xref: /openbmc/qemu/target/arm/vfp_helper.c (revision 13d162d4d098999e6b08c648ed9728ac4b61648e)
1  /*
2   * ARM VFP floating-point operations
3   *
4   *  Copyright (c) 2003 Fabrice Bellard
5   *
6   * This library is free software; you can redistribute it and/or
7   * modify it under the terms of the GNU Lesser General Public
8   * License as published by the Free Software Foundation; either
9   * version 2.1 of the License, or (at your option) any later version.
10   *
11   * This library is distributed in the hope that it will be useful,
12   * but WITHOUT ANY WARRANTY; without even the implied warranty of
13   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14   * Lesser General Public License for more details.
15   *
16   * You should have received a copy of the GNU Lesser General Public
17   * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18   */
19  
20  #include "qemu/osdep.h"
21  #include "cpu.h"
22  #include "exec/helper-proto.h"
23  #include "internals.h"
24  #include "cpu-features.h"
25  #ifdef CONFIG_TCG
26  #include "qemu/log.h"
27  #include "fpu/softfloat.h"
28  #endif
29  
30  /* VFP support.  We follow the convention used for VFP instructions:
31     Single precision routines have a "s" suffix, double precision a
32     "d" suffix.  */
33  
34  #ifdef CONFIG_TCG
35  
36  /* Convert host exception flags to vfp form.  */
vfp_exceptbits_from_host(int host_bits)37  static inline int vfp_exceptbits_from_host(int host_bits)
38  {
39      int target_bits = 0;
40  
41      if (host_bits & float_flag_invalid) {
42          target_bits |= 1;
43      }
44      if (host_bits & float_flag_divbyzero) {
45          target_bits |= 2;
46      }
47      if (host_bits & float_flag_overflow) {
48          target_bits |= 4;
49      }
50      if (host_bits & (float_flag_underflow | float_flag_output_denormal)) {
51          target_bits |= 8;
52      }
53      if (host_bits & float_flag_inexact) {
54          target_bits |= 0x10;
55      }
56      if (host_bits & float_flag_input_denormal) {
57          target_bits |= 0x80;
58      }
59      return target_bits;
60  }
61  
vfp_get_fpsr_from_host(CPUARMState * env)62  static uint32_t vfp_get_fpsr_from_host(CPUARMState *env)
63  {
64      uint32_t i;
65  
66      i = get_float_exception_flags(&env->vfp.fp_status);
67      i |= get_float_exception_flags(&env->vfp.standard_fp_status);
68      /* FZ16 does not generate an input denormal exception.  */
69      i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
70            & ~float_flag_input_denormal);
71      i |= (get_float_exception_flags(&env->vfp.standard_fp_status_f16)
72            & ~float_flag_input_denormal);
73      return vfp_exceptbits_from_host(i);
74  }
75  
vfp_clear_float_status_exc_flags(CPUARMState * env)76  static void vfp_clear_float_status_exc_flags(CPUARMState *env)
77  {
78      /*
79       * Clear out all the exception-flag information in the float_status
80       * values. The caller should have arranged for env->vfp.fpsr to
81       * be the architecturally up-to-date exception flag information first.
82       */
83      set_float_exception_flags(0, &env->vfp.fp_status);
84      set_float_exception_flags(0, &env->vfp.fp_status_f16);
85      set_float_exception_flags(0, &env->vfp.standard_fp_status);
86      set_float_exception_flags(0, &env->vfp.standard_fp_status_f16);
87  }
88  
vfp_set_fpcr_to_host(CPUARMState * env,uint32_t val,uint32_t mask)89  static void vfp_set_fpcr_to_host(CPUARMState *env, uint32_t val, uint32_t mask)
90  {
91      uint64_t changed = env->vfp.fpcr;
92  
93      changed ^= val;
94      changed &= mask;
95      if (changed & (3 << 22)) {
96          int i = (val >> 22) & 3;
97          switch (i) {
98          case FPROUNDING_TIEEVEN:
99              i = float_round_nearest_even;
100              break;
101          case FPROUNDING_POSINF:
102              i = float_round_up;
103              break;
104          case FPROUNDING_NEGINF:
105              i = float_round_down;
106              break;
107          case FPROUNDING_ZERO:
108              i = float_round_to_zero;
109              break;
110          }
111          set_float_rounding_mode(i, &env->vfp.fp_status);
112          set_float_rounding_mode(i, &env->vfp.fp_status_f16);
113      }
114      if (changed & FPCR_FZ16) {
115          bool ftz_enabled = val & FPCR_FZ16;
116          set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
117          set_flush_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
118          set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
119          set_flush_inputs_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
120      }
121      if (changed & FPCR_FZ) {
122          bool ftz_enabled = val & FPCR_FZ;
123          set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
124          set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
125      }
126      if (changed & FPCR_DN) {
127          bool dnan_enabled = val & FPCR_DN;
128          set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
129          set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
130      }
131  }
132  
133  #else
134  
vfp_get_fpsr_from_host(CPUARMState * env)135  static uint32_t vfp_get_fpsr_from_host(CPUARMState *env)
136  {
137      return 0;
138  }
139  
vfp_clear_float_status_exc_flags(CPUARMState * env)140  static void vfp_clear_float_status_exc_flags(CPUARMState *env)
141  {
142  }
143  
vfp_set_fpcr_to_host(CPUARMState * env,uint32_t val,uint32_t mask)144  static void vfp_set_fpcr_to_host(CPUARMState *env, uint32_t val, uint32_t mask)
145  {
146  }
147  
148  #endif
149  
vfp_get_fpcr(CPUARMState * env)150  uint32_t vfp_get_fpcr(CPUARMState *env)
151  {
152      uint32_t fpcr = env->vfp.fpcr
153          | (env->vfp.vec_len << 16)
154          | (env->vfp.vec_stride << 20);
155  
156      /*
157       * M-profile LTPSIZE is the same bits [18:16] as A-profile Len; whichever
158       * of the two is not applicable to this CPU will always be zero.
159       */
160      fpcr |= env->v7m.ltpsize << 16;
161  
162      return fpcr;
163  }
164  
vfp_get_fpsr(CPUARMState * env)165  uint32_t vfp_get_fpsr(CPUARMState *env)
166  {
167      uint32_t fpsr = env->vfp.fpsr;
168      uint32_t i;
169  
170      fpsr |= vfp_get_fpsr_from_host(env);
171  
172      i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3];
173      fpsr |= i ? FPSR_QC : 0;
174      return fpsr;
175  }
176  
HELPER(vfp_get_fpscr)177  uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
178  {
179      return (vfp_get_fpcr(env) & FPSCR_FPCR_MASK) |
180          (vfp_get_fpsr(env) & FPSCR_FPSR_MASK);
181  }
182  
vfp_get_fpscr(CPUARMState * env)183  uint32_t vfp_get_fpscr(CPUARMState *env)
184  {
185      return HELPER(vfp_get_fpscr)(env);
186  }
187  
vfp_set_fpsr(CPUARMState * env,uint32_t val)188  void vfp_set_fpsr(CPUARMState *env, uint32_t val)
189  {
190      ARMCPU *cpu = env_archcpu(env);
191  
192      if (arm_feature(env, ARM_FEATURE_NEON) ||
193          cpu_isar_feature(aa32_mve, cpu)) {
194          /*
195           * The bit we set within vfp.qc[] is arbitrary; the array as a
196           * whole being zero/non-zero is what counts.
197           */
198          env->vfp.qc[0] = val & FPSR_QC;
199          env->vfp.qc[1] = 0;
200          env->vfp.qc[2] = 0;
201          env->vfp.qc[3] = 0;
202      }
203  
204      /*
205       * NZCV lives only in env->vfp.fpsr. The cumulative exception flags
206       * IOC|DZC|OFC|UFC|IXC|IDC also live in env->vfp.fpsr, with possible
207       * extra pending exception information that hasn't yet been folded in
208       * living in the float_status values (for TCG).
209       * Since this FPSR write gives us the up to date values of the exception
210       * flags, we want to store into vfp.fpsr the NZCV and CEXC bits, zeroing
211       * anything else. We also need to clear out the float_status exception
212       * information so that the next vfp_get_fpsr does not fold in stale data.
213       */
214      val &= FPSR_NZCV_MASK | FPSR_CEXC_MASK;
215      env->vfp.fpsr = val;
216      vfp_clear_float_status_exc_flags(env);
217  }
218  
vfp_set_fpcr_masked(CPUARMState * env,uint32_t val,uint32_t mask)219  static void vfp_set_fpcr_masked(CPUARMState *env, uint32_t val, uint32_t mask)
220  {
221      /*
222       * We only set FPCR bits defined by mask, and leave the others alone.
223       * We assume the mask is sensible (e.g. doesn't try to set only
224       * part of a field)
225       */
226      ARMCPU *cpu = env_archcpu(env);
227  
228      /* When ARMv8.2-FP16 is not supported, FZ16 is RES0.  */
229      if (!cpu_isar_feature(any_fp16, cpu)) {
230          val &= ~FPCR_FZ16;
231      }
232  
233      if (!cpu_isar_feature(aa64_ebf16, cpu)) {
234          val &= ~FPCR_EBF;
235      }
236  
237      vfp_set_fpcr_to_host(env, val, mask);
238  
239      if (mask & (FPCR_LEN_MASK | FPCR_STRIDE_MASK)) {
240          if (!arm_feature(env, ARM_FEATURE_M)) {
241              /*
242               * Short-vector length and stride; on M-profile these bits
243               * are used for different purposes.
244               * We can't make this conditional be "if MVFR0.FPShVec != 0",
245               * because in v7A no-short-vector-support cores still had to
246               * allow Stride/Len to be written with the only effect that
247               * some insns are required to UNDEF if the guest sets them.
248               */
249              env->vfp.vec_len = extract32(val, 16, 3);
250              env->vfp.vec_stride = extract32(val, 20, 2);
251          } else if (cpu_isar_feature(aa32_mve, cpu)) {
252              env->v7m.ltpsize = extract32(val, FPCR_LTPSIZE_SHIFT,
253                                           FPCR_LTPSIZE_LENGTH);
254          }
255      }
256  
257      /*
258       * We don't implement trapped exception handling, so the
259       * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!)
260       *
261       * The FPCR bits we keep in vfp.fpcr are AHP, DN, FZ, RMode, EBF
262       * and FZ16. Len, Stride and LTPSIZE we just handled. Store those bits
263       * there, and zero any of the other FPCR bits and the RES0 and RAZ/WI
264       * bits.
265       */
266      val &= FPCR_AHP | FPCR_DN | FPCR_FZ | FPCR_RMODE_MASK | FPCR_FZ16 | FPCR_EBF;
267      env->vfp.fpcr &= ~mask;
268      env->vfp.fpcr |= val;
269  }
270  
vfp_set_fpcr(CPUARMState * env,uint32_t val)271  void vfp_set_fpcr(CPUARMState *env, uint32_t val)
272  {
273      vfp_set_fpcr_masked(env, val, MAKE_64BIT_MASK(0, 32));
274  }
275  
HELPER(vfp_set_fpscr)276  void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
277  {
278      vfp_set_fpcr_masked(env, val, FPSCR_FPCR_MASK);
279      vfp_set_fpsr(env, val & FPSCR_FPSR_MASK);
280  }
281  
vfp_set_fpscr(CPUARMState * env,uint32_t val)282  void vfp_set_fpscr(CPUARMState *env, uint32_t val)
283  {
284      HELPER(vfp_set_fpscr)(env, val);
285  }
286  
287  #ifdef CONFIG_TCG
288  
289  #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
290  
291  #define VFP_BINOP(name) \
292  dh_ctype_f16 VFP_HELPER(name, h)(dh_ctype_f16 a, dh_ctype_f16 b, void *fpstp) \
293  { \
294      float_status *fpst = fpstp; \
295      return float16_ ## name(a, b, fpst); \
296  } \
297  float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
298  { \
299      float_status *fpst = fpstp; \
300      return float32_ ## name(a, b, fpst); \
301  } \
302  float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
303  { \
304      float_status *fpst = fpstp; \
305      return float64_ ## name(a, b, fpst); \
306  }
307  VFP_BINOP(add)
VFP_BINOP(sub)308  VFP_BINOP(sub)
309  VFP_BINOP(mul)
310  VFP_BINOP(div)
311  VFP_BINOP(min)
312  VFP_BINOP(max)
313  VFP_BINOP(minnum)
314  VFP_BINOP(maxnum)
315  #undef VFP_BINOP
316  
317  dh_ctype_f16 VFP_HELPER(sqrt, h)(dh_ctype_f16 a, CPUARMState *env)
318  {
319      return float16_sqrt(a, &env->vfp.fp_status_f16);
320  }
321  
VFP_HELPER(sqrt,s)322  float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
323  {
324      return float32_sqrt(a, &env->vfp.fp_status);
325  }
326  
VFP_HELPER(sqrt,d)327  float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
328  {
329      return float64_sqrt(a, &env->vfp.fp_status);
330  }
331  
softfloat_to_vfp_compare(CPUARMState * env,FloatRelation cmp)332  static void softfloat_to_vfp_compare(CPUARMState *env, FloatRelation cmp)
333  {
334      uint32_t flags;
335      switch (cmp) {
336      case float_relation_equal:
337          flags = 0x6;
338          break;
339      case float_relation_less:
340          flags = 0x8;
341          break;
342      case float_relation_greater:
343          flags = 0x2;
344          break;
345      case float_relation_unordered:
346          flags = 0x3;
347          break;
348      default:
349          g_assert_not_reached();
350      }
351      env->vfp.fpsr = deposit64(env->vfp.fpsr, 28, 4, flags); /* NZCV */
352  }
353  
354  /* XXX: check quiet/signaling case */
355  #define DO_VFP_cmp(P, FLOATTYPE, ARGTYPE, FPST) \
356  void VFP_HELPER(cmp, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env)  \
357  { \
358      softfloat_to_vfp_compare(env, \
359          FLOATTYPE ## _compare_quiet(a, b, &env->vfp.FPST)); \
360  } \
361  void VFP_HELPER(cmpe, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \
362  { \
363      softfloat_to_vfp_compare(env, \
364          FLOATTYPE ## _compare(a, b, &env->vfp.FPST)); \
365  }
DO_VFP_cmp(h,float16,dh_ctype_f16,fp_status_f16)366  DO_VFP_cmp(h, float16, dh_ctype_f16, fp_status_f16)
367  DO_VFP_cmp(s, float32, float32, fp_status)
368  DO_VFP_cmp(d, float64, float64, fp_status)
369  #undef DO_VFP_cmp
370  
371  /* Integer to float and float to integer conversions */
372  
373  #define CONV_ITOF(name, ftype, fsz, sign)                           \
374  ftype HELPER(name)(uint32_t x, void *fpstp)                         \
375  {                                                                   \
376      float_status *fpst = fpstp;                                     \
377      return sign##int32_to_##float##fsz((sign##int32_t)x, fpst);     \
378  }
379  
380  #define CONV_FTOI(name, ftype, fsz, sign, round)                \
381  sign##int32_t HELPER(name)(ftype x, void *fpstp)                \
382  {                                                               \
383      float_status *fpst = fpstp;                                 \
384      if (float##fsz##_is_any_nan(x)) {                           \
385          float_raise(float_flag_invalid, fpst);                  \
386          return 0;                                               \
387      }                                                           \
388      return float##fsz##_to_##sign##int32##round(x, fpst);       \
389  }
390  
391  #define FLOAT_CONVS(name, p, ftype, fsz, sign)            \
392      CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign)        \
393      CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, )        \
394      CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
395  
396  FLOAT_CONVS(si, h, uint32_t, 16, )
397  FLOAT_CONVS(si, s, float32, 32, )
398  FLOAT_CONVS(si, d, float64, 64, )
399  FLOAT_CONVS(ui, h, uint32_t, 16, u)
400  FLOAT_CONVS(ui, s, float32, 32, u)
401  FLOAT_CONVS(ui, d, float64, 64, u)
402  
403  #undef CONV_ITOF
404  #undef CONV_FTOI
405  #undef FLOAT_CONVS
406  
407  /* floating point conversion */
408  float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
409  {
410      return float32_to_float64(x, &env->vfp.fp_status);
411  }
412  
VFP_HELPER(fcvts,d)413  float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
414  {
415      return float64_to_float32(x, &env->vfp.fp_status);
416  }
417  
HELPER(bfcvt)418  uint32_t HELPER(bfcvt)(float32 x, void *status)
419  {
420      return float32_to_bfloat16(x, status);
421  }
422  
HELPER(bfcvt_pair)423  uint32_t HELPER(bfcvt_pair)(uint64_t pair, void *status)
424  {
425      bfloat16 lo = float32_to_bfloat16(extract64(pair, 0, 32), status);
426      bfloat16 hi = float32_to_bfloat16(extract64(pair, 32, 32), status);
427      return deposit32(lo, 16, 16, hi);
428  }
429  
430  /*
431   * VFP3 fixed point conversion. The AArch32 versions of fix-to-float
432   * must always round-to-nearest; the AArch64 ones honour the FPSCR
433   * rounding mode. (For AArch32 Neon the standard-FPSCR is set to
434   * round-to-nearest so either helper will work.) AArch32 float-to-fix
435   * must round-to-zero.
436   */
437  #define VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype)            \
438  ftype HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift,      \
439                                       void *fpstp) \
440  { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
441  
442  #define VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype)      \
443      ftype HELPER(vfp_##name##to##p##_round_to_nearest)(uint##isz##_t  x, \
444                                                       uint32_t shift,   \
445                                                       void *fpstp)      \
446      {                                                                  \
447          ftype ret;                                                     \
448          float_status *fpst = fpstp;                                    \
449          FloatRoundMode oldmode = fpst->float_rounding_mode;            \
450          fpst->float_rounding_mode = float_round_nearest_even;          \
451          ret = itype##_to_##float##fsz##_scalbn(x, -shift, fpstp);      \
452          fpst->float_rounding_mode = oldmode;                           \
453          return ret;                                                    \
454      }
455  
456  #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, ROUND, suff) \
457  uint##isz##_t HELPER(vfp_to##name##p##suff)(ftype x, uint32_t shift,      \
458                                              void *fpst)                   \
459  {                                                                         \
460      if (unlikely(float##fsz##_is_any_nan(x))) {                           \
461          float_raise(float_flag_invalid, fpst);                            \
462          return 0;                                                         \
463      }                                                                     \
464      return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst);       \
465  }
466  
467  #define VFP_CONV_FIX(name, p, fsz, ftype, isz, itype)            \
468  VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype)              \
469  VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype)        \
470  VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype,        \
471                           float_round_to_zero, _round_to_zero)    \
472  VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype,        \
473                           get_float_rounding_mode(fpst), )
474  
475  #define VFP_CONV_FIX_A64(name, p, fsz, ftype, isz, itype)        \
476  VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype)              \
477  VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype,        \
478                           get_float_rounding_mode(fpst), )
479  
480  VFP_CONV_FIX(sh, d, 64, float64, 64, int16)
481  VFP_CONV_FIX(sl, d, 64, float64, 64, int32)
482  VFP_CONV_FIX_A64(sq, d, 64, float64, 64, int64)
483  VFP_CONV_FIX(uh, d, 64, float64, 64, uint16)
484  VFP_CONV_FIX(ul, d, 64, float64, 64, uint32)
485  VFP_CONV_FIX_A64(uq, d, 64, float64, 64, uint64)
486  VFP_CONV_FIX(sh, s, 32, float32, 32, int16)
487  VFP_CONV_FIX(sl, s, 32, float32, 32, int32)
488  VFP_CONV_FIX_A64(sq, s, 32, float32, 64, int64)
489  VFP_CONV_FIX(uh, s, 32, float32, 32, uint16)
490  VFP_CONV_FIX(ul, s, 32, float32, 32, uint32)
491  VFP_CONV_FIX_A64(uq, s, 32, float32, 64, uint64)
492  VFP_CONV_FIX(sh, h, 16, dh_ctype_f16, 32, int16)
493  VFP_CONV_FIX(sl, h, 16, dh_ctype_f16, 32, int32)
494  VFP_CONV_FIX_A64(sq, h, 16, dh_ctype_f16, 64, int64)
495  VFP_CONV_FIX(uh, h, 16, dh_ctype_f16, 32, uint16)
496  VFP_CONV_FIX(ul, h, 16, dh_ctype_f16, 32, uint32)
497  VFP_CONV_FIX_A64(uq, h, 16, dh_ctype_f16, 64, uint64)
498  
499  #undef VFP_CONV_FIX
500  #undef VFP_CONV_FIX_FLOAT
501  #undef VFP_CONV_FLOAT_FIX_ROUND
502  #undef VFP_CONV_FIX_A64
503  
504  /* Set the current fp rounding mode and return the old one.
505   * The argument is a softfloat float_round_ value.
506   */
HELPER(set_rmode)507  uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
508  {
509      float_status *fp_status = fpstp;
510  
511      uint32_t prev_rmode = get_float_rounding_mode(fp_status);
512      set_float_rounding_mode(rmode, fp_status);
513  
514      return prev_rmode;
515  }
516  
517  /* Half precision conversions.  */
HELPER(vfp_fcvt_f16_to_f32)518  float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
519  {
520      /* Squash FZ16 to 0 for the duration of conversion.  In this case,
521       * it would affect flushing input denormals.
522       */
523      float_status *fpst = fpstp;
524      bool save = get_flush_inputs_to_zero(fpst);
525      set_flush_inputs_to_zero(false, fpst);
526      float32 r = float16_to_float32(a, !ahp_mode, fpst);
527      set_flush_inputs_to_zero(save, fpst);
528      return r;
529  }
530  
HELPER(vfp_fcvt_f32_to_f16)531  uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
532  {
533      /* Squash FZ16 to 0 for the duration of conversion.  In this case,
534       * it would affect flushing output denormals.
535       */
536      float_status *fpst = fpstp;
537      bool save = get_flush_to_zero(fpst);
538      set_flush_to_zero(false, fpst);
539      float16 r = float32_to_float16(a, !ahp_mode, fpst);
540      set_flush_to_zero(save, fpst);
541      return r;
542  }
543  
HELPER(vfp_fcvt_f16_to_f64)544  float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
545  {
546      /* Squash FZ16 to 0 for the duration of conversion.  In this case,
547       * it would affect flushing input denormals.
548       */
549      float_status *fpst = fpstp;
550      bool save = get_flush_inputs_to_zero(fpst);
551      set_flush_inputs_to_zero(false, fpst);
552      float64 r = float16_to_float64(a, !ahp_mode, fpst);
553      set_flush_inputs_to_zero(save, fpst);
554      return r;
555  }
556  
HELPER(vfp_fcvt_f64_to_f16)557  uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
558  {
559      /* Squash FZ16 to 0 for the duration of conversion.  In this case,
560       * it would affect flushing output denormals.
561       */
562      float_status *fpst = fpstp;
563      bool save = get_flush_to_zero(fpst);
564      set_flush_to_zero(false, fpst);
565      float16 r = float64_to_float16(a, !ahp_mode, fpst);
566      set_flush_to_zero(save, fpst);
567      return r;
568  }
569  
570  /* NEON helpers.  */
571  
572  /* Constants 256 and 512 are used in some helpers; we avoid relying on
573   * int->float conversions at run-time.  */
574  #define float64_256 make_float64(0x4070000000000000LL)
575  #define float64_512 make_float64(0x4080000000000000LL)
576  #define float16_maxnorm make_float16(0x7bff)
577  #define float32_maxnorm make_float32(0x7f7fffff)
578  #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
579  
580  /* Reciprocal functions
581   *
582   * The algorithm that must be used to calculate the estimate
583   * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
584   */
585  
586  /* See RecipEstimate()
587   *
588   * input is a 9 bit fixed point number
589   * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
590   * result range 256 .. 511 for a number from 1.0 to 511/256.
591   */
592  
recip_estimate(int input)593  static int recip_estimate(int input)
594  {
595      int a, b, r;
596      assert(256 <= input && input < 512);
597      a = (input * 2) + 1;
598      b = (1 << 19) / a;
599      r = (b + 1) >> 1;
600      assert(256 <= r && r < 512);
601      return r;
602  }
603  
604  /*
605   * Common wrapper to call recip_estimate
606   *
607   * The parameters are exponent and 64 bit fraction (without implicit
608   * bit) where the binary point is nominally at bit 52. Returns a
609   * float64 which can then be rounded to the appropriate size by the
610   * callee.
611   */
612  
call_recip_estimate(int * exp,int exp_off,uint64_t frac)613  static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
614  {
615      uint32_t scaled, estimate;
616      uint64_t result_frac;
617      int result_exp;
618  
619      /* Handle sub-normals */
620      if (*exp == 0) {
621          if (extract64(frac, 51, 1) == 0) {
622              *exp = -1;
623              frac <<= 2;
624          } else {
625              frac <<= 1;
626          }
627      }
628  
629      /* scaled = UInt('1':fraction<51:44>) */
630      scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
631      estimate = recip_estimate(scaled);
632  
633      result_exp = exp_off - *exp;
634      result_frac = deposit64(0, 44, 8, estimate);
635      if (result_exp == 0) {
636          result_frac = deposit64(result_frac >> 1, 51, 1, 1);
637      } else if (result_exp == -1) {
638          result_frac = deposit64(result_frac >> 2, 50, 2, 1);
639          result_exp = 0;
640      }
641  
642      *exp = result_exp;
643  
644      return result_frac;
645  }
646  
round_to_inf(float_status * fpst,bool sign_bit)647  static bool round_to_inf(float_status *fpst, bool sign_bit)
648  {
649      switch (fpst->float_rounding_mode) {
650      case float_round_nearest_even: /* Round to Nearest */
651          return true;
652      case float_round_up: /* Round to +Inf */
653          return !sign_bit;
654      case float_round_down: /* Round to -Inf */
655          return sign_bit;
656      case float_round_to_zero: /* Round to Zero */
657          return false;
658      default:
659          g_assert_not_reached();
660      }
661  }
662  
HELPER(recpe_f16)663  uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
664  {
665      float_status *fpst = fpstp;
666      float16 f16 = float16_squash_input_denormal(input, fpst);
667      uint32_t f16_val = float16_val(f16);
668      uint32_t f16_sign = float16_is_neg(f16);
669      int f16_exp = extract32(f16_val, 10, 5);
670      uint32_t f16_frac = extract32(f16_val, 0, 10);
671      uint64_t f64_frac;
672  
673      if (float16_is_any_nan(f16)) {
674          float16 nan = f16;
675          if (float16_is_signaling_nan(f16, fpst)) {
676              float_raise(float_flag_invalid, fpst);
677              if (!fpst->default_nan_mode) {
678                  nan = float16_silence_nan(f16, fpst);
679              }
680          }
681          if (fpst->default_nan_mode) {
682              nan =  float16_default_nan(fpst);
683          }
684          return nan;
685      } else if (float16_is_infinity(f16)) {
686          return float16_set_sign(float16_zero, float16_is_neg(f16));
687      } else if (float16_is_zero(f16)) {
688          float_raise(float_flag_divbyzero, fpst);
689          return float16_set_sign(float16_infinity, float16_is_neg(f16));
690      } else if (float16_abs(f16) < (1 << 8)) {
691          /* Abs(value) < 2.0^-16 */
692          float_raise(float_flag_overflow | float_flag_inexact, fpst);
693          if (round_to_inf(fpst, f16_sign)) {
694              return float16_set_sign(float16_infinity, f16_sign);
695          } else {
696              return float16_set_sign(float16_maxnorm, f16_sign);
697          }
698      } else if (f16_exp >= 29 && fpst->flush_to_zero) {
699          float_raise(float_flag_underflow, fpst);
700          return float16_set_sign(float16_zero, float16_is_neg(f16));
701      }
702  
703      f64_frac = call_recip_estimate(&f16_exp, 29,
704                                     ((uint64_t) f16_frac) << (52 - 10));
705  
706      /* result = sign : result_exp<4:0> : fraction<51:42> */
707      f16_val = deposit32(0, 15, 1, f16_sign);
708      f16_val = deposit32(f16_val, 10, 5, f16_exp);
709      f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
710      return make_float16(f16_val);
711  }
712  
HELPER(recpe_f32)713  float32 HELPER(recpe_f32)(float32 input, void *fpstp)
714  {
715      float_status *fpst = fpstp;
716      float32 f32 = float32_squash_input_denormal(input, fpst);
717      uint32_t f32_val = float32_val(f32);
718      bool f32_sign = float32_is_neg(f32);
719      int f32_exp = extract32(f32_val, 23, 8);
720      uint32_t f32_frac = extract32(f32_val, 0, 23);
721      uint64_t f64_frac;
722  
723      if (float32_is_any_nan(f32)) {
724          float32 nan = f32;
725          if (float32_is_signaling_nan(f32, fpst)) {
726              float_raise(float_flag_invalid, fpst);
727              if (!fpst->default_nan_mode) {
728                  nan = float32_silence_nan(f32, fpst);
729              }
730          }
731          if (fpst->default_nan_mode) {
732              nan =  float32_default_nan(fpst);
733          }
734          return nan;
735      } else if (float32_is_infinity(f32)) {
736          return float32_set_sign(float32_zero, float32_is_neg(f32));
737      } else if (float32_is_zero(f32)) {
738          float_raise(float_flag_divbyzero, fpst);
739          return float32_set_sign(float32_infinity, float32_is_neg(f32));
740      } else if (float32_abs(f32) < (1ULL << 21)) {
741          /* Abs(value) < 2.0^-128 */
742          float_raise(float_flag_overflow | float_flag_inexact, fpst);
743          if (round_to_inf(fpst, f32_sign)) {
744              return float32_set_sign(float32_infinity, f32_sign);
745          } else {
746              return float32_set_sign(float32_maxnorm, f32_sign);
747          }
748      } else if (f32_exp >= 253 && fpst->flush_to_zero) {
749          float_raise(float_flag_underflow, fpst);
750          return float32_set_sign(float32_zero, float32_is_neg(f32));
751      }
752  
753      f64_frac = call_recip_estimate(&f32_exp, 253,
754                                     ((uint64_t) f32_frac) << (52 - 23));
755  
756      /* result = sign : result_exp<7:0> : fraction<51:29> */
757      f32_val = deposit32(0, 31, 1, f32_sign);
758      f32_val = deposit32(f32_val, 23, 8, f32_exp);
759      f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
760      return make_float32(f32_val);
761  }
762  
HELPER(recpe_f64)763  float64 HELPER(recpe_f64)(float64 input, void *fpstp)
764  {
765      float_status *fpst = fpstp;
766      float64 f64 = float64_squash_input_denormal(input, fpst);
767      uint64_t f64_val = float64_val(f64);
768      bool f64_sign = float64_is_neg(f64);
769      int f64_exp = extract64(f64_val, 52, 11);
770      uint64_t f64_frac = extract64(f64_val, 0, 52);
771  
772      /* Deal with any special cases */
773      if (float64_is_any_nan(f64)) {
774          float64 nan = f64;
775          if (float64_is_signaling_nan(f64, fpst)) {
776              float_raise(float_flag_invalid, fpst);
777              if (!fpst->default_nan_mode) {
778                  nan = float64_silence_nan(f64, fpst);
779              }
780          }
781          if (fpst->default_nan_mode) {
782              nan =  float64_default_nan(fpst);
783          }
784          return nan;
785      } else if (float64_is_infinity(f64)) {
786          return float64_set_sign(float64_zero, float64_is_neg(f64));
787      } else if (float64_is_zero(f64)) {
788          float_raise(float_flag_divbyzero, fpst);
789          return float64_set_sign(float64_infinity, float64_is_neg(f64));
790      } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
791          /* Abs(value) < 2.0^-1024 */
792          float_raise(float_flag_overflow | float_flag_inexact, fpst);
793          if (round_to_inf(fpst, f64_sign)) {
794              return float64_set_sign(float64_infinity, f64_sign);
795          } else {
796              return float64_set_sign(float64_maxnorm, f64_sign);
797          }
798      } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
799          float_raise(float_flag_underflow, fpst);
800          return float64_set_sign(float64_zero, float64_is_neg(f64));
801      }
802  
803      f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
804  
805      /* result = sign : result_exp<10:0> : fraction<51:0>; */
806      f64_val = deposit64(0, 63, 1, f64_sign);
807      f64_val = deposit64(f64_val, 52, 11, f64_exp);
808      f64_val = deposit64(f64_val, 0, 52, f64_frac);
809      return make_float64(f64_val);
810  }
811  
812  /* The algorithm that must be used to calculate the estimate
813   * is specified by the ARM ARM.
814   */
815  
do_recip_sqrt_estimate(int a)816  static int do_recip_sqrt_estimate(int a)
817  {
818      int b, estimate;
819  
820      assert(128 <= a && a < 512);
821      if (a < 256) {
822          a = a * 2 + 1;
823      } else {
824          a = (a >> 1) << 1;
825          a = (a + 1) * 2;
826      }
827      b = 512;
828      while (a * (b + 1) * (b + 1) < (1 << 28)) {
829          b += 1;
830      }
831      estimate = (b + 1) / 2;
832      assert(256 <= estimate && estimate < 512);
833  
834      return estimate;
835  }
836  
837  
recip_sqrt_estimate(int * exp,int exp_off,uint64_t frac)838  static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
839  {
840      int estimate;
841      uint32_t scaled;
842  
843      if (*exp == 0) {
844          while (extract64(frac, 51, 1) == 0) {
845              frac = frac << 1;
846              *exp -= 1;
847          }
848          frac = extract64(frac, 0, 51) << 1;
849      }
850  
851      if (*exp & 1) {
852          /* scaled = UInt('01':fraction<51:45>) */
853          scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
854      } else {
855          /* scaled = UInt('1':fraction<51:44>) */
856          scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
857      }
858      estimate = do_recip_sqrt_estimate(scaled);
859  
860      *exp = (exp_off - *exp) / 2;
861      return extract64(estimate, 0, 8) << 44;
862  }
863  
HELPER(rsqrte_f16)864  uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
865  {
866      float_status *s = fpstp;
867      float16 f16 = float16_squash_input_denormal(input, s);
868      uint16_t val = float16_val(f16);
869      bool f16_sign = float16_is_neg(f16);
870      int f16_exp = extract32(val, 10, 5);
871      uint16_t f16_frac = extract32(val, 0, 10);
872      uint64_t f64_frac;
873  
874      if (float16_is_any_nan(f16)) {
875          float16 nan = f16;
876          if (float16_is_signaling_nan(f16, s)) {
877              float_raise(float_flag_invalid, s);
878              if (!s->default_nan_mode) {
879                  nan = float16_silence_nan(f16, fpstp);
880              }
881          }
882          if (s->default_nan_mode) {
883              nan =  float16_default_nan(s);
884          }
885          return nan;
886      } else if (float16_is_zero(f16)) {
887          float_raise(float_flag_divbyzero, s);
888          return float16_set_sign(float16_infinity, f16_sign);
889      } else if (f16_sign) {
890          float_raise(float_flag_invalid, s);
891          return float16_default_nan(s);
892      } else if (float16_is_infinity(f16)) {
893          return float16_zero;
894      }
895  
896      /* Scale and normalize to a double-precision value between 0.25 and 1.0,
897       * preserving the parity of the exponent.  */
898  
899      f64_frac = ((uint64_t) f16_frac) << (52 - 10);
900  
901      f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
902  
903      /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
904      val = deposit32(0, 15, 1, f16_sign);
905      val = deposit32(val, 10, 5, f16_exp);
906      val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
907      return make_float16(val);
908  }
909  
HELPER(rsqrte_f32)910  float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
911  {
912      float_status *s = fpstp;
913      float32 f32 = float32_squash_input_denormal(input, s);
914      uint32_t val = float32_val(f32);
915      uint32_t f32_sign = float32_is_neg(f32);
916      int f32_exp = extract32(val, 23, 8);
917      uint32_t f32_frac = extract32(val, 0, 23);
918      uint64_t f64_frac;
919  
920      if (float32_is_any_nan(f32)) {
921          float32 nan = f32;
922          if (float32_is_signaling_nan(f32, s)) {
923              float_raise(float_flag_invalid, s);
924              if (!s->default_nan_mode) {
925                  nan = float32_silence_nan(f32, fpstp);
926              }
927          }
928          if (s->default_nan_mode) {
929              nan =  float32_default_nan(s);
930          }
931          return nan;
932      } else if (float32_is_zero(f32)) {
933          float_raise(float_flag_divbyzero, s);
934          return float32_set_sign(float32_infinity, float32_is_neg(f32));
935      } else if (float32_is_neg(f32)) {
936          float_raise(float_flag_invalid, s);
937          return float32_default_nan(s);
938      } else if (float32_is_infinity(f32)) {
939          return float32_zero;
940      }
941  
942      /* Scale and normalize to a double-precision value between 0.25 and 1.0,
943       * preserving the parity of the exponent.  */
944  
945      f64_frac = ((uint64_t) f32_frac) << 29;
946  
947      f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
948  
949      /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
950      val = deposit32(0, 31, 1, f32_sign);
951      val = deposit32(val, 23, 8, f32_exp);
952      val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
953      return make_float32(val);
954  }
955  
HELPER(rsqrte_f64)956  float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
957  {
958      float_status *s = fpstp;
959      float64 f64 = float64_squash_input_denormal(input, s);
960      uint64_t val = float64_val(f64);
961      bool f64_sign = float64_is_neg(f64);
962      int f64_exp = extract64(val, 52, 11);
963      uint64_t f64_frac = extract64(val, 0, 52);
964  
965      if (float64_is_any_nan(f64)) {
966          float64 nan = f64;
967          if (float64_is_signaling_nan(f64, s)) {
968              float_raise(float_flag_invalid, s);
969              if (!s->default_nan_mode) {
970                  nan = float64_silence_nan(f64, fpstp);
971              }
972          }
973          if (s->default_nan_mode) {
974              nan =  float64_default_nan(s);
975          }
976          return nan;
977      } else if (float64_is_zero(f64)) {
978          float_raise(float_flag_divbyzero, s);
979          return float64_set_sign(float64_infinity, float64_is_neg(f64));
980      } else if (float64_is_neg(f64)) {
981          float_raise(float_flag_invalid, s);
982          return float64_default_nan(s);
983      } else if (float64_is_infinity(f64)) {
984          return float64_zero;
985      }
986  
987      f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
988  
989      /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
990      val = deposit64(0, 61, 1, f64_sign);
991      val = deposit64(val, 52, 11, f64_exp);
992      val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
993      return make_float64(val);
994  }
995  
HELPER(recpe_u32)996  uint32_t HELPER(recpe_u32)(uint32_t a)
997  {
998      int input, estimate;
999  
1000      if ((a & 0x80000000) == 0) {
1001          return 0xffffffff;
1002      }
1003  
1004      input = extract32(a, 23, 9);
1005      estimate = recip_estimate(input);
1006  
1007      return deposit32(0, (32 - 9), 9, estimate);
1008  }
1009  
HELPER(rsqrte_u32)1010  uint32_t HELPER(rsqrte_u32)(uint32_t a)
1011  {
1012      int estimate;
1013  
1014      if ((a & 0xc0000000) == 0) {
1015          return 0xffffffff;
1016      }
1017  
1018      estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
1019  
1020      return deposit32(0, 23, 9, estimate);
1021  }
1022  
1023  /* VFPv4 fused multiply-accumulate */
VFP_HELPER(muladd,h)1024  dh_ctype_f16 VFP_HELPER(muladd, h)(dh_ctype_f16 a, dh_ctype_f16 b,
1025                                     dh_ctype_f16 c, void *fpstp)
1026  {
1027      float_status *fpst = fpstp;
1028      return float16_muladd(a, b, c, 0, fpst);
1029  }
1030  
VFP_HELPER(muladd,s)1031  float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
1032  {
1033      float_status *fpst = fpstp;
1034      return float32_muladd(a, b, c, 0, fpst);
1035  }
1036  
VFP_HELPER(muladd,d)1037  float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
1038  {
1039      float_status *fpst = fpstp;
1040      return float64_muladd(a, b, c, 0, fpst);
1041  }
1042  
1043  /* ARMv8 round to integral */
HELPER(rinth_exact)1044  dh_ctype_f16 HELPER(rinth_exact)(dh_ctype_f16 x, void *fp_status)
1045  {
1046      return float16_round_to_int(x, fp_status);
1047  }
1048  
HELPER(rints_exact)1049  float32 HELPER(rints_exact)(float32 x, void *fp_status)
1050  {
1051      return float32_round_to_int(x, fp_status);
1052  }
1053  
HELPER(rintd_exact)1054  float64 HELPER(rintd_exact)(float64 x, void *fp_status)
1055  {
1056      return float64_round_to_int(x, fp_status);
1057  }
1058  
HELPER(rinth)1059  dh_ctype_f16 HELPER(rinth)(dh_ctype_f16 x, void *fp_status)
1060  {
1061      int old_flags = get_float_exception_flags(fp_status), new_flags;
1062      float16 ret;
1063  
1064      ret = float16_round_to_int(x, fp_status);
1065  
1066      /* Suppress any inexact exceptions the conversion produced */
1067      if (!(old_flags & float_flag_inexact)) {
1068          new_flags = get_float_exception_flags(fp_status);
1069          set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1070      }
1071  
1072      return ret;
1073  }
1074  
HELPER(rints)1075  float32 HELPER(rints)(float32 x, void *fp_status)
1076  {
1077      int old_flags = get_float_exception_flags(fp_status), new_flags;
1078      float32 ret;
1079  
1080      ret = float32_round_to_int(x, fp_status);
1081  
1082      /* Suppress any inexact exceptions the conversion produced */
1083      if (!(old_flags & float_flag_inexact)) {
1084          new_flags = get_float_exception_flags(fp_status);
1085          set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1086      }
1087  
1088      return ret;
1089  }
1090  
HELPER(rintd)1091  float64 HELPER(rintd)(float64 x, void *fp_status)
1092  {
1093      int old_flags = get_float_exception_flags(fp_status), new_flags;
1094      float64 ret;
1095  
1096      ret = float64_round_to_int(x, fp_status);
1097  
1098      new_flags = get_float_exception_flags(fp_status);
1099  
1100      /* Suppress any inexact exceptions the conversion produced */
1101      if (!(old_flags & float_flag_inexact)) {
1102          new_flags = get_float_exception_flags(fp_status);
1103          set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1104      }
1105  
1106      return ret;
1107  }
1108  
1109  /* Convert ARM rounding mode to softfloat */
1110  const FloatRoundMode arm_rmode_to_sf_map[] = {
1111      [FPROUNDING_TIEEVEN] = float_round_nearest_even,
1112      [FPROUNDING_POSINF] = float_round_up,
1113      [FPROUNDING_NEGINF] = float_round_down,
1114      [FPROUNDING_ZERO] = float_round_to_zero,
1115      [FPROUNDING_TIEAWAY] = float_round_ties_away,
1116      [FPROUNDING_ODD] = float_round_to_odd,
1117  };
1118  
1119  /*
1120   * Implement float64 to int32_t conversion without saturation;
1121   * the result is supplied modulo 2^32.
1122   */
HELPER(fjcvtzs)1123  uint64_t HELPER(fjcvtzs)(float64 value, void *vstatus)
1124  {
1125      float_status *status = vstatus;
1126      uint32_t frac, e_old, e_new;
1127      bool inexact;
1128  
1129      e_old = get_float_exception_flags(status);
1130      set_float_exception_flags(0, status);
1131      frac = float64_to_int32_modulo(value, float_round_to_zero, status);
1132      e_new = get_float_exception_flags(status);
1133      set_float_exception_flags(e_old | e_new, status);
1134  
1135      /* Normal inexact, denormal with flush-to-zero, or overflow or NaN */
1136      inexact = e_new & (float_flag_inexact |
1137                         float_flag_input_denormal |
1138                         float_flag_invalid);
1139  
1140      /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript. */
1141      inexact |= value == float64_chs(float64_zero);
1142  
1143      /* Pack the result and the env->ZF representation of Z together.  */
1144      return deposit64(frac, 32, 32, inexact);
1145  }
1146  
HELPER(vjcvt)1147  uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env)
1148  {
1149      uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status);
1150      uint32_t result = pair;
1151      uint32_t z = (pair >> 32) == 0;
1152  
1153      /* Store Z, clear NCV, in FPSCR.NZCV.  */
1154      env->vfp.fpsr = (env->vfp.fpsr & ~FPSR_NZCV_MASK) | (z * FPSR_Z);
1155  
1156      return result;
1157  }
1158  
1159  /* Round a float32 to an integer that fits in int32_t or int64_t.  */
frint_s(float32 f,float_status * fpst,int intsize)1160  static float32 frint_s(float32 f, float_status *fpst, int intsize)
1161  {
1162      int old_flags = get_float_exception_flags(fpst);
1163      uint32_t exp = extract32(f, 23, 8);
1164  
1165      if (unlikely(exp == 0xff)) {
1166          /* NaN or Inf.  */
1167          goto overflow;
1168      }
1169  
1170      /* Round and re-extract the exponent.  */
1171      f = float32_round_to_int(f, fpst);
1172      exp = extract32(f, 23, 8);
1173  
1174      /* Validate the range of the result.  */
1175      if (exp < 126 + intsize) {
1176          /* abs(F) <= INT{N}_MAX */
1177          return f;
1178      }
1179      if (exp == 126 + intsize) {
1180          uint32_t sign = extract32(f, 31, 1);
1181          uint32_t frac = extract32(f, 0, 23);
1182          if (sign && frac == 0) {
1183              /* F == INT{N}_MIN */
1184              return f;
1185          }
1186      }
1187  
1188   overflow:
1189      /*
1190       * Raise Invalid and return INT{N}_MIN as a float.  Revert any
1191       * inexact exception float32_round_to_int may have raised.
1192       */
1193      set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1194      return (0x100u + 126u + intsize) << 23;
1195  }
1196  
HELPER(frint32_s)1197  float32 HELPER(frint32_s)(float32 f, void *fpst)
1198  {
1199      return frint_s(f, fpst, 32);
1200  }
1201  
HELPER(frint64_s)1202  float32 HELPER(frint64_s)(float32 f, void *fpst)
1203  {
1204      return frint_s(f, fpst, 64);
1205  }
1206  
1207  /* Round a float64 to an integer that fits in int32_t or int64_t.  */
frint_d(float64 f,float_status * fpst,int intsize)1208  static float64 frint_d(float64 f, float_status *fpst, int intsize)
1209  {
1210      int old_flags = get_float_exception_flags(fpst);
1211      uint32_t exp = extract64(f, 52, 11);
1212  
1213      if (unlikely(exp == 0x7ff)) {
1214          /* NaN or Inf.  */
1215          goto overflow;
1216      }
1217  
1218      /* Round and re-extract the exponent.  */
1219      f = float64_round_to_int(f, fpst);
1220      exp = extract64(f, 52, 11);
1221  
1222      /* Validate the range of the result.  */
1223      if (exp < 1022 + intsize) {
1224          /* abs(F) <= INT{N}_MAX */
1225          return f;
1226      }
1227      if (exp == 1022 + intsize) {
1228          uint64_t sign = extract64(f, 63, 1);
1229          uint64_t frac = extract64(f, 0, 52);
1230          if (sign && frac == 0) {
1231              /* F == INT{N}_MIN */
1232              return f;
1233          }
1234      }
1235  
1236   overflow:
1237      /*
1238       * Raise Invalid and return INT{N}_MIN as a float.  Revert any
1239       * inexact exception float64_round_to_int may have raised.
1240       */
1241      set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1242      return (uint64_t)(0x800 + 1022 + intsize) << 52;
1243  }
1244  
HELPER(frint32_d)1245  float64 HELPER(frint32_d)(float64 f, void *fpst)
1246  {
1247      return frint_d(f, fpst, 32);
1248  }
1249  
HELPER(frint64_d)1250  float64 HELPER(frint64_d)(float64 f, void *fpst)
1251  {
1252      return frint_d(f, fpst, 64);
1253  }
1254  
HELPER(check_hcr_el2_trap)1255  void HELPER(check_hcr_el2_trap)(CPUARMState *env, uint32_t rt, uint32_t reg)
1256  {
1257      uint32_t syndrome;
1258  
1259      switch (reg) {
1260      case ARM_VFP_MVFR0:
1261      case ARM_VFP_MVFR1:
1262      case ARM_VFP_MVFR2:
1263          if (!(arm_hcr_el2_eff(env) & HCR_TID3)) {
1264              return;
1265          }
1266          break;
1267      case ARM_VFP_FPSID:
1268          if (!(arm_hcr_el2_eff(env) & HCR_TID0)) {
1269              return;
1270          }
1271          break;
1272      default:
1273          g_assert_not_reached();
1274      }
1275  
1276      syndrome = ((EC_FPIDTRAP << ARM_EL_EC_SHIFT)
1277                  | ARM_EL_IL
1278                  | (1 << 24) | (0xe << 20) | (7 << 14)
1279                  | (reg << 10) | (rt << 5) | 1);
1280  
1281      raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
1282  }
1283  
1284  #endif
1285