -ENOENT)
757 			goto free_next;
758 		goto out;
759 	}
760 
761 	count = ADDRS_PER_PAGE(dn.node_page, inode);
762 
763 	count -= dn.ofs_in_node;
764 	f2fs_bug_on(sbi, count < 0);
765 
766 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
767 		f2fs_truncate_data_blocks_range(&dn, count);
768 		free_from += count;
769 	}
770 
771 	f2fs_put_dnode(&dn);
772 free_next:
773 	err = f2fs_truncate_inode_blocks(inode, free_from);
774 out:
775 	if (lock)
776 		f2fs_unlock_op(sbi);
777 free_partial:
778 	/* lastly zero out the first data page */
779 	if (!err)
780 		err = truncate_partial_data_page(inode, from, truncate_page);
781 
782 	trace_f2fs_truncate_blocks_exit(inode, err);
783 	return err;
784 }
785 
f2fs_truncate_blocks(struct inode * inode,u64 from,bool lock)786 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
787 {
788 	u64 free_from = from;
789 	int err;
790 
791 #ifdef CONFIG_F2FS_FS_COMPRESSION
792 	/*
793 	 * for compressed file, only support cluster size
794 	 * aligned truncation.
795 	 */
796 	if (f2fs_compressed_file(inode))
797 		free_from = round_up(from,
798 				F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
799 #endif
800 
801 	err = f2fs_do_truncate_blocks(inode, free_from, lock);
802 	if (err)
803 		return err;
804 
805 #ifdef CONFIG_F2FS_FS_COMPRESSION
806 	/*
807 	 * For compressed file, after release compress blocks, don't allow write
808 	 * direct, but we should allow write direct after truncate to zero.
809 	 */
810 	if (f2fs_compressed_file(inode) && !free_from
811 			&& is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
812 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
813 
814 	if (from != free_from) {
815 		err = f2fs_truncate_partial_cluster(inode, from, lock);
816 		if (err)
817 			return err;
818 	}
819 #endif
820 
821 	return 0;
822 }
823 
f2fs_truncate(struct inode * inode)824 int f2fs_truncate(struct inode *inode)
825 {
826 	int err;
827 
828 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
829 		return -EIO;
830 
831 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
832 				S_ISLNK(inode->i_mode)))
833 		return 0;
834 
835 	trace_f2fs_truncate(inode);
836 
837 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
838 		return -EIO;
839 
840 	err = f2fs_dquot_initialize(inode);
841 	if (err)
842 		return err;
843 
844 	/* we should check inline_data size */
845 	if (!f2fs_may_inline_data(inode)) {
846 		err = f2fs_convert_inline_inode(inode);
847 		if (err)
848 			return err;
849 	}
850 
851 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
852 	if (err)
853 		return err;
854 
855 	inode->i_mtime = inode_set_ctime_current(inode);
856 	f2fs_mark_inode_dirty_sync(inode, false);
857 	return 0;
858 }
859 
f2fs_force_buffered_io(struct inode * inode,int rw)860 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
861 {
862 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
863 
864 	if (!fscrypt_dio_supported(inode))
865 		return true;
866 	if (fsverity_active(inode))
867 		return true;
868 	if (f2fs_compressed_file(inode))
869 		return true;
870 	/*
871 	 * only force direct read to use buffered IO, for direct write,
872 	 * it expects inline data conversion before committing IO.
873 	 */
874 	if (f2fs_has_inline_data(inode) && rw == READ)
875 		return true;
876 
877 	/* disallow direct IO if any of devices has unaligned blksize */
878 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
879 		return true;
880 	/*
881 	 * for blkzoned device, fallback direct IO to buffered IO, so
882 	 * all IOs can be serialized by log-structured write.
883 	 */
884 	if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE))
885 		return true;
886 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
887 		return true;
888 
889 	return false;
890 }
891 
f2fs_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)892 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
893 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
894 {
895 	struct inode *inode = d_inode(path->dentry);
896 	struct f2fs_inode_info *fi = F2FS_I(inode);
897 	struct f2fs_inode *ri = NULL;
898 	unsigned int flags;
899 
900 	if (f2fs_has_extra_attr(inode) &&
901 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
902 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
903 		stat->result_mask |= STATX_BTIME;
904 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
905 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
906 	}
907 
908 	/*
909 	 * Return the DIO alignment restrictions if requested.  We only return
910 	 * this information when requested, since on encrypted files it might
911 	 * take a fair bit of work to get if the file wasn't opened recently.
912 	 *
913 	 * f2fs sometimes supports DIO reads but not DIO writes.  STATX_DIOALIGN
914 	 * cannot represent that, so in that case we report no DIO support.
915 	 */
916 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
917 		unsigned int bsize = i_blocksize(inode);
918 
919 		stat->result_mask |= STATX_DIOALIGN;
920 		if (!f2fs_force_buffered_io(inode, WRITE)) {
921 			stat->dio_mem_align = bsize;
922 			stat->dio_offset_align = bsize;
923 		}
924 	}
925 
926 	flags = fi->i_flags;
927 	if (flags & F2FS_COMPR_FL)
928 		stat->attributes |= STATX_ATTR_COMPRESSED;
929 	if (flags & F2FS_APPEND_FL)
930 		stat->attributes |= STATX_ATTR_APPEND;
931 	if (IS_ENCRYPTED(inode))
932 		stat->attributes |= STATX_ATTR_ENCRYPTED;
933 	if (flags & F2FS_IMMUTABLE_FL)
934 		stat->attributes |= STATX_ATTR_IMMUTABLE;
935 	if (flags & F2FS_NODUMP_FL)
936 		stat->attributes |= STATX_ATTR_NODUMP;
937 	if (IS_VERITY(inode))
938 		stat->attributes |= STATX_ATTR_VERITY;
939 
940 	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
941 				  STATX_ATTR_APPEND |
942 				  STATX_ATTR_ENCRYPTED |
943 				  STATX_ATTR_IMMUTABLE |
944 				  STATX_ATTR_NODUMP |
945 				  STATX_ATTR_VERITY);
946 
947 	generic_fillattr(idmap, request_mask, inode, stat);
948 
949 	/* we need to show initial sectors used for inline_data/dentries */
950 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
951 					f2fs_has_inline_dentry(inode))
952 		stat->blocks += (stat->size + 511) >> 9;
953 
954 	return 0;
955 }
956 
957 #ifdef CONFIG_F2FS_FS_POSIX_ACL
__setattr_copy(struct mnt_idmap * idmap,struct inode * inode,const struct iattr * attr)958 static void __setattr_copy(struct mnt_idmap *idmap,
959 			   struct inode *inode, const struct iattr *attr)
960 {
961 	unsigned int ia_valid = attr->ia_valid;
962 
963 	i_uid_update(idmap, attr, inode);
964 	i_gid_update(idmap, attr, inode);
965 	if (ia_valid & ATTR_ATIME)
966 		inode->i_atime = attr->ia_atime;
967 	if (ia_valid & ATTR_MTIME)
968 		inode->i_mtime = attr->ia_mtime;
969 	if (ia_valid & ATTR_CTIME)
970 		inode_set_ctime_to_ts(inode, attr->ia_ctime);
971 	if (ia_valid & ATTR_MODE) {
972 		umode_t mode = attr->ia_mode;
973 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
974 
975 		if (!vfsgid_in_group_p(vfsgid) &&
976 		    !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
977 			mode &= ~S_ISGID;
978 		set_acl_inode(inode, mode);
979 	}
980 }
981 #else
982 #define __setattr_copy setattr_copy
983 #endif
984 
f2fs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)985 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
986 		 struct iattr *attr)
987 {
988 	struct inode *inode = d_inode(dentry);
989 	int err;
990 
991 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
992 		return -EIO;
993 
994 	if (unlikely(IS_IMMUTABLE(inode)))
995 		return -EPERM;
996 
997 	if (unlikely(IS_APPEND(inode) &&
998 			(attr->ia_valid & (ATTR_MODE | ATTR_UID |
999 				  ATTR_GID | ATTR_TIMES_SET))))
1000 		return -EPERM;
1001 
1002 	if ((attr->ia_valid & ATTR_SIZE)) {
1003 		if (!f2fs_is_compress_backend_ready(inode))
1004 			return -EOPNOTSUPP;
1005 		if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) &&
1006 			!IS_ALIGNED(attr->ia_size,
1007 			F2FS_BLK_TO_BYTES(F2FS_I(inode)->i_cluster_size)))
1008 			return -EINVAL;
1009 	}
1010 
1011 	err = setattr_prepare(idmap, dentry, attr);
1012 	if (err)
1013 		return err;
1014 
1015 	err = fscrypt_prepare_setattr(dentry, attr);
1016 	if (err)
1017 		return err;
1018 
1019 	err = fsverity_prepare_setattr(dentry, attr);
1020 	if (err)
1021 		return err;
1022 
1023 	if (is_quota_modification(idmap, inode, attr)) {
1024 		err = f2fs_dquot_initialize(inode);
1025 		if (err)
1026 			return err;
1027 	}
1028 	if (i_uid_needs_update(idmap, attr, inode) ||
1029 	    i_gid_needs_update(idmap, attr, inode)) {
1030 		f2fs_lock_op(F2FS_I_SB(inode));
1031 		err = dquot_transfer(idmap, inode, attr);
1032 		if (err) {
1033 			set_sbi_flag(F2FS_I_SB(inode),
1034 					SBI_QUOTA_NEED_REPAIR);
1035 			f2fs_unlock_op(F2FS_I_SB(inode));
1036 			return err;
1037 		}
1038 		/*
1039 		 * update uid/gid under lock_op(), so that dquot and inode can
1040 		 * be updated atomically.
1041 		 */
1042 		i_uid_update(idmap, attr, inode);
1043 		i_gid_update(idmap, attr, inode);
1044 		f2fs_mark_inode_dirty_sync(inode, true);
1045 		f2fs_unlock_op(F2FS_I_SB(inode));
1046 	}
1047 
1048 	if (attr->ia_valid & ATTR_SIZE) {
1049 		loff_t old_size = i_size_read(inode);
1050 
1051 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
1052 			/*
1053 			 * should convert inline inode before i_size_write to
1054 			 * keep smaller than inline_data size with inline flag.
1055 			 */
1056 			err = f2fs_convert_inline_inode(inode);
1057 			if (err)
1058 				return err;
1059 		}
1060 
1061 		/*
1062 		 * wait for inflight dio, blocks should be removed after
1063 		 * IO completion.
1064 		 */
1065 		if (attr->ia_size < old_size)
1066 			inode_dio_wait(inode);
1067 
1068 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1069 		filemap_invalidate_lock(inode->i_mapping);
1070 
1071 		if (attr->ia_size > old_size)
1072 			f2fs_zero_post_eof_page(inode, attr->ia_size);
1073 		truncate_setsize(inode, attr->ia_size);
1074 
1075 		if (attr->ia_size <= old_size)
1076 			err = f2fs_truncate(inode);
1077 		/*
1078 		 * do not trim all blocks after i_size if target size is
1079 		 * larger than i_size.
1080 		 */
1081 		filemap_invalidate_unlock(inode->i_mapping);
1082 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1083 		if (err)
1084 			return err;
1085 
1086 		spin_lock(&F2FS_I(inode)->i_size_lock);
1087 		inode->i_mtime = inode_set_ctime_current(inode);
1088 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
1089 		spin_unlock(&F2FS_I(inode)->i_size_lock);
1090 	}
1091 
1092 	__setattr_copy(idmap, inode, attr);
1093 
1094 	if (attr->ia_valid & ATTR_MODE) {
1095 		err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1096 
1097 		if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1098 			if (!err)
1099 				inode->i_mode = F2FS_I(inode)->i_acl_mode;
1100 			clear_inode_flag(inode, FI_ACL_MODE);
1101 		}
1102 	}
1103 
1104 	/* file size may changed here */
1105 	f2fs_mark_inode_dirty_sync(inode, true);
1106 
1107 	/* inode change will produce dirty node pages flushed by checkpoint */
1108 	f2fs_balance_fs(F2FS_I_SB(inode), true);
1109 
1110 	return err;
1111 }
1112 
1113 const struct inode_operations f2fs_file_inode_operations = {
1114 	.getattr	= f2fs_getattr,
1115 	.setattr	= f2fs_setattr,
1116 	.get_inode_acl	= f2fs_get_acl,
1117 	.set_acl	= f2fs_set_acl,
1118 	.listxattr	= f2fs_listxattr,
1119 	.fiemap		= f2fs_fiemap,
1120 	.fileattr_get	= f2fs_fileattr_get,
1121 	.fileattr_set	= f2fs_fileattr_set,
1122 };
1123 
fill_zero(struct inode * inode,pgoff_t index,loff_t start,loff_t len)1124 static int fill_zero(struct inode *inode, pgoff_t index,
1125 					loff_t start, loff_t len)
1126 {
1127 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1128 	struct page *page;
1129 
1130 	if (!len)
1131 		return 0;
1132 
1133 	f2fs_balance_fs(sbi, true);
1134 
1135 	f2fs_lock_op(sbi);
1136 	page = f2fs_get_new_data_page(inode, NULL, index, false);
1137 	f2fs_unlock_op(sbi);
1138 
1139 	if (IS_ERR(page))
1140 		return PTR_ERR(page);
1141 
1142 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1143 	zero_user(page, start, len);
1144 	set_page_dirty(page);
1145 	f2fs_put_page(page, 1);
1146 	return 0;
1147 }
1148 
f2fs_truncate_hole(struct inode * inode,pgoff_t pg_start,pgoff_t pg_end)1149 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1150 {
1151 	int err;
1152 
1153 	while (pg_start < pg_end) {
1154 		struct dnode_of_data dn;
1155 		pgoff_t end_offset, count;
1156 
1157 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1158 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1159 		if (err) {
1160 			if (err == -ENOENT) {
1161 				pg_start = f2fs_get_next_page_offset(&dn,
1162 								pg_start);
1163 				continue;
1164 			}
1165 			return err;
1166 		}
1167 
1168 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1169 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1170 
1171 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1172 
1173 		f2fs_truncate_data_blocks_range(&dn, count);
1174 		f2fs_put_dnode(&dn);
1175 
1176 		pg_start += count;
1177 	}
1178 	return 0;
1179 }
1180 
f2fs_punch_hole(struct inode * inode,loff_t offset,loff_t len)1181 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1182 {
1183 	pgoff_t pg_start, pg_end;
1184 	loff_t off_start, off_end;
1185 	int ret;
1186 
1187 	ret = f2fs_convert_inline_inode(inode);
1188 	if (ret)
1189 		return ret;
1190 
1191 	filemap_invalidate_lock(inode->i_mapping);
1192 	f2fs_zero_post_eof_page(inode, offset + len);
1193 	filemap_invalidate_unlock(inode->i_mapping);
1194 
1195 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1196 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1197 
1198 	off_start = offset & (PAGE_SIZE - 1);
1199 	off_end = (offset + len) & (PAGE_SIZE - 1);
1200 
1201 	if (pg_start == pg_end) {
1202 		ret = fill_zero(inode, pg_start, off_start,
1203 						off_end - off_start);
1204 		if (ret)
1205 			return ret;
1206 	} else {
1207 		if (off_start) {
1208 			ret = fill_zero(inode, pg_start++, off_start,
1209 						PAGE_SIZE - off_start);
1210 			if (ret)
1211 				return ret;
1212 		}
1213 		if (off_end) {
1214 			ret = fill_zero(inode, pg_end, 0, off_end);
1215 			if (ret)
1216 				return ret;
1217 		}
1218 
1219 		if (pg_start < pg_end) {
1220 			loff_t blk_start, blk_end;
1221 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1222 
1223 			f2fs_balance_fs(sbi, true);
1224 
1225 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1226 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1227 
1228 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1229 			filemap_invalidate_lock(inode->i_mapping);
1230 
1231 			truncate_pagecache_range(inode, blk_start, blk_end - 1);
1232 
1233 			f2fs_lock_op(sbi);
1234 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1235 			f2fs_unlock_op(sbi);
1236 
1237 			filemap_invalidate_unlock(inode->i_mapping);
1238 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1239 		}
1240 	}
1241 
1242 	return ret;
1243 }
1244 
__read_out_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,pgoff_t len)1245 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1246 				int *do_replace, pgoff_t off, pgoff_t len)
1247 {
1248 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1249 	struct dnode_of_data dn;
1250 	int ret, done, i;
1251 
1252 next_dnode:
1253 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1254 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1255 	if (ret && ret != -ENOENT) {
1256 		return ret;
1257 	} else if (ret == -ENOENT) {
1258 		if (dn.max_level == 0)
1259 			return -ENOENT;
1260 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1261 						dn.ofs_in_node, len);
1262 		blkaddr += done;
1263 		do_replace += done;
1264 		goto next;
1265 	}
1266 
1267 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1268 							dn.ofs_in_node, len);
1269 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1270 		*blkaddr = f2fs_data_blkaddr(&dn);
1271 
1272 		if (__is_valid_data_blkaddr(*blkaddr) &&
1273 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1274 					DATA_GENERIC_ENHANCE)) {
1275 			f2fs_put_dnode(&dn);
1276 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1277 			return -EFSCORRUPTED;
1278 		}
1279 
1280 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1281 
1282 			if (f2fs_lfs_mode(sbi)) {
1283 				f2fs_put_dnode(&dn);
1284 				return -EOPNOTSUPP;
1285 			}
1286 
1287 			/* do not invalidate this block address */
1288 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1289 			*do_replace = 1;
1290 		}
1291 	}
1292 	f2fs_put_dnode(&dn);
1293 next:
1294 	len -= done;
1295 	off += done;
1296 	if (len)
1297 		goto next_dnode;
1298 	return 0;
1299 }
1300 
__roll_back_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,int len)1301 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1302 				int *do_replace, pgoff_t off, int len)
1303 {
1304 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1305 	struct dnode_of_data dn;
1306 	int ret, i;
1307 
1308 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1309 		if (*do_replace == 0)
1310 			continue;
1311 
1312 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1313 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1314 		if (ret) {
1315 			dec_valid_block_count(sbi, inode, 1);
1316 			f2fs_invalidate_blocks(sbi, *blkaddr);
1317 		} else {
1318 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1319 		}
1320 		f2fs_put_dnode(&dn);
1321 	}
1322 	return 0;
1323 }
1324 
__clone_blkaddrs(struct inode * src_inode,struct inode * dst_inode,block_t * blkaddr,int * do_replace,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1325 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1326 			block_t *blkaddr, int *do_replace,
1327 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1328 {
1329 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1330 	pgoff_t i = 0;
1331 	int ret;
1332 
1333 	while (i < len) {
1334 		if (blkaddr[i] == NULL_ADDR && !full) {
1335 			i++;
1336 			continue;
1337 		}
1338 
1339 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1340 			struct dnode_of_data dn;
1341 			struct node_info ni;
1342 			size_t new_size;
1343 			pgoff_t ilen;
1344 
1345 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1346 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1347 			if (ret)
1348 				return ret;
1349 
1350 			ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1351 			if (ret) {
1352 				f2fs_put_dnode(&dn);
1353 				return ret;
1354 			}
1355 
1356 			ilen = min((pgoff_t)
1357 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1358 						dn.ofs_in_node, len - i);
1359 			do {
1360 				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1361 				f2fs_truncate_data_blocks_range(&dn, 1);
1362 
1363 				if (do_replace[i]) {
1364 					f2fs_i_blocks_write(src_inode,
1365 							1, false, false);
1366 					f2fs_i_blocks_write(dst_inode,
1367 							1, true, false);
1368 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1369 					blkaddr[i], ni.version, true, false);
1370 
1371 					do_replace[i] = 0;
1372 				}
1373 				dn.ofs_in_node++;
1374 				i++;
1375 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1376 				if (dst_inode->i_size < new_size)
1377 					f2fs_i_size_write(dst_inode, new_size);
1378 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1379 
1380 			f2fs_put_dnode(&dn);
1381 		} else {
1382 			struct page *psrc, *pdst;
1383 
1384 			psrc = f2fs_get_lock_data_page(src_inode,
1385 							src + i, true);
1386 			if (IS_ERR(psrc))
1387 				return PTR_ERR(psrc);
1388 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1389 								true);
1390 			if (IS_ERR(pdst)) {
1391 				f2fs_put_page(psrc, 1);
1392 				return PTR_ERR(pdst);
1393 			}
1394 
1395 			f2fs_wait_on_page_writeback(pdst, DATA, true, true);
1396 
1397 			memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1398 			set_page_dirty(pdst);
1399 			set_page_private_gcing(pdst);
1400 			f2fs_put_page(pdst, 1);
1401 			f2fs_put_page(psrc, 1);
1402 
1403 			ret = f2fs_truncate_hole(src_inode,
1404 						src + i, src + i + 1);
1405 			if (ret)
1406 				return ret;
1407 			i++;
1408 		}
1409 	}
1410 	return 0;
1411 }
1412 
__exchange_data_block(struct inode * src_inode,struct inode * dst_inode,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1413 static int __exchange_data_block(struct inode *src_inode,
1414 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1415 			pgoff_t len, bool full)
1416 {
1417 	block_t *src_blkaddr;
1418 	int *do_replace;
1419 	pgoff_t olen;
1420 	int ret;
1421 
1422 	while (len) {
1423 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1424 
1425 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1426 					array_size(olen, sizeof(block_t)),
1427 					GFP_NOFS);
1428 		if (!src_blkaddr)
1429 			return -ENOMEM;
1430 
1431 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1432 					array_size(olen, sizeof(int)),
1433 					GFP_NOFS);
1434 		if (!do_replace) {
1435 			kvfree(src_blkaddr);
1436 			return -ENOMEM;
1437 		}
1438 
1439 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1440 					do_replace, src, olen);
1441 		if (ret)
1442 			goto roll_back;
1443 
1444 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1445 					do_replace, src, dst, olen, full);
1446 		if (ret)
1447 			goto roll_back;
1448 
1449 		src += olen;
1450 		dst += olen;
1451 		len -= olen;
1452 
1453 		kvfree(src_blkaddr);
1454 		kvfree(do_replace);
1455 	}
1456 	return 0;
1457 
1458 roll_back:
1459 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1460 	kvfree(src_blkaddr);
1461 	kvfree(do_replace);
1462 	return ret;
1463 }
1464 
f2fs_do_collapse(struct inode * inode,loff_t offset,loff_t len)1465 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1466 {
1467 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1468 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1469 	pgoff_t start = offset >> PAGE_SHIFT;
1470 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1471 	int ret;
1472 
1473 	f2fs_balance_fs(sbi, true);
1474 
1475 	/* avoid gc operation during block exchange */
1476 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1477 	filemap_invalidate_lock(inode->i_mapping);
1478 
1479 	f2fs_zero_post_eof_page(inode, offset + len);
1480 
1481 	f2fs_lock_op(sbi);
1482 	f2fs_drop_extent_tree(inode);
1483 	truncate_pagecache(inode, offset);
1484 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1485 	f2fs_unlock_op(sbi);
1486 
1487 	filemap_invalidate_unlock(inode->i_mapping);
1488 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1489 	return ret;
1490 }
1491 
f2fs_collapse_range(struct inode * inode,loff_t offset,loff_t len)1492 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1493 {
1494 	loff_t new_size;
1495 	int ret;
1496 
1497 	if (offset + len >= i_size_read(inode))
1498 		return -EINVAL;
1499 
1500 	/* collapse range should be aligned to block size of f2fs. */
1501 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1502 		return -EINVAL;
1503 
1504 	ret = f2fs_convert_inline_inode(inode);
1505 	if (ret)
1506 		return ret;
1507 
1508 	/* write out all dirty pages from offset */
1509 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1510 	if (ret)
1511 		return ret;
1512 
1513 	ret = f2fs_do_collapse(inode, offset, len);
1514 	if (ret)
1515 		return ret;
1516 
1517 	/* write out all moved pages, if possible */
1518 	filemap_invalidate_lock(inode->i_mapping);
1519 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1520 	truncate_pagecache(inode, offset);
1521 
1522 	new_size = i_size_read(inode) - len;
1523 	ret = f2fs_truncate_blocks(inode, new_size, true);
1524 	filemap_invalidate_unlock(inode->i_mapping);
1525 	if (!ret)
1526 		f2fs_i_size_write(inode, new_size);
1527 	return ret;
1528 }
1529 
f2fs_do_zero_range(struct dnode_of_data * dn,pgoff_t start,pgoff_t end)1530 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1531 								pgoff_t end)
1532 {
1533 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1534 	pgoff_t index = start;
1535 	unsigned int ofs_in_node = dn->ofs_in_node;
1536 	blkcnt_t count = 0;
1537 	int ret;
1538 
1539 	for (; index < end; index++, dn->ofs_in_node++) {
1540 		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1541 			count++;
1542 	}
1543 
1544 	dn->ofs_in_node = ofs_in_node;
1545 	ret = f2fs_reserve_new_blocks(dn, count);
1546 	if (ret)
1547 		return ret;
1548 
1549 	dn->ofs_in_node = ofs_in_node;
1550 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1551 		dn->data_blkaddr = f2fs_data_blkaddr(dn);
1552 		/*
1553 		 * f2fs_reserve_new_blocks will not guarantee entire block
1554 		 * allocation.
1555 		 */
1556 		if (dn->data_blkaddr == NULL_ADDR) {
1557 			ret = -ENOSPC;
1558 			break;
1559 		}
1560 
1561 		if (dn->data_blkaddr == NEW_ADDR)
1562 			continue;
1563 
1564 		if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1565 					DATA_GENERIC_ENHANCE)) {
1566 			ret = -EFSCORRUPTED;
1567 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1568 			break;
1569 		}
1570 
1571 		f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1572 		f2fs_set_data_blkaddr(dn, NEW_ADDR);
1573 	}
1574 
1575 	f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1576 	f2fs_update_age_extent_cache_range(dn, start, index - start);
1577 
1578 	return ret;
1579 }
1580 
f2fs_zero_range(struct inode * inode,loff_t offset,loff_t len,int mode)1581 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1582 								int mode)
1583 {
1584 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1585 	struct address_space *mapping = inode->i_mapping;
1586 	pgoff_t index, pg_start, pg_end;
1587 	loff_t new_size = i_size_read(inode);
1588 	loff_t off_start, off_end;
1589 	int ret = 0;
1590 
1591 	ret = inode_newsize_ok(inode, (len + offset));
1592 	if (ret)
1593 		return ret;
1594 
1595 	ret = f2fs_convert_inline_inode(inode);
1596 	if (ret)
1597 		return ret;
1598 
1599 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1600 	if (ret)
1601 		return ret;
1602 
1603 	filemap_invalidate_lock(mapping);
1604 	f2fs_zero_post_eof_page(inode, offset + len);
1605 	filemap_invalidate_unlock(mapping);
1606 
1607 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1608 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1609 
1610 	off_start = offset & (PAGE_SIZE - 1);
1611 	off_end = (offset + len) & (PAGE_SIZE - 1);
1612 
1613 	if (pg_start == pg_end) {
1614 		ret = fill_zero(inode, pg_start, off_start,
1615 						off_end - off_start);
1616 		if (ret)
1617 			return ret;
1618 
1619 		new_size = max_t(loff_t, new_size, offset + len);
1620 	} else {
1621 		if (off_start) {
1622 			ret = fill_zero(inode, pg_start++, off_start,
1623 						PAGE_SIZE - off_start);
1624 			if (ret)
1625 				return ret;
1626 
1627 			new_size = max_t(loff_t, new_size,
1628 					(loff_t)pg_start << PAGE_SHIFT);
1629 		}
1630 
1631 		for (index = pg_start; index < pg_end;) {
1632 			struct dnode_of_data dn;
1633 			unsigned int end_offset;
1634 			pgoff_t end;
1635 
1636 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1637 			filemap_invalidate_lock(mapping);
1638 
1639 			truncate_pagecache_range(inode,
1640 				(loff_t)index << PAGE_SHIFT,
1641 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1642 
1643 			f2fs_lock_op(sbi);
1644 
1645 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1646 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1647 			if (ret) {
1648 				f2fs_unlock_op(sbi);
1649 				filemap_invalidate_unlock(mapping);
1650 				f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1651 				goto out;
1652 			}
1653 
1654 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1655 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1656 
1657 			ret = f2fs_do_zero_range(&dn, index, end);
1658 			f2fs_put_dnode(&dn);
1659 
1660 			f2fs_unlock_op(sbi);
1661 			filemap_invalidate_unlock(mapping);
1662 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1663 
1664 			f2fs_balance_fs(sbi, dn.node_changed);
1665 
1666 			if (ret)
1667 				goto out;
1668 
1669 			index = end;
1670 			new_size = max_t(loff_t, new_size,
1671 					(loff_t)index << PAGE_SHIFT);
1672 		}
1673 
1674 		if (off_end) {
1675 			ret = fill_zero(inode, pg_end, 0, off_end);
1676 			if (ret)
1677 				goto out;
1678 
1679 			new_size = max_t(loff_t, new_size, offset + len);
1680 		}
1681 	}
1682 
1683 out:
1684 	if (new_size > i_size_read(inode)) {
1685 		if (mode & FALLOC_FL_KEEP_SIZE)
1686 			file_set_keep_isize(inode);
1687 		else
1688 			f2fs_i_size_write(inode, new_size);
1689 	}
1690 	return ret;
1691 }
1692 
f2fs_insert_range(struct inode * inode,loff_t offset,loff_t len)1693 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1694 {
1695 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1696 	struct address_space *mapping = inode->i_mapping;
1697 	pgoff_t nr, pg_start, pg_end, delta, idx;
1698 	loff_t new_size;
1699 	int ret = 0;
1700 
1701 	new_size = i_size_read(inode) + len;
1702 	ret = inode_newsize_ok(inode, new_size);
1703 	if (ret)
1704 		return ret;
1705 
1706 	if (offset >= i_size_read(inode))
1707 		return -EINVAL;
1708 
1709 	/* insert range should be aligned to block size of f2fs. */
1710 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1711 		return -EINVAL;
1712 
1713 	ret = f2fs_convert_inline_inode(inode);
1714 	if (ret)
1715 		return ret;
1716 
1717 	f2fs_balance_fs(sbi, true);
1718 
1719 	filemap_invalidate_lock(mapping);
1720 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1721 	filemap_invalidate_unlock(mapping);
1722 	if (ret)
1723 		return ret;
1724 
1725 	/* write out all dirty pages from offset */
1726 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1727 	if (ret)
1728 		return ret;
1729 
1730 	pg_start = offset >> PAGE_SHIFT;
1731 	pg_end = (offset + len) >> PAGE_SHIFT;
1732 	delta = pg_end - pg_start;
1733 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1734 
1735 	/* avoid gc operation during block exchange */
1736 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1737 	filemap_invalidate_lock(mapping);
1738 
1739 	f2fs_zero_post_eof_page(inode, offset + len);
1740 	truncate_pagecache(inode, offset);
1741 
1742 	while (!ret && idx > pg_start) {
1743 		nr = idx - pg_start;
1744 		if (nr > delta)
1745 			nr = delta;
1746 		idx -= nr;
1747 
1748 		f2fs_lock_op(sbi);
1749 		f2fs_drop_extent_tree(inode);
1750 
1751 		ret = __exchange_data_block(inode, inode, idx,
1752 					idx + delta, nr, false);
1753 		f2fs_unlock_op(sbi);
1754 	}
1755 	filemap_invalidate_unlock(mapping);
1756 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1757 
1758 	/* write out all moved pages, if possible */
1759 	filemap_invalidate_lock(mapping);
1760 	filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1761 	truncate_pagecache(inode, offset);
1762 	filemap_invalidate_unlock(mapping);
1763 
1764 	if (!ret)
1765 		f2fs_i_size_write(inode, new_size);
1766 	return ret;
1767 }
1768 
f2fs_expand_inode_data(struct inode * inode,loff_t offset,loff_t len,int mode)1769 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1770 					loff_t len, int mode)
1771 {
1772 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1773 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1774 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1775 			.m_may_create = true };
1776 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1777 			.init_gc_type = FG_GC,
1778 			.should_migrate_blocks = false,
1779 			.err_gc_skipped = true,
1780 			.nr_free_secs = 0 };
1781 	pgoff_t pg_start, pg_end;
1782 	loff_t new_size;
1783 	loff_t off_end;
1784 	block_t expanded = 0;
1785 	int err;
1786 
1787 	err = inode_newsize_ok(inode, (len + offset));
1788 	if (err)
1789 		return err;
1790 
1791 	err = f2fs_convert_inline_inode(inode);
1792 	if (err)
1793 		return err;
1794 
1795 	filemap_invalidate_lock(inode->i_mapping);
1796 	f2fs_zero_post_eof_page(inode, offset + len);
1797 	filemap_invalidate_unlock(inode->i_mapping);
1798 
1799 	f2fs_balance_fs(sbi, true);
1800 
1801 	pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1802 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1803 	off_end = (offset + len) & (PAGE_SIZE - 1);
1804 
1805 	map.m_lblk = pg_start;
1806 	map.m_len = pg_end - pg_start;
1807 	if (off_end)
1808 		map.m_len++;
1809 
1810 	if (!map.m_len)
1811 		return 0;
1812 
1813 	if (f2fs_is_pinned_file(inode)) {
1814 		block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1815 		block_t sec_len = roundup(map.m_len, sec_blks);
1816 
1817 		map.m_len = sec_blks;
1818 next_alloc:
1819 		if (has_not_enough_free_secs(sbi, 0,
1820 			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1821 			f2fs_down_write(&sbi->gc_lock);
1822 			stat_inc_gc_call_count(sbi, FOREGROUND);
1823 			err = f2fs_gc(sbi, &gc_control);
1824 			if (err && err != -ENODATA)
1825 				goto out_err;
1826 		}
1827 
1828 		f2fs_down_write(&sbi->pin_sem);
1829 
1830 		err = f2fs_allocate_pinning_section(sbi);
1831 		if (err) {
1832 			f2fs_up_write(&sbi->pin_sem);
1833 			goto out_err;
1834 		}
1835 
1836 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1837 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1838 		file_dont_truncate(inode);
1839 
1840 		f2fs_up_write(&sbi->pin_sem);
1841 
1842 		expanded += map.m_len;
1843 		sec_len -= map.m_len;
1844 		map.m_lblk += map.m_len;
1845 		if (!err && sec_len)
1846 			goto next_alloc;
1847 
1848 		map.m_len = expanded;
1849 	} else {
1850 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1851 		expanded = map.m_len;
1852 	}
1853 out_err:
1854 	if (err) {
1855 		pgoff_t last_off;
1856 
1857 		if (!expanded)
1858 			return err;
1859 
1860 		last_off = pg_start + expanded - 1;
1861 
1862 		/* update new size to the failed position */
1863 		new_size = (last_off == pg_end) ? offset + len :
1864 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1865 	} else {
1866 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1867 	}
1868 
1869 	if (new_size > i_size_read(inode)) {
1870 		if (mode & FALLOC_FL_KEEP_SIZE)
1871 			file_set_keep_isize(inode);
1872 		else
1873 			f2fs_i_size_write(inode, new_size);
1874 	}
1875 
1876 	return err;
1877 }
1878 
f2fs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1879 static long f2fs_fallocate(struct file *file, int mode,
1880 				loff_t offset, loff_t len)
1881 {
1882 	struct inode *inode = file_inode(file);
1883 	long ret = 0;
1884 
1885 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1886 		return -EIO;
1887 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1888 		return -ENOSPC;
1889 	if (!f2fs_is_compress_backend_ready(inode))
1890 		return -EOPNOTSUPP;
1891 
1892 	/* f2fs only support ->fallocate for regular file */
1893 	if (!S_ISREG(inode->i_mode))
1894 		return -EINVAL;
1895 
1896 	if (IS_ENCRYPTED(inode) &&
1897 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1898 		return -EOPNOTSUPP;
1899 
1900 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1901 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1902 			FALLOC_FL_INSERT_RANGE))
1903 		return -EOPNOTSUPP;
1904 
1905 	inode_lock(inode);
1906 
1907 	/*
1908 	 * Pinned file should not support partial truncation since the block
1909 	 * can be used by applications.
1910 	 */
1911 	if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1912 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1913 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) {
1914 		ret = -EOPNOTSUPP;
1915 		goto out;
1916 	}
1917 
1918 	ret = file_modified(file);
1919 	if (ret)
1920 		goto out;
1921 
1922 	/*
1923 	 * wait for inflight dio, blocks should be removed after IO
1924 	 * completion.
1925 	 */
1926 	inode_dio_wait(inode);
1927 
1928 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1929 		if (offset >= inode->i_size)
1930 			goto out;
1931 
1932 		ret = f2fs_punch_hole(inode, offset, len);
1933 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1934 		ret = f2fs_collapse_range(inode, offset, len);
1935 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1936 		ret = f2fs_zero_range(inode, offset, len, mode);
1937 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1938 		ret = f2fs_insert_range(inode, offset, len);
1939 	} else {
1940 		ret = f2fs_expand_inode_data(inode, offset, len, mode);
1941 	}
1942 
1943 	if (!ret) {
1944 		inode->i_mtime = inode_set_ctime_current(inode);
1945 		f2fs_mark_inode_dirty_sync(inode, false);
1946 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1947 	}
1948 
1949 out:
1950 	inode_unlock(inode);
1951 
1952 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1953 	return ret;
1954 }
1955 
f2fs_release_file(struct inode * inode,struct file * filp)1956 static int f2fs_release_file(struct inode *inode, struct file *filp)
1957 {
1958 	/*
1959 	 * f2fs_release_file is called at every close calls. So we should
1960 	 * not drop any inmemory pages by close called by other process.
1961 	 */
1962 	if (!(filp->f_mode & FMODE_WRITE) ||
1963 			atomic_read(&inode->i_writecount) != 1)
1964 		return 0;
1965 
1966 	inode_lock(inode);
1967 	f2fs_abort_atomic_write(inode, true);
1968 	inode_unlock(inode);
1969 
1970 	return 0;
1971 }
1972 
f2fs_file_flush(struct file * file,fl_owner_t id)1973 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1974 {
1975 	struct inode *inode = file_inode(file);
1976 
1977 	/*
1978 	 * If the process doing a transaction is crashed, we should do
1979 	 * roll-back. Otherwise, other reader/write can see corrupted database
1980 	 * until all the writers close its file. Since this should be done
1981 	 * before dropping file lock, it needs to do in ->flush.
1982 	 */
1983 	if (F2FS_I(inode)->atomic_write_task == current &&
1984 				(current->flags & PF_EXITING)) {
1985 		inode_lock(inode);
1986 		f2fs_abort_atomic_write(inode, true);
1987 		inode_unlock(inode);
1988 	}
1989 
1990 	return 0;
1991 }
1992 
f2fs_setflags_common(struct inode * inode,u32 iflags,u32 mask)1993 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1994 {
1995 	struct f2fs_inode_info *fi = F2FS_I(inode);
1996 	u32 masked_flags = fi->i_flags & mask;
1997 
1998 	/* mask can be shrunk by flags_valid selector */
1999 	iflags &= mask;
2000 
2001 	/* Is it quota file? Do not allow user to mess with it */
2002 	if (IS_NOQUOTA(inode))
2003 		return -EPERM;
2004 
2005 	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
2006 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
2007 			return -EOPNOTSUPP;
2008 		if (!f2fs_empty_dir(inode))
2009 			return -ENOTEMPTY;
2010 	}
2011 
2012 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
2013 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
2014 			return -EOPNOTSUPP;
2015 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
2016 			return -EINVAL;
2017 	}
2018 
2019 	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
2020 		if (masked_flags & F2FS_COMPR_FL) {
2021 			if (!f2fs_disable_compressed_file(inode))
2022 				return -EINVAL;
2023 		} else {
2024 			/* try to convert inline_data to support compression */
2025 			int err = f2fs_convert_inline_inode(inode);
2026 			if (err)
2027 				return err;
2028 
2029 			f2fs_down_write(&F2FS_I(inode)->i_sem);
2030 			if (!f2fs_may_compress(inode) ||
2031 					(S_ISREG(inode->i_mode) &&
2032 					F2FS_HAS_BLOCKS(inode))) {
2033 				f2fs_up_write(&F2FS_I(inode)->i_sem);
2034 				return -EINVAL;
2035 			}
2036 			err = set_compress_context(inode);
2037 			f2fs_up_write(&F2FS_I(inode)->i_sem);
2038 
2039 			if (err)
2040 				return err;
2041 		}
2042 	}
2043 
2044 	fi->i_flags = iflags | (fi->i_flags & ~mask);
2045 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
2046 					(fi->i_flags & F2FS_NOCOMP_FL));
2047 
2048 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
2049 		set_inode_flag(inode, FI_PROJ_INHERIT);
2050 	else
2051 		clear_inode_flag(inode, FI_PROJ_INHERIT);
2052 
2053 	inode_set_ctime_current(inode);
2054 	f2fs_set_inode_flags(inode);
2055 	f2fs_mark_inode_dirty_sync(inode, true);
2056 	return 0;
2057 }
2058 
2059 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
2060 
2061 /*
2062  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
2063  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
2064  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
2065  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
2066  *
2067  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
2068  * FS_IOC_FSSETXATTR is done by the VFS.
2069  */
2070 
2071 static const struct {
2072 	u32 iflag;
2073 	u32 fsflag;
2074 } f2fs_fsflags_map[] = {
2075 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
2076 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
2077 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
2078 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
2079 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
2080 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
2081 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
2082 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
2083 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
2084 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
2085 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
2086 };
2087 
2088 #define F2FS_GETTABLE_FS_FL (		\
2089 		FS_COMPR_FL |		\
2090 		FS_SYNC_FL |		\
2091 		FS_IMMUTABLE_FL |	\
2092 		FS_APPEND_FL |		\
2093 		FS_NODUMP_FL |		\
2094 		FS_NOATIME_FL |		\
2095 		FS_NOCOMP_FL |		\
2096 		FS_INDEX_FL |		\
2097 		FS_DIRSYNC_FL |		\
2098 		FS_PROJINHERIT_FL |	\
2099 		FS_ENCRYPT_FL |		\
2100 		FS_INLINE_DATA_FL |	\
2101 		FS_NOCOW_FL |		\
2102 		FS_VERITY_FL |		\
2103 		FS_CASEFOLD_FL)
2104 
2105 #define F2FS_SETTABLE_FS_FL (		\
2106 		FS_COMPR_FL |		\
2107 		FS_SYNC_FL |		\
2108 		FS_IMMUTABLE_FL |	\
2109 		FS_APPEND_FL |		\
2110 		FS_NODUMP_FL |		\
2111 		FS_NOATIME_FL |		\
2112 		FS_NOCOMP_FL |		\
2113 		FS_DIRSYNC_FL |		\
2114 		FS_PROJINHERIT_FL |	\
2115 		FS_CASEFOLD_FL)
2116 
2117 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
f2fs_iflags_to_fsflags(u32 iflags)2118 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2119 {
2120 	u32 fsflags = 0;
2121 	int i;
2122 
2123 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2124 		if (iflags & f2fs_fsflags_map[i].iflag)
2125 			fsflags |= f2fs_fsflags_map[i].fsflag;
2126 
2127 	return fsflags;
2128 }
2129 
2130 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
f2fs_fsflags_to_iflags(u32 fsflags)2131 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2132 {
2133 	u32 iflags = 0;
2134 	int i;
2135 
2136 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2137 		if (fsflags & f2fs_fsflags_map[i].fsflag)
2138 			iflags |= f2fs_fsflags_map[i].iflag;
2139 
2140 	return iflags;
2141 }
2142 
f2fs_ioc_getversion(struct file * filp,unsigned long arg)2143 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2144 {
2145 	struct inode *inode = file_inode(filp);
2146 
2147 	return put_user(inode->i_generation, (int __user *)arg);
2148 }
2149 
f2fs_ioc_start_atomic_write(struct file * filp,bool truncate)2150 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2151 {
2152 	struct inode *inode = file_inode(filp);
2153 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2154 	struct f2fs_inode_info *fi = F2FS_I(inode);
2155 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2156 	loff_t isize;
2157 	int ret;
2158 
2159 	if (!(filp->f_mode & FMODE_WRITE))
2160 		return -EBADF;
2161 
2162 	if (!inode_owner_or_capable(idmap, inode))
2163 		return -EACCES;
2164 
2165 	if (!S_ISREG(inode->i_mode))
2166 		return -EINVAL;
2167 
2168 	if (filp->f_flags & O_DIRECT)
2169 		return -EINVAL;
2170 
2171 	ret = mnt_want_write_file(filp);
2172 	if (ret)
2173 		return ret;
2174 
2175 	inode_lock(inode);
2176 
2177 	if (!f2fs_disable_compressed_file(inode)) {
2178 		ret = -EINVAL;
2179 		goto out;
2180 	}
2181 
2182 	if (f2fs_is_atomic_file(inode))
2183 		goto out;
2184 
2185 	ret = f2fs_convert_inline_inode(inode);
2186 	if (ret)
2187 		goto out;
2188 
2189 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2190 
2191 	/*
2192 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2193 	 * f2fs_is_atomic_file.
2194 	 */
2195 	if (get_dirty_pages(inode))
2196 		f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2197 			  inode->i_ino, get_dirty_pages(inode));
2198 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2199 	if (ret) {
2200 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2201 		goto out;
2202 	}
2203 
2204 	/* Check if the inode already has a COW inode */
2205 	if (fi->cow_inode == NULL) {
2206 		/* Create a COW inode for atomic write */
2207 		struct dentry *dentry = file_dentry(filp);
2208 		struct inode *dir = d_inode(dentry->d_parent);
2209 
2210 		ret = f2fs_get_tmpfile(idmap, dir, &fi->cow_inode);
2211 		if (ret) {
2212 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2213 			goto out;
2214 		}
2215 
2216 		set_inode_flag(fi->cow_inode, FI_COW_FILE);
2217 		clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2218 
2219 		/* Set the COW inode's atomic_inode to the atomic inode */
2220 		F2FS_I(fi->cow_inode)->atomic_inode = inode;
2221 	} else {
2222 		/* Reuse the already created COW inode */
2223 		f2fs_bug_on(sbi, get_dirty_pages(fi->cow_inode));
2224 
2225 		invalidate_mapping_pages(fi->cow_inode->i_mapping, 0, -1);
2226 
2227 		ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2228 		if (ret) {
2229 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2230 			goto out;
2231 		}
2232 	}
2233 
2234 	f2fs_write_inode(inode, NULL);
2235 
2236 	stat_inc_atomic_inode(inode);
2237 
2238 	set_inode_flag(inode, FI_ATOMIC_FILE);
2239 
2240 	isize = i_size_read(inode);
2241 	fi->original_i_size = isize;
2242 	if (truncate) {
2243 		set_inode_flag(inode, FI_ATOMIC_REPLACE);
2244 		truncate_inode_pages_final(inode->i_mapping);
2245 		f2fs_i_size_write(inode, 0);
2246 		isize = 0;
2247 	}
2248 	f2fs_i_size_write(fi->cow_inode, isize);
2249 
2250 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2251 
2252 	f2fs_update_time(sbi, REQ_TIME);
2253 	fi->atomic_write_task = current;
2254 	stat_update_max_atomic_write(inode);
2255 	fi->atomic_write_cnt = 0;
2256 out:
2257 	inode_unlock(inode);
2258 	mnt_drop_write_file(filp);
2259 	return ret;
2260 }
2261 
f2fs_ioc_commit_atomic_write(struct file * filp)2262 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2263 {
2264 	struct inode *inode = file_inode(filp);
2265 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2266 	int ret;
2267 
2268 	if (!(filp->f_mode & FMODE_WRITE))
2269 		return -EBADF;
2270 
2271 	if (!inode_owner_or_capable(idmap, inode))
2272 		return -EACCES;
2273 
2274 	ret = mnt_want_write_file(filp);
2275 	if (ret)
2276 		return ret;
2277 
2278 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2279 
2280 	inode_lock(inode);
2281 
2282 	if (f2fs_is_atomic_file(inode)) {
2283 		ret = f2fs_commit_atomic_write(inode);
2284 		if (!ret)
2285 			ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2286 
2287 		f2fs_abort_atomic_write(inode, ret);
2288 	} else {
2289 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2290 	}
2291 
2292 	inode_unlock(inode);
2293 	mnt_drop_write_file(filp);
2294 	return ret;
2295 }
2296 
f2fs_ioc_abort_atomic_write(struct file * filp)2297 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2298 {
2299 	struct inode *inode = file_inode(filp);
2300 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2301 	int ret;
2302 
2303 	if (!(filp->f_mode & FMODE_WRITE))
2304 		return -EBADF;
2305 
2306 	if (!inode_owner_or_capable(idmap, inode))
2307 		return -EACCES;
2308 
2309 	ret = mnt_want_write_file(filp);
2310 	if (ret)
2311 		return ret;
2312 
2313 	inode_lock(inode);
2314 
2315 	f2fs_abort_atomic_write(inode, true);
2316 
2317 	inode_unlock(inode);
2318 
2319 	mnt_drop_write_file(filp);
2320 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2321 	return ret;
2322 }
2323 
f2fs_do_shutdown(struct f2fs_sb_info * sbi,unsigned int flag,bool readonly,bool need_lock)2324 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
2325 						bool readonly, bool need_lock)
2326 {
2327 	struct super_block *sb = sbi->sb;
2328 	int ret = 0;
2329 
2330 	switch (flag) {
2331 	case F2FS_GOING_DOWN_FULLSYNC:
2332 		ret = freeze_bdev(sb->s_bdev);
2333 		if (ret)
2334 			goto out;
2335 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2336 		thaw_bdev(sb->s_bdev);
2337 		break;
2338 	case F2FS_GOING_DOWN_METASYNC:
2339 		/* do checkpoint only */
2340 		ret = f2fs_sync_fs(sb, 1);
2341 		if (ret)
2342 			goto out;
2343 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2344 		break;
2345 	case F2FS_GOING_DOWN_NOSYNC:
2346 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2347 		break;
2348 	case F2FS_GOING_DOWN_METAFLUSH:
2349 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2350 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2351 		break;
2352 	case F2FS_GOING_DOWN_NEED_FSCK:
2353 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2354 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2355 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2356 		/* do checkpoint only */
2357 		ret = f2fs_sync_fs(sb, 1);
2358 		goto out;
2359 	default:
2360 		ret = -EINVAL;
2361 		goto out;
2362 	}
2363 
2364 	if (readonly)
2365 		goto out;
2366 
2367 	/*
2368 	 * grab sb->s_umount to avoid racing w/ remount() and other shutdown
2369 	 * paths.
2370 	 */
2371 	if (need_lock)
2372 		down_write(&sbi->sb->s_umount);
2373 
2374 	f2fs_stop_gc_thread(sbi);
2375 	f2fs_stop_discard_thread(sbi);
2376 
2377 	f2fs_drop_discard_cmd(sbi);
2378 	clear_opt(sbi, DISCARD);
2379 
2380 	if (need_lock)
2381 		up_write(&sbi->sb->s_umount);
2382 
2383 	f2fs_update_time(sbi, REQ_TIME);
2384 out:
2385 
2386 	trace_f2fs_shutdown(sbi, flag, ret);
2387 
2388 	return ret;
2389 }
2390 
f2fs_ioc_shutdown(struct file * filp,unsigned long arg)2391 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2392 {
2393 	struct inode *inode = file_inode(filp);
2394 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2395 	__u32 in;
2396 	int ret;
2397 	bool need_drop = false, readonly = false;
2398 
2399 	if (!capable(CAP_SYS_ADMIN))
2400 		return -EPERM;
2401 
2402 	if (get_user(in, (__u32 __user *)arg))
2403 		return -EFAULT;
2404 
2405 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2406 		ret = mnt_want_write_file(filp);
2407 		if (ret) {
2408 			if (ret != -EROFS)
2409 				return ret;
2410 
2411 			/* fallback to nosync shutdown for readonly fs */
2412 			in = F2FS_GOING_DOWN_NOSYNC;
2413 			readonly = true;
2414 		} else {
2415 			need_drop = true;
2416 		}
2417 	}
2418 
2419 	ret = f2fs_do_shutdown(sbi, in, readonly, true);
2420 
2421 	if (need_drop)
2422 		mnt_drop_write_file(filp);
2423 
2424 	return ret;
2425 }
2426 
f2fs_ioc_fitrim(struct file * filp,unsigned long arg)2427 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2428 {
2429 	struct inode *inode = file_inode(filp);
2430 	struct super_block *sb = inode->i_sb;
2431 	struct fstrim_range range;
2432 	int ret;
2433 
2434 	if (!capable(CAP_SYS_ADMIN))
2435 		return -EPERM;
2436 
2437 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2438 		return -EOPNOTSUPP;
2439 
2440 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2441 				sizeof(range)))
2442 		return -EFAULT;
2443 
2444 	ret = mnt_want_write_file(filp);
2445 	if (ret)
2446 		return ret;
2447 
2448 	range.minlen = max((unsigned int)range.minlen,
2449 			   bdev_discard_granularity(sb->s_bdev));
2450 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2451 	mnt_drop_write_file(filp);
2452 	if (ret < 0)
2453 		return ret;
2454 
2455 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2456 				sizeof(range)))
2457 		return -EFAULT;
2458 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2459 	return 0;
2460 }
2461 
uuid_is_nonzero(__u8 u[16])2462 static bool uuid_is_nonzero(__u8 u[16])
2463 {
2464 	int i;
2465 
2466 	for (i = 0; i < 16; i++)
2467 		if (u[i])
2468 			return true;
2469 	return false;
2470 }
2471 
f2fs_ioc_set_encryption_policy(struct file * filp,unsigned long arg)2472 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2473 {
2474 	struct inode *inode = file_inode(filp);
2475 
2476 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2477 		return -EOPNOTSUPP;
2478 
2479 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2480 
2481 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2482 }
2483 
f2fs_ioc_get_encryption_policy(struct file * filp,unsigned long arg)2484 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2485 {
2486 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2487 		return -EOPNOTSUPP;
2488 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2489 }
2490 
f2fs_ioc_get_encryption_pwsalt(struct file * filp,unsigned long arg)2491 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2492 {
2493 	struct inode *inode = file_inode(filp);
2494 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2495 	u8 encrypt_pw_salt[16];
2496 	int err;
2497 
2498 	if (!f2fs_sb_has_encrypt(sbi))
2499 		return -EOPNOTSUPP;
2500 
2501 	err = mnt_want_write_file(filp);
2502 	if (err)
2503 		return err;
2504 
2505 	f2fs_down_write(&sbi->sb_lock);
2506 
2507 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2508 		goto got_it;
2509 
2510 	/* update superblock with uuid */
2511 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2512 
2513 	err = f2fs_commit_super(sbi, false);
2514 	if (err) {
2515 		/* undo new data */
2516 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2517 		goto out_err;
2518 	}
2519 got_it:
2520 	memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2521 out_err:
2522 	f2fs_up_write(&sbi->sb_lock);
2523 	mnt_drop_write_file(filp);
2524 
2525 	if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2526 		err = -EFAULT;
2527 
2528 	return err;
2529 }
2530 
f2fs_ioc_get_encryption_policy_ex(struct file * filp,unsigned long arg)2531 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2532 					     unsigned long arg)
2533 {
2534 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2535 		return -EOPNOTSUPP;
2536 
2537 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2538 }
2539 
f2fs_ioc_add_encryption_key(struct file * filp,unsigned long arg)2540 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2541 {
2542 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2543 		return -EOPNOTSUPP;
2544 
2545 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2546 }
2547 
f2fs_ioc_remove_encryption_key(struct file * filp,unsigned long arg)2548 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2549 {
2550 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2551 		return -EOPNOTSUPP;
2552 
2553 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2554 }
2555 
f2fs_ioc_remove_encryption_key_all_users(struct file * filp,unsigned long arg)2556 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2557 						    unsigned long arg)
2558 {
2559 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2560 		return -EOPNOTSUPP;
2561 
2562 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2563 }
2564 
f2fs_ioc_get_encryption_key_status(struct file * filp,unsigned long arg)2565 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2566 					      unsigned long arg)
2567 {
2568 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2569 		return -EOPNOTSUPP;
2570 
2571 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2572 }
2573 
f2fs_ioc_get_encryption_nonce(struct file * filp,unsigned long arg)2574 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2575 {
2576 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2577 		return -EOPNOTSUPP;
2578 
2579 	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2580 }
2581 
f2fs_ioc_gc(struct file * filp,unsigned long arg)2582 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2583 {
2584 	struct inode *inode = file_inode(filp);
2585 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2586 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2587 			.no_bg_gc = false,
2588 			.should_migrate_blocks = false,
2589 			.nr_free_secs = 0 };
2590 	__u32 sync;
2591 	int ret;
2592 
2593 	if (!capable(CAP_SYS_ADMIN))
2594 		return -EPERM;
2595 
2596 	if (get_user(sync, (__u32 __user *)arg))
2597 		return -EFAULT;
2598 
2599 	if (f2fs_readonly(sbi->sb))
2600 		return -EROFS;
2601 
2602 	ret = mnt_want_write_file(filp);
2603 	if (ret)
2604 		return ret;
2605 
2606 	if (!sync) {
2607 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2608 			ret = -EBUSY;
2609 			goto out;
2610 		}
2611 	} else {
2612 		f2fs_down_write(&sbi->gc_lock);
2613 	}
2614 
2615 	gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2616 	gc_control.err_gc_skipped = sync;
2617 	stat_inc_gc_call_count(sbi, FOREGROUND);
2618 	ret = f2fs_gc(sbi, &gc_control);
2619 out:
2620 	mnt_drop_write_file(filp);
2621 	return ret;
2622 }
2623 
__f2fs_ioc_gc_range(struct file * filp,struct f2fs_gc_range * range)2624 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2625 {
2626 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2627 	struct f2fs_gc_control gc_control = {
2628 			.init_gc_type = range->sync ? FG_GC : BG_GC,
2629 			.no_bg_gc = false,
2630 			.should_migrate_blocks = false,
2631 			.err_gc_skipped = range->sync,
2632 			.nr_free_secs = 0 };
2633 	u64 end;
2634 	int ret;
2635 
2636 	if (!capable(CAP_SYS_ADMIN))
2637 		return -EPERM;
2638 	if (f2fs_readonly(sbi->sb))
2639 		return -EROFS;
2640 
2641 	end = range->start + range->len;
2642 	if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2643 					end >= MAX_BLKADDR(sbi))
2644 		return -EINVAL;
2645 
2646 	ret = mnt_want_write_file(filp);
2647 	if (ret)
2648 		return ret;
2649 
2650 do_more:
2651 	if (!range->sync) {
2652 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2653 			ret = -EBUSY;
2654 			goto out;
2655 		}
2656 	} else {
2657 		f2fs_down_write(&sbi->gc_lock);
2658 	}
2659 
2660 	gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2661 	stat_inc_gc_call_count(sbi, FOREGROUND);
2662 	ret = f2fs_gc(sbi, &gc_control);
2663 	if (ret) {
2664 		if (ret == -EBUSY)
2665 			ret = -EAGAIN;
2666 		goto out;
2667 	}
2668 	range->start += CAP_BLKS_PER_SEC(sbi);
2669 	if (range->start <= end)
2670 		goto do_more;
2671 out:
2672 	mnt_drop_write_file(filp);
2673 	return ret;
2674 }
2675 
f2fs_ioc_gc_range(struct file * filp,unsigned long arg)2676 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2677 {
2678 	struct f2fs_gc_range range;
2679 
2680 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2681 							sizeof(range)))
2682 		return -EFAULT;
2683 	return __f2fs_ioc_gc_range(filp, &range);
2684 }
2685 
f2fs_ioc_write_checkpoint(struct file * filp)2686 static int f2fs_ioc_write_checkpoint(struct file *filp)
2687 {
2688 	struct inode *inode = file_inode(filp);
2689 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2690 	int ret;
2691 
2692 	if (!capable(CAP_SYS_ADMIN))
2693 		return -EPERM;
2694 
2695 	if (f2fs_readonly(sbi->sb))
2696 		return -EROFS;
2697 
2698 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2699 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2700 		return -EINVAL;
2701 	}
2702 
2703 	ret = mnt_want_write_file(filp);
2704 	if (ret)
2705 		return ret;
2706 
2707 	ret = f2fs_sync_fs(sbi->sb, 1);
2708 
2709 	mnt_drop_write_file(filp);
2710 	return ret;
2711 }
2712 
f2fs_defragment_range(struct f2fs_sb_info * sbi,struct file * filp,struct f2fs_defragment * range)2713 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2714 					struct file *filp,
2715 					struct f2fs_defragment *range)
2716 {
2717 	struct inode *inode = file_inode(filp);
2718 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2719 					.m_seg_type = NO_CHECK_TYPE,
2720 					.m_may_create = false };
2721 	struct extent_info ei = {};
2722 	pgoff_t pg_start, pg_end, next_pgofs;
2723 	unsigned int total = 0, sec_num;
2724 	block_t blk_end = 0;
2725 	bool fragmented = false;
2726 	int err;
2727 
2728 	pg_start = range->start >> PAGE_SHIFT;
2729 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2730 
2731 	f2fs_balance_fs(sbi, true);
2732 
2733 	inode_lock(inode);
2734 
2735 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) ||
2736 		f2fs_is_atomic_file(inode)) {
2737 		err = -EINVAL;
2738 		goto unlock_out;
2739 	}
2740 
2741 	/* if in-place-update policy is enabled, don't waste time here */
2742 	set_inode_flag(inode, FI_OPU_WRITE);
2743 	if (f2fs_should_update_inplace(inode, NULL)) {
2744 		err = -EINVAL;
2745 		goto out;
2746 	}
2747 
2748 	/* writeback all dirty pages in the range */
2749 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2750 						range->start + range->len - 1);
2751 	if (err)
2752 		goto out;
2753 
2754 	/*
2755 	 * lookup mapping info in extent cache, skip defragmenting if physical
2756 	 * block addresses are continuous.
2757 	 */
2758 	if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2759 		if ((pgoff_t)ei.fofs + ei.len >= pg_end)
2760 			goto out;
2761 	}
2762 
2763 	map.m_lblk = pg_start;
2764 	map.m_next_pgofs = &next_pgofs;
2765 
2766 	/*
2767 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2768 	 * physical block addresses are continuous even if there are hole(s)
2769 	 * in logical blocks.
2770 	 */
2771 	while (map.m_lblk < pg_end) {
2772 		map.m_len = pg_end - map.m_lblk;
2773 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2774 		if (err)
2775 			goto out;
2776 
2777 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2778 			map.m_lblk = next_pgofs;
2779 			continue;
2780 		}
2781 
2782 		if (blk_end && blk_end != map.m_pblk)
2783 			fragmented = true;
2784 
2785 		/* record total count of block that we're going to move */
2786 		total += map.m_len;
2787 
2788 		blk_end = map.m_pblk + map.m_len;
2789 
2790 		map.m_lblk += map.m_len;
2791 	}
2792 
2793 	if (!fragmented) {
2794 		total = 0;
2795 		goto out;
2796 	}
2797 
2798 	sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2799 
2800 	/*
2801 	 * make sure there are enough free section for LFS allocation, this can
2802 	 * avoid defragment running in SSR mode when free section are allocated
2803 	 * intensively
2804 	 */
2805 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2806 		err = -EAGAIN;
2807 		goto out;
2808 	}
2809 
2810 	map.m_lblk = pg_start;
2811 	map.m_len = pg_end - pg_start;
2812 	total = 0;
2813 
2814 	while (map.m_lblk < pg_end) {
2815 		pgoff_t idx;
2816 		int cnt = 0;
2817 
2818 do_map:
2819 		map.m_len = pg_end - map.m_lblk;
2820 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2821 		if (err)
2822 			goto clear_out;
2823 
2824 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2825 			map.m_lblk = next_pgofs;
2826 			goto check;
2827 		}
2828 
2829 		set_inode_flag(inode, FI_SKIP_WRITES);
2830 
2831 		idx = map.m_lblk;
2832 		while (idx < map.m_lblk + map.m_len &&
2833 						cnt < BLKS_PER_SEG(sbi)) {
2834 			struct page *page;
2835 
2836 			page = f2fs_get_lock_data_page(inode, idx, true);
2837 			if (IS_ERR(page)) {
2838 				err = PTR_ERR(page);
2839 				goto clear_out;
2840 			}
2841 
2842 			f2fs_wait_on_page_writeback(page, DATA, true, true);
2843 
2844 			set_page_dirty(page);
2845 			set_page_private_gcing(page);
2846 			f2fs_put_page(page, 1);
2847 
2848 			idx++;
2849 			cnt++;
2850 			total++;
2851 		}
2852 
2853 		map.m_lblk = idx;
2854 check:
2855 		if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi))
2856 			goto do_map;
2857 
2858 		clear_inode_flag(inode, FI_SKIP_WRITES);
2859 
2860 		err = filemap_fdatawrite(inode->i_mapping);
2861 		if (err)
2862 			goto out;
2863 	}
2864 clear_out:
2865 	clear_inode_flag(inode, FI_SKIP_WRITES);
2866 out:
2867 	clear_inode_flag(inode, FI_OPU_WRITE);
2868 unlock_out:
2869 	inode_unlock(inode);
2870 	if (!err)
2871 		range->len = (u64)total << PAGE_SHIFT;
2872 	return err;
2873 }
2874 
f2fs_ioc_defragment(struct file * filp,unsigned long arg)2875 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2876 {
2877 	struct inode *inode = file_inode(filp);
2878 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2879 	struct f2fs_defragment range;
2880 	int err;
2881 
2882 	if (!capable(CAP_SYS_ADMIN))
2883 		return -EPERM;
2884 
2885 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2886 		return -EINVAL;
2887 
2888 	if (f2fs_readonly(sbi->sb))
2889 		return -EROFS;
2890 
2891 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2892 							sizeof(range)))
2893 		return -EFAULT;
2894 
2895 	/* verify alignment of offset & size */
2896 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2897 		return -EINVAL;
2898 
2899 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2900 					max_file_blocks(inode)))
2901 		return -EINVAL;
2902 
2903 	err = mnt_want_write_file(filp);
2904 	if (err)
2905 		return err;
2906 
2907 	err = f2fs_defragment_range(sbi, filp, &range);
2908 	mnt_drop_write_file(filp);
2909 
2910 	f2fs_update_time(sbi, REQ_TIME);
2911 	if (err < 0)
2912 		return err;
2913 
2914 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2915 							sizeof(range)))
2916 		return -EFAULT;
2917 
2918 	return 0;
2919 }
2920 
f2fs_move_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len)2921 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2922 			struct file *file_out, loff_t pos_out, size_t len)
2923 {
2924 	struct inode *src = file_inode(file_in);
2925 	struct inode *dst = file_inode(file_out);
2926 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2927 	size_t olen = len, dst_max_i_size = 0;
2928 	size_t dst_osize;
2929 	int ret;
2930 
2931 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2932 				src->i_sb != dst->i_sb)
2933 		return -EXDEV;
2934 
2935 	if (unlikely(f2fs_readonly(src->i_sb)))
2936 		return -EROFS;
2937 
2938 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2939 		return -EINVAL;
2940 
2941 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2942 		return -EOPNOTSUPP;
2943 
2944 	if (pos_out < 0 || pos_in < 0)
2945 		return -EINVAL;
2946 
2947 	if (src == dst) {
2948 		if (pos_in == pos_out)
2949 			return 0;
2950 		if (pos_out > pos_in && pos_out < pos_in + len)
2951 			return -EINVAL;
2952 	}
2953 
2954 	inode_lock(src);
2955 	if (src != dst) {
2956 		ret = -EBUSY;
2957 		if (!inode_trylock(dst))
2958 			goto out;
2959 	}
2960 
2961 	if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) ||
2962 		f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) {
2963 		ret = -EOPNOTSUPP;
2964 		goto out_unlock;
2965 	}
2966 
2967 	if (f2fs_is_atomic_file(src) || f2fs_is_atomic_file(dst)) {
2968 		ret = -EINVAL;
2969 		goto out_unlock;
2970 	}
2971 
2972 	ret = -EINVAL;
2973 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2974 		goto out_unlock;
2975 	if (len == 0)
2976 		olen = len = src->i_size - pos_in;
2977 	if (pos_in + len == src->i_size)
2978 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2979 	if (len == 0) {
2980 		ret = 0;
2981 		goto out_unlock;
2982 	}
2983 
2984 	dst_osize = dst->i_size;
2985 	if (pos_out + olen > dst->i_size)
2986 		dst_max_i_size = pos_out + olen;
2987 
2988 	/* verify the end result is block aligned */
2989 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2990 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2991 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2992 		goto out_unlock;
2993 
2994 	ret = f2fs_convert_inline_inode(src);
2995 	if (ret)
2996 		goto out_unlock;
2997 
2998 	ret = f2fs_convert_inline_inode(dst);
2999 	if (ret)
3000 		goto out_unlock;
3001 
3002 	/* write out all dirty pages from offset */
3003 	ret = filemap_write_and_wait_range(src->i_mapping,
3004 					pos_in, pos_in + len);
3005 	if (ret)
3006 		goto out_unlock;
3007 
3008 	ret = filemap_write_and_wait_range(dst->i_mapping,
3009 					pos_out, pos_out + len);
3010 	if (ret)
3011 		goto out_unlock;
3012 
3013 	f2fs_balance_fs(sbi, true);
3014 
3015 	f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
3016 	if (src != dst) {
3017 		ret = -EBUSY;
3018 		if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
3019 			goto out_src;
3020 	}
3021 
3022 	f2fs_lock_op(sbi);
3023 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
3024 				pos_out >> F2FS_BLKSIZE_BITS,
3025 				len >> F2FS_BLKSIZE_BITS, false);
3026 
3027 	if (!ret) {
3028 		if (dst_max_i_size)
3029 			f2fs_i_size_write(dst, dst_max_i_size);
3030 		else if (dst_osize != dst->i_size)
3031 			f2fs_i_size_write(dst, dst_osize);
3032 	}
3033 	f2fs_unlock_op(sbi);
3034 
3035 	if (src != dst)
3036 		f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
3037 out_src:
3038 	f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
3039 	if (ret)
3040 		goto out_unlock;
3041 
3042 	src->i_mtime = inode_set_ctime_current(src);
3043 	f2fs_mark_inode_dirty_sync(src, false);
3044 	if (src != dst) {
3045 		dst->i_mtime = inode_set_ctime_current(dst);
3046 		f2fs_mark_inode_dirty_sync(dst, false);
3047 	}
3048 	f2fs_update_time(sbi, REQ_TIME);
3049 
3050 out_unlock:
3051 	if (src != dst)
3052 		inode_unlock(dst);
3053 out:
3054 	inode_unlock(src);
3055 	return ret;
3056 }
3057 
__f2fs_ioc_move_range(struct file * filp,struct f2fs_move_range * range)3058 static int __f2fs_ioc_move_range(struct file *filp,
3059 				struct f2fs_move_range *range)
3060 {
3061 	struct fd dst;
3062 	int err;
3063 
3064 	if (!(filp->f_mode & FMODE_READ) ||
3065 			!(filp->f_mode & FMODE_WRITE))
3066 		return -EBADF;
3067 
3068 	dst = fdget(range->dst_fd);
3069 	if (!dst.file)
3070 		return -EBADF;
3071 
3072 	if (!(dst.file->f_mode & FMODE_WRITE)) {
3073 		err = -EBADF;
3074 		goto err_out;
3075 	}
3076 
3077 	err = mnt_want_write_file(filp);
3078 	if (err)
3079 		goto err_out;
3080 
3081 	err = f2fs_move_file_range(filp, range->pos_in, dst.file,
3082 					range->pos_out, range->len);
3083 
3084 	mnt_drop_write_file(filp);
3085 err_out:
3086 	fdput(dst);
3087 	return err;
3088 }
3089 
f2fs_ioc_move_range(struct file * filp,unsigned long arg)3090 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
3091 {
3092 	struct f2fs_move_range range;
3093 
3094 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
3095 							sizeof(range)))
3096 		return -EFAULT;
3097 	return __f2fs_ioc_move_range(filp, &range);
3098 }
3099 
f2fs_ioc_flush_device(struct file * filp,unsigned long arg)3100 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
3101 {
3102 	struct inode *inode = file_inode(filp);
3103 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3104 	struct sit_info *sm = SIT_I(sbi);
3105 	unsigned int start_segno = 0, end_segno = 0;
3106 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
3107 	struct f2fs_flush_device range;
3108 	struct f2fs_gc_control gc_control = {
3109 			.init_gc_type = FG_GC,
3110 			.should_migrate_blocks = true,
3111 			.err_gc_skipped = true,
3112 			.nr_free_secs = 0 };
3113 	int ret;
3114 
3115 	if (!capable(CAP_SYS_ADMIN))
3116 		return -EPERM;
3117 
3118 	if (f2fs_readonly(sbi->sb))
3119 		return -EROFS;
3120 
3121 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3122 		return -EINVAL;
3123 
3124 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
3125 							sizeof(range)))
3126 		return -EFAULT;
3127 
3128 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
3129 			__is_large_section(sbi)) {
3130 		f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1",
3131 			  range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi));
3132 		return -EINVAL;
3133 	}
3134 
3135 	ret = mnt_want_write_file(filp);
3136 	if (ret)
3137 		return ret;
3138 
3139 	if (range.dev_num != 0)
3140 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
3141 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
3142 
3143 	start_segno = sm->last_victim[FLUSH_DEVICE];
3144 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3145 		start_segno = dev_start_segno;
3146 	end_segno = min(start_segno + range.segments, dev_end_segno);
3147 
3148 	while (start_segno < end_segno) {
3149 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
3150 			ret = -EBUSY;
3151 			goto out;
3152 		}
3153 		sm->last_victim[GC_CB] = end_segno + 1;
3154 		sm->last_victim[GC_GREEDY] = end_segno + 1;
3155 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3156 
3157 		gc_control.victim_segno = start_segno;
3158 		stat_inc_gc_call_count(sbi, FOREGROUND);
3159 		ret = f2fs_gc(sbi, &gc_control);
3160 		if (ret == -EAGAIN)
3161 			ret = 0;
3162 		else if (ret < 0)
3163 			break;
3164 		start_segno++;
3165 	}
3166 out:
3167 	mnt_drop_write_file(filp);
3168 	return ret;
3169 }
3170 
f2fs_ioc_get_features(struct file * filp,unsigned long arg)3171 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3172 {
3173 	struct inode *inode = file_inode(filp);
3174 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3175 
3176 	/* Must validate to set it with SQLite behavior in Android. */
3177 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3178 
3179 	return put_user(sb_feature, (u32 __user *)arg);
3180 }
3181 
3182 #ifdef CONFIG_QUOTA
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3183 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3184 {
3185 	struct dquot *transfer_to[MAXQUOTAS] = {};
3186 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3187 	struct super_block *sb = sbi->sb;
3188 	int err;
3189 
3190 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3191 	if (IS_ERR(transfer_to[PRJQUOTA]))
3192 		return PTR_ERR(transfer_to[PRJQUOTA]);
3193 
3194 	err = __dquot_transfer(inode, transfer_to);
3195 	if (err)
3196 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3197 	dqput(transfer_to[PRJQUOTA]);
3198 	return err;
3199 }
3200 
f2fs_ioc_setproject(struct inode * inode,__u32 projid)3201 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3202 {
3203 	struct f2fs_inode_info *fi = F2FS_I(inode);
3204 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3205 	struct f2fs_inode *ri = NULL;
3206 	kprojid_t kprojid;
3207 	int err;
3208 
3209 	if (!f2fs_sb_has_project_quota(sbi)) {
3210 		if (projid != F2FS_DEF_PROJID)
3211 			return -EOPNOTSUPP;
3212 		else
3213 			return 0;
3214 	}
3215 
3216 	if (!f2fs_has_extra_attr(inode))
3217 		return -EOPNOTSUPP;
3218 
3219 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3220 
3221 	if (projid_eq(kprojid, fi->i_projid))
3222 		return 0;
3223 
3224 	err = -EPERM;
3225 	/* Is it quota file? Do not allow user to mess with it */
3226 	if (IS_NOQUOTA(inode))
3227 		return err;
3228 
3229 	if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3230 		return -EOVERFLOW;
3231 
3232 	err = f2fs_dquot_initialize(inode);
3233 	if (err)
3234 		return err;
3235 
3236 	f2fs_lock_op(sbi);
3237 	err = f2fs_transfer_project_quota(inode, kprojid);
3238 	if (err)
3239 		goto out_unlock;
3240 
3241 	fi->i_projid = kprojid;
3242 	inode_set_ctime_current(inode);
3243 	f2fs_mark_inode_dirty_sync(inode, true);
3244 out_unlock:
3245 	f2fs_unlock_op(sbi);
3246 	return err;
3247 }
3248 #else
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3249 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3250 {
3251 	return 0;
3252 }
3253 
f2fs_ioc_setproject(struct inode * inode,__u32 projid)3254 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3255 {
3256 	if (projid != F2FS_DEF_PROJID)
3257 		return -EOPNOTSUPP;
3258 	return 0;
3259 }
3260 #endif
3261 
f2fs_fileattr_get(struct dentry * dentry,struct fileattr * fa)3262 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3263 {
3264 	struct inode *inode = d_inode(dentry);
3265 	struct f2fs_inode_info *fi = F2FS_I(inode);
3266 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3267 
3268 	if (IS_ENCRYPTED(inode))
3269 		fsflags |= FS_ENCRYPT_FL;
3270 	if (IS_VERITY(inode))
3271 		fsflags |= FS_VERITY_FL;
3272 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3273 		fsflags |= FS_INLINE_DATA_FL;
3274 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3275 		fsflags |= FS_NOCOW_FL;
3276 
3277 	fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3278 
3279 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3280 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3281 
3282 	return 0;
3283 }
3284 
f2fs_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)3285 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3286 		      struct dentry *dentry, struct fileattr *fa)
3287 {
3288 	struct inode *inode = d_inode(dentry);
3289 	u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3290 	u32 iflags;
3291 	int err;
3292 
3293 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3294 		return -EIO;
3295 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3296 		return -ENOSPC;
3297 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
3298 		return -EOPNOTSUPP;
3299 	fsflags &= F2FS_SETTABLE_FS_FL;
3300 	if (!fa->flags_valid)
3301 		mask &= FS_COMMON_FL;
3302 
3303 	iflags = f2fs_fsflags_to_iflags(fsflags);
3304 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3305 		return -EOPNOTSUPP;
3306 
3307 	err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3308 	if (!err)
3309 		err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3310 
3311 	return err;
3312 }
3313 
f2fs_pin_file_control(struct inode * inode,bool inc)3314 int f2fs_pin_file_control(struct inode *inode, bool inc)
3315 {
3316 	struct f2fs_inode_info *fi = F2FS_I(inode);
3317 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3318 
3319 	/* Use i_gc_failures for normal file as a risk signal. */
3320 	if (inc)
3321 		f2fs_i_gc_failures_write(inode,
3322 				fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3323 
3324 	if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3325 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3326 			  __func__, inode->i_ino,
3327 			  fi->i_gc_failures[GC_FAILURE_PIN]);
3328 		clear_inode_flag(inode, FI_PIN_FILE);
3329 		return -EAGAIN;
3330 	}
3331 	return 0;
3332 }
3333 
f2fs_ioc_set_pin_file(struct file * filp,unsigned long arg)3334 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3335 {
3336 	struct inode *inode = file_inode(filp);
3337 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3338 	__u32 pin;
3339 	int ret = 0;
3340 
3341 	if (get_user(pin, (__u32 __user *)arg))
3342 		return -EFAULT;
3343 
3344 	if (!S_ISREG(inode->i_mode))
3345 		return -EINVAL;
3346 
3347 	if (f2fs_readonly(sbi->sb))
3348 		return -EROFS;
3349 
3350 	ret = mnt_want_write_file(filp);
3351 	if (ret)
3352 		return ret;
3353 
3354 	inode_lock(inode);
3355 
3356 	if (f2fs_is_atomic_file(inode)) {
3357 		ret = -EINVAL;
3358 		goto out;
3359 	}
3360 
3361 	if (!pin) {
3362 		clear_inode_flag(inode, FI_PIN_FILE);
3363 		f2fs_i_gc_failures_write(inode, 0);
3364 		goto done;
3365 	} else if (f2fs_is_pinned_file(inode)) {
3366 		goto done;
3367 	}
3368 
3369 	if (F2FS_HAS_BLOCKS(inode)) {
3370 		ret = -EFBIG;
3371 		goto out;
3372 	}
3373 
3374 	/* Let's allow file pinning on zoned device. */
3375 	if (!f2fs_sb_has_blkzoned(sbi) &&
3376 	    f2fs_should_update_outplace(inode, NULL)) {
3377 		ret = -EINVAL;
3378 		goto out;
3379 	}
3380 
3381 	if (f2fs_pin_file_control(inode, false)) {
3382 		ret = -EAGAIN;
3383 		goto out;
3384 	}
3385 
3386 	ret = f2fs_convert_inline_inode(inode);
3387 	if (ret)
3388 		goto out;
3389 
3390 	if (!f2fs_disable_compressed_file(inode)) {
3391 		ret = -EOPNOTSUPP;
3392 		goto out;
3393 	}
3394 
3395 	set_inode_flag(inode, FI_PIN_FILE);
3396 	ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3397 done:
3398 	f2fs_update_time(sbi, REQ_TIME);
3399 out:
3400 	inode_unlock(inode);
3401 	mnt_drop_write_file(filp);
3402 	return ret;
3403 }
3404 
f2fs_ioc_get_pin_file(struct file * filp,unsigned long arg)3405 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3406 {
3407 	struct inode *inode = file_inode(filp);
3408 	__u32 pin = 0;
3409 
3410 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3411 		pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3412 	return put_user(pin, (u32 __user *)arg);
3413 }
3414 
f2fs_precache_extents(struct inode * inode)3415 int f2fs_precache_extents(struct inode *inode)
3416 {
3417 	struct f2fs_inode_info *fi = F2FS_I(inode);
3418 	struct f2fs_map_blocks map;
3419 	pgoff_t m_next_extent;
3420 	loff_t end;
3421 	int err;
3422 
3423 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3424 		return -EOPNOTSUPP;
3425 
3426 	map.m_lblk = 0;
3427 	map.m_pblk = 0;
3428 	map.m_next_pgofs = NULL;
3429 	map.m_next_extent = &m_next_extent;
3430 	map.m_seg_type = NO_CHECK_TYPE;
3431 	map.m_may_create = false;
3432 	end = max_file_blocks(inode);
3433 
3434 	while (map.m_lblk < end) {
3435 		map.m_len = end - map.m_lblk;
3436 
3437 		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3438 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3439 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3440 		if (err)
3441 			return err;
3442 
3443 		map.m_lblk = m_next_extent;
3444 	}
3445 
3446 	return 0;
3447 }
3448 
f2fs_ioc_precache_extents(struct file * filp)3449 static int f2fs_ioc_precache_extents(struct file *filp)
3450 {
3451 	return f2fs_precache_extents(file_inode(filp));
3452 }
3453 
f2fs_ioc_resize_fs(struct file * filp,unsigned long arg)3454 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3455 {
3456 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3457 	__u64 block_count;
3458 
3459 	if (!capable(CAP_SYS_ADMIN))
3460 		return -EPERM;
3461 
3462 	if (f2fs_readonly(sbi->sb))
3463 		return -EROFS;
3464 
3465 	if (copy_from_user(&block_count, (void __user *)arg,
3466 			   sizeof(block_count)))
3467 		return -EFAULT;
3468 
3469 	return f2fs_resize_fs(filp, block_count);
3470 }
3471 
f2fs_ioc_enable_verity(struct file * filp,unsigned long arg)3472 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3473 {
3474 	struct inode *inode = file_inode(filp);
3475 
3476 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3477 
3478 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3479 		f2fs_warn(F2FS_I_SB(inode),
3480 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3481 			  inode->i_ino);
3482 		return -EOPNOTSUPP;
3483 	}
3484 
3485 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3486 }
3487 
f2fs_ioc_measure_verity(struct file * filp,unsigned long arg)3488 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3489 {
3490 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3491 		return -EOPNOTSUPP;
3492 
3493 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3494 }
3495 
f2fs_ioc_read_verity_metadata(struct file * filp,unsigned long arg)3496 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3497 {
3498 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3499 		return -EOPNOTSUPP;
3500 
3501 	return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3502 }
3503 
f2fs_ioc_getfslabel(struct file * filp,unsigned long arg)3504 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3505 {
3506 	struct inode *inode = file_inode(filp);
3507 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3508 	char *vbuf;
3509 	int count;
3510 	int err = 0;
3511 
3512 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3513 	if (!vbuf)
3514 		return -ENOMEM;
3515 
3516 	f2fs_down_read(&sbi->sb_lock);
3517 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3518 			ARRAY_SIZE(sbi->raw_super->volume_name),
3519 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3520 	f2fs_up_read(&sbi->sb_lock);
3521 
3522 	if (copy_to_user((char __user *)arg, vbuf,
3523 				min(FSLABEL_MAX, count)))
3524 		err = -EFAULT;
3525 
3526 	kfree(vbuf);
3527 	return err;
3528 }
3529 
f2fs_ioc_setfslabel(struct file * filp,unsigned long arg)3530 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3531 {
3532 	struct inode *inode = file_inode(filp);
3533 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3534 	char *vbuf;
3535 	int err = 0;
3536 
3537 	if (!capable(CAP_SYS_ADMIN))
3538 		return -EPERM;
3539 
3540 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3541 	if (IS_ERR(vbuf))
3542 		return PTR_ERR(vbuf);
3543 
3544 	err = mnt_want_write_file(filp);
3545 	if (err)
3546 		goto out;
3547 
3548 	f2fs_down_write(&sbi->sb_lock);
3549 
3550 	memset(sbi->raw_super->volume_name, 0,
3551 			sizeof(sbi->raw_super->volume_name));
3552 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3553 			sbi->raw_super->volume_name,
3554 			ARRAY_SIZE(sbi->raw_super->volume_name));
3555 
3556 	err = f2fs_commit_super(sbi, false);
3557 
3558 	f2fs_up_write(&sbi->sb_lock);
3559 
3560 	mnt_drop_write_file(filp);
3561 out:
3562 	kfree(vbuf);
3563 	return err;
3564 }
3565 
f2fs_get_compress_blocks(struct inode * inode,__u64 * blocks)3566 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3567 {
3568 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3569 		return -EOPNOTSUPP;
3570 
3571 	if (!f2fs_compressed_file(inode))
3572 		return -EINVAL;
3573 
3574 	*blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3575 
3576 	return 0;
3577 }
3578 
f2fs_ioc_get_compress_blocks(struct file * filp,unsigned long arg)3579 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3580 {
3581 	struct inode *inode = file_inode(filp);
3582 	__u64 blocks;
3583 	int ret;
3584 
3585 	ret = f2fs_get_compress_blocks(inode, &blocks);
3586 	if (ret < 0)
3587 		return ret;
3588 
3589 	return put_user(blocks, (u64 __user *)arg);
3590 }
3591 
release_compress_blocks(struct dnode_of_data * dn,pgoff_t count)3592 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3593 {
3594 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3595 	unsigned int released_blocks = 0;
3596 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3597 	block_t blkaddr;
3598 	int i;
3599 
3600 	for (i = 0; i < count; i++) {
3601 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3602 						dn->ofs_in_node + i);
3603 
3604 		if (!__is_valid_data_blkaddr(blkaddr))
3605 			continue;
3606 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3607 					DATA_GENERIC_ENHANCE))) {
3608 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3609 			return -EFSCORRUPTED;
3610 		}
3611 	}
3612 
3613 	while (count) {
3614 		int compr_blocks = 0;
3615 
3616 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3617 			blkaddr = f2fs_data_blkaddr(dn);
3618 
3619 			if (i == 0) {
3620 				if (blkaddr == COMPRESS_ADDR)
3621 					continue;
3622 				dn->ofs_in_node += cluster_size;
3623 				goto next;
3624 			}
3625 
3626 			if (__is_valid_data_blkaddr(blkaddr))
3627 				compr_blocks++;
3628 
3629 			if (blkaddr != NEW_ADDR)
3630 				continue;
3631 
3632 			f2fs_set_data_blkaddr(dn, NULL_ADDR);
3633 		}
3634 
3635 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3636 		dec_valid_block_count(sbi, dn->inode,
3637 					cluster_size - compr_blocks);
3638 
3639 		released_blocks += cluster_size - compr_blocks;
3640 next:
3641 		count -= cluster_size;
3642 	}
3643 
3644 	return released_blocks;
3645 }
3646 
f2fs_release_compress_blocks(struct file * filp,unsigned long arg)3647 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3648 {
3649 	struct inode *inode = file_inode(filp);
3650 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3651 	pgoff_t page_idx = 0, last_idx;
3652 	unsigned int released_blocks = 0;
3653 	int ret;
3654 	int writecount;
3655 
3656 	if (!f2fs_sb_has_compression(sbi))
3657 		return -EOPNOTSUPP;
3658 
3659 	if (f2fs_readonly(sbi->sb))
3660 		return -EROFS;
3661 
3662 	ret = mnt_want_write_file(filp);
3663 	if (ret)
3664 		return ret;
3665 
3666 	f2fs_balance_fs(sbi, true);
3667 
3668 	inode_lock(inode);
3669 
3670 	writecount = atomic_read(&inode->i_writecount);
3671 	if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3672 			(!(filp->f_mode & FMODE_WRITE) && writecount)) {
3673 		ret = -EBUSY;
3674 		goto out;
3675 	}
3676 
3677 	if (!f2fs_compressed_file(inode) ||
3678 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3679 		ret = -EINVAL;
3680 		goto out;
3681 	}
3682 
3683 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3684 	if (ret)
3685 		goto out;
3686 
3687 	if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3688 		ret = -EPERM;
3689 		goto out;
3690 	}
3691 
3692 	set_inode_flag(inode, FI_COMPRESS_RELEASED);
3693 	inode_set_ctime_current(inode);
3694 	f2fs_mark_inode_dirty_sync(inode, true);
3695 
3696 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3697 	filemap_invalidate_lock(inode->i_mapping);
3698 
3699 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3700 
3701 	while (page_idx < last_idx) {
3702 		struct dnode_of_data dn;
3703 		pgoff_t end_offset, count;
3704 
3705 		f2fs_lock_op(sbi);
3706 
3707 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3708 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3709 		if (ret) {
3710 			f2fs_unlock_op(sbi);
3711 			if (ret == -ENOENT) {
3712 				page_idx = f2fs_get_next_page_offset(&dn,
3713 								page_idx);
3714 				ret = 0;
3715 				continue;
3716 			}
3717 			break;
3718 		}
3719 
3720 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3721 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3722 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3723 
3724 		ret = release_compress_blocks(&dn, count);
3725 
3726 		f2fs_put_dnode(&dn);
3727 
3728 		f2fs_unlock_op(sbi);
3729 
3730 		if (ret < 0)
3731 			break;
3732 
3733 		page_idx += count;
3734 		released_blocks += ret;
3735 	}
3736 
3737 	filemap_invalidate_unlock(inode->i_mapping);
3738 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3739 out:
3740 	inode_unlock(inode);
3741 
3742 	mnt_drop_write_file(filp);
3743 
3744 	if (ret >= 0) {
3745 		ret = put_user(released_blocks, (u64 __user *)arg);
3746 	} else if (released_blocks &&
3747 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3748 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3749 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3750 			"iblocks=%llu, released=%u, compr_blocks=%u, "
3751 			"run fsck to fix.",
3752 			__func__, inode->i_ino, inode->i_blocks,
3753 			released_blocks,
3754 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3755 	}
3756 
3757 	return ret;
3758 }
3759 
reserve_compress_blocks(struct dnode_of_data * dn,pgoff_t count,unsigned int * reserved_blocks)3760 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
3761 		unsigned int *reserved_blocks)
3762 {
3763 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3764 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3765 	block_t blkaddr;
3766 	int i;
3767 
3768 	for (i = 0; i < count; i++) {
3769 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3770 						dn->ofs_in_node + i);
3771 
3772 		if (!__is_valid_data_blkaddr(blkaddr))
3773 			continue;
3774 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3775 					DATA_GENERIC_ENHANCE))) {
3776 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3777 			return -EFSCORRUPTED;
3778 		}
3779 	}
3780 
3781 	while (count) {
3782 		int compr_blocks = 0;
3783 		blkcnt_t reserved = 0;
3784 		blkcnt_t to_reserved;
3785 		int ret;
3786 
3787 		for (i = 0; i < cluster_size; i++) {
3788 			blkaddr = data_blkaddr(dn->inode, dn->node_page,
3789 						dn->ofs_in_node + i);
3790 
3791 			if (i == 0) {
3792 				if (blkaddr != COMPRESS_ADDR) {
3793 					dn->ofs_in_node += cluster_size;
3794 					goto next;
3795 				}
3796 				continue;
3797 			}
3798 
3799 			/*
3800 			 * compressed cluster was not released due to it
3801 			 * fails in release_compress_blocks(), so NEW_ADDR
3802 			 * is a possible case.
3803 			 */
3804 			if (blkaddr == NEW_ADDR) {
3805 				reserved++;
3806 				continue;
3807 			}
3808 			if (__is_valid_data_blkaddr(blkaddr)) {
3809 				compr_blocks++;
3810 				continue;
3811 			}
3812 		}
3813 
3814 		to_reserved = cluster_size - compr_blocks - reserved;
3815 
3816 		/* for the case all blocks in cluster were reserved */
3817 		if (reserved && to_reserved == 1) {
3818 			dn->ofs_in_node += cluster_size;
3819 			goto next;
3820 		}
3821 
3822 		ret = inc_valid_block_count(sbi, dn->inode,
3823 						&to_reserved, false);
3824 		if (unlikely(ret))
3825 			return ret;
3826 
3827 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3828 			if (f2fs_data_blkaddr(dn) == NULL_ADDR)
3829 				f2fs_set_data_blkaddr(dn, NEW_ADDR);
3830 		}
3831 
3832 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3833 
3834 		*reserved_blocks += to_reserved;
3835 next:
3836 		count -= cluster_size;
3837 	}
3838 
3839 	return 0;
3840 }
3841 
f2fs_reserve_compress_blocks(struct file * filp,unsigned long arg)3842 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3843 {
3844 	struct inode *inode = file_inode(filp);
3845 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3846 	pgoff_t page_idx = 0, last_idx;
3847 	unsigned int reserved_blocks = 0;
3848 	int ret;
3849 
3850 	if (!f2fs_sb_has_compression(sbi))
3851 		return -EOPNOTSUPP;
3852 
3853 	if (f2fs_readonly(sbi->sb))
3854 		return -EROFS;
3855 
3856 	ret = mnt_want_write_file(filp);
3857 	if (ret)
3858 		return ret;
3859 
3860 	f2fs_balance_fs(sbi, true);
3861 
3862 	inode_lock(inode);
3863 
3864 	if (!f2fs_compressed_file(inode) ||
3865 		!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3866 		ret = -EINVAL;
3867 		goto unlock_inode;
3868 	}
3869 
3870 	if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3871 		goto unlock_inode;
3872 
3873 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3874 	filemap_invalidate_lock(inode->i_mapping);
3875 
3876 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3877 
3878 	while (page_idx < last_idx) {
3879 		struct dnode_of_data dn;
3880 		pgoff_t end_offset, count;
3881 
3882 		f2fs_lock_op(sbi);
3883 
3884 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3885 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3886 		if (ret) {
3887 			f2fs_unlock_op(sbi);
3888 			if (ret == -ENOENT) {
3889 				page_idx = f2fs_get_next_page_offset(&dn,
3890 								page_idx);
3891 				ret = 0;
3892 				continue;
3893 			}
3894 			break;
3895 		}
3896 
3897 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3898 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3899 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3900 
3901 		ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
3902 
3903 		f2fs_put_dnode(&dn);
3904 
3905 		f2fs_unlock_op(sbi);
3906 
3907 		if (ret < 0)
3908 			break;
3909 
3910 		page_idx += count;
3911 	}
3912 
3913 	filemap_invalidate_unlock(inode->i_mapping);
3914 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3915 
3916 	if (!ret) {
3917 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3918 		inode_set_ctime_current(inode);
3919 		f2fs_mark_inode_dirty_sync(inode, true);
3920 	}
3921 unlock_inode:
3922 	inode_unlock(inode);
3923 	mnt_drop_write_file(filp);
3924 
3925 	if (!ret) {
3926 		ret = put_user(reserved_blocks, (u64 __user *)arg);
3927 	} else if (reserved_blocks &&
3928 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3929 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3930 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3931 			"iblocks=%llu, reserved=%u, compr_blocks=%u, "
3932 			"run fsck to fix.",
3933 			__func__, inode->i_ino, inode->i_blocks,
3934 			reserved_blocks,
3935 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3936 	}
3937 
3938 	return ret;
3939 }
3940 
f2fs_secure_erase(struct block_device * bdev,struct inode * inode,pgoff_t off,block_t block,block_t len,u32 flags)3941 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3942 		pgoff_t off, block_t block, block_t len, u32 flags)
3943 {
3944 	sector_t sector = SECTOR_FROM_BLOCK(block);
3945 	sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3946 	int ret = 0;
3947 
3948 	if (flags & F2FS_TRIM_FILE_DISCARD) {
3949 		if (bdev_max_secure_erase_sectors(bdev))
3950 			ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3951 					GFP_NOFS);
3952 		else
3953 			ret = blkdev_issue_discard(bdev, sector, nr_sects,
3954 					GFP_NOFS);
3955 	}
3956 
3957 	if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3958 		if (IS_ENCRYPTED(inode))
3959 			ret = fscrypt_zeroout_range(inode, off, block, len);
3960 		else
3961 			ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3962 					GFP_NOFS, 0);
3963 	}
3964 
3965 	return ret;
3966 }
3967 
f2fs_sec_trim_file(struct file * filp,unsigned long arg)3968 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3969 {
3970 	struct inode *inode = file_inode(filp);
3971 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3972 	struct address_space *mapping = inode->i_mapping;
3973 	struct block_device *prev_bdev = NULL;
3974 	struct f2fs_sectrim_range range;
3975 	pgoff_t index, pg_end, prev_index = 0;
3976 	block_t prev_block = 0, len = 0;
3977 	loff_t end_addr;
3978 	bool to_end = false;
3979 	int ret = 0;
3980 
3981 	if (!(filp->f_mode & FMODE_WRITE))
3982 		return -EBADF;
3983 
3984 	if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3985 				sizeof(range)))
3986 		return -EFAULT;
3987 
3988 	if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3989 			!S_ISREG(inode->i_mode))
3990 		return -EINVAL;
3991 
3992 	if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3993 			!f2fs_hw_support_discard(sbi)) ||
3994 			((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3995 			 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3996 		return -EOPNOTSUPP;
3997 
3998 	file_start_write(filp);
3999 	inode_lock(inode);
4000 
4001 	if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
4002 			range.start >= inode->i_size) {
4003 		ret = -EINVAL;
4004 		goto err;
4005 	}
4006 
4007 	if (range.len == 0)
4008 		goto err;
4009 
4010 	if (inode->i_size - range.start > range.len) {
4011 		end_addr = range.start + range.len;
4012 	} else {
4013 		end_addr = range.len == (u64)-1 ?
4014 			sbi->sb->s_maxbytes : inode->i_size;
4015 		to_end = true;
4016 	}
4017 
4018 	if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
4019 			(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
4020 		ret = -EINVAL;
4021 		goto err;
4022 	}
4023 
4024 	index = F2FS_BYTES_TO_BLK(range.start);
4025 	pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
4026 
4027 	ret = f2fs_convert_inline_inode(inode);
4028 	if (ret)
4029 		goto err;
4030 
4031 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4032 	filemap_invalidate_lock(mapping);
4033 
4034 	ret = filemap_write_and_wait_range(mapping, range.start,
4035 			to_end ? LLONG_MAX : end_addr - 1);
4036 	if (ret)
4037 		goto out;
4038 
4039 	truncate_inode_pages_range(mapping, range.start,
4040 			to_end ? -1 : end_addr - 1);
4041 
4042 	while (index < pg_end) {
4043 		struct dnode_of_data dn;
4044 		pgoff_t end_offset, count;
4045 		int i;
4046 
4047 		set_new_dnode(&dn, inode, NULL, NULL, 0);
4048 		ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
4049 		if (ret) {
4050 			if (ret == -ENOENT) {
4051 				index = f2fs_get_next_page_offset(&dn, index);
4052 				continue;
4053 			}
4054 			goto out;
4055 		}
4056 
4057 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
4058 		count = min(end_offset - dn.ofs_in_node, pg_end - index);
4059 		for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
4060 			struct block_device *cur_bdev;
4061 			block_t blkaddr = f2fs_data_blkaddr(&dn);
4062 
4063 			if (!__is_valid_data_blkaddr(blkaddr))
4064 				continue;
4065 
4066 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
4067 						DATA_GENERIC_ENHANCE)) {
4068 				ret = -EFSCORRUPTED;
4069 				f2fs_put_dnode(&dn);
4070 				f2fs_handle_error(sbi,
4071 						ERROR_INVALID_BLKADDR);
4072 				goto out;
4073 			}
4074 
4075 			cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
4076 			if (f2fs_is_multi_device(sbi)) {
4077 				int di = f2fs_target_device_index(sbi, blkaddr);
4078 
4079 				blkaddr -= FDEV(di).start_blk;
4080 			}
4081 
4082 			if (len) {
4083 				if (prev_bdev == cur_bdev &&
4084 						index == prev_index + len &&
4085 						blkaddr == prev_block + len) {
4086 					len++;
4087 				} else {
4088 					ret = f2fs_secure_erase(prev_bdev,
4089 						inode, prev_index, prev_block,
4090 						len, range.flags);
4091 					if (ret) {
4092 						f2fs_put_dnode(&dn);
4093 						goto out;
4094 					}
4095 
4096 					len = 0;
4097 				}
4098 			}
4099 
4100 			if (!len) {
4101 				prev_bdev = cur_bdev;
4102 				prev_index = index;
4103 				prev_block = blkaddr;
4104 				len = 1;
4105 			}
4106 		}
4107 
4108 		f2fs_put_dnode(&dn);
4109 
4110 		if (fatal_signal_pending(current)) {
4111 			ret = -EINTR;
4112 			goto out;
4113 		}
4114 		cond_resched();
4115 	}
4116 
4117 	if (len)
4118 		ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
4119 				prev_block, len, range.flags);
4120 out:
4121 	filemap_invalidate_unlock(mapping);
4122 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4123 err:
4124 	inode_unlock(inode);
4125 	file_end_write(filp);
4126 
4127 	return ret;
4128 }
4129 
f2fs_ioc_get_compress_option(struct file * filp,unsigned long arg)4130 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
4131 {
4132 	struct inode *inode = file_inode(filp);
4133 	struct f2fs_comp_option option;
4134 
4135 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
4136 		return -EOPNOTSUPP;
4137 
4138 	inode_lock_shared(inode);
4139 
4140 	if (!f2fs_compressed_file(inode)) {
4141 		inode_unlock_shared(inode);
4142 		return -ENODATA;
4143 	}
4144 
4145 	option.algorithm = F2FS_I(inode)->i_compress_algorithm;
4146 	option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
4147 
4148 	inode_unlock_shared(inode);
4149 
4150 	if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
4151 				sizeof(option)))
4152 		return -EFAULT;
4153 
4154 	return 0;
4155 }
4156 
f2fs_ioc_set_compress_option(struct file * filp,unsigned long arg)4157 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
4158 {
4159 	struct inode *inode = file_inode(filp);
4160 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4161 	struct f2fs_comp_option option;
4162 	int ret = 0;
4163 
4164 	if (!f2fs_sb_has_compression(sbi))
4165 		return -EOPNOTSUPP;
4166 
4167 	if (!(filp->f_mode & FMODE_WRITE))
4168 		return -EBADF;
4169 
4170 	if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
4171 				sizeof(option)))
4172 		return -EFAULT;
4173 
4174 	if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
4175 		option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
4176 		option.algorithm >= COMPRESS_MAX)
4177 		return -EINVAL;
4178 
4179 	file_start_write(filp);
4180 	inode_lock(inode);
4181 
4182 	f2fs_down_write(&F2FS_I(inode)->i_sem);
4183 	if (!f2fs_compressed_file(inode)) {
4184 		ret = -EINVAL;
4185 		goto out;
4186 	}
4187 
4188 	if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4189 		ret = -EBUSY;
4190 		goto out;
4191 	}
4192 
4193 	if (F2FS_HAS_BLOCKS(inode)) {
4194 		ret = -EFBIG;
4195 		goto out;
4196 	}
4197 
4198 	F2FS_I(inode)->i_compress_algorithm = option.algorithm;
4199 	F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
4200 	F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size);
4201 	/* Set default level */
4202 	if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD)
4203 		F2FS_I(inode)->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4204 	else
4205 		F2FS_I(inode)->i_compress_level = 0;
4206 	/* Adjust mount option level */
4207 	if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4208 	    F2FS_OPTION(sbi).compress_level)
4209 		F2FS_I(inode)->i_compress_level = F2FS_OPTION(sbi).compress_level;
4210 	f2fs_mark_inode_dirty_sync(inode, true);
4211 
4212 	if (!f2fs_is_compress_backend_ready(inode))
4213 		f2fs_warn(sbi, "compression algorithm is successfully set, "
4214 			"but current kernel doesn't support this algorithm.");
4215 out:
4216 	f2fs_up_write(&F2FS_I(inode)->i_sem);
4217 	inode_unlock(inode);
4218 	file_end_write(filp);
4219 
4220 	return ret;
4221 }
4222 
redirty_blocks(struct inode * inode,pgoff_t page_idx,int len)4223 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4224 {
4225 	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4226 	struct address_space *mapping = inode->i_mapping;
4227 	struct page *page;
4228 	pgoff_t redirty_idx = page_idx;
4229 	int i, page_len = 0, ret = 0;
4230 
4231 	page_cache_ra_unbounded(&ractl, len, 0);
4232 
4233 	for (i = 0; i < len; i++, page_idx++) {
4234 		page = read_cache_page(mapping, page_idx, NULL, NULL);
4235 		if (IS_ERR(page)) {
4236 			ret = PTR_ERR(page);
4237 			break;
4238 		}
4239 		page_len++;
4240 	}
4241 
4242 	for (i = 0; i < page_len; i++, redirty_idx++) {
4243 		page = find_lock_page(mapping, redirty_idx);
4244 
4245 		/* It will never fail, when page has pinned above */
4246 		f2fs_bug_on(F2FS_I_SB(inode), !page);
4247 
4248 		f2fs_wait_on_page_writeback(page, DATA, true, true);
4249 
4250 		set_page_dirty(page);
4251 		set_page_private_gcing(page);
4252 		f2fs_put_page(page, 1);
4253 		f2fs_put_page(page, 0);
4254 	}
4255 
4256 	return ret;
4257 }
4258 
f2fs_ioc_decompress_file(struct file * filp)4259 static int f2fs_ioc_decompress_file(struct file *filp)
4260 {
4261 	struct inode *inode = file_inode(filp);
4262 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4263 	struct f2fs_inode_info *fi = F2FS_I(inode);
4264 	pgoff_t page_idx = 0, last_idx, cluster_idx;
4265 	int ret;
4266 
4267 	if (!f2fs_sb_has_compression(sbi) ||
4268 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4269 		return -EOPNOTSUPP;
4270 
4271 	if (!(filp->f_mode & FMODE_WRITE))
4272 		return -EBADF;
4273 
4274 	f2fs_balance_fs(sbi, true);
4275 
4276 	file_start_write(filp);
4277 	inode_lock(inode);
4278 
4279 	if (!f2fs_is_compress_backend_ready(inode)) {
4280 		ret = -EOPNOTSUPP;
4281 		goto out;
4282 	}
4283 
4284 	if (!f2fs_compressed_file(inode) ||
4285 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4286 		ret = -EINVAL;
4287 		goto out;
4288 	}
4289 
4290 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4291 	if (ret)
4292 		goto out;
4293 
4294 	if (!atomic_read(&fi->i_compr_blocks))
4295 		goto out;
4296 
4297 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4298 	last_idx >>= fi->i_log_cluster_size;
4299 
4300 	for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4301 		page_idx = cluster_idx << fi->i_log_cluster_size;
4302 
4303 		if (!f2fs_is_compressed_cluster(inode, page_idx))
4304 			continue;
4305 
4306 		ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4307 		if (ret < 0)
4308 			break;
4309 
4310 		if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4311 			ret = filemap_fdatawrite(inode->i_mapping);
4312 			if (ret < 0)
4313 				break;
4314 		}
4315 
4316 		cond_resched();
4317 		if (fatal_signal_pending(current)) {
4318 			ret = -EINTR;
4319 			break;
4320 		}
4321 	}
4322 
4323 	if (!ret)
4324 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4325 							LLONG_MAX);
4326 
4327 	if (ret)
4328 		f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4329 			  __func__, ret);
4330 out:
4331 	inode_unlock(inode);
4332 	file_end_write(filp);
4333 
4334 	return ret;
4335 }
4336 
f2fs_ioc_compress_file(struct file * filp)4337 static int f2fs_ioc_compress_file(struct file *filp)
4338 {
4339 	struct inode *inode = file_inode(filp);
4340 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4341 	struct f2fs_inode_info *fi = F2FS_I(inode);
4342 	pgoff_t page_idx = 0, last_idx, cluster_idx;
4343 	int ret;
4344 
4345 	if (!f2fs_sb_has_compression(sbi) ||
4346 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4347 		return -EOPNOTSUPP;
4348 
4349 	if (!(filp->f_mode & FMODE_WRITE))
4350 		return -EBADF;
4351 
4352 	f2fs_balance_fs(sbi, true);
4353 
4354 	file_start_write(filp);
4355 	inode_lock(inode);
4356 
4357 	if (!f2fs_is_compress_backend_ready(inode)) {
4358 		ret = -EOPNOTSUPP;
4359 		goto out;
4360 	}
4361 
4362 	if (!f2fs_compressed_file(inode) ||
4363 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4364 		ret = -EINVAL;
4365 		goto out;
4366 	}
4367 
4368 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4369 	if (ret)
4370 		goto out;
4371 
4372 	set_inode_flag(inode, FI_ENABLE_COMPRESS);
4373 
4374 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4375 	last_idx >>= fi->i_log_cluster_size;
4376 
4377 	for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4378 		page_idx = cluster_idx << fi->i_log_cluster_size;
4379 
4380 		if (f2fs_is_sparse_cluster(inode, page_idx))
4381 			continue;
4382 
4383 		ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4384 		if (ret < 0)
4385 			break;
4386 
4387 		if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4388 			ret = filemap_fdatawrite(inode->i_mapping);
4389 			if (ret < 0)
4390 				break;
4391 		}
4392 
4393 		cond_resched();
4394 		if (fatal_signal_pending(current)) {
4395 			ret = -EINTR;
4396 			break;
4397 		}
4398 	}
4399 
4400 	if (!ret)
4401 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4402 							LLONG_MAX);
4403 
4404 	clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4405 
4406 	if (ret)
4407 		f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4408 			  __func__, ret);
4409 out:
4410 	inode_unlock(inode);
4411 	file_end_write(filp);
4412 
4413 	return ret;
4414 }
4415 
__f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4416 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4417 {
4418 	switch (cmd) {
4419 	case FS_IOC_GETVERSION:
4420 		return f2fs_ioc_getversion(filp, arg);
4421 	case F2FS_IOC_START_ATOMIC_WRITE:
4422 		return f2fs_ioc_start_atomic_write(filp, false);
4423 	case F2FS_IOC_START_ATOMIC_REPLACE:
4424 		return f2fs_ioc_start_atomic_write(filp, true);
4425 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4426 		return f2fs_ioc_commit_atomic_write(filp);
4427 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4428 		return f2fs_ioc_abort_atomic_write(filp);
4429 	case F2FS_IOC_START_VOLATILE_WRITE:
4430 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4431 		return -EOPNOTSUPP;
4432 	case F2FS_IOC_SHUTDOWN:
4433 		return f2fs_ioc_shutdown(filp, arg);
4434 	case FITRIM:
4435 		return f2fs_ioc_fitrim(filp, arg);
4436 	case FS_IOC_SET_ENCRYPTION_POLICY:
4437 		return f2fs_ioc_set_encryption_policy(filp, arg);
4438 	case FS_IOC_GET_ENCRYPTION_POLICY:
4439 		return f2fs_ioc_get_encryption_policy(filp, arg);
4440 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4441 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4442 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4443 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4444 	case FS_IOC_ADD_ENCRYPTION_KEY:
4445 		return f2fs_ioc_add_encryption_key(filp, arg);
4446 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4447 		return f2fs_ioc_remove_encryption_key(filp, arg);
4448 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4449 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4450 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4451 		return f2fs_ioc_get_encryption_key_status(filp, arg);
4452 	case FS_IOC_GET_ENCRYPTION_NONCE:
4453 		return f2fs_ioc_get_encryption_nonce(filp, arg);
4454 	case F2FS_IOC_GARBAGE_COLLECT:
4455 		return f2fs_ioc_gc(filp, arg);
4456 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4457 		return f2fs_ioc_gc_range(filp, arg);
4458 	case F2FS_IOC_WRITE_CHECKPOINT:
4459 		return f2fs_ioc_write_checkpoint(filp);
4460 	case F2FS_IOC_DEFRAGMENT:
4461 		return f2fs_ioc_defragment(filp, arg);
4462 	case F2FS_IOC_MOVE_RANGE:
4463 		return f2fs_ioc_move_range(filp, arg);
4464 	case F2FS_IOC_FLUSH_DEVICE:
4465 		return f2fs_ioc_flush_device(filp, arg);
4466 	case F2FS_IOC_GET_FEATURES:
4467 		return f2fs_ioc_get_features(filp, arg);
4468 	case F2FS_IOC_GET_PIN_FILE:
4469 		return f2fs_ioc_get_pin_file(filp, arg);
4470 	case F2FS_IOC_SET_PIN_FILE:
4471 		return f2fs_ioc_set_pin_file(filp, arg);
4472 	case F2FS_IOC_PRECACHE_EXTENTS:
4473 		return f2fs_ioc_precache_extents(filp);
4474 	case F2FS_IOC_RESIZE_FS:
4475 		return f2fs_ioc_resize_fs(filp, arg);
4476 	case FS_IOC_ENABLE_VERITY:
4477 		return f2fs_ioc_enable_verity(filp, arg);
4478 	case FS_IOC_MEASURE_VERITY:
4479 		return f2fs_ioc_measure_verity(filp, arg);
4480 	case FS_IOC_READ_VERITY_METADATA:
4481 		return f2fs_ioc_read_verity_metadata(filp, arg);
4482 	case FS_IOC_GETFSLABEL:
4483 		return f2fs_ioc_getfslabel(filp, arg);
4484 	case FS_IOC_SETFSLABEL:
4485 		return f2fs_ioc_setfslabel(filp, arg);
4486 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4487 		return f2fs_ioc_get_compress_blocks(filp, arg);
4488 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4489 		return f2fs_release_compress_blocks(filp, arg);
4490 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4491 		return f2fs_reserve_compress_blocks(filp, arg);
4492 	case F2FS_IOC_SEC_TRIM_FILE:
4493 		return f2fs_sec_trim_file(filp, arg);
4494 	case F2FS_IOC_GET_COMPRESS_OPTION:
4495 		return f2fs_ioc_get_compress_option(filp, arg);
4496 	case F2FS_IOC_SET_COMPRESS_OPTION:
4497 		return f2fs_ioc_set_compress_option(filp, arg);
4498 	case F2FS_IOC_DECOMPRESS_FILE:
4499 		return f2fs_ioc_decompress_file(filp);
4500 	case F2FS_IOC_COMPRESS_FILE:
4501 		return f2fs_ioc_compress_file(filp);
4502 	default:
4503 		return -ENOTTY;
4504 	}
4505 }
4506 
f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4507 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4508 {
4509 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4510 		return -EIO;
4511 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4512 		return -ENOSPC;
4513 
4514 	return __f2fs_ioctl(filp, cmd, arg);
4515 }
4516 
4517 /*
4518  * Return %true if the given read or write request should use direct I/O, or
4519  * %false if it should use buffered I/O.
4520  */
f2fs_should_use_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4521 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4522 				struct iov_iter *iter)
4523 {
4524 	unsigned int align;
4525 
4526 	if (!(iocb->ki_flags & IOCB_DIRECT))
4527 		return false;
4528 
4529 	if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4530 		return false;
4531 
4532 	/*
4533 	 * Direct I/O not aligned to the disk's logical_block_size will be
4534 	 * attempted, but will fail with -EINVAL.
4535 	 *
4536 	 * f2fs additionally requires that direct I/O be aligned to the
4537 	 * filesystem block size, which is often a stricter requirement.
4538 	 * However, f2fs traditionally falls back to buffered I/O on requests
4539 	 * that are logical_block_size-aligned but not fs-block aligned.
4540 	 *
4541 	 * The below logic implements this behavior.
4542 	 */
4543 	align = iocb->ki_pos | iov_iter_alignment(iter);
4544 	if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4545 	    IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4546 		return false;
4547 
4548 	return true;
4549 }
4550 
f2fs_dio_read_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)4551 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4552 				unsigned int flags)
4553 {
4554 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4555 
4556 	dec_page_count(sbi, F2FS_DIO_READ);
4557 	if (error)
4558 		return error;
4559 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4560 	return 0;
4561 }
4562 
4563 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4564 	.end_io = f2fs_dio_read_end_io,
4565 };
4566 
f2fs_dio_read_iter(struct kiocb * iocb,struct iov_iter * to)4567 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4568 {
4569 	struct file *file = iocb->ki_filp;
4570 	struct inode *inode = file_inode(file);
4571 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4572 	struct f2fs_inode_info *fi = F2FS_I(inode);
4573 	const loff_t pos = iocb->ki_pos;
4574 	const size_t count = iov_iter_count(to);
4575 	struct iomap_dio *dio;
4576 	ssize_t ret;
4577 
4578 	if (count == 0)
4579 		return 0; /* skip atime update */
4580 
4581 	trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4582 
4583 	if (iocb->ki_flags & IOCB_NOWAIT) {
4584 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4585 			ret = -EAGAIN;
4586 			goto out;
4587 		}
4588 	} else {
4589 		f2fs_down_read(&fi->i_gc_rwsem[READ]);
4590 	}
4591 
4592 	/*
4593 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4594 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4595 	 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4596 	 */
4597 	inc_page_count(sbi, F2FS_DIO_READ);
4598 	dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4599 			     &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4600 	if (IS_ERR_OR_NULL(dio)) {
4601 		ret = PTR_ERR_OR_ZERO(dio);
4602 		if (ret != -EIOCBQUEUED)
4603 			dec_page_count(sbi, F2FS_DIO_READ);
4604 	} else {
4605 		ret = iomap_dio_complete(dio);
4606 	}
4607 
4608 	f2fs_up_read(&fi->i_gc_rwsem[READ]);
4609 
4610 	file_accessed(file);
4611 out:
4612 	trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4613 	return ret;
4614 }
4615 
f2fs_trace_rw_file_path(struct file * file,loff_t pos,size_t count,int rw)4616 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4617 				    int rw)
4618 {
4619 	struct inode *inode = file_inode(file);
4620 	char *buf, *path;
4621 
4622 	buf = f2fs_getname(F2FS_I_SB(inode));
4623 	if (!buf)
4624 		return;
4625 	path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4626 	if (IS_ERR(path))
4627 		goto free_buf;
4628 	if (rw == WRITE)
4629 		trace_f2fs_datawrite_start(inode, pos, count,
4630 				current->pid, path, current->comm);
4631 	else
4632 		trace_f2fs_dataread_start(inode, pos, count,
4633 				current->pid, path, current->comm);
4634 free_buf:
4635 	f2fs_putname(buf);
4636 }
4637 
f2fs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)4638 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4639 {
4640 	struct inode *inode = file_inode(iocb->ki_filp);
4641 	const loff_t pos = iocb->ki_pos;
4642 	ssize_t ret;
4643 
4644 	if (!f2fs_is_compress_backend_ready(inode))
4645 		return -EOPNOTSUPP;
4646 
4647 	if (trace_f2fs_dataread_start_enabled())
4648 		f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4649 					iov_iter_count(to), READ);
4650 
4651 	/* In LFS mode, if there is inflight dio, wait for its completion */
4652 	if (f2fs_lfs_mode(F2FS_I_SB(inode)))
4653 		inode_dio_wait(inode);
4654 
4655 	if (f2fs_should_use_dio(inode, iocb, to)) {
4656 		ret = f2fs_dio_read_iter(iocb, to);
4657 	} else {
4658 		ret = filemap_read(iocb, to, 0);
4659 		if (ret > 0)
4660 			f2fs_update_iostat(F2FS_I_SB(inode), inode,
4661 						APP_BUFFERED_READ_IO, ret);
4662 	}
4663 	if (trace_f2fs_dataread_end_enabled())
4664 		trace_f2fs_dataread_end(inode, pos, ret);
4665 	return ret;
4666 }
4667 
f2fs_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)4668 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4669 				     struct pipe_inode_info *pipe,
4670 				     size_t len, unsigned int flags)
4671 {
4672 	struct inode *inode = file_inode(in);
4673 	const loff_t pos = *ppos;
4674 	ssize_t ret;
4675 
4676 	if (!f2fs_is_compress_backend_ready(inode))
4677 		return -EOPNOTSUPP;
4678 
4679 	if (trace_f2fs_dataread_start_enabled())
4680 		f2fs_trace_rw_file_path(in, pos, len, READ);
4681 
4682 	ret = filemap_splice_read(in, ppos, pipe, len, flags);
4683 	if (ret > 0)
4684 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4685 				   APP_BUFFERED_READ_IO, ret);
4686 
4687 	if (trace_f2fs_dataread_end_enabled())
4688 		trace_f2fs_dataread_end(inode, pos, ret);
4689 	return ret;
4690 }
4691 
f2fs_write_checks(struct kiocb * iocb,struct iov_iter * from)4692 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4693 {
4694 	struct file *file = iocb->ki_filp;
4695 	struct inode *inode = file_inode(file);
4696 	ssize_t count;
4697 	int err;
4698 
4699 	if (IS_IMMUTABLE(inode))
4700 		return -EPERM;
4701 
4702 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4703 		return -EPERM;
4704 
4705 	count = generic_write_checks(iocb, from);
4706 	if (count <= 0)
4707 		return count;
4708 
4709 	err = file_modified(file);
4710 	if (err)
4711 		return err;
4712 
4713 	filemap_invalidate_lock(inode->i_mapping);
4714 	f2fs_zero_post_eof_page(inode, iocb->ki_pos + iov_iter_count(from));
4715 	filemap_invalidate_unlock(inode->i_mapping);
4716 	return count;
4717 }
4718 
4719 /*
4720  * Preallocate blocks for a write request, if it is possible and helpful to do
4721  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4722  * blocks were preallocated, or a negative errno value if something went
4723  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4724  * requested blocks (not just some of them) have been allocated.
4725  */
f2fs_preallocate_blocks(struct kiocb * iocb,struct iov_iter * iter,bool dio)4726 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4727 				   bool dio)
4728 {
4729 	struct inode *inode = file_inode(iocb->ki_filp);
4730 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4731 	const loff_t pos = iocb->ki_pos;
4732 	const size_t count = iov_iter_count(iter);
4733 	struct f2fs_map_blocks map = {};
4734 	int flag;
4735 	int ret;
4736 
4737 	/* If it will be an out-of-place direct write, don't bother. */
4738 	if (dio && f2fs_lfs_mode(sbi))
4739 		return 0;
4740 	/*
4741 	 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4742 	 * buffered IO, if DIO meets any holes.
4743 	 */
4744 	if (dio && i_size_read(inode) &&
4745 		(F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4746 		return 0;
4747 
4748 	/* No-wait I/O can't allocate blocks. */
4749 	if (iocb->ki_flags & IOCB_NOWAIT)
4750 		return 0;
4751 
4752 	/* If it will be a short write, don't bother. */
4753 	if (fault_in_iov_iter_readable(iter, count))
4754 		return 0;
4755 
4756 	if (f2fs_has_inline_data(inode)) {
4757 		/* If the data will fit inline, don't bother. */
4758 		if (pos + count <= MAX_INLINE_DATA(inode))
4759 			return 0;
4760 		ret = f2fs_convert_inline_inode(inode);
4761 		if (ret)
4762 			return ret;
4763 	}
4764 
4765 	/* Do not preallocate blocks that will be written partially in 4KB. */
4766 	map.m_lblk = F2FS_BLK_ALIGN(pos);
4767 	map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4768 	if (map.m_len > map.m_lblk)
4769 		map.m_len -= map.m_lblk;
4770 	else
4771 		map.m_len = 0;
4772 	map.m_may_create = true;
4773 	if (dio) {
4774 		map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4775 		flag = F2FS_GET_BLOCK_PRE_DIO;
4776 	} else {
4777 		map.m_seg_type = NO_CHECK_TYPE;
4778 		flag = F2FS_GET_BLOCK_PRE_AIO;
4779 	}
4780 
4781 	ret = f2fs_map_blocks(inode, &map, flag);
4782 	/* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4783 	if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4784 		return ret;
4785 	if (ret == 0)
4786 		set_inode_flag(inode, FI_PREALLOCATED_ALL);
4787 	return map.m_len;
4788 }
4789 
f2fs_buffered_write_iter(struct kiocb * iocb,struct iov_iter * from)4790 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4791 					struct iov_iter *from)
4792 {
4793 	struct file *file = iocb->ki_filp;
4794 	struct inode *inode = file_inode(file);
4795 	ssize_t ret;
4796 
4797 	if (iocb->ki_flags & IOCB_NOWAIT)
4798 		return -EOPNOTSUPP;
4799 
4800 	ret = generic_perform_write(iocb, from);
4801 
4802 	if (ret > 0) {
4803 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4804 						APP_BUFFERED_IO, ret);
4805 	}
4806 	return ret;
4807 }
4808 
f2fs_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)4809 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4810 				 unsigned int flags)
4811 {
4812 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4813 
4814 	dec_page_count(sbi, F2FS_DIO_WRITE);
4815 	if (error)
4816 		return error;
4817 	f2fs_update_time(sbi, REQ_TIME);
4818 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4819 	return 0;
4820 }
4821 
4822 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4823 	.end_io = f2fs_dio_write_end_io,
4824 };
4825 
f2fs_flush_buffered_write(struct address_space * mapping,loff_t start_pos,loff_t end_pos)4826 static void f2fs_flush_buffered_write(struct address_space *mapping,
4827 				      loff_t start_pos, loff_t end_pos)
4828 {
4829 	int ret;
4830 
4831 	ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4832 	if (ret < 0)
4833 		return;
4834 	invalidate_mapping_pages(mapping,
4835 				 start_pos >> PAGE_SHIFT,
4836 				 end_pos >> PAGE_SHIFT);
4837 }
4838 
f2fs_dio_write_iter(struct kiocb * iocb,struct iov_iter * from,bool * may_need_sync)4839 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4840 				   bool *may_need_sync)
4841 {
4842 	struct file *file = iocb->ki_filp;
4843 	struct inode *inode = file_inode(file);
4844 	struct f2fs_inode_info *fi = F2FS_I(inode);
4845 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4846 	const bool do_opu = f2fs_lfs_mode(sbi);
4847 	const loff_t pos = iocb->ki_pos;
4848 	const ssize_t count = iov_iter_count(from);
4849 	unsigned int dio_flags;
4850 	struct iomap_dio *dio;
4851 	ssize_t ret;
4852 
4853 	trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4854 
4855 	if (iocb->ki_flags & IOCB_NOWAIT) {
4856 		/* f2fs_convert_inline_inode() and block allocation can block */
4857 		if (f2fs_has_inline_data(inode) ||
4858 		    !f2fs_overwrite_io(inode, pos, count)) {
4859 			ret = -EAGAIN;
4860 			goto out;
4861 		}
4862 
4863 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4864 			ret = -EAGAIN;
4865 			goto out;
4866 		}
4867 		if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4868 			f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4869 			ret = -EAGAIN;
4870 			goto out;
4871 		}
4872 	} else {
4873 		ret = f2fs_convert_inline_inode(inode);
4874 		if (ret)
4875 			goto out;
4876 
4877 		f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4878 		if (do_opu)
4879 			f2fs_down_read(&fi->i_gc_rwsem[READ]);
4880 	}
4881 
4882 	/*
4883 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4884 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4885 	 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4886 	 */
4887 	inc_page_count(sbi, F2FS_DIO_WRITE);
4888 	dio_flags = 0;
4889 	if (pos + count > inode->i_size)
4890 		dio_flags |= IOMAP_DIO_FORCE_WAIT;
4891 	dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4892 			     &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4893 	if (IS_ERR_OR_NULL(dio)) {
4894 		ret = PTR_ERR_OR_ZERO(dio);
4895 		if (ret == -ENOTBLK)
4896 			ret = 0;
4897 		if (ret != -EIOCBQUEUED)
4898 			dec_page_count(sbi, F2FS_DIO_WRITE);
4899 	} else {
4900 		ret = iomap_dio_complete(dio);
4901 	}
4902 
4903 	if (do_opu)
4904 		f2fs_up_read(&fi->i_gc_rwsem[READ]);
4905 	f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4906 
4907 	if (ret < 0)
4908 		goto out;
4909 	if (pos + ret > inode->i_size)
4910 		f2fs_i_size_write(inode, pos + ret);
4911 	if (!do_opu)
4912 		set_inode_flag(inode, FI_UPDATE_WRITE);
4913 
4914 	if (iov_iter_count(from)) {
4915 		ssize_t ret2;
4916 		loff_t bufio_start_pos = iocb->ki_pos;
4917 
4918 		/*
4919 		 * The direct write was partial, so we need to fall back to a
4920 		 * buffered write for the remainder.
4921 		 */
4922 
4923 		ret2 = f2fs_buffered_write_iter(iocb, from);
4924 		if (iov_iter_count(from))
4925 			f2fs_write_failed(inode, iocb->ki_pos);
4926 		if (ret2 < 0)
4927 			goto out;
4928 
4929 		/*
4930 		 * Ensure that the pagecache pages are written to disk and
4931 		 * invalidated to preserve the expected O_DIRECT semantics.
4932 		 */
4933 		if (ret2 > 0) {
4934 			loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4935 
4936 			ret += ret2;
4937 
4938 			f2fs_flush_buffered_write(file->f_mapping,
4939 						  bufio_start_pos,
4940 						  bufio_end_pos);
4941 		}
4942 	} else {
4943 		/* iomap_dio_rw() already handled the generic_write_sync(). */
4944 		*may_need_sync = false;
4945 	}
4946 out:
4947 	trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4948 	return ret;
4949 }
4950 
f2fs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4951 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4952 {
4953 	struct inode *inode = file_inode(iocb->ki_filp);
4954 	const loff_t orig_pos = iocb->ki_pos;
4955 	const size_t orig_count = iov_iter_count(from);
4956 	loff_t target_size;
4957 	bool dio;
4958 	bool may_need_sync = true;
4959 	int preallocated;
4960 	const loff_t pos = iocb->ki_pos;
4961 	const ssize_t count = iov_iter_count(from);
4962 	ssize_t ret;
4963 
4964 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4965 		ret = -EIO;
4966 		goto out;
4967 	}
4968 
4969 	if (!f2fs_is_compress_backend_ready(inode)) {
4970 		ret = -EOPNOTSUPP;
4971 		goto out;
4972 	}
4973 
4974 	if (iocb->ki_flags & IOCB_NOWAIT) {
4975 		if (!inode_trylock(inode)) {
4976 			ret = -EAGAIN;
4977 			goto out;
4978 		}
4979 	} else {
4980 		inode_lock(inode);
4981 	}
4982 
4983 	if (f2fs_is_pinned_file(inode) &&
4984 	    !f2fs_overwrite_io(inode, pos, count)) {
4985 		ret = -EIO;
4986 		goto out_unlock;
4987 	}
4988 
4989 	ret = f2fs_write_checks(iocb, from);
4990 	if (ret <= 0)
4991 		goto out_unlock;
4992 
4993 	/* Determine whether we will do a direct write or a buffered write. */
4994 	dio = f2fs_should_use_dio(inode, iocb, from);
4995 
4996 	/* Possibly preallocate the blocks for the write. */
4997 	target_size = iocb->ki_pos + iov_iter_count(from);
4998 	preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4999 	if (preallocated < 0) {
5000 		ret = preallocated;
5001 	} else {
5002 		if (trace_f2fs_datawrite_start_enabled())
5003 			f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
5004 						orig_count, WRITE);
5005 
5006 		/* Do the actual write. */
5007 		ret = dio ?
5008 			f2fs_dio_write_iter(iocb, from, &may_need_sync) :
5009 			f2fs_buffered_write_iter(iocb, from);
5010 
5011 		if (trace_f2fs_datawrite_end_enabled())
5012 			trace_f2fs_datawrite_end(inode, orig_pos, ret);
5013 	}
5014 
5015 	/* Don't leave any preallocated blocks around past i_size. */
5016 	if (preallocated && i_size_read(inode) < target_size) {
5017 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
5018 		filemap_invalidate_lock(inode->i_mapping);
5019 		if (!f2fs_truncate(inode))
5020 			file_dont_truncate(inode);
5021 		filemap_invalidate_unlock(inode->i_mapping);
5022 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
5023 	} else {
5024 		file_dont_truncate(inode);
5025 	}
5026 
5027 	clear_inode_flag(inode, FI_PREALLOCATED_ALL);
5028 out_unlock:
5029 	inode_unlock(inode);
5030 out:
5031 	trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
5032 
5033 	if (ret > 0 && may_need_sync)
5034 		ret = generic_write_sync(iocb, ret);
5035 
5036 	/* If buffered IO was forced, flush and drop the data from
5037 	 * the page cache to preserve O_DIRECT semantics
5038 	 */
5039 	if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
5040 		f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
5041 					  orig_pos,
5042 					  orig_pos + ret - 1);
5043 
5044 	return ret;
5045 }
5046 
f2fs_file_fadvise(struct file * filp,loff_t offset,loff_t len,int advice)5047 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
5048 		int advice)
5049 {
5050 	struct address_space *mapping;
5051 	struct backing_dev_info *bdi;
5052 	struct inode *inode = file_inode(filp);
5053 	int err;
5054 
5055 	if (advice == POSIX_FADV_SEQUENTIAL) {
5056 		if (S_ISFIFO(inode->i_mode))
5057 			return -ESPIPE;
5058 
5059 		mapping = filp->f_mapping;
5060 		if (!mapping || len < 0)
5061 			return -EINVAL;
5062 
5063 		bdi = inode_to_bdi(mapping->host);
5064 		filp->f_ra.ra_pages = bdi->ra_pages *
5065 			F2FS_I_SB(inode)->seq_file_ra_mul;
5066 		spin_lock(&filp->f_lock);
5067 		filp->f_mode &= ~FMODE_RANDOM;
5068 		spin_unlock(&filp->f_lock);
5069 		return 0;
5070 	}
5071 
5072 	err = generic_fadvise(filp, offset, len, advice);
5073 	if (!err && advice == POSIX_FADV_DONTNEED &&
5074 		test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
5075 		f2fs_compressed_file(inode))
5076 		f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
5077 
5078 	return err;
5079 }
5080 
5081 #ifdef CONFIG_COMPAT
5082 struct compat_f2fs_gc_range {
5083 	u32 sync;
5084 	compat_u64 start;
5085 	compat_u64 len;
5086 };
5087 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,\
5088 						struct compat_f2fs_gc_range)
5089 
f2fs_compat_ioc_gc_range(struct file * file,unsigned long arg)5090 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
5091 {
5092 	struct compat_f2fs_gc_range __user *urange;
5093 	struct f2fs_gc_range range;
5094 	int err;
5095 
5096 	urange = compat_ptr(arg);
5097 	err = get_user(range.sync, &urange->sync);
5098 	err |= get_user(range.start, &urange->start);
5099 	err |= get_user(range.len, &urange->len);
5100 	if (err)
5101 		return -EFAULT;
5102 
5103 	return __f2fs_ioc_gc_range(file, &range);
5104 }
5105 
5106 struct compat_f2fs_move_range {
5107 	u32 dst_fd;
5108 	compat_u64 pos_in;
5109 	compat_u64 pos_out;
5110 	compat_u64 len;
5111 };
5112 #define F2FS_IOC32_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
5113 					struct compat_f2fs_move_range)
5114 
f2fs_compat_ioc_move_range(struct file * file,unsigned long arg)5115 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
5116 {
5117 	struct compat_f2fs_move_range __user *urange;
5118 	struct f2fs_move_range range;
5119 	int err;
5120 
5121 	urange = compat_ptr(arg);
5122 	err = get_user(range.dst_fd, &urange->dst_fd);
5123 	err |= get_user(range.pos_in, &urange->pos_in);
5124 	err |= get_user(range.pos_out, &urange->pos_out);
5125 	err |= get_user(range.len, &urange->len);
5126 	if (err)
5127 		return -EFAULT;
5128 
5129 	return __f2fs_ioc_move_range(file, &range);
5130 }
5131 
f2fs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5132 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5133 {
5134 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
5135 		return -EIO;
5136 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
5137 		return -ENOSPC;
5138 
5139 	switch (cmd) {
5140 	case FS_IOC32_GETVERSION:
5141 		cmd = FS_IOC_GETVERSION;
5142 		break;
5143 	case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
5144 		return f2fs_compat_ioc_gc_range(file, arg);
5145 	case F2FS_IOC32_MOVE_RANGE:
5146 		return f2fs_compat_ioc_move_range(file, arg);
5147 	case F2FS_IOC_START_ATOMIC_WRITE:
5148 	case F2FS_IOC_START_ATOMIC_REPLACE:
5149 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
5150 	case F2FS_IOC_START_VOLATILE_WRITE:
5151 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
5152 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
5153 	case F2FS_IOC_SHUTDOWN:
5154 	case FITRIM:
5155 	case FS_IOC_SET_ENCRYPTION_POLICY:
5156 	case FS_IOC_GET_ENCRYPTION_PWSALT:
5157 	case FS_IOC_GET_ENCRYPTION_POLICY:
5158 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
5159 	case FS_IOC_ADD_ENCRYPTION_KEY:
5160 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
5161 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
5162 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
5163 	case FS_IOC_GET_ENCRYPTION_NONCE:
5164 	case F2FS_IOC_GARBAGE_COLLECT:
5165 	case F2FS_IOC_WRITE_CHECKPOINT:
5166 	case F2FS_IOC_DEFRAGMENT:
5167 	case F2FS_IOC_FLUSH_DEVICE:
5168 	case F2FS_IOC_GET_FEATURES:
5169 	case F2FS_IOC_GET_PIN_FILE:
5170 	case F2FS_IOC_SET_PIN_FILE:
5171 	case F2FS_IOC_PRECACHE_EXTENTS:
5172 	case F2FS_IOC_RESIZE_FS:
5173 	case FS_IOC_ENABLE_VERITY:
5174 	case FS_IOC_MEASURE_VERITY:
5175 	case FS_IOC_READ_VERITY_METADATA:
5176 	case FS_IOC_GETFSLABEL:
5177 	case FS_IOC_SETFSLABEL:
5178 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
5179 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
5180 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
5181 	case F2FS_IOC_SEC_TRIM_FILE:
5182 	case F2FS_IOC_GET_COMPRESS_OPTION:
5183 	case F2FS_IOC_SET_COMPRESS_OPTION:
5184 	case F2FS_IOC_DECOMPRESS_FILE:
5185 	case F2FS_IOC_COMPRESS_FILE:
5186 		break;
5187 	default:
5188 		return -ENOIOCTLCMD;
5189 	}
5190 	return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5191 }
5192 #endif
5193 
5194 const struct file_operations f2fs_file_operations = {
5195 	.llseek		= f2fs_llseek,
5196 	.read_iter	= f2fs_file_read_iter,
5197 	.write_iter	= f2fs_file_write_iter,
5198 	.iopoll		= iocb_bio_iopoll,
5199 	.open		= f2fs_file_open,
5200 	.release	= f2fs_release_file,
5201 	.mmap		= f2fs_file_mmap,
5202 	.flush		= f2fs_file_flush,
5203 	.fsync		= f2fs_sync_file,
5204 	.fallocate	= f2fs_fallocate,
5205 	.unlocked_ioctl	= f2fs_ioctl,
5206 #ifdef CONFIG_COMPAT
5207 	.compat_ioctl	= f2fs_compat_ioctl,
5208 #endif
5209 	.splice_read	= f2fs_file_splice_read,
5210 	.splice_write	= iter_file_splice_write,
5211 	.fadvise	= f2fs_file_fadvise,
5212 };
5213