xref: /openbmc/qemu/target/arm/tcg/vec_internal.h (revision df6fe2abf2e990f767ce755d426bc439c7bba336)
1 /*
2  * ARM AdvSIMD / SVE Vector Helpers
3  *
4  * Copyright (c) 2020 Linaro
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef TARGET_ARM_VEC_INTERNAL_H
21 #define TARGET_ARM_VEC_INTERNAL_H
22 
23 #include "fpu/softfloat.h"
24 
25 typedef struct CPUArchState CPUARMState;
26 
27 /*
28  * Note that vector data is stored in host-endian 64-bit chunks,
29  * so addressing units smaller than that needs a host-endian fixup.
30  *
31  * The H<N> macros are used when indexing an array of elements of size N.
32  *
33  * The H1_<N> macros are used when performing byte arithmetic and then
34  * casting the final pointer to a type of size N.
35  */
36 #if HOST_BIG_ENDIAN
37 #define H1(x)   ((x) ^ 7)
38 #define H1_2(x) ((x) ^ 6)
39 #define H1_4(x) ((x) ^ 4)
40 #define H2(x)   ((x) ^ 3)
41 #define H4(x)   ((x) ^ 1)
42 #else
43 #define H1(x)   (x)
44 #define H1_2(x) (x)
45 #define H1_4(x) (x)
46 #define H2(x)   (x)
47 #define H4(x)   (x)
48 #endif
49 /*
50  * Access to 64-bit elements isn't host-endian dependent; we provide H8
51  * and H1_8 so that when a function is being generated from a macro we
52  * can pass these rather than an empty macro argument, for clarity.
53  */
54 #define H8(x)   (x)
55 #define H1_8(x) (x)
56 
57 /*
58  * Expand active predicate bits to bytes, for byte elements.
59  */
60 extern const uint64_t expand_pred_b_data[256];
expand_pred_b(uint8_t byte)61 static inline uint64_t expand_pred_b(uint8_t byte)
62 {
63     return expand_pred_b_data[byte];
64 }
65 
66 /* Similarly for half-word elements. */
67 extern const uint64_t expand_pred_h_data[0x55 + 1];
expand_pred_h(uint8_t byte)68 static inline uint64_t expand_pred_h(uint8_t byte)
69 {
70     return expand_pred_h_data[byte & 0x55];
71 }
72 
clear_tail(void * vd,uintptr_t opr_sz,uintptr_t max_sz)73 static inline void clear_tail(void *vd, uintptr_t opr_sz, uintptr_t max_sz)
74 {
75     uint64_t *d = vd + opr_sz;
76     uintptr_t i;
77 
78     for (i = opr_sz; i < max_sz; i += 8) {
79         *d++ = 0;
80     }
81 }
82 
do_sqrshl_bhs(int32_t src,int32_t shift,int bits,bool round,uint32_t * sat)83 static inline int32_t do_sqrshl_bhs(int32_t src, int32_t shift, int bits,
84                                     bool round, uint32_t *sat)
85 {
86     if (shift <= -bits) {
87         /* Rounding the sign bit always produces 0. */
88         if (round) {
89             return 0;
90         }
91         return src >> 31;
92     } else if (shift < 0) {
93         if (round) {
94             src >>= -shift - 1;
95             return (src >> 1) + (src & 1);
96         }
97         return src >> -shift;
98     } else if (shift < bits) {
99         int32_t val = src << shift;
100         if (bits == 32) {
101             if (!sat || val >> shift == src) {
102                 return val;
103             }
104         } else {
105             int32_t extval = sextract32(val, 0, bits);
106             if (!sat || val == extval) {
107                 return extval;
108             }
109         }
110     } else if (!sat || src == 0) {
111         return 0;
112     }
113 
114     *sat = 1;
115     return (1u << (bits - 1)) - (src >= 0);
116 }
117 
do_uqrshl_bhs(uint32_t src,int32_t shift,int bits,bool round,uint32_t * sat)118 static inline uint32_t do_uqrshl_bhs(uint32_t src, int32_t shift, int bits,
119                                      bool round, uint32_t *sat)
120 {
121     if (shift <= -(bits + round)) {
122         return 0;
123     } else if (shift < 0) {
124         if (round) {
125             src >>= -shift - 1;
126             return (src >> 1) + (src & 1);
127         }
128         return src >> -shift;
129     } else if (shift < bits) {
130         uint32_t val = src << shift;
131         if (bits == 32) {
132             if (!sat || val >> shift == src) {
133                 return val;
134             }
135         } else {
136             uint32_t extval = extract32(val, 0, bits);
137             if (!sat || val == extval) {
138                 return extval;
139             }
140         }
141     } else if (!sat || src == 0) {
142         return 0;
143     }
144 
145     *sat = 1;
146     return MAKE_64BIT_MASK(0, bits);
147 }
148 
do_suqrshl_bhs(int32_t src,int32_t shift,int bits,bool round,uint32_t * sat)149 static inline int32_t do_suqrshl_bhs(int32_t src, int32_t shift, int bits,
150                                      bool round, uint32_t *sat)
151 {
152     if (sat && src < 0) {
153         *sat = 1;
154         return 0;
155     }
156     return do_uqrshl_bhs(src, shift, bits, round, sat);
157 }
158 
do_sqrshl_d(int64_t src,int64_t shift,bool round,uint32_t * sat)159 static inline int64_t do_sqrshl_d(int64_t src, int64_t shift,
160                                   bool round, uint32_t *sat)
161 {
162     if (shift <= -64) {
163         /* Rounding the sign bit always produces 0. */
164         if (round) {
165             return 0;
166         }
167         return src >> 63;
168     } else if (shift < 0) {
169         if (round) {
170             src >>= -shift - 1;
171             return (src >> 1) + (src & 1);
172         }
173         return src >> -shift;
174     } else if (shift < 64) {
175         int64_t val = src << shift;
176         if (!sat || val >> shift == src) {
177             return val;
178         }
179     } else if (!sat || src == 0) {
180         return 0;
181     }
182 
183     *sat = 1;
184     return src < 0 ? INT64_MIN : INT64_MAX;
185 }
186 
do_uqrshl_d(uint64_t src,int64_t shift,bool round,uint32_t * sat)187 static inline uint64_t do_uqrshl_d(uint64_t src, int64_t shift,
188                                    bool round, uint32_t *sat)
189 {
190     if (shift <= -(64 + round)) {
191         return 0;
192     } else if (shift < 0) {
193         if (round) {
194             src >>= -shift - 1;
195             return (src >> 1) + (src & 1);
196         }
197         return src >> -shift;
198     } else if (shift < 64) {
199         uint64_t val = src << shift;
200         if (!sat || val >> shift == src) {
201             return val;
202         }
203     } else if (!sat || src == 0) {
204         return 0;
205     }
206 
207     *sat = 1;
208     return UINT64_MAX;
209 }
210 
do_suqrshl_d(int64_t src,int64_t shift,bool round,uint32_t * sat)211 static inline int64_t do_suqrshl_d(int64_t src, int64_t shift,
212                                    bool round, uint32_t *sat)
213 {
214     if (sat && src < 0) {
215         *sat = 1;
216         return 0;
217     }
218     return do_uqrshl_d(src, shift, round, sat);
219 }
220 
221 int8_t do_sqrdmlah_b(int8_t, int8_t, int8_t, bool, bool);
222 int16_t do_sqrdmlah_h(int16_t, int16_t, int16_t, bool, bool, uint32_t *);
223 int32_t do_sqrdmlah_s(int32_t, int32_t, int32_t, bool, bool, uint32_t *);
224 int64_t do_sqrdmlah_d(int64_t, int64_t, int64_t, bool, bool);
225 
226 #define do_ssat_b(val)  MIN(MAX(val, INT8_MIN), INT8_MAX)
227 #define do_ssat_h(val)  MIN(MAX(val, INT16_MIN), INT16_MAX)
228 #define do_ssat_s(val)  MIN(MAX(val, INT32_MIN), INT32_MAX)
229 #define do_usat_b(val)  MIN(MAX(val, 0), UINT8_MAX)
230 #define do_usat_h(val)  MIN(MAX(val, 0), UINT16_MAX)
231 #define do_usat_s(val)  MIN(MAX(val, 0), UINT32_MAX)
232 
do_urshr(uint64_t x,unsigned sh)233 static inline uint64_t do_urshr(uint64_t x, unsigned sh)
234 {
235     if (likely(sh < 64)) {
236         return (x >> sh) + ((x >> (sh - 1)) & 1);
237     } else if (sh == 64) {
238         return x >> 63;
239     } else {
240         return 0;
241     }
242 }
243 
do_srshr(int64_t x,unsigned sh)244 static inline int64_t do_srshr(int64_t x, unsigned sh)
245 {
246     if (likely(sh < 64)) {
247         return (x >> sh) + ((x >> (sh - 1)) & 1);
248     } else {
249         /* Rounding the sign bit always produces 0. */
250         return 0;
251     }
252 }
253 
254 /**
255  * bfdotadd:
256  * @sum: addend
257  * @e1, @e2: multiplicand vectors
258  * @fpst: floating-point status to use
259  *
260  * BFloat16 2-way dot product of @e1 & @e2, accumulating with @sum.
261  * The @e1 and @e2 operands correspond to the 32-bit source vector
262  * slots and contain two Bfloat16 values each.
263  *
264  * Corresponds to the ARM pseudocode function BFDotAdd, specialized
265  * for the FPCR.EBF == 0 case.
266  */
267 float32 bfdotadd(float32 sum, uint32_t e1, uint32_t e2, float_status *fpst);
268 /**
269  * bfdotadd_ebf:
270  * @sum: addend
271  * @e1, @e2: multiplicand vectors
272  * @fpst: floating-point status to use
273  * @fpst_odd: floating-point status to use for round-to-odd operations
274  *
275  * BFloat16 2-way dot product of @e1 & @e2, accumulating with @sum.
276  * The @e1 and @e2 operands correspond to the 32-bit source vector
277  * slots and contain two Bfloat16 values each.
278  *
279  * Corresponds to the ARM pseudocode function BFDotAdd, specialized
280  * for the FPCR.EBF == 1 case.
281  */
282 float32 bfdotadd_ebf(float32 sum, uint32_t e1, uint32_t e2,
283                      float_status *fpst, float_status *fpst_odd);
284 
285 /**
286  * is_ebf:
287  * @env: CPU state
288  * @statusp: pointer to floating point status to fill in
289  * @oddstatusp: pointer to floating point status to fill in for round-to-odd
290  *
291  * Determine whether a BFDotAdd operation should use FPCR.EBF = 0
292  * or FPCR.EBF = 1 semantics. On return, has initialized *statusp
293  * and *oddstatusp to suitable float_status arguments to use with either
294  * bfdotadd() or bfdotadd_ebf().
295  * Returns true for EBF = 1, false for EBF = 0. (The caller should use this
296  * to decide whether to call bfdotadd() or bfdotadd_ebf().)
297  */
298 bool is_ebf(CPUARMState *env, float_status *statusp, float_status *oddstatusp);
299 
300 /*
301  * Negate as for FPCR.AH=1 -- do not negate NaNs.
302  */
bfloat16_ah_chs(float16 a)303 static inline float16 bfloat16_ah_chs(float16 a)
304 {
305     return bfloat16_is_any_nan(a) ? a : bfloat16_chs(a);
306 }
307 
float16_ah_chs(float16 a)308 static inline float16 float16_ah_chs(float16 a)
309 {
310     return float16_is_any_nan(a) ? a : float16_chs(a);
311 }
312 
float32_ah_chs(float32 a)313 static inline float32 float32_ah_chs(float32 a)
314 {
315     return float32_is_any_nan(a) ? a : float32_chs(a);
316 }
317 
float64_ah_chs(float64 a)318 static inline float64 float64_ah_chs(float64 a)
319 {
320     return float64_is_any_nan(a) ? a : float64_chs(a);
321 }
322 
float16_maybe_ah_chs(float16 a,bool fpcr_ah)323 static inline float16 float16_maybe_ah_chs(float16 a, bool fpcr_ah)
324 {
325     return fpcr_ah && float16_is_any_nan(a) ? a : float16_chs(a);
326 }
327 
float32_maybe_ah_chs(float32 a,bool fpcr_ah)328 static inline float32 float32_maybe_ah_chs(float32 a, bool fpcr_ah)
329 {
330     return fpcr_ah && float32_is_any_nan(a) ? a : float32_chs(a);
331 }
332 
float64_maybe_ah_chs(float64 a,bool fpcr_ah)333 static inline float64 float64_maybe_ah_chs(float64 a, bool fpcr_ah)
334 {
335     return fpcr_ah && float64_is_any_nan(a) ? a : float64_chs(a);
336 }
337 
338 /* Not actually called directly as a helper, but uses similar machinery. */
339 bfloat16 helper_sme2_ah_fmax_b16(bfloat16 a, bfloat16 b, float_status *fpst);
340 bfloat16 helper_sme2_ah_fmin_b16(bfloat16 a, bfloat16 b, float_status *fpst);
341 
342 float32 sve_f16_to_f32(float16 f, float_status *fpst);
343 float16 sve_f32_to_f16(float32 f, float_status *fpst);
344 
345 /*
346  * Decode helper functions for predicate as counter.
347  */
348 
349 typedef struct {
350     unsigned count;
351     unsigned lg2_stride;
352     bool invert;
353 } DecodeCounter;
354 
355 static inline DecodeCounter
decode_counter(unsigned png,unsigned vl,unsigned v_esz)356 decode_counter(unsigned png, unsigned vl, unsigned v_esz)
357 {
358     DecodeCounter ret = { };
359 
360     /* C.f. Arm pseudocode CounterToPredicate. */
361     if (likely(png & 0xf)) {
362         unsigned p_esz = ctz32(png);
363 
364         /*
365          * maxbit = log2(pl(bits) * 4)
366          *        = log2(vl(bytes) * 4)
367          *        = log2(vl) + 2
368          * maxbit_mask = ones<maxbit:0>
369          *             = (1 << (maxbit + 1)) - 1
370          *             = (1 << (log2(vl) + 2 + 1)) - 1
371          *             = (1 << (log2(vl) + 3)) - 1
372          *             = (pow2ceil(vl) << 3) - 1
373          */
374         ret.count = png & (((unsigned)pow2ceil(vl) << 3) - 1);
375         ret.count >>= p_esz + 1;
376 
377         ret.invert = (png >> 15) & 1;
378 
379         /*
380          * The Arm pseudocode for CounterToPredicate expands the count to
381          * a set of bits, and then the operation proceeds as for the original
382          * interpretation of predicates as a set of bits.
383          *
384          * We can avoid the expansion by adjusting the count and supplying
385          * an element stride.
386          */
387         if (unlikely(p_esz != v_esz)) {
388             if (p_esz < v_esz) {
389                 /*
390                  * For predicate esz < vector esz, the expanded predicate
391                  * will have more bits set than will be consumed.
392                  * Adjust the count down, rounding up.
393                  * Consider p_esz = MO_8, v_esz = MO_64, count 14:
394                  * The expanded predicate would be
395                  *    0011 1111 1111 1111
396                  * The significant bits are
397                  *    ...1 ...1 ...1 ...1
398                  */
399                 unsigned shift = v_esz - p_esz;
400                 unsigned trunc = ret.count >> shift;
401                 ret.count = trunc + (ret.count != (trunc << shift));
402             } else {
403                 /*
404                  * For predicate esz > vector esz, the expanded predicate
405                  * will have bits set only at power-of-two multiples of
406                  * the vector esz.  Bits at other multiples will all be
407                  * false.  Adjust the count up, and supply the caller
408                  * with a stride of elements to skip.
409                  */
410                 unsigned shift = p_esz - v_esz;
411                 ret.count <<= shift;
412                 ret.lg2_stride = shift;
413             }
414         }
415     }
416     return ret;
417 }
418 
419 /* Extract @len bits from an array of uint64_t at offset @pos bits. */
extractn(uint64_t * p,unsigned pos,unsigned len)420 static inline uint64_t extractn(uint64_t *p, unsigned pos, unsigned len)
421 {
422     uint64_t x;
423 
424     p += pos / 64;
425     pos = pos % 64;
426 
427     x = p[0];
428     if (pos + len > 64) {
429         x = (x >> pos) | (p[1] << (-pos & 63));
430         pos = 0;
431     }
432     return extract64(x, pos, len);
433 }
434 
435 /* Deposit @len bits into an array of uint64_t at offset @pos bits. */
depositn(uint64_t * p,unsigned pos,unsigned len,uint64_t val)436 static inline void depositn(uint64_t *p, unsigned pos,
437                             unsigned len, uint64_t val)
438 {
439     p += pos / 64;
440     pos = pos % 64;
441 
442     if (pos + len <= 64) {
443         p[0] = deposit64(p[0], pos, len, val);
444     } else {
445         unsigned len0 = 64 - pos;
446         unsigned len1 = len - len0;
447 
448         p[0] = deposit64(p[0], pos, len0, val);
449         p[1] = deposit64(p[1], 0, len1, val >> len0);
450     }
451 }
452 
453 #endif /* TARGET_ARM_VEC_INTERNAL_H */
454