1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/file.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38
f2fs_filemap_fault(struct vm_fault * vmf)39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41 struct inode *inode = file_inode(vmf->vma->vm_file);
42 vm_fault_t ret;
43
44 ret = filemap_fault(vmf);
45 if (ret & VM_FAULT_LOCKED)
46 f2fs_update_iostat(F2FS_I_SB(inode), inode,
47 APP_MAPPED_READ_IO, F2FS_BLKSIZE);
48
49 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50
51 return ret;
52 }
53
f2fs_vm_page_mkwrite(struct vm_fault * vmf)54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 struct page *page = vmf->page;
57 struct inode *inode = file_inode(vmf->vma->vm_file);
58 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 struct dnode_of_data dn;
60 bool need_alloc = true;
61 int err = 0;
62
63 if (unlikely(IS_IMMUTABLE(inode)))
64 return VM_FAULT_SIGBUS;
65
66 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
67 return VM_FAULT_SIGBUS;
68
69 if (unlikely(f2fs_cp_error(sbi))) {
70 err = -EIO;
71 goto err;
72 }
73
74 if (!f2fs_is_checkpoint_ready(sbi)) {
75 err = -ENOSPC;
76 goto err;
77 }
78
79 err = f2fs_convert_inline_inode(inode);
80 if (err)
81 goto err;
82
83 #ifdef CONFIG_F2FS_FS_COMPRESSION
84 if (f2fs_compressed_file(inode)) {
85 int ret = f2fs_is_compressed_cluster(inode, page->index);
86
87 if (ret < 0) {
88 err = ret;
89 goto err;
90 } else if (ret) {
91 need_alloc = false;
92 }
93 }
94 #endif
95 /* should do out of any locked page */
96 if (need_alloc)
97 f2fs_balance_fs(sbi, true);
98
99 sb_start_pagefault(inode->i_sb);
100
101 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
102
103 file_update_time(vmf->vma->vm_file);
104 filemap_invalidate_lock_shared(inode->i_mapping);
105 lock_page(page);
106 if (unlikely(page->mapping != inode->i_mapping ||
107 page_offset(page) > i_size_read(inode) ||
108 !PageUptodate(page))) {
109 unlock_page(page);
110 err = -EFAULT;
111 goto out_sem;
112 }
113
114 if (need_alloc) {
115 /* block allocation */
116 set_new_dnode(&dn, inode, NULL, NULL, 0);
117 err = f2fs_get_block_locked(&dn, page->index);
118 }
119
120 #ifdef CONFIG_F2FS_FS_COMPRESSION
121 if (!need_alloc) {
122 set_new_dnode(&dn, inode, NULL, NULL, 0);
123 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
124 f2fs_put_dnode(&dn);
125 }
126 #endif
127 if (err) {
128 unlock_page(page);
129 goto out_sem;
130 }
131
132 f2fs_wait_on_page_writeback(page, DATA, false, true);
133
134 /* wait for GCed page writeback via META_MAPPING */
135 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
136
137 /*
138 * check to see if the page is mapped already (no holes)
139 */
140 if (PageMappedToDisk(page))
141 goto out_sem;
142
143 /* page is wholly or partially inside EOF */
144 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
145 i_size_read(inode)) {
146 loff_t offset;
147
148 offset = i_size_read(inode) & ~PAGE_MASK;
149 zero_user_segment(page, offset, PAGE_SIZE);
150 }
151 set_page_dirty(page);
152
153 f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
154 f2fs_update_time(sbi, REQ_TIME);
155
156 trace_f2fs_vm_page_mkwrite(page, DATA);
157 out_sem:
158 filemap_invalidate_unlock_shared(inode->i_mapping);
159
160 sb_end_pagefault(inode->i_sb);
161 err:
162 return vmf_fs_error(err);
163 }
164
165 static const struct vm_operations_struct f2fs_file_vm_ops = {
166 .fault = f2fs_filemap_fault,
167 .map_pages = filemap_map_pages,
168 .page_mkwrite = f2fs_vm_page_mkwrite,
169 };
170
get_parent_ino(struct inode * inode,nid_t * pino)171 static int get_parent_ino(struct inode *inode, nid_t *pino)
172 {
173 struct dentry *dentry;
174
175 /*
176 * Make sure to get the non-deleted alias. The alias associated with
177 * the open file descriptor being fsync()'ed may be deleted already.
178 */
179 dentry = d_find_alias(inode);
180 if (!dentry)
181 return 0;
182
183 *pino = parent_ino(dentry);
184 dput(dentry);
185 return 1;
186 }
187
need_do_checkpoint(struct inode * inode)188 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
189 {
190 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
191 enum cp_reason_type cp_reason = CP_NO_NEEDED;
192
193 if (!S_ISREG(inode->i_mode))
194 cp_reason = CP_NON_REGULAR;
195 else if (f2fs_compressed_file(inode))
196 cp_reason = CP_COMPRESSED;
197 else if (inode->i_nlink != 1)
198 cp_reason = CP_HARDLINK;
199 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
200 cp_reason = CP_SB_NEED_CP;
201 else if (file_wrong_pino(inode))
202 cp_reason = CP_WRONG_PINO;
203 else if (!f2fs_space_for_roll_forward(sbi))
204 cp_reason = CP_NO_SPC_ROLL;
205 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
206 cp_reason = CP_NODE_NEED_CP;
207 else if (test_opt(sbi, FASTBOOT))
208 cp_reason = CP_FASTBOOT_MODE;
209 else if (F2FS_OPTION(sbi).active_logs == 2)
210 cp_reason = CP_SPEC_LOG_NUM;
211 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
212 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
213 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
214 TRANS_DIR_INO))
215 cp_reason = CP_RECOVER_DIR;
216 else if (f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
217 XATTR_DIR_INO))
218 cp_reason = CP_XATTR_DIR;
219
220 return cp_reason;
221 }
222
need_inode_page_update(struct f2fs_sb_info * sbi,nid_t ino)223 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
224 {
225 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
226 bool ret = false;
227 /* But we need to avoid that there are some inode updates */
228 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
229 ret = true;
230 f2fs_put_page(i, 0);
231 return ret;
232 }
233
try_to_fix_pino(struct inode * inode)234 static void try_to_fix_pino(struct inode *inode)
235 {
236 struct f2fs_inode_info *fi = F2FS_I(inode);
237 nid_t pino;
238
239 f2fs_down_write(&fi->i_sem);
240 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
241 get_parent_ino(inode, &pino)) {
242 f2fs_i_pino_write(inode, pino);
243 file_got_pino(inode);
244 }
245 f2fs_up_write(&fi->i_sem);
246 }
247
f2fs_do_sync_file(struct file * file,loff_t start,loff_t end,int datasync,bool atomic)248 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
249 int datasync, bool atomic)
250 {
251 struct inode *inode = file->f_mapping->host;
252 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
253 nid_t ino = inode->i_ino;
254 int ret = 0;
255 enum cp_reason_type cp_reason = 0;
256 struct writeback_control wbc = {
257 .sync_mode = WB_SYNC_ALL,
258 .nr_to_write = LONG_MAX,
259 .for_reclaim = 0,
260 };
261 unsigned int seq_id = 0;
262
263 if (unlikely(f2fs_readonly(inode->i_sb)))
264 return 0;
265
266 trace_f2fs_sync_file_enter(inode);
267
268 if (S_ISDIR(inode->i_mode))
269 goto go_write;
270
271 /* if fdatasync is triggered, let's do in-place-update */
272 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
273 set_inode_flag(inode, FI_NEED_IPU);
274 ret = file_write_and_wait_range(file, start, end);
275 clear_inode_flag(inode, FI_NEED_IPU);
276
277 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
278 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
279 return ret;
280 }
281
282 /* if the inode is dirty, let's recover all the time */
283 if (!f2fs_skip_inode_update(inode, datasync)) {
284 f2fs_write_inode(inode, NULL);
285 goto go_write;
286 }
287
288 /*
289 * if there is no written data, don't waste time to write recovery info.
290 */
291 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
292 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
293
294 /* it may call write_inode just prior to fsync */
295 if (need_inode_page_update(sbi, ino))
296 goto go_write;
297
298 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
299 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
300 goto flush_out;
301 goto out;
302 } else {
303 /*
304 * for OPU case, during fsync(), node can be persisted before
305 * data when lower device doesn't support write barrier, result
306 * in data corruption after SPO.
307 * So for strict fsync mode, force to use atomic write semantics
308 * to keep write order in between data/node and last node to
309 * avoid potential data corruption.
310 */
311 if (F2FS_OPTION(sbi).fsync_mode ==
312 FSYNC_MODE_STRICT && !atomic)
313 atomic = true;
314 }
315 go_write:
316 /*
317 * Both of fdatasync() and fsync() are able to be recovered from
318 * sudden-power-off.
319 */
320 f2fs_down_read(&F2FS_I(inode)->i_sem);
321 cp_reason = need_do_checkpoint(inode);
322 f2fs_up_read(&F2FS_I(inode)->i_sem);
323
324 if (cp_reason) {
325 /* all the dirty node pages should be flushed for POR */
326 ret = f2fs_sync_fs(inode->i_sb, 1);
327
328 /*
329 * We've secured consistency through sync_fs. Following pino
330 * will be used only for fsynced inodes after checkpoint.
331 */
332 try_to_fix_pino(inode);
333 clear_inode_flag(inode, FI_APPEND_WRITE);
334 clear_inode_flag(inode, FI_UPDATE_WRITE);
335 goto out;
336 }
337 sync_nodes:
338 atomic_inc(&sbi->wb_sync_req[NODE]);
339 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
340 atomic_dec(&sbi->wb_sync_req[NODE]);
341 if (ret)
342 goto out;
343
344 /* if cp_error was enabled, we should avoid infinite loop */
345 if (unlikely(f2fs_cp_error(sbi))) {
346 ret = -EIO;
347 goto out;
348 }
349
350 if (f2fs_need_inode_block_update(sbi, ino)) {
351 f2fs_mark_inode_dirty_sync(inode, true);
352 f2fs_write_inode(inode, NULL);
353 goto sync_nodes;
354 }
355
356 /*
357 * If it's atomic_write, it's just fine to keep write ordering. So
358 * here we don't need to wait for node write completion, since we use
359 * node chain which serializes node blocks. If one of node writes are
360 * reordered, we can see simply broken chain, resulting in stopping
361 * roll-forward recovery. It means we'll recover all or none node blocks
362 * given fsync mark.
363 */
364 if (!atomic) {
365 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
366 if (ret)
367 goto out;
368 }
369
370 /* once recovery info is written, don't need to tack this */
371 f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
372 clear_inode_flag(inode, FI_APPEND_WRITE);
373 flush_out:
374 if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
375 (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
376 ret = f2fs_issue_flush(sbi, inode->i_ino);
377 if (!ret) {
378 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
379 clear_inode_flag(inode, FI_UPDATE_WRITE);
380 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
381 }
382 f2fs_update_time(sbi, REQ_TIME);
383 out:
384 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
385 return ret;
386 }
387
f2fs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)388 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
389 {
390 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
391 return -EIO;
392 return f2fs_do_sync_file(file, start, end, datasync, false);
393 }
394
__found_offset(struct address_space * mapping,block_t blkaddr,pgoff_t index,int whence)395 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
396 pgoff_t index, int whence)
397 {
398 switch (whence) {
399 case SEEK_DATA:
400 if (__is_valid_data_blkaddr(blkaddr))
401 return true;
402 if (blkaddr == NEW_ADDR &&
403 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
404 return true;
405 break;
406 case SEEK_HOLE:
407 if (blkaddr == NULL_ADDR)
408 return true;
409 break;
410 }
411 return false;
412 }
413
f2fs_seek_block(struct file * file,loff_t offset,int whence)414 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
415 {
416 struct inode *inode = file->f_mapping->host;
417 loff_t maxbytes = inode->i_sb->s_maxbytes;
418 struct dnode_of_data dn;
419 pgoff_t pgofs, end_offset;
420 loff_t data_ofs = offset;
421 loff_t isize;
422 int err = 0;
423
424 inode_lock(inode);
425
426 isize = i_size_read(inode);
427 if (offset >= isize)
428 goto fail;
429
430 /* handle inline data case */
431 if (f2fs_has_inline_data(inode)) {
432 if (whence == SEEK_HOLE) {
433 data_ofs = isize;
434 goto found;
435 } else if (whence == SEEK_DATA) {
436 data_ofs = offset;
437 goto found;
438 }
439 }
440
441 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
442
443 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
444 set_new_dnode(&dn, inode, NULL, NULL, 0);
445 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
446 if (err && err != -ENOENT) {
447 goto fail;
448 } else if (err == -ENOENT) {
449 /* direct node does not exists */
450 if (whence == SEEK_DATA) {
451 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
452 continue;
453 } else {
454 goto found;
455 }
456 }
457
458 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
459
460 /* find data/hole in dnode block */
461 for (; dn.ofs_in_node < end_offset;
462 dn.ofs_in_node++, pgofs++,
463 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
464 block_t blkaddr;
465
466 blkaddr = f2fs_data_blkaddr(&dn);
467
468 if (__is_valid_data_blkaddr(blkaddr) &&
469 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
470 blkaddr, DATA_GENERIC_ENHANCE)) {
471 f2fs_put_dnode(&dn);
472 goto fail;
473 }
474
475 if (__found_offset(file->f_mapping, blkaddr,
476 pgofs, whence)) {
477 f2fs_put_dnode(&dn);
478 goto found;
479 }
480 }
481 f2fs_put_dnode(&dn);
482 }
483
484 if (whence == SEEK_DATA)
485 goto fail;
486 found:
487 if (whence == SEEK_HOLE && data_ofs > isize)
488 data_ofs = isize;
489 inode_unlock(inode);
490 return vfs_setpos(file, data_ofs, maxbytes);
491 fail:
492 inode_unlock(inode);
493 return -ENXIO;
494 }
495
f2fs_llseek(struct file * file,loff_t offset,int whence)496 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
497 {
498 struct inode *inode = file->f_mapping->host;
499 loff_t maxbytes = inode->i_sb->s_maxbytes;
500
501 if (f2fs_compressed_file(inode))
502 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
503
504 switch (whence) {
505 case SEEK_SET:
506 case SEEK_CUR:
507 case SEEK_END:
508 return generic_file_llseek_size(file, offset, whence,
509 maxbytes, i_size_read(inode));
510 case SEEK_DATA:
511 case SEEK_HOLE:
512 if (offset < 0)
513 return -ENXIO;
514 return f2fs_seek_block(file, offset, whence);
515 }
516
517 return -EINVAL;
518 }
519
f2fs_file_mmap(struct file * file,struct vm_area_struct * vma)520 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
521 {
522 struct inode *inode = file_inode(file);
523
524 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
525 return -EIO;
526
527 if (!f2fs_is_compress_backend_ready(inode))
528 return -EOPNOTSUPP;
529
530 file_accessed(file);
531 vma->vm_ops = &f2fs_file_vm_ops;
532
533 f2fs_down_read(&F2FS_I(inode)->i_sem);
534 set_inode_flag(inode, FI_MMAP_FILE);
535 f2fs_up_read(&F2FS_I(inode)->i_sem);
536
537 return 0;
538 }
539
finish_preallocate_blocks(struct inode * inode)540 static int finish_preallocate_blocks(struct inode *inode)
541 {
542 int ret;
543
544 inode_lock(inode);
545 if (is_inode_flag_set(inode, FI_OPENED_FILE)) {
546 inode_unlock(inode);
547 return 0;
548 }
549
550 if (!file_should_truncate(inode)) {
551 set_inode_flag(inode, FI_OPENED_FILE);
552 inode_unlock(inode);
553 return 0;
554 }
555
556 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
557 filemap_invalidate_lock(inode->i_mapping);
558
559 truncate_setsize(inode, i_size_read(inode));
560 ret = f2fs_truncate(inode);
561
562 filemap_invalidate_unlock(inode->i_mapping);
563 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
564
565 if (!ret)
566 set_inode_flag(inode, FI_OPENED_FILE);
567
568 inode_unlock(inode);
569 if (ret)
570 return ret;
571
572 file_dont_truncate(inode);
573 return 0;
574 }
575
f2fs_file_open(struct inode * inode,struct file * filp)576 static int f2fs_file_open(struct inode *inode, struct file *filp)
577 {
578 int err = fscrypt_file_open(inode, filp);
579
580 if (err)
581 return err;
582
583 if (!f2fs_is_compress_backend_ready(inode))
584 return -EOPNOTSUPP;
585
586 err = fsverity_file_open(inode, filp);
587 if (err)
588 return err;
589
590 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
591 filp->f_mode |= FMODE_CAN_ODIRECT;
592
593 err = dquot_file_open(inode, filp);
594 if (err)
595 return err;
596
597 return finish_preallocate_blocks(inode);
598 }
599
f2fs_truncate_data_blocks_range(struct dnode_of_data * dn,int count)600 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
601 {
602 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
603 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
604 __le32 *addr;
605 bool compressed_cluster = false;
606 int cluster_index = 0, valid_blocks = 0;
607 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
608 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
609
610 addr = get_dnode_addr(dn->inode, dn->node_page) + ofs;
611
612 /* Assumption: truncation starts with cluster */
613 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
614 block_t blkaddr = le32_to_cpu(*addr);
615
616 if (f2fs_compressed_file(dn->inode) &&
617 !(cluster_index & (cluster_size - 1))) {
618 if (compressed_cluster)
619 f2fs_i_compr_blocks_update(dn->inode,
620 valid_blocks, false);
621 compressed_cluster = (blkaddr == COMPRESS_ADDR);
622 valid_blocks = 0;
623 }
624
625 if (blkaddr == NULL_ADDR)
626 continue;
627
628 f2fs_set_data_blkaddr(dn, NULL_ADDR);
629
630 if (__is_valid_data_blkaddr(blkaddr)) {
631 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
632 DATA_GENERIC_ENHANCE))
633 continue;
634 if (compressed_cluster)
635 valid_blocks++;
636 }
637
638 f2fs_invalidate_blocks(sbi, blkaddr);
639
640 if (!released || blkaddr != COMPRESS_ADDR)
641 nr_free++;
642 }
643
644 if (compressed_cluster)
645 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
646
647 if (nr_free) {
648 pgoff_t fofs;
649 /*
650 * once we invalidate valid blkaddr in range [ofs, ofs + count],
651 * we will invalidate all blkaddr in the whole range.
652 */
653 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
654 dn->inode) + ofs;
655 f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
656 f2fs_update_age_extent_cache_range(dn, fofs, len);
657 dec_valid_block_count(sbi, dn->inode, nr_free);
658 }
659 dn->ofs_in_node = ofs;
660
661 f2fs_update_time(sbi, REQ_TIME);
662 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
663 dn->ofs_in_node, nr_free);
664 }
665
truncate_partial_data_page(struct inode * inode,u64 from,bool cache_only)666 static int truncate_partial_data_page(struct inode *inode, u64 from,
667 bool cache_only)
668 {
669 loff_t offset = from & (PAGE_SIZE - 1);
670 pgoff_t index = from >> PAGE_SHIFT;
671 struct address_space *mapping = inode->i_mapping;
672 struct page *page;
673
674 if (!offset && !cache_only)
675 return 0;
676
677 if (cache_only) {
678 page = find_lock_page(mapping, index);
679 if (page && PageUptodate(page))
680 goto truncate_out;
681 f2fs_put_page(page, 1);
682 return 0;
683 }
684
685 page = f2fs_get_lock_data_page(inode, index, true);
686 if (IS_ERR(page))
687 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
688 truncate_out:
689 f2fs_wait_on_page_writeback(page, DATA, true, true);
690 zero_user(page, offset, PAGE_SIZE - offset);
691
692 /* An encrypted inode should have a key and truncate the last page. */
693 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
694 if (!cache_only)
695 set_page_dirty(page);
696 f2fs_put_page(page, 1);
697 return 0;
698 }
699
f2fs_do_truncate_blocks(struct inode * inode,u64 from,bool lock)700 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
701 {
702 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
703 struct dnode_of_data dn;
704 pgoff_t free_from;
705 int count = 0, err = 0;
706 struct page *ipage;
707 bool truncate_page = false;
708
709 trace_f2fs_truncate_blocks_enter(inode, from);
710
711 free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
712
713 if (free_from >= max_file_blocks(inode))
714 goto free_partial;
715
716 if (lock)
717 f2fs_lock_op(sbi);
718
719 ipage = f2fs_get_node_page(sbi, inode->i_ino);
720 if (IS_ERR(ipage)) {
721 err = PTR_ERR(ipage);
722 goto out;
723 }
724
725 if (f2fs_has_inline_data(inode)) {
726 f2fs_truncate_inline_inode(inode, ipage, from);
727 f2fs_put_page(ipage, 1);
728 truncate_page = true;
729 goto out;
730 }
731
732 set_new_dnode(&dn, inode, ipage, NULL, 0);
733 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
734 if (err) {
735 if (err == -ENOENT)
736 goto free_next;
737 goto out;
738 }
739
740 count = ADDRS_PER_PAGE(dn.node_page, inode);
741
742 count -= dn.ofs_in_node;
743 f2fs_bug_on(sbi, count < 0);
744
745 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
746 f2fs_truncate_data_blocks_range(&dn, count);
747 free_from += count;
748 }
749
750 f2fs_put_dnode(&dn);
751 free_next:
752 err = f2fs_truncate_inode_blocks(inode, free_from);
753 out:
754 if (lock)
755 f2fs_unlock_op(sbi);
756 free_partial:
757 /* lastly zero out the first data page */
758 if (!err)
759 err = truncate_partial_data_page(inode, from, truncate_page);
760
761 trace_f2fs_truncate_blocks_exit(inode, err);
762 return err;
763 }
764
f2fs_truncate_blocks(struct inode * inode,u64 from,bool lock)765 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
766 {
767 u64 free_from = from;
768 int err;
769
770 #ifdef CONFIG_F2FS_FS_COMPRESSION
771 /*
772 * for compressed file, only support cluster size
773 * aligned truncation.
774 */
775 if (f2fs_compressed_file(inode))
776 free_from = round_up(from,
777 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
778 #endif
779
780 err = f2fs_do_truncate_blocks(inode, free_from, lock);
781 if (err)
782 return err;
783
784 #ifdef CONFIG_F2FS_FS_COMPRESSION
785 /*
786 * For compressed file, after release compress blocks, don't allow write
787 * direct, but we should allow write direct after truncate to zero.
788 */
789 if (f2fs_compressed_file(inode) && !free_from
790 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
791 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
792
793 if (from != free_from) {
794 err = f2fs_truncate_partial_cluster(inode, from, lock);
795 if (err)
796 return err;
797 }
798 #endif
799
800 return 0;
801 }
802
f2fs_truncate(struct inode * inode)803 int f2fs_truncate(struct inode *inode)
804 {
805 int err;
806
807 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
808 return -EIO;
809
810 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
811 S_ISLNK(inode->i_mode)))
812 return 0;
813
814 trace_f2fs_truncate(inode);
815
816 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
817 return -EIO;
818
819 err = f2fs_dquot_initialize(inode);
820 if (err)
821 return err;
822
823 /* we should check inline_data size */
824 if (!f2fs_may_inline_data(inode)) {
825 err = f2fs_convert_inline_inode(inode);
826 if (err)
827 return err;
828 }
829
830 err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
831 if (err)
832 return err;
833
834 inode->i_mtime = inode_set_ctime_current(inode);
835 f2fs_mark_inode_dirty_sync(inode, false);
836 return 0;
837 }
838
f2fs_force_buffered_io(struct inode * inode,int rw)839 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
840 {
841 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
842
843 if (!fscrypt_dio_supported(inode))
844 return true;
845 if (fsverity_active(inode))
846 return true;
847 if (f2fs_compressed_file(inode))
848 return true;
849 if (f2fs_has_inline_data(inode))
850 return true;
851
852 /* disallow direct IO if any of devices has unaligned blksize */
853 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
854 return true;
855 /*
856 * for blkzoned device, fallback direct IO to buffered IO, so
857 * all IOs can be serialized by log-structured write.
858 */
859 if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE))
860 return true;
861 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
862 return true;
863
864 return false;
865 }
866
f2fs_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)867 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
868 struct kstat *stat, u32 request_mask, unsigned int query_flags)
869 {
870 struct inode *inode = d_inode(path->dentry);
871 struct f2fs_inode_info *fi = F2FS_I(inode);
872 struct f2fs_inode *ri = NULL;
873 unsigned int flags;
874
875 if (f2fs_has_extra_attr(inode) &&
876 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
877 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
878 stat->result_mask |= STATX_BTIME;
879 stat->btime.tv_sec = fi->i_crtime.tv_sec;
880 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
881 }
882
883 /*
884 * Return the DIO alignment restrictions if requested. We only return
885 * this information when requested, since on encrypted files it might
886 * take a fair bit of work to get if the file wasn't opened recently.
887 *
888 * f2fs sometimes supports DIO reads but not DIO writes. STATX_DIOALIGN
889 * cannot represent that, so in that case we report no DIO support.
890 */
891 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
892 unsigned int bsize = i_blocksize(inode);
893
894 stat->result_mask |= STATX_DIOALIGN;
895 if (!f2fs_force_buffered_io(inode, WRITE)) {
896 stat->dio_mem_align = bsize;
897 stat->dio_offset_align = bsize;
898 }
899 }
900
901 flags = fi->i_flags;
902 if (flags & F2FS_COMPR_FL)
903 stat->attributes |= STATX_ATTR_COMPRESSED;
904 if (flags & F2FS_APPEND_FL)
905 stat->attributes |= STATX_ATTR_APPEND;
906 if (IS_ENCRYPTED(inode))
907 stat->attributes |= STATX_ATTR_ENCRYPTED;
908 if (flags & F2FS_IMMUTABLE_FL)
909 stat->attributes |= STATX_ATTR_IMMUTABLE;
910 if (flags & F2FS_NODUMP_FL)
911 stat->attributes |= STATX_ATTR_NODUMP;
912 if (IS_VERITY(inode))
913 stat->attributes |= STATX_ATTR_VERITY;
914
915 stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
916 STATX_ATTR_APPEND |
917 STATX_ATTR_ENCRYPTED |
918 STATX_ATTR_IMMUTABLE |
919 STATX_ATTR_NODUMP |
920 STATX_ATTR_VERITY);
921
922 generic_fillattr(idmap, request_mask, inode, stat);
923
924 /* we need to show initial sectors used for inline_data/dentries */
925 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
926 f2fs_has_inline_dentry(inode))
927 stat->blocks += (stat->size + 511) >> 9;
928
929 return 0;
930 }
931
932 #ifdef CONFIG_F2FS_FS_POSIX_ACL
__setattr_copy(struct mnt_idmap * idmap,struct inode * inode,const struct iattr * attr)933 static void __setattr_copy(struct mnt_idmap *idmap,
934 struct inode *inode, const struct iattr *attr)
935 {
936 unsigned int ia_valid = attr->ia_valid;
937
938 i_uid_update(idmap, attr, inode);
939 i_gid_update(idmap, attr, inode);
940 if (ia_valid & ATTR_ATIME)
941 inode->i_atime = attr->ia_atime;
942 if (ia_valid & ATTR_MTIME)
943 inode->i_mtime = attr->ia_mtime;
944 if (ia_valid & ATTR_CTIME)
945 inode_set_ctime_to_ts(inode, attr->ia_ctime);
946 if (ia_valid & ATTR_MODE) {
947 umode_t mode = attr->ia_mode;
948 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
949
950 if (!vfsgid_in_group_p(vfsgid) &&
951 !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
952 mode &= ~S_ISGID;
953 set_acl_inode(inode, mode);
954 }
955 }
956 #else
957 #define __setattr_copy setattr_copy
958 #endif
959
f2fs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)960 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
961 struct iattr *attr)
962 {
963 struct inode *inode = d_inode(dentry);
964 int err;
965
966 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
967 return -EIO;
968
969 if (unlikely(IS_IMMUTABLE(inode)))
970 return -EPERM;
971
972 if (unlikely(IS_APPEND(inode) &&
973 (attr->ia_valid & (ATTR_MODE | ATTR_UID |
974 ATTR_GID | ATTR_TIMES_SET))))
975 return -EPERM;
976
977 if ((attr->ia_valid & ATTR_SIZE)) {
978 if (!f2fs_is_compress_backend_ready(inode))
979 return -EOPNOTSUPP;
980 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) &&
981 !IS_ALIGNED(attr->ia_size,
982 F2FS_BLK_TO_BYTES(F2FS_I(inode)->i_cluster_size)))
983 return -EINVAL;
984 }
985
986 err = setattr_prepare(idmap, dentry, attr);
987 if (err)
988 return err;
989
990 err = fscrypt_prepare_setattr(dentry, attr);
991 if (err)
992 return err;
993
994 err = fsverity_prepare_setattr(dentry, attr);
995 if (err)
996 return err;
997
998 if (is_quota_modification(idmap, inode, attr)) {
999 err = f2fs_dquot_initialize(inode);
1000 if (err)
1001 return err;
1002 }
1003 if (i_uid_needs_update(idmap, attr, inode) ||
1004 i_gid_needs_update(idmap, attr, inode)) {
1005 f2fs_lock_op(F2FS_I_SB(inode));
1006 err = dquot_transfer(idmap, inode, attr);
1007 if (err) {
1008 set_sbi_flag(F2FS_I_SB(inode),
1009 SBI_QUOTA_NEED_REPAIR);
1010 f2fs_unlock_op(F2FS_I_SB(inode));
1011 return err;
1012 }
1013 /*
1014 * update uid/gid under lock_op(), so that dquot and inode can
1015 * be updated atomically.
1016 */
1017 i_uid_update(idmap, attr, inode);
1018 i_gid_update(idmap, attr, inode);
1019 f2fs_mark_inode_dirty_sync(inode, true);
1020 f2fs_unlock_op(F2FS_I_SB(inode));
1021 }
1022
1023 if (attr->ia_valid & ATTR_SIZE) {
1024 loff_t old_size = i_size_read(inode);
1025
1026 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
1027 /*
1028 * should convert inline inode before i_size_write to
1029 * keep smaller than inline_data size with inline flag.
1030 */
1031 err = f2fs_convert_inline_inode(inode);
1032 if (err)
1033 return err;
1034 }
1035
1036 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1037 filemap_invalidate_lock(inode->i_mapping);
1038
1039 truncate_setsize(inode, attr->ia_size);
1040
1041 if (attr->ia_size <= old_size)
1042 err = f2fs_truncate(inode);
1043 /*
1044 * do not trim all blocks after i_size if target size is
1045 * larger than i_size.
1046 */
1047 filemap_invalidate_unlock(inode->i_mapping);
1048 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1049 if (err)
1050 return err;
1051
1052 spin_lock(&F2FS_I(inode)->i_size_lock);
1053 inode->i_mtime = inode_set_ctime_current(inode);
1054 F2FS_I(inode)->last_disk_size = i_size_read(inode);
1055 spin_unlock(&F2FS_I(inode)->i_size_lock);
1056 }
1057
1058 __setattr_copy(idmap, inode, attr);
1059
1060 if (attr->ia_valid & ATTR_MODE) {
1061 err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1062
1063 if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1064 if (!err)
1065 inode->i_mode = F2FS_I(inode)->i_acl_mode;
1066 clear_inode_flag(inode, FI_ACL_MODE);
1067 }
1068 }
1069
1070 /* file size may changed here */
1071 f2fs_mark_inode_dirty_sync(inode, true);
1072
1073 /* inode change will produce dirty node pages flushed by checkpoint */
1074 f2fs_balance_fs(F2FS_I_SB(inode), true);
1075
1076 return err;
1077 }
1078
1079 const struct inode_operations f2fs_file_inode_operations = {
1080 .getattr = f2fs_getattr,
1081 .setattr = f2fs_setattr,
1082 .get_inode_acl = f2fs_get_acl,
1083 .set_acl = f2fs_set_acl,
1084 .listxattr = f2fs_listxattr,
1085 .fiemap = f2fs_fiemap,
1086 .fileattr_get = f2fs_fileattr_get,
1087 .fileattr_set = f2fs_fileattr_set,
1088 };
1089
fill_zero(struct inode * inode,pgoff_t index,loff_t start,loff_t len)1090 static int fill_zero(struct inode *inode, pgoff_t index,
1091 loff_t start, loff_t len)
1092 {
1093 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1094 struct page *page;
1095
1096 if (!len)
1097 return 0;
1098
1099 f2fs_balance_fs(sbi, true);
1100
1101 f2fs_lock_op(sbi);
1102 page = f2fs_get_new_data_page(inode, NULL, index, false);
1103 f2fs_unlock_op(sbi);
1104
1105 if (IS_ERR(page))
1106 return PTR_ERR(page);
1107
1108 f2fs_wait_on_page_writeback(page, DATA, true, true);
1109 zero_user(page, start, len);
1110 set_page_dirty(page);
1111 f2fs_put_page(page, 1);
1112 return 0;
1113 }
1114
f2fs_truncate_hole(struct inode * inode,pgoff_t pg_start,pgoff_t pg_end)1115 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1116 {
1117 int err;
1118
1119 while (pg_start < pg_end) {
1120 struct dnode_of_data dn;
1121 pgoff_t end_offset, count;
1122
1123 set_new_dnode(&dn, inode, NULL, NULL, 0);
1124 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1125 if (err) {
1126 if (err == -ENOENT) {
1127 pg_start = f2fs_get_next_page_offset(&dn,
1128 pg_start);
1129 continue;
1130 }
1131 return err;
1132 }
1133
1134 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1135 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1136
1137 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1138
1139 f2fs_truncate_data_blocks_range(&dn, count);
1140 f2fs_put_dnode(&dn);
1141
1142 pg_start += count;
1143 }
1144 return 0;
1145 }
1146
f2fs_punch_hole(struct inode * inode,loff_t offset,loff_t len)1147 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1148 {
1149 pgoff_t pg_start, pg_end;
1150 loff_t off_start, off_end;
1151 int ret;
1152
1153 ret = f2fs_convert_inline_inode(inode);
1154 if (ret)
1155 return ret;
1156
1157 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1158 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1159
1160 off_start = offset & (PAGE_SIZE - 1);
1161 off_end = (offset + len) & (PAGE_SIZE - 1);
1162
1163 if (pg_start == pg_end) {
1164 ret = fill_zero(inode, pg_start, off_start,
1165 off_end - off_start);
1166 if (ret)
1167 return ret;
1168 } else {
1169 if (off_start) {
1170 ret = fill_zero(inode, pg_start++, off_start,
1171 PAGE_SIZE - off_start);
1172 if (ret)
1173 return ret;
1174 }
1175 if (off_end) {
1176 ret = fill_zero(inode, pg_end, 0, off_end);
1177 if (ret)
1178 return ret;
1179 }
1180
1181 if (pg_start < pg_end) {
1182 loff_t blk_start, blk_end;
1183 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1184
1185 f2fs_balance_fs(sbi, true);
1186
1187 blk_start = (loff_t)pg_start << PAGE_SHIFT;
1188 blk_end = (loff_t)pg_end << PAGE_SHIFT;
1189
1190 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1191 filemap_invalidate_lock(inode->i_mapping);
1192
1193 truncate_pagecache_range(inode, blk_start, blk_end - 1);
1194
1195 f2fs_lock_op(sbi);
1196 ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1197 f2fs_unlock_op(sbi);
1198
1199 filemap_invalidate_unlock(inode->i_mapping);
1200 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1201 }
1202 }
1203
1204 return ret;
1205 }
1206
__read_out_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,pgoff_t len)1207 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1208 int *do_replace, pgoff_t off, pgoff_t len)
1209 {
1210 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1211 struct dnode_of_data dn;
1212 int ret, done, i;
1213
1214 next_dnode:
1215 set_new_dnode(&dn, inode, NULL, NULL, 0);
1216 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1217 if (ret && ret != -ENOENT) {
1218 return ret;
1219 } else if (ret == -ENOENT) {
1220 if (dn.max_level == 0)
1221 return -ENOENT;
1222 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1223 dn.ofs_in_node, len);
1224 blkaddr += done;
1225 do_replace += done;
1226 goto next;
1227 }
1228
1229 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1230 dn.ofs_in_node, len);
1231 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1232 *blkaddr = f2fs_data_blkaddr(&dn);
1233
1234 if (__is_valid_data_blkaddr(*blkaddr) &&
1235 !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1236 DATA_GENERIC_ENHANCE)) {
1237 f2fs_put_dnode(&dn);
1238 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1239 return -EFSCORRUPTED;
1240 }
1241
1242 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1243
1244 if (f2fs_lfs_mode(sbi)) {
1245 f2fs_put_dnode(&dn);
1246 return -EOPNOTSUPP;
1247 }
1248
1249 /* do not invalidate this block address */
1250 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1251 *do_replace = 1;
1252 }
1253 }
1254 f2fs_put_dnode(&dn);
1255 next:
1256 len -= done;
1257 off += done;
1258 if (len)
1259 goto next_dnode;
1260 return 0;
1261 }
1262
__roll_back_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,int len)1263 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1264 int *do_replace, pgoff_t off, int len)
1265 {
1266 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1267 struct dnode_of_data dn;
1268 int ret, i;
1269
1270 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1271 if (*do_replace == 0)
1272 continue;
1273
1274 set_new_dnode(&dn, inode, NULL, NULL, 0);
1275 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1276 if (ret) {
1277 dec_valid_block_count(sbi, inode, 1);
1278 f2fs_invalidate_blocks(sbi, *blkaddr);
1279 } else {
1280 f2fs_update_data_blkaddr(&dn, *blkaddr);
1281 }
1282 f2fs_put_dnode(&dn);
1283 }
1284 return 0;
1285 }
1286
__clone_blkaddrs(struct inode * src_inode,struct inode * dst_inode,block_t * blkaddr,int * do_replace,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1287 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1288 block_t *blkaddr, int *do_replace,
1289 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1290 {
1291 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1292 pgoff_t i = 0;
1293 int ret;
1294
1295 while (i < len) {
1296 if (blkaddr[i] == NULL_ADDR && !full) {
1297 i++;
1298 continue;
1299 }
1300
1301 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1302 struct dnode_of_data dn;
1303 struct node_info ni;
1304 size_t new_size;
1305 pgoff_t ilen;
1306
1307 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1308 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1309 if (ret)
1310 return ret;
1311
1312 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1313 if (ret) {
1314 f2fs_put_dnode(&dn);
1315 return ret;
1316 }
1317
1318 ilen = min((pgoff_t)
1319 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1320 dn.ofs_in_node, len - i);
1321 do {
1322 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1323 f2fs_truncate_data_blocks_range(&dn, 1);
1324
1325 if (do_replace[i]) {
1326 f2fs_i_blocks_write(src_inode,
1327 1, false, false);
1328 f2fs_i_blocks_write(dst_inode,
1329 1, true, false);
1330 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1331 blkaddr[i], ni.version, true, false);
1332
1333 do_replace[i] = 0;
1334 }
1335 dn.ofs_in_node++;
1336 i++;
1337 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1338 if (dst_inode->i_size < new_size)
1339 f2fs_i_size_write(dst_inode, new_size);
1340 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1341
1342 f2fs_put_dnode(&dn);
1343 } else {
1344 struct page *psrc, *pdst;
1345
1346 psrc = f2fs_get_lock_data_page(src_inode,
1347 src + i, true);
1348 if (IS_ERR(psrc))
1349 return PTR_ERR(psrc);
1350 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1351 true);
1352 if (IS_ERR(pdst)) {
1353 f2fs_put_page(psrc, 1);
1354 return PTR_ERR(pdst);
1355 }
1356
1357 f2fs_wait_on_page_writeback(pdst, DATA, true, true);
1358
1359 memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1360 set_page_dirty(pdst);
1361 set_page_private_gcing(pdst);
1362 f2fs_put_page(pdst, 1);
1363 f2fs_put_page(psrc, 1);
1364
1365 ret = f2fs_truncate_hole(src_inode,
1366 src + i, src + i + 1);
1367 if (ret)
1368 return ret;
1369 i++;
1370 }
1371 }
1372 return 0;
1373 }
1374
__exchange_data_block(struct inode * src_inode,struct inode * dst_inode,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1375 static int __exchange_data_block(struct inode *src_inode,
1376 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1377 pgoff_t len, bool full)
1378 {
1379 block_t *src_blkaddr;
1380 int *do_replace;
1381 pgoff_t olen;
1382 int ret;
1383
1384 while (len) {
1385 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1386
1387 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1388 array_size(olen, sizeof(block_t)),
1389 GFP_NOFS);
1390 if (!src_blkaddr)
1391 return -ENOMEM;
1392
1393 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1394 array_size(olen, sizeof(int)),
1395 GFP_NOFS);
1396 if (!do_replace) {
1397 kvfree(src_blkaddr);
1398 return -ENOMEM;
1399 }
1400
1401 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1402 do_replace, src, olen);
1403 if (ret)
1404 goto roll_back;
1405
1406 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1407 do_replace, src, dst, olen, full);
1408 if (ret)
1409 goto roll_back;
1410
1411 src += olen;
1412 dst += olen;
1413 len -= olen;
1414
1415 kvfree(src_blkaddr);
1416 kvfree(do_replace);
1417 }
1418 return 0;
1419
1420 roll_back:
1421 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1422 kvfree(src_blkaddr);
1423 kvfree(do_replace);
1424 return ret;
1425 }
1426
f2fs_do_collapse(struct inode * inode,loff_t offset,loff_t len)1427 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1428 {
1429 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1430 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1431 pgoff_t start = offset >> PAGE_SHIFT;
1432 pgoff_t end = (offset + len) >> PAGE_SHIFT;
1433 int ret;
1434
1435 f2fs_balance_fs(sbi, true);
1436
1437 /* avoid gc operation during block exchange */
1438 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1439 filemap_invalidate_lock(inode->i_mapping);
1440
1441 f2fs_lock_op(sbi);
1442 f2fs_drop_extent_tree(inode);
1443 truncate_pagecache(inode, offset);
1444 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1445 f2fs_unlock_op(sbi);
1446
1447 filemap_invalidate_unlock(inode->i_mapping);
1448 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1449 return ret;
1450 }
1451
f2fs_collapse_range(struct inode * inode,loff_t offset,loff_t len)1452 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1453 {
1454 loff_t new_size;
1455 int ret;
1456
1457 if (offset + len >= i_size_read(inode))
1458 return -EINVAL;
1459
1460 /* collapse range should be aligned to block size of f2fs. */
1461 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1462 return -EINVAL;
1463
1464 ret = f2fs_convert_inline_inode(inode);
1465 if (ret)
1466 return ret;
1467
1468 /* write out all dirty pages from offset */
1469 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1470 if (ret)
1471 return ret;
1472
1473 ret = f2fs_do_collapse(inode, offset, len);
1474 if (ret)
1475 return ret;
1476
1477 /* write out all moved pages, if possible */
1478 filemap_invalidate_lock(inode->i_mapping);
1479 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1480 truncate_pagecache(inode, offset);
1481
1482 new_size = i_size_read(inode) - len;
1483 ret = f2fs_truncate_blocks(inode, new_size, true);
1484 filemap_invalidate_unlock(inode->i_mapping);
1485 if (!ret)
1486 f2fs_i_size_write(inode, new_size);
1487 return ret;
1488 }
1489
f2fs_do_zero_range(struct dnode_of_data * dn,pgoff_t start,pgoff_t end)1490 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1491 pgoff_t end)
1492 {
1493 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1494 pgoff_t index = start;
1495 unsigned int ofs_in_node = dn->ofs_in_node;
1496 blkcnt_t count = 0;
1497 int ret;
1498
1499 for (; index < end; index++, dn->ofs_in_node++) {
1500 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1501 count++;
1502 }
1503
1504 dn->ofs_in_node = ofs_in_node;
1505 ret = f2fs_reserve_new_blocks(dn, count);
1506 if (ret)
1507 return ret;
1508
1509 dn->ofs_in_node = ofs_in_node;
1510 for (index = start; index < end; index++, dn->ofs_in_node++) {
1511 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1512 /*
1513 * f2fs_reserve_new_blocks will not guarantee entire block
1514 * allocation.
1515 */
1516 if (dn->data_blkaddr == NULL_ADDR) {
1517 ret = -ENOSPC;
1518 break;
1519 }
1520
1521 if (dn->data_blkaddr == NEW_ADDR)
1522 continue;
1523
1524 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1525 DATA_GENERIC_ENHANCE)) {
1526 ret = -EFSCORRUPTED;
1527 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1528 break;
1529 }
1530
1531 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1532 f2fs_set_data_blkaddr(dn, NEW_ADDR);
1533 }
1534
1535 f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1536 f2fs_update_age_extent_cache_range(dn, start, index - start);
1537
1538 return ret;
1539 }
1540
f2fs_zero_range(struct inode * inode,loff_t offset,loff_t len,int mode)1541 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1542 int mode)
1543 {
1544 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1545 struct address_space *mapping = inode->i_mapping;
1546 pgoff_t index, pg_start, pg_end;
1547 loff_t new_size = i_size_read(inode);
1548 loff_t off_start, off_end;
1549 int ret = 0;
1550
1551 ret = inode_newsize_ok(inode, (len + offset));
1552 if (ret)
1553 return ret;
1554
1555 ret = f2fs_convert_inline_inode(inode);
1556 if (ret)
1557 return ret;
1558
1559 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1560 if (ret)
1561 return ret;
1562
1563 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1564 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1565
1566 off_start = offset & (PAGE_SIZE - 1);
1567 off_end = (offset + len) & (PAGE_SIZE - 1);
1568
1569 if (pg_start == pg_end) {
1570 ret = fill_zero(inode, pg_start, off_start,
1571 off_end - off_start);
1572 if (ret)
1573 return ret;
1574
1575 new_size = max_t(loff_t, new_size, offset + len);
1576 } else {
1577 if (off_start) {
1578 ret = fill_zero(inode, pg_start++, off_start,
1579 PAGE_SIZE - off_start);
1580 if (ret)
1581 return ret;
1582
1583 new_size = max_t(loff_t, new_size,
1584 (loff_t)pg_start << PAGE_SHIFT);
1585 }
1586
1587 for (index = pg_start; index < pg_end;) {
1588 struct dnode_of_data dn;
1589 unsigned int end_offset;
1590 pgoff_t end;
1591
1592 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1593 filemap_invalidate_lock(mapping);
1594
1595 truncate_pagecache_range(inode,
1596 (loff_t)index << PAGE_SHIFT,
1597 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1598
1599 f2fs_lock_op(sbi);
1600
1601 set_new_dnode(&dn, inode, NULL, NULL, 0);
1602 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1603 if (ret) {
1604 f2fs_unlock_op(sbi);
1605 filemap_invalidate_unlock(mapping);
1606 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1607 goto out;
1608 }
1609
1610 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1611 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1612
1613 ret = f2fs_do_zero_range(&dn, index, end);
1614 f2fs_put_dnode(&dn);
1615
1616 f2fs_unlock_op(sbi);
1617 filemap_invalidate_unlock(mapping);
1618 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1619
1620 f2fs_balance_fs(sbi, dn.node_changed);
1621
1622 if (ret)
1623 goto out;
1624
1625 index = end;
1626 new_size = max_t(loff_t, new_size,
1627 (loff_t)index << PAGE_SHIFT);
1628 }
1629
1630 if (off_end) {
1631 ret = fill_zero(inode, pg_end, 0, off_end);
1632 if (ret)
1633 goto out;
1634
1635 new_size = max_t(loff_t, new_size, offset + len);
1636 }
1637 }
1638
1639 out:
1640 if (new_size > i_size_read(inode)) {
1641 if (mode & FALLOC_FL_KEEP_SIZE)
1642 file_set_keep_isize(inode);
1643 else
1644 f2fs_i_size_write(inode, new_size);
1645 }
1646 return ret;
1647 }
1648
f2fs_insert_range(struct inode * inode,loff_t offset,loff_t len)1649 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1650 {
1651 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1652 struct address_space *mapping = inode->i_mapping;
1653 pgoff_t nr, pg_start, pg_end, delta, idx;
1654 loff_t new_size;
1655 int ret = 0;
1656
1657 new_size = i_size_read(inode) + len;
1658 ret = inode_newsize_ok(inode, new_size);
1659 if (ret)
1660 return ret;
1661
1662 if (offset >= i_size_read(inode))
1663 return -EINVAL;
1664
1665 /* insert range should be aligned to block size of f2fs. */
1666 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1667 return -EINVAL;
1668
1669 ret = f2fs_convert_inline_inode(inode);
1670 if (ret)
1671 return ret;
1672
1673 f2fs_balance_fs(sbi, true);
1674
1675 filemap_invalidate_lock(mapping);
1676 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1677 filemap_invalidate_unlock(mapping);
1678 if (ret)
1679 return ret;
1680
1681 /* write out all dirty pages from offset */
1682 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1683 if (ret)
1684 return ret;
1685
1686 pg_start = offset >> PAGE_SHIFT;
1687 pg_end = (offset + len) >> PAGE_SHIFT;
1688 delta = pg_end - pg_start;
1689 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1690
1691 /* avoid gc operation during block exchange */
1692 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1693 filemap_invalidate_lock(mapping);
1694 truncate_pagecache(inode, offset);
1695
1696 while (!ret && idx > pg_start) {
1697 nr = idx - pg_start;
1698 if (nr > delta)
1699 nr = delta;
1700 idx -= nr;
1701
1702 f2fs_lock_op(sbi);
1703 f2fs_drop_extent_tree(inode);
1704
1705 ret = __exchange_data_block(inode, inode, idx,
1706 idx + delta, nr, false);
1707 f2fs_unlock_op(sbi);
1708 }
1709 filemap_invalidate_unlock(mapping);
1710 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1711
1712 /* write out all moved pages, if possible */
1713 filemap_invalidate_lock(mapping);
1714 filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1715 truncate_pagecache(inode, offset);
1716 filemap_invalidate_unlock(mapping);
1717
1718 if (!ret)
1719 f2fs_i_size_write(inode, new_size);
1720 return ret;
1721 }
1722
f2fs_expand_inode_data(struct inode * inode,loff_t offset,loff_t len,int mode)1723 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1724 loff_t len, int mode)
1725 {
1726 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1727 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1728 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1729 .m_may_create = true };
1730 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1731 .init_gc_type = FG_GC,
1732 .should_migrate_blocks = false,
1733 .err_gc_skipped = true,
1734 .nr_free_secs = 0 };
1735 pgoff_t pg_start, pg_end;
1736 loff_t new_size;
1737 loff_t off_end;
1738 block_t expanded = 0;
1739 int err;
1740
1741 err = inode_newsize_ok(inode, (len + offset));
1742 if (err)
1743 return err;
1744
1745 err = f2fs_convert_inline_inode(inode);
1746 if (err)
1747 return err;
1748
1749 f2fs_balance_fs(sbi, true);
1750
1751 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1752 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1753 off_end = (offset + len) & (PAGE_SIZE - 1);
1754
1755 map.m_lblk = pg_start;
1756 map.m_len = pg_end - pg_start;
1757 if (off_end)
1758 map.m_len++;
1759
1760 if (!map.m_len)
1761 return 0;
1762
1763 if (f2fs_is_pinned_file(inode)) {
1764 block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1765 block_t sec_len = roundup(map.m_len, sec_blks);
1766
1767 map.m_len = sec_blks;
1768 next_alloc:
1769 if (has_not_enough_free_secs(sbi, 0,
1770 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1771 f2fs_down_write(&sbi->gc_lock);
1772 stat_inc_gc_call_count(sbi, FOREGROUND);
1773 err = f2fs_gc(sbi, &gc_control);
1774 if (err && err != -ENODATA)
1775 goto out_err;
1776 }
1777
1778 f2fs_down_write(&sbi->pin_sem);
1779
1780 err = f2fs_allocate_pinning_section(sbi);
1781 if (err) {
1782 f2fs_up_write(&sbi->pin_sem);
1783 goto out_err;
1784 }
1785
1786 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1787 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1788 file_dont_truncate(inode);
1789
1790 f2fs_up_write(&sbi->pin_sem);
1791
1792 expanded += map.m_len;
1793 sec_len -= map.m_len;
1794 map.m_lblk += map.m_len;
1795 if (!err && sec_len)
1796 goto next_alloc;
1797
1798 map.m_len = expanded;
1799 } else {
1800 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1801 expanded = map.m_len;
1802 }
1803 out_err:
1804 if (err) {
1805 pgoff_t last_off;
1806
1807 if (!expanded)
1808 return err;
1809
1810 last_off = pg_start + expanded - 1;
1811
1812 /* update new size to the failed position */
1813 new_size = (last_off == pg_end) ? offset + len :
1814 (loff_t)(last_off + 1) << PAGE_SHIFT;
1815 } else {
1816 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1817 }
1818
1819 if (new_size > i_size_read(inode)) {
1820 if (mode & FALLOC_FL_KEEP_SIZE)
1821 file_set_keep_isize(inode);
1822 else
1823 f2fs_i_size_write(inode, new_size);
1824 }
1825
1826 return err;
1827 }
1828
f2fs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1829 static long f2fs_fallocate(struct file *file, int mode,
1830 loff_t offset, loff_t len)
1831 {
1832 struct inode *inode = file_inode(file);
1833 long ret = 0;
1834
1835 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1836 return -EIO;
1837 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1838 return -ENOSPC;
1839 if (!f2fs_is_compress_backend_ready(inode))
1840 return -EOPNOTSUPP;
1841
1842 /* f2fs only support ->fallocate for regular file */
1843 if (!S_ISREG(inode->i_mode))
1844 return -EINVAL;
1845
1846 if (IS_ENCRYPTED(inode) &&
1847 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1848 return -EOPNOTSUPP;
1849
1850 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1851 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1852 FALLOC_FL_INSERT_RANGE))
1853 return -EOPNOTSUPP;
1854
1855 inode_lock(inode);
1856
1857 /*
1858 * Pinned file should not support partial truncation since the block
1859 * can be used by applications.
1860 */
1861 if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1862 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1863 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) {
1864 ret = -EOPNOTSUPP;
1865 goto out;
1866 }
1867
1868 ret = file_modified(file);
1869 if (ret)
1870 goto out;
1871
1872 if (mode & FALLOC_FL_PUNCH_HOLE) {
1873 if (offset >= inode->i_size)
1874 goto out;
1875
1876 ret = f2fs_punch_hole(inode, offset, len);
1877 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1878 ret = f2fs_collapse_range(inode, offset, len);
1879 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1880 ret = f2fs_zero_range(inode, offset, len, mode);
1881 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1882 ret = f2fs_insert_range(inode, offset, len);
1883 } else {
1884 ret = f2fs_expand_inode_data(inode, offset, len, mode);
1885 }
1886
1887 if (!ret) {
1888 inode->i_mtime = inode_set_ctime_current(inode);
1889 f2fs_mark_inode_dirty_sync(inode, false);
1890 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1891 }
1892
1893 out:
1894 inode_unlock(inode);
1895
1896 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1897 return ret;
1898 }
1899
f2fs_release_file(struct inode * inode,struct file * filp)1900 static int f2fs_release_file(struct inode *inode, struct file *filp)
1901 {
1902 /*
1903 * f2fs_release_file is called at every close calls. So we should
1904 * not drop any inmemory pages by close called by other process.
1905 */
1906 if (!(filp->f_mode & FMODE_WRITE) ||
1907 atomic_read(&inode->i_writecount) != 1)
1908 return 0;
1909
1910 inode_lock(inode);
1911 f2fs_abort_atomic_write(inode, true);
1912 inode_unlock(inode);
1913
1914 return 0;
1915 }
1916
f2fs_file_flush(struct file * file,fl_owner_t id)1917 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1918 {
1919 struct inode *inode = file_inode(file);
1920
1921 /*
1922 * If the process doing a transaction is crashed, we should do
1923 * roll-back. Otherwise, other reader/write can see corrupted database
1924 * until all the writers close its file. Since this should be done
1925 * before dropping file lock, it needs to do in ->flush.
1926 */
1927 if (F2FS_I(inode)->atomic_write_task == current &&
1928 (current->flags & PF_EXITING)) {
1929 inode_lock(inode);
1930 f2fs_abort_atomic_write(inode, true);
1931 inode_unlock(inode);
1932 }
1933
1934 return 0;
1935 }
1936
f2fs_setflags_common(struct inode * inode,u32 iflags,u32 mask)1937 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1938 {
1939 struct f2fs_inode_info *fi = F2FS_I(inode);
1940 u32 masked_flags = fi->i_flags & mask;
1941
1942 /* mask can be shrunk by flags_valid selector */
1943 iflags &= mask;
1944
1945 /* Is it quota file? Do not allow user to mess with it */
1946 if (IS_NOQUOTA(inode))
1947 return -EPERM;
1948
1949 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1950 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1951 return -EOPNOTSUPP;
1952 if (!f2fs_empty_dir(inode))
1953 return -ENOTEMPTY;
1954 }
1955
1956 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1957 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1958 return -EOPNOTSUPP;
1959 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1960 return -EINVAL;
1961 }
1962
1963 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1964 if (masked_flags & F2FS_COMPR_FL) {
1965 if (!f2fs_disable_compressed_file(inode))
1966 return -EINVAL;
1967 } else {
1968 /* try to convert inline_data to support compression */
1969 int err = f2fs_convert_inline_inode(inode);
1970 if (err)
1971 return err;
1972
1973 f2fs_down_write(&F2FS_I(inode)->i_sem);
1974 if (!f2fs_may_compress(inode) ||
1975 (S_ISREG(inode->i_mode) &&
1976 F2FS_HAS_BLOCKS(inode))) {
1977 f2fs_up_write(&F2FS_I(inode)->i_sem);
1978 return -EINVAL;
1979 }
1980 err = set_compress_context(inode);
1981 f2fs_up_write(&F2FS_I(inode)->i_sem);
1982
1983 if (err)
1984 return err;
1985 }
1986 }
1987
1988 fi->i_flags = iflags | (fi->i_flags & ~mask);
1989 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1990 (fi->i_flags & F2FS_NOCOMP_FL));
1991
1992 if (fi->i_flags & F2FS_PROJINHERIT_FL)
1993 set_inode_flag(inode, FI_PROJ_INHERIT);
1994 else
1995 clear_inode_flag(inode, FI_PROJ_INHERIT);
1996
1997 inode_set_ctime_current(inode);
1998 f2fs_set_inode_flags(inode);
1999 f2fs_mark_inode_dirty_sync(inode, true);
2000 return 0;
2001 }
2002
2003 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
2004
2005 /*
2006 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
2007 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
2008 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add
2009 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
2010 *
2011 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
2012 * FS_IOC_FSSETXATTR is done by the VFS.
2013 */
2014
2015 static const struct {
2016 u32 iflag;
2017 u32 fsflag;
2018 } f2fs_fsflags_map[] = {
2019 { F2FS_COMPR_FL, FS_COMPR_FL },
2020 { F2FS_SYNC_FL, FS_SYNC_FL },
2021 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL },
2022 { F2FS_APPEND_FL, FS_APPEND_FL },
2023 { F2FS_NODUMP_FL, FS_NODUMP_FL },
2024 { F2FS_NOATIME_FL, FS_NOATIME_FL },
2025 { F2FS_NOCOMP_FL, FS_NOCOMP_FL },
2026 { F2FS_INDEX_FL, FS_INDEX_FL },
2027 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL },
2028 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL },
2029 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL },
2030 };
2031
2032 #define F2FS_GETTABLE_FS_FL ( \
2033 FS_COMPR_FL | \
2034 FS_SYNC_FL | \
2035 FS_IMMUTABLE_FL | \
2036 FS_APPEND_FL | \
2037 FS_NODUMP_FL | \
2038 FS_NOATIME_FL | \
2039 FS_NOCOMP_FL | \
2040 FS_INDEX_FL | \
2041 FS_DIRSYNC_FL | \
2042 FS_PROJINHERIT_FL | \
2043 FS_ENCRYPT_FL | \
2044 FS_INLINE_DATA_FL | \
2045 FS_NOCOW_FL | \
2046 FS_VERITY_FL | \
2047 FS_CASEFOLD_FL)
2048
2049 #define F2FS_SETTABLE_FS_FL ( \
2050 FS_COMPR_FL | \
2051 FS_SYNC_FL | \
2052 FS_IMMUTABLE_FL | \
2053 FS_APPEND_FL | \
2054 FS_NODUMP_FL | \
2055 FS_NOATIME_FL | \
2056 FS_NOCOMP_FL | \
2057 FS_DIRSYNC_FL | \
2058 FS_PROJINHERIT_FL | \
2059 FS_CASEFOLD_FL)
2060
2061 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
f2fs_iflags_to_fsflags(u32 iflags)2062 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2063 {
2064 u32 fsflags = 0;
2065 int i;
2066
2067 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2068 if (iflags & f2fs_fsflags_map[i].iflag)
2069 fsflags |= f2fs_fsflags_map[i].fsflag;
2070
2071 return fsflags;
2072 }
2073
2074 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
f2fs_fsflags_to_iflags(u32 fsflags)2075 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2076 {
2077 u32 iflags = 0;
2078 int i;
2079
2080 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2081 if (fsflags & f2fs_fsflags_map[i].fsflag)
2082 iflags |= f2fs_fsflags_map[i].iflag;
2083
2084 return iflags;
2085 }
2086
f2fs_ioc_getversion(struct file * filp,unsigned long arg)2087 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2088 {
2089 struct inode *inode = file_inode(filp);
2090
2091 return put_user(inode->i_generation, (int __user *)arg);
2092 }
2093
f2fs_ioc_start_atomic_write(struct file * filp,bool truncate)2094 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2095 {
2096 struct inode *inode = file_inode(filp);
2097 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2098 struct f2fs_inode_info *fi = F2FS_I(inode);
2099 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2100 loff_t isize;
2101 int ret;
2102
2103 if (!(filp->f_mode & FMODE_WRITE))
2104 return -EBADF;
2105
2106 if (!inode_owner_or_capable(idmap, inode))
2107 return -EACCES;
2108
2109 if (!S_ISREG(inode->i_mode))
2110 return -EINVAL;
2111
2112 if (filp->f_flags & O_DIRECT)
2113 return -EINVAL;
2114
2115 ret = mnt_want_write_file(filp);
2116 if (ret)
2117 return ret;
2118
2119 inode_lock(inode);
2120
2121 if (!f2fs_disable_compressed_file(inode)) {
2122 ret = -EINVAL;
2123 goto out;
2124 }
2125
2126 if (f2fs_is_atomic_file(inode))
2127 goto out;
2128
2129 ret = f2fs_convert_inline_inode(inode);
2130 if (ret)
2131 goto out;
2132
2133 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2134
2135 /*
2136 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2137 * f2fs_is_atomic_file.
2138 */
2139 if (get_dirty_pages(inode))
2140 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2141 inode->i_ino, get_dirty_pages(inode));
2142 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2143 if (ret) {
2144 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2145 goto out;
2146 }
2147
2148 /* Check if the inode already has a COW inode */
2149 if (fi->cow_inode == NULL) {
2150 /* Create a COW inode for atomic write */
2151 struct dentry *dentry = file_dentry(filp);
2152 struct inode *dir = d_inode(dentry->d_parent);
2153
2154 ret = f2fs_get_tmpfile(idmap, dir, &fi->cow_inode);
2155 if (ret) {
2156 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2157 goto out;
2158 }
2159
2160 set_inode_flag(fi->cow_inode, FI_COW_FILE);
2161 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2162
2163 /* Set the COW inode's atomic_inode to the atomic inode */
2164 F2FS_I(fi->cow_inode)->atomic_inode = inode;
2165 } else {
2166 /* Reuse the already created COW inode */
2167 f2fs_bug_on(sbi, get_dirty_pages(fi->cow_inode));
2168
2169 invalidate_mapping_pages(fi->cow_inode->i_mapping, 0, -1);
2170
2171 ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2172 if (ret) {
2173 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2174 goto out;
2175 }
2176 }
2177
2178 f2fs_write_inode(inode, NULL);
2179
2180 stat_inc_atomic_inode(inode);
2181
2182 set_inode_flag(inode, FI_ATOMIC_FILE);
2183
2184 isize = i_size_read(inode);
2185 fi->original_i_size = isize;
2186 if (truncate) {
2187 set_inode_flag(inode, FI_ATOMIC_REPLACE);
2188 truncate_inode_pages_final(inode->i_mapping);
2189 f2fs_i_size_write(inode, 0);
2190 isize = 0;
2191 }
2192 f2fs_i_size_write(fi->cow_inode, isize);
2193
2194 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2195
2196 f2fs_update_time(sbi, REQ_TIME);
2197 fi->atomic_write_task = current;
2198 stat_update_max_atomic_write(inode);
2199 fi->atomic_write_cnt = 0;
2200 out:
2201 inode_unlock(inode);
2202 mnt_drop_write_file(filp);
2203 return ret;
2204 }
2205
f2fs_ioc_commit_atomic_write(struct file * filp)2206 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2207 {
2208 struct inode *inode = file_inode(filp);
2209 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2210 int ret;
2211
2212 if (!(filp->f_mode & FMODE_WRITE))
2213 return -EBADF;
2214
2215 if (!inode_owner_or_capable(idmap, inode))
2216 return -EACCES;
2217
2218 ret = mnt_want_write_file(filp);
2219 if (ret)
2220 return ret;
2221
2222 f2fs_balance_fs(F2FS_I_SB(inode), true);
2223
2224 inode_lock(inode);
2225
2226 if (f2fs_is_atomic_file(inode)) {
2227 ret = f2fs_commit_atomic_write(inode);
2228 if (!ret)
2229 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2230
2231 f2fs_abort_atomic_write(inode, ret);
2232 } else {
2233 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2234 }
2235
2236 inode_unlock(inode);
2237 mnt_drop_write_file(filp);
2238 return ret;
2239 }
2240
f2fs_ioc_abort_atomic_write(struct file * filp)2241 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2242 {
2243 struct inode *inode = file_inode(filp);
2244 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2245 int ret;
2246
2247 if (!(filp->f_mode & FMODE_WRITE))
2248 return -EBADF;
2249
2250 if (!inode_owner_or_capable(idmap, inode))
2251 return -EACCES;
2252
2253 ret = mnt_want_write_file(filp);
2254 if (ret)
2255 return ret;
2256
2257 inode_lock(inode);
2258
2259 f2fs_abort_atomic_write(inode, true);
2260
2261 inode_unlock(inode);
2262
2263 mnt_drop_write_file(filp);
2264 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2265 return ret;
2266 }
2267
f2fs_do_shutdown(struct f2fs_sb_info * sbi,unsigned int flag,bool readonly,bool need_lock)2268 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
2269 bool readonly, bool need_lock)
2270 {
2271 struct super_block *sb = sbi->sb;
2272 int ret = 0;
2273
2274 switch (flag) {
2275 case F2FS_GOING_DOWN_FULLSYNC:
2276 ret = freeze_bdev(sb->s_bdev);
2277 if (ret)
2278 goto out;
2279 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2280 thaw_bdev(sb->s_bdev);
2281 break;
2282 case F2FS_GOING_DOWN_METASYNC:
2283 /* do checkpoint only */
2284 ret = f2fs_sync_fs(sb, 1);
2285 if (ret)
2286 goto out;
2287 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2288 break;
2289 case F2FS_GOING_DOWN_NOSYNC:
2290 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2291 break;
2292 case F2FS_GOING_DOWN_METAFLUSH:
2293 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2294 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2295 break;
2296 case F2FS_GOING_DOWN_NEED_FSCK:
2297 set_sbi_flag(sbi, SBI_NEED_FSCK);
2298 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2299 set_sbi_flag(sbi, SBI_IS_DIRTY);
2300 /* do checkpoint only */
2301 ret = f2fs_sync_fs(sb, 1);
2302 goto out;
2303 default:
2304 ret = -EINVAL;
2305 goto out;
2306 }
2307
2308 if (readonly)
2309 goto out;
2310
2311 /* grab sb->s_umount to avoid racing w/ remount() */
2312 if (need_lock)
2313 down_read(&sbi->sb->s_umount);
2314
2315 f2fs_stop_gc_thread(sbi);
2316 f2fs_stop_discard_thread(sbi);
2317
2318 f2fs_drop_discard_cmd(sbi);
2319 clear_opt(sbi, DISCARD);
2320
2321 if (need_lock)
2322 up_read(&sbi->sb->s_umount);
2323
2324 f2fs_update_time(sbi, REQ_TIME);
2325 out:
2326
2327 trace_f2fs_shutdown(sbi, flag, ret);
2328
2329 return ret;
2330 }
2331
f2fs_ioc_shutdown(struct file * filp,unsigned long arg)2332 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2333 {
2334 struct inode *inode = file_inode(filp);
2335 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2336 __u32 in;
2337 int ret;
2338 bool need_drop = false, readonly = false;
2339
2340 if (!capable(CAP_SYS_ADMIN))
2341 return -EPERM;
2342
2343 if (get_user(in, (__u32 __user *)arg))
2344 return -EFAULT;
2345
2346 if (in != F2FS_GOING_DOWN_FULLSYNC) {
2347 ret = mnt_want_write_file(filp);
2348 if (ret) {
2349 if (ret != -EROFS)
2350 return ret;
2351
2352 /* fallback to nosync shutdown for readonly fs */
2353 in = F2FS_GOING_DOWN_NOSYNC;
2354 readonly = true;
2355 } else {
2356 need_drop = true;
2357 }
2358 }
2359
2360 ret = f2fs_do_shutdown(sbi, in, readonly, true);
2361
2362 if (need_drop)
2363 mnt_drop_write_file(filp);
2364
2365 return ret;
2366 }
2367
f2fs_ioc_fitrim(struct file * filp,unsigned long arg)2368 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2369 {
2370 struct inode *inode = file_inode(filp);
2371 struct super_block *sb = inode->i_sb;
2372 struct fstrim_range range;
2373 int ret;
2374
2375 if (!capable(CAP_SYS_ADMIN))
2376 return -EPERM;
2377
2378 if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2379 return -EOPNOTSUPP;
2380
2381 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2382 sizeof(range)))
2383 return -EFAULT;
2384
2385 ret = mnt_want_write_file(filp);
2386 if (ret)
2387 return ret;
2388
2389 range.minlen = max((unsigned int)range.minlen,
2390 bdev_discard_granularity(sb->s_bdev));
2391 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2392 mnt_drop_write_file(filp);
2393 if (ret < 0)
2394 return ret;
2395
2396 if (copy_to_user((struct fstrim_range __user *)arg, &range,
2397 sizeof(range)))
2398 return -EFAULT;
2399 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2400 return 0;
2401 }
2402
uuid_is_nonzero(__u8 u[16])2403 static bool uuid_is_nonzero(__u8 u[16])
2404 {
2405 int i;
2406
2407 for (i = 0; i < 16; i++)
2408 if (u[i])
2409 return true;
2410 return false;
2411 }
2412
f2fs_ioc_set_encryption_policy(struct file * filp,unsigned long arg)2413 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2414 {
2415 struct inode *inode = file_inode(filp);
2416
2417 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2418 return -EOPNOTSUPP;
2419
2420 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2421
2422 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2423 }
2424
f2fs_ioc_get_encryption_policy(struct file * filp,unsigned long arg)2425 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2426 {
2427 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2428 return -EOPNOTSUPP;
2429 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2430 }
2431
f2fs_ioc_get_encryption_pwsalt(struct file * filp,unsigned long arg)2432 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2433 {
2434 struct inode *inode = file_inode(filp);
2435 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2436 u8 encrypt_pw_salt[16];
2437 int err;
2438
2439 if (!f2fs_sb_has_encrypt(sbi))
2440 return -EOPNOTSUPP;
2441
2442 err = mnt_want_write_file(filp);
2443 if (err)
2444 return err;
2445
2446 f2fs_down_write(&sbi->sb_lock);
2447
2448 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2449 goto got_it;
2450
2451 /* update superblock with uuid */
2452 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2453
2454 err = f2fs_commit_super(sbi, false);
2455 if (err) {
2456 /* undo new data */
2457 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2458 goto out_err;
2459 }
2460 got_it:
2461 memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2462 out_err:
2463 f2fs_up_write(&sbi->sb_lock);
2464 mnt_drop_write_file(filp);
2465
2466 if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2467 err = -EFAULT;
2468
2469 return err;
2470 }
2471
f2fs_ioc_get_encryption_policy_ex(struct file * filp,unsigned long arg)2472 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2473 unsigned long arg)
2474 {
2475 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2476 return -EOPNOTSUPP;
2477
2478 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2479 }
2480
f2fs_ioc_add_encryption_key(struct file * filp,unsigned long arg)2481 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2482 {
2483 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2484 return -EOPNOTSUPP;
2485
2486 return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2487 }
2488
f2fs_ioc_remove_encryption_key(struct file * filp,unsigned long arg)2489 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2490 {
2491 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2492 return -EOPNOTSUPP;
2493
2494 return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2495 }
2496
f2fs_ioc_remove_encryption_key_all_users(struct file * filp,unsigned long arg)2497 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2498 unsigned long arg)
2499 {
2500 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2501 return -EOPNOTSUPP;
2502
2503 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2504 }
2505
f2fs_ioc_get_encryption_key_status(struct file * filp,unsigned long arg)2506 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2507 unsigned long arg)
2508 {
2509 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2510 return -EOPNOTSUPP;
2511
2512 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2513 }
2514
f2fs_ioc_get_encryption_nonce(struct file * filp,unsigned long arg)2515 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2516 {
2517 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2518 return -EOPNOTSUPP;
2519
2520 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2521 }
2522
f2fs_ioc_gc(struct file * filp,unsigned long arg)2523 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2524 {
2525 struct inode *inode = file_inode(filp);
2526 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2527 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2528 .no_bg_gc = false,
2529 .should_migrate_blocks = false,
2530 .nr_free_secs = 0 };
2531 __u32 sync;
2532 int ret;
2533
2534 if (!capable(CAP_SYS_ADMIN))
2535 return -EPERM;
2536
2537 if (get_user(sync, (__u32 __user *)arg))
2538 return -EFAULT;
2539
2540 if (f2fs_readonly(sbi->sb))
2541 return -EROFS;
2542
2543 ret = mnt_want_write_file(filp);
2544 if (ret)
2545 return ret;
2546
2547 if (!sync) {
2548 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2549 ret = -EBUSY;
2550 goto out;
2551 }
2552 } else {
2553 f2fs_down_write(&sbi->gc_lock);
2554 }
2555
2556 gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2557 gc_control.err_gc_skipped = sync;
2558 stat_inc_gc_call_count(sbi, FOREGROUND);
2559 ret = f2fs_gc(sbi, &gc_control);
2560 out:
2561 mnt_drop_write_file(filp);
2562 return ret;
2563 }
2564
__f2fs_ioc_gc_range(struct file * filp,struct f2fs_gc_range * range)2565 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2566 {
2567 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2568 struct f2fs_gc_control gc_control = {
2569 .init_gc_type = range->sync ? FG_GC : BG_GC,
2570 .no_bg_gc = false,
2571 .should_migrate_blocks = false,
2572 .err_gc_skipped = range->sync,
2573 .nr_free_secs = 0 };
2574 u64 end;
2575 int ret;
2576
2577 if (!capable(CAP_SYS_ADMIN))
2578 return -EPERM;
2579 if (f2fs_readonly(sbi->sb))
2580 return -EROFS;
2581
2582 end = range->start + range->len;
2583 if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2584 end >= MAX_BLKADDR(sbi))
2585 return -EINVAL;
2586
2587 ret = mnt_want_write_file(filp);
2588 if (ret)
2589 return ret;
2590
2591 do_more:
2592 if (!range->sync) {
2593 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2594 ret = -EBUSY;
2595 goto out;
2596 }
2597 } else {
2598 f2fs_down_write(&sbi->gc_lock);
2599 }
2600
2601 gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2602 stat_inc_gc_call_count(sbi, FOREGROUND);
2603 ret = f2fs_gc(sbi, &gc_control);
2604 if (ret) {
2605 if (ret == -EBUSY)
2606 ret = -EAGAIN;
2607 goto out;
2608 }
2609 range->start += CAP_BLKS_PER_SEC(sbi);
2610 if (range->start <= end)
2611 goto do_more;
2612 out:
2613 mnt_drop_write_file(filp);
2614 return ret;
2615 }
2616
f2fs_ioc_gc_range(struct file * filp,unsigned long arg)2617 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2618 {
2619 struct f2fs_gc_range range;
2620
2621 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2622 sizeof(range)))
2623 return -EFAULT;
2624 return __f2fs_ioc_gc_range(filp, &range);
2625 }
2626
f2fs_ioc_write_checkpoint(struct file * filp)2627 static int f2fs_ioc_write_checkpoint(struct file *filp)
2628 {
2629 struct inode *inode = file_inode(filp);
2630 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2631 int ret;
2632
2633 if (!capable(CAP_SYS_ADMIN))
2634 return -EPERM;
2635
2636 if (f2fs_readonly(sbi->sb))
2637 return -EROFS;
2638
2639 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2640 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2641 return -EINVAL;
2642 }
2643
2644 ret = mnt_want_write_file(filp);
2645 if (ret)
2646 return ret;
2647
2648 ret = f2fs_sync_fs(sbi->sb, 1);
2649
2650 mnt_drop_write_file(filp);
2651 return ret;
2652 }
2653
f2fs_defragment_range(struct f2fs_sb_info * sbi,struct file * filp,struct f2fs_defragment * range)2654 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2655 struct file *filp,
2656 struct f2fs_defragment *range)
2657 {
2658 struct inode *inode = file_inode(filp);
2659 struct f2fs_map_blocks map = { .m_next_extent = NULL,
2660 .m_seg_type = NO_CHECK_TYPE,
2661 .m_may_create = false };
2662 struct extent_info ei = {};
2663 pgoff_t pg_start, pg_end, next_pgofs;
2664 unsigned int total = 0, sec_num;
2665 block_t blk_end = 0;
2666 bool fragmented = false;
2667 int err;
2668
2669 pg_start = range->start >> PAGE_SHIFT;
2670 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2671
2672 f2fs_balance_fs(sbi, true);
2673
2674 inode_lock(inode);
2675
2676 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) ||
2677 f2fs_is_atomic_file(inode)) {
2678 err = -EINVAL;
2679 goto unlock_out;
2680 }
2681
2682 /* if in-place-update policy is enabled, don't waste time here */
2683 set_inode_flag(inode, FI_OPU_WRITE);
2684 if (f2fs_should_update_inplace(inode, NULL)) {
2685 err = -EINVAL;
2686 goto out;
2687 }
2688
2689 /* writeback all dirty pages in the range */
2690 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2691 range->start + range->len - 1);
2692 if (err)
2693 goto out;
2694
2695 /*
2696 * lookup mapping info in extent cache, skip defragmenting if physical
2697 * block addresses are continuous.
2698 */
2699 if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2700 if ((pgoff_t)ei.fofs + ei.len >= pg_end)
2701 goto out;
2702 }
2703
2704 map.m_lblk = pg_start;
2705 map.m_next_pgofs = &next_pgofs;
2706
2707 /*
2708 * lookup mapping info in dnode page cache, skip defragmenting if all
2709 * physical block addresses are continuous even if there are hole(s)
2710 * in logical blocks.
2711 */
2712 while (map.m_lblk < pg_end) {
2713 map.m_len = pg_end - map.m_lblk;
2714 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2715 if (err)
2716 goto out;
2717
2718 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2719 map.m_lblk = next_pgofs;
2720 continue;
2721 }
2722
2723 if (blk_end && blk_end != map.m_pblk)
2724 fragmented = true;
2725
2726 /* record total count of block that we're going to move */
2727 total += map.m_len;
2728
2729 blk_end = map.m_pblk + map.m_len;
2730
2731 map.m_lblk += map.m_len;
2732 }
2733
2734 if (!fragmented) {
2735 total = 0;
2736 goto out;
2737 }
2738
2739 sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2740
2741 /*
2742 * make sure there are enough free section for LFS allocation, this can
2743 * avoid defragment running in SSR mode when free section are allocated
2744 * intensively
2745 */
2746 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2747 err = -EAGAIN;
2748 goto out;
2749 }
2750
2751 map.m_lblk = pg_start;
2752 map.m_len = pg_end - pg_start;
2753 total = 0;
2754
2755 while (map.m_lblk < pg_end) {
2756 pgoff_t idx;
2757 int cnt = 0;
2758
2759 do_map:
2760 map.m_len = pg_end - map.m_lblk;
2761 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2762 if (err)
2763 goto clear_out;
2764
2765 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2766 map.m_lblk = next_pgofs;
2767 goto check;
2768 }
2769
2770 set_inode_flag(inode, FI_SKIP_WRITES);
2771
2772 idx = map.m_lblk;
2773 while (idx < map.m_lblk + map.m_len &&
2774 cnt < BLKS_PER_SEG(sbi)) {
2775 struct page *page;
2776
2777 page = f2fs_get_lock_data_page(inode, idx, true);
2778 if (IS_ERR(page)) {
2779 err = PTR_ERR(page);
2780 goto clear_out;
2781 }
2782
2783 f2fs_wait_on_page_writeback(page, DATA, true, true);
2784
2785 set_page_dirty(page);
2786 set_page_private_gcing(page);
2787 f2fs_put_page(page, 1);
2788
2789 idx++;
2790 cnt++;
2791 total++;
2792 }
2793
2794 map.m_lblk = idx;
2795 check:
2796 if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi))
2797 goto do_map;
2798
2799 clear_inode_flag(inode, FI_SKIP_WRITES);
2800
2801 err = filemap_fdatawrite(inode->i_mapping);
2802 if (err)
2803 goto out;
2804 }
2805 clear_out:
2806 clear_inode_flag(inode, FI_SKIP_WRITES);
2807 out:
2808 clear_inode_flag(inode, FI_OPU_WRITE);
2809 unlock_out:
2810 inode_unlock(inode);
2811 if (!err)
2812 range->len = (u64)total << PAGE_SHIFT;
2813 return err;
2814 }
2815
f2fs_ioc_defragment(struct file * filp,unsigned long arg)2816 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2817 {
2818 struct inode *inode = file_inode(filp);
2819 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2820 struct f2fs_defragment range;
2821 int err;
2822
2823 if (!capable(CAP_SYS_ADMIN))
2824 return -EPERM;
2825
2826 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2827 return -EINVAL;
2828
2829 if (f2fs_readonly(sbi->sb))
2830 return -EROFS;
2831
2832 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2833 sizeof(range)))
2834 return -EFAULT;
2835
2836 /* verify alignment of offset & size */
2837 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2838 return -EINVAL;
2839
2840 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2841 max_file_blocks(inode)))
2842 return -EINVAL;
2843
2844 err = mnt_want_write_file(filp);
2845 if (err)
2846 return err;
2847
2848 err = f2fs_defragment_range(sbi, filp, &range);
2849 mnt_drop_write_file(filp);
2850
2851 f2fs_update_time(sbi, REQ_TIME);
2852 if (err < 0)
2853 return err;
2854
2855 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2856 sizeof(range)))
2857 return -EFAULT;
2858
2859 return 0;
2860 }
2861
f2fs_move_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len)2862 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2863 struct file *file_out, loff_t pos_out, size_t len)
2864 {
2865 struct inode *src = file_inode(file_in);
2866 struct inode *dst = file_inode(file_out);
2867 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2868 size_t olen = len, dst_max_i_size = 0;
2869 size_t dst_osize;
2870 int ret;
2871
2872 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2873 src->i_sb != dst->i_sb)
2874 return -EXDEV;
2875
2876 if (unlikely(f2fs_readonly(src->i_sb)))
2877 return -EROFS;
2878
2879 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2880 return -EINVAL;
2881
2882 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2883 return -EOPNOTSUPP;
2884
2885 if (pos_out < 0 || pos_in < 0)
2886 return -EINVAL;
2887
2888 if (src == dst) {
2889 if (pos_in == pos_out)
2890 return 0;
2891 if (pos_out > pos_in && pos_out < pos_in + len)
2892 return -EINVAL;
2893 }
2894
2895 inode_lock(src);
2896 if (src != dst) {
2897 ret = -EBUSY;
2898 if (!inode_trylock(dst))
2899 goto out;
2900 }
2901
2902 if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) ||
2903 f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) {
2904 ret = -EOPNOTSUPP;
2905 goto out_unlock;
2906 }
2907
2908 if (f2fs_is_atomic_file(src) || f2fs_is_atomic_file(dst)) {
2909 ret = -EINVAL;
2910 goto out_unlock;
2911 }
2912
2913 ret = -EINVAL;
2914 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2915 goto out_unlock;
2916 if (len == 0)
2917 olen = len = src->i_size - pos_in;
2918 if (pos_in + len == src->i_size)
2919 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2920 if (len == 0) {
2921 ret = 0;
2922 goto out_unlock;
2923 }
2924
2925 dst_osize = dst->i_size;
2926 if (pos_out + olen > dst->i_size)
2927 dst_max_i_size = pos_out + olen;
2928
2929 /* verify the end result is block aligned */
2930 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2931 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2932 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2933 goto out_unlock;
2934
2935 ret = f2fs_convert_inline_inode(src);
2936 if (ret)
2937 goto out_unlock;
2938
2939 ret = f2fs_convert_inline_inode(dst);
2940 if (ret)
2941 goto out_unlock;
2942
2943 /* write out all dirty pages from offset */
2944 ret = filemap_write_and_wait_range(src->i_mapping,
2945 pos_in, pos_in + len);
2946 if (ret)
2947 goto out_unlock;
2948
2949 ret = filemap_write_and_wait_range(dst->i_mapping,
2950 pos_out, pos_out + len);
2951 if (ret)
2952 goto out_unlock;
2953
2954 f2fs_balance_fs(sbi, true);
2955
2956 f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2957 if (src != dst) {
2958 ret = -EBUSY;
2959 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2960 goto out_src;
2961 }
2962
2963 f2fs_lock_op(sbi);
2964 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2965 pos_out >> F2FS_BLKSIZE_BITS,
2966 len >> F2FS_BLKSIZE_BITS, false);
2967
2968 if (!ret) {
2969 if (dst_max_i_size)
2970 f2fs_i_size_write(dst, dst_max_i_size);
2971 else if (dst_osize != dst->i_size)
2972 f2fs_i_size_write(dst, dst_osize);
2973 }
2974 f2fs_unlock_op(sbi);
2975
2976 if (src != dst)
2977 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2978 out_src:
2979 f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2980 if (ret)
2981 goto out_unlock;
2982
2983 src->i_mtime = inode_set_ctime_current(src);
2984 f2fs_mark_inode_dirty_sync(src, false);
2985 if (src != dst) {
2986 dst->i_mtime = inode_set_ctime_current(dst);
2987 f2fs_mark_inode_dirty_sync(dst, false);
2988 }
2989 f2fs_update_time(sbi, REQ_TIME);
2990
2991 out_unlock:
2992 if (src != dst)
2993 inode_unlock(dst);
2994 out:
2995 inode_unlock(src);
2996 return ret;
2997 }
2998
__f2fs_ioc_move_range(struct file * filp,struct f2fs_move_range * range)2999 static int __f2fs_ioc_move_range(struct file *filp,
3000 struct f2fs_move_range *range)
3001 {
3002 struct fd dst;
3003 int err;
3004
3005 if (!(filp->f_mode & FMODE_READ) ||
3006 !(filp->f_mode & FMODE_WRITE))
3007 return -EBADF;
3008
3009 dst = fdget(range->dst_fd);
3010 if (!dst.file)
3011 return -EBADF;
3012
3013 if (!(dst.file->f_mode & FMODE_WRITE)) {
3014 err = -EBADF;
3015 goto err_out;
3016 }
3017
3018 err = mnt_want_write_file(filp);
3019 if (err)
3020 goto err_out;
3021
3022 err = f2fs_move_file_range(filp, range->pos_in, dst.file,
3023 range->pos_out, range->len);
3024
3025 mnt_drop_write_file(filp);
3026 err_out:
3027 fdput(dst);
3028 return err;
3029 }
3030
f2fs_ioc_move_range(struct file * filp,unsigned long arg)3031 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
3032 {
3033 struct f2fs_move_range range;
3034
3035 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
3036 sizeof(range)))
3037 return -EFAULT;
3038 return __f2fs_ioc_move_range(filp, &range);
3039 }
3040
f2fs_ioc_flush_device(struct file * filp,unsigned long arg)3041 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
3042 {
3043 struct inode *inode = file_inode(filp);
3044 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3045 struct sit_info *sm = SIT_I(sbi);
3046 unsigned int start_segno = 0, end_segno = 0;
3047 unsigned int dev_start_segno = 0, dev_end_segno = 0;
3048 struct f2fs_flush_device range;
3049 struct f2fs_gc_control gc_control = {
3050 .init_gc_type = FG_GC,
3051 .should_migrate_blocks = true,
3052 .err_gc_skipped = true,
3053 .nr_free_secs = 0 };
3054 int ret;
3055
3056 if (!capable(CAP_SYS_ADMIN))
3057 return -EPERM;
3058
3059 if (f2fs_readonly(sbi->sb))
3060 return -EROFS;
3061
3062 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3063 return -EINVAL;
3064
3065 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
3066 sizeof(range)))
3067 return -EFAULT;
3068
3069 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
3070 __is_large_section(sbi)) {
3071 f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1",
3072 range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi));
3073 return -EINVAL;
3074 }
3075
3076 ret = mnt_want_write_file(filp);
3077 if (ret)
3078 return ret;
3079
3080 if (range.dev_num != 0)
3081 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
3082 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
3083
3084 start_segno = sm->last_victim[FLUSH_DEVICE];
3085 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3086 start_segno = dev_start_segno;
3087 end_segno = min(start_segno + range.segments, dev_end_segno);
3088
3089 while (start_segno < end_segno) {
3090 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
3091 ret = -EBUSY;
3092 goto out;
3093 }
3094 sm->last_victim[GC_CB] = end_segno + 1;
3095 sm->last_victim[GC_GREEDY] = end_segno + 1;
3096 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3097
3098 gc_control.victim_segno = start_segno;
3099 stat_inc_gc_call_count(sbi, FOREGROUND);
3100 ret = f2fs_gc(sbi, &gc_control);
3101 if (ret == -EAGAIN)
3102 ret = 0;
3103 else if (ret < 0)
3104 break;
3105 start_segno++;
3106 }
3107 out:
3108 mnt_drop_write_file(filp);
3109 return ret;
3110 }
3111
f2fs_ioc_get_features(struct file * filp,unsigned long arg)3112 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3113 {
3114 struct inode *inode = file_inode(filp);
3115 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3116
3117 /* Must validate to set it with SQLite behavior in Android. */
3118 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3119
3120 return put_user(sb_feature, (u32 __user *)arg);
3121 }
3122
3123 #ifdef CONFIG_QUOTA
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3124 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3125 {
3126 struct dquot *transfer_to[MAXQUOTAS] = {};
3127 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3128 struct super_block *sb = sbi->sb;
3129 int err;
3130
3131 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3132 if (IS_ERR(transfer_to[PRJQUOTA]))
3133 return PTR_ERR(transfer_to[PRJQUOTA]);
3134
3135 err = __dquot_transfer(inode, transfer_to);
3136 if (err)
3137 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3138 dqput(transfer_to[PRJQUOTA]);
3139 return err;
3140 }
3141
f2fs_ioc_setproject(struct inode * inode,__u32 projid)3142 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3143 {
3144 struct f2fs_inode_info *fi = F2FS_I(inode);
3145 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3146 struct f2fs_inode *ri = NULL;
3147 kprojid_t kprojid;
3148 int err;
3149
3150 if (!f2fs_sb_has_project_quota(sbi)) {
3151 if (projid != F2FS_DEF_PROJID)
3152 return -EOPNOTSUPP;
3153 else
3154 return 0;
3155 }
3156
3157 if (!f2fs_has_extra_attr(inode))
3158 return -EOPNOTSUPP;
3159
3160 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3161
3162 if (projid_eq(kprojid, fi->i_projid))
3163 return 0;
3164
3165 err = -EPERM;
3166 /* Is it quota file? Do not allow user to mess with it */
3167 if (IS_NOQUOTA(inode))
3168 return err;
3169
3170 if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3171 return -EOVERFLOW;
3172
3173 err = f2fs_dquot_initialize(inode);
3174 if (err)
3175 return err;
3176
3177 f2fs_lock_op(sbi);
3178 err = f2fs_transfer_project_quota(inode, kprojid);
3179 if (err)
3180 goto out_unlock;
3181
3182 fi->i_projid = kprojid;
3183 inode_set_ctime_current(inode);
3184 f2fs_mark_inode_dirty_sync(inode, true);
3185 out_unlock:
3186 f2fs_unlock_op(sbi);
3187 return err;
3188 }
3189 #else
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3190 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3191 {
3192 return 0;
3193 }
3194
f2fs_ioc_setproject(struct inode * inode,__u32 projid)3195 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3196 {
3197 if (projid != F2FS_DEF_PROJID)
3198 return -EOPNOTSUPP;
3199 return 0;
3200 }
3201 #endif
3202
f2fs_fileattr_get(struct dentry * dentry,struct fileattr * fa)3203 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3204 {
3205 struct inode *inode = d_inode(dentry);
3206 struct f2fs_inode_info *fi = F2FS_I(inode);
3207 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3208
3209 if (IS_ENCRYPTED(inode))
3210 fsflags |= FS_ENCRYPT_FL;
3211 if (IS_VERITY(inode))
3212 fsflags |= FS_VERITY_FL;
3213 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3214 fsflags |= FS_INLINE_DATA_FL;
3215 if (is_inode_flag_set(inode, FI_PIN_FILE))
3216 fsflags |= FS_NOCOW_FL;
3217
3218 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3219
3220 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3221 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3222
3223 return 0;
3224 }
3225
f2fs_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)3226 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3227 struct dentry *dentry, struct fileattr *fa)
3228 {
3229 struct inode *inode = d_inode(dentry);
3230 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3231 u32 iflags;
3232 int err;
3233
3234 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3235 return -EIO;
3236 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3237 return -ENOSPC;
3238 if (fsflags & ~F2FS_GETTABLE_FS_FL)
3239 return -EOPNOTSUPP;
3240 fsflags &= F2FS_SETTABLE_FS_FL;
3241 if (!fa->flags_valid)
3242 mask &= FS_COMMON_FL;
3243
3244 iflags = f2fs_fsflags_to_iflags(fsflags);
3245 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3246 return -EOPNOTSUPP;
3247
3248 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3249 if (!err)
3250 err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3251
3252 return err;
3253 }
3254
f2fs_pin_file_control(struct inode * inode,bool inc)3255 int f2fs_pin_file_control(struct inode *inode, bool inc)
3256 {
3257 struct f2fs_inode_info *fi = F2FS_I(inode);
3258 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3259
3260 /* Use i_gc_failures for normal file as a risk signal. */
3261 if (inc)
3262 f2fs_i_gc_failures_write(inode,
3263 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3264
3265 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3266 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3267 __func__, inode->i_ino,
3268 fi->i_gc_failures[GC_FAILURE_PIN]);
3269 clear_inode_flag(inode, FI_PIN_FILE);
3270 return -EAGAIN;
3271 }
3272 return 0;
3273 }
3274
f2fs_ioc_set_pin_file(struct file * filp,unsigned long arg)3275 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3276 {
3277 struct inode *inode = file_inode(filp);
3278 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3279 __u32 pin;
3280 int ret = 0;
3281
3282 if (get_user(pin, (__u32 __user *)arg))
3283 return -EFAULT;
3284
3285 if (!S_ISREG(inode->i_mode))
3286 return -EINVAL;
3287
3288 if (f2fs_readonly(sbi->sb))
3289 return -EROFS;
3290
3291 ret = mnt_want_write_file(filp);
3292 if (ret)
3293 return ret;
3294
3295 inode_lock(inode);
3296
3297 if (f2fs_is_atomic_file(inode)) {
3298 ret = -EINVAL;
3299 goto out;
3300 }
3301
3302 if (!pin) {
3303 clear_inode_flag(inode, FI_PIN_FILE);
3304 f2fs_i_gc_failures_write(inode, 0);
3305 goto done;
3306 } else if (f2fs_is_pinned_file(inode)) {
3307 goto done;
3308 }
3309
3310 if (f2fs_sb_has_blkzoned(sbi) && F2FS_HAS_BLOCKS(inode)) {
3311 ret = -EFBIG;
3312 goto out;
3313 }
3314
3315 /* Let's allow file pinning on zoned device. */
3316 if (!f2fs_sb_has_blkzoned(sbi) &&
3317 f2fs_should_update_outplace(inode, NULL)) {
3318 ret = -EINVAL;
3319 goto out;
3320 }
3321
3322 if (f2fs_pin_file_control(inode, false)) {
3323 ret = -EAGAIN;
3324 goto out;
3325 }
3326
3327 ret = f2fs_convert_inline_inode(inode);
3328 if (ret)
3329 goto out;
3330
3331 if (!f2fs_disable_compressed_file(inode)) {
3332 ret = -EOPNOTSUPP;
3333 goto out;
3334 }
3335
3336 set_inode_flag(inode, FI_PIN_FILE);
3337 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3338 done:
3339 f2fs_update_time(sbi, REQ_TIME);
3340 out:
3341 inode_unlock(inode);
3342 mnt_drop_write_file(filp);
3343 return ret;
3344 }
3345
f2fs_ioc_get_pin_file(struct file * filp,unsigned long arg)3346 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3347 {
3348 struct inode *inode = file_inode(filp);
3349 __u32 pin = 0;
3350
3351 if (is_inode_flag_set(inode, FI_PIN_FILE))
3352 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3353 return put_user(pin, (u32 __user *)arg);
3354 }
3355
f2fs_precache_extents(struct inode * inode)3356 int f2fs_precache_extents(struct inode *inode)
3357 {
3358 struct f2fs_inode_info *fi = F2FS_I(inode);
3359 struct f2fs_map_blocks map;
3360 pgoff_t m_next_extent;
3361 loff_t end;
3362 int err;
3363
3364 if (is_inode_flag_set(inode, FI_NO_EXTENT))
3365 return -EOPNOTSUPP;
3366
3367 map.m_lblk = 0;
3368 map.m_pblk = 0;
3369 map.m_next_pgofs = NULL;
3370 map.m_next_extent = &m_next_extent;
3371 map.m_seg_type = NO_CHECK_TYPE;
3372 map.m_may_create = false;
3373 end = max_file_blocks(inode);
3374
3375 while (map.m_lblk < end) {
3376 map.m_len = end - map.m_lblk;
3377
3378 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3379 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3380 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3381 if (err)
3382 return err;
3383
3384 map.m_lblk = m_next_extent;
3385 }
3386
3387 return 0;
3388 }
3389
f2fs_ioc_precache_extents(struct file * filp)3390 static int f2fs_ioc_precache_extents(struct file *filp)
3391 {
3392 return f2fs_precache_extents(file_inode(filp));
3393 }
3394
f2fs_ioc_resize_fs(struct file * filp,unsigned long arg)3395 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3396 {
3397 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3398 __u64 block_count;
3399
3400 if (!capable(CAP_SYS_ADMIN))
3401 return -EPERM;
3402
3403 if (f2fs_readonly(sbi->sb))
3404 return -EROFS;
3405
3406 if (copy_from_user(&block_count, (void __user *)arg,
3407 sizeof(block_count)))
3408 return -EFAULT;
3409
3410 return f2fs_resize_fs(filp, block_count);
3411 }
3412
f2fs_ioc_enable_verity(struct file * filp,unsigned long arg)3413 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3414 {
3415 struct inode *inode = file_inode(filp);
3416
3417 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3418
3419 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3420 f2fs_warn(F2FS_I_SB(inode),
3421 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3422 inode->i_ino);
3423 return -EOPNOTSUPP;
3424 }
3425
3426 return fsverity_ioctl_enable(filp, (const void __user *)arg);
3427 }
3428
f2fs_ioc_measure_verity(struct file * filp,unsigned long arg)3429 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3430 {
3431 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3432 return -EOPNOTSUPP;
3433
3434 return fsverity_ioctl_measure(filp, (void __user *)arg);
3435 }
3436
f2fs_ioc_read_verity_metadata(struct file * filp,unsigned long arg)3437 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3438 {
3439 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3440 return -EOPNOTSUPP;
3441
3442 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3443 }
3444
f2fs_ioc_getfslabel(struct file * filp,unsigned long arg)3445 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3446 {
3447 struct inode *inode = file_inode(filp);
3448 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3449 char *vbuf;
3450 int count;
3451 int err = 0;
3452
3453 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3454 if (!vbuf)
3455 return -ENOMEM;
3456
3457 f2fs_down_read(&sbi->sb_lock);
3458 count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3459 ARRAY_SIZE(sbi->raw_super->volume_name),
3460 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3461 f2fs_up_read(&sbi->sb_lock);
3462
3463 if (copy_to_user((char __user *)arg, vbuf,
3464 min(FSLABEL_MAX, count)))
3465 err = -EFAULT;
3466
3467 kfree(vbuf);
3468 return err;
3469 }
3470
f2fs_ioc_setfslabel(struct file * filp,unsigned long arg)3471 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3472 {
3473 struct inode *inode = file_inode(filp);
3474 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3475 char *vbuf;
3476 int err = 0;
3477
3478 if (!capable(CAP_SYS_ADMIN))
3479 return -EPERM;
3480
3481 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3482 if (IS_ERR(vbuf))
3483 return PTR_ERR(vbuf);
3484
3485 err = mnt_want_write_file(filp);
3486 if (err)
3487 goto out;
3488
3489 f2fs_down_write(&sbi->sb_lock);
3490
3491 memset(sbi->raw_super->volume_name, 0,
3492 sizeof(sbi->raw_super->volume_name));
3493 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3494 sbi->raw_super->volume_name,
3495 ARRAY_SIZE(sbi->raw_super->volume_name));
3496
3497 err = f2fs_commit_super(sbi, false);
3498
3499 f2fs_up_write(&sbi->sb_lock);
3500
3501 mnt_drop_write_file(filp);
3502 out:
3503 kfree(vbuf);
3504 return err;
3505 }
3506
f2fs_get_compress_blocks(struct inode * inode,__u64 * blocks)3507 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3508 {
3509 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3510 return -EOPNOTSUPP;
3511
3512 if (!f2fs_compressed_file(inode))
3513 return -EINVAL;
3514
3515 *blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3516
3517 return 0;
3518 }
3519
f2fs_ioc_get_compress_blocks(struct file * filp,unsigned long arg)3520 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3521 {
3522 struct inode *inode = file_inode(filp);
3523 __u64 blocks;
3524 int ret;
3525
3526 ret = f2fs_get_compress_blocks(inode, &blocks);
3527 if (ret < 0)
3528 return ret;
3529
3530 return put_user(blocks, (u64 __user *)arg);
3531 }
3532
release_compress_blocks(struct dnode_of_data * dn,pgoff_t count)3533 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3534 {
3535 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3536 unsigned int released_blocks = 0;
3537 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3538 block_t blkaddr;
3539 int i;
3540
3541 for (i = 0; i < count; i++) {
3542 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3543 dn->ofs_in_node + i);
3544
3545 if (!__is_valid_data_blkaddr(blkaddr))
3546 continue;
3547 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3548 DATA_GENERIC_ENHANCE))) {
3549 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3550 return -EFSCORRUPTED;
3551 }
3552 }
3553
3554 while (count) {
3555 int compr_blocks = 0;
3556
3557 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3558 blkaddr = f2fs_data_blkaddr(dn);
3559
3560 if (i == 0) {
3561 if (blkaddr == COMPRESS_ADDR)
3562 continue;
3563 dn->ofs_in_node += cluster_size;
3564 goto next;
3565 }
3566
3567 if (__is_valid_data_blkaddr(blkaddr))
3568 compr_blocks++;
3569
3570 if (blkaddr != NEW_ADDR)
3571 continue;
3572
3573 f2fs_set_data_blkaddr(dn, NULL_ADDR);
3574 }
3575
3576 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3577 dec_valid_block_count(sbi, dn->inode,
3578 cluster_size - compr_blocks);
3579
3580 released_blocks += cluster_size - compr_blocks;
3581 next:
3582 count -= cluster_size;
3583 }
3584
3585 return released_blocks;
3586 }
3587
f2fs_release_compress_blocks(struct file * filp,unsigned long arg)3588 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3589 {
3590 struct inode *inode = file_inode(filp);
3591 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3592 pgoff_t page_idx = 0, last_idx;
3593 unsigned int released_blocks = 0;
3594 int ret;
3595 int writecount;
3596
3597 if (!f2fs_sb_has_compression(sbi))
3598 return -EOPNOTSUPP;
3599
3600 if (f2fs_readonly(sbi->sb))
3601 return -EROFS;
3602
3603 ret = mnt_want_write_file(filp);
3604 if (ret)
3605 return ret;
3606
3607 f2fs_balance_fs(sbi, true);
3608
3609 inode_lock(inode);
3610
3611 writecount = atomic_read(&inode->i_writecount);
3612 if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3613 (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3614 ret = -EBUSY;
3615 goto out;
3616 }
3617
3618 if (!f2fs_compressed_file(inode) ||
3619 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3620 ret = -EINVAL;
3621 goto out;
3622 }
3623
3624 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3625 if (ret)
3626 goto out;
3627
3628 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3629 ret = -EPERM;
3630 goto out;
3631 }
3632
3633 set_inode_flag(inode, FI_COMPRESS_RELEASED);
3634 inode_set_ctime_current(inode);
3635 f2fs_mark_inode_dirty_sync(inode, true);
3636
3637 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3638 filemap_invalidate_lock(inode->i_mapping);
3639
3640 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3641
3642 while (page_idx < last_idx) {
3643 struct dnode_of_data dn;
3644 pgoff_t end_offset, count;
3645
3646 f2fs_lock_op(sbi);
3647
3648 set_new_dnode(&dn, inode, NULL, NULL, 0);
3649 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3650 if (ret) {
3651 f2fs_unlock_op(sbi);
3652 if (ret == -ENOENT) {
3653 page_idx = f2fs_get_next_page_offset(&dn,
3654 page_idx);
3655 ret = 0;
3656 continue;
3657 }
3658 break;
3659 }
3660
3661 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3662 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3663 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3664
3665 ret = release_compress_blocks(&dn, count);
3666
3667 f2fs_put_dnode(&dn);
3668
3669 f2fs_unlock_op(sbi);
3670
3671 if (ret < 0)
3672 break;
3673
3674 page_idx += count;
3675 released_blocks += ret;
3676 }
3677
3678 filemap_invalidate_unlock(inode->i_mapping);
3679 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3680 out:
3681 inode_unlock(inode);
3682
3683 mnt_drop_write_file(filp);
3684
3685 if (ret >= 0) {
3686 ret = put_user(released_blocks, (u64 __user *)arg);
3687 } else if (released_blocks &&
3688 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3689 set_sbi_flag(sbi, SBI_NEED_FSCK);
3690 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3691 "iblocks=%llu, released=%u, compr_blocks=%u, "
3692 "run fsck to fix.",
3693 __func__, inode->i_ino, inode->i_blocks,
3694 released_blocks,
3695 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3696 }
3697
3698 return ret;
3699 }
3700
reserve_compress_blocks(struct dnode_of_data * dn,pgoff_t count,unsigned int * reserved_blocks)3701 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
3702 unsigned int *reserved_blocks)
3703 {
3704 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3705 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3706 block_t blkaddr;
3707 int i;
3708
3709 for (i = 0; i < count; i++) {
3710 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3711 dn->ofs_in_node + i);
3712
3713 if (!__is_valid_data_blkaddr(blkaddr))
3714 continue;
3715 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3716 DATA_GENERIC_ENHANCE))) {
3717 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3718 return -EFSCORRUPTED;
3719 }
3720 }
3721
3722 while (count) {
3723 int compr_blocks = 0;
3724 blkcnt_t reserved = 0;
3725 blkcnt_t to_reserved;
3726 int ret;
3727
3728 for (i = 0; i < cluster_size; i++) {
3729 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3730 dn->ofs_in_node + i);
3731
3732 if (i == 0) {
3733 if (blkaddr != COMPRESS_ADDR) {
3734 dn->ofs_in_node += cluster_size;
3735 goto next;
3736 }
3737 continue;
3738 }
3739
3740 /*
3741 * compressed cluster was not released due to it
3742 * fails in release_compress_blocks(), so NEW_ADDR
3743 * is a possible case.
3744 */
3745 if (blkaddr == NEW_ADDR) {
3746 reserved++;
3747 continue;
3748 }
3749 if (__is_valid_data_blkaddr(blkaddr)) {
3750 compr_blocks++;
3751 continue;
3752 }
3753 }
3754
3755 to_reserved = cluster_size - compr_blocks - reserved;
3756
3757 /* for the case all blocks in cluster were reserved */
3758 if (to_reserved == 1) {
3759 dn->ofs_in_node += cluster_size;
3760 goto next;
3761 }
3762
3763 ret = inc_valid_block_count(sbi, dn->inode,
3764 &to_reserved, false);
3765 if (unlikely(ret))
3766 return ret;
3767
3768 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3769 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
3770 f2fs_set_data_blkaddr(dn, NEW_ADDR);
3771 }
3772
3773 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3774
3775 *reserved_blocks += to_reserved;
3776 next:
3777 count -= cluster_size;
3778 }
3779
3780 return 0;
3781 }
3782
f2fs_reserve_compress_blocks(struct file * filp,unsigned long arg)3783 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3784 {
3785 struct inode *inode = file_inode(filp);
3786 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3787 pgoff_t page_idx = 0, last_idx;
3788 unsigned int reserved_blocks = 0;
3789 int ret;
3790
3791 if (!f2fs_sb_has_compression(sbi))
3792 return -EOPNOTSUPP;
3793
3794 if (f2fs_readonly(sbi->sb))
3795 return -EROFS;
3796
3797 ret = mnt_want_write_file(filp);
3798 if (ret)
3799 return ret;
3800
3801 f2fs_balance_fs(sbi, true);
3802
3803 inode_lock(inode);
3804
3805 if (!f2fs_compressed_file(inode) ||
3806 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3807 ret = -EINVAL;
3808 goto unlock_inode;
3809 }
3810
3811 if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3812 goto unlock_inode;
3813
3814 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3815 filemap_invalidate_lock(inode->i_mapping);
3816
3817 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3818
3819 while (page_idx < last_idx) {
3820 struct dnode_of_data dn;
3821 pgoff_t end_offset, count;
3822
3823 f2fs_lock_op(sbi);
3824
3825 set_new_dnode(&dn, inode, NULL, NULL, 0);
3826 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3827 if (ret) {
3828 f2fs_unlock_op(sbi);
3829 if (ret == -ENOENT) {
3830 page_idx = f2fs_get_next_page_offset(&dn,
3831 page_idx);
3832 ret = 0;
3833 continue;
3834 }
3835 break;
3836 }
3837
3838 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3839 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3840 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3841
3842 ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
3843
3844 f2fs_put_dnode(&dn);
3845
3846 f2fs_unlock_op(sbi);
3847
3848 if (ret < 0)
3849 break;
3850
3851 page_idx += count;
3852 }
3853
3854 filemap_invalidate_unlock(inode->i_mapping);
3855 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3856
3857 if (!ret) {
3858 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3859 inode_set_ctime_current(inode);
3860 f2fs_mark_inode_dirty_sync(inode, true);
3861 }
3862 unlock_inode:
3863 inode_unlock(inode);
3864 mnt_drop_write_file(filp);
3865
3866 if (!ret) {
3867 ret = put_user(reserved_blocks, (u64 __user *)arg);
3868 } else if (reserved_blocks &&
3869 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3870 set_sbi_flag(sbi, SBI_NEED_FSCK);
3871 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3872 "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3873 "run fsck to fix.",
3874 __func__, inode->i_ino, inode->i_blocks,
3875 reserved_blocks,
3876 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3877 }
3878
3879 return ret;
3880 }
3881
f2fs_secure_erase(struct block_device * bdev,struct inode * inode,pgoff_t off,block_t block,block_t len,u32 flags)3882 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3883 pgoff_t off, block_t block, block_t len, u32 flags)
3884 {
3885 sector_t sector = SECTOR_FROM_BLOCK(block);
3886 sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3887 int ret = 0;
3888
3889 if (flags & F2FS_TRIM_FILE_DISCARD) {
3890 if (bdev_max_secure_erase_sectors(bdev))
3891 ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3892 GFP_NOFS);
3893 else
3894 ret = blkdev_issue_discard(bdev, sector, nr_sects,
3895 GFP_NOFS);
3896 }
3897
3898 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3899 if (IS_ENCRYPTED(inode))
3900 ret = fscrypt_zeroout_range(inode, off, block, len);
3901 else
3902 ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3903 GFP_NOFS, 0);
3904 }
3905
3906 return ret;
3907 }
3908
f2fs_sec_trim_file(struct file * filp,unsigned long arg)3909 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3910 {
3911 struct inode *inode = file_inode(filp);
3912 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3913 struct address_space *mapping = inode->i_mapping;
3914 struct block_device *prev_bdev = NULL;
3915 struct f2fs_sectrim_range range;
3916 pgoff_t index, pg_end, prev_index = 0;
3917 block_t prev_block = 0, len = 0;
3918 loff_t end_addr;
3919 bool to_end = false;
3920 int ret = 0;
3921
3922 if (!(filp->f_mode & FMODE_WRITE))
3923 return -EBADF;
3924
3925 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3926 sizeof(range)))
3927 return -EFAULT;
3928
3929 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3930 !S_ISREG(inode->i_mode))
3931 return -EINVAL;
3932
3933 if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3934 !f2fs_hw_support_discard(sbi)) ||
3935 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3936 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3937 return -EOPNOTSUPP;
3938
3939 file_start_write(filp);
3940 inode_lock(inode);
3941
3942 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3943 range.start >= inode->i_size) {
3944 ret = -EINVAL;
3945 goto err;
3946 }
3947
3948 if (range.len == 0)
3949 goto err;
3950
3951 if (inode->i_size - range.start > range.len) {
3952 end_addr = range.start + range.len;
3953 } else {
3954 end_addr = range.len == (u64)-1 ?
3955 sbi->sb->s_maxbytes : inode->i_size;
3956 to_end = true;
3957 }
3958
3959 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3960 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3961 ret = -EINVAL;
3962 goto err;
3963 }
3964
3965 index = F2FS_BYTES_TO_BLK(range.start);
3966 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3967
3968 ret = f2fs_convert_inline_inode(inode);
3969 if (ret)
3970 goto err;
3971
3972 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3973 filemap_invalidate_lock(mapping);
3974
3975 ret = filemap_write_and_wait_range(mapping, range.start,
3976 to_end ? LLONG_MAX : end_addr - 1);
3977 if (ret)
3978 goto out;
3979
3980 truncate_inode_pages_range(mapping, range.start,
3981 to_end ? -1 : end_addr - 1);
3982
3983 while (index < pg_end) {
3984 struct dnode_of_data dn;
3985 pgoff_t end_offset, count;
3986 int i;
3987
3988 set_new_dnode(&dn, inode, NULL, NULL, 0);
3989 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3990 if (ret) {
3991 if (ret == -ENOENT) {
3992 index = f2fs_get_next_page_offset(&dn, index);
3993 continue;
3994 }
3995 goto out;
3996 }
3997
3998 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3999 count = min(end_offset - dn.ofs_in_node, pg_end - index);
4000 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
4001 struct block_device *cur_bdev;
4002 block_t blkaddr = f2fs_data_blkaddr(&dn);
4003
4004 if (!__is_valid_data_blkaddr(blkaddr))
4005 continue;
4006
4007 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
4008 DATA_GENERIC_ENHANCE)) {
4009 ret = -EFSCORRUPTED;
4010 f2fs_put_dnode(&dn);
4011 f2fs_handle_error(sbi,
4012 ERROR_INVALID_BLKADDR);
4013 goto out;
4014 }
4015
4016 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
4017 if (f2fs_is_multi_device(sbi)) {
4018 int di = f2fs_target_device_index(sbi, blkaddr);
4019
4020 blkaddr -= FDEV(di).start_blk;
4021 }
4022
4023 if (len) {
4024 if (prev_bdev == cur_bdev &&
4025 index == prev_index + len &&
4026 blkaddr == prev_block + len) {
4027 len++;
4028 } else {
4029 ret = f2fs_secure_erase(prev_bdev,
4030 inode, prev_index, prev_block,
4031 len, range.flags);
4032 if (ret) {
4033 f2fs_put_dnode(&dn);
4034 goto out;
4035 }
4036
4037 len = 0;
4038 }
4039 }
4040
4041 if (!len) {
4042 prev_bdev = cur_bdev;
4043 prev_index = index;
4044 prev_block = blkaddr;
4045 len = 1;
4046 }
4047 }
4048
4049 f2fs_put_dnode(&dn);
4050
4051 if (fatal_signal_pending(current)) {
4052 ret = -EINTR;
4053 goto out;
4054 }
4055 cond_resched();
4056 }
4057
4058 if (len)
4059 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
4060 prev_block, len, range.flags);
4061 out:
4062 filemap_invalidate_unlock(mapping);
4063 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4064 err:
4065 inode_unlock(inode);
4066 file_end_write(filp);
4067
4068 return ret;
4069 }
4070
f2fs_ioc_get_compress_option(struct file * filp,unsigned long arg)4071 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
4072 {
4073 struct inode *inode = file_inode(filp);
4074 struct f2fs_comp_option option;
4075
4076 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
4077 return -EOPNOTSUPP;
4078
4079 inode_lock_shared(inode);
4080
4081 if (!f2fs_compressed_file(inode)) {
4082 inode_unlock_shared(inode);
4083 return -ENODATA;
4084 }
4085
4086 option.algorithm = F2FS_I(inode)->i_compress_algorithm;
4087 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
4088
4089 inode_unlock_shared(inode);
4090
4091 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
4092 sizeof(option)))
4093 return -EFAULT;
4094
4095 return 0;
4096 }
4097
f2fs_ioc_set_compress_option(struct file * filp,unsigned long arg)4098 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
4099 {
4100 struct inode *inode = file_inode(filp);
4101 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4102 struct f2fs_comp_option option;
4103 int ret = 0;
4104
4105 if (!f2fs_sb_has_compression(sbi))
4106 return -EOPNOTSUPP;
4107
4108 if (!(filp->f_mode & FMODE_WRITE))
4109 return -EBADF;
4110
4111 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
4112 sizeof(option)))
4113 return -EFAULT;
4114
4115 if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
4116 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
4117 option.algorithm >= COMPRESS_MAX)
4118 return -EINVAL;
4119
4120 file_start_write(filp);
4121 inode_lock(inode);
4122
4123 f2fs_down_write(&F2FS_I(inode)->i_sem);
4124 if (!f2fs_compressed_file(inode)) {
4125 ret = -EINVAL;
4126 goto out;
4127 }
4128
4129 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4130 ret = -EBUSY;
4131 goto out;
4132 }
4133
4134 if (F2FS_HAS_BLOCKS(inode)) {
4135 ret = -EFBIG;
4136 goto out;
4137 }
4138
4139 F2FS_I(inode)->i_compress_algorithm = option.algorithm;
4140 F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
4141 F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size);
4142 /* Set default level */
4143 if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD)
4144 F2FS_I(inode)->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4145 else
4146 F2FS_I(inode)->i_compress_level = 0;
4147 /* Adjust mount option level */
4148 if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4149 F2FS_OPTION(sbi).compress_level)
4150 F2FS_I(inode)->i_compress_level = F2FS_OPTION(sbi).compress_level;
4151 f2fs_mark_inode_dirty_sync(inode, true);
4152
4153 if (!f2fs_is_compress_backend_ready(inode))
4154 f2fs_warn(sbi, "compression algorithm is successfully set, "
4155 "but current kernel doesn't support this algorithm.");
4156 out:
4157 f2fs_up_write(&F2FS_I(inode)->i_sem);
4158 inode_unlock(inode);
4159 file_end_write(filp);
4160
4161 return ret;
4162 }
4163
redirty_blocks(struct inode * inode,pgoff_t page_idx,int len)4164 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4165 {
4166 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4167 struct address_space *mapping = inode->i_mapping;
4168 struct page *page;
4169 pgoff_t redirty_idx = page_idx;
4170 int i, page_len = 0, ret = 0;
4171
4172 page_cache_ra_unbounded(&ractl, len, 0);
4173
4174 for (i = 0; i < len; i++, page_idx++) {
4175 page = read_cache_page(mapping, page_idx, NULL, NULL);
4176 if (IS_ERR(page)) {
4177 ret = PTR_ERR(page);
4178 break;
4179 }
4180 page_len++;
4181 }
4182
4183 for (i = 0; i < page_len; i++, redirty_idx++) {
4184 page = find_lock_page(mapping, redirty_idx);
4185
4186 /* It will never fail, when page has pinned above */
4187 f2fs_bug_on(F2FS_I_SB(inode), !page);
4188
4189 f2fs_wait_on_page_writeback(page, DATA, true, true);
4190
4191 set_page_dirty(page);
4192 set_page_private_gcing(page);
4193 f2fs_put_page(page, 1);
4194 f2fs_put_page(page, 0);
4195 }
4196
4197 return ret;
4198 }
4199
f2fs_ioc_decompress_file(struct file * filp)4200 static int f2fs_ioc_decompress_file(struct file *filp)
4201 {
4202 struct inode *inode = file_inode(filp);
4203 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4204 struct f2fs_inode_info *fi = F2FS_I(inode);
4205 pgoff_t page_idx = 0, last_idx, cluster_idx;
4206 int ret;
4207
4208 if (!f2fs_sb_has_compression(sbi) ||
4209 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4210 return -EOPNOTSUPP;
4211
4212 if (!(filp->f_mode & FMODE_WRITE))
4213 return -EBADF;
4214
4215 f2fs_balance_fs(sbi, true);
4216
4217 file_start_write(filp);
4218 inode_lock(inode);
4219
4220 if (!f2fs_is_compress_backend_ready(inode)) {
4221 ret = -EOPNOTSUPP;
4222 goto out;
4223 }
4224
4225 if (!f2fs_compressed_file(inode) ||
4226 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4227 ret = -EINVAL;
4228 goto out;
4229 }
4230
4231 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4232 if (ret)
4233 goto out;
4234
4235 if (!atomic_read(&fi->i_compr_blocks))
4236 goto out;
4237
4238 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4239 last_idx >>= fi->i_log_cluster_size;
4240
4241 for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4242 page_idx = cluster_idx << fi->i_log_cluster_size;
4243
4244 if (!f2fs_is_compressed_cluster(inode, page_idx))
4245 continue;
4246
4247 ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4248 if (ret < 0)
4249 break;
4250
4251 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4252 ret = filemap_fdatawrite(inode->i_mapping);
4253 if (ret < 0)
4254 break;
4255 }
4256
4257 cond_resched();
4258 if (fatal_signal_pending(current)) {
4259 ret = -EINTR;
4260 break;
4261 }
4262 }
4263
4264 if (!ret)
4265 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4266 LLONG_MAX);
4267
4268 if (ret)
4269 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4270 __func__, ret);
4271 out:
4272 inode_unlock(inode);
4273 file_end_write(filp);
4274
4275 return ret;
4276 }
4277
f2fs_ioc_compress_file(struct file * filp)4278 static int f2fs_ioc_compress_file(struct file *filp)
4279 {
4280 struct inode *inode = file_inode(filp);
4281 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4282 struct f2fs_inode_info *fi = F2FS_I(inode);
4283 pgoff_t page_idx = 0, last_idx, cluster_idx;
4284 int ret;
4285
4286 if (!f2fs_sb_has_compression(sbi) ||
4287 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4288 return -EOPNOTSUPP;
4289
4290 if (!(filp->f_mode & FMODE_WRITE))
4291 return -EBADF;
4292
4293 f2fs_balance_fs(sbi, true);
4294
4295 file_start_write(filp);
4296 inode_lock(inode);
4297
4298 if (!f2fs_is_compress_backend_ready(inode)) {
4299 ret = -EOPNOTSUPP;
4300 goto out;
4301 }
4302
4303 if (!f2fs_compressed_file(inode) ||
4304 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4305 ret = -EINVAL;
4306 goto out;
4307 }
4308
4309 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4310 if (ret)
4311 goto out;
4312
4313 set_inode_flag(inode, FI_ENABLE_COMPRESS);
4314
4315 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4316 last_idx >>= fi->i_log_cluster_size;
4317
4318 for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4319 page_idx = cluster_idx << fi->i_log_cluster_size;
4320
4321 if (f2fs_is_sparse_cluster(inode, page_idx))
4322 continue;
4323
4324 ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4325 if (ret < 0)
4326 break;
4327
4328 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4329 ret = filemap_fdatawrite(inode->i_mapping);
4330 if (ret < 0)
4331 break;
4332 }
4333
4334 cond_resched();
4335 if (fatal_signal_pending(current)) {
4336 ret = -EINTR;
4337 break;
4338 }
4339 }
4340
4341 if (!ret)
4342 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4343 LLONG_MAX);
4344
4345 clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4346
4347 if (ret)
4348 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4349 __func__, ret);
4350 out:
4351 inode_unlock(inode);
4352 file_end_write(filp);
4353
4354 return ret;
4355 }
4356
__f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4357 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4358 {
4359 switch (cmd) {
4360 case FS_IOC_GETVERSION:
4361 return f2fs_ioc_getversion(filp, arg);
4362 case F2FS_IOC_START_ATOMIC_WRITE:
4363 return f2fs_ioc_start_atomic_write(filp, false);
4364 case F2FS_IOC_START_ATOMIC_REPLACE:
4365 return f2fs_ioc_start_atomic_write(filp, true);
4366 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4367 return f2fs_ioc_commit_atomic_write(filp);
4368 case F2FS_IOC_ABORT_ATOMIC_WRITE:
4369 return f2fs_ioc_abort_atomic_write(filp);
4370 case F2FS_IOC_START_VOLATILE_WRITE:
4371 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4372 return -EOPNOTSUPP;
4373 case F2FS_IOC_SHUTDOWN:
4374 return f2fs_ioc_shutdown(filp, arg);
4375 case FITRIM:
4376 return f2fs_ioc_fitrim(filp, arg);
4377 case FS_IOC_SET_ENCRYPTION_POLICY:
4378 return f2fs_ioc_set_encryption_policy(filp, arg);
4379 case FS_IOC_GET_ENCRYPTION_POLICY:
4380 return f2fs_ioc_get_encryption_policy(filp, arg);
4381 case FS_IOC_GET_ENCRYPTION_PWSALT:
4382 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4383 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4384 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4385 case FS_IOC_ADD_ENCRYPTION_KEY:
4386 return f2fs_ioc_add_encryption_key(filp, arg);
4387 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4388 return f2fs_ioc_remove_encryption_key(filp, arg);
4389 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4390 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4391 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4392 return f2fs_ioc_get_encryption_key_status(filp, arg);
4393 case FS_IOC_GET_ENCRYPTION_NONCE:
4394 return f2fs_ioc_get_encryption_nonce(filp, arg);
4395 case F2FS_IOC_GARBAGE_COLLECT:
4396 return f2fs_ioc_gc(filp, arg);
4397 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4398 return f2fs_ioc_gc_range(filp, arg);
4399 case F2FS_IOC_WRITE_CHECKPOINT:
4400 return f2fs_ioc_write_checkpoint(filp);
4401 case F2FS_IOC_DEFRAGMENT:
4402 return f2fs_ioc_defragment(filp, arg);
4403 case F2FS_IOC_MOVE_RANGE:
4404 return f2fs_ioc_move_range(filp, arg);
4405 case F2FS_IOC_FLUSH_DEVICE:
4406 return f2fs_ioc_flush_device(filp, arg);
4407 case F2FS_IOC_GET_FEATURES:
4408 return f2fs_ioc_get_features(filp, arg);
4409 case F2FS_IOC_GET_PIN_FILE:
4410 return f2fs_ioc_get_pin_file(filp, arg);
4411 case F2FS_IOC_SET_PIN_FILE:
4412 return f2fs_ioc_set_pin_file(filp, arg);
4413 case F2FS_IOC_PRECACHE_EXTENTS:
4414 return f2fs_ioc_precache_extents(filp);
4415 case F2FS_IOC_RESIZE_FS:
4416 return f2fs_ioc_resize_fs(filp, arg);
4417 case FS_IOC_ENABLE_VERITY:
4418 return f2fs_ioc_enable_verity(filp, arg);
4419 case FS_IOC_MEASURE_VERITY:
4420 return f2fs_ioc_measure_verity(filp, arg);
4421 case FS_IOC_READ_VERITY_METADATA:
4422 return f2fs_ioc_read_verity_metadata(filp, arg);
4423 case FS_IOC_GETFSLABEL:
4424 return f2fs_ioc_getfslabel(filp, arg);
4425 case FS_IOC_SETFSLABEL:
4426 return f2fs_ioc_setfslabel(filp, arg);
4427 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4428 return f2fs_ioc_get_compress_blocks(filp, arg);
4429 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4430 return f2fs_release_compress_blocks(filp, arg);
4431 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4432 return f2fs_reserve_compress_blocks(filp, arg);
4433 case F2FS_IOC_SEC_TRIM_FILE:
4434 return f2fs_sec_trim_file(filp, arg);
4435 case F2FS_IOC_GET_COMPRESS_OPTION:
4436 return f2fs_ioc_get_compress_option(filp, arg);
4437 case F2FS_IOC_SET_COMPRESS_OPTION:
4438 return f2fs_ioc_set_compress_option(filp, arg);
4439 case F2FS_IOC_DECOMPRESS_FILE:
4440 return f2fs_ioc_decompress_file(filp);
4441 case F2FS_IOC_COMPRESS_FILE:
4442 return f2fs_ioc_compress_file(filp);
4443 default:
4444 return -ENOTTY;
4445 }
4446 }
4447
f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4448 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4449 {
4450 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4451 return -EIO;
4452 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4453 return -ENOSPC;
4454
4455 return __f2fs_ioctl(filp, cmd, arg);
4456 }
4457
4458 /*
4459 * Return %true if the given read or write request should use direct I/O, or
4460 * %false if it should use buffered I/O.
4461 */
f2fs_should_use_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4462 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4463 struct iov_iter *iter)
4464 {
4465 unsigned int align;
4466
4467 if (!(iocb->ki_flags & IOCB_DIRECT))
4468 return false;
4469
4470 if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4471 return false;
4472
4473 /*
4474 * Direct I/O not aligned to the disk's logical_block_size will be
4475 * attempted, but will fail with -EINVAL.
4476 *
4477 * f2fs additionally requires that direct I/O be aligned to the
4478 * filesystem block size, which is often a stricter requirement.
4479 * However, f2fs traditionally falls back to buffered I/O on requests
4480 * that are logical_block_size-aligned but not fs-block aligned.
4481 *
4482 * The below logic implements this behavior.
4483 */
4484 align = iocb->ki_pos | iov_iter_alignment(iter);
4485 if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4486 IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4487 return false;
4488
4489 return true;
4490 }
4491
f2fs_dio_read_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)4492 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4493 unsigned int flags)
4494 {
4495 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4496
4497 dec_page_count(sbi, F2FS_DIO_READ);
4498 if (error)
4499 return error;
4500 f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4501 return 0;
4502 }
4503
4504 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4505 .end_io = f2fs_dio_read_end_io,
4506 };
4507
f2fs_dio_read_iter(struct kiocb * iocb,struct iov_iter * to)4508 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4509 {
4510 struct file *file = iocb->ki_filp;
4511 struct inode *inode = file_inode(file);
4512 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4513 struct f2fs_inode_info *fi = F2FS_I(inode);
4514 const loff_t pos = iocb->ki_pos;
4515 const size_t count = iov_iter_count(to);
4516 struct iomap_dio *dio;
4517 ssize_t ret;
4518
4519 if (count == 0)
4520 return 0; /* skip atime update */
4521
4522 trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4523
4524 if (iocb->ki_flags & IOCB_NOWAIT) {
4525 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4526 ret = -EAGAIN;
4527 goto out;
4528 }
4529 } else {
4530 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4531 }
4532
4533 /*
4534 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4535 * the higher-level function iomap_dio_rw() in order to ensure that the
4536 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4537 */
4538 inc_page_count(sbi, F2FS_DIO_READ);
4539 dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4540 &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4541 if (IS_ERR_OR_NULL(dio)) {
4542 ret = PTR_ERR_OR_ZERO(dio);
4543 if (ret != -EIOCBQUEUED)
4544 dec_page_count(sbi, F2FS_DIO_READ);
4545 } else {
4546 ret = iomap_dio_complete(dio);
4547 }
4548
4549 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4550
4551 file_accessed(file);
4552 out:
4553 trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4554 return ret;
4555 }
4556
f2fs_trace_rw_file_path(struct file * file,loff_t pos,size_t count,int rw)4557 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4558 int rw)
4559 {
4560 struct inode *inode = file_inode(file);
4561 char *buf, *path;
4562
4563 buf = f2fs_getname(F2FS_I_SB(inode));
4564 if (!buf)
4565 return;
4566 path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4567 if (IS_ERR(path))
4568 goto free_buf;
4569 if (rw == WRITE)
4570 trace_f2fs_datawrite_start(inode, pos, count,
4571 current->pid, path, current->comm);
4572 else
4573 trace_f2fs_dataread_start(inode, pos, count,
4574 current->pid, path, current->comm);
4575 free_buf:
4576 f2fs_putname(buf);
4577 }
4578
f2fs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)4579 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4580 {
4581 struct inode *inode = file_inode(iocb->ki_filp);
4582 const loff_t pos = iocb->ki_pos;
4583 ssize_t ret;
4584
4585 if (!f2fs_is_compress_backend_ready(inode))
4586 return -EOPNOTSUPP;
4587
4588 if (trace_f2fs_dataread_start_enabled())
4589 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4590 iov_iter_count(to), READ);
4591
4592 /* In LFS mode, if there is inflight dio, wait for its completion */
4593 if (f2fs_lfs_mode(F2FS_I_SB(inode)))
4594 inode_dio_wait(inode);
4595
4596 if (f2fs_should_use_dio(inode, iocb, to)) {
4597 ret = f2fs_dio_read_iter(iocb, to);
4598 } else {
4599 ret = filemap_read(iocb, to, 0);
4600 if (ret > 0)
4601 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4602 APP_BUFFERED_READ_IO, ret);
4603 }
4604 if (trace_f2fs_dataread_end_enabled())
4605 trace_f2fs_dataread_end(inode, pos, ret);
4606 return ret;
4607 }
4608
f2fs_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)4609 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4610 struct pipe_inode_info *pipe,
4611 size_t len, unsigned int flags)
4612 {
4613 struct inode *inode = file_inode(in);
4614 const loff_t pos = *ppos;
4615 ssize_t ret;
4616
4617 if (!f2fs_is_compress_backend_ready(inode))
4618 return -EOPNOTSUPP;
4619
4620 if (trace_f2fs_dataread_start_enabled())
4621 f2fs_trace_rw_file_path(in, pos, len, READ);
4622
4623 ret = filemap_splice_read(in, ppos, pipe, len, flags);
4624 if (ret > 0)
4625 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4626 APP_BUFFERED_READ_IO, ret);
4627
4628 if (trace_f2fs_dataread_end_enabled())
4629 trace_f2fs_dataread_end(inode, pos, ret);
4630 return ret;
4631 }
4632
f2fs_write_checks(struct kiocb * iocb,struct iov_iter * from)4633 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4634 {
4635 struct file *file = iocb->ki_filp;
4636 struct inode *inode = file_inode(file);
4637 ssize_t count;
4638 int err;
4639
4640 if (IS_IMMUTABLE(inode))
4641 return -EPERM;
4642
4643 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4644 return -EPERM;
4645
4646 count = generic_write_checks(iocb, from);
4647 if (count <= 0)
4648 return count;
4649
4650 err = file_modified(file);
4651 if (err)
4652 return err;
4653 return count;
4654 }
4655
4656 /*
4657 * Preallocate blocks for a write request, if it is possible and helpful to do
4658 * so. Returns a positive number if blocks may have been preallocated, 0 if no
4659 * blocks were preallocated, or a negative errno value if something went
4660 * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4661 * requested blocks (not just some of them) have been allocated.
4662 */
f2fs_preallocate_blocks(struct kiocb * iocb,struct iov_iter * iter,bool dio)4663 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4664 bool dio)
4665 {
4666 struct inode *inode = file_inode(iocb->ki_filp);
4667 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4668 const loff_t pos = iocb->ki_pos;
4669 const size_t count = iov_iter_count(iter);
4670 struct f2fs_map_blocks map = {};
4671 int flag;
4672 int ret;
4673
4674 /* If it will be an out-of-place direct write, don't bother. */
4675 if (dio && f2fs_lfs_mode(sbi))
4676 return 0;
4677 /*
4678 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4679 * buffered IO, if DIO meets any holes.
4680 */
4681 if (dio && i_size_read(inode) &&
4682 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4683 return 0;
4684
4685 /* No-wait I/O can't allocate blocks. */
4686 if (iocb->ki_flags & IOCB_NOWAIT)
4687 return 0;
4688
4689 /* If it will be a short write, don't bother. */
4690 if (fault_in_iov_iter_readable(iter, count))
4691 return 0;
4692
4693 if (f2fs_has_inline_data(inode)) {
4694 /* If the data will fit inline, don't bother. */
4695 if (pos + count <= MAX_INLINE_DATA(inode))
4696 return 0;
4697 ret = f2fs_convert_inline_inode(inode);
4698 if (ret)
4699 return ret;
4700 }
4701
4702 /* Do not preallocate blocks that will be written partially in 4KB. */
4703 map.m_lblk = F2FS_BLK_ALIGN(pos);
4704 map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4705 if (map.m_len > map.m_lblk)
4706 map.m_len -= map.m_lblk;
4707 else
4708 map.m_len = 0;
4709 map.m_may_create = true;
4710 if (dio) {
4711 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4712 flag = F2FS_GET_BLOCK_PRE_DIO;
4713 } else {
4714 map.m_seg_type = NO_CHECK_TYPE;
4715 flag = F2FS_GET_BLOCK_PRE_AIO;
4716 }
4717
4718 ret = f2fs_map_blocks(inode, &map, flag);
4719 /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4720 if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4721 return ret;
4722 if (ret == 0)
4723 set_inode_flag(inode, FI_PREALLOCATED_ALL);
4724 return map.m_len;
4725 }
4726
f2fs_buffered_write_iter(struct kiocb * iocb,struct iov_iter * from)4727 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4728 struct iov_iter *from)
4729 {
4730 struct file *file = iocb->ki_filp;
4731 struct inode *inode = file_inode(file);
4732 ssize_t ret;
4733
4734 if (iocb->ki_flags & IOCB_NOWAIT)
4735 return -EOPNOTSUPP;
4736
4737 ret = generic_perform_write(iocb, from);
4738
4739 if (ret > 0) {
4740 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4741 APP_BUFFERED_IO, ret);
4742 }
4743 return ret;
4744 }
4745
f2fs_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)4746 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4747 unsigned int flags)
4748 {
4749 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4750
4751 dec_page_count(sbi, F2FS_DIO_WRITE);
4752 if (error)
4753 return error;
4754 f2fs_update_time(sbi, REQ_TIME);
4755 f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4756 return 0;
4757 }
4758
4759 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4760 .end_io = f2fs_dio_write_end_io,
4761 };
4762
f2fs_flush_buffered_write(struct address_space * mapping,loff_t start_pos,loff_t end_pos)4763 static void f2fs_flush_buffered_write(struct address_space *mapping,
4764 loff_t start_pos, loff_t end_pos)
4765 {
4766 int ret;
4767
4768 ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4769 if (ret < 0)
4770 return;
4771 invalidate_mapping_pages(mapping,
4772 start_pos >> PAGE_SHIFT,
4773 end_pos >> PAGE_SHIFT);
4774 }
4775
f2fs_dio_write_iter(struct kiocb * iocb,struct iov_iter * from,bool * may_need_sync)4776 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4777 bool *may_need_sync)
4778 {
4779 struct file *file = iocb->ki_filp;
4780 struct inode *inode = file_inode(file);
4781 struct f2fs_inode_info *fi = F2FS_I(inode);
4782 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4783 const bool do_opu = f2fs_lfs_mode(sbi);
4784 const loff_t pos = iocb->ki_pos;
4785 const ssize_t count = iov_iter_count(from);
4786 unsigned int dio_flags;
4787 struct iomap_dio *dio;
4788 ssize_t ret;
4789
4790 trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4791
4792 if (iocb->ki_flags & IOCB_NOWAIT) {
4793 /* f2fs_convert_inline_inode() and block allocation can block */
4794 if (f2fs_has_inline_data(inode) ||
4795 !f2fs_overwrite_io(inode, pos, count)) {
4796 ret = -EAGAIN;
4797 goto out;
4798 }
4799
4800 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4801 ret = -EAGAIN;
4802 goto out;
4803 }
4804 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4805 f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4806 ret = -EAGAIN;
4807 goto out;
4808 }
4809 } else {
4810 ret = f2fs_convert_inline_inode(inode);
4811 if (ret)
4812 goto out;
4813
4814 f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4815 if (do_opu)
4816 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4817 }
4818
4819 /*
4820 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4821 * the higher-level function iomap_dio_rw() in order to ensure that the
4822 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4823 */
4824 inc_page_count(sbi, F2FS_DIO_WRITE);
4825 dio_flags = 0;
4826 if (pos + count > inode->i_size)
4827 dio_flags |= IOMAP_DIO_FORCE_WAIT;
4828 dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4829 &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4830 if (IS_ERR_OR_NULL(dio)) {
4831 ret = PTR_ERR_OR_ZERO(dio);
4832 if (ret == -ENOTBLK)
4833 ret = 0;
4834 if (ret != -EIOCBQUEUED)
4835 dec_page_count(sbi, F2FS_DIO_WRITE);
4836 } else {
4837 ret = iomap_dio_complete(dio);
4838 }
4839
4840 if (do_opu)
4841 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4842 f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4843
4844 if (ret < 0)
4845 goto out;
4846 if (pos + ret > inode->i_size)
4847 f2fs_i_size_write(inode, pos + ret);
4848 if (!do_opu)
4849 set_inode_flag(inode, FI_UPDATE_WRITE);
4850
4851 if (iov_iter_count(from)) {
4852 ssize_t ret2;
4853 loff_t bufio_start_pos = iocb->ki_pos;
4854
4855 /*
4856 * The direct write was partial, so we need to fall back to a
4857 * buffered write for the remainder.
4858 */
4859
4860 ret2 = f2fs_buffered_write_iter(iocb, from);
4861 if (iov_iter_count(from))
4862 f2fs_write_failed(inode, iocb->ki_pos);
4863 if (ret2 < 0)
4864 goto out;
4865
4866 /*
4867 * Ensure that the pagecache pages are written to disk and
4868 * invalidated to preserve the expected O_DIRECT semantics.
4869 */
4870 if (ret2 > 0) {
4871 loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4872
4873 ret += ret2;
4874
4875 f2fs_flush_buffered_write(file->f_mapping,
4876 bufio_start_pos,
4877 bufio_end_pos);
4878 }
4879 } else {
4880 /* iomap_dio_rw() already handled the generic_write_sync(). */
4881 *may_need_sync = false;
4882 }
4883 out:
4884 trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4885 return ret;
4886 }
4887
f2fs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4888 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4889 {
4890 struct inode *inode = file_inode(iocb->ki_filp);
4891 const loff_t orig_pos = iocb->ki_pos;
4892 const size_t orig_count = iov_iter_count(from);
4893 loff_t target_size;
4894 bool dio;
4895 bool may_need_sync = true;
4896 int preallocated;
4897 ssize_t ret;
4898
4899 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4900 ret = -EIO;
4901 goto out;
4902 }
4903
4904 if (!f2fs_is_compress_backend_ready(inode)) {
4905 ret = -EOPNOTSUPP;
4906 goto out;
4907 }
4908
4909 if (iocb->ki_flags & IOCB_NOWAIT) {
4910 if (!inode_trylock(inode)) {
4911 ret = -EAGAIN;
4912 goto out;
4913 }
4914 } else {
4915 inode_lock(inode);
4916 }
4917
4918 ret = f2fs_write_checks(iocb, from);
4919 if (ret <= 0)
4920 goto out_unlock;
4921
4922 /* Determine whether we will do a direct write or a buffered write. */
4923 dio = f2fs_should_use_dio(inode, iocb, from);
4924
4925 /* Possibly preallocate the blocks for the write. */
4926 target_size = iocb->ki_pos + iov_iter_count(from);
4927 preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4928 if (preallocated < 0) {
4929 ret = preallocated;
4930 } else {
4931 if (trace_f2fs_datawrite_start_enabled())
4932 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4933 orig_count, WRITE);
4934
4935 /* Do the actual write. */
4936 ret = dio ?
4937 f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4938 f2fs_buffered_write_iter(iocb, from);
4939
4940 if (trace_f2fs_datawrite_end_enabled())
4941 trace_f2fs_datawrite_end(inode, orig_pos, ret);
4942 }
4943
4944 /* Don't leave any preallocated blocks around past i_size. */
4945 if (preallocated && i_size_read(inode) < target_size) {
4946 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4947 filemap_invalidate_lock(inode->i_mapping);
4948 if (!f2fs_truncate(inode))
4949 file_dont_truncate(inode);
4950 filemap_invalidate_unlock(inode->i_mapping);
4951 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4952 } else {
4953 file_dont_truncate(inode);
4954 }
4955
4956 clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4957 out_unlock:
4958 inode_unlock(inode);
4959 out:
4960 trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4961
4962 if (ret > 0 && may_need_sync)
4963 ret = generic_write_sync(iocb, ret);
4964
4965 /* If buffered IO was forced, flush and drop the data from
4966 * the page cache to preserve O_DIRECT semantics
4967 */
4968 if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
4969 f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
4970 orig_pos,
4971 orig_pos + ret - 1);
4972
4973 return ret;
4974 }
4975
f2fs_file_fadvise(struct file * filp,loff_t offset,loff_t len,int advice)4976 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4977 int advice)
4978 {
4979 struct address_space *mapping;
4980 struct backing_dev_info *bdi;
4981 struct inode *inode = file_inode(filp);
4982 int err;
4983
4984 if (advice == POSIX_FADV_SEQUENTIAL) {
4985 if (S_ISFIFO(inode->i_mode))
4986 return -ESPIPE;
4987
4988 mapping = filp->f_mapping;
4989 if (!mapping || len < 0)
4990 return -EINVAL;
4991
4992 bdi = inode_to_bdi(mapping->host);
4993 filp->f_ra.ra_pages = bdi->ra_pages *
4994 F2FS_I_SB(inode)->seq_file_ra_mul;
4995 spin_lock(&filp->f_lock);
4996 filp->f_mode &= ~FMODE_RANDOM;
4997 spin_unlock(&filp->f_lock);
4998 return 0;
4999 }
5000
5001 err = generic_fadvise(filp, offset, len, advice);
5002 if (!err && advice == POSIX_FADV_DONTNEED &&
5003 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
5004 f2fs_compressed_file(inode))
5005 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
5006
5007 return err;
5008 }
5009
5010 #ifdef CONFIG_COMPAT
5011 struct compat_f2fs_gc_range {
5012 u32 sync;
5013 compat_u64 start;
5014 compat_u64 len;
5015 };
5016 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\
5017 struct compat_f2fs_gc_range)
5018
f2fs_compat_ioc_gc_range(struct file * file,unsigned long arg)5019 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
5020 {
5021 struct compat_f2fs_gc_range __user *urange;
5022 struct f2fs_gc_range range;
5023 int err;
5024
5025 urange = compat_ptr(arg);
5026 err = get_user(range.sync, &urange->sync);
5027 err |= get_user(range.start, &urange->start);
5028 err |= get_user(range.len, &urange->len);
5029 if (err)
5030 return -EFAULT;
5031
5032 return __f2fs_ioc_gc_range(file, &range);
5033 }
5034
5035 struct compat_f2fs_move_range {
5036 u32 dst_fd;
5037 compat_u64 pos_in;
5038 compat_u64 pos_out;
5039 compat_u64 len;
5040 };
5041 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
5042 struct compat_f2fs_move_range)
5043
f2fs_compat_ioc_move_range(struct file * file,unsigned long arg)5044 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
5045 {
5046 struct compat_f2fs_move_range __user *urange;
5047 struct f2fs_move_range range;
5048 int err;
5049
5050 urange = compat_ptr(arg);
5051 err = get_user(range.dst_fd, &urange->dst_fd);
5052 err |= get_user(range.pos_in, &urange->pos_in);
5053 err |= get_user(range.pos_out, &urange->pos_out);
5054 err |= get_user(range.len, &urange->len);
5055 if (err)
5056 return -EFAULT;
5057
5058 return __f2fs_ioc_move_range(file, &range);
5059 }
5060
f2fs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5061 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5062 {
5063 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
5064 return -EIO;
5065 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
5066 return -ENOSPC;
5067
5068 switch (cmd) {
5069 case FS_IOC32_GETVERSION:
5070 cmd = FS_IOC_GETVERSION;
5071 break;
5072 case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
5073 return f2fs_compat_ioc_gc_range(file, arg);
5074 case F2FS_IOC32_MOVE_RANGE:
5075 return f2fs_compat_ioc_move_range(file, arg);
5076 case F2FS_IOC_START_ATOMIC_WRITE:
5077 case F2FS_IOC_START_ATOMIC_REPLACE:
5078 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
5079 case F2FS_IOC_START_VOLATILE_WRITE:
5080 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
5081 case F2FS_IOC_ABORT_ATOMIC_WRITE:
5082 case F2FS_IOC_SHUTDOWN:
5083 case FITRIM:
5084 case FS_IOC_SET_ENCRYPTION_POLICY:
5085 case FS_IOC_GET_ENCRYPTION_PWSALT:
5086 case FS_IOC_GET_ENCRYPTION_POLICY:
5087 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
5088 case FS_IOC_ADD_ENCRYPTION_KEY:
5089 case FS_IOC_REMOVE_ENCRYPTION_KEY:
5090 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
5091 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
5092 case FS_IOC_GET_ENCRYPTION_NONCE:
5093 case F2FS_IOC_GARBAGE_COLLECT:
5094 case F2FS_IOC_WRITE_CHECKPOINT:
5095 case F2FS_IOC_DEFRAGMENT:
5096 case F2FS_IOC_FLUSH_DEVICE:
5097 case F2FS_IOC_GET_FEATURES:
5098 case F2FS_IOC_GET_PIN_FILE:
5099 case F2FS_IOC_SET_PIN_FILE:
5100 case F2FS_IOC_PRECACHE_EXTENTS:
5101 case F2FS_IOC_RESIZE_FS:
5102 case FS_IOC_ENABLE_VERITY:
5103 case FS_IOC_MEASURE_VERITY:
5104 case FS_IOC_READ_VERITY_METADATA:
5105 case FS_IOC_GETFSLABEL:
5106 case FS_IOC_SETFSLABEL:
5107 case F2FS_IOC_GET_COMPRESS_BLOCKS:
5108 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
5109 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
5110 case F2FS_IOC_SEC_TRIM_FILE:
5111 case F2FS_IOC_GET_COMPRESS_OPTION:
5112 case F2FS_IOC_SET_COMPRESS_OPTION:
5113 case F2FS_IOC_DECOMPRESS_FILE:
5114 case F2FS_IOC_COMPRESS_FILE:
5115 break;
5116 default:
5117 return -ENOIOCTLCMD;
5118 }
5119 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5120 }
5121 #endif
5122
5123 const struct file_operations f2fs_file_operations = {
5124 .llseek = f2fs_llseek,
5125 .read_iter = f2fs_file_read_iter,
5126 .write_iter = f2fs_file_write_iter,
5127 .iopoll = iocb_bio_iopoll,
5128 .open = f2fs_file_open,
5129 .release = f2fs_release_file,
5130 .mmap = f2fs_file_mmap,
5131 .flush = f2fs_file_flush,
5132 .fsync = f2fs_sync_file,
5133 .fallocate = f2fs_fallocate,
5134 .unlocked_ioctl = f2fs_ioctl,
5135 #ifdef CONFIG_COMPAT
5136 .compat_ioctl = f2fs_compat_ioctl,
5137 #endif
5138 .splice_read = f2fs_file_splice_read,
5139 .splice_write = iter_file_splice_write,
5140 .fadvise = f2fs_file_fadvise,
5141 };
5142