1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Wireless utility functions
4 *
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018-2023 Intel Corporation
9 */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 const struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 u32 basic_rates, int bitrate)
30 {
31 struct ieee80211_rate *result = &sband->bitrates[0];
32 int i;
33
34 for (i = 0; i < sband->n_bitrates; i++) {
35 if (!(basic_rates & BIT(i)))
36 continue;
37 if (sband->bitrates[i].bitrate > bitrate)
38 continue;
39 result = &sband->bitrates[i];
40 }
41
42 return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
ieee80211_mandatory_rates(struct ieee80211_supported_band * sband,enum nl80211_bss_scan_width scan_width)46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 enum nl80211_bss_scan_width scan_width)
48 {
49 struct ieee80211_rate *bitrates;
50 u32 mandatory_rates = 0;
51 enum ieee80211_rate_flags mandatory_flag;
52 int i;
53
54 if (WARN_ON(!sband))
55 return 1;
56
57 if (sband->band == NL80211_BAND_2GHZ) {
58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 else
62 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 } else {
64 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65 }
66
67 bitrates = sband->bitrates;
68 for (i = 0; i < sband->n_bitrates; i++)
69 if (bitrates[i].flags & mandatory_flag)
70 mandatory_rates |= BIT(i);
71 return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
ieee80211_channel_to_freq_khz(int chan,enum nl80211_band band)75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77 /* see 802.11 17.3.8.3.2 and Annex J
78 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 if (chan <= 0)
80 return 0; /* not supported */
81 switch (band) {
82 case NL80211_BAND_2GHZ:
83 case NL80211_BAND_LC:
84 if (chan == 14)
85 return MHZ_TO_KHZ(2484);
86 else if (chan < 14)
87 return MHZ_TO_KHZ(2407 + chan * 5);
88 break;
89 case NL80211_BAND_5GHZ:
90 if (chan >= 182 && chan <= 196)
91 return MHZ_TO_KHZ(4000 + chan * 5);
92 else
93 return MHZ_TO_KHZ(5000 + chan * 5);
94 break;
95 case NL80211_BAND_6GHZ:
96 /* see 802.11ax D6.1 27.3.23.2 */
97 if (chan == 2)
98 return MHZ_TO_KHZ(5935);
99 if (chan <= 233)
100 return MHZ_TO_KHZ(5950 + chan * 5);
101 break;
102 case NL80211_BAND_60GHZ:
103 if (chan < 7)
104 return MHZ_TO_KHZ(56160 + chan * 2160);
105 break;
106 case NL80211_BAND_S1GHZ:
107 return 902000 + chan * 500;
108 default:
109 ;
110 }
111 return 0; /* not supported */
112 }
113 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
114
115 enum nl80211_chan_width
ieee80211_s1g_channel_width(const struct ieee80211_channel * chan)116 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
117 {
118 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
119 return NL80211_CHAN_WIDTH_20_NOHT;
120
121 /*S1G defines a single allowed channel width per channel.
122 * Extract that width here.
123 */
124 if (chan->flags & IEEE80211_CHAN_1MHZ)
125 return NL80211_CHAN_WIDTH_1;
126 else if (chan->flags & IEEE80211_CHAN_2MHZ)
127 return NL80211_CHAN_WIDTH_2;
128 else if (chan->flags & IEEE80211_CHAN_4MHZ)
129 return NL80211_CHAN_WIDTH_4;
130 else if (chan->flags & IEEE80211_CHAN_8MHZ)
131 return NL80211_CHAN_WIDTH_8;
132 else if (chan->flags & IEEE80211_CHAN_16MHZ)
133 return NL80211_CHAN_WIDTH_16;
134
135 pr_err("unknown channel width for channel at %dKHz?\n",
136 ieee80211_channel_to_khz(chan));
137
138 return NL80211_CHAN_WIDTH_1;
139 }
140 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
141
ieee80211_freq_khz_to_channel(u32 freq)142 int ieee80211_freq_khz_to_channel(u32 freq)
143 {
144 /* TODO: just handle MHz for now */
145 freq = KHZ_TO_MHZ(freq);
146
147 /* see 802.11 17.3.8.3.2 and Annex J */
148 if (freq == 2484)
149 return 14;
150 else if (freq < 2484)
151 return (freq - 2407) / 5;
152 else if (freq >= 4910 && freq <= 4980)
153 return (freq - 4000) / 5;
154 else if (freq < 5925)
155 return (freq - 5000) / 5;
156 else if (freq == 5935)
157 return 2;
158 else if (freq <= 45000) /* DMG band lower limit */
159 /* see 802.11ax D6.1 27.3.22.2 */
160 return (freq - 5950) / 5;
161 else if (freq >= 58320 && freq <= 70200)
162 return (freq - 56160) / 2160;
163 else
164 return 0;
165 }
166 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
167
ieee80211_get_channel_khz(struct wiphy * wiphy,u32 freq)168 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
169 u32 freq)
170 {
171 enum nl80211_band band;
172 struct ieee80211_supported_band *sband;
173 int i;
174
175 for (band = 0; band < NUM_NL80211_BANDS; band++) {
176 sband = wiphy->bands[band];
177
178 if (!sband)
179 continue;
180
181 for (i = 0; i < sband->n_channels; i++) {
182 struct ieee80211_channel *chan = &sband->channels[i];
183
184 if (ieee80211_channel_to_khz(chan) == freq)
185 return chan;
186 }
187 }
188
189 return NULL;
190 }
191 EXPORT_SYMBOL(ieee80211_get_channel_khz);
192
set_mandatory_flags_band(struct ieee80211_supported_band * sband)193 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
194 {
195 int i, want;
196
197 switch (sband->band) {
198 case NL80211_BAND_5GHZ:
199 case NL80211_BAND_6GHZ:
200 want = 3;
201 for (i = 0; i < sband->n_bitrates; i++) {
202 if (sband->bitrates[i].bitrate == 60 ||
203 sband->bitrates[i].bitrate == 120 ||
204 sband->bitrates[i].bitrate == 240) {
205 sband->bitrates[i].flags |=
206 IEEE80211_RATE_MANDATORY_A;
207 want--;
208 }
209 }
210 WARN_ON(want);
211 break;
212 case NL80211_BAND_2GHZ:
213 case NL80211_BAND_LC:
214 want = 7;
215 for (i = 0; i < sband->n_bitrates; i++) {
216 switch (sband->bitrates[i].bitrate) {
217 case 10:
218 case 20:
219 case 55:
220 case 110:
221 sband->bitrates[i].flags |=
222 IEEE80211_RATE_MANDATORY_B |
223 IEEE80211_RATE_MANDATORY_G;
224 want--;
225 break;
226 case 60:
227 case 120:
228 case 240:
229 sband->bitrates[i].flags |=
230 IEEE80211_RATE_MANDATORY_G;
231 want--;
232 fallthrough;
233 default:
234 sband->bitrates[i].flags |=
235 IEEE80211_RATE_ERP_G;
236 break;
237 }
238 }
239 WARN_ON(want != 0 && want != 3);
240 break;
241 case NL80211_BAND_60GHZ:
242 /* check for mandatory HT MCS 1..4 */
243 WARN_ON(!sband->ht_cap.ht_supported);
244 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
245 break;
246 case NL80211_BAND_S1GHZ:
247 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
248 * mandatory is ok.
249 */
250 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
251 break;
252 case NUM_NL80211_BANDS:
253 default:
254 WARN_ON(1);
255 break;
256 }
257 }
258
ieee80211_set_bitrate_flags(struct wiphy * wiphy)259 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
260 {
261 enum nl80211_band band;
262
263 for (band = 0; band < NUM_NL80211_BANDS; band++)
264 if (wiphy->bands[band])
265 set_mandatory_flags_band(wiphy->bands[band]);
266 }
267
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)268 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
269 {
270 int i;
271 for (i = 0; i < wiphy->n_cipher_suites; i++)
272 if (cipher == wiphy->cipher_suites[i])
273 return true;
274 return false;
275 }
276
277 static bool
cfg80211_igtk_cipher_supported(struct cfg80211_registered_device * rdev)278 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
279 {
280 struct wiphy *wiphy = &rdev->wiphy;
281 int i;
282
283 for (i = 0; i < wiphy->n_cipher_suites; i++) {
284 switch (wiphy->cipher_suites[i]) {
285 case WLAN_CIPHER_SUITE_AES_CMAC:
286 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
287 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
288 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
289 return true;
290 }
291 }
292
293 return false;
294 }
295
cfg80211_valid_key_idx(struct cfg80211_registered_device * rdev,int key_idx,bool pairwise)296 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
297 int key_idx, bool pairwise)
298 {
299 int max_key_idx;
300
301 if (pairwise)
302 max_key_idx = 3;
303 else if (wiphy_ext_feature_isset(&rdev->wiphy,
304 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
305 wiphy_ext_feature_isset(&rdev->wiphy,
306 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
307 max_key_idx = 7;
308 else if (cfg80211_igtk_cipher_supported(rdev))
309 max_key_idx = 5;
310 else
311 max_key_idx = 3;
312
313 if (key_idx < 0 || key_idx > max_key_idx)
314 return false;
315
316 return true;
317 }
318
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)319 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
320 struct key_params *params, int key_idx,
321 bool pairwise, const u8 *mac_addr)
322 {
323 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
324 return -EINVAL;
325
326 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
327 return -EINVAL;
328
329 if (pairwise && !mac_addr)
330 return -EINVAL;
331
332 switch (params->cipher) {
333 case WLAN_CIPHER_SUITE_TKIP:
334 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
335 if ((pairwise && key_idx) ||
336 params->mode != NL80211_KEY_RX_TX)
337 return -EINVAL;
338 break;
339 case WLAN_CIPHER_SUITE_CCMP:
340 case WLAN_CIPHER_SUITE_CCMP_256:
341 case WLAN_CIPHER_SUITE_GCMP:
342 case WLAN_CIPHER_SUITE_GCMP_256:
343 /* IEEE802.11-2016 allows only 0 and - when supporting
344 * Extended Key ID - 1 as index for pairwise keys.
345 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
346 * the driver supports Extended Key ID.
347 * @NL80211_KEY_SET_TX can't be set when installing and
348 * validating a key.
349 */
350 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
351 params->mode == NL80211_KEY_SET_TX)
352 return -EINVAL;
353 if (wiphy_ext_feature_isset(&rdev->wiphy,
354 NL80211_EXT_FEATURE_EXT_KEY_ID)) {
355 if (pairwise && (key_idx < 0 || key_idx > 1))
356 return -EINVAL;
357 } else if (pairwise && key_idx) {
358 return -EINVAL;
359 }
360 break;
361 case WLAN_CIPHER_SUITE_AES_CMAC:
362 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
363 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
364 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
365 /* Disallow BIP (group-only) cipher as pairwise cipher */
366 if (pairwise)
367 return -EINVAL;
368 if (key_idx < 4)
369 return -EINVAL;
370 break;
371 case WLAN_CIPHER_SUITE_WEP40:
372 case WLAN_CIPHER_SUITE_WEP104:
373 if (key_idx > 3)
374 return -EINVAL;
375 break;
376 default:
377 break;
378 }
379
380 switch (params->cipher) {
381 case WLAN_CIPHER_SUITE_WEP40:
382 if (params->key_len != WLAN_KEY_LEN_WEP40)
383 return -EINVAL;
384 break;
385 case WLAN_CIPHER_SUITE_TKIP:
386 if (params->key_len != WLAN_KEY_LEN_TKIP)
387 return -EINVAL;
388 break;
389 case WLAN_CIPHER_SUITE_CCMP:
390 if (params->key_len != WLAN_KEY_LEN_CCMP)
391 return -EINVAL;
392 break;
393 case WLAN_CIPHER_SUITE_CCMP_256:
394 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
395 return -EINVAL;
396 break;
397 case WLAN_CIPHER_SUITE_GCMP:
398 if (params->key_len != WLAN_KEY_LEN_GCMP)
399 return -EINVAL;
400 break;
401 case WLAN_CIPHER_SUITE_GCMP_256:
402 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
403 return -EINVAL;
404 break;
405 case WLAN_CIPHER_SUITE_WEP104:
406 if (params->key_len != WLAN_KEY_LEN_WEP104)
407 return -EINVAL;
408 break;
409 case WLAN_CIPHER_SUITE_AES_CMAC:
410 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
411 return -EINVAL;
412 break;
413 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
414 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
415 return -EINVAL;
416 break;
417 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
418 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
419 return -EINVAL;
420 break;
421 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
422 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
423 return -EINVAL;
424 break;
425 default:
426 /*
427 * We don't know anything about this algorithm,
428 * allow using it -- but the driver must check
429 * all parameters! We still check below whether
430 * or not the driver supports this algorithm,
431 * of course.
432 */
433 break;
434 }
435
436 if (params->seq) {
437 switch (params->cipher) {
438 case WLAN_CIPHER_SUITE_WEP40:
439 case WLAN_CIPHER_SUITE_WEP104:
440 /* These ciphers do not use key sequence */
441 return -EINVAL;
442 case WLAN_CIPHER_SUITE_TKIP:
443 case WLAN_CIPHER_SUITE_CCMP:
444 case WLAN_CIPHER_SUITE_CCMP_256:
445 case WLAN_CIPHER_SUITE_GCMP:
446 case WLAN_CIPHER_SUITE_GCMP_256:
447 case WLAN_CIPHER_SUITE_AES_CMAC:
448 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
449 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
450 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
451 if (params->seq_len != 6)
452 return -EINVAL;
453 break;
454 }
455 }
456
457 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
458 return -EINVAL;
459
460 return 0;
461 }
462
ieee80211_hdrlen(__le16 fc)463 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
464 {
465 unsigned int hdrlen = 24;
466
467 if (ieee80211_is_ext(fc)) {
468 hdrlen = 4;
469 goto out;
470 }
471
472 if (ieee80211_is_data(fc)) {
473 if (ieee80211_has_a4(fc))
474 hdrlen = 30;
475 if (ieee80211_is_data_qos(fc)) {
476 hdrlen += IEEE80211_QOS_CTL_LEN;
477 if (ieee80211_has_order(fc))
478 hdrlen += IEEE80211_HT_CTL_LEN;
479 }
480 goto out;
481 }
482
483 if (ieee80211_is_mgmt(fc)) {
484 if (ieee80211_has_order(fc))
485 hdrlen += IEEE80211_HT_CTL_LEN;
486 goto out;
487 }
488
489 if (ieee80211_is_ctl(fc)) {
490 /*
491 * ACK and CTS are 10 bytes, all others 16. To see how
492 * to get this condition consider
493 * subtype mask: 0b0000000011110000 (0x00F0)
494 * ACK subtype: 0b0000000011010000 (0x00D0)
495 * CTS subtype: 0b0000000011000000 (0x00C0)
496 * bits that matter: ^^^ (0x00E0)
497 * value of those: 0b0000000011000000 (0x00C0)
498 */
499 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
500 hdrlen = 10;
501 else
502 hdrlen = 16;
503 }
504 out:
505 return hdrlen;
506 }
507 EXPORT_SYMBOL(ieee80211_hdrlen);
508
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)509 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
510 {
511 const struct ieee80211_hdr *hdr =
512 (const struct ieee80211_hdr *)skb->data;
513 unsigned int hdrlen;
514
515 if (unlikely(skb->len < 10))
516 return 0;
517 hdrlen = ieee80211_hdrlen(hdr->frame_control);
518 if (unlikely(hdrlen > skb->len))
519 return 0;
520 return hdrlen;
521 }
522 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
523
__ieee80211_get_mesh_hdrlen(u8 flags)524 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
525 {
526 int ae = flags & MESH_FLAGS_AE;
527 /* 802.11-2012, 8.2.4.7.3 */
528 switch (ae) {
529 default:
530 case 0:
531 return 6;
532 case MESH_FLAGS_AE_A4:
533 return 12;
534 case MESH_FLAGS_AE_A5_A6:
535 return 18;
536 }
537 }
538
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)539 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
540 {
541 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
542 }
543 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
544
ieee80211_get_8023_tunnel_proto(const void * hdr,__be16 * proto)545 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto)
546 {
547 const __be16 *hdr_proto = hdr + ETH_ALEN;
548
549 if (!(ether_addr_equal(hdr, rfc1042_header) &&
550 *hdr_proto != htons(ETH_P_AARP) &&
551 *hdr_proto != htons(ETH_P_IPX)) &&
552 !ether_addr_equal(hdr, bridge_tunnel_header))
553 return false;
554
555 *proto = *hdr_proto;
556
557 return true;
558 }
559 EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto);
560
ieee80211_strip_8023_mesh_hdr(struct sk_buff * skb)561 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb)
562 {
563 const void *mesh_addr;
564 struct {
565 struct ethhdr eth;
566 u8 flags;
567 } payload;
568 int hdrlen;
569 int ret;
570
571 ret = skb_copy_bits(skb, 0, &payload, sizeof(payload));
572 if (ret)
573 return ret;
574
575 hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags);
576
577 if (likely(pskb_may_pull(skb, hdrlen + 8) &&
578 ieee80211_get_8023_tunnel_proto(skb->data + hdrlen,
579 &payload.eth.h_proto)))
580 hdrlen += ETH_ALEN + 2;
581 else if (!pskb_may_pull(skb, hdrlen))
582 return -EINVAL;
583 else
584 payload.eth.h_proto = htons(skb->len - hdrlen);
585
586 mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN;
587 switch (payload.flags & MESH_FLAGS_AE) {
588 case MESH_FLAGS_AE_A4:
589 memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN);
590 break;
591 case MESH_FLAGS_AE_A5_A6:
592 memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN);
593 break;
594 default:
595 break;
596 }
597
598 pskb_pull(skb, hdrlen - sizeof(payload.eth));
599 memcpy(skb->data, &payload.eth, sizeof(payload.eth));
600
601 return 0;
602 }
603 EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr);
604
ieee80211_data_to_8023_exthdr(struct sk_buff * skb,struct ethhdr * ehdr,const u8 * addr,enum nl80211_iftype iftype,u8 data_offset,bool is_amsdu)605 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
606 const u8 *addr, enum nl80211_iftype iftype,
607 u8 data_offset, bool is_amsdu)
608 {
609 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
610 struct {
611 u8 hdr[ETH_ALEN] __aligned(2);
612 __be16 proto;
613 } payload;
614 struct ethhdr tmp;
615 u16 hdrlen;
616
617 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
618 return -1;
619
620 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
621 if (skb->len < hdrlen)
622 return -1;
623
624 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
625 * header
626 * IEEE 802.11 address fields:
627 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
628 * 0 0 DA SA BSSID n/a
629 * 0 1 DA BSSID SA n/a
630 * 1 0 BSSID SA DA n/a
631 * 1 1 RA TA DA SA
632 */
633 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
634 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
635
636 switch (hdr->frame_control &
637 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
638 case cpu_to_le16(IEEE80211_FCTL_TODS):
639 if (unlikely(iftype != NL80211_IFTYPE_AP &&
640 iftype != NL80211_IFTYPE_AP_VLAN &&
641 iftype != NL80211_IFTYPE_P2P_GO))
642 return -1;
643 break;
644 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
645 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
646 iftype != NL80211_IFTYPE_AP_VLAN &&
647 iftype != NL80211_IFTYPE_STATION))
648 return -1;
649 break;
650 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
651 if ((iftype != NL80211_IFTYPE_STATION &&
652 iftype != NL80211_IFTYPE_P2P_CLIENT &&
653 iftype != NL80211_IFTYPE_MESH_POINT) ||
654 (is_multicast_ether_addr(tmp.h_dest) &&
655 ether_addr_equal(tmp.h_source, addr)))
656 return -1;
657 break;
658 case cpu_to_le16(0):
659 if (iftype != NL80211_IFTYPE_ADHOC &&
660 iftype != NL80211_IFTYPE_STATION &&
661 iftype != NL80211_IFTYPE_OCB)
662 return -1;
663 break;
664 }
665
666 if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT &&
667 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
668 ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) {
669 /* remove RFC1042 or Bridge-Tunnel encapsulation */
670 hdrlen += ETH_ALEN + 2;
671 skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
672 } else {
673 tmp.h_proto = htons(skb->len - hdrlen);
674 }
675
676 pskb_pull(skb, hdrlen);
677
678 if (!ehdr)
679 ehdr = skb_push(skb, sizeof(struct ethhdr));
680 memcpy(ehdr, &tmp, sizeof(tmp));
681
682 return 0;
683 }
684 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
685
686 static void
__frame_add_frag(struct sk_buff * skb,struct page * page,void * ptr,int len,int size)687 __frame_add_frag(struct sk_buff *skb, struct page *page,
688 void *ptr, int len, int size)
689 {
690 struct skb_shared_info *sh = skb_shinfo(skb);
691 int page_offset;
692
693 get_page(page);
694 page_offset = ptr - page_address(page);
695 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
696 }
697
698 static void
__ieee80211_amsdu_copy_frag(struct sk_buff * skb,struct sk_buff * frame,int offset,int len)699 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
700 int offset, int len)
701 {
702 struct skb_shared_info *sh = skb_shinfo(skb);
703 const skb_frag_t *frag = &sh->frags[0];
704 struct page *frag_page;
705 void *frag_ptr;
706 int frag_len, frag_size;
707 int head_size = skb->len - skb->data_len;
708 int cur_len;
709
710 frag_page = virt_to_head_page(skb->head);
711 frag_ptr = skb->data;
712 frag_size = head_size;
713
714 while (offset >= frag_size) {
715 offset -= frag_size;
716 frag_page = skb_frag_page(frag);
717 frag_ptr = skb_frag_address(frag);
718 frag_size = skb_frag_size(frag);
719 frag++;
720 }
721
722 frag_ptr += offset;
723 frag_len = frag_size - offset;
724
725 cur_len = min(len, frag_len);
726
727 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
728 len -= cur_len;
729
730 while (len > 0) {
731 frag_len = skb_frag_size(frag);
732 cur_len = min(len, frag_len);
733 __frame_add_frag(frame, skb_frag_page(frag),
734 skb_frag_address(frag), cur_len, frag_len);
735 len -= cur_len;
736 frag++;
737 }
738 }
739
740 static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff * skb,unsigned int hlen,int offset,int len,bool reuse_frag,int min_len)741 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
742 int offset, int len, bool reuse_frag,
743 int min_len)
744 {
745 struct sk_buff *frame;
746 int cur_len = len;
747
748 if (skb->len - offset < len)
749 return NULL;
750
751 /*
752 * When reusing framents, copy some data to the head to simplify
753 * ethernet header handling and speed up protocol header processing
754 * in the stack later.
755 */
756 if (reuse_frag)
757 cur_len = min_t(int, len, min_len);
758
759 /*
760 * Allocate and reserve two bytes more for payload
761 * alignment since sizeof(struct ethhdr) is 14.
762 */
763 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
764 if (!frame)
765 return NULL;
766
767 frame->priority = skb->priority;
768 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
769 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
770
771 len -= cur_len;
772 if (!len)
773 return frame;
774
775 offset += cur_len;
776 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
777
778 return frame;
779 }
780
781 static u16
ieee80211_amsdu_subframe_length(void * field,u8 mesh_flags,u8 hdr_type)782 ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type)
783 {
784 __le16 *field_le = field;
785 __be16 *field_be = field;
786 u16 len;
787
788 if (hdr_type >= 2)
789 len = le16_to_cpu(*field_le);
790 else
791 len = be16_to_cpu(*field_be);
792 if (hdr_type)
793 len += __ieee80211_get_mesh_hdrlen(mesh_flags);
794
795 return len;
796 }
797
ieee80211_is_valid_amsdu(struct sk_buff * skb,u8 mesh_hdr)798 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr)
799 {
800 int offset = 0, subframe_len, padding;
801
802 for (offset = 0; offset < skb->len; offset += subframe_len + padding) {
803 int remaining = skb->len - offset;
804 struct {
805 __be16 len;
806 u8 mesh_flags;
807 } hdr;
808 u16 len;
809
810 if (sizeof(hdr) > remaining)
811 return false;
812
813 if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0)
814 return false;
815
816 len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags,
817 mesh_hdr);
818 subframe_len = sizeof(struct ethhdr) + len;
819 padding = (4 - subframe_len) & 0x3;
820
821 if (subframe_len > remaining)
822 return false;
823 }
824
825 return true;
826 }
827 EXPORT_SYMBOL(ieee80211_is_valid_amsdu);
828
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,const u8 * check_da,const u8 * check_sa,u8 mesh_control)829 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
830 const u8 *addr, enum nl80211_iftype iftype,
831 const unsigned int extra_headroom,
832 const u8 *check_da, const u8 *check_sa,
833 u8 mesh_control)
834 {
835 unsigned int hlen = ALIGN(extra_headroom, 4);
836 struct sk_buff *frame = NULL;
837 int offset = 0;
838 struct {
839 struct ethhdr eth;
840 uint8_t flags;
841 } hdr;
842 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
843 bool reuse_skb = false;
844 bool last = false;
845 int copy_len = sizeof(hdr.eth);
846
847 if (iftype == NL80211_IFTYPE_MESH_POINT)
848 copy_len = sizeof(hdr);
849
850 while (!last) {
851 int remaining = skb->len - offset;
852 unsigned int subframe_len;
853 int len, mesh_len = 0;
854 u8 padding;
855
856 if (copy_len > remaining)
857 goto purge;
858
859 skb_copy_bits(skb, offset, &hdr, copy_len);
860 if (iftype == NL80211_IFTYPE_MESH_POINT)
861 mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags);
862 len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags,
863 mesh_control);
864 subframe_len = sizeof(struct ethhdr) + len;
865 padding = (4 - subframe_len) & 0x3;
866
867 /* the last MSDU has no padding */
868 if (subframe_len > remaining)
869 goto purge;
870 /* mitigate A-MSDU aggregation injection attacks */
871 if (ether_addr_equal(hdr.eth.h_dest, rfc1042_header))
872 goto purge;
873
874 offset += sizeof(struct ethhdr);
875 last = remaining <= subframe_len + padding;
876
877 /* FIXME: should we really accept multicast DA? */
878 if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) &&
879 !ether_addr_equal(check_da, hdr.eth.h_dest)) ||
880 (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) {
881 offset += len + padding;
882 continue;
883 }
884
885 /* reuse skb for the last subframe */
886 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
887 skb_pull(skb, offset);
888 frame = skb;
889 reuse_skb = true;
890 } else {
891 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
892 reuse_frag, 32 + mesh_len);
893 if (!frame)
894 goto purge;
895
896 offset += len + padding;
897 }
898
899 skb_reset_network_header(frame);
900 frame->dev = skb->dev;
901 frame->priority = skb->priority;
902
903 if (likely(iftype != NL80211_IFTYPE_MESH_POINT &&
904 ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto)))
905 skb_pull(frame, ETH_ALEN + 2);
906
907 memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth));
908 __skb_queue_tail(list, frame);
909 }
910
911 if (!reuse_skb)
912 dev_kfree_skb(skb);
913
914 return;
915
916 purge:
917 __skb_queue_purge(list);
918 dev_kfree_skb(skb);
919 }
920 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
921
922 /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb,struct cfg80211_qos_map * qos_map)923 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
924 struct cfg80211_qos_map *qos_map)
925 {
926 unsigned int dscp;
927 unsigned char vlan_priority;
928 unsigned int ret;
929
930 /* skb->priority values from 256->263 are magic values to
931 * directly indicate a specific 802.1d priority. This is used
932 * to allow 802.1d priority to be passed directly in from VLAN
933 * tags, etc.
934 */
935 if (skb->priority >= 256 && skb->priority <= 263) {
936 ret = skb->priority - 256;
937 goto out;
938 }
939
940 if (skb_vlan_tag_present(skb)) {
941 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
942 >> VLAN_PRIO_SHIFT;
943 if (vlan_priority > 0) {
944 ret = vlan_priority;
945 goto out;
946 }
947 }
948
949 switch (skb->protocol) {
950 case htons(ETH_P_IP):
951 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
952 break;
953 case htons(ETH_P_IPV6):
954 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
955 break;
956 case htons(ETH_P_MPLS_UC):
957 case htons(ETH_P_MPLS_MC): {
958 struct mpls_label mpls_tmp, *mpls;
959
960 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
961 sizeof(*mpls), &mpls_tmp);
962 if (!mpls)
963 return 0;
964
965 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
966 >> MPLS_LS_TC_SHIFT;
967 goto out;
968 }
969 case htons(ETH_P_80221):
970 /* 802.21 is always network control traffic */
971 return 7;
972 default:
973 return 0;
974 }
975
976 if (qos_map) {
977 unsigned int i, tmp_dscp = dscp >> 2;
978
979 for (i = 0; i < qos_map->num_des; i++) {
980 if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
981 ret = qos_map->dscp_exception[i].up;
982 goto out;
983 }
984 }
985
986 for (i = 0; i < 8; i++) {
987 if (tmp_dscp >= qos_map->up[i].low &&
988 tmp_dscp <= qos_map->up[i].high) {
989 ret = i;
990 goto out;
991 }
992 }
993 }
994
995 ret = dscp >> 5;
996 out:
997 return array_index_nospec(ret, IEEE80211_NUM_TIDS);
998 }
999 EXPORT_SYMBOL(cfg80211_classify8021d);
1000
ieee80211_bss_get_elem(struct cfg80211_bss * bss,u8 id)1001 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
1002 {
1003 const struct cfg80211_bss_ies *ies;
1004
1005 ies = rcu_dereference(bss->ies);
1006 if (!ies)
1007 return NULL;
1008
1009 return cfg80211_find_elem(id, ies->data, ies->len);
1010 }
1011 EXPORT_SYMBOL(ieee80211_bss_get_elem);
1012
cfg80211_upload_connect_keys(struct wireless_dev * wdev)1013 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
1014 {
1015 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
1016 struct net_device *dev = wdev->netdev;
1017 int i;
1018
1019 if (!wdev->connect_keys)
1020 return;
1021
1022 for (i = 0; i < 4; i++) {
1023 if (!wdev->connect_keys->params[i].cipher)
1024 continue;
1025 if (rdev_add_key(rdev, dev, -1, i, false, NULL,
1026 &wdev->connect_keys->params[i])) {
1027 netdev_err(dev, "failed to set key %d\n", i);
1028 continue;
1029 }
1030 if (wdev->connect_keys->def == i &&
1031 rdev_set_default_key(rdev, dev, -1, i, true, true)) {
1032 netdev_err(dev, "failed to set defkey %d\n", i);
1033 continue;
1034 }
1035 }
1036
1037 kfree_sensitive(wdev->connect_keys);
1038 wdev->connect_keys = NULL;
1039 }
1040
cfg80211_process_wdev_events(struct wireless_dev * wdev)1041 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
1042 {
1043 struct cfg80211_event *ev;
1044 unsigned long flags;
1045
1046 spin_lock_irqsave(&wdev->event_lock, flags);
1047 while (!list_empty(&wdev->event_list)) {
1048 ev = list_first_entry(&wdev->event_list,
1049 struct cfg80211_event, list);
1050 list_del(&ev->list);
1051 spin_unlock_irqrestore(&wdev->event_lock, flags);
1052
1053 wdev_lock(wdev);
1054 switch (ev->type) {
1055 case EVENT_CONNECT_RESULT:
1056 __cfg80211_connect_result(
1057 wdev->netdev,
1058 &ev->cr,
1059 ev->cr.status == WLAN_STATUS_SUCCESS);
1060 break;
1061 case EVENT_ROAMED:
1062 __cfg80211_roamed(wdev, &ev->rm);
1063 break;
1064 case EVENT_DISCONNECTED:
1065 __cfg80211_disconnected(wdev->netdev,
1066 ev->dc.ie, ev->dc.ie_len,
1067 ev->dc.reason,
1068 !ev->dc.locally_generated);
1069 break;
1070 case EVENT_IBSS_JOINED:
1071 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
1072 ev->ij.channel);
1073 break;
1074 case EVENT_STOPPED:
1075 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
1076 break;
1077 case EVENT_PORT_AUTHORIZED:
1078 __cfg80211_port_authorized(wdev, ev->pa.bssid,
1079 ev->pa.td_bitmap,
1080 ev->pa.td_bitmap_len);
1081 break;
1082 }
1083 wdev_unlock(wdev);
1084
1085 kfree(ev);
1086
1087 spin_lock_irqsave(&wdev->event_lock, flags);
1088 }
1089 spin_unlock_irqrestore(&wdev->event_lock, flags);
1090 }
1091
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)1092 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1093 {
1094 struct wireless_dev *wdev;
1095
1096 lockdep_assert_held(&rdev->wiphy.mtx);
1097
1098 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1099 cfg80211_process_wdev_events(wdev);
1100 }
1101
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,struct vif_params * params)1102 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1103 struct net_device *dev, enum nl80211_iftype ntype,
1104 struct vif_params *params)
1105 {
1106 int err;
1107 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1108
1109 lockdep_assert_held(&rdev->wiphy.mtx);
1110
1111 /* don't support changing VLANs, you just re-create them */
1112 if (otype == NL80211_IFTYPE_AP_VLAN)
1113 return -EOPNOTSUPP;
1114
1115 /* cannot change into P2P device or NAN */
1116 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1117 ntype == NL80211_IFTYPE_NAN)
1118 return -EOPNOTSUPP;
1119
1120 if (!rdev->ops->change_virtual_intf ||
1121 !(rdev->wiphy.interface_modes & (1 << ntype)))
1122 return -EOPNOTSUPP;
1123
1124 if (ntype != otype) {
1125 /* if it's part of a bridge, reject changing type to station/ibss */
1126 if (netif_is_bridge_port(dev) &&
1127 (ntype == NL80211_IFTYPE_ADHOC ||
1128 ntype == NL80211_IFTYPE_STATION ||
1129 ntype == NL80211_IFTYPE_P2P_CLIENT))
1130 return -EBUSY;
1131
1132 dev->ieee80211_ptr->use_4addr = false;
1133 wdev_lock(dev->ieee80211_ptr);
1134 rdev_set_qos_map(rdev, dev, NULL);
1135 wdev_unlock(dev->ieee80211_ptr);
1136
1137 switch (otype) {
1138 case NL80211_IFTYPE_AP:
1139 case NL80211_IFTYPE_P2P_GO:
1140 cfg80211_stop_ap(rdev, dev, -1, true);
1141 break;
1142 case NL80211_IFTYPE_ADHOC:
1143 cfg80211_leave_ibss(rdev, dev, false);
1144 break;
1145 case NL80211_IFTYPE_STATION:
1146 case NL80211_IFTYPE_P2P_CLIENT:
1147 wdev_lock(dev->ieee80211_ptr);
1148 cfg80211_disconnect(rdev, dev,
1149 WLAN_REASON_DEAUTH_LEAVING, true);
1150 wdev_unlock(dev->ieee80211_ptr);
1151 break;
1152 case NL80211_IFTYPE_MESH_POINT:
1153 /* mesh should be handled? */
1154 break;
1155 case NL80211_IFTYPE_OCB:
1156 cfg80211_leave_ocb(rdev, dev);
1157 break;
1158 default:
1159 break;
1160 }
1161
1162 cfg80211_process_rdev_events(rdev);
1163 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1164
1165 memset(&dev->ieee80211_ptr->u, 0,
1166 sizeof(dev->ieee80211_ptr->u));
1167 memset(&dev->ieee80211_ptr->links, 0,
1168 sizeof(dev->ieee80211_ptr->links));
1169 }
1170
1171 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1172
1173 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1174
1175 if (!err && params && params->use_4addr != -1)
1176 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1177
1178 if (!err) {
1179 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1180 switch (ntype) {
1181 case NL80211_IFTYPE_STATION:
1182 if (dev->ieee80211_ptr->use_4addr)
1183 break;
1184 fallthrough;
1185 case NL80211_IFTYPE_OCB:
1186 case NL80211_IFTYPE_P2P_CLIENT:
1187 case NL80211_IFTYPE_ADHOC:
1188 dev->priv_flags |= IFF_DONT_BRIDGE;
1189 break;
1190 case NL80211_IFTYPE_P2P_GO:
1191 case NL80211_IFTYPE_AP:
1192 case NL80211_IFTYPE_AP_VLAN:
1193 case NL80211_IFTYPE_MESH_POINT:
1194 /* bridging OK */
1195 break;
1196 case NL80211_IFTYPE_MONITOR:
1197 /* monitor can't bridge anyway */
1198 break;
1199 case NL80211_IFTYPE_UNSPECIFIED:
1200 case NUM_NL80211_IFTYPES:
1201 /* not happening */
1202 break;
1203 case NL80211_IFTYPE_P2P_DEVICE:
1204 case NL80211_IFTYPE_WDS:
1205 case NL80211_IFTYPE_NAN:
1206 WARN_ON(1);
1207 break;
1208 }
1209 }
1210
1211 if (!err && ntype != otype && netif_running(dev)) {
1212 cfg80211_update_iface_num(rdev, ntype, 1);
1213 cfg80211_update_iface_num(rdev, otype, -1);
1214 }
1215
1216 return err;
1217 }
1218
cfg80211_calculate_bitrate_ht(struct rate_info * rate)1219 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1220 {
1221 int modulation, streams, bitrate;
1222
1223 /* the formula below does only work for MCS values smaller than 32 */
1224 if (WARN_ON_ONCE(rate->mcs >= 32))
1225 return 0;
1226
1227 modulation = rate->mcs & 7;
1228 streams = (rate->mcs >> 3) + 1;
1229
1230 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1231
1232 if (modulation < 4)
1233 bitrate *= (modulation + 1);
1234 else if (modulation == 4)
1235 bitrate *= (modulation + 2);
1236 else
1237 bitrate *= (modulation + 3);
1238
1239 bitrate *= streams;
1240
1241 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1242 bitrate = (bitrate / 9) * 10;
1243
1244 /* do NOT round down here */
1245 return (bitrate + 50000) / 100000;
1246 }
1247
cfg80211_calculate_bitrate_dmg(struct rate_info * rate)1248 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1249 {
1250 static const u32 __mcs2bitrate[] = {
1251 /* control PHY */
1252 [0] = 275,
1253 /* SC PHY */
1254 [1] = 3850,
1255 [2] = 7700,
1256 [3] = 9625,
1257 [4] = 11550,
1258 [5] = 12512, /* 1251.25 mbps */
1259 [6] = 15400,
1260 [7] = 19250,
1261 [8] = 23100,
1262 [9] = 25025,
1263 [10] = 30800,
1264 [11] = 38500,
1265 [12] = 46200,
1266 /* OFDM PHY */
1267 [13] = 6930,
1268 [14] = 8662, /* 866.25 mbps */
1269 [15] = 13860,
1270 [16] = 17325,
1271 [17] = 20790,
1272 [18] = 27720,
1273 [19] = 34650,
1274 [20] = 41580,
1275 [21] = 45045,
1276 [22] = 51975,
1277 [23] = 62370,
1278 [24] = 67568, /* 6756.75 mbps */
1279 /* LP-SC PHY */
1280 [25] = 6260,
1281 [26] = 8340,
1282 [27] = 11120,
1283 [28] = 12510,
1284 [29] = 16680,
1285 [30] = 22240,
1286 [31] = 25030,
1287 };
1288
1289 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1290 return 0;
1291
1292 return __mcs2bitrate[rate->mcs];
1293 }
1294
cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info * rate)1295 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1296 {
1297 static const u32 __mcs2bitrate[] = {
1298 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1299 [7 - 6] = 50050, /* MCS 12.1 */
1300 [8 - 6] = 53900,
1301 [9 - 6] = 57750,
1302 [10 - 6] = 63900,
1303 [11 - 6] = 75075,
1304 [12 - 6] = 80850,
1305 };
1306
1307 /* Extended SC MCS not defined for base MCS below 6 or above 12 */
1308 if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1309 return 0;
1310
1311 return __mcs2bitrate[rate->mcs - 6];
1312 }
1313
cfg80211_calculate_bitrate_edmg(struct rate_info * rate)1314 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1315 {
1316 static const u32 __mcs2bitrate[] = {
1317 /* control PHY */
1318 [0] = 275,
1319 /* SC PHY */
1320 [1] = 3850,
1321 [2] = 7700,
1322 [3] = 9625,
1323 [4] = 11550,
1324 [5] = 12512, /* 1251.25 mbps */
1325 [6] = 13475,
1326 [7] = 15400,
1327 [8] = 19250,
1328 [9] = 23100,
1329 [10] = 25025,
1330 [11] = 26950,
1331 [12] = 30800,
1332 [13] = 38500,
1333 [14] = 46200,
1334 [15] = 50050,
1335 [16] = 53900,
1336 [17] = 57750,
1337 [18] = 69300,
1338 [19] = 75075,
1339 [20] = 80850,
1340 };
1341
1342 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1343 return 0;
1344
1345 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1346 }
1347
cfg80211_calculate_bitrate_vht(struct rate_info * rate)1348 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1349 {
1350 static const u32 base[4][12] = {
1351 { 6500000,
1352 13000000,
1353 19500000,
1354 26000000,
1355 39000000,
1356 52000000,
1357 58500000,
1358 65000000,
1359 78000000,
1360 /* not in the spec, but some devices use this: */
1361 86700000,
1362 97500000,
1363 108300000,
1364 },
1365 { 13500000,
1366 27000000,
1367 40500000,
1368 54000000,
1369 81000000,
1370 108000000,
1371 121500000,
1372 135000000,
1373 162000000,
1374 180000000,
1375 202500000,
1376 225000000,
1377 },
1378 { 29300000,
1379 58500000,
1380 87800000,
1381 117000000,
1382 175500000,
1383 234000000,
1384 263300000,
1385 292500000,
1386 351000000,
1387 390000000,
1388 438800000,
1389 487500000,
1390 },
1391 { 58500000,
1392 117000000,
1393 175500000,
1394 234000000,
1395 351000000,
1396 468000000,
1397 526500000,
1398 585000000,
1399 702000000,
1400 780000000,
1401 877500000,
1402 975000000,
1403 },
1404 };
1405 u32 bitrate;
1406 int idx;
1407
1408 if (rate->mcs > 11)
1409 goto warn;
1410
1411 switch (rate->bw) {
1412 case RATE_INFO_BW_160:
1413 idx = 3;
1414 break;
1415 case RATE_INFO_BW_80:
1416 idx = 2;
1417 break;
1418 case RATE_INFO_BW_40:
1419 idx = 1;
1420 break;
1421 case RATE_INFO_BW_5:
1422 case RATE_INFO_BW_10:
1423 default:
1424 goto warn;
1425 case RATE_INFO_BW_20:
1426 idx = 0;
1427 }
1428
1429 bitrate = base[idx][rate->mcs];
1430 bitrate *= rate->nss;
1431
1432 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1433 bitrate = (bitrate / 9) * 10;
1434
1435 /* do NOT round down here */
1436 return (bitrate + 50000) / 100000;
1437 warn:
1438 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1439 rate->bw, rate->mcs, rate->nss);
1440 return 0;
1441 }
1442
cfg80211_calculate_bitrate_he(struct rate_info * rate)1443 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1444 {
1445 #define SCALE 6144
1446 u32 mcs_divisors[14] = {
1447 102399, /* 16.666666... */
1448 51201, /* 8.333333... */
1449 34134, /* 5.555555... */
1450 25599, /* 4.166666... */
1451 17067, /* 2.777777... */
1452 12801, /* 2.083333... */
1453 11377, /* 1.851725... */
1454 10239, /* 1.666666... */
1455 8532, /* 1.388888... */
1456 7680, /* 1.250000... */
1457 6828, /* 1.111111... */
1458 6144, /* 1.000000... */
1459 5690, /* 0.926106... */
1460 5120, /* 0.833333... */
1461 };
1462 u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1463 u32 rates_996[3] = { 480388888, 453700000, 408333333 };
1464 u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1465 u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1466 u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1467 u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1468 u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1469 u64 tmp;
1470 u32 result;
1471
1472 if (WARN_ON_ONCE(rate->mcs > 13))
1473 return 0;
1474
1475 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1476 return 0;
1477 if (WARN_ON_ONCE(rate->he_ru_alloc >
1478 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1479 return 0;
1480 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1481 return 0;
1482
1483 if (rate->bw == RATE_INFO_BW_160 ||
1484 (rate->bw == RATE_INFO_BW_HE_RU &&
1485 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1486 result = rates_160M[rate->he_gi];
1487 else if (rate->bw == RATE_INFO_BW_80 ||
1488 (rate->bw == RATE_INFO_BW_HE_RU &&
1489 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1490 result = rates_996[rate->he_gi];
1491 else if (rate->bw == RATE_INFO_BW_40 ||
1492 (rate->bw == RATE_INFO_BW_HE_RU &&
1493 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1494 result = rates_484[rate->he_gi];
1495 else if (rate->bw == RATE_INFO_BW_20 ||
1496 (rate->bw == RATE_INFO_BW_HE_RU &&
1497 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1498 result = rates_242[rate->he_gi];
1499 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1500 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1501 result = rates_106[rate->he_gi];
1502 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1503 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1504 result = rates_52[rate->he_gi];
1505 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1506 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1507 result = rates_26[rate->he_gi];
1508 else {
1509 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1510 rate->bw, rate->he_ru_alloc);
1511 return 0;
1512 }
1513
1514 /* now scale to the appropriate MCS */
1515 tmp = result;
1516 tmp *= SCALE;
1517 do_div(tmp, mcs_divisors[rate->mcs]);
1518 result = tmp;
1519
1520 /* and take NSS, DCM into account */
1521 result = (result * rate->nss) / 8;
1522 if (rate->he_dcm)
1523 result /= 2;
1524
1525 return result / 10000;
1526 }
1527
cfg80211_calculate_bitrate_eht(struct rate_info * rate)1528 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1529 {
1530 #define SCALE 6144
1531 static const u32 mcs_divisors[16] = {
1532 102399, /* 16.666666... */
1533 51201, /* 8.333333... */
1534 34134, /* 5.555555... */
1535 25599, /* 4.166666... */
1536 17067, /* 2.777777... */
1537 12801, /* 2.083333... */
1538 11377, /* 1.851725... */
1539 10239, /* 1.666666... */
1540 8532, /* 1.388888... */
1541 7680, /* 1.250000... */
1542 6828, /* 1.111111... */
1543 6144, /* 1.000000... */
1544 5690, /* 0.926106... */
1545 5120, /* 0.833333... */
1546 409600, /* 66.666666... */
1547 204800, /* 33.333333... */
1548 };
1549 static const u32 rates_996[3] = { 480388888, 453700000, 408333333 };
1550 static const u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1551 static const u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1552 static const u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1553 static const u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1554 static const u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1555 u64 tmp;
1556 u32 result;
1557
1558 if (WARN_ON_ONCE(rate->mcs > 15))
1559 return 0;
1560 if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1561 return 0;
1562 if (WARN_ON_ONCE(rate->eht_ru_alloc >
1563 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1564 return 0;
1565 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1566 return 0;
1567
1568 /* Bandwidth checks for MCS 14 */
1569 if (rate->mcs == 14) {
1570 if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1571 rate->bw != RATE_INFO_BW_80 &&
1572 rate->bw != RATE_INFO_BW_160 &&
1573 rate->bw != RATE_INFO_BW_320) ||
1574 (rate->bw == RATE_INFO_BW_EHT_RU &&
1575 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1576 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1577 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1578 WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1579 rate->bw, rate->eht_ru_alloc);
1580 return 0;
1581 }
1582 }
1583
1584 if (rate->bw == RATE_INFO_BW_320 ||
1585 (rate->bw == RATE_INFO_BW_EHT_RU &&
1586 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1587 result = 4 * rates_996[rate->eht_gi];
1588 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1589 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1590 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1591 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1592 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1593 result = 3 * rates_996[rate->eht_gi];
1594 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1595 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1596 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1597 else if (rate->bw == RATE_INFO_BW_160 ||
1598 (rate->bw == RATE_INFO_BW_EHT_RU &&
1599 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1600 result = 2 * rates_996[rate->eht_gi];
1601 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1602 rate->eht_ru_alloc ==
1603 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1604 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1605 + rates_242[rate->eht_gi];
1606 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1607 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1608 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1609 else if (rate->bw == RATE_INFO_BW_80 ||
1610 (rate->bw == RATE_INFO_BW_EHT_RU &&
1611 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1612 result = rates_996[rate->eht_gi];
1613 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1614 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1615 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1616 else if (rate->bw == RATE_INFO_BW_40 ||
1617 (rate->bw == RATE_INFO_BW_EHT_RU &&
1618 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1619 result = rates_484[rate->eht_gi];
1620 else if (rate->bw == RATE_INFO_BW_20 ||
1621 (rate->bw == RATE_INFO_BW_EHT_RU &&
1622 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1623 result = rates_242[rate->eht_gi];
1624 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1625 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1626 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1627 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1628 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1629 result = rates_106[rate->eht_gi];
1630 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1631 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1632 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1633 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1634 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1635 result = rates_52[rate->eht_gi];
1636 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1637 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1638 result = rates_26[rate->eht_gi];
1639 else {
1640 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1641 rate->bw, rate->eht_ru_alloc);
1642 return 0;
1643 }
1644
1645 /* now scale to the appropriate MCS */
1646 tmp = result;
1647 tmp *= SCALE;
1648 do_div(tmp, mcs_divisors[rate->mcs]);
1649
1650 /* and take NSS */
1651 tmp *= rate->nss;
1652 do_div(tmp, 8);
1653
1654 result = tmp;
1655
1656 return result / 10000;
1657 }
1658
cfg80211_calculate_bitrate_s1g(struct rate_info * rate)1659 static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate)
1660 {
1661 /* For 1, 2, 4, 8 and 16 MHz channels */
1662 static const u32 base[5][11] = {
1663 { 300000,
1664 600000,
1665 900000,
1666 1200000,
1667 1800000,
1668 2400000,
1669 2700000,
1670 3000000,
1671 3600000,
1672 4000000,
1673 /* MCS 10 supported in 1 MHz only */
1674 150000,
1675 },
1676 { 650000,
1677 1300000,
1678 1950000,
1679 2600000,
1680 3900000,
1681 5200000,
1682 5850000,
1683 6500000,
1684 7800000,
1685 /* MCS 9 not valid */
1686 },
1687 { 1350000,
1688 2700000,
1689 4050000,
1690 5400000,
1691 8100000,
1692 10800000,
1693 12150000,
1694 13500000,
1695 16200000,
1696 18000000,
1697 },
1698 { 2925000,
1699 5850000,
1700 8775000,
1701 11700000,
1702 17550000,
1703 23400000,
1704 26325000,
1705 29250000,
1706 35100000,
1707 39000000,
1708 },
1709 { 8580000,
1710 11700000,
1711 17550000,
1712 23400000,
1713 35100000,
1714 46800000,
1715 52650000,
1716 58500000,
1717 70200000,
1718 78000000,
1719 },
1720 };
1721 u32 bitrate;
1722 /* default is 1 MHz index */
1723 int idx = 0;
1724
1725 if (rate->mcs >= 11)
1726 goto warn;
1727
1728 switch (rate->bw) {
1729 case RATE_INFO_BW_16:
1730 idx = 4;
1731 break;
1732 case RATE_INFO_BW_8:
1733 idx = 3;
1734 break;
1735 case RATE_INFO_BW_4:
1736 idx = 2;
1737 break;
1738 case RATE_INFO_BW_2:
1739 idx = 1;
1740 break;
1741 case RATE_INFO_BW_1:
1742 idx = 0;
1743 break;
1744 case RATE_INFO_BW_5:
1745 case RATE_INFO_BW_10:
1746 case RATE_INFO_BW_20:
1747 case RATE_INFO_BW_40:
1748 case RATE_INFO_BW_80:
1749 case RATE_INFO_BW_160:
1750 default:
1751 goto warn;
1752 }
1753
1754 bitrate = base[idx][rate->mcs];
1755 bitrate *= rate->nss;
1756
1757 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1758 bitrate = (bitrate / 9) * 10;
1759 /* do NOT round down here */
1760 return (bitrate + 50000) / 100000;
1761 warn:
1762 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1763 rate->bw, rate->mcs, rate->nss);
1764 return 0;
1765 }
1766
cfg80211_calculate_bitrate(struct rate_info * rate)1767 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1768 {
1769 if (rate->flags & RATE_INFO_FLAGS_MCS)
1770 return cfg80211_calculate_bitrate_ht(rate);
1771 if (rate->flags & RATE_INFO_FLAGS_DMG)
1772 return cfg80211_calculate_bitrate_dmg(rate);
1773 if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1774 return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1775 if (rate->flags & RATE_INFO_FLAGS_EDMG)
1776 return cfg80211_calculate_bitrate_edmg(rate);
1777 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1778 return cfg80211_calculate_bitrate_vht(rate);
1779 if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1780 return cfg80211_calculate_bitrate_he(rate);
1781 if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1782 return cfg80211_calculate_bitrate_eht(rate);
1783 if (rate->flags & RATE_INFO_FLAGS_S1G_MCS)
1784 return cfg80211_calculate_bitrate_s1g(rate);
1785
1786 return rate->legacy;
1787 }
1788 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1789
cfg80211_get_p2p_attr(const u8 * ies,unsigned int len,enum ieee80211_p2p_attr_id attr,u8 * buf,unsigned int bufsize)1790 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1791 enum ieee80211_p2p_attr_id attr,
1792 u8 *buf, unsigned int bufsize)
1793 {
1794 u8 *out = buf;
1795 u16 attr_remaining = 0;
1796 bool desired_attr = false;
1797 u16 desired_len = 0;
1798
1799 while (len > 0) {
1800 unsigned int iedatalen;
1801 unsigned int copy;
1802 const u8 *iedata;
1803
1804 if (len < 2)
1805 return -EILSEQ;
1806 iedatalen = ies[1];
1807 if (iedatalen + 2 > len)
1808 return -EILSEQ;
1809
1810 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1811 goto cont;
1812
1813 if (iedatalen < 4)
1814 goto cont;
1815
1816 iedata = ies + 2;
1817
1818 /* check WFA OUI, P2P subtype */
1819 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1820 iedata[2] != 0x9a || iedata[3] != 0x09)
1821 goto cont;
1822
1823 iedatalen -= 4;
1824 iedata += 4;
1825
1826 /* check attribute continuation into this IE */
1827 copy = min_t(unsigned int, attr_remaining, iedatalen);
1828 if (copy && desired_attr) {
1829 desired_len += copy;
1830 if (out) {
1831 memcpy(out, iedata, min(bufsize, copy));
1832 out += min(bufsize, copy);
1833 bufsize -= min(bufsize, copy);
1834 }
1835
1836
1837 if (copy == attr_remaining)
1838 return desired_len;
1839 }
1840
1841 attr_remaining -= copy;
1842 if (attr_remaining)
1843 goto cont;
1844
1845 iedatalen -= copy;
1846 iedata += copy;
1847
1848 while (iedatalen > 0) {
1849 u16 attr_len;
1850
1851 /* P2P attribute ID & size must fit */
1852 if (iedatalen < 3)
1853 return -EILSEQ;
1854 desired_attr = iedata[0] == attr;
1855 attr_len = get_unaligned_le16(iedata + 1);
1856 iedatalen -= 3;
1857 iedata += 3;
1858
1859 copy = min_t(unsigned int, attr_len, iedatalen);
1860
1861 if (desired_attr) {
1862 desired_len += copy;
1863 if (out) {
1864 memcpy(out, iedata, min(bufsize, copy));
1865 out += min(bufsize, copy);
1866 bufsize -= min(bufsize, copy);
1867 }
1868
1869 if (copy == attr_len)
1870 return desired_len;
1871 }
1872
1873 iedata += copy;
1874 iedatalen -= copy;
1875 attr_remaining = attr_len - copy;
1876 }
1877
1878 cont:
1879 len -= ies[1] + 2;
1880 ies += ies[1] + 2;
1881 }
1882
1883 if (attr_remaining && desired_attr)
1884 return -EILSEQ;
1885
1886 return -ENOENT;
1887 }
1888 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1889
ieee80211_id_in_list(const u8 * ids,int n_ids,u8 id,bool id_ext)1890 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1891 {
1892 int i;
1893
1894 /* Make sure array values are legal */
1895 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1896 return false;
1897
1898 i = 0;
1899 while (i < n_ids) {
1900 if (ids[i] == WLAN_EID_EXTENSION) {
1901 if (id_ext && (ids[i + 1] == id))
1902 return true;
1903
1904 i += 2;
1905 continue;
1906 }
1907
1908 if (ids[i] == id && !id_ext)
1909 return true;
1910
1911 i++;
1912 }
1913 return false;
1914 }
1915
skip_ie(const u8 * ies,size_t ielen,size_t pos)1916 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1917 {
1918 /* we assume a validly formed IEs buffer */
1919 u8 len = ies[pos + 1];
1920
1921 pos += 2 + len;
1922
1923 /* the IE itself must have 255 bytes for fragments to follow */
1924 if (len < 255)
1925 return pos;
1926
1927 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1928 len = ies[pos + 1];
1929 pos += 2 + len;
1930 }
1931
1932 return pos;
1933 }
1934
ieee80211_ie_split_ric(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,const u8 * after_ric,int n_after_ric,size_t offset)1935 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1936 const u8 *ids, int n_ids,
1937 const u8 *after_ric, int n_after_ric,
1938 size_t offset)
1939 {
1940 size_t pos = offset;
1941
1942 while (pos < ielen) {
1943 u8 ext = 0;
1944
1945 if (ies[pos] == WLAN_EID_EXTENSION)
1946 ext = 2;
1947 if ((pos + ext) >= ielen)
1948 break;
1949
1950 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1951 ies[pos] == WLAN_EID_EXTENSION))
1952 break;
1953
1954 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1955 pos = skip_ie(ies, ielen, pos);
1956
1957 while (pos < ielen) {
1958 if (ies[pos] == WLAN_EID_EXTENSION)
1959 ext = 2;
1960 else
1961 ext = 0;
1962
1963 if ((pos + ext) >= ielen)
1964 break;
1965
1966 if (!ieee80211_id_in_list(after_ric,
1967 n_after_ric,
1968 ies[pos + ext],
1969 ext == 2))
1970 pos = skip_ie(ies, ielen, pos);
1971 else
1972 break;
1973 }
1974 } else {
1975 pos = skip_ie(ies, ielen, pos);
1976 }
1977 }
1978
1979 return pos;
1980 }
1981 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1982
ieee80211_operating_class_to_band(u8 operating_class,enum nl80211_band * band)1983 bool ieee80211_operating_class_to_band(u8 operating_class,
1984 enum nl80211_band *band)
1985 {
1986 switch (operating_class) {
1987 case 112:
1988 case 115 ... 127:
1989 case 128 ... 130:
1990 *band = NL80211_BAND_5GHZ;
1991 return true;
1992 case 131 ... 135:
1993 *band = NL80211_BAND_6GHZ;
1994 return true;
1995 case 81:
1996 case 82:
1997 case 83:
1998 case 84:
1999 *band = NL80211_BAND_2GHZ;
2000 return true;
2001 case 180:
2002 *band = NL80211_BAND_60GHZ;
2003 return true;
2004 }
2005
2006 return false;
2007 }
2008 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
2009
ieee80211_chandef_to_operating_class(struct cfg80211_chan_def * chandef,u8 * op_class)2010 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
2011 u8 *op_class)
2012 {
2013 u8 vht_opclass;
2014 u32 freq = chandef->center_freq1;
2015
2016 if (freq >= 2412 && freq <= 2472) {
2017 if (chandef->width > NL80211_CHAN_WIDTH_40)
2018 return false;
2019
2020 /* 2.407 GHz, channels 1..13 */
2021 if (chandef->width == NL80211_CHAN_WIDTH_40) {
2022 if (freq > chandef->chan->center_freq)
2023 *op_class = 83; /* HT40+ */
2024 else
2025 *op_class = 84; /* HT40- */
2026 } else {
2027 *op_class = 81;
2028 }
2029
2030 return true;
2031 }
2032
2033 if (freq == 2484) {
2034 /* channel 14 is only for IEEE 802.11b */
2035 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
2036 return false;
2037
2038 *op_class = 82; /* channel 14 */
2039 return true;
2040 }
2041
2042 switch (chandef->width) {
2043 case NL80211_CHAN_WIDTH_80:
2044 vht_opclass = 128;
2045 break;
2046 case NL80211_CHAN_WIDTH_160:
2047 vht_opclass = 129;
2048 break;
2049 case NL80211_CHAN_WIDTH_80P80:
2050 vht_opclass = 130;
2051 break;
2052 case NL80211_CHAN_WIDTH_10:
2053 case NL80211_CHAN_WIDTH_5:
2054 return false; /* unsupported for now */
2055 default:
2056 vht_opclass = 0;
2057 break;
2058 }
2059
2060 /* 5 GHz, channels 36..48 */
2061 if (freq >= 5180 && freq <= 5240) {
2062 if (vht_opclass) {
2063 *op_class = vht_opclass;
2064 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2065 if (freq > chandef->chan->center_freq)
2066 *op_class = 116;
2067 else
2068 *op_class = 117;
2069 } else {
2070 *op_class = 115;
2071 }
2072
2073 return true;
2074 }
2075
2076 /* 5 GHz, channels 52..64 */
2077 if (freq >= 5260 && freq <= 5320) {
2078 if (vht_opclass) {
2079 *op_class = vht_opclass;
2080 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2081 if (freq > chandef->chan->center_freq)
2082 *op_class = 119;
2083 else
2084 *op_class = 120;
2085 } else {
2086 *op_class = 118;
2087 }
2088
2089 return true;
2090 }
2091
2092 /* 5 GHz, channels 100..144 */
2093 if (freq >= 5500 && freq <= 5720) {
2094 if (vht_opclass) {
2095 *op_class = vht_opclass;
2096 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2097 if (freq > chandef->chan->center_freq)
2098 *op_class = 122;
2099 else
2100 *op_class = 123;
2101 } else {
2102 *op_class = 121;
2103 }
2104
2105 return true;
2106 }
2107
2108 /* 5 GHz, channels 149..169 */
2109 if (freq >= 5745 && freq <= 5845) {
2110 if (vht_opclass) {
2111 *op_class = vht_opclass;
2112 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2113 if (freq > chandef->chan->center_freq)
2114 *op_class = 126;
2115 else
2116 *op_class = 127;
2117 } else if (freq <= 5805) {
2118 *op_class = 124;
2119 } else {
2120 *op_class = 125;
2121 }
2122
2123 return true;
2124 }
2125
2126 /* 56.16 GHz, channel 1..4 */
2127 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
2128 if (chandef->width >= NL80211_CHAN_WIDTH_40)
2129 return false;
2130
2131 *op_class = 180;
2132 return true;
2133 }
2134
2135 /* not supported yet */
2136 return false;
2137 }
2138 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
2139
cfg80211_wdev_bi(struct wireless_dev * wdev)2140 static int cfg80211_wdev_bi(struct wireless_dev *wdev)
2141 {
2142 switch (wdev->iftype) {
2143 case NL80211_IFTYPE_AP:
2144 case NL80211_IFTYPE_P2P_GO:
2145 WARN_ON(wdev->valid_links);
2146 return wdev->links[0].ap.beacon_interval;
2147 case NL80211_IFTYPE_MESH_POINT:
2148 return wdev->u.mesh.beacon_interval;
2149 case NL80211_IFTYPE_ADHOC:
2150 return wdev->u.ibss.beacon_interval;
2151 default:
2152 break;
2153 }
2154
2155 return 0;
2156 }
2157
cfg80211_calculate_bi_data(struct wiphy * wiphy,u32 new_beacon_int,u32 * beacon_int_gcd,bool * beacon_int_different)2158 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
2159 u32 *beacon_int_gcd,
2160 bool *beacon_int_different)
2161 {
2162 struct wireless_dev *wdev;
2163
2164 *beacon_int_gcd = 0;
2165 *beacon_int_different = false;
2166
2167 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
2168 int wdev_bi;
2169
2170 /* this feature isn't supported with MLO */
2171 if (wdev->valid_links)
2172 continue;
2173
2174 wdev_bi = cfg80211_wdev_bi(wdev);
2175
2176 if (!wdev_bi)
2177 continue;
2178
2179 if (!*beacon_int_gcd) {
2180 *beacon_int_gcd = wdev_bi;
2181 continue;
2182 }
2183
2184 if (wdev_bi == *beacon_int_gcd)
2185 continue;
2186
2187 *beacon_int_different = true;
2188 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
2189 }
2190
2191 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
2192 if (*beacon_int_gcd)
2193 *beacon_int_different = true;
2194 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
2195 }
2196 }
2197
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,enum nl80211_iftype iftype,u32 beacon_int)2198 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2199 enum nl80211_iftype iftype, u32 beacon_int)
2200 {
2201 /*
2202 * This is just a basic pre-condition check; if interface combinations
2203 * are possible the driver must already be checking those with a call
2204 * to cfg80211_check_combinations(), in which case we'll validate more
2205 * through the cfg80211_calculate_bi_data() call and code in
2206 * cfg80211_iter_combinations().
2207 */
2208
2209 if (beacon_int < 10 || beacon_int > 10000)
2210 return -EINVAL;
2211
2212 return 0;
2213 }
2214
cfg80211_iter_combinations(struct wiphy * wiphy,struct iface_combination_params * params,void (* iter)(const struct ieee80211_iface_combination * c,void * data),void * data)2215 int cfg80211_iter_combinations(struct wiphy *wiphy,
2216 struct iface_combination_params *params,
2217 void (*iter)(const struct ieee80211_iface_combination *c,
2218 void *data),
2219 void *data)
2220 {
2221 const struct ieee80211_regdomain *regdom;
2222 enum nl80211_dfs_regions region = 0;
2223 int i, j, iftype;
2224 int num_interfaces = 0;
2225 u32 used_iftypes = 0;
2226 u32 beacon_int_gcd;
2227 bool beacon_int_different;
2228
2229 /*
2230 * This is a bit strange, since the iteration used to rely only on
2231 * the data given by the driver, but here it now relies on context,
2232 * in form of the currently operating interfaces.
2233 * This is OK for all current users, and saves us from having to
2234 * push the GCD calculations into all the drivers.
2235 * In the future, this should probably rely more on data that's in
2236 * cfg80211 already - the only thing not would appear to be any new
2237 * interfaces (while being brought up) and channel/radar data.
2238 */
2239 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2240 &beacon_int_gcd, &beacon_int_different);
2241
2242 if (params->radar_detect) {
2243 rcu_read_lock();
2244 regdom = rcu_dereference(cfg80211_regdomain);
2245 if (regdom)
2246 region = regdom->dfs_region;
2247 rcu_read_unlock();
2248 }
2249
2250 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2251 num_interfaces += params->iftype_num[iftype];
2252 if (params->iftype_num[iftype] > 0 &&
2253 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2254 used_iftypes |= BIT(iftype);
2255 }
2256
2257 for (i = 0; i < wiphy->n_iface_combinations; i++) {
2258 const struct ieee80211_iface_combination *c;
2259 struct ieee80211_iface_limit *limits;
2260 u32 all_iftypes = 0;
2261
2262 c = &wiphy->iface_combinations[i];
2263
2264 if (num_interfaces > c->max_interfaces)
2265 continue;
2266 if (params->num_different_channels > c->num_different_channels)
2267 continue;
2268
2269 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
2270 GFP_KERNEL);
2271 if (!limits)
2272 return -ENOMEM;
2273
2274 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2275 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2276 continue;
2277 for (j = 0; j < c->n_limits; j++) {
2278 all_iftypes |= limits[j].types;
2279 if (!(limits[j].types & BIT(iftype)))
2280 continue;
2281 if (limits[j].max < params->iftype_num[iftype])
2282 goto cont;
2283 limits[j].max -= params->iftype_num[iftype];
2284 }
2285 }
2286
2287 if (params->radar_detect !=
2288 (c->radar_detect_widths & params->radar_detect))
2289 goto cont;
2290
2291 if (params->radar_detect && c->radar_detect_regions &&
2292 !(c->radar_detect_regions & BIT(region)))
2293 goto cont;
2294
2295 /* Finally check that all iftypes that we're currently
2296 * using are actually part of this combination. If they
2297 * aren't then we can't use this combination and have
2298 * to continue to the next.
2299 */
2300 if ((all_iftypes & used_iftypes) != used_iftypes)
2301 goto cont;
2302
2303 if (beacon_int_gcd) {
2304 if (c->beacon_int_min_gcd &&
2305 beacon_int_gcd < c->beacon_int_min_gcd)
2306 goto cont;
2307 if (!c->beacon_int_min_gcd && beacon_int_different)
2308 goto cont;
2309 }
2310
2311 /* This combination covered all interface types and
2312 * supported the requested numbers, so we're good.
2313 */
2314
2315 (*iter)(c, data);
2316 cont:
2317 kfree(limits);
2318 }
2319
2320 return 0;
2321 }
2322 EXPORT_SYMBOL(cfg80211_iter_combinations);
2323
2324 static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination * c,void * data)2325 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2326 void *data)
2327 {
2328 int *num = data;
2329 (*num)++;
2330 }
2331
cfg80211_check_combinations(struct wiphy * wiphy,struct iface_combination_params * params)2332 int cfg80211_check_combinations(struct wiphy *wiphy,
2333 struct iface_combination_params *params)
2334 {
2335 int err, num = 0;
2336
2337 err = cfg80211_iter_combinations(wiphy, params,
2338 cfg80211_iter_sum_ifcombs, &num);
2339 if (err)
2340 return err;
2341 if (num == 0)
2342 return -EBUSY;
2343
2344 return 0;
2345 }
2346 EXPORT_SYMBOL(cfg80211_check_combinations);
2347
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)2348 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2349 const u8 *rates, unsigned int n_rates,
2350 u32 *mask)
2351 {
2352 int i, j;
2353
2354 if (!sband)
2355 return -EINVAL;
2356
2357 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2358 return -EINVAL;
2359
2360 *mask = 0;
2361
2362 for (i = 0; i < n_rates; i++) {
2363 int rate = (rates[i] & 0x7f) * 5;
2364 bool found = false;
2365
2366 for (j = 0; j < sband->n_bitrates; j++) {
2367 if (sband->bitrates[j].bitrate == rate) {
2368 found = true;
2369 *mask |= BIT(j);
2370 break;
2371 }
2372 }
2373 if (!found)
2374 return -EINVAL;
2375 }
2376
2377 /*
2378 * mask must have at least one bit set here since we
2379 * didn't accept a 0-length rates array nor allowed
2380 * entries in the array that didn't exist
2381 */
2382
2383 return 0;
2384 }
2385
ieee80211_get_num_supported_channels(struct wiphy * wiphy)2386 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2387 {
2388 enum nl80211_band band;
2389 unsigned int n_channels = 0;
2390
2391 for (band = 0; band < NUM_NL80211_BANDS; band++)
2392 if (wiphy->bands[band])
2393 n_channels += wiphy->bands[band]->n_channels;
2394
2395 return n_channels;
2396 }
2397 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2398
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)2399 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2400 struct station_info *sinfo)
2401 {
2402 struct cfg80211_registered_device *rdev;
2403 struct wireless_dev *wdev;
2404 int ret;
2405
2406 wdev = dev->ieee80211_ptr;
2407 if (!wdev)
2408 return -EOPNOTSUPP;
2409
2410 rdev = wiphy_to_rdev(wdev->wiphy);
2411 if (!rdev->ops->get_station)
2412 return -EOPNOTSUPP;
2413
2414 memset(sinfo, 0, sizeof(*sinfo));
2415
2416 wiphy_lock(&rdev->wiphy);
2417 ret = rdev_get_station(rdev, dev, mac_addr, sinfo);
2418 wiphy_unlock(&rdev->wiphy);
2419
2420 return ret;
2421 }
2422 EXPORT_SYMBOL(cfg80211_get_station);
2423
cfg80211_free_nan_func(struct cfg80211_nan_func * f)2424 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2425 {
2426 int i;
2427
2428 if (!f)
2429 return;
2430
2431 kfree(f->serv_spec_info);
2432 kfree(f->srf_bf);
2433 kfree(f->srf_macs);
2434 for (i = 0; i < f->num_rx_filters; i++)
2435 kfree(f->rx_filters[i].filter);
2436
2437 for (i = 0; i < f->num_tx_filters; i++)
2438 kfree(f->tx_filters[i].filter);
2439
2440 kfree(f->rx_filters);
2441 kfree(f->tx_filters);
2442 kfree(f);
2443 }
2444 EXPORT_SYMBOL(cfg80211_free_nan_func);
2445
cfg80211_does_bw_fit_range(const struct ieee80211_freq_range * freq_range,u32 center_freq_khz,u32 bw_khz)2446 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2447 u32 center_freq_khz, u32 bw_khz)
2448 {
2449 u32 start_freq_khz, end_freq_khz;
2450
2451 start_freq_khz = center_freq_khz - (bw_khz / 2);
2452 end_freq_khz = center_freq_khz + (bw_khz / 2);
2453
2454 if (start_freq_khz >= freq_range->start_freq_khz &&
2455 end_freq_khz <= freq_range->end_freq_khz)
2456 return true;
2457
2458 return false;
2459 }
2460
cfg80211_sinfo_alloc_tid_stats(struct station_info * sinfo,gfp_t gfp)2461 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2462 {
2463 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2464 sizeof(*(sinfo->pertid)),
2465 gfp);
2466 if (!sinfo->pertid)
2467 return -ENOMEM;
2468
2469 return 0;
2470 }
2471 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2472
2473 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2474 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2475 const unsigned char rfc1042_header[] __aligned(2) =
2476 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2477 EXPORT_SYMBOL(rfc1042_header);
2478
2479 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2480 const unsigned char bridge_tunnel_header[] __aligned(2) =
2481 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2482 EXPORT_SYMBOL(bridge_tunnel_header);
2483
2484 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2485 struct iapp_layer2_update {
2486 u8 da[ETH_ALEN]; /* broadcast */
2487 u8 sa[ETH_ALEN]; /* STA addr */
2488 __be16 len; /* 6 */
2489 u8 dsap; /* 0 */
2490 u8 ssap; /* 0 */
2491 u8 control;
2492 u8 xid_info[3];
2493 } __packed;
2494
cfg80211_send_layer2_update(struct net_device * dev,const u8 * addr)2495 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2496 {
2497 struct iapp_layer2_update *msg;
2498 struct sk_buff *skb;
2499
2500 /* Send Level 2 Update Frame to update forwarding tables in layer 2
2501 * bridge devices */
2502
2503 skb = dev_alloc_skb(sizeof(*msg));
2504 if (!skb)
2505 return;
2506 msg = skb_put(skb, sizeof(*msg));
2507
2508 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2509 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2510
2511 eth_broadcast_addr(msg->da);
2512 ether_addr_copy(msg->sa, addr);
2513 msg->len = htons(6);
2514 msg->dsap = 0;
2515 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
2516 msg->control = 0xaf; /* XID response lsb.1111F101.
2517 * F=0 (no poll command; unsolicited frame) */
2518 msg->xid_info[0] = 0x81; /* XID format identifier */
2519 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
2520 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
2521
2522 skb->dev = dev;
2523 skb->protocol = eth_type_trans(skb, dev);
2524 memset(skb->cb, 0, sizeof(skb->cb));
2525 netif_rx(skb);
2526 }
2527 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2528
ieee80211_get_vht_max_nss(struct ieee80211_vht_cap * cap,enum ieee80211_vht_chanwidth bw,int mcs,bool ext_nss_bw_capable,unsigned int max_vht_nss)2529 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2530 enum ieee80211_vht_chanwidth bw,
2531 int mcs, bool ext_nss_bw_capable,
2532 unsigned int max_vht_nss)
2533 {
2534 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2535 int ext_nss_bw;
2536 int supp_width;
2537 int i, mcs_encoding;
2538
2539 if (map == 0xffff)
2540 return 0;
2541
2542 if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2543 return 0;
2544 if (mcs <= 7)
2545 mcs_encoding = 0;
2546 else if (mcs == 8)
2547 mcs_encoding = 1;
2548 else
2549 mcs_encoding = 2;
2550
2551 if (!max_vht_nss) {
2552 /* find max_vht_nss for the given MCS */
2553 for (i = 7; i >= 0; i--) {
2554 int supp = (map >> (2 * i)) & 3;
2555
2556 if (supp == 3)
2557 continue;
2558
2559 if (supp >= mcs_encoding) {
2560 max_vht_nss = i + 1;
2561 break;
2562 }
2563 }
2564 }
2565
2566 if (!(cap->supp_mcs.tx_mcs_map &
2567 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2568 return max_vht_nss;
2569
2570 ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2571 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2572 supp_width = le32_get_bits(cap->vht_cap_info,
2573 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2574
2575 /* if not capable, treat ext_nss_bw as 0 */
2576 if (!ext_nss_bw_capable)
2577 ext_nss_bw = 0;
2578
2579 /* This is invalid */
2580 if (supp_width == 3)
2581 return 0;
2582
2583 /* This is an invalid combination so pretend nothing is supported */
2584 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2585 return 0;
2586
2587 /*
2588 * Cover all the special cases according to IEEE 802.11-2016
2589 * Table 9-250. All other cases are either factor of 1 or not
2590 * valid/supported.
2591 */
2592 switch (bw) {
2593 case IEEE80211_VHT_CHANWIDTH_USE_HT:
2594 case IEEE80211_VHT_CHANWIDTH_80MHZ:
2595 if ((supp_width == 1 || supp_width == 2) &&
2596 ext_nss_bw == 3)
2597 return 2 * max_vht_nss;
2598 break;
2599 case IEEE80211_VHT_CHANWIDTH_160MHZ:
2600 if (supp_width == 0 &&
2601 (ext_nss_bw == 1 || ext_nss_bw == 2))
2602 return max_vht_nss / 2;
2603 if (supp_width == 0 &&
2604 ext_nss_bw == 3)
2605 return (3 * max_vht_nss) / 4;
2606 if (supp_width == 1 &&
2607 ext_nss_bw == 3)
2608 return 2 * max_vht_nss;
2609 break;
2610 case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2611 if (supp_width == 0 && ext_nss_bw == 1)
2612 return 0; /* not possible */
2613 if (supp_width == 0 &&
2614 ext_nss_bw == 2)
2615 return max_vht_nss / 2;
2616 if (supp_width == 0 &&
2617 ext_nss_bw == 3)
2618 return (3 * max_vht_nss) / 4;
2619 if (supp_width == 1 &&
2620 ext_nss_bw == 0)
2621 return 0; /* not possible */
2622 if (supp_width == 1 &&
2623 ext_nss_bw == 1)
2624 return max_vht_nss / 2;
2625 if (supp_width == 1 &&
2626 ext_nss_bw == 2)
2627 return (3 * max_vht_nss) / 4;
2628 break;
2629 }
2630
2631 /* not covered or invalid combination received */
2632 return max_vht_nss;
2633 }
2634 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2635
cfg80211_iftype_allowed(struct wiphy * wiphy,enum nl80211_iftype iftype,bool is_4addr,u8 check_swif)2636 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2637 bool is_4addr, u8 check_swif)
2638
2639 {
2640 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2641
2642 switch (check_swif) {
2643 case 0:
2644 if (is_vlan && is_4addr)
2645 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2646 return wiphy->interface_modes & BIT(iftype);
2647 case 1:
2648 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2649 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2650 return wiphy->software_iftypes & BIT(iftype);
2651 default:
2652 break;
2653 }
2654
2655 return false;
2656 }
2657 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2658
cfg80211_remove_link(struct wireless_dev * wdev,unsigned int link_id)2659 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2660 {
2661 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2662
2663 ASSERT_WDEV_LOCK(wdev);
2664
2665 switch (wdev->iftype) {
2666 case NL80211_IFTYPE_AP:
2667 case NL80211_IFTYPE_P2P_GO:
2668 __cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2669 break;
2670 default:
2671 /* per-link not relevant */
2672 break;
2673 }
2674
2675 wdev->valid_links &= ~BIT(link_id);
2676
2677 rdev_del_intf_link(rdev, wdev, link_id);
2678
2679 eth_zero_addr(wdev->links[link_id].addr);
2680 }
2681
cfg80211_remove_links(struct wireless_dev * wdev)2682 void cfg80211_remove_links(struct wireless_dev *wdev)
2683 {
2684 unsigned int link_id;
2685
2686 /*
2687 * links are controlled by upper layers (userspace/cfg)
2688 * only for AP mode, so only remove them here for AP
2689 */
2690 if (wdev->iftype != NL80211_IFTYPE_AP)
2691 return;
2692
2693 wdev_lock(wdev);
2694 if (wdev->valid_links) {
2695 for_each_valid_link(wdev, link_id)
2696 cfg80211_remove_link(wdev, link_id);
2697 }
2698 wdev_unlock(wdev);
2699 }
2700
cfg80211_remove_virtual_intf(struct cfg80211_registered_device * rdev,struct wireless_dev * wdev)2701 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2702 struct wireless_dev *wdev)
2703 {
2704 cfg80211_remove_links(wdev);
2705
2706 return rdev_del_virtual_intf(rdev, wdev);
2707 }
2708
2709 const struct wiphy_iftype_ext_capab *
cfg80211_get_iftype_ext_capa(struct wiphy * wiphy,enum nl80211_iftype type)2710 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2711 {
2712 int i;
2713
2714 for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2715 if (wiphy->iftype_ext_capab[i].iftype == type)
2716 return &wiphy->iftype_ext_capab[i];
2717 }
2718
2719 return NULL;
2720 }
2721 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);
2722