1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49
50 #include <trace/events/ext4.h>
51
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54 {
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u32 csum;
57 __u16 dummy_csum = 0;
58 int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 unsigned int csum_size = sizeof(dummy_csum);
60
61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 offset += csum_size;
64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 offset = offsetof(struct ext4_inode, i_checksum_hi);
69 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 EXT4_GOOD_OLD_INODE_SIZE,
71 offset - EXT4_GOOD_OLD_INODE_SIZE);
72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 csum_size);
75 offset += csum_size;
76 }
77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 EXT4_INODE_SIZE(inode->i_sb) - offset);
79 }
80
81 return csum;
82 }
83
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 struct ext4_inode_info *ei)
86 {
87 __u32 provided, calculated;
88
89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 cpu_to_le32(EXT4_OS_LINUX) ||
91 !ext4_has_metadata_csum(inode->i_sb))
92 return 1;
93
94 provided = le16_to_cpu(raw->i_checksum_lo);
95 calculated = ext4_inode_csum(inode, raw, ei);
96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 else
100 calculated &= 0xFFFF;
101
102 return provided == calculated;
103 }
104
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 struct ext4_inode_info *ei)
107 {
108 __u32 csum;
109
110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 cpu_to_le32(EXT4_OS_LINUX) ||
112 !ext4_has_metadata_csum(inode->i_sb))
113 return;
114
115 csum = ext4_inode_csum(inode, raw, ei);
116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 loff_t new_size)
124 {
125 trace_ext4_begin_ordered_truncate(inode, new_size);
126 /*
127 * If jinode is zero, then we never opened the file for
128 * writing, so there's no need to call
129 * jbd2_journal_begin_ordered_truncate() since there's no
130 * outstanding writes we need to flush.
131 */
132 if (!EXT4_I(inode)->jinode)
133 return 0;
134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 EXT4_I(inode)->jinode,
136 new_size);
137 }
138
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 int pextents);
141
142 /*
143 * Test whether an inode is a fast symlink.
144 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
145 */
ext4_inode_is_fast_symlink(struct inode * inode)146 int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
149 int ea_blocks = EXT4_I(inode)->i_file_acl ?
150 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
151
152 if (ext4_has_inline_data(inode))
153 return 0;
154
155 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
156 }
157 return S_ISLNK(inode->i_mode) && inode->i_size &&
158 (inode->i_size < EXT4_N_BLOCKS * 4);
159 }
160
161 /*
162 * Called at the last iput() if i_nlink is zero.
163 */
ext4_evict_inode(struct inode * inode)164 void ext4_evict_inode(struct inode *inode)
165 {
166 handle_t *handle;
167 int err;
168 /*
169 * Credits for final inode cleanup and freeing:
170 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
171 * (xattr block freeing), bitmap, group descriptor (inode freeing)
172 */
173 int extra_credits = 6;
174 struct ext4_xattr_inode_array *ea_inode_array = NULL;
175 bool freeze_protected = false;
176
177 trace_ext4_evict_inode(inode);
178
179 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
180 ext4_evict_ea_inode(inode);
181 if (inode->i_nlink) {
182 truncate_inode_pages_final(&inode->i_data);
183
184 goto no_delete;
185 }
186
187 if (is_bad_inode(inode))
188 goto no_delete;
189 dquot_initialize(inode);
190
191 if (ext4_should_order_data(inode))
192 ext4_begin_ordered_truncate(inode, 0);
193 truncate_inode_pages_final(&inode->i_data);
194
195 /*
196 * For inodes with journalled data, transaction commit could have
197 * dirtied the inode. And for inodes with dioread_nolock, unwritten
198 * extents converting worker could merge extents and also have dirtied
199 * the inode. Flush worker is ignoring it because of I_FREEING flag but
200 * we still need to remove the inode from the writeback lists.
201 */
202 if (!list_empty_careful(&inode->i_io_list))
203 inode_io_list_del(inode);
204
205 /*
206 * Protect us against freezing - iput() caller didn't have to have any
207 * protection against it. When we are in a running transaction though,
208 * we are already protected against freezing and we cannot grab further
209 * protection due to lock ordering constraints.
210 */
211 if (!ext4_journal_current_handle()) {
212 sb_start_intwrite(inode->i_sb);
213 freeze_protected = true;
214 }
215
216 if (!IS_NOQUOTA(inode))
217 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
218
219 /*
220 * Block bitmap, group descriptor, and inode are accounted in both
221 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
222 */
223 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
224 ext4_blocks_for_truncate(inode) + extra_credits - 3);
225 if (IS_ERR(handle)) {
226 ext4_std_error(inode->i_sb, PTR_ERR(handle));
227 /*
228 * If we're going to skip the normal cleanup, we still need to
229 * make sure that the in-core orphan linked list is properly
230 * cleaned up.
231 */
232 ext4_orphan_del(NULL, inode);
233 if (freeze_protected)
234 sb_end_intwrite(inode->i_sb);
235 goto no_delete;
236 }
237
238 if (IS_SYNC(inode))
239 ext4_handle_sync(handle);
240
241 /*
242 * Set inode->i_size to 0 before calling ext4_truncate(). We need
243 * special handling of symlinks here because i_size is used to
244 * determine whether ext4_inode_info->i_data contains symlink data or
245 * block mappings. Setting i_size to 0 will remove its fast symlink
246 * status. Erase i_data so that it becomes a valid empty block map.
247 */
248 if (ext4_inode_is_fast_symlink(inode))
249 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
250 inode->i_size = 0;
251 err = ext4_mark_inode_dirty(handle, inode);
252 if (err) {
253 ext4_warning(inode->i_sb,
254 "couldn't mark inode dirty (err %d)", err);
255 goto stop_handle;
256 }
257 if (inode->i_blocks) {
258 err = ext4_truncate(inode);
259 if (err) {
260 ext4_error_err(inode->i_sb, -err,
261 "couldn't truncate inode %lu (err %d)",
262 inode->i_ino, err);
263 goto stop_handle;
264 }
265 }
266
267 /* Remove xattr references. */
268 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
269 extra_credits);
270 if (err) {
271 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
272 stop_handle:
273 ext4_journal_stop(handle);
274 ext4_orphan_del(NULL, inode);
275 if (freeze_protected)
276 sb_end_intwrite(inode->i_sb);
277 ext4_xattr_inode_array_free(ea_inode_array);
278 goto no_delete;
279 }
280
281 /*
282 * Kill off the orphan record which ext4_truncate created.
283 * AKPM: I think this can be inside the above `if'.
284 * Note that ext4_orphan_del() has to be able to cope with the
285 * deletion of a non-existent orphan - this is because we don't
286 * know if ext4_truncate() actually created an orphan record.
287 * (Well, we could do this if we need to, but heck - it works)
288 */
289 ext4_orphan_del(handle, inode);
290 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
291
292 /*
293 * One subtle ordering requirement: if anything has gone wrong
294 * (transaction abort, IO errors, whatever), then we can still
295 * do these next steps (the fs will already have been marked as
296 * having errors), but we can't free the inode if the mark_dirty
297 * fails.
298 */
299 if (ext4_mark_inode_dirty(handle, inode))
300 /* If that failed, just do the required in-core inode clear. */
301 ext4_clear_inode(inode);
302 else
303 ext4_free_inode(handle, inode);
304 ext4_journal_stop(handle);
305 if (freeze_protected)
306 sb_end_intwrite(inode->i_sb);
307 ext4_xattr_inode_array_free(ea_inode_array);
308 return;
309 no_delete:
310 /*
311 * Check out some where else accidentally dirty the evicting inode,
312 * which may probably cause inode use-after-free issues later.
313 */
314 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
315
316 if (!list_empty(&EXT4_I(inode)->i_fc_list))
317 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
318 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
319 }
320
321 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)322 qsize_t *ext4_get_reserved_space(struct inode *inode)
323 {
324 return &EXT4_I(inode)->i_reserved_quota;
325 }
326 #endif
327
328 /*
329 * Called with i_data_sem down, which is important since we can call
330 * ext4_discard_preallocations() from here.
331 */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)332 void ext4_da_update_reserve_space(struct inode *inode,
333 int used, int quota_claim)
334 {
335 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
336 struct ext4_inode_info *ei = EXT4_I(inode);
337
338 spin_lock(&ei->i_block_reservation_lock);
339 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
340 if (unlikely(used > ei->i_reserved_data_blocks)) {
341 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
342 "with only %d reserved data blocks",
343 __func__, inode->i_ino, used,
344 ei->i_reserved_data_blocks);
345 WARN_ON(1);
346 used = ei->i_reserved_data_blocks;
347 }
348
349 /* Update per-inode reservations */
350 ei->i_reserved_data_blocks -= used;
351 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
352
353 spin_unlock(&ei->i_block_reservation_lock);
354
355 /* Update quota subsystem for data blocks */
356 if (quota_claim)
357 dquot_claim_block(inode, EXT4_C2B(sbi, used));
358 else {
359 /*
360 * We did fallocate with an offset that is already delayed
361 * allocated. So on delayed allocated writeback we should
362 * not re-claim the quota for fallocated blocks.
363 */
364 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
365 }
366
367 /*
368 * If we have done all the pending block allocations and if
369 * there aren't any writers on the inode, we can discard the
370 * inode's preallocations.
371 */
372 if ((ei->i_reserved_data_blocks == 0) &&
373 !inode_is_open_for_write(inode))
374 ext4_discard_preallocations(inode, 0);
375 }
376
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)377 static int __check_block_validity(struct inode *inode, const char *func,
378 unsigned int line,
379 struct ext4_map_blocks *map)
380 {
381 if (ext4_has_feature_journal(inode->i_sb) &&
382 (inode->i_ino ==
383 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
384 return 0;
385 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
386 ext4_error_inode(inode, func, line, map->m_pblk,
387 "lblock %lu mapped to illegal pblock %llu "
388 "(length %d)", (unsigned long) map->m_lblk,
389 map->m_pblk, map->m_len);
390 return -EFSCORRUPTED;
391 }
392 return 0;
393 }
394
ext4_issue_zeroout(struct inode * inode,ext4_lblk_t lblk,ext4_fsblk_t pblk,ext4_lblk_t len)395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
396 ext4_lblk_t len)
397 {
398 int ret;
399
400 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
401 return fscrypt_zeroout_range(inode, lblk, pblk, len);
402
403 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
404 if (ret > 0)
405 ret = 0;
406
407 return ret;
408 }
409
410 #define check_block_validity(inode, map) \
411 __check_block_validity((inode), __func__, __LINE__, (map))
412
413 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)414 static void ext4_map_blocks_es_recheck(handle_t *handle,
415 struct inode *inode,
416 struct ext4_map_blocks *es_map,
417 struct ext4_map_blocks *map,
418 int flags)
419 {
420 int retval;
421
422 map->m_flags = 0;
423 /*
424 * There is a race window that the result is not the same.
425 * e.g. xfstests #223 when dioread_nolock enables. The reason
426 * is that we lookup a block mapping in extent status tree with
427 * out taking i_data_sem. So at the time the unwritten extent
428 * could be converted.
429 */
430 down_read(&EXT4_I(inode)->i_data_sem);
431 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
432 retval = ext4_ext_map_blocks(handle, inode, map, 0);
433 } else {
434 retval = ext4_ind_map_blocks(handle, inode, map, 0);
435 }
436 up_read((&EXT4_I(inode)->i_data_sem));
437
438 /*
439 * We don't check m_len because extent will be collpased in status
440 * tree. So the m_len might not equal.
441 */
442 if (es_map->m_lblk != map->m_lblk ||
443 es_map->m_flags != map->m_flags ||
444 es_map->m_pblk != map->m_pblk) {
445 printk("ES cache assertion failed for inode: %lu "
446 "es_cached ex [%d/%d/%llu/%x] != "
447 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
448 inode->i_ino, es_map->m_lblk, es_map->m_len,
449 es_map->m_pblk, es_map->m_flags, map->m_lblk,
450 map->m_len, map->m_pblk, map->m_flags,
451 retval, flags);
452 }
453 }
454 #endif /* ES_AGGRESSIVE_TEST */
455
ext4_map_query_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map)456 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
457 struct ext4_map_blocks *map)
458 {
459 unsigned int status;
460 int retval;
461
462 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
463 retval = ext4_ext_map_blocks(handle, inode, map, 0);
464 else
465 retval = ext4_ind_map_blocks(handle, inode, map, 0);
466
467 if (retval <= 0)
468 return retval;
469
470 if (unlikely(retval != map->m_len)) {
471 ext4_warning(inode->i_sb,
472 "ES len assertion failed for inode "
473 "%lu: retval %d != map->m_len %d",
474 inode->i_ino, retval, map->m_len);
475 WARN_ON(1);
476 }
477
478 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
479 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
480 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
481 map->m_pblk, status);
482 return retval;
483 }
484
485 /*
486 * The ext4_map_blocks() function tries to look up the requested blocks,
487 * and returns if the blocks are already mapped.
488 *
489 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
490 * and store the allocated blocks in the result buffer head and mark it
491 * mapped.
492 *
493 * If file type is extents based, it will call ext4_ext_map_blocks(),
494 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
495 * based files
496 *
497 * On success, it returns the number of blocks being mapped or allocated. if
498 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
499 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
500 *
501 * It returns 0 if plain look up failed (blocks have not been allocated), in
502 * that case, @map is returned as unmapped but we still do fill map->m_len to
503 * indicate the length of a hole starting at map->m_lblk.
504 *
505 * It returns the error in case of allocation failure.
506 */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)507 int ext4_map_blocks(handle_t *handle, struct inode *inode,
508 struct ext4_map_blocks *map, int flags)
509 {
510 struct extent_status es;
511 int retval;
512 int ret = 0;
513 #ifdef ES_AGGRESSIVE_TEST
514 struct ext4_map_blocks orig_map;
515
516 memcpy(&orig_map, map, sizeof(*map));
517 #endif
518
519 map->m_flags = 0;
520 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
521 flags, map->m_len, (unsigned long) map->m_lblk);
522
523 /*
524 * ext4_map_blocks returns an int, and m_len is an unsigned int
525 */
526 if (unlikely(map->m_len > INT_MAX))
527 map->m_len = INT_MAX;
528
529 /* We can handle the block number less than EXT_MAX_BLOCKS */
530 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
531 return -EFSCORRUPTED;
532
533 /* Lookup extent status tree firstly */
534 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
535 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
536 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
537 map->m_pblk = ext4_es_pblock(&es) +
538 map->m_lblk - es.es_lblk;
539 map->m_flags |= ext4_es_is_written(&es) ?
540 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
541 retval = es.es_len - (map->m_lblk - es.es_lblk);
542 if (retval > map->m_len)
543 retval = map->m_len;
544 map->m_len = retval;
545 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
546 map->m_pblk = 0;
547 retval = es.es_len - (map->m_lblk - es.es_lblk);
548 if (retval > map->m_len)
549 retval = map->m_len;
550 map->m_len = retval;
551 retval = 0;
552 } else {
553 BUG();
554 }
555
556 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
557 return retval;
558 #ifdef ES_AGGRESSIVE_TEST
559 ext4_map_blocks_es_recheck(handle, inode, map,
560 &orig_map, flags);
561 #endif
562 goto found;
563 }
564 /*
565 * In the query cache no-wait mode, nothing we can do more if we
566 * cannot find extent in the cache.
567 */
568 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
569 return 0;
570
571 /*
572 * Try to see if we can get the block without requesting a new
573 * file system block.
574 */
575 down_read(&EXT4_I(inode)->i_data_sem);
576 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
577 retval = ext4_ext_map_blocks(handle, inode, map, 0);
578 } else {
579 retval = ext4_ind_map_blocks(handle, inode, map, 0);
580 }
581 if (retval > 0) {
582 unsigned int status;
583
584 if (unlikely(retval != map->m_len)) {
585 ext4_warning(inode->i_sb,
586 "ES len assertion failed for inode "
587 "%lu: retval %d != map->m_len %d",
588 inode->i_ino, retval, map->m_len);
589 WARN_ON(1);
590 }
591
592 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
593 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
594 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
595 !(status & EXTENT_STATUS_WRITTEN) &&
596 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
597 map->m_lblk + map->m_len - 1))
598 status |= EXTENT_STATUS_DELAYED;
599 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
600 map->m_pblk, status);
601 }
602 up_read((&EXT4_I(inode)->i_data_sem));
603
604 found:
605 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
606 ret = check_block_validity(inode, map);
607 if (ret != 0)
608 return ret;
609 }
610
611 /* If it is only a block(s) look up */
612 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
613 return retval;
614
615 /*
616 * Returns if the blocks have already allocated
617 *
618 * Note that if blocks have been preallocated
619 * ext4_ext_get_block() returns the create = 0
620 * with buffer head unmapped.
621 */
622 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
623 /*
624 * If we need to convert extent to unwritten
625 * we continue and do the actual work in
626 * ext4_ext_map_blocks()
627 */
628 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
629 return retval;
630
631 /*
632 * Here we clear m_flags because after allocating an new extent,
633 * it will be set again.
634 */
635 map->m_flags &= ~EXT4_MAP_FLAGS;
636
637 /*
638 * New blocks allocate and/or writing to unwritten extent
639 * will possibly result in updating i_data, so we take
640 * the write lock of i_data_sem, and call get_block()
641 * with create == 1 flag.
642 */
643 down_write(&EXT4_I(inode)->i_data_sem);
644
645 /*
646 * We need to check for EXT4 here because migrate
647 * could have changed the inode type in between
648 */
649 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
650 retval = ext4_ext_map_blocks(handle, inode, map, flags);
651 } else {
652 retval = ext4_ind_map_blocks(handle, inode, map, flags);
653
654 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
655 /*
656 * We allocated new blocks which will result in
657 * i_data's format changing. Force the migrate
658 * to fail by clearing migrate flags
659 */
660 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
661 }
662 }
663
664 if (retval > 0) {
665 unsigned int status;
666
667 if (unlikely(retval != map->m_len)) {
668 ext4_warning(inode->i_sb,
669 "ES len assertion failed for inode "
670 "%lu: retval %d != map->m_len %d",
671 inode->i_ino, retval, map->m_len);
672 WARN_ON(1);
673 }
674
675 /*
676 * We have to zeroout blocks before inserting them into extent
677 * status tree. Otherwise someone could look them up there and
678 * use them before they are really zeroed. We also have to
679 * unmap metadata before zeroing as otherwise writeback can
680 * overwrite zeros with stale data from block device.
681 */
682 if (flags & EXT4_GET_BLOCKS_ZERO &&
683 map->m_flags & EXT4_MAP_MAPPED &&
684 map->m_flags & EXT4_MAP_NEW) {
685 ret = ext4_issue_zeroout(inode, map->m_lblk,
686 map->m_pblk, map->m_len);
687 if (ret) {
688 retval = ret;
689 goto out_sem;
690 }
691 }
692
693 /*
694 * If the extent has been zeroed out, we don't need to update
695 * extent status tree.
696 */
697 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
698 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
699 if (ext4_es_is_written(&es))
700 goto out_sem;
701 }
702 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
703 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
704 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
705 !(status & EXTENT_STATUS_WRITTEN) &&
706 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
707 map->m_lblk + map->m_len - 1))
708 status |= EXTENT_STATUS_DELAYED;
709 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
710 map->m_pblk, status);
711 }
712
713 out_sem:
714 up_write((&EXT4_I(inode)->i_data_sem));
715 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
716 ret = check_block_validity(inode, map);
717 if (ret != 0)
718 return ret;
719
720 /*
721 * Inodes with freshly allocated blocks where contents will be
722 * visible after transaction commit must be on transaction's
723 * ordered data list.
724 */
725 if (map->m_flags & EXT4_MAP_NEW &&
726 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
727 !(flags & EXT4_GET_BLOCKS_ZERO) &&
728 !ext4_is_quota_file(inode) &&
729 ext4_should_order_data(inode)) {
730 loff_t start_byte =
731 (loff_t)map->m_lblk << inode->i_blkbits;
732 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
733
734 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
735 ret = ext4_jbd2_inode_add_wait(handle, inode,
736 start_byte, length);
737 else
738 ret = ext4_jbd2_inode_add_write(handle, inode,
739 start_byte, length);
740 if (ret)
741 return ret;
742 }
743 }
744 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
745 map->m_flags & EXT4_MAP_MAPPED))
746 ext4_fc_track_range(handle, inode, map->m_lblk,
747 map->m_lblk + map->m_len - 1);
748 if (retval < 0)
749 ext_debug(inode, "failed with err %d\n", retval);
750 return retval;
751 }
752
753 /*
754 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
755 * we have to be careful as someone else may be manipulating b_state as well.
756 */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
758 {
759 unsigned long old_state;
760 unsigned long new_state;
761
762 flags &= EXT4_MAP_FLAGS;
763
764 /* Dummy buffer_head? Set non-atomically. */
765 if (!bh->b_page) {
766 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
767 return;
768 }
769 /*
770 * Someone else may be modifying b_state. Be careful! This is ugly but
771 * once we get rid of using bh as a container for mapping information
772 * to pass to / from get_block functions, this can go away.
773 */
774 old_state = READ_ONCE(bh->b_state);
775 do {
776 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
777 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
778 }
779
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)780 static int _ext4_get_block(struct inode *inode, sector_t iblock,
781 struct buffer_head *bh, int flags)
782 {
783 struct ext4_map_blocks map;
784 int ret = 0;
785
786 if (ext4_has_inline_data(inode))
787 return -ERANGE;
788
789 map.m_lblk = iblock;
790 map.m_len = bh->b_size >> inode->i_blkbits;
791
792 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
793 flags);
794 if (ret > 0) {
795 map_bh(bh, inode->i_sb, map.m_pblk);
796 ext4_update_bh_state(bh, map.m_flags);
797 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
798 ret = 0;
799 } else if (ret == 0) {
800 /* hole case, need to fill in bh->b_size */
801 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
802 }
803 return ret;
804 }
805
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)806 int ext4_get_block(struct inode *inode, sector_t iblock,
807 struct buffer_head *bh, int create)
808 {
809 return _ext4_get_block(inode, iblock, bh,
810 create ? EXT4_GET_BLOCKS_CREATE : 0);
811 }
812
813 /*
814 * Get block function used when preparing for buffered write if we require
815 * creating an unwritten extent if blocks haven't been allocated. The extent
816 * will be converted to written after the IO is complete.
817 */
ext4_get_block_unwritten(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)818 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
819 struct buffer_head *bh_result, int create)
820 {
821 int ret = 0;
822
823 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
824 inode->i_ino, create);
825 ret = _ext4_get_block(inode, iblock, bh_result,
826 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
827
828 /*
829 * If the buffer is marked unwritten, mark it as new to make sure it is
830 * zeroed out correctly in case of partial writes. Otherwise, there is
831 * a chance of stale data getting exposed.
832 */
833 if (ret == 0 && buffer_unwritten(bh_result))
834 set_buffer_new(bh_result);
835
836 return ret;
837 }
838
839 /* Maximum number of blocks we map for direct IO at once. */
840 #define DIO_MAX_BLOCKS 4096
841
842 /*
843 * `handle' can be NULL if create is zero
844 */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)845 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
846 ext4_lblk_t block, int map_flags)
847 {
848 struct ext4_map_blocks map;
849 struct buffer_head *bh;
850 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
851 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
852 int err;
853
854 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
855 || handle != NULL || create == 0);
856 ASSERT(create == 0 || !nowait);
857
858 map.m_lblk = block;
859 map.m_len = 1;
860 err = ext4_map_blocks(handle, inode, &map, map_flags);
861
862 if (err == 0)
863 return create ? ERR_PTR(-ENOSPC) : NULL;
864 if (err < 0)
865 return ERR_PTR(err);
866
867 if (nowait)
868 return sb_find_get_block(inode->i_sb, map.m_pblk);
869
870 bh = sb_getblk(inode->i_sb, map.m_pblk);
871 if (unlikely(!bh))
872 return ERR_PTR(-ENOMEM);
873 if (map.m_flags & EXT4_MAP_NEW) {
874 ASSERT(create != 0);
875 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
876 || (handle != NULL));
877
878 /*
879 * Now that we do not always journal data, we should
880 * keep in mind whether this should always journal the
881 * new buffer as metadata. For now, regular file
882 * writes use ext4_get_block instead, so it's not a
883 * problem.
884 */
885 lock_buffer(bh);
886 BUFFER_TRACE(bh, "call get_create_access");
887 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
888 EXT4_JTR_NONE);
889 if (unlikely(err)) {
890 unlock_buffer(bh);
891 goto errout;
892 }
893 if (!buffer_uptodate(bh)) {
894 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
895 set_buffer_uptodate(bh);
896 }
897 unlock_buffer(bh);
898 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
899 err = ext4_handle_dirty_metadata(handle, inode, bh);
900 if (unlikely(err))
901 goto errout;
902 } else
903 BUFFER_TRACE(bh, "not a new buffer");
904 return bh;
905 errout:
906 brelse(bh);
907 return ERR_PTR(err);
908 }
909
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)910 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
911 ext4_lblk_t block, int map_flags)
912 {
913 struct buffer_head *bh;
914 int ret;
915
916 bh = ext4_getblk(handle, inode, block, map_flags);
917 if (IS_ERR(bh))
918 return bh;
919 if (!bh || ext4_buffer_uptodate(bh))
920 return bh;
921
922 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
923 if (ret) {
924 put_bh(bh);
925 return ERR_PTR(ret);
926 }
927 return bh;
928 }
929
930 /* Read a contiguous batch of blocks. */
ext4_bread_batch(struct inode * inode,ext4_lblk_t block,int bh_count,bool wait,struct buffer_head ** bhs)931 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
932 bool wait, struct buffer_head **bhs)
933 {
934 int i, err;
935
936 for (i = 0; i < bh_count; i++) {
937 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
938 if (IS_ERR(bhs[i])) {
939 err = PTR_ERR(bhs[i]);
940 bh_count = i;
941 goto out_brelse;
942 }
943 }
944
945 for (i = 0; i < bh_count; i++)
946 /* Note that NULL bhs[i] is valid because of holes. */
947 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
948 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
949
950 if (!wait)
951 return 0;
952
953 for (i = 0; i < bh_count; i++)
954 if (bhs[i])
955 wait_on_buffer(bhs[i]);
956
957 for (i = 0; i < bh_count; i++) {
958 if (bhs[i] && !buffer_uptodate(bhs[i])) {
959 err = -EIO;
960 goto out_brelse;
961 }
962 }
963 return 0;
964
965 out_brelse:
966 for (i = 0; i < bh_count; i++) {
967 brelse(bhs[i]);
968 bhs[i] = NULL;
969 }
970 return err;
971 }
972
ext4_walk_page_buffers(handle_t * handle,struct inode * inode,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct inode * inode,struct buffer_head * bh))973 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
974 struct buffer_head *head,
975 unsigned from,
976 unsigned to,
977 int *partial,
978 int (*fn)(handle_t *handle, struct inode *inode,
979 struct buffer_head *bh))
980 {
981 struct buffer_head *bh;
982 unsigned block_start, block_end;
983 unsigned blocksize = head->b_size;
984 int err, ret = 0;
985 struct buffer_head *next;
986
987 for (bh = head, block_start = 0;
988 ret == 0 && (bh != head || !block_start);
989 block_start = block_end, bh = next) {
990 next = bh->b_this_page;
991 block_end = block_start + blocksize;
992 if (block_end <= from || block_start >= to) {
993 if (partial && !buffer_uptodate(bh))
994 *partial = 1;
995 continue;
996 }
997 err = (*fn)(handle, inode, bh);
998 if (!ret)
999 ret = err;
1000 }
1001 return ret;
1002 }
1003
1004 /*
1005 * Helper for handling dirtying of journalled data. We also mark the folio as
1006 * dirty so that writeback code knows about this page (and inode) contains
1007 * dirty data. ext4_writepages() then commits appropriate transaction to
1008 * make data stable.
1009 */
ext4_dirty_journalled_data(handle_t * handle,struct buffer_head * bh)1010 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
1011 {
1012 folio_mark_dirty(bh->b_folio);
1013 return ext4_handle_dirty_metadata(handle, NULL, bh);
1014 }
1015
do_journal_get_write_access(handle_t * handle,struct inode * inode,struct buffer_head * bh)1016 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1017 struct buffer_head *bh)
1018 {
1019 int dirty = buffer_dirty(bh);
1020 int ret;
1021
1022 if (!buffer_mapped(bh) || buffer_freed(bh))
1023 return 0;
1024 /*
1025 * __block_write_begin() could have dirtied some buffers. Clean
1026 * the dirty bit as jbd2_journal_get_write_access() could complain
1027 * otherwise about fs integrity issues. Setting of the dirty bit
1028 * by __block_write_begin() isn't a real problem here as we clear
1029 * the bit before releasing a page lock and thus writeback cannot
1030 * ever write the buffer.
1031 */
1032 if (dirty)
1033 clear_buffer_dirty(bh);
1034 BUFFER_TRACE(bh, "get write access");
1035 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1036 EXT4_JTR_NONE);
1037 if (!ret && dirty)
1038 ret = ext4_dirty_journalled_data(handle, bh);
1039 return ret;
1040 }
1041
1042 #ifdef CONFIG_FS_ENCRYPTION
ext4_block_write_begin(struct folio * folio,loff_t pos,unsigned len,get_block_t * get_block)1043 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len,
1044 get_block_t *get_block)
1045 {
1046 unsigned from = pos & (PAGE_SIZE - 1);
1047 unsigned to = from + len;
1048 struct inode *inode = folio->mapping->host;
1049 unsigned block_start, block_end;
1050 sector_t block;
1051 int err = 0;
1052 unsigned blocksize = inode->i_sb->s_blocksize;
1053 unsigned bbits;
1054 struct buffer_head *bh, *head, *wait[2];
1055 int nr_wait = 0;
1056 int i;
1057
1058 BUG_ON(!folio_test_locked(folio));
1059 BUG_ON(from > PAGE_SIZE);
1060 BUG_ON(to > PAGE_SIZE);
1061 BUG_ON(from > to);
1062
1063 head = folio_buffers(folio);
1064 if (!head) {
1065 create_empty_buffers(&folio->page, blocksize, 0);
1066 head = folio_buffers(folio);
1067 }
1068 bbits = ilog2(blocksize);
1069 block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1070
1071 for (bh = head, block_start = 0; bh != head || !block_start;
1072 block++, block_start = block_end, bh = bh->b_this_page) {
1073 block_end = block_start + blocksize;
1074 if (block_end <= from || block_start >= to) {
1075 if (folio_test_uptodate(folio)) {
1076 set_buffer_uptodate(bh);
1077 }
1078 continue;
1079 }
1080 if (buffer_new(bh))
1081 clear_buffer_new(bh);
1082 if (!buffer_mapped(bh)) {
1083 WARN_ON(bh->b_size != blocksize);
1084 err = get_block(inode, block, bh, 1);
1085 if (err)
1086 break;
1087 if (buffer_new(bh)) {
1088 if (folio_test_uptodate(folio)) {
1089 clear_buffer_new(bh);
1090 set_buffer_uptodate(bh);
1091 mark_buffer_dirty(bh);
1092 continue;
1093 }
1094 if (block_end > to || block_start < from)
1095 folio_zero_segments(folio, to,
1096 block_end,
1097 block_start, from);
1098 continue;
1099 }
1100 }
1101 if (folio_test_uptodate(folio)) {
1102 set_buffer_uptodate(bh);
1103 continue;
1104 }
1105 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1106 !buffer_unwritten(bh) &&
1107 (block_start < from || block_end > to)) {
1108 ext4_read_bh_lock(bh, 0, false);
1109 wait[nr_wait++] = bh;
1110 }
1111 }
1112 /*
1113 * If we issued read requests, let them complete.
1114 */
1115 for (i = 0; i < nr_wait; i++) {
1116 wait_on_buffer(wait[i]);
1117 if (!buffer_uptodate(wait[i]))
1118 err = -EIO;
1119 }
1120 if (unlikely(err)) {
1121 folio_zero_new_buffers(folio, from, to);
1122 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1123 for (i = 0; i < nr_wait; i++) {
1124 int err2;
1125
1126 err2 = fscrypt_decrypt_pagecache_blocks(folio,
1127 blocksize, bh_offset(wait[i]));
1128 if (err2) {
1129 clear_buffer_uptodate(wait[i]);
1130 err = err2;
1131 }
1132 }
1133 }
1134
1135 return err;
1136 }
1137 #endif
1138
1139 /*
1140 * To preserve ordering, it is essential that the hole instantiation and
1141 * the data write be encapsulated in a single transaction. We cannot
1142 * close off a transaction and start a new one between the ext4_get_block()
1143 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of
1144 * ext4_write_begin() is the right place.
1145 */
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)1146 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1147 loff_t pos, unsigned len,
1148 struct page **pagep, void **fsdata)
1149 {
1150 struct inode *inode = mapping->host;
1151 int ret, needed_blocks;
1152 handle_t *handle;
1153 int retries = 0;
1154 struct folio *folio;
1155 pgoff_t index;
1156 unsigned from, to;
1157
1158 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1159 return -EIO;
1160
1161 trace_ext4_write_begin(inode, pos, len);
1162 /*
1163 * Reserve one block more for addition to orphan list in case
1164 * we allocate blocks but write fails for some reason
1165 */
1166 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1167 index = pos >> PAGE_SHIFT;
1168 from = pos & (PAGE_SIZE - 1);
1169 to = from + len;
1170
1171 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1172 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1173 pagep);
1174 if (ret < 0)
1175 return ret;
1176 if (ret == 1)
1177 return 0;
1178 }
1179
1180 /*
1181 * __filemap_get_folio() can take a long time if the
1182 * system is thrashing due to memory pressure, or if the folio
1183 * is being written back. So grab it first before we start
1184 * the transaction handle. This also allows us to allocate
1185 * the folio (if needed) without using GFP_NOFS.
1186 */
1187 retry_grab:
1188 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1189 mapping_gfp_mask(mapping));
1190 if (IS_ERR(folio))
1191 return PTR_ERR(folio);
1192 /*
1193 * The same as page allocation, we prealloc buffer heads before
1194 * starting the handle.
1195 */
1196 if (!folio_buffers(folio))
1197 create_empty_buffers(&folio->page, inode->i_sb->s_blocksize, 0);
1198
1199 folio_unlock(folio);
1200
1201 retry_journal:
1202 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1203 if (IS_ERR(handle)) {
1204 folio_put(folio);
1205 return PTR_ERR(handle);
1206 }
1207
1208 folio_lock(folio);
1209 if (folio->mapping != mapping) {
1210 /* The folio got truncated from under us */
1211 folio_unlock(folio);
1212 folio_put(folio);
1213 ext4_journal_stop(handle);
1214 goto retry_grab;
1215 }
1216 /* In case writeback began while the folio was unlocked */
1217 folio_wait_stable(folio);
1218
1219 #ifdef CONFIG_FS_ENCRYPTION
1220 if (ext4_should_dioread_nolock(inode))
1221 ret = ext4_block_write_begin(folio, pos, len,
1222 ext4_get_block_unwritten);
1223 else
1224 ret = ext4_block_write_begin(folio, pos, len, ext4_get_block);
1225 #else
1226 if (ext4_should_dioread_nolock(inode))
1227 ret = __block_write_begin(&folio->page, pos, len,
1228 ext4_get_block_unwritten);
1229 else
1230 ret = __block_write_begin(&folio->page, pos, len, ext4_get_block);
1231 #endif
1232 if (!ret && ext4_should_journal_data(inode)) {
1233 ret = ext4_walk_page_buffers(handle, inode,
1234 folio_buffers(folio), from, to,
1235 NULL, do_journal_get_write_access);
1236 }
1237
1238 if (ret) {
1239 bool extended = (pos + len > inode->i_size) &&
1240 !ext4_verity_in_progress(inode);
1241
1242 folio_unlock(folio);
1243 /*
1244 * __block_write_begin may have instantiated a few blocks
1245 * outside i_size. Trim these off again. Don't need
1246 * i_size_read because we hold i_rwsem.
1247 *
1248 * Add inode to orphan list in case we crash before
1249 * truncate finishes
1250 */
1251 if (extended && ext4_can_truncate(inode))
1252 ext4_orphan_add(handle, inode);
1253
1254 ext4_journal_stop(handle);
1255 if (extended) {
1256 ext4_truncate_failed_write(inode);
1257 /*
1258 * If truncate failed early the inode might
1259 * still be on the orphan list; we need to
1260 * make sure the inode is removed from the
1261 * orphan list in that case.
1262 */
1263 if (inode->i_nlink)
1264 ext4_orphan_del(NULL, inode);
1265 }
1266
1267 if (ret == -ENOSPC &&
1268 ext4_should_retry_alloc(inode->i_sb, &retries))
1269 goto retry_journal;
1270 folio_put(folio);
1271 return ret;
1272 }
1273 *pagep = &folio->page;
1274 return ret;
1275 }
1276
1277 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct inode * inode,struct buffer_head * bh)1278 static int write_end_fn(handle_t *handle, struct inode *inode,
1279 struct buffer_head *bh)
1280 {
1281 int ret;
1282 if (!buffer_mapped(bh) || buffer_freed(bh))
1283 return 0;
1284 set_buffer_uptodate(bh);
1285 ret = ext4_dirty_journalled_data(handle, bh);
1286 clear_buffer_meta(bh);
1287 clear_buffer_prio(bh);
1288 return ret;
1289 }
1290
1291 /*
1292 * We need to pick up the new inode size which generic_commit_write gave us
1293 * `file' can be NULL - eg, when called from page_symlink().
1294 *
1295 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1296 * buffers are managed internally.
1297 */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1298 static int ext4_write_end(struct file *file,
1299 struct address_space *mapping,
1300 loff_t pos, unsigned len, unsigned copied,
1301 struct page *page, void *fsdata)
1302 {
1303 struct folio *folio = page_folio(page);
1304 handle_t *handle = ext4_journal_current_handle();
1305 struct inode *inode = mapping->host;
1306 loff_t old_size = inode->i_size;
1307 int ret = 0, ret2;
1308 int i_size_changed = 0;
1309 bool verity = ext4_verity_in_progress(inode);
1310
1311 trace_ext4_write_end(inode, pos, len, copied);
1312
1313 if (ext4_has_inline_data(inode) &&
1314 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1315 return ext4_write_inline_data_end(inode, pos, len, copied,
1316 folio);
1317
1318 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1319 /*
1320 * it's important to update i_size while still holding folio lock:
1321 * page writeout could otherwise come in and zero beyond i_size.
1322 *
1323 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1324 * blocks are being written past EOF, so skip the i_size update.
1325 */
1326 if (!verity)
1327 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1328 folio_unlock(folio);
1329 folio_put(folio);
1330
1331 if (old_size < pos && !verity)
1332 pagecache_isize_extended(inode, old_size, pos);
1333 /*
1334 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1335 * makes the holding time of folio lock longer. Second, it forces lock
1336 * ordering of folio lock and transaction start for journaling
1337 * filesystems.
1338 */
1339 if (i_size_changed)
1340 ret = ext4_mark_inode_dirty(handle, inode);
1341
1342 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1343 /* if we have allocated more blocks and copied
1344 * less. We will have blocks allocated outside
1345 * inode->i_size. So truncate them
1346 */
1347 ext4_orphan_add(handle, inode);
1348
1349 ret2 = ext4_journal_stop(handle);
1350 if (!ret)
1351 ret = ret2;
1352
1353 if (pos + len > inode->i_size && !verity) {
1354 ext4_truncate_failed_write(inode);
1355 /*
1356 * If truncate failed early the inode might still be
1357 * on the orphan list; we need to make sure the inode
1358 * is removed from the orphan list in that case.
1359 */
1360 if (inode->i_nlink)
1361 ext4_orphan_del(NULL, inode);
1362 }
1363
1364 return ret ? ret : copied;
1365 }
1366
1367 /*
1368 * This is a private version of folio_zero_new_buffers() which doesn't
1369 * set the buffer to be dirty, since in data=journalled mode we need
1370 * to call ext4_dirty_journalled_data() instead.
1371 */
ext4_journalled_zero_new_buffers(handle_t * handle,struct inode * inode,struct folio * folio,unsigned from,unsigned to)1372 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1373 struct inode *inode,
1374 struct folio *folio,
1375 unsigned from, unsigned to)
1376 {
1377 unsigned int block_start = 0, block_end;
1378 struct buffer_head *head, *bh;
1379
1380 bh = head = folio_buffers(folio);
1381 do {
1382 block_end = block_start + bh->b_size;
1383 if (buffer_new(bh)) {
1384 if (block_end > from && block_start < to) {
1385 if (!folio_test_uptodate(folio)) {
1386 unsigned start, size;
1387
1388 start = max(from, block_start);
1389 size = min(to, block_end) - start;
1390
1391 folio_zero_range(folio, start, size);
1392 write_end_fn(handle, inode, bh);
1393 }
1394 clear_buffer_new(bh);
1395 }
1396 }
1397 block_start = block_end;
1398 bh = bh->b_this_page;
1399 } while (bh != head);
1400 }
1401
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1402 static int ext4_journalled_write_end(struct file *file,
1403 struct address_space *mapping,
1404 loff_t pos, unsigned len, unsigned copied,
1405 struct page *page, void *fsdata)
1406 {
1407 struct folio *folio = page_folio(page);
1408 handle_t *handle = ext4_journal_current_handle();
1409 struct inode *inode = mapping->host;
1410 loff_t old_size = inode->i_size;
1411 int ret = 0, ret2;
1412 int partial = 0;
1413 unsigned from, to;
1414 int size_changed = 0;
1415 bool verity = ext4_verity_in_progress(inode);
1416
1417 trace_ext4_journalled_write_end(inode, pos, len, copied);
1418 from = pos & (PAGE_SIZE - 1);
1419 to = from + len;
1420
1421 BUG_ON(!ext4_handle_valid(handle));
1422
1423 if (ext4_has_inline_data(inode))
1424 return ext4_write_inline_data_end(inode, pos, len, copied,
1425 folio);
1426
1427 if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1428 copied = 0;
1429 ext4_journalled_zero_new_buffers(handle, inode, folio,
1430 from, to);
1431 } else {
1432 if (unlikely(copied < len))
1433 ext4_journalled_zero_new_buffers(handle, inode, folio,
1434 from + copied, to);
1435 ret = ext4_walk_page_buffers(handle, inode,
1436 folio_buffers(folio),
1437 from, from + copied, &partial,
1438 write_end_fn);
1439 if (!partial)
1440 folio_mark_uptodate(folio);
1441 }
1442 if (!verity)
1443 size_changed = ext4_update_inode_size(inode, pos + copied);
1444 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1445 folio_unlock(folio);
1446 folio_put(folio);
1447
1448 if (old_size < pos && !verity)
1449 pagecache_isize_extended(inode, old_size, pos);
1450
1451 if (size_changed) {
1452 ret2 = ext4_mark_inode_dirty(handle, inode);
1453 if (!ret)
1454 ret = ret2;
1455 }
1456
1457 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1458 /* if we have allocated more blocks and copied
1459 * less. We will have blocks allocated outside
1460 * inode->i_size. So truncate them
1461 */
1462 ext4_orphan_add(handle, inode);
1463
1464 ret2 = ext4_journal_stop(handle);
1465 if (!ret)
1466 ret = ret2;
1467 if (pos + len > inode->i_size && !verity) {
1468 ext4_truncate_failed_write(inode);
1469 /*
1470 * If truncate failed early the inode might still be
1471 * on the orphan list; we need to make sure the inode
1472 * is removed from the orphan list in that case.
1473 */
1474 if (inode->i_nlink)
1475 ext4_orphan_del(NULL, inode);
1476 }
1477
1478 return ret ? ret : copied;
1479 }
1480
1481 /*
1482 * Reserve space for a single cluster
1483 */
ext4_da_reserve_space(struct inode * inode)1484 static int ext4_da_reserve_space(struct inode *inode)
1485 {
1486 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1487 struct ext4_inode_info *ei = EXT4_I(inode);
1488 int ret;
1489
1490 /*
1491 * We will charge metadata quota at writeout time; this saves
1492 * us from metadata over-estimation, though we may go over by
1493 * a small amount in the end. Here we just reserve for data.
1494 */
1495 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1496 if (ret)
1497 return ret;
1498
1499 spin_lock(&ei->i_block_reservation_lock);
1500 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1501 spin_unlock(&ei->i_block_reservation_lock);
1502 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1503 return -ENOSPC;
1504 }
1505 ei->i_reserved_data_blocks++;
1506 trace_ext4_da_reserve_space(inode);
1507 spin_unlock(&ei->i_block_reservation_lock);
1508
1509 return 0; /* success */
1510 }
1511
ext4_da_release_space(struct inode * inode,int to_free)1512 void ext4_da_release_space(struct inode *inode, int to_free)
1513 {
1514 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1515 struct ext4_inode_info *ei = EXT4_I(inode);
1516
1517 if (!to_free)
1518 return; /* Nothing to release, exit */
1519
1520 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1521
1522 trace_ext4_da_release_space(inode, to_free);
1523 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1524 /*
1525 * if there aren't enough reserved blocks, then the
1526 * counter is messed up somewhere. Since this
1527 * function is called from invalidate page, it's
1528 * harmless to return without any action.
1529 */
1530 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1531 "ino %lu, to_free %d with only %d reserved "
1532 "data blocks", inode->i_ino, to_free,
1533 ei->i_reserved_data_blocks);
1534 WARN_ON(1);
1535 to_free = ei->i_reserved_data_blocks;
1536 }
1537 ei->i_reserved_data_blocks -= to_free;
1538
1539 /* update fs dirty data blocks counter */
1540 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1541
1542 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1543
1544 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1545 }
1546
1547 /*
1548 * Delayed allocation stuff
1549 */
1550
1551 struct mpage_da_data {
1552 /* These are input fields for ext4_do_writepages() */
1553 struct inode *inode;
1554 struct writeback_control *wbc;
1555 unsigned int can_map:1; /* Can writepages call map blocks? */
1556
1557 /* These are internal state of ext4_do_writepages() */
1558 pgoff_t first_page; /* The first page to write */
1559 pgoff_t next_page; /* Current page to examine */
1560 pgoff_t last_page; /* Last page to examine */
1561 /*
1562 * Extent to map - this can be after first_page because that can be
1563 * fully mapped. We somewhat abuse m_flags to store whether the extent
1564 * is delalloc or unwritten.
1565 */
1566 struct ext4_map_blocks map;
1567 struct ext4_io_submit io_submit; /* IO submission data */
1568 unsigned int do_map:1;
1569 unsigned int scanned_until_end:1;
1570 unsigned int journalled_more_data:1;
1571 };
1572
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1573 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1574 bool invalidate)
1575 {
1576 unsigned nr, i;
1577 pgoff_t index, end;
1578 struct folio_batch fbatch;
1579 struct inode *inode = mpd->inode;
1580 struct address_space *mapping = inode->i_mapping;
1581
1582 /* This is necessary when next_page == 0. */
1583 if (mpd->first_page >= mpd->next_page)
1584 return;
1585
1586 mpd->scanned_until_end = 0;
1587 index = mpd->first_page;
1588 end = mpd->next_page - 1;
1589 if (invalidate) {
1590 ext4_lblk_t start, last;
1591 start = index << (PAGE_SHIFT - inode->i_blkbits);
1592 last = end << (PAGE_SHIFT - inode->i_blkbits);
1593
1594 /*
1595 * avoid racing with extent status tree scans made by
1596 * ext4_insert_delayed_block()
1597 */
1598 down_write(&EXT4_I(inode)->i_data_sem);
1599 ext4_es_remove_extent(inode, start, last - start + 1);
1600 up_write(&EXT4_I(inode)->i_data_sem);
1601 }
1602
1603 folio_batch_init(&fbatch);
1604 while (index <= end) {
1605 nr = filemap_get_folios(mapping, &index, end, &fbatch);
1606 if (nr == 0)
1607 break;
1608 for (i = 0; i < nr; i++) {
1609 struct folio *folio = fbatch.folios[i];
1610
1611 if (folio->index < mpd->first_page)
1612 continue;
1613 if (folio_next_index(folio) - 1 > end)
1614 continue;
1615 BUG_ON(!folio_test_locked(folio));
1616 BUG_ON(folio_test_writeback(folio));
1617 if (invalidate) {
1618 if (folio_mapped(folio))
1619 folio_clear_dirty_for_io(folio);
1620 block_invalidate_folio(folio, 0,
1621 folio_size(folio));
1622 folio_clear_uptodate(folio);
1623 }
1624 folio_unlock(folio);
1625 }
1626 folio_batch_release(&fbatch);
1627 }
1628 }
1629
ext4_print_free_blocks(struct inode * inode)1630 static void ext4_print_free_blocks(struct inode *inode)
1631 {
1632 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1633 struct super_block *sb = inode->i_sb;
1634 struct ext4_inode_info *ei = EXT4_I(inode);
1635
1636 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1637 EXT4_C2B(EXT4_SB(inode->i_sb),
1638 ext4_count_free_clusters(sb)));
1639 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1640 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1641 (long long) EXT4_C2B(EXT4_SB(sb),
1642 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1643 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1644 (long long) EXT4_C2B(EXT4_SB(sb),
1645 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1646 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1647 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1648 ei->i_reserved_data_blocks);
1649 return;
1650 }
1651
1652 /*
1653 * ext4_insert_delayed_block - adds a delayed block to the extents status
1654 * tree, incrementing the reserved cluster/block
1655 * count or making a pending reservation
1656 * where needed
1657 *
1658 * @inode - file containing the newly added block
1659 * @lblk - logical block to be added
1660 *
1661 * Returns 0 on success, negative error code on failure.
1662 */
ext4_insert_delayed_block(struct inode * inode,ext4_lblk_t lblk)1663 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1664 {
1665 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1666 int ret;
1667 bool allocated = false;
1668
1669 /*
1670 * If the cluster containing lblk is shared with a delayed,
1671 * written, or unwritten extent in a bigalloc file system, it's
1672 * already been accounted for and does not need to be reserved.
1673 * A pending reservation must be made for the cluster if it's
1674 * shared with a written or unwritten extent and doesn't already
1675 * have one. Written and unwritten extents can be purged from the
1676 * extents status tree if the system is under memory pressure, so
1677 * it's necessary to examine the extent tree if a search of the
1678 * extents status tree doesn't get a match.
1679 */
1680 if (sbi->s_cluster_ratio == 1) {
1681 ret = ext4_da_reserve_space(inode);
1682 if (ret != 0) /* ENOSPC */
1683 return ret;
1684 } else { /* bigalloc */
1685 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1686 if (!ext4_es_scan_clu(inode,
1687 &ext4_es_is_mapped, lblk)) {
1688 ret = ext4_clu_mapped(inode,
1689 EXT4_B2C(sbi, lblk));
1690 if (ret < 0)
1691 return ret;
1692 if (ret == 0) {
1693 ret = ext4_da_reserve_space(inode);
1694 if (ret != 0) /* ENOSPC */
1695 return ret;
1696 } else {
1697 allocated = true;
1698 }
1699 } else {
1700 allocated = true;
1701 }
1702 }
1703 }
1704
1705 ext4_es_insert_delayed_block(inode, lblk, allocated);
1706 return 0;
1707 }
1708
1709 /*
1710 * This function is grabs code from the very beginning of
1711 * ext4_map_blocks, but assumes that the caller is from delayed write
1712 * time. This function looks up the requested blocks and sets the
1713 * buffer delay bit under the protection of i_data_sem.
1714 */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1715 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1716 struct ext4_map_blocks *map,
1717 struct buffer_head *bh)
1718 {
1719 struct extent_status es;
1720 int retval;
1721 sector_t invalid_block = ~((sector_t) 0xffff);
1722 #ifdef ES_AGGRESSIVE_TEST
1723 struct ext4_map_blocks orig_map;
1724
1725 memcpy(&orig_map, map, sizeof(*map));
1726 #endif
1727
1728 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1729 invalid_block = ~0;
1730
1731 map->m_flags = 0;
1732 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1733 (unsigned long) map->m_lblk);
1734
1735 /* Lookup extent status tree firstly */
1736 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1737 if (ext4_es_is_hole(&es))
1738 goto add_delayed;
1739
1740 found:
1741 /*
1742 * Delayed extent could be allocated by fallocate.
1743 * So we need to check it.
1744 */
1745 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1746 map_bh(bh, inode->i_sb, invalid_block);
1747 set_buffer_new(bh);
1748 set_buffer_delay(bh);
1749 return 0;
1750 }
1751
1752 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1753 retval = es.es_len - (iblock - es.es_lblk);
1754 if (retval > map->m_len)
1755 retval = map->m_len;
1756 map->m_len = retval;
1757 if (ext4_es_is_written(&es))
1758 map->m_flags |= EXT4_MAP_MAPPED;
1759 else if (ext4_es_is_unwritten(&es))
1760 map->m_flags |= EXT4_MAP_UNWRITTEN;
1761 else
1762 BUG();
1763
1764 #ifdef ES_AGGRESSIVE_TEST
1765 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1766 #endif
1767 return retval;
1768 }
1769
1770 /*
1771 * Try to see if we can get the block without requesting a new
1772 * file system block.
1773 */
1774 down_read(&EXT4_I(inode)->i_data_sem);
1775 if (ext4_has_inline_data(inode))
1776 retval = 0;
1777 else
1778 retval = ext4_map_query_blocks(NULL, inode, map);
1779 up_read(&EXT4_I(inode)->i_data_sem);
1780 if (retval)
1781 return retval;
1782
1783 add_delayed:
1784 down_write(&EXT4_I(inode)->i_data_sem);
1785 /*
1786 * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1787 * and fallocate path (no folio lock) can race. Make sure we
1788 * lookup the extent status tree here again while i_data_sem
1789 * is held in write mode, before inserting a new da entry in
1790 * the extent status tree.
1791 */
1792 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1793 if (!ext4_es_is_hole(&es)) {
1794 up_write(&EXT4_I(inode)->i_data_sem);
1795 goto found;
1796 }
1797 } else if (!ext4_has_inline_data(inode)) {
1798 retval = ext4_map_query_blocks(NULL, inode, map);
1799 if (retval) {
1800 up_write(&EXT4_I(inode)->i_data_sem);
1801 return retval;
1802 }
1803 }
1804
1805 retval = ext4_insert_delayed_block(inode, map->m_lblk);
1806 up_write(&EXT4_I(inode)->i_data_sem);
1807 if (retval)
1808 return retval;
1809
1810 map_bh(bh, inode->i_sb, invalid_block);
1811 set_buffer_new(bh);
1812 set_buffer_delay(bh);
1813 return retval;
1814 }
1815
1816 /*
1817 * This is a special get_block_t callback which is used by
1818 * ext4_da_write_begin(). It will either return mapped block or
1819 * reserve space for a single block.
1820 *
1821 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1822 * We also have b_blocknr = -1 and b_bdev initialized properly
1823 *
1824 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1825 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1826 * initialized properly.
1827 */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1828 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1829 struct buffer_head *bh, int create)
1830 {
1831 struct ext4_map_blocks map;
1832 int ret = 0;
1833
1834 BUG_ON(create == 0);
1835 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1836
1837 map.m_lblk = iblock;
1838 map.m_len = 1;
1839
1840 /*
1841 * first, we need to know whether the block is allocated already
1842 * preallocated blocks are unmapped but should treated
1843 * the same as allocated blocks.
1844 */
1845 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1846 if (ret <= 0)
1847 return ret;
1848
1849 map_bh(bh, inode->i_sb, map.m_pblk);
1850 ext4_update_bh_state(bh, map.m_flags);
1851
1852 if (buffer_unwritten(bh)) {
1853 /* A delayed write to unwritten bh should be marked
1854 * new and mapped. Mapped ensures that we don't do
1855 * get_block multiple times when we write to the same
1856 * offset and new ensures that we do proper zero out
1857 * for partial write.
1858 */
1859 set_buffer_new(bh);
1860 set_buffer_mapped(bh);
1861 }
1862 return 0;
1863 }
1864
mpage_folio_done(struct mpage_da_data * mpd,struct folio * folio)1865 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1866 {
1867 mpd->first_page += folio_nr_pages(folio);
1868 folio_unlock(folio);
1869 }
1870
mpage_submit_folio(struct mpage_da_data * mpd,struct folio * folio)1871 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1872 {
1873 size_t len;
1874 loff_t size;
1875 int err;
1876
1877 BUG_ON(folio->index != mpd->first_page);
1878 folio_clear_dirty_for_io(folio);
1879 /*
1880 * We have to be very careful here! Nothing protects writeback path
1881 * against i_size changes and the page can be writeably mapped into
1882 * page tables. So an application can be growing i_size and writing
1883 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1884 * write-protects our page in page tables and the page cannot get
1885 * written to again until we release folio lock. So only after
1886 * folio_clear_dirty_for_io() we are safe to sample i_size for
1887 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1888 * on the barrier provided by folio_test_clear_dirty() in
1889 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1890 * after page tables are updated.
1891 */
1892 size = i_size_read(mpd->inode);
1893 len = folio_size(folio);
1894 if (folio_pos(folio) + len > size &&
1895 !ext4_verity_in_progress(mpd->inode))
1896 len = size & ~PAGE_MASK;
1897 err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1898 if (!err)
1899 mpd->wbc->nr_to_write--;
1900
1901 return err;
1902 }
1903
1904 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1905
1906 /*
1907 * mballoc gives us at most this number of blocks...
1908 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1909 * The rest of mballoc seems to handle chunks up to full group size.
1910 */
1911 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1912
1913 /*
1914 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1915 *
1916 * @mpd - extent of blocks
1917 * @lblk - logical number of the block in the file
1918 * @bh - buffer head we want to add to the extent
1919 *
1920 * The function is used to collect contig. blocks in the same state. If the
1921 * buffer doesn't require mapping for writeback and we haven't started the
1922 * extent of buffers to map yet, the function returns 'true' immediately - the
1923 * caller can write the buffer right away. Otherwise the function returns true
1924 * if the block has been added to the extent, false if the block couldn't be
1925 * added.
1926 */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)1927 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1928 struct buffer_head *bh)
1929 {
1930 struct ext4_map_blocks *map = &mpd->map;
1931
1932 /* Buffer that doesn't need mapping for writeback? */
1933 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1934 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1935 /* So far no extent to map => we write the buffer right away */
1936 if (map->m_len == 0)
1937 return true;
1938 return false;
1939 }
1940
1941 /* First block in the extent? */
1942 if (map->m_len == 0) {
1943 /* We cannot map unless handle is started... */
1944 if (!mpd->do_map)
1945 return false;
1946 map->m_lblk = lblk;
1947 map->m_len = 1;
1948 map->m_flags = bh->b_state & BH_FLAGS;
1949 return true;
1950 }
1951
1952 /* Don't go larger than mballoc is willing to allocate */
1953 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1954 return false;
1955
1956 /* Can we merge the block to our big extent? */
1957 if (lblk == map->m_lblk + map->m_len &&
1958 (bh->b_state & BH_FLAGS) == map->m_flags) {
1959 map->m_len++;
1960 return true;
1961 }
1962 return false;
1963 }
1964
1965 /*
1966 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1967 *
1968 * @mpd - extent of blocks for mapping
1969 * @head - the first buffer in the page
1970 * @bh - buffer we should start processing from
1971 * @lblk - logical number of the block in the file corresponding to @bh
1972 *
1973 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1974 * the page for IO if all buffers in this page were mapped and there's no
1975 * accumulated extent of buffers to map or add buffers in the page to the
1976 * extent of buffers to map. The function returns 1 if the caller can continue
1977 * by processing the next page, 0 if it should stop adding buffers to the
1978 * extent to map because we cannot extend it anymore. It can also return value
1979 * < 0 in case of error during IO submission.
1980 */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)1981 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1982 struct buffer_head *head,
1983 struct buffer_head *bh,
1984 ext4_lblk_t lblk)
1985 {
1986 struct inode *inode = mpd->inode;
1987 int err;
1988 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
1989 >> inode->i_blkbits;
1990
1991 if (ext4_verity_in_progress(inode))
1992 blocks = EXT_MAX_BLOCKS;
1993
1994 do {
1995 BUG_ON(buffer_locked(bh));
1996
1997 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1998 /* Found extent to map? */
1999 if (mpd->map.m_len)
2000 return 0;
2001 /* Buffer needs mapping and handle is not started? */
2002 if (!mpd->do_map)
2003 return 0;
2004 /* Everything mapped so far and we hit EOF */
2005 break;
2006 }
2007 } while (lblk++, (bh = bh->b_this_page) != head);
2008 /* So far everything mapped? Submit the page for IO. */
2009 if (mpd->map.m_len == 0) {
2010 err = mpage_submit_folio(mpd, head->b_folio);
2011 if (err < 0)
2012 return err;
2013 mpage_folio_done(mpd, head->b_folio);
2014 }
2015 if (lblk >= blocks) {
2016 mpd->scanned_until_end = 1;
2017 return 0;
2018 }
2019 return 1;
2020 }
2021
2022 /*
2023 * mpage_process_folio - update folio buffers corresponding to changed extent
2024 * and may submit fully mapped page for IO
2025 * @mpd: description of extent to map, on return next extent to map
2026 * @folio: Contains these buffers.
2027 * @m_lblk: logical block mapping.
2028 * @m_pblk: corresponding physical mapping.
2029 * @map_bh: determines on return whether this page requires any further
2030 * mapping or not.
2031 *
2032 * Scan given folio buffers corresponding to changed extent and update buffer
2033 * state according to new extent state.
2034 * We map delalloc buffers to their physical location, clear unwritten bits.
2035 * If the given folio is not fully mapped, we update @mpd to the next extent in
2036 * the given folio that needs mapping & return @map_bh as true.
2037 */
mpage_process_folio(struct mpage_da_data * mpd,struct folio * folio,ext4_lblk_t * m_lblk,ext4_fsblk_t * m_pblk,bool * map_bh)2038 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2039 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2040 bool *map_bh)
2041 {
2042 struct buffer_head *head, *bh;
2043 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2044 ext4_lblk_t lblk = *m_lblk;
2045 ext4_fsblk_t pblock = *m_pblk;
2046 int err = 0;
2047 int blkbits = mpd->inode->i_blkbits;
2048 ssize_t io_end_size = 0;
2049 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2050
2051 bh = head = folio_buffers(folio);
2052 do {
2053 if (lblk < mpd->map.m_lblk)
2054 continue;
2055 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2056 /*
2057 * Buffer after end of mapped extent.
2058 * Find next buffer in the folio to map.
2059 */
2060 mpd->map.m_len = 0;
2061 mpd->map.m_flags = 0;
2062 io_end_vec->size += io_end_size;
2063
2064 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2065 if (err > 0)
2066 err = 0;
2067 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2068 io_end_vec = ext4_alloc_io_end_vec(io_end);
2069 if (IS_ERR(io_end_vec)) {
2070 err = PTR_ERR(io_end_vec);
2071 goto out;
2072 }
2073 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2074 }
2075 *map_bh = true;
2076 goto out;
2077 }
2078 if (buffer_delay(bh)) {
2079 clear_buffer_delay(bh);
2080 bh->b_blocknr = pblock++;
2081 }
2082 clear_buffer_unwritten(bh);
2083 io_end_size += (1 << blkbits);
2084 } while (lblk++, (bh = bh->b_this_page) != head);
2085
2086 io_end_vec->size += io_end_size;
2087 *map_bh = false;
2088 out:
2089 *m_lblk = lblk;
2090 *m_pblk = pblock;
2091 return err;
2092 }
2093
2094 /*
2095 * mpage_map_buffers - update buffers corresponding to changed extent and
2096 * submit fully mapped pages for IO
2097 *
2098 * @mpd - description of extent to map, on return next extent to map
2099 *
2100 * Scan buffers corresponding to changed extent (we expect corresponding pages
2101 * to be already locked) and update buffer state according to new extent state.
2102 * We map delalloc buffers to their physical location, clear unwritten bits,
2103 * and mark buffers as uninit when we perform writes to unwritten extents
2104 * and do extent conversion after IO is finished. If the last page is not fully
2105 * mapped, we update @map to the next extent in the last page that needs
2106 * mapping. Otherwise we submit the page for IO.
2107 */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2108 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2109 {
2110 struct folio_batch fbatch;
2111 unsigned nr, i;
2112 struct inode *inode = mpd->inode;
2113 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2114 pgoff_t start, end;
2115 ext4_lblk_t lblk;
2116 ext4_fsblk_t pblock;
2117 int err;
2118 bool map_bh = false;
2119
2120 start = mpd->map.m_lblk >> bpp_bits;
2121 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2122 lblk = start << bpp_bits;
2123 pblock = mpd->map.m_pblk;
2124
2125 folio_batch_init(&fbatch);
2126 while (start <= end) {
2127 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2128 if (nr == 0)
2129 break;
2130 for (i = 0; i < nr; i++) {
2131 struct folio *folio = fbatch.folios[i];
2132
2133 err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2134 &map_bh);
2135 /*
2136 * If map_bh is true, means page may require further bh
2137 * mapping, or maybe the page was submitted for IO.
2138 * So we return to call further extent mapping.
2139 */
2140 if (err < 0 || map_bh)
2141 goto out;
2142 /* Page fully mapped - let IO run! */
2143 err = mpage_submit_folio(mpd, folio);
2144 if (err < 0)
2145 goto out;
2146 mpage_folio_done(mpd, folio);
2147 }
2148 folio_batch_release(&fbatch);
2149 }
2150 /* Extent fully mapped and matches with page boundary. We are done. */
2151 mpd->map.m_len = 0;
2152 mpd->map.m_flags = 0;
2153 return 0;
2154 out:
2155 folio_batch_release(&fbatch);
2156 return err;
2157 }
2158
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2159 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2160 {
2161 struct inode *inode = mpd->inode;
2162 struct ext4_map_blocks *map = &mpd->map;
2163 int get_blocks_flags;
2164 int err, dioread_nolock;
2165
2166 trace_ext4_da_write_pages_extent(inode, map);
2167 /*
2168 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2169 * to convert an unwritten extent to be initialized (in the case
2170 * where we have written into one or more preallocated blocks). It is
2171 * possible that we're going to need more metadata blocks than
2172 * previously reserved. However we must not fail because we're in
2173 * writeback and there is nothing we can do about it so it might result
2174 * in data loss. So use reserved blocks to allocate metadata if
2175 * possible.
2176 *
2177 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2178 * the blocks in question are delalloc blocks. This indicates
2179 * that the blocks and quotas has already been checked when
2180 * the data was copied into the page cache.
2181 */
2182 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2183 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2184 EXT4_GET_BLOCKS_IO_SUBMIT;
2185 dioread_nolock = ext4_should_dioread_nolock(inode);
2186 if (dioread_nolock)
2187 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2188 if (map->m_flags & BIT(BH_Delay))
2189 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2190
2191 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2192 if (err < 0)
2193 return err;
2194 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2195 if (!mpd->io_submit.io_end->handle &&
2196 ext4_handle_valid(handle)) {
2197 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2198 handle->h_rsv_handle = NULL;
2199 }
2200 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2201 }
2202
2203 BUG_ON(map->m_len == 0);
2204 return 0;
2205 }
2206
2207 /*
2208 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2209 * mpd->len and submit pages underlying it for IO
2210 *
2211 * @handle - handle for journal operations
2212 * @mpd - extent to map
2213 * @give_up_on_write - we set this to true iff there is a fatal error and there
2214 * is no hope of writing the data. The caller should discard
2215 * dirty pages to avoid infinite loops.
2216 *
2217 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2218 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2219 * them to initialized or split the described range from larger unwritten
2220 * extent. Note that we need not map all the described range since allocation
2221 * can return less blocks or the range is covered by more unwritten extents. We
2222 * cannot map more because we are limited by reserved transaction credits. On
2223 * the other hand we always make sure that the last touched page is fully
2224 * mapped so that it can be written out (and thus forward progress is
2225 * guaranteed). After mapping we submit all mapped pages for IO.
2226 */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2227 static int mpage_map_and_submit_extent(handle_t *handle,
2228 struct mpage_da_data *mpd,
2229 bool *give_up_on_write)
2230 {
2231 struct inode *inode = mpd->inode;
2232 struct ext4_map_blocks *map = &mpd->map;
2233 int err;
2234 loff_t disksize;
2235 int progress = 0;
2236 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2237 struct ext4_io_end_vec *io_end_vec;
2238
2239 io_end_vec = ext4_alloc_io_end_vec(io_end);
2240 if (IS_ERR(io_end_vec))
2241 return PTR_ERR(io_end_vec);
2242 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2243 do {
2244 err = mpage_map_one_extent(handle, mpd);
2245 if (err < 0) {
2246 struct super_block *sb = inode->i_sb;
2247
2248 if (ext4_forced_shutdown(sb))
2249 goto invalidate_dirty_pages;
2250 /*
2251 * Let the uper layers retry transient errors.
2252 * In the case of ENOSPC, if ext4_count_free_blocks()
2253 * is non-zero, a commit should free up blocks.
2254 */
2255 if ((err == -ENOMEM) ||
2256 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2257 if (progress)
2258 goto update_disksize;
2259 return err;
2260 }
2261 ext4_msg(sb, KERN_CRIT,
2262 "Delayed block allocation failed for "
2263 "inode %lu at logical offset %llu with"
2264 " max blocks %u with error %d",
2265 inode->i_ino,
2266 (unsigned long long)map->m_lblk,
2267 (unsigned)map->m_len, -err);
2268 ext4_msg(sb, KERN_CRIT,
2269 "This should not happen!! Data will "
2270 "be lost\n");
2271 if (err == -ENOSPC)
2272 ext4_print_free_blocks(inode);
2273 invalidate_dirty_pages:
2274 *give_up_on_write = true;
2275 return err;
2276 }
2277 progress = 1;
2278 /*
2279 * Update buffer state, submit mapped pages, and get us new
2280 * extent to map
2281 */
2282 err = mpage_map_and_submit_buffers(mpd);
2283 if (err < 0)
2284 goto update_disksize;
2285 } while (map->m_len);
2286
2287 update_disksize:
2288 /*
2289 * Update on-disk size after IO is submitted. Races with
2290 * truncate are avoided by checking i_size under i_data_sem.
2291 */
2292 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2293 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2294 int err2;
2295 loff_t i_size;
2296
2297 down_write(&EXT4_I(inode)->i_data_sem);
2298 i_size = i_size_read(inode);
2299 if (disksize > i_size)
2300 disksize = i_size;
2301 if (disksize > EXT4_I(inode)->i_disksize)
2302 EXT4_I(inode)->i_disksize = disksize;
2303 up_write(&EXT4_I(inode)->i_data_sem);
2304 err2 = ext4_mark_inode_dirty(handle, inode);
2305 if (err2) {
2306 ext4_error_err(inode->i_sb, -err2,
2307 "Failed to mark inode %lu dirty",
2308 inode->i_ino);
2309 }
2310 if (!err)
2311 err = err2;
2312 }
2313 return err;
2314 }
2315
2316 /*
2317 * Calculate the total number of credits to reserve for one writepages
2318 * iteration. This is called from ext4_writepages(). We map an extent of
2319 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2320 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2321 * bpp - 1 blocks in bpp different extents.
2322 */
ext4_da_writepages_trans_blocks(struct inode * inode)2323 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2324 {
2325 int bpp = ext4_journal_blocks_per_page(inode);
2326
2327 return ext4_meta_trans_blocks(inode,
2328 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2329 }
2330
ext4_journal_folio_buffers(handle_t * handle,struct folio * folio,size_t len)2331 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2332 size_t len)
2333 {
2334 struct buffer_head *page_bufs = folio_buffers(folio);
2335 struct inode *inode = folio->mapping->host;
2336 int ret, err;
2337
2338 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2339 NULL, do_journal_get_write_access);
2340 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2341 NULL, write_end_fn);
2342 if (ret == 0)
2343 ret = err;
2344 err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2345 if (ret == 0)
2346 ret = err;
2347 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2348
2349 return ret;
2350 }
2351
mpage_journal_page_buffers(handle_t * handle,struct mpage_da_data * mpd,struct folio * folio)2352 static int mpage_journal_page_buffers(handle_t *handle,
2353 struct mpage_da_data *mpd,
2354 struct folio *folio)
2355 {
2356 struct inode *inode = mpd->inode;
2357 loff_t size = i_size_read(inode);
2358 size_t len = folio_size(folio);
2359
2360 folio_clear_checked(folio);
2361 mpd->wbc->nr_to_write--;
2362
2363 if (folio_pos(folio) + len > size &&
2364 !ext4_verity_in_progress(inode))
2365 len = size & (len - 1);
2366
2367 return ext4_journal_folio_buffers(handle, folio, len);
2368 }
2369
2370 /*
2371 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2372 * needing mapping, submit mapped pages
2373 *
2374 * @mpd - where to look for pages
2375 *
2376 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2377 * IO immediately. If we cannot map blocks, we submit just already mapped
2378 * buffers in the page for IO and keep page dirty. When we can map blocks and
2379 * we find a page which isn't mapped we start accumulating extent of buffers
2380 * underlying these pages that needs mapping (formed by either delayed or
2381 * unwritten buffers). We also lock the pages containing these buffers. The
2382 * extent found is returned in @mpd structure (starting at mpd->lblk with
2383 * length mpd->len blocks).
2384 *
2385 * Note that this function can attach bios to one io_end structure which are
2386 * neither logically nor physically contiguous. Although it may seem as an
2387 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2388 * case as we need to track IO to all buffers underlying a page in one io_end.
2389 */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2390 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2391 {
2392 struct address_space *mapping = mpd->inode->i_mapping;
2393 struct folio_batch fbatch;
2394 unsigned int nr_folios;
2395 pgoff_t index = mpd->first_page;
2396 pgoff_t end = mpd->last_page;
2397 xa_mark_t tag;
2398 int i, err = 0;
2399 int blkbits = mpd->inode->i_blkbits;
2400 ext4_lblk_t lblk;
2401 struct buffer_head *head;
2402 handle_t *handle = NULL;
2403 int bpp = ext4_journal_blocks_per_page(mpd->inode);
2404
2405 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2406 tag = PAGECACHE_TAG_TOWRITE;
2407 else
2408 tag = PAGECACHE_TAG_DIRTY;
2409
2410 mpd->map.m_len = 0;
2411 mpd->next_page = index;
2412 if (ext4_should_journal_data(mpd->inode)) {
2413 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2414 bpp);
2415 if (IS_ERR(handle))
2416 return PTR_ERR(handle);
2417 }
2418 folio_batch_init(&fbatch);
2419 while (index <= end) {
2420 nr_folios = filemap_get_folios_tag(mapping, &index, end,
2421 tag, &fbatch);
2422 if (nr_folios == 0)
2423 break;
2424
2425 for (i = 0; i < nr_folios; i++) {
2426 struct folio *folio = fbatch.folios[i];
2427
2428 /*
2429 * Accumulated enough dirty pages? This doesn't apply
2430 * to WB_SYNC_ALL mode. For integrity sync we have to
2431 * keep going because someone may be concurrently
2432 * dirtying pages, and we might have synced a lot of
2433 * newly appeared dirty pages, but have not synced all
2434 * of the old dirty pages.
2435 */
2436 if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2437 mpd->wbc->nr_to_write <=
2438 mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2439 goto out;
2440
2441 /* If we can't merge this page, we are done. */
2442 if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2443 goto out;
2444
2445 if (handle) {
2446 err = ext4_journal_ensure_credits(handle, bpp,
2447 0);
2448 if (err < 0)
2449 goto out;
2450 }
2451
2452 folio_lock(folio);
2453 /*
2454 * If the page is no longer dirty, or its mapping no
2455 * longer corresponds to inode we are writing (which
2456 * means it has been truncated or invalidated), or the
2457 * page is already under writeback and we are not doing
2458 * a data integrity writeback, skip the page
2459 */
2460 if (!folio_test_dirty(folio) ||
2461 (folio_test_writeback(folio) &&
2462 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2463 unlikely(folio->mapping != mapping)) {
2464 folio_unlock(folio);
2465 continue;
2466 }
2467
2468 folio_wait_writeback(folio);
2469 BUG_ON(folio_test_writeback(folio));
2470
2471 /*
2472 * Should never happen but for buggy code in
2473 * other subsystems that call
2474 * set_page_dirty() without properly warning
2475 * the file system first. See [1] for more
2476 * information.
2477 *
2478 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2479 */
2480 if (!folio_buffers(folio)) {
2481 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2482 folio_clear_dirty(folio);
2483 folio_unlock(folio);
2484 continue;
2485 }
2486
2487 if (mpd->map.m_len == 0)
2488 mpd->first_page = folio->index;
2489 mpd->next_page = folio_next_index(folio);
2490 /*
2491 * Writeout when we cannot modify metadata is simple.
2492 * Just submit the page. For data=journal mode we
2493 * first handle writeout of the page for checkpoint and
2494 * only after that handle delayed page dirtying. This
2495 * makes sure current data is checkpointed to the final
2496 * location before possibly journalling it again which
2497 * is desirable when the page is frequently dirtied
2498 * through a pin.
2499 */
2500 if (!mpd->can_map) {
2501 err = mpage_submit_folio(mpd, folio);
2502 if (err < 0)
2503 goto out;
2504 /* Pending dirtying of journalled data? */
2505 if (folio_test_checked(folio)) {
2506 err = mpage_journal_page_buffers(handle,
2507 mpd, folio);
2508 if (err < 0)
2509 goto out;
2510 mpd->journalled_more_data = 1;
2511 }
2512 mpage_folio_done(mpd, folio);
2513 } else {
2514 /* Add all dirty buffers to mpd */
2515 lblk = ((ext4_lblk_t)folio->index) <<
2516 (PAGE_SHIFT - blkbits);
2517 head = folio_buffers(folio);
2518 err = mpage_process_page_bufs(mpd, head, head,
2519 lblk);
2520 if (err <= 0)
2521 goto out;
2522 err = 0;
2523 }
2524 }
2525 folio_batch_release(&fbatch);
2526 cond_resched();
2527 }
2528 mpd->scanned_until_end = 1;
2529 if (handle)
2530 ext4_journal_stop(handle);
2531 return 0;
2532 out:
2533 folio_batch_release(&fbatch);
2534 if (handle)
2535 ext4_journal_stop(handle);
2536 return err;
2537 }
2538
ext4_do_writepages(struct mpage_da_data * mpd)2539 static int ext4_do_writepages(struct mpage_da_data *mpd)
2540 {
2541 struct writeback_control *wbc = mpd->wbc;
2542 pgoff_t writeback_index = 0;
2543 long nr_to_write = wbc->nr_to_write;
2544 int range_whole = 0;
2545 int cycled = 1;
2546 handle_t *handle = NULL;
2547 struct inode *inode = mpd->inode;
2548 struct address_space *mapping = inode->i_mapping;
2549 int needed_blocks, rsv_blocks = 0, ret = 0;
2550 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2551 struct blk_plug plug;
2552 bool give_up_on_write = false;
2553
2554 trace_ext4_writepages(inode, wbc);
2555
2556 /*
2557 * No pages to write? This is mainly a kludge to avoid starting
2558 * a transaction for special inodes like journal inode on last iput()
2559 * because that could violate lock ordering on umount
2560 */
2561 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2562 goto out_writepages;
2563
2564 /*
2565 * If the filesystem has aborted, it is read-only, so return
2566 * right away instead of dumping stack traces later on that
2567 * will obscure the real source of the problem. We test
2568 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2569 * the latter could be true if the filesystem is mounted
2570 * read-only, and in that case, ext4_writepages should
2571 * *never* be called, so if that ever happens, we would want
2572 * the stack trace.
2573 */
2574 if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2575 ret = -EROFS;
2576 goto out_writepages;
2577 }
2578
2579 /*
2580 * If we have inline data and arrive here, it means that
2581 * we will soon create the block for the 1st page, so
2582 * we'd better clear the inline data here.
2583 */
2584 if (ext4_has_inline_data(inode)) {
2585 /* Just inode will be modified... */
2586 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2587 if (IS_ERR(handle)) {
2588 ret = PTR_ERR(handle);
2589 goto out_writepages;
2590 }
2591 BUG_ON(ext4_test_inode_state(inode,
2592 EXT4_STATE_MAY_INLINE_DATA));
2593 ext4_destroy_inline_data(handle, inode);
2594 ext4_journal_stop(handle);
2595 }
2596
2597 /*
2598 * data=journal mode does not do delalloc so we just need to writeout /
2599 * journal already mapped buffers. On the other hand we need to commit
2600 * transaction to make data stable. We expect all the data to be
2601 * already in the journal (the only exception are DMA pinned pages
2602 * dirtied behind our back) so we commit transaction here and run the
2603 * writeback loop to checkpoint them. The checkpointing is not actually
2604 * necessary to make data persistent *but* quite a few places (extent
2605 * shifting operations, fsverity, ...) depend on being able to drop
2606 * pagecache pages after calling filemap_write_and_wait() and for that
2607 * checkpointing needs to happen.
2608 */
2609 if (ext4_should_journal_data(inode)) {
2610 mpd->can_map = 0;
2611 if (wbc->sync_mode == WB_SYNC_ALL)
2612 ext4_fc_commit(sbi->s_journal,
2613 EXT4_I(inode)->i_datasync_tid);
2614 }
2615 mpd->journalled_more_data = 0;
2616
2617 if (ext4_should_dioread_nolock(inode)) {
2618 /*
2619 * We may need to convert up to one extent per block in
2620 * the page and we may dirty the inode.
2621 */
2622 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2623 PAGE_SIZE >> inode->i_blkbits);
2624 }
2625
2626 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2627 range_whole = 1;
2628
2629 if (wbc->range_cyclic) {
2630 writeback_index = mapping->writeback_index;
2631 if (writeback_index)
2632 cycled = 0;
2633 mpd->first_page = writeback_index;
2634 mpd->last_page = -1;
2635 } else {
2636 mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2637 mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2638 }
2639
2640 ext4_io_submit_init(&mpd->io_submit, wbc);
2641 retry:
2642 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2643 tag_pages_for_writeback(mapping, mpd->first_page,
2644 mpd->last_page);
2645 blk_start_plug(&plug);
2646
2647 /*
2648 * First writeback pages that don't need mapping - we can avoid
2649 * starting a transaction unnecessarily and also avoid being blocked
2650 * in the block layer on device congestion while having transaction
2651 * started.
2652 */
2653 mpd->do_map = 0;
2654 mpd->scanned_until_end = 0;
2655 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2656 if (!mpd->io_submit.io_end) {
2657 ret = -ENOMEM;
2658 goto unplug;
2659 }
2660 ret = mpage_prepare_extent_to_map(mpd);
2661 /* Unlock pages we didn't use */
2662 mpage_release_unused_pages(mpd, false);
2663 /* Submit prepared bio */
2664 ext4_io_submit(&mpd->io_submit);
2665 ext4_put_io_end_defer(mpd->io_submit.io_end);
2666 mpd->io_submit.io_end = NULL;
2667 if (ret < 0)
2668 goto unplug;
2669
2670 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2671 /* For each extent of pages we use new io_end */
2672 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2673 if (!mpd->io_submit.io_end) {
2674 ret = -ENOMEM;
2675 break;
2676 }
2677
2678 WARN_ON_ONCE(!mpd->can_map);
2679 /*
2680 * We have two constraints: We find one extent to map and we
2681 * must always write out whole page (makes a difference when
2682 * blocksize < pagesize) so that we don't block on IO when we
2683 * try to write out the rest of the page. Journalled mode is
2684 * not supported by delalloc.
2685 */
2686 BUG_ON(ext4_should_journal_data(inode));
2687 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2688
2689 /* start a new transaction */
2690 handle = ext4_journal_start_with_reserve(inode,
2691 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2692 if (IS_ERR(handle)) {
2693 ret = PTR_ERR(handle);
2694 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2695 "%ld pages, ino %lu; err %d", __func__,
2696 wbc->nr_to_write, inode->i_ino, ret);
2697 /* Release allocated io_end */
2698 ext4_put_io_end(mpd->io_submit.io_end);
2699 mpd->io_submit.io_end = NULL;
2700 break;
2701 }
2702 mpd->do_map = 1;
2703
2704 trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2705 ret = mpage_prepare_extent_to_map(mpd);
2706 if (!ret && mpd->map.m_len)
2707 ret = mpage_map_and_submit_extent(handle, mpd,
2708 &give_up_on_write);
2709 /*
2710 * Caution: If the handle is synchronous,
2711 * ext4_journal_stop() can wait for transaction commit
2712 * to finish which may depend on writeback of pages to
2713 * complete or on page lock to be released. In that
2714 * case, we have to wait until after we have
2715 * submitted all the IO, released page locks we hold,
2716 * and dropped io_end reference (for extent conversion
2717 * to be able to complete) before stopping the handle.
2718 */
2719 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2720 ext4_journal_stop(handle);
2721 handle = NULL;
2722 mpd->do_map = 0;
2723 }
2724 /* Unlock pages we didn't use */
2725 mpage_release_unused_pages(mpd, give_up_on_write);
2726 /* Submit prepared bio */
2727 ext4_io_submit(&mpd->io_submit);
2728
2729 /*
2730 * Drop our io_end reference we got from init. We have
2731 * to be careful and use deferred io_end finishing if
2732 * we are still holding the transaction as we can
2733 * release the last reference to io_end which may end
2734 * up doing unwritten extent conversion.
2735 */
2736 if (handle) {
2737 ext4_put_io_end_defer(mpd->io_submit.io_end);
2738 ext4_journal_stop(handle);
2739 } else
2740 ext4_put_io_end(mpd->io_submit.io_end);
2741 mpd->io_submit.io_end = NULL;
2742
2743 if (ret == -ENOSPC && sbi->s_journal) {
2744 /*
2745 * Commit the transaction which would
2746 * free blocks released in the transaction
2747 * and try again
2748 */
2749 jbd2_journal_force_commit_nested(sbi->s_journal);
2750 ret = 0;
2751 continue;
2752 }
2753 /* Fatal error - ENOMEM, EIO... */
2754 if (ret)
2755 break;
2756 }
2757 unplug:
2758 blk_finish_plug(&plug);
2759 if (!ret && !cycled && wbc->nr_to_write > 0) {
2760 cycled = 1;
2761 mpd->last_page = writeback_index - 1;
2762 mpd->first_page = 0;
2763 goto retry;
2764 }
2765
2766 /* Update index */
2767 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2768 /*
2769 * Set the writeback_index so that range_cyclic
2770 * mode will write it back later
2771 */
2772 mapping->writeback_index = mpd->first_page;
2773
2774 out_writepages:
2775 trace_ext4_writepages_result(inode, wbc, ret,
2776 nr_to_write - wbc->nr_to_write);
2777 return ret;
2778 }
2779
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2780 static int ext4_writepages(struct address_space *mapping,
2781 struct writeback_control *wbc)
2782 {
2783 struct super_block *sb = mapping->host->i_sb;
2784 struct mpage_da_data mpd = {
2785 .inode = mapping->host,
2786 .wbc = wbc,
2787 .can_map = 1,
2788 };
2789 int ret;
2790 int alloc_ctx;
2791
2792 if (unlikely(ext4_forced_shutdown(sb)))
2793 return -EIO;
2794
2795 alloc_ctx = ext4_writepages_down_read(sb);
2796 ret = ext4_do_writepages(&mpd);
2797 /*
2798 * For data=journal writeback we could have come across pages marked
2799 * for delayed dirtying (PageChecked) which were just added to the
2800 * running transaction. Try once more to get them to stable storage.
2801 */
2802 if (!ret && mpd.journalled_more_data)
2803 ret = ext4_do_writepages(&mpd);
2804 ext4_writepages_up_read(sb, alloc_ctx);
2805
2806 return ret;
2807 }
2808
ext4_normal_submit_inode_data_buffers(struct jbd2_inode * jinode)2809 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2810 {
2811 struct writeback_control wbc = {
2812 .sync_mode = WB_SYNC_ALL,
2813 .nr_to_write = LONG_MAX,
2814 .range_start = jinode->i_dirty_start,
2815 .range_end = jinode->i_dirty_end,
2816 };
2817 struct mpage_da_data mpd = {
2818 .inode = jinode->i_vfs_inode,
2819 .wbc = &wbc,
2820 .can_map = 0,
2821 };
2822 return ext4_do_writepages(&mpd);
2823 }
2824
ext4_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)2825 static int ext4_dax_writepages(struct address_space *mapping,
2826 struct writeback_control *wbc)
2827 {
2828 int ret;
2829 long nr_to_write = wbc->nr_to_write;
2830 struct inode *inode = mapping->host;
2831 int alloc_ctx;
2832
2833 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2834 return -EIO;
2835
2836 alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2837 trace_ext4_writepages(inode, wbc);
2838
2839 ret = dax_writeback_mapping_range(mapping,
2840 EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2841 trace_ext4_writepages_result(inode, wbc, ret,
2842 nr_to_write - wbc->nr_to_write);
2843 ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2844 return ret;
2845 }
2846
ext4_nonda_switch(struct super_block * sb)2847 static int ext4_nonda_switch(struct super_block *sb)
2848 {
2849 s64 free_clusters, dirty_clusters;
2850 struct ext4_sb_info *sbi = EXT4_SB(sb);
2851
2852 /*
2853 * switch to non delalloc mode if we are running low
2854 * on free block. The free block accounting via percpu
2855 * counters can get slightly wrong with percpu_counter_batch getting
2856 * accumulated on each CPU without updating global counters
2857 * Delalloc need an accurate free block accounting. So switch
2858 * to non delalloc when we are near to error range.
2859 */
2860 free_clusters =
2861 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2862 dirty_clusters =
2863 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2864 /*
2865 * Start pushing delalloc when 1/2 of free blocks are dirty.
2866 */
2867 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2868 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2869
2870 if (2 * free_clusters < 3 * dirty_clusters ||
2871 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2872 /*
2873 * free block count is less than 150% of dirty blocks
2874 * or free blocks is less than watermark
2875 */
2876 return 1;
2877 }
2878 return 0;
2879 }
2880
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)2881 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2882 loff_t pos, unsigned len,
2883 struct page **pagep, void **fsdata)
2884 {
2885 int ret, retries = 0;
2886 struct folio *folio;
2887 pgoff_t index;
2888 struct inode *inode = mapping->host;
2889
2890 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2891 return -EIO;
2892
2893 index = pos >> PAGE_SHIFT;
2894
2895 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2896 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2897 return ext4_write_begin(file, mapping, pos,
2898 len, pagep, fsdata);
2899 }
2900 *fsdata = (void *)0;
2901 trace_ext4_da_write_begin(inode, pos, len);
2902
2903 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2904 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2905 pagep, fsdata);
2906 if (ret < 0)
2907 return ret;
2908 if (ret == 1)
2909 return 0;
2910 }
2911
2912 retry:
2913 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2914 mapping_gfp_mask(mapping));
2915 if (IS_ERR(folio))
2916 return PTR_ERR(folio);
2917
2918 #ifdef CONFIG_FS_ENCRYPTION
2919 ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep);
2920 #else
2921 ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep);
2922 #endif
2923 if (ret < 0) {
2924 folio_unlock(folio);
2925 folio_put(folio);
2926 /*
2927 * block_write_begin may have instantiated a few blocks
2928 * outside i_size. Trim these off again. Don't need
2929 * i_size_read because we hold inode lock.
2930 */
2931 if (pos + len > inode->i_size)
2932 ext4_truncate_failed_write(inode);
2933
2934 if (ret == -ENOSPC &&
2935 ext4_should_retry_alloc(inode->i_sb, &retries))
2936 goto retry;
2937 return ret;
2938 }
2939
2940 *pagep = &folio->page;
2941 return ret;
2942 }
2943
2944 /*
2945 * Check if we should update i_disksize
2946 * when write to the end of file but not require block allocation
2947 */
ext4_da_should_update_i_disksize(struct folio * folio,unsigned long offset)2948 static int ext4_da_should_update_i_disksize(struct folio *folio,
2949 unsigned long offset)
2950 {
2951 struct buffer_head *bh;
2952 struct inode *inode = folio->mapping->host;
2953 unsigned int idx;
2954 int i;
2955
2956 bh = folio_buffers(folio);
2957 idx = offset >> inode->i_blkbits;
2958
2959 for (i = 0; i < idx; i++)
2960 bh = bh->b_this_page;
2961
2962 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2963 return 0;
2964 return 1;
2965 }
2966
ext4_da_do_write_end(struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio)2967 static int ext4_da_do_write_end(struct address_space *mapping,
2968 loff_t pos, unsigned len, unsigned copied,
2969 struct folio *folio)
2970 {
2971 struct inode *inode = mapping->host;
2972 loff_t old_size = inode->i_size;
2973 bool disksize_changed = false;
2974 loff_t new_i_size;
2975
2976 if (unlikely(!folio_buffers(folio))) {
2977 folio_unlock(folio);
2978 folio_put(folio);
2979 return -EIO;
2980 }
2981 /*
2982 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
2983 * flag, which all that's needed to trigger page writeback.
2984 */
2985 copied = block_write_end(NULL, mapping, pos, len, copied,
2986 &folio->page, NULL);
2987 new_i_size = pos + copied;
2988
2989 /*
2990 * It's important to update i_size while still holding folio lock,
2991 * because folio writeout could otherwise come in and zero beyond
2992 * i_size.
2993 *
2994 * Since we are holding inode lock, we are sure i_disksize <=
2995 * i_size. We also know that if i_disksize < i_size, there are
2996 * delalloc writes pending in the range up to i_size. If the end of
2997 * the current write is <= i_size, there's no need to touch
2998 * i_disksize since writeback will push i_disksize up to i_size
2999 * eventually. If the end of the current write is > i_size and
3000 * inside an allocated block which ext4_da_should_update_i_disksize()
3001 * checked, we need to update i_disksize here as certain
3002 * ext4_writepages() paths not allocating blocks and update i_disksize.
3003 */
3004 if (new_i_size > inode->i_size) {
3005 unsigned long end;
3006
3007 i_size_write(inode, new_i_size);
3008 end = (new_i_size - 1) & (PAGE_SIZE - 1);
3009 if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3010 ext4_update_i_disksize(inode, new_i_size);
3011 disksize_changed = true;
3012 }
3013 }
3014
3015 folio_unlock(folio);
3016 folio_put(folio);
3017
3018 if (old_size < pos)
3019 pagecache_isize_extended(inode, old_size, pos);
3020
3021 if (disksize_changed) {
3022 handle_t *handle;
3023
3024 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3025 if (IS_ERR(handle))
3026 return PTR_ERR(handle);
3027 ext4_mark_inode_dirty(handle, inode);
3028 ext4_journal_stop(handle);
3029 }
3030
3031 return copied;
3032 }
3033
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3034 static int ext4_da_write_end(struct file *file,
3035 struct address_space *mapping,
3036 loff_t pos, unsigned len, unsigned copied,
3037 struct page *page, void *fsdata)
3038 {
3039 struct inode *inode = mapping->host;
3040 int write_mode = (int)(unsigned long)fsdata;
3041 struct folio *folio = page_folio(page);
3042
3043 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3044 return ext4_write_end(file, mapping, pos,
3045 len, copied, &folio->page, fsdata);
3046
3047 trace_ext4_da_write_end(inode, pos, len, copied);
3048
3049 if (write_mode != CONVERT_INLINE_DATA &&
3050 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3051 ext4_has_inline_data(inode))
3052 return ext4_write_inline_data_end(inode, pos, len, copied,
3053 folio);
3054
3055 if (unlikely(copied < len) && !folio_test_uptodate(folio))
3056 copied = 0;
3057
3058 return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3059 }
3060
3061 /*
3062 * Force all delayed allocation blocks to be allocated for a given inode.
3063 */
ext4_alloc_da_blocks(struct inode * inode)3064 int ext4_alloc_da_blocks(struct inode *inode)
3065 {
3066 trace_ext4_alloc_da_blocks(inode);
3067
3068 if (!EXT4_I(inode)->i_reserved_data_blocks)
3069 return 0;
3070
3071 /*
3072 * We do something simple for now. The filemap_flush() will
3073 * also start triggering a write of the data blocks, which is
3074 * not strictly speaking necessary (and for users of
3075 * laptop_mode, not even desirable). However, to do otherwise
3076 * would require replicating code paths in:
3077 *
3078 * ext4_writepages() ->
3079 * write_cache_pages() ---> (via passed in callback function)
3080 * __mpage_da_writepage() -->
3081 * mpage_add_bh_to_extent()
3082 * mpage_da_map_blocks()
3083 *
3084 * The problem is that write_cache_pages(), located in
3085 * mm/page-writeback.c, marks pages clean in preparation for
3086 * doing I/O, which is not desirable if we're not planning on
3087 * doing I/O at all.
3088 *
3089 * We could call write_cache_pages(), and then redirty all of
3090 * the pages by calling redirty_page_for_writepage() but that
3091 * would be ugly in the extreme. So instead we would need to
3092 * replicate parts of the code in the above functions,
3093 * simplifying them because we wouldn't actually intend to
3094 * write out the pages, but rather only collect contiguous
3095 * logical block extents, call the multi-block allocator, and
3096 * then update the buffer heads with the block allocations.
3097 *
3098 * For now, though, we'll cheat by calling filemap_flush(),
3099 * which will map the blocks, and start the I/O, but not
3100 * actually wait for the I/O to complete.
3101 */
3102 return filemap_flush(inode->i_mapping);
3103 }
3104
3105 /*
3106 * bmap() is special. It gets used by applications such as lilo and by
3107 * the swapper to find the on-disk block of a specific piece of data.
3108 *
3109 * Naturally, this is dangerous if the block concerned is still in the
3110 * journal. If somebody makes a swapfile on an ext4 data-journaling
3111 * filesystem and enables swap, then they may get a nasty shock when the
3112 * data getting swapped to that swapfile suddenly gets overwritten by
3113 * the original zero's written out previously to the journal and
3114 * awaiting writeback in the kernel's buffer cache.
3115 *
3116 * So, if we see any bmap calls here on a modified, data-journaled file,
3117 * take extra steps to flush any blocks which might be in the cache.
3118 */
ext4_bmap(struct address_space * mapping,sector_t block)3119 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3120 {
3121 struct inode *inode = mapping->host;
3122 sector_t ret = 0;
3123
3124 inode_lock_shared(inode);
3125 /*
3126 * We can get here for an inline file via the FIBMAP ioctl
3127 */
3128 if (ext4_has_inline_data(inode))
3129 goto out;
3130
3131 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3132 (test_opt(inode->i_sb, DELALLOC) ||
3133 ext4_should_journal_data(inode))) {
3134 /*
3135 * With delalloc or journalled data we want to sync the file so
3136 * that we can make sure we allocate blocks for file and data
3137 * is in place for the user to see it
3138 */
3139 filemap_write_and_wait(mapping);
3140 }
3141
3142 ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3143
3144 out:
3145 inode_unlock_shared(inode);
3146 return ret;
3147 }
3148
ext4_read_folio(struct file * file,struct folio * folio)3149 static int ext4_read_folio(struct file *file, struct folio *folio)
3150 {
3151 int ret = -EAGAIN;
3152 struct inode *inode = folio->mapping->host;
3153
3154 trace_ext4_read_folio(inode, folio);
3155
3156 if (ext4_has_inline_data(inode))
3157 ret = ext4_readpage_inline(inode, folio);
3158
3159 if (ret == -EAGAIN)
3160 return ext4_mpage_readpages(inode, NULL, folio);
3161
3162 return ret;
3163 }
3164
ext4_readahead(struct readahead_control * rac)3165 static void ext4_readahead(struct readahead_control *rac)
3166 {
3167 struct inode *inode = rac->mapping->host;
3168
3169 /* If the file has inline data, no need to do readahead. */
3170 if (ext4_has_inline_data(inode))
3171 return;
3172
3173 ext4_mpage_readpages(inode, rac, NULL);
3174 }
3175
ext4_invalidate_folio(struct folio * folio,size_t offset,size_t length)3176 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3177 size_t length)
3178 {
3179 trace_ext4_invalidate_folio(folio, offset, length);
3180
3181 /* No journalling happens on data buffers when this function is used */
3182 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3183
3184 block_invalidate_folio(folio, offset, length);
3185 }
3186
__ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3187 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3188 size_t offset, size_t length)
3189 {
3190 journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3191
3192 trace_ext4_journalled_invalidate_folio(folio, offset, length);
3193
3194 /*
3195 * If it's a full truncate we just forget about the pending dirtying
3196 */
3197 if (offset == 0 && length == folio_size(folio))
3198 folio_clear_checked(folio);
3199
3200 return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3201 }
3202
3203 /* Wrapper for aops... */
ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3204 static void ext4_journalled_invalidate_folio(struct folio *folio,
3205 size_t offset,
3206 size_t length)
3207 {
3208 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3209 }
3210
ext4_release_folio(struct folio * folio,gfp_t wait)3211 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3212 {
3213 struct inode *inode = folio->mapping->host;
3214 journal_t *journal = EXT4_JOURNAL(inode);
3215
3216 trace_ext4_release_folio(inode, folio);
3217
3218 /* Page has dirty journalled data -> cannot release */
3219 if (folio_test_checked(folio))
3220 return false;
3221 if (journal)
3222 return jbd2_journal_try_to_free_buffers(journal, folio);
3223 else
3224 return try_to_free_buffers(folio);
3225 }
3226
ext4_inode_datasync_dirty(struct inode * inode)3227 static bool ext4_inode_datasync_dirty(struct inode *inode)
3228 {
3229 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3230
3231 if (journal) {
3232 if (jbd2_transaction_committed(journal,
3233 EXT4_I(inode)->i_datasync_tid))
3234 return false;
3235 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3236 return !list_empty(&EXT4_I(inode)->i_fc_list);
3237 return true;
3238 }
3239
3240 /* Any metadata buffers to write? */
3241 if (!list_empty(&inode->i_mapping->private_list))
3242 return true;
3243 return inode->i_state & I_DIRTY_DATASYNC;
3244 }
3245
ext4_set_iomap(struct inode * inode,struct iomap * iomap,struct ext4_map_blocks * map,loff_t offset,loff_t length,unsigned int flags)3246 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3247 struct ext4_map_blocks *map, loff_t offset,
3248 loff_t length, unsigned int flags)
3249 {
3250 u8 blkbits = inode->i_blkbits;
3251
3252 /*
3253 * Writes that span EOF might trigger an I/O size update on completion,
3254 * so consider them to be dirty for the purpose of O_DSYNC, even if
3255 * there is no other metadata changes being made or are pending.
3256 */
3257 iomap->flags = 0;
3258 if (ext4_inode_datasync_dirty(inode) ||
3259 offset + length > i_size_read(inode))
3260 iomap->flags |= IOMAP_F_DIRTY;
3261
3262 if (map->m_flags & EXT4_MAP_NEW)
3263 iomap->flags |= IOMAP_F_NEW;
3264
3265 if (flags & IOMAP_DAX)
3266 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3267 else
3268 iomap->bdev = inode->i_sb->s_bdev;
3269 iomap->offset = (u64) map->m_lblk << blkbits;
3270 iomap->length = (u64) map->m_len << blkbits;
3271
3272 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3273 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3274 iomap->flags |= IOMAP_F_MERGED;
3275
3276 /*
3277 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3278 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3279 * set. In order for any allocated unwritten extents to be converted
3280 * into written extents correctly within the ->end_io() handler, we
3281 * need to ensure that the iomap->type is set appropriately. Hence, the
3282 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3283 * been set first.
3284 */
3285 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3286 iomap->type = IOMAP_UNWRITTEN;
3287 iomap->addr = (u64) map->m_pblk << blkbits;
3288 if (flags & IOMAP_DAX)
3289 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3290 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3291 iomap->type = IOMAP_MAPPED;
3292 iomap->addr = (u64) map->m_pblk << blkbits;
3293 if (flags & IOMAP_DAX)
3294 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3295 } else {
3296 iomap->type = IOMAP_HOLE;
3297 iomap->addr = IOMAP_NULL_ADDR;
3298 }
3299 }
3300
ext4_iomap_alloc(struct inode * inode,struct ext4_map_blocks * map,unsigned int flags)3301 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3302 unsigned int flags)
3303 {
3304 handle_t *handle;
3305 u8 blkbits = inode->i_blkbits;
3306 int ret, dio_credits, m_flags = 0, retries = 0;
3307
3308 /*
3309 * Trim the mapping request to the maximum value that we can map at
3310 * once for direct I/O.
3311 */
3312 if (map->m_len > DIO_MAX_BLOCKS)
3313 map->m_len = DIO_MAX_BLOCKS;
3314 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3315
3316 retry:
3317 /*
3318 * Either we allocate blocks and then don't get an unwritten extent, so
3319 * in that case we have reserved enough credits. Or, the blocks are
3320 * already allocated and unwritten. In that case, the extent conversion
3321 * fits into the credits as well.
3322 */
3323 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3324 if (IS_ERR(handle))
3325 return PTR_ERR(handle);
3326
3327 /*
3328 * DAX and direct I/O are the only two operations that are currently
3329 * supported with IOMAP_WRITE.
3330 */
3331 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3332 if (flags & IOMAP_DAX)
3333 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3334 /*
3335 * We use i_size instead of i_disksize here because delalloc writeback
3336 * can complete at any point during the I/O and subsequently push the
3337 * i_disksize out to i_size. This could be beyond where direct I/O is
3338 * happening and thus expose allocated blocks to direct I/O reads.
3339 */
3340 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3341 m_flags = EXT4_GET_BLOCKS_CREATE;
3342 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3343 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3344
3345 ret = ext4_map_blocks(handle, inode, map, m_flags);
3346
3347 /*
3348 * We cannot fill holes in indirect tree based inodes as that could
3349 * expose stale data in the case of a crash. Use the magic error code
3350 * to fallback to buffered I/O.
3351 */
3352 if (!m_flags && !ret)
3353 ret = -ENOTBLK;
3354
3355 ext4_journal_stop(handle);
3356 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3357 goto retry;
3358
3359 return ret;
3360 }
3361
3362
ext4_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3363 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3364 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3365 {
3366 int ret;
3367 struct ext4_map_blocks map;
3368 u8 blkbits = inode->i_blkbits;
3369
3370 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3371 return -EINVAL;
3372
3373 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3374 return -ERANGE;
3375
3376 /*
3377 * Calculate the first and last logical blocks respectively.
3378 */
3379 map.m_lblk = offset >> blkbits;
3380 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3381 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3382
3383 if (flags & IOMAP_WRITE) {
3384 /*
3385 * We check here if the blocks are already allocated, then we
3386 * don't need to start a journal txn and we can directly return
3387 * the mapping information. This could boost performance
3388 * especially in multi-threaded overwrite requests.
3389 */
3390 if (offset + length <= i_size_read(inode)) {
3391 ret = ext4_map_blocks(NULL, inode, &map, 0);
3392 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3393 goto out;
3394 }
3395 ret = ext4_iomap_alloc(inode, &map, flags);
3396 } else {
3397 ret = ext4_map_blocks(NULL, inode, &map, 0);
3398 }
3399
3400 if (ret < 0)
3401 return ret;
3402 out:
3403 /*
3404 * When inline encryption is enabled, sometimes I/O to an encrypted file
3405 * has to be broken up to guarantee DUN contiguity. Handle this by
3406 * limiting the length of the mapping returned.
3407 */
3408 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3409
3410 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3411
3412 return 0;
3413 }
3414
ext4_iomap_overwrite_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3415 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3416 loff_t length, unsigned flags, struct iomap *iomap,
3417 struct iomap *srcmap)
3418 {
3419 int ret;
3420
3421 /*
3422 * Even for writes we don't need to allocate blocks, so just pretend
3423 * we are reading to save overhead of starting a transaction.
3424 */
3425 flags &= ~IOMAP_WRITE;
3426 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3427 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3428 return ret;
3429 }
3430
ext4_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)3431 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3432 ssize_t written, unsigned flags, struct iomap *iomap)
3433 {
3434 /*
3435 * Check to see whether an error occurred while writing out the data to
3436 * the allocated blocks. If so, return the magic error code so that we
3437 * fallback to buffered I/O and attempt to complete the remainder of
3438 * the I/O. Any blocks that may have been allocated in preparation for
3439 * the direct I/O will be reused during buffered I/O.
3440 */
3441 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3442 return -ENOTBLK;
3443
3444 return 0;
3445 }
3446
3447 const struct iomap_ops ext4_iomap_ops = {
3448 .iomap_begin = ext4_iomap_begin,
3449 .iomap_end = ext4_iomap_end,
3450 };
3451
3452 const struct iomap_ops ext4_iomap_overwrite_ops = {
3453 .iomap_begin = ext4_iomap_overwrite_begin,
3454 .iomap_end = ext4_iomap_end,
3455 };
3456
ext4_iomap_is_delalloc(struct inode * inode,struct ext4_map_blocks * map)3457 static bool ext4_iomap_is_delalloc(struct inode *inode,
3458 struct ext4_map_blocks *map)
3459 {
3460 struct extent_status es;
3461 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3462
3463 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3464 map->m_lblk, end, &es);
3465
3466 if (!es.es_len || es.es_lblk > end)
3467 return false;
3468
3469 if (es.es_lblk > map->m_lblk) {
3470 map->m_len = es.es_lblk - map->m_lblk;
3471 return false;
3472 }
3473
3474 offset = map->m_lblk - es.es_lblk;
3475 map->m_len = es.es_len - offset;
3476
3477 return true;
3478 }
3479
ext4_iomap_begin_report(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)3480 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3481 loff_t length, unsigned int flags,
3482 struct iomap *iomap, struct iomap *srcmap)
3483 {
3484 int ret;
3485 bool delalloc = false;
3486 struct ext4_map_blocks map;
3487 u8 blkbits = inode->i_blkbits;
3488
3489 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3490 return -EINVAL;
3491
3492 if (ext4_has_inline_data(inode)) {
3493 ret = ext4_inline_data_iomap(inode, iomap);
3494 if (ret != -EAGAIN) {
3495 if (ret == 0 && offset >= iomap->length)
3496 ret = -ENOENT;
3497 return ret;
3498 }
3499 }
3500
3501 /*
3502 * Calculate the first and last logical block respectively.
3503 */
3504 map.m_lblk = offset >> blkbits;
3505 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3506 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3507
3508 /*
3509 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3510 * So handle it here itself instead of querying ext4_map_blocks().
3511 * Since ext4_map_blocks() will warn about it and will return
3512 * -EIO error.
3513 */
3514 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3515 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3516
3517 if (offset >= sbi->s_bitmap_maxbytes) {
3518 map.m_flags = 0;
3519 goto set_iomap;
3520 }
3521 }
3522
3523 ret = ext4_map_blocks(NULL, inode, &map, 0);
3524 if (ret < 0)
3525 return ret;
3526 if (ret == 0)
3527 delalloc = ext4_iomap_is_delalloc(inode, &map);
3528
3529 set_iomap:
3530 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3531 if (delalloc && iomap->type == IOMAP_HOLE)
3532 iomap->type = IOMAP_DELALLOC;
3533
3534 return 0;
3535 }
3536
3537 const struct iomap_ops ext4_iomap_report_ops = {
3538 .iomap_begin = ext4_iomap_begin_report,
3539 };
3540
3541 /*
3542 * For data=journal mode, folio should be marked dirty only when it was
3543 * writeably mapped. When that happens, it was already attached to the
3544 * transaction and marked as jbddirty (we take care of this in
3545 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3546 * so we should have nothing to do here, except for the case when someone
3547 * had the page pinned and dirtied the page through this pin (e.g. by doing
3548 * direct IO to it). In that case we'd need to attach buffers here to the
3549 * transaction but we cannot due to lock ordering. We cannot just dirty the
3550 * folio and leave attached buffers clean, because the buffers' dirty state is
3551 * "definitive". We cannot just set the buffers dirty or jbddirty because all
3552 * the journalling code will explode. So what we do is to mark the folio
3553 * "pending dirty" and next time ext4_writepages() is called, attach buffers
3554 * to the transaction appropriately.
3555 */
ext4_journalled_dirty_folio(struct address_space * mapping,struct folio * folio)3556 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3557 struct folio *folio)
3558 {
3559 WARN_ON_ONCE(!folio_buffers(folio));
3560 if (folio_maybe_dma_pinned(folio))
3561 folio_set_checked(folio);
3562 return filemap_dirty_folio(mapping, folio);
3563 }
3564
ext4_dirty_folio(struct address_space * mapping,struct folio * folio)3565 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3566 {
3567 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3568 WARN_ON_ONCE(!folio_buffers(folio));
3569 return block_dirty_folio(mapping, folio);
3570 }
3571
ext4_iomap_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)3572 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3573 struct file *file, sector_t *span)
3574 {
3575 return iomap_swapfile_activate(sis, file, span,
3576 &ext4_iomap_report_ops);
3577 }
3578
3579 static const struct address_space_operations ext4_aops = {
3580 .read_folio = ext4_read_folio,
3581 .readahead = ext4_readahead,
3582 .writepages = ext4_writepages,
3583 .write_begin = ext4_write_begin,
3584 .write_end = ext4_write_end,
3585 .dirty_folio = ext4_dirty_folio,
3586 .bmap = ext4_bmap,
3587 .invalidate_folio = ext4_invalidate_folio,
3588 .release_folio = ext4_release_folio,
3589 .direct_IO = noop_direct_IO,
3590 .migrate_folio = buffer_migrate_folio,
3591 .is_partially_uptodate = block_is_partially_uptodate,
3592 .error_remove_page = generic_error_remove_page,
3593 .swap_activate = ext4_iomap_swap_activate,
3594 };
3595
3596 static const struct address_space_operations ext4_journalled_aops = {
3597 .read_folio = ext4_read_folio,
3598 .readahead = ext4_readahead,
3599 .writepages = ext4_writepages,
3600 .write_begin = ext4_write_begin,
3601 .write_end = ext4_journalled_write_end,
3602 .dirty_folio = ext4_journalled_dirty_folio,
3603 .bmap = ext4_bmap,
3604 .invalidate_folio = ext4_journalled_invalidate_folio,
3605 .release_folio = ext4_release_folio,
3606 .direct_IO = noop_direct_IO,
3607 .migrate_folio = buffer_migrate_folio_norefs,
3608 .is_partially_uptodate = block_is_partially_uptodate,
3609 .error_remove_page = generic_error_remove_page,
3610 .swap_activate = ext4_iomap_swap_activate,
3611 };
3612
3613 static const struct address_space_operations ext4_da_aops = {
3614 .read_folio = ext4_read_folio,
3615 .readahead = ext4_readahead,
3616 .writepages = ext4_writepages,
3617 .write_begin = ext4_da_write_begin,
3618 .write_end = ext4_da_write_end,
3619 .dirty_folio = ext4_dirty_folio,
3620 .bmap = ext4_bmap,
3621 .invalidate_folio = ext4_invalidate_folio,
3622 .release_folio = ext4_release_folio,
3623 .direct_IO = noop_direct_IO,
3624 .migrate_folio = buffer_migrate_folio,
3625 .is_partially_uptodate = block_is_partially_uptodate,
3626 .error_remove_page = generic_error_remove_page,
3627 .swap_activate = ext4_iomap_swap_activate,
3628 };
3629
3630 static const struct address_space_operations ext4_dax_aops = {
3631 .writepages = ext4_dax_writepages,
3632 .direct_IO = noop_direct_IO,
3633 .dirty_folio = noop_dirty_folio,
3634 .bmap = ext4_bmap,
3635 .swap_activate = ext4_iomap_swap_activate,
3636 };
3637
ext4_set_aops(struct inode * inode)3638 void ext4_set_aops(struct inode *inode)
3639 {
3640 switch (ext4_inode_journal_mode(inode)) {
3641 case EXT4_INODE_ORDERED_DATA_MODE:
3642 case EXT4_INODE_WRITEBACK_DATA_MODE:
3643 break;
3644 case EXT4_INODE_JOURNAL_DATA_MODE:
3645 inode->i_mapping->a_ops = &ext4_journalled_aops;
3646 return;
3647 default:
3648 BUG();
3649 }
3650 if (IS_DAX(inode))
3651 inode->i_mapping->a_ops = &ext4_dax_aops;
3652 else if (test_opt(inode->i_sb, DELALLOC))
3653 inode->i_mapping->a_ops = &ext4_da_aops;
3654 else
3655 inode->i_mapping->a_ops = &ext4_aops;
3656 }
3657
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3658 static int __ext4_block_zero_page_range(handle_t *handle,
3659 struct address_space *mapping, loff_t from, loff_t length)
3660 {
3661 ext4_fsblk_t index = from >> PAGE_SHIFT;
3662 unsigned offset = from & (PAGE_SIZE-1);
3663 unsigned blocksize, pos;
3664 ext4_lblk_t iblock;
3665 struct inode *inode = mapping->host;
3666 struct buffer_head *bh;
3667 struct folio *folio;
3668 int err = 0;
3669
3670 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3671 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3672 mapping_gfp_constraint(mapping, ~__GFP_FS));
3673 if (IS_ERR(folio))
3674 return PTR_ERR(folio);
3675
3676 blocksize = inode->i_sb->s_blocksize;
3677
3678 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3679
3680 bh = folio_buffers(folio);
3681 if (!bh) {
3682 create_empty_buffers(&folio->page, blocksize, 0);
3683 bh = folio_buffers(folio);
3684 }
3685
3686 /* Find the buffer that contains "offset" */
3687 pos = blocksize;
3688 while (offset >= pos) {
3689 bh = bh->b_this_page;
3690 iblock++;
3691 pos += blocksize;
3692 }
3693 if (buffer_freed(bh)) {
3694 BUFFER_TRACE(bh, "freed: skip");
3695 goto unlock;
3696 }
3697 if (!buffer_mapped(bh)) {
3698 BUFFER_TRACE(bh, "unmapped");
3699 ext4_get_block(inode, iblock, bh, 0);
3700 /* unmapped? It's a hole - nothing to do */
3701 if (!buffer_mapped(bh)) {
3702 BUFFER_TRACE(bh, "still unmapped");
3703 goto unlock;
3704 }
3705 }
3706
3707 /* Ok, it's mapped. Make sure it's up-to-date */
3708 if (folio_test_uptodate(folio))
3709 set_buffer_uptodate(bh);
3710
3711 if (!buffer_uptodate(bh)) {
3712 err = ext4_read_bh_lock(bh, 0, true);
3713 if (err)
3714 goto unlock;
3715 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3716 /* We expect the key to be set. */
3717 BUG_ON(!fscrypt_has_encryption_key(inode));
3718 err = fscrypt_decrypt_pagecache_blocks(folio,
3719 blocksize,
3720 bh_offset(bh));
3721 if (err) {
3722 clear_buffer_uptodate(bh);
3723 goto unlock;
3724 }
3725 }
3726 }
3727 if (ext4_should_journal_data(inode)) {
3728 BUFFER_TRACE(bh, "get write access");
3729 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3730 EXT4_JTR_NONE);
3731 if (err)
3732 goto unlock;
3733 }
3734 folio_zero_range(folio, offset, length);
3735 BUFFER_TRACE(bh, "zeroed end of block");
3736
3737 if (ext4_should_journal_data(inode)) {
3738 err = ext4_dirty_journalled_data(handle, bh);
3739 } else {
3740 err = 0;
3741 mark_buffer_dirty(bh);
3742 if (ext4_should_order_data(inode))
3743 err = ext4_jbd2_inode_add_write(handle, inode, from,
3744 length);
3745 }
3746
3747 unlock:
3748 folio_unlock(folio);
3749 folio_put(folio);
3750 return err;
3751 }
3752
3753 /*
3754 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3755 * starting from file offset 'from'. The range to be zero'd must
3756 * be contained with in one block. If the specified range exceeds
3757 * the end of the block it will be shortened to end of the block
3758 * that corresponds to 'from'
3759 */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3760 static int ext4_block_zero_page_range(handle_t *handle,
3761 struct address_space *mapping, loff_t from, loff_t length)
3762 {
3763 struct inode *inode = mapping->host;
3764 unsigned offset = from & (PAGE_SIZE-1);
3765 unsigned blocksize = inode->i_sb->s_blocksize;
3766 unsigned max = blocksize - (offset & (blocksize - 1));
3767
3768 /*
3769 * correct length if it does not fall between
3770 * 'from' and the end of the block
3771 */
3772 if (length > max || length < 0)
3773 length = max;
3774
3775 if (IS_DAX(inode)) {
3776 return dax_zero_range(inode, from, length, NULL,
3777 &ext4_iomap_ops);
3778 }
3779 return __ext4_block_zero_page_range(handle, mapping, from, length);
3780 }
3781
3782 /*
3783 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3784 * up to the end of the block which corresponds to `from'.
3785 * This required during truncate. We need to physically zero the tail end
3786 * of that block so it doesn't yield old data if the file is later grown.
3787 */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3788 static int ext4_block_truncate_page(handle_t *handle,
3789 struct address_space *mapping, loff_t from)
3790 {
3791 unsigned offset = from & (PAGE_SIZE-1);
3792 unsigned length;
3793 unsigned blocksize;
3794 struct inode *inode = mapping->host;
3795
3796 /* If we are processing an encrypted inode during orphan list handling */
3797 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3798 return 0;
3799
3800 blocksize = inode->i_sb->s_blocksize;
3801 length = blocksize - (offset & (blocksize - 1));
3802
3803 return ext4_block_zero_page_range(handle, mapping, from, length);
3804 }
3805
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)3806 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3807 loff_t lstart, loff_t length)
3808 {
3809 struct super_block *sb = inode->i_sb;
3810 struct address_space *mapping = inode->i_mapping;
3811 unsigned partial_start, partial_end;
3812 ext4_fsblk_t start, end;
3813 loff_t byte_end = (lstart + length - 1);
3814 int err = 0;
3815
3816 partial_start = lstart & (sb->s_blocksize - 1);
3817 partial_end = byte_end & (sb->s_blocksize - 1);
3818
3819 start = lstart >> sb->s_blocksize_bits;
3820 end = byte_end >> sb->s_blocksize_bits;
3821
3822 /* Handle partial zero within the single block */
3823 if (start == end &&
3824 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3825 err = ext4_block_zero_page_range(handle, mapping,
3826 lstart, length);
3827 return err;
3828 }
3829 /* Handle partial zero out on the start of the range */
3830 if (partial_start) {
3831 err = ext4_block_zero_page_range(handle, mapping,
3832 lstart, sb->s_blocksize);
3833 if (err)
3834 return err;
3835 }
3836 /* Handle partial zero out on the end of the range */
3837 if (partial_end != sb->s_blocksize - 1)
3838 err = ext4_block_zero_page_range(handle, mapping,
3839 byte_end - partial_end,
3840 partial_end + 1);
3841 return err;
3842 }
3843
ext4_can_truncate(struct inode * inode)3844 int ext4_can_truncate(struct inode *inode)
3845 {
3846 if (S_ISREG(inode->i_mode))
3847 return 1;
3848 if (S_ISDIR(inode->i_mode))
3849 return 1;
3850 if (S_ISLNK(inode->i_mode))
3851 return !ext4_inode_is_fast_symlink(inode);
3852 return 0;
3853 }
3854
3855 /*
3856 * We have to make sure i_disksize gets properly updated before we truncate
3857 * page cache due to hole punching or zero range. Otherwise i_disksize update
3858 * can get lost as it may have been postponed to submission of writeback but
3859 * that will never happen after we truncate page cache.
3860 */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)3861 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3862 loff_t len)
3863 {
3864 handle_t *handle;
3865 int ret;
3866
3867 loff_t size = i_size_read(inode);
3868
3869 WARN_ON(!inode_is_locked(inode));
3870 if (offset > size || offset + len < size)
3871 return 0;
3872
3873 if (EXT4_I(inode)->i_disksize >= size)
3874 return 0;
3875
3876 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3877 if (IS_ERR(handle))
3878 return PTR_ERR(handle);
3879 ext4_update_i_disksize(inode, size);
3880 ret = ext4_mark_inode_dirty(handle, inode);
3881 ext4_journal_stop(handle);
3882
3883 return ret;
3884 }
3885
ext4_wait_dax_page(struct inode * inode)3886 static void ext4_wait_dax_page(struct inode *inode)
3887 {
3888 filemap_invalidate_unlock(inode->i_mapping);
3889 schedule();
3890 filemap_invalidate_lock(inode->i_mapping);
3891 }
3892
ext4_break_layouts(struct inode * inode)3893 int ext4_break_layouts(struct inode *inode)
3894 {
3895 struct page *page;
3896 int error;
3897
3898 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3899 return -EINVAL;
3900
3901 do {
3902 page = dax_layout_busy_page(inode->i_mapping);
3903 if (!page)
3904 return 0;
3905
3906 error = ___wait_var_event(&page->_refcount,
3907 atomic_read(&page->_refcount) == 1,
3908 TASK_INTERRUPTIBLE, 0, 0,
3909 ext4_wait_dax_page(inode));
3910 } while (error == 0);
3911
3912 return error;
3913 }
3914
3915 /*
3916 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3917 * associated with the given offset and length
3918 *
3919 * @inode: File inode
3920 * @offset: The offset where the hole will begin
3921 * @len: The length of the hole
3922 *
3923 * Returns: 0 on success or negative on failure
3924 */
3925
ext4_punch_hole(struct file * file,loff_t offset,loff_t length)3926 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3927 {
3928 struct inode *inode = file_inode(file);
3929 struct super_block *sb = inode->i_sb;
3930 ext4_lblk_t first_block, stop_block;
3931 struct address_space *mapping = inode->i_mapping;
3932 loff_t first_block_offset, last_block_offset, max_length;
3933 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3934 handle_t *handle;
3935 unsigned int credits;
3936 int ret = 0, ret2 = 0;
3937
3938 trace_ext4_punch_hole(inode, offset, length, 0);
3939
3940 /*
3941 * Write out all dirty pages to avoid race conditions
3942 * Then release them.
3943 */
3944 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3945 ret = filemap_write_and_wait_range(mapping, offset,
3946 offset + length - 1);
3947 if (ret)
3948 return ret;
3949 }
3950
3951 inode_lock(inode);
3952
3953 /* No need to punch hole beyond i_size */
3954 if (offset >= inode->i_size)
3955 goto out_mutex;
3956
3957 /*
3958 * If the hole extends beyond i_size, set the hole
3959 * to end after the page that contains i_size
3960 */
3961 if (offset + length > inode->i_size) {
3962 length = inode->i_size +
3963 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3964 offset;
3965 }
3966
3967 /*
3968 * For punch hole the length + offset needs to be within one block
3969 * before last range. Adjust the length if it goes beyond that limit.
3970 */
3971 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3972 if (offset + length > max_length)
3973 length = max_length - offset;
3974
3975 if (offset & (sb->s_blocksize - 1) ||
3976 (offset + length) & (sb->s_blocksize - 1)) {
3977 /*
3978 * Attach jinode to inode for jbd2 if we do any zeroing of
3979 * partial block
3980 */
3981 ret = ext4_inode_attach_jinode(inode);
3982 if (ret < 0)
3983 goto out_mutex;
3984
3985 }
3986
3987 /* Wait all existing dio workers, newcomers will block on i_rwsem */
3988 inode_dio_wait(inode);
3989
3990 ret = file_modified(file);
3991 if (ret)
3992 goto out_mutex;
3993
3994 /*
3995 * Prevent page faults from reinstantiating pages we have released from
3996 * page cache.
3997 */
3998 filemap_invalidate_lock(mapping);
3999
4000 ret = ext4_break_layouts(inode);
4001 if (ret)
4002 goto out_dio;
4003
4004 first_block_offset = round_up(offset, sb->s_blocksize);
4005 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4006
4007 /* Now release the pages and zero block aligned part of pages*/
4008 if (last_block_offset > first_block_offset) {
4009 ret = ext4_update_disksize_before_punch(inode, offset, length);
4010 if (ret)
4011 goto out_dio;
4012 truncate_pagecache_range(inode, first_block_offset,
4013 last_block_offset);
4014 }
4015
4016 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4017 credits = ext4_writepage_trans_blocks(inode);
4018 else
4019 credits = ext4_blocks_for_truncate(inode);
4020 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4021 if (IS_ERR(handle)) {
4022 ret = PTR_ERR(handle);
4023 ext4_std_error(sb, ret);
4024 goto out_dio;
4025 }
4026
4027 ret = ext4_zero_partial_blocks(handle, inode, offset,
4028 length);
4029 if (ret)
4030 goto out_stop;
4031
4032 first_block = (offset + sb->s_blocksize - 1) >>
4033 EXT4_BLOCK_SIZE_BITS(sb);
4034 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4035
4036 /* If there are blocks to remove, do it */
4037 if (stop_block > first_block) {
4038
4039 down_write(&EXT4_I(inode)->i_data_sem);
4040 ext4_discard_preallocations(inode, 0);
4041
4042 ext4_es_remove_extent(inode, first_block,
4043 stop_block - first_block);
4044
4045 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4046 ret = ext4_ext_remove_space(inode, first_block,
4047 stop_block - 1);
4048 else
4049 ret = ext4_ind_remove_space(handle, inode, first_block,
4050 stop_block);
4051
4052 up_write(&EXT4_I(inode)->i_data_sem);
4053 }
4054 ext4_fc_track_range(handle, inode, first_block, stop_block);
4055 if (IS_SYNC(inode))
4056 ext4_handle_sync(handle);
4057
4058 inode->i_mtime = inode_set_ctime_current(inode);
4059 ret2 = ext4_mark_inode_dirty(handle, inode);
4060 if (unlikely(ret2))
4061 ret = ret2;
4062 if (ret >= 0)
4063 ext4_update_inode_fsync_trans(handle, inode, 1);
4064 out_stop:
4065 ext4_journal_stop(handle);
4066 out_dio:
4067 filemap_invalidate_unlock(mapping);
4068 out_mutex:
4069 inode_unlock(inode);
4070 return ret;
4071 }
4072
ext4_inode_attach_jinode(struct inode * inode)4073 int ext4_inode_attach_jinode(struct inode *inode)
4074 {
4075 struct ext4_inode_info *ei = EXT4_I(inode);
4076 struct jbd2_inode *jinode;
4077
4078 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4079 return 0;
4080
4081 jinode = jbd2_alloc_inode(GFP_KERNEL);
4082 spin_lock(&inode->i_lock);
4083 if (!ei->jinode) {
4084 if (!jinode) {
4085 spin_unlock(&inode->i_lock);
4086 return -ENOMEM;
4087 }
4088 ei->jinode = jinode;
4089 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4090 jinode = NULL;
4091 }
4092 spin_unlock(&inode->i_lock);
4093 if (unlikely(jinode != NULL))
4094 jbd2_free_inode(jinode);
4095 return 0;
4096 }
4097
4098 /*
4099 * ext4_truncate()
4100 *
4101 * We block out ext4_get_block() block instantiations across the entire
4102 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4103 * simultaneously on behalf of the same inode.
4104 *
4105 * As we work through the truncate and commit bits of it to the journal there
4106 * is one core, guiding principle: the file's tree must always be consistent on
4107 * disk. We must be able to restart the truncate after a crash.
4108 *
4109 * The file's tree may be transiently inconsistent in memory (although it
4110 * probably isn't), but whenever we close off and commit a journal transaction,
4111 * the contents of (the filesystem + the journal) must be consistent and
4112 * restartable. It's pretty simple, really: bottom up, right to left (although
4113 * left-to-right works OK too).
4114 *
4115 * Note that at recovery time, journal replay occurs *before* the restart of
4116 * truncate against the orphan inode list.
4117 *
4118 * The committed inode has the new, desired i_size (which is the same as
4119 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4120 * that this inode's truncate did not complete and it will again call
4121 * ext4_truncate() to have another go. So there will be instantiated blocks
4122 * to the right of the truncation point in a crashed ext4 filesystem. But
4123 * that's fine - as long as they are linked from the inode, the post-crash
4124 * ext4_truncate() run will find them and release them.
4125 */
ext4_truncate(struct inode * inode)4126 int ext4_truncate(struct inode *inode)
4127 {
4128 struct ext4_inode_info *ei = EXT4_I(inode);
4129 unsigned int credits;
4130 int err = 0, err2;
4131 handle_t *handle;
4132 struct address_space *mapping = inode->i_mapping;
4133
4134 /*
4135 * There is a possibility that we're either freeing the inode
4136 * or it's a completely new inode. In those cases we might not
4137 * have i_rwsem locked because it's not necessary.
4138 */
4139 if (!(inode->i_state & (I_NEW|I_FREEING)))
4140 WARN_ON(!inode_is_locked(inode));
4141 trace_ext4_truncate_enter(inode);
4142
4143 if (!ext4_can_truncate(inode))
4144 goto out_trace;
4145
4146 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4147 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4148
4149 if (ext4_has_inline_data(inode)) {
4150 int has_inline = 1;
4151
4152 err = ext4_inline_data_truncate(inode, &has_inline);
4153 if (err || has_inline)
4154 goto out_trace;
4155 }
4156
4157 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4158 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4159 err = ext4_inode_attach_jinode(inode);
4160 if (err)
4161 goto out_trace;
4162 }
4163
4164 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4165 credits = ext4_writepage_trans_blocks(inode);
4166 else
4167 credits = ext4_blocks_for_truncate(inode);
4168
4169 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4170 if (IS_ERR(handle)) {
4171 err = PTR_ERR(handle);
4172 goto out_trace;
4173 }
4174
4175 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4176 ext4_block_truncate_page(handle, mapping, inode->i_size);
4177
4178 /*
4179 * We add the inode to the orphan list, so that if this
4180 * truncate spans multiple transactions, and we crash, we will
4181 * resume the truncate when the filesystem recovers. It also
4182 * marks the inode dirty, to catch the new size.
4183 *
4184 * Implication: the file must always be in a sane, consistent
4185 * truncatable state while each transaction commits.
4186 */
4187 err = ext4_orphan_add(handle, inode);
4188 if (err)
4189 goto out_stop;
4190
4191 down_write(&EXT4_I(inode)->i_data_sem);
4192
4193 ext4_discard_preallocations(inode, 0);
4194
4195 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4196 err = ext4_ext_truncate(handle, inode);
4197 else
4198 ext4_ind_truncate(handle, inode);
4199
4200 up_write(&ei->i_data_sem);
4201 if (err)
4202 goto out_stop;
4203
4204 if (IS_SYNC(inode))
4205 ext4_handle_sync(handle);
4206
4207 out_stop:
4208 /*
4209 * If this was a simple ftruncate() and the file will remain alive,
4210 * then we need to clear up the orphan record which we created above.
4211 * However, if this was a real unlink then we were called by
4212 * ext4_evict_inode(), and we allow that function to clean up the
4213 * orphan info for us.
4214 */
4215 if (inode->i_nlink)
4216 ext4_orphan_del(handle, inode);
4217
4218 inode->i_mtime = inode_set_ctime_current(inode);
4219 err2 = ext4_mark_inode_dirty(handle, inode);
4220 if (unlikely(err2 && !err))
4221 err = err2;
4222 ext4_journal_stop(handle);
4223
4224 out_trace:
4225 trace_ext4_truncate_exit(inode);
4226 return err;
4227 }
4228
ext4_inode_peek_iversion(const struct inode * inode)4229 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4230 {
4231 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4232 return inode_peek_iversion_raw(inode);
4233 else
4234 return inode_peek_iversion(inode);
4235 }
4236
ext4_inode_blocks_set(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4237 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4238 struct ext4_inode_info *ei)
4239 {
4240 struct inode *inode = &(ei->vfs_inode);
4241 u64 i_blocks = READ_ONCE(inode->i_blocks);
4242 struct super_block *sb = inode->i_sb;
4243
4244 if (i_blocks <= ~0U) {
4245 /*
4246 * i_blocks can be represented in a 32 bit variable
4247 * as multiple of 512 bytes
4248 */
4249 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4250 raw_inode->i_blocks_high = 0;
4251 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4252 return 0;
4253 }
4254
4255 /*
4256 * This should never happen since sb->s_maxbytes should not have
4257 * allowed this, sb->s_maxbytes was set according to the huge_file
4258 * feature in ext4_fill_super().
4259 */
4260 if (!ext4_has_feature_huge_file(sb))
4261 return -EFSCORRUPTED;
4262
4263 if (i_blocks <= 0xffffffffffffULL) {
4264 /*
4265 * i_blocks can be represented in a 48 bit variable
4266 * as multiple of 512 bytes
4267 */
4268 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4269 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4270 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4271 } else {
4272 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4273 /* i_block is stored in file system block size */
4274 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4275 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4276 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4277 }
4278 return 0;
4279 }
4280
ext4_fill_raw_inode(struct inode * inode,struct ext4_inode * raw_inode)4281 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4282 {
4283 struct ext4_inode_info *ei = EXT4_I(inode);
4284 uid_t i_uid;
4285 gid_t i_gid;
4286 projid_t i_projid;
4287 int block;
4288 int err;
4289
4290 err = ext4_inode_blocks_set(raw_inode, ei);
4291
4292 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4293 i_uid = i_uid_read(inode);
4294 i_gid = i_gid_read(inode);
4295 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4296 if (!(test_opt(inode->i_sb, NO_UID32))) {
4297 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4298 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4299 /*
4300 * Fix up interoperability with old kernels. Otherwise,
4301 * old inodes get re-used with the upper 16 bits of the
4302 * uid/gid intact.
4303 */
4304 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4305 raw_inode->i_uid_high = 0;
4306 raw_inode->i_gid_high = 0;
4307 } else {
4308 raw_inode->i_uid_high =
4309 cpu_to_le16(high_16_bits(i_uid));
4310 raw_inode->i_gid_high =
4311 cpu_to_le16(high_16_bits(i_gid));
4312 }
4313 } else {
4314 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4315 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4316 raw_inode->i_uid_high = 0;
4317 raw_inode->i_gid_high = 0;
4318 }
4319 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4320
4321 EXT4_INODE_SET_CTIME(inode, raw_inode);
4322 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4323 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4324 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4325
4326 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4327 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4328 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4329 raw_inode->i_file_acl_high =
4330 cpu_to_le16(ei->i_file_acl >> 32);
4331 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4332 ext4_isize_set(raw_inode, ei->i_disksize);
4333
4334 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4335 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4336 if (old_valid_dev(inode->i_rdev)) {
4337 raw_inode->i_block[0] =
4338 cpu_to_le32(old_encode_dev(inode->i_rdev));
4339 raw_inode->i_block[1] = 0;
4340 } else {
4341 raw_inode->i_block[0] = 0;
4342 raw_inode->i_block[1] =
4343 cpu_to_le32(new_encode_dev(inode->i_rdev));
4344 raw_inode->i_block[2] = 0;
4345 }
4346 } else if (!ext4_has_inline_data(inode)) {
4347 for (block = 0; block < EXT4_N_BLOCKS; block++)
4348 raw_inode->i_block[block] = ei->i_data[block];
4349 }
4350
4351 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4352 u64 ivers = ext4_inode_peek_iversion(inode);
4353
4354 raw_inode->i_disk_version = cpu_to_le32(ivers);
4355 if (ei->i_extra_isize) {
4356 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4357 raw_inode->i_version_hi =
4358 cpu_to_le32(ivers >> 32);
4359 raw_inode->i_extra_isize =
4360 cpu_to_le16(ei->i_extra_isize);
4361 }
4362 }
4363
4364 if (i_projid != EXT4_DEF_PROJID &&
4365 !ext4_has_feature_project(inode->i_sb))
4366 err = err ?: -EFSCORRUPTED;
4367
4368 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4369 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4370 raw_inode->i_projid = cpu_to_le32(i_projid);
4371
4372 ext4_inode_csum_set(inode, raw_inode, ei);
4373 return err;
4374 }
4375
4376 /*
4377 * ext4_get_inode_loc returns with an extra refcount against the inode's
4378 * underlying buffer_head on success. If we pass 'inode' and it does not
4379 * have in-inode xattr, we have all inode data in memory that is needed
4380 * to recreate the on-disk version of this inode.
4381 */
__ext4_get_inode_loc(struct super_block * sb,unsigned long ino,struct inode * inode,struct ext4_iloc * iloc,ext4_fsblk_t * ret_block)4382 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4383 struct inode *inode, struct ext4_iloc *iloc,
4384 ext4_fsblk_t *ret_block)
4385 {
4386 struct ext4_group_desc *gdp;
4387 struct buffer_head *bh;
4388 ext4_fsblk_t block;
4389 struct blk_plug plug;
4390 int inodes_per_block, inode_offset;
4391
4392 iloc->bh = NULL;
4393 if (ino < EXT4_ROOT_INO ||
4394 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4395 return -EFSCORRUPTED;
4396
4397 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4398 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4399 if (!gdp)
4400 return -EIO;
4401
4402 /*
4403 * Figure out the offset within the block group inode table
4404 */
4405 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4406 inode_offset = ((ino - 1) %
4407 EXT4_INODES_PER_GROUP(sb));
4408 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4409
4410 block = ext4_inode_table(sb, gdp);
4411 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4412 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4413 ext4_error(sb, "Invalid inode table block %llu in "
4414 "block_group %u", block, iloc->block_group);
4415 return -EFSCORRUPTED;
4416 }
4417 block += (inode_offset / inodes_per_block);
4418
4419 bh = sb_getblk(sb, block);
4420 if (unlikely(!bh))
4421 return -ENOMEM;
4422 if (ext4_buffer_uptodate(bh))
4423 goto has_buffer;
4424
4425 lock_buffer(bh);
4426 if (ext4_buffer_uptodate(bh)) {
4427 /* Someone brought it uptodate while we waited */
4428 unlock_buffer(bh);
4429 goto has_buffer;
4430 }
4431
4432 /*
4433 * If we have all information of the inode in memory and this
4434 * is the only valid inode in the block, we need not read the
4435 * block.
4436 */
4437 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4438 struct buffer_head *bitmap_bh;
4439 int i, start;
4440
4441 start = inode_offset & ~(inodes_per_block - 1);
4442
4443 /* Is the inode bitmap in cache? */
4444 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4445 if (unlikely(!bitmap_bh))
4446 goto make_io;
4447
4448 /*
4449 * If the inode bitmap isn't in cache then the
4450 * optimisation may end up performing two reads instead
4451 * of one, so skip it.
4452 */
4453 if (!buffer_uptodate(bitmap_bh)) {
4454 brelse(bitmap_bh);
4455 goto make_io;
4456 }
4457 for (i = start; i < start + inodes_per_block; i++) {
4458 if (i == inode_offset)
4459 continue;
4460 if (ext4_test_bit(i, bitmap_bh->b_data))
4461 break;
4462 }
4463 brelse(bitmap_bh);
4464 if (i == start + inodes_per_block) {
4465 struct ext4_inode *raw_inode =
4466 (struct ext4_inode *) (bh->b_data + iloc->offset);
4467
4468 /* all other inodes are free, so skip I/O */
4469 memset(bh->b_data, 0, bh->b_size);
4470 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4471 ext4_fill_raw_inode(inode, raw_inode);
4472 set_buffer_uptodate(bh);
4473 unlock_buffer(bh);
4474 goto has_buffer;
4475 }
4476 }
4477
4478 make_io:
4479 /*
4480 * If we need to do any I/O, try to pre-readahead extra
4481 * blocks from the inode table.
4482 */
4483 blk_start_plug(&plug);
4484 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4485 ext4_fsblk_t b, end, table;
4486 unsigned num;
4487 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4488
4489 table = ext4_inode_table(sb, gdp);
4490 /* s_inode_readahead_blks is always a power of 2 */
4491 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4492 if (table > b)
4493 b = table;
4494 end = b + ra_blks;
4495 num = EXT4_INODES_PER_GROUP(sb);
4496 if (ext4_has_group_desc_csum(sb))
4497 num -= ext4_itable_unused_count(sb, gdp);
4498 table += num / inodes_per_block;
4499 if (end > table)
4500 end = table;
4501 while (b <= end)
4502 ext4_sb_breadahead_unmovable(sb, b++);
4503 }
4504
4505 /*
4506 * There are other valid inodes in the buffer, this inode
4507 * has in-inode xattrs, or we don't have this inode in memory.
4508 * Read the block from disk.
4509 */
4510 trace_ext4_load_inode(sb, ino);
4511 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL,
4512 ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO));
4513 blk_finish_plug(&plug);
4514 wait_on_buffer(bh);
4515 if (!buffer_uptodate(bh)) {
4516 if (ret_block)
4517 *ret_block = block;
4518 brelse(bh);
4519 return -EIO;
4520 }
4521 has_buffer:
4522 iloc->bh = bh;
4523 return 0;
4524 }
4525
__ext4_get_inode_loc_noinmem(struct inode * inode,struct ext4_iloc * iloc)4526 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4527 struct ext4_iloc *iloc)
4528 {
4529 ext4_fsblk_t err_blk = 0;
4530 int ret;
4531
4532 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4533 &err_blk);
4534
4535 if (ret == -EIO)
4536 ext4_error_inode_block(inode, err_blk, EIO,
4537 "unable to read itable block");
4538
4539 return ret;
4540 }
4541
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4542 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4543 {
4544 ext4_fsblk_t err_blk = 0;
4545 int ret;
4546
4547 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4548 &err_blk);
4549
4550 if (ret == -EIO)
4551 ext4_error_inode_block(inode, err_blk, EIO,
4552 "unable to read itable block");
4553
4554 return ret;
4555 }
4556
4557
ext4_get_fc_inode_loc(struct super_block * sb,unsigned long ino,struct ext4_iloc * iloc)4558 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4559 struct ext4_iloc *iloc)
4560 {
4561 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4562 }
4563
ext4_should_enable_dax(struct inode * inode)4564 static bool ext4_should_enable_dax(struct inode *inode)
4565 {
4566 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4567
4568 if (test_opt2(inode->i_sb, DAX_NEVER))
4569 return false;
4570 if (!S_ISREG(inode->i_mode))
4571 return false;
4572 if (ext4_should_journal_data(inode))
4573 return false;
4574 if (ext4_has_inline_data(inode))
4575 return false;
4576 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4577 return false;
4578 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4579 return false;
4580 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4581 return false;
4582 if (test_opt(inode->i_sb, DAX_ALWAYS))
4583 return true;
4584
4585 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4586 }
4587
ext4_set_inode_flags(struct inode * inode,bool init)4588 void ext4_set_inode_flags(struct inode *inode, bool init)
4589 {
4590 unsigned int flags = EXT4_I(inode)->i_flags;
4591 unsigned int new_fl = 0;
4592
4593 WARN_ON_ONCE(IS_DAX(inode) && init);
4594
4595 if (flags & EXT4_SYNC_FL)
4596 new_fl |= S_SYNC;
4597 if (flags & EXT4_APPEND_FL)
4598 new_fl |= S_APPEND;
4599 if (flags & EXT4_IMMUTABLE_FL)
4600 new_fl |= S_IMMUTABLE;
4601 if (flags & EXT4_NOATIME_FL)
4602 new_fl |= S_NOATIME;
4603 if (flags & EXT4_DIRSYNC_FL)
4604 new_fl |= S_DIRSYNC;
4605
4606 /* Because of the way inode_set_flags() works we must preserve S_DAX
4607 * here if already set. */
4608 new_fl |= (inode->i_flags & S_DAX);
4609 if (init && ext4_should_enable_dax(inode))
4610 new_fl |= S_DAX;
4611
4612 if (flags & EXT4_ENCRYPT_FL)
4613 new_fl |= S_ENCRYPTED;
4614 if (flags & EXT4_CASEFOLD_FL)
4615 new_fl |= S_CASEFOLD;
4616 if (flags & EXT4_VERITY_FL)
4617 new_fl |= S_VERITY;
4618 inode_set_flags(inode, new_fl,
4619 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4620 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4621 }
4622
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4623 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4624 struct ext4_inode_info *ei)
4625 {
4626 blkcnt_t i_blocks ;
4627 struct inode *inode = &(ei->vfs_inode);
4628 struct super_block *sb = inode->i_sb;
4629
4630 if (ext4_has_feature_huge_file(sb)) {
4631 /* we are using combined 48 bit field */
4632 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4633 le32_to_cpu(raw_inode->i_blocks_lo);
4634 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4635 /* i_blocks represent file system block size */
4636 return i_blocks << (inode->i_blkbits - 9);
4637 } else {
4638 return i_blocks;
4639 }
4640 } else {
4641 return le32_to_cpu(raw_inode->i_blocks_lo);
4642 }
4643 }
4644
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4645 static inline int ext4_iget_extra_inode(struct inode *inode,
4646 struct ext4_inode *raw_inode,
4647 struct ext4_inode_info *ei)
4648 {
4649 __le32 *magic = (void *)raw_inode +
4650 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4651
4652 if (EXT4_INODE_HAS_XATTR_SPACE(inode) &&
4653 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4654 int err;
4655
4656 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4657 err = ext4_find_inline_data_nolock(inode);
4658 if (!err && ext4_has_inline_data(inode))
4659 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4660 return err;
4661 } else
4662 EXT4_I(inode)->i_inline_off = 0;
4663 return 0;
4664 }
4665
ext4_get_projid(struct inode * inode,kprojid_t * projid)4666 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4667 {
4668 if (!ext4_has_feature_project(inode->i_sb))
4669 return -EOPNOTSUPP;
4670 *projid = EXT4_I(inode)->i_projid;
4671 return 0;
4672 }
4673
4674 /*
4675 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4676 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4677 * set.
4678 */
ext4_inode_set_iversion_queried(struct inode * inode,u64 val)4679 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4680 {
4681 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4682 inode_set_iversion_raw(inode, val);
4683 else
4684 inode_set_iversion_queried(inode, val);
4685 }
4686
check_igot_inode(struct inode * inode,ext4_iget_flags flags)4687 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4688
4689 {
4690 if (flags & EXT4_IGET_EA_INODE) {
4691 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4692 return "missing EA_INODE flag";
4693 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4694 EXT4_I(inode)->i_file_acl)
4695 return "ea_inode with extended attributes";
4696 } else {
4697 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4698 return "unexpected EA_INODE flag";
4699 }
4700 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4701 return "unexpected bad inode w/o EXT4_IGET_BAD";
4702 return NULL;
4703 }
4704
__ext4_iget(struct super_block * sb,unsigned long ino,ext4_iget_flags flags,const char * function,unsigned int line)4705 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4706 ext4_iget_flags flags, const char *function,
4707 unsigned int line)
4708 {
4709 struct ext4_iloc iloc;
4710 struct ext4_inode *raw_inode;
4711 struct ext4_inode_info *ei;
4712 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4713 struct inode *inode;
4714 const char *err_str;
4715 journal_t *journal = EXT4_SB(sb)->s_journal;
4716 long ret;
4717 loff_t size;
4718 int block;
4719 uid_t i_uid;
4720 gid_t i_gid;
4721 projid_t i_projid;
4722
4723 if ((!(flags & EXT4_IGET_SPECIAL) &&
4724 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4725 ino == le32_to_cpu(es->s_usr_quota_inum) ||
4726 ino == le32_to_cpu(es->s_grp_quota_inum) ||
4727 ino == le32_to_cpu(es->s_prj_quota_inum) ||
4728 ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4729 (ino < EXT4_ROOT_INO) ||
4730 (ino > le32_to_cpu(es->s_inodes_count))) {
4731 if (flags & EXT4_IGET_HANDLE)
4732 return ERR_PTR(-ESTALE);
4733 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4734 "inode #%lu: comm %s: iget: illegal inode #",
4735 ino, current->comm);
4736 return ERR_PTR(-EFSCORRUPTED);
4737 }
4738
4739 inode = iget_locked(sb, ino);
4740 if (!inode)
4741 return ERR_PTR(-ENOMEM);
4742 if (!(inode->i_state & I_NEW)) {
4743 if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4744 ext4_error_inode(inode, function, line, 0, err_str);
4745 iput(inode);
4746 return ERR_PTR(-EFSCORRUPTED);
4747 }
4748 return inode;
4749 }
4750
4751 ei = EXT4_I(inode);
4752 iloc.bh = NULL;
4753
4754 ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4755 if (ret < 0)
4756 goto bad_inode;
4757 raw_inode = ext4_raw_inode(&iloc);
4758
4759 if ((flags & EXT4_IGET_HANDLE) &&
4760 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4761 ret = -ESTALE;
4762 goto bad_inode;
4763 }
4764
4765 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4766 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4767 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4768 EXT4_INODE_SIZE(inode->i_sb) ||
4769 (ei->i_extra_isize & 3)) {
4770 ext4_error_inode(inode, function, line, 0,
4771 "iget: bad extra_isize %u "
4772 "(inode size %u)",
4773 ei->i_extra_isize,
4774 EXT4_INODE_SIZE(inode->i_sb));
4775 ret = -EFSCORRUPTED;
4776 goto bad_inode;
4777 }
4778 } else
4779 ei->i_extra_isize = 0;
4780
4781 /* Precompute checksum seed for inode metadata */
4782 if (ext4_has_metadata_csum(sb)) {
4783 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4784 __u32 csum;
4785 __le32 inum = cpu_to_le32(inode->i_ino);
4786 __le32 gen = raw_inode->i_generation;
4787 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4788 sizeof(inum));
4789 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4790 sizeof(gen));
4791 }
4792
4793 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4794 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4795 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4796 ext4_error_inode_err(inode, function, line, 0,
4797 EFSBADCRC, "iget: checksum invalid");
4798 ret = -EFSBADCRC;
4799 goto bad_inode;
4800 }
4801
4802 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4803 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4804 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4805 if (ext4_has_feature_project(sb) &&
4806 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4807 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4808 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4809 else
4810 i_projid = EXT4_DEF_PROJID;
4811
4812 if (!(test_opt(inode->i_sb, NO_UID32))) {
4813 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4814 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4815 }
4816 i_uid_write(inode, i_uid);
4817 i_gid_write(inode, i_gid);
4818 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4819 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4820
4821 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4822 ei->i_inline_off = 0;
4823 ei->i_dir_start_lookup = 0;
4824 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4825 /* We now have enough fields to check if the inode was active or not.
4826 * This is needed because nfsd might try to access dead inodes
4827 * the test is that same one that e2fsck uses
4828 * NeilBrown 1999oct15
4829 */
4830 if (inode->i_nlink == 0) {
4831 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4832 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4833 ino != EXT4_BOOT_LOADER_INO) {
4834 /* this inode is deleted or unallocated */
4835 if (flags & EXT4_IGET_SPECIAL) {
4836 ext4_error_inode(inode, function, line, 0,
4837 "iget: special inode unallocated");
4838 ret = -EFSCORRUPTED;
4839 } else
4840 ret = -ESTALE;
4841 goto bad_inode;
4842 }
4843 /* The only unlinked inodes we let through here have
4844 * valid i_mode and are being read by the orphan
4845 * recovery code: that's fine, we're about to complete
4846 * the process of deleting those.
4847 * OR it is the EXT4_BOOT_LOADER_INO which is
4848 * not initialized on a new filesystem. */
4849 }
4850 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4851 ext4_set_inode_flags(inode, true);
4852 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4853 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4854 if (ext4_has_feature_64bit(sb))
4855 ei->i_file_acl |=
4856 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4857 inode->i_size = ext4_isize(sb, raw_inode);
4858 if ((size = i_size_read(inode)) < 0) {
4859 ext4_error_inode(inode, function, line, 0,
4860 "iget: bad i_size value: %lld", size);
4861 ret = -EFSCORRUPTED;
4862 goto bad_inode;
4863 }
4864 /*
4865 * If dir_index is not enabled but there's dir with INDEX flag set,
4866 * we'd normally treat htree data as empty space. But with metadata
4867 * checksumming that corrupts checksums so forbid that.
4868 */
4869 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4870 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4871 ext4_error_inode(inode, function, line, 0,
4872 "iget: Dir with htree data on filesystem without dir_index feature.");
4873 ret = -EFSCORRUPTED;
4874 goto bad_inode;
4875 }
4876 ei->i_disksize = inode->i_size;
4877 #ifdef CONFIG_QUOTA
4878 ei->i_reserved_quota = 0;
4879 #endif
4880 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4881 ei->i_block_group = iloc.block_group;
4882 ei->i_last_alloc_group = ~0;
4883 /*
4884 * NOTE! The in-memory inode i_data array is in little-endian order
4885 * even on big-endian machines: we do NOT byteswap the block numbers!
4886 */
4887 for (block = 0; block < EXT4_N_BLOCKS; block++)
4888 ei->i_data[block] = raw_inode->i_block[block];
4889 INIT_LIST_HEAD(&ei->i_orphan);
4890 ext4_fc_init_inode(&ei->vfs_inode);
4891
4892 /*
4893 * Set transaction id's of transactions that have to be committed
4894 * to finish f[data]sync. We set them to currently running transaction
4895 * as we cannot be sure that the inode or some of its metadata isn't
4896 * part of the transaction - the inode could have been reclaimed and
4897 * now it is reread from disk.
4898 */
4899 if (journal) {
4900 transaction_t *transaction;
4901 tid_t tid;
4902
4903 read_lock(&journal->j_state_lock);
4904 if (journal->j_running_transaction)
4905 transaction = journal->j_running_transaction;
4906 else
4907 transaction = journal->j_committing_transaction;
4908 if (transaction)
4909 tid = transaction->t_tid;
4910 else
4911 tid = journal->j_commit_sequence;
4912 read_unlock(&journal->j_state_lock);
4913 ei->i_sync_tid = tid;
4914 ei->i_datasync_tid = tid;
4915 }
4916
4917 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4918 if (ei->i_extra_isize == 0) {
4919 /* The extra space is currently unused. Use it. */
4920 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4921 ei->i_extra_isize = sizeof(struct ext4_inode) -
4922 EXT4_GOOD_OLD_INODE_SIZE;
4923 } else {
4924 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4925 if (ret)
4926 goto bad_inode;
4927 }
4928 }
4929
4930 EXT4_INODE_GET_CTIME(inode, raw_inode);
4931 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4932 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4933 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4934
4935 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4936 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4937
4938 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4939 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4940 ivers |=
4941 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4942 }
4943 ext4_inode_set_iversion_queried(inode, ivers);
4944 }
4945
4946 ret = 0;
4947 if (ei->i_file_acl &&
4948 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4949 ext4_error_inode(inode, function, line, 0,
4950 "iget: bad extended attribute block %llu",
4951 ei->i_file_acl);
4952 ret = -EFSCORRUPTED;
4953 goto bad_inode;
4954 } else if (!ext4_has_inline_data(inode)) {
4955 /* validate the block references in the inode */
4956 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4957 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4958 (S_ISLNK(inode->i_mode) &&
4959 !ext4_inode_is_fast_symlink(inode)))) {
4960 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4961 ret = ext4_ext_check_inode(inode);
4962 else
4963 ret = ext4_ind_check_inode(inode);
4964 }
4965 }
4966 if (ret)
4967 goto bad_inode;
4968
4969 if (S_ISREG(inode->i_mode)) {
4970 inode->i_op = &ext4_file_inode_operations;
4971 inode->i_fop = &ext4_file_operations;
4972 ext4_set_aops(inode);
4973 } else if (S_ISDIR(inode->i_mode)) {
4974 inode->i_op = &ext4_dir_inode_operations;
4975 inode->i_fop = &ext4_dir_operations;
4976 } else if (S_ISLNK(inode->i_mode)) {
4977 /* VFS does not allow setting these so must be corruption */
4978 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4979 ext4_error_inode(inode, function, line, 0,
4980 "iget: immutable or append flags "
4981 "not allowed on symlinks");
4982 ret = -EFSCORRUPTED;
4983 goto bad_inode;
4984 }
4985 if (IS_ENCRYPTED(inode)) {
4986 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4987 } else if (ext4_inode_is_fast_symlink(inode)) {
4988 inode->i_link = (char *)ei->i_data;
4989 inode->i_op = &ext4_fast_symlink_inode_operations;
4990 nd_terminate_link(ei->i_data, inode->i_size,
4991 sizeof(ei->i_data) - 1);
4992 } else {
4993 inode->i_op = &ext4_symlink_inode_operations;
4994 }
4995 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4996 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4997 inode->i_op = &ext4_special_inode_operations;
4998 if (raw_inode->i_block[0])
4999 init_special_inode(inode, inode->i_mode,
5000 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5001 else
5002 init_special_inode(inode, inode->i_mode,
5003 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5004 } else if (ino == EXT4_BOOT_LOADER_INO) {
5005 make_bad_inode(inode);
5006 } else {
5007 ret = -EFSCORRUPTED;
5008 ext4_error_inode(inode, function, line, 0,
5009 "iget: bogus i_mode (%o)", inode->i_mode);
5010 goto bad_inode;
5011 }
5012 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5013 ext4_error_inode(inode, function, line, 0,
5014 "casefold flag without casefold feature");
5015 ret = -EFSCORRUPTED;
5016 goto bad_inode;
5017 }
5018 if ((err_str = check_igot_inode(inode, flags)) != NULL) {
5019 ext4_error_inode(inode, function, line, 0, err_str);
5020 ret = -EFSCORRUPTED;
5021 goto bad_inode;
5022 }
5023
5024 brelse(iloc.bh);
5025 unlock_new_inode(inode);
5026 return inode;
5027
5028 bad_inode:
5029 brelse(iloc.bh);
5030 iget_failed(inode);
5031 return ERR_PTR(ret);
5032 }
5033
__ext4_update_other_inode_time(struct super_block * sb,unsigned long orig_ino,unsigned long ino,struct ext4_inode * raw_inode)5034 static void __ext4_update_other_inode_time(struct super_block *sb,
5035 unsigned long orig_ino,
5036 unsigned long ino,
5037 struct ext4_inode *raw_inode)
5038 {
5039 struct inode *inode;
5040
5041 inode = find_inode_by_ino_rcu(sb, ino);
5042 if (!inode)
5043 return;
5044
5045 if (!inode_is_dirtytime_only(inode))
5046 return;
5047
5048 spin_lock(&inode->i_lock);
5049 if (inode_is_dirtytime_only(inode)) {
5050 struct ext4_inode_info *ei = EXT4_I(inode);
5051
5052 inode->i_state &= ~I_DIRTY_TIME;
5053 spin_unlock(&inode->i_lock);
5054
5055 spin_lock(&ei->i_raw_lock);
5056 EXT4_INODE_SET_CTIME(inode, raw_inode);
5057 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5058 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5059 ext4_inode_csum_set(inode, raw_inode, ei);
5060 spin_unlock(&ei->i_raw_lock);
5061 trace_ext4_other_inode_update_time(inode, orig_ino);
5062 return;
5063 }
5064 spin_unlock(&inode->i_lock);
5065 }
5066
5067 /*
5068 * Opportunistically update the other time fields for other inodes in
5069 * the same inode table block.
5070 */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)5071 static void ext4_update_other_inodes_time(struct super_block *sb,
5072 unsigned long orig_ino, char *buf)
5073 {
5074 unsigned long ino;
5075 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5076 int inode_size = EXT4_INODE_SIZE(sb);
5077
5078 /*
5079 * Calculate the first inode in the inode table block. Inode
5080 * numbers are one-based. That is, the first inode in a block
5081 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5082 */
5083 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5084 rcu_read_lock();
5085 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5086 if (ino == orig_ino)
5087 continue;
5088 __ext4_update_other_inode_time(sb, orig_ino, ino,
5089 (struct ext4_inode *)buf);
5090 }
5091 rcu_read_unlock();
5092 }
5093
5094 /*
5095 * Post the struct inode info into an on-disk inode location in the
5096 * buffer-cache. This gobbles the caller's reference to the
5097 * buffer_head in the inode location struct.
5098 *
5099 * The caller must have write access to iloc->bh.
5100 */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5101 static int ext4_do_update_inode(handle_t *handle,
5102 struct inode *inode,
5103 struct ext4_iloc *iloc)
5104 {
5105 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5106 struct ext4_inode_info *ei = EXT4_I(inode);
5107 struct buffer_head *bh = iloc->bh;
5108 struct super_block *sb = inode->i_sb;
5109 int err;
5110 int need_datasync = 0, set_large_file = 0;
5111
5112 spin_lock(&ei->i_raw_lock);
5113
5114 /*
5115 * For fields not tracked in the in-memory inode, initialise them
5116 * to zero for new inodes.
5117 */
5118 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5119 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5120
5121 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5122 need_datasync = 1;
5123 if (ei->i_disksize > 0x7fffffffULL) {
5124 if (!ext4_has_feature_large_file(sb) ||
5125 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5126 set_large_file = 1;
5127 }
5128
5129 err = ext4_fill_raw_inode(inode, raw_inode);
5130 spin_unlock(&ei->i_raw_lock);
5131 if (err) {
5132 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5133 goto out_brelse;
5134 }
5135
5136 if (inode->i_sb->s_flags & SB_LAZYTIME)
5137 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5138 bh->b_data);
5139
5140 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5141 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5142 if (err)
5143 goto out_error;
5144 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5145 if (set_large_file) {
5146 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5147 err = ext4_journal_get_write_access(handle, sb,
5148 EXT4_SB(sb)->s_sbh,
5149 EXT4_JTR_NONE);
5150 if (err)
5151 goto out_error;
5152 lock_buffer(EXT4_SB(sb)->s_sbh);
5153 ext4_set_feature_large_file(sb);
5154 ext4_superblock_csum_set(sb);
5155 unlock_buffer(EXT4_SB(sb)->s_sbh);
5156 ext4_handle_sync(handle);
5157 err = ext4_handle_dirty_metadata(handle, NULL,
5158 EXT4_SB(sb)->s_sbh);
5159 }
5160 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5161 out_error:
5162 ext4_std_error(inode->i_sb, err);
5163 out_brelse:
5164 brelse(bh);
5165 return err;
5166 }
5167
5168 /*
5169 * ext4_write_inode()
5170 *
5171 * We are called from a few places:
5172 *
5173 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5174 * Here, there will be no transaction running. We wait for any running
5175 * transaction to commit.
5176 *
5177 * - Within flush work (sys_sync(), kupdate and such).
5178 * We wait on commit, if told to.
5179 *
5180 * - Within iput_final() -> write_inode_now()
5181 * We wait on commit, if told to.
5182 *
5183 * In all cases it is actually safe for us to return without doing anything,
5184 * because the inode has been copied into a raw inode buffer in
5185 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5186 * writeback.
5187 *
5188 * Note that we are absolutely dependent upon all inode dirtiers doing the
5189 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5190 * which we are interested.
5191 *
5192 * It would be a bug for them to not do this. The code:
5193 *
5194 * mark_inode_dirty(inode)
5195 * stuff();
5196 * inode->i_size = expr;
5197 *
5198 * is in error because write_inode() could occur while `stuff()' is running,
5199 * and the new i_size will be lost. Plus the inode will no longer be on the
5200 * superblock's dirty inode list.
5201 */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)5202 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5203 {
5204 int err;
5205
5206 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5207 return 0;
5208
5209 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5210 return -EIO;
5211
5212 if (EXT4_SB(inode->i_sb)->s_journal) {
5213 if (ext4_journal_current_handle()) {
5214 ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5215 dump_stack();
5216 return -EIO;
5217 }
5218
5219 /*
5220 * No need to force transaction in WB_SYNC_NONE mode. Also
5221 * ext4_sync_fs() will force the commit after everything is
5222 * written.
5223 */
5224 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5225 return 0;
5226
5227 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5228 EXT4_I(inode)->i_sync_tid);
5229 } else {
5230 struct ext4_iloc iloc;
5231
5232 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5233 if (err)
5234 return err;
5235 /*
5236 * sync(2) will flush the whole buffer cache. No need to do
5237 * it here separately for each inode.
5238 */
5239 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5240 sync_dirty_buffer(iloc.bh);
5241 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5242 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5243 "IO error syncing inode");
5244 err = -EIO;
5245 }
5246 brelse(iloc.bh);
5247 }
5248 return err;
5249 }
5250
5251 /*
5252 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5253 * buffers that are attached to a folio straddling i_size and are undergoing
5254 * commit. In that case we have to wait for commit to finish and try again.
5255 */
ext4_wait_for_tail_page_commit(struct inode * inode)5256 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5257 {
5258 unsigned offset;
5259 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5260 tid_t commit_tid;
5261 int ret;
5262 bool has_transaction;
5263
5264 offset = inode->i_size & (PAGE_SIZE - 1);
5265 /*
5266 * If the folio is fully truncated, we don't need to wait for any commit
5267 * (and we even should not as __ext4_journalled_invalidate_folio() may
5268 * strip all buffers from the folio but keep the folio dirty which can then
5269 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5270 * buffers). Also we don't need to wait for any commit if all buffers in
5271 * the folio remain valid. This is most beneficial for the common case of
5272 * blocksize == PAGESIZE.
5273 */
5274 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5275 return;
5276 while (1) {
5277 struct folio *folio = filemap_lock_folio(inode->i_mapping,
5278 inode->i_size >> PAGE_SHIFT);
5279 if (IS_ERR(folio))
5280 return;
5281 ret = __ext4_journalled_invalidate_folio(folio, offset,
5282 folio_size(folio) - offset);
5283 folio_unlock(folio);
5284 folio_put(folio);
5285 if (ret != -EBUSY)
5286 return;
5287 has_transaction = false;
5288 read_lock(&journal->j_state_lock);
5289 if (journal->j_committing_transaction) {
5290 commit_tid = journal->j_committing_transaction->t_tid;
5291 has_transaction = true;
5292 }
5293 read_unlock(&journal->j_state_lock);
5294 if (has_transaction)
5295 jbd2_log_wait_commit(journal, commit_tid);
5296 }
5297 }
5298
5299 /*
5300 * ext4_setattr()
5301 *
5302 * Called from notify_change.
5303 *
5304 * We want to trap VFS attempts to truncate the file as soon as
5305 * possible. In particular, we want to make sure that when the VFS
5306 * shrinks i_size, we put the inode on the orphan list and modify
5307 * i_disksize immediately, so that during the subsequent flushing of
5308 * dirty pages and freeing of disk blocks, we can guarantee that any
5309 * commit will leave the blocks being flushed in an unused state on
5310 * disk. (On recovery, the inode will get truncated and the blocks will
5311 * be freed, so we have a strong guarantee that no future commit will
5312 * leave these blocks visible to the user.)
5313 *
5314 * Another thing we have to assure is that if we are in ordered mode
5315 * and inode is still attached to the committing transaction, we must
5316 * we start writeout of all the dirty pages which are being truncated.
5317 * This way we are sure that all the data written in the previous
5318 * transaction are already on disk (truncate waits for pages under
5319 * writeback).
5320 *
5321 * Called with inode->i_rwsem down.
5322 */
ext4_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)5323 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5324 struct iattr *attr)
5325 {
5326 struct inode *inode = d_inode(dentry);
5327 int error, rc = 0;
5328 int orphan = 0;
5329 const unsigned int ia_valid = attr->ia_valid;
5330 bool inc_ivers = true;
5331
5332 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5333 return -EIO;
5334
5335 if (unlikely(IS_IMMUTABLE(inode)))
5336 return -EPERM;
5337
5338 if (unlikely(IS_APPEND(inode) &&
5339 (ia_valid & (ATTR_MODE | ATTR_UID |
5340 ATTR_GID | ATTR_TIMES_SET))))
5341 return -EPERM;
5342
5343 error = setattr_prepare(idmap, dentry, attr);
5344 if (error)
5345 return error;
5346
5347 error = fscrypt_prepare_setattr(dentry, attr);
5348 if (error)
5349 return error;
5350
5351 error = fsverity_prepare_setattr(dentry, attr);
5352 if (error)
5353 return error;
5354
5355 if (is_quota_modification(idmap, inode, attr)) {
5356 error = dquot_initialize(inode);
5357 if (error)
5358 return error;
5359 }
5360
5361 if (i_uid_needs_update(idmap, attr, inode) ||
5362 i_gid_needs_update(idmap, attr, inode)) {
5363 handle_t *handle;
5364
5365 /* (user+group)*(old+new) structure, inode write (sb,
5366 * inode block, ? - but truncate inode update has it) */
5367 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5368 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5369 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5370 if (IS_ERR(handle)) {
5371 error = PTR_ERR(handle);
5372 goto err_out;
5373 }
5374
5375 /* dquot_transfer() calls back ext4_get_inode_usage() which
5376 * counts xattr inode references.
5377 */
5378 down_read(&EXT4_I(inode)->xattr_sem);
5379 error = dquot_transfer(idmap, inode, attr);
5380 up_read(&EXT4_I(inode)->xattr_sem);
5381
5382 if (error) {
5383 ext4_journal_stop(handle);
5384 return error;
5385 }
5386 /* Update corresponding info in inode so that everything is in
5387 * one transaction */
5388 i_uid_update(idmap, attr, inode);
5389 i_gid_update(idmap, attr, inode);
5390 error = ext4_mark_inode_dirty(handle, inode);
5391 ext4_journal_stop(handle);
5392 if (unlikely(error)) {
5393 return error;
5394 }
5395 }
5396
5397 if (attr->ia_valid & ATTR_SIZE) {
5398 handle_t *handle;
5399 loff_t oldsize = inode->i_size;
5400 loff_t old_disksize;
5401 int shrink = (attr->ia_size < inode->i_size);
5402
5403 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5404 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5405
5406 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5407 return -EFBIG;
5408 }
5409 }
5410 if (!S_ISREG(inode->i_mode)) {
5411 return -EINVAL;
5412 }
5413
5414 if (attr->ia_size == inode->i_size)
5415 inc_ivers = false;
5416
5417 if (shrink) {
5418 if (ext4_should_order_data(inode)) {
5419 error = ext4_begin_ordered_truncate(inode,
5420 attr->ia_size);
5421 if (error)
5422 goto err_out;
5423 }
5424 /*
5425 * Blocks are going to be removed from the inode. Wait
5426 * for dio in flight.
5427 */
5428 inode_dio_wait(inode);
5429 }
5430
5431 filemap_invalidate_lock(inode->i_mapping);
5432
5433 rc = ext4_break_layouts(inode);
5434 if (rc) {
5435 filemap_invalidate_unlock(inode->i_mapping);
5436 goto err_out;
5437 }
5438
5439 if (attr->ia_size != inode->i_size) {
5440 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5441 if (IS_ERR(handle)) {
5442 error = PTR_ERR(handle);
5443 goto out_mmap_sem;
5444 }
5445 if (ext4_handle_valid(handle) && shrink) {
5446 error = ext4_orphan_add(handle, inode);
5447 orphan = 1;
5448 }
5449 /*
5450 * Update c/mtime on truncate up, ext4_truncate() will
5451 * update c/mtime in shrink case below
5452 */
5453 if (!shrink)
5454 inode->i_mtime = inode_set_ctime_current(inode);
5455
5456 if (shrink)
5457 ext4_fc_track_range(handle, inode,
5458 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5459 inode->i_sb->s_blocksize_bits,
5460 EXT_MAX_BLOCKS - 1);
5461 else
5462 ext4_fc_track_range(
5463 handle, inode,
5464 (oldsize > 0 ? oldsize - 1 : oldsize) >>
5465 inode->i_sb->s_blocksize_bits,
5466 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5467 inode->i_sb->s_blocksize_bits);
5468
5469 down_write(&EXT4_I(inode)->i_data_sem);
5470 old_disksize = EXT4_I(inode)->i_disksize;
5471 EXT4_I(inode)->i_disksize = attr->ia_size;
5472 rc = ext4_mark_inode_dirty(handle, inode);
5473 if (!error)
5474 error = rc;
5475 /*
5476 * We have to update i_size under i_data_sem together
5477 * with i_disksize to avoid races with writeback code
5478 * running ext4_wb_update_i_disksize().
5479 */
5480 if (!error)
5481 i_size_write(inode, attr->ia_size);
5482 else
5483 EXT4_I(inode)->i_disksize = old_disksize;
5484 up_write(&EXT4_I(inode)->i_data_sem);
5485 ext4_journal_stop(handle);
5486 if (error)
5487 goto out_mmap_sem;
5488 if (!shrink) {
5489 pagecache_isize_extended(inode, oldsize,
5490 inode->i_size);
5491 } else if (ext4_should_journal_data(inode)) {
5492 ext4_wait_for_tail_page_commit(inode);
5493 }
5494 }
5495
5496 /*
5497 * Truncate pagecache after we've waited for commit
5498 * in data=journal mode to make pages freeable.
5499 */
5500 truncate_pagecache(inode, inode->i_size);
5501 /*
5502 * Call ext4_truncate() even if i_size didn't change to
5503 * truncate possible preallocated blocks.
5504 */
5505 if (attr->ia_size <= oldsize) {
5506 rc = ext4_truncate(inode);
5507 if (rc)
5508 error = rc;
5509 }
5510 out_mmap_sem:
5511 filemap_invalidate_unlock(inode->i_mapping);
5512 }
5513
5514 if (!error) {
5515 if (inc_ivers)
5516 inode_inc_iversion(inode);
5517 setattr_copy(idmap, inode, attr);
5518 mark_inode_dirty(inode);
5519 }
5520
5521 /*
5522 * If the call to ext4_truncate failed to get a transaction handle at
5523 * all, we need to clean up the in-core orphan list manually.
5524 */
5525 if (orphan && inode->i_nlink)
5526 ext4_orphan_del(NULL, inode);
5527
5528 if (!error && (ia_valid & ATTR_MODE))
5529 rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5530
5531 err_out:
5532 if (error)
5533 ext4_std_error(inode->i_sb, error);
5534 if (!error)
5535 error = rc;
5536 return error;
5537 }
5538
ext4_dio_alignment(struct inode * inode)5539 u32 ext4_dio_alignment(struct inode *inode)
5540 {
5541 if (fsverity_active(inode))
5542 return 0;
5543 if (ext4_should_journal_data(inode))
5544 return 0;
5545 if (ext4_has_inline_data(inode))
5546 return 0;
5547 if (IS_ENCRYPTED(inode)) {
5548 if (!fscrypt_dio_supported(inode))
5549 return 0;
5550 return i_blocksize(inode);
5551 }
5552 return 1; /* use the iomap defaults */
5553 }
5554
ext4_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5555 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5556 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5557 {
5558 struct inode *inode = d_inode(path->dentry);
5559 struct ext4_inode *raw_inode;
5560 struct ext4_inode_info *ei = EXT4_I(inode);
5561 unsigned int flags;
5562
5563 if ((request_mask & STATX_BTIME) &&
5564 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5565 stat->result_mask |= STATX_BTIME;
5566 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5567 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5568 }
5569
5570 /*
5571 * Return the DIO alignment restrictions if requested. We only return
5572 * this information when requested, since on encrypted files it might
5573 * take a fair bit of work to get if the file wasn't opened recently.
5574 */
5575 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5576 u32 dio_align = ext4_dio_alignment(inode);
5577
5578 stat->result_mask |= STATX_DIOALIGN;
5579 if (dio_align == 1) {
5580 struct block_device *bdev = inode->i_sb->s_bdev;
5581
5582 /* iomap defaults */
5583 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5584 stat->dio_offset_align = bdev_logical_block_size(bdev);
5585 } else {
5586 stat->dio_mem_align = dio_align;
5587 stat->dio_offset_align = dio_align;
5588 }
5589 }
5590
5591 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5592 if (flags & EXT4_APPEND_FL)
5593 stat->attributes |= STATX_ATTR_APPEND;
5594 if (flags & EXT4_COMPR_FL)
5595 stat->attributes |= STATX_ATTR_COMPRESSED;
5596 if (flags & EXT4_ENCRYPT_FL)
5597 stat->attributes |= STATX_ATTR_ENCRYPTED;
5598 if (flags & EXT4_IMMUTABLE_FL)
5599 stat->attributes |= STATX_ATTR_IMMUTABLE;
5600 if (flags & EXT4_NODUMP_FL)
5601 stat->attributes |= STATX_ATTR_NODUMP;
5602 if (flags & EXT4_VERITY_FL)
5603 stat->attributes |= STATX_ATTR_VERITY;
5604
5605 stat->attributes_mask |= (STATX_ATTR_APPEND |
5606 STATX_ATTR_COMPRESSED |
5607 STATX_ATTR_ENCRYPTED |
5608 STATX_ATTR_IMMUTABLE |
5609 STATX_ATTR_NODUMP |
5610 STATX_ATTR_VERITY);
5611
5612 generic_fillattr(idmap, request_mask, inode, stat);
5613 return 0;
5614 }
5615
ext4_file_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5616 int ext4_file_getattr(struct mnt_idmap *idmap,
5617 const struct path *path, struct kstat *stat,
5618 u32 request_mask, unsigned int query_flags)
5619 {
5620 struct inode *inode = d_inode(path->dentry);
5621 u64 delalloc_blocks;
5622
5623 ext4_getattr(idmap, path, stat, request_mask, query_flags);
5624
5625 /*
5626 * If there is inline data in the inode, the inode will normally not
5627 * have data blocks allocated (it may have an external xattr block).
5628 * Report at least one sector for such files, so tools like tar, rsync,
5629 * others don't incorrectly think the file is completely sparse.
5630 */
5631 if (unlikely(ext4_has_inline_data(inode)))
5632 stat->blocks += (stat->size + 511) >> 9;
5633
5634 /*
5635 * We can't update i_blocks if the block allocation is delayed
5636 * otherwise in the case of system crash before the real block
5637 * allocation is done, we will have i_blocks inconsistent with
5638 * on-disk file blocks.
5639 * We always keep i_blocks updated together with real
5640 * allocation. But to not confuse with user, stat
5641 * will return the blocks that include the delayed allocation
5642 * blocks for this file.
5643 */
5644 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5645 EXT4_I(inode)->i_reserved_data_blocks);
5646 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5647 return 0;
5648 }
5649
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)5650 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5651 int pextents)
5652 {
5653 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5654 return ext4_ind_trans_blocks(inode, lblocks);
5655 return ext4_ext_index_trans_blocks(inode, pextents);
5656 }
5657
5658 /*
5659 * Account for index blocks, block groups bitmaps and block group
5660 * descriptor blocks if modify datablocks and index blocks
5661 * worse case, the indexs blocks spread over different block groups
5662 *
5663 * If datablocks are discontiguous, they are possible to spread over
5664 * different block groups too. If they are contiguous, with flexbg,
5665 * they could still across block group boundary.
5666 *
5667 * Also account for superblock, inode, quota and xattr blocks
5668 */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)5669 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5670 int pextents)
5671 {
5672 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5673 int gdpblocks;
5674 int idxblocks;
5675 int ret;
5676
5677 /*
5678 * How many index blocks need to touch to map @lblocks logical blocks
5679 * to @pextents physical extents?
5680 */
5681 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5682
5683 ret = idxblocks;
5684
5685 /*
5686 * Now let's see how many group bitmaps and group descriptors need
5687 * to account
5688 */
5689 groups = idxblocks + pextents;
5690 gdpblocks = groups;
5691 if (groups > ngroups)
5692 groups = ngroups;
5693 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5694 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5695
5696 /* bitmaps and block group descriptor blocks */
5697 ret += groups + gdpblocks;
5698
5699 /* Blocks for super block, inode, quota and xattr blocks */
5700 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5701
5702 return ret;
5703 }
5704
5705 /*
5706 * Calculate the total number of credits to reserve to fit
5707 * the modification of a single pages into a single transaction,
5708 * which may include multiple chunks of block allocations.
5709 *
5710 * This could be called via ext4_write_begin()
5711 *
5712 * We need to consider the worse case, when
5713 * one new block per extent.
5714 */
ext4_writepage_trans_blocks(struct inode * inode)5715 int ext4_writepage_trans_blocks(struct inode *inode)
5716 {
5717 int bpp = ext4_journal_blocks_per_page(inode);
5718 int ret;
5719
5720 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5721
5722 /* Account for data blocks for journalled mode */
5723 if (ext4_should_journal_data(inode))
5724 ret += bpp;
5725 return ret;
5726 }
5727
5728 /*
5729 * Calculate the journal credits for a chunk of data modification.
5730 *
5731 * This is called from DIO, fallocate or whoever calling
5732 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5733 *
5734 * journal buffers for data blocks are not included here, as DIO
5735 * and fallocate do no need to journal data buffers.
5736 */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)5737 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5738 {
5739 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5740 }
5741
5742 /*
5743 * The caller must have previously called ext4_reserve_inode_write().
5744 * Give this, we know that the caller already has write access to iloc->bh.
5745 */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5746 int ext4_mark_iloc_dirty(handle_t *handle,
5747 struct inode *inode, struct ext4_iloc *iloc)
5748 {
5749 int err = 0;
5750
5751 if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5752 put_bh(iloc->bh);
5753 return -EIO;
5754 }
5755 ext4_fc_track_inode(handle, inode);
5756
5757 /* the do_update_inode consumes one bh->b_count */
5758 get_bh(iloc->bh);
5759
5760 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5761 err = ext4_do_update_inode(handle, inode, iloc);
5762 put_bh(iloc->bh);
5763 return err;
5764 }
5765
5766 /*
5767 * On success, We end up with an outstanding reference count against
5768 * iloc->bh. This _must_ be cleaned up later.
5769 */
5770
5771 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5772 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5773 struct ext4_iloc *iloc)
5774 {
5775 int err;
5776
5777 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5778 return -EIO;
5779
5780 err = ext4_get_inode_loc(inode, iloc);
5781 if (!err) {
5782 BUFFER_TRACE(iloc->bh, "get_write_access");
5783 err = ext4_journal_get_write_access(handle, inode->i_sb,
5784 iloc->bh, EXT4_JTR_NONE);
5785 if (err) {
5786 brelse(iloc->bh);
5787 iloc->bh = NULL;
5788 }
5789 }
5790 ext4_std_error(inode->i_sb, err);
5791 return err;
5792 }
5793
__ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc,handle_t * handle,int * no_expand)5794 static int __ext4_expand_extra_isize(struct inode *inode,
5795 unsigned int new_extra_isize,
5796 struct ext4_iloc *iloc,
5797 handle_t *handle, int *no_expand)
5798 {
5799 struct ext4_inode *raw_inode;
5800 struct ext4_xattr_ibody_header *header;
5801 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5802 struct ext4_inode_info *ei = EXT4_I(inode);
5803 int error;
5804
5805 /* this was checked at iget time, but double check for good measure */
5806 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5807 (ei->i_extra_isize & 3)) {
5808 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5809 ei->i_extra_isize,
5810 EXT4_INODE_SIZE(inode->i_sb));
5811 return -EFSCORRUPTED;
5812 }
5813 if ((new_extra_isize < ei->i_extra_isize) ||
5814 (new_extra_isize < 4) ||
5815 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5816 return -EINVAL; /* Should never happen */
5817
5818 raw_inode = ext4_raw_inode(iloc);
5819
5820 header = IHDR(inode, raw_inode);
5821
5822 /* No extended attributes present */
5823 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5824 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5825 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5826 EXT4_I(inode)->i_extra_isize, 0,
5827 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5828 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5829 return 0;
5830 }
5831
5832 /*
5833 * We may need to allocate external xattr block so we need quotas
5834 * initialized. Here we can be called with various locks held so we
5835 * cannot affort to initialize quotas ourselves. So just bail.
5836 */
5837 if (dquot_initialize_needed(inode))
5838 return -EAGAIN;
5839
5840 /* try to expand with EAs present */
5841 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5842 raw_inode, handle);
5843 if (error) {
5844 /*
5845 * Inode size expansion failed; don't try again
5846 */
5847 *no_expand = 1;
5848 }
5849
5850 return error;
5851 }
5852
5853 /*
5854 * Expand an inode by new_extra_isize bytes.
5855 * Returns 0 on success or negative error number on failure.
5856 */
ext4_try_to_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)5857 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5858 unsigned int new_extra_isize,
5859 struct ext4_iloc iloc,
5860 handle_t *handle)
5861 {
5862 int no_expand;
5863 int error;
5864
5865 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5866 return -EOVERFLOW;
5867
5868 /*
5869 * In nojournal mode, we can immediately attempt to expand
5870 * the inode. When journaled, we first need to obtain extra
5871 * buffer credits since we may write into the EA block
5872 * with this same handle. If journal_extend fails, then it will
5873 * only result in a minor loss of functionality for that inode.
5874 * If this is felt to be critical, then e2fsck should be run to
5875 * force a large enough s_min_extra_isize.
5876 */
5877 if (ext4_journal_extend(handle,
5878 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5879 return -ENOSPC;
5880
5881 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5882 return -EBUSY;
5883
5884 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5885 handle, &no_expand);
5886 ext4_write_unlock_xattr(inode, &no_expand);
5887
5888 return error;
5889 }
5890
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc)5891 int ext4_expand_extra_isize(struct inode *inode,
5892 unsigned int new_extra_isize,
5893 struct ext4_iloc *iloc)
5894 {
5895 handle_t *handle;
5896 int no_expand;
5897 int error, rc;
5898
5899 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5900 brelse(iloc->bh);
5901 return -EOVERFLOW;
5902 }
5903
5904 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5905 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5906 if (IS_ERR(handle)) {
5907 error = PTR_ERR(handle);
5908 brelse(iloc->bh);
5909 return error;
5910 }
5911
5912 ext4_write_lock_xattr(inode, &no_expand);
5913
5914 BUFFER_TRACE(iloc->bh, "get_write_access");
5915 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5916 EXT4_JTR_NONE);
5917 if (error) {
5918 brelse(iloc->bh);
5919 goto out_unlock;
5920 }
5921
5922 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5923 handle, &no_expand);
5924
5925 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5926 if (!error)
5927 error = rc;
5928
5929 out_unlock:
5930 ext4_write_unlock_xattr(inode, &no_expand);
5931 ext4_journal_stop(handle);
5932 return error;
5933 }
5934
5935 /*
5936 * What we do here is to mark the in-core inode as clean with respect to inode
5937 * dirtiness (it may still be data-dirty).
5938 * This means that the in-core inode may be reaped by prune_icache
5939 * without having to perform any I/O. This is a very good thing,
5940 * because *any* task may call prune_icache - even ones which
5941 * have a transaction open against a different journal.
5942 *
5943 * Is this cheating? Not really. Sure, we haven't written the
5944 * inode out, but prune_icache isn't a user-visible syncing function.
5945 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5946 * we start and wait on commits.
5947 */
__ext4_mark_inode_dirty(handle_t * handle,struct inode * inode,const char * func,unsigned int line)5948 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5949 const char *func, unsigned int line)
5950 {
5951 struct ext4_iloc iloc;
5952 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5953 int err;
5954
5955 might_sleep();
5956 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5957 err = ext4_reserve_inode_write(handle, inode, &iloc);
5958 if (err)
5959 goto out;
5960
5961 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5962 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5963 iloc, handle);
5964
5965 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5966 out:
5967 if (unlikely(err))
5968 ext4_error_inode_err(inode, func, line, 0, err,
5969 "mark_inode_dirty error");
5970 return err;
5971 }
5972
5973 /*
5974 * ext4_dirty_inode() is called from __mark_inode_dirty()
5975 *
5976 * We're really interested in the case where a file is being extended.
5977 * i_size has been changed by generic_commit_write() and we thus need
5978 * to include the updated inode in the current transaction.
5979 *
5980 * Also, dquot_alloc_block() will always dirty the inode when blocks
5981 * are allocated to the file.
5982 *
5983 * If the inode is marked synchronous, we don't honour that here - doing
5984 * so would cause a commit on atime updates, which we don't bother doing.
5985 * We handle synchronous inodes at the highest possible level.
5986 */
ext4_dirty_inode(struct inode * inode,int flags)5987 void ext4_dirty_inode(struct inode *inode, int flags)
5988 {
5989 handle_t *handle;
5990
5991 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5992 if (IS_ERR(handle))
5993 return;
5994 ext4_mark_inode_dirty(handle, inode);
5995 ext4_journal_stop(handle);
5996 }
5997
ext4_change_inode_journal_flag(struct inode * inode,int val)5998 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5999 {
6000 journal_t *journal;
6001 handle_t *handle;
6002 int err;
6003 int alloc_ctx;
6004
6005 /*
6006 * We have to be very careful here: changing a data block's
6007 * journaling status dynamically is dangerous. If we write a
6008 * data block to the journal, change the status and then delete
6009 * that block, we risk forgetting to revoke the old log record
6010 * from the journal and so a subsequent replay can corrupt data.
6011 * So, first we make sure that the journal is empty and that
6012 * nobody is changing anything.
6013 */
6014
6015 journal = EXT4_JOURNAL(inode);
6016 if (!journal)
6017 return 0;
6018 if (is_journal_aborted(journal))
6019 return -EROFS;
6020
6021 /* Wait for all existing dio workers */
6022 inode_dio_wait(inode);
6023
6024 /*
6025 * Before flushing the journal and switching inode's aops, we have
6026 * to flush all dirty data the inode has. There can be outstanding
6027 * delayed allocations, there can be unwritten extents created by
6028 * fallocate or buffered writes in dioread_nolock mode covered by
6029 * dirty data which can be converted only after flushing the dirty
6030 * data (and journalled aops don't know how to handle these cases).
6031 */
6032 if (val) {
6033 filemap_invalidate_lock(inode->i_mapping);
6034 err = filemap_write_and_wait(inode->i_mapping);
6035 if (err < 0) {
6036 filemap_invalidate_unlock(inode->i_mapping);
6037 return err;
6038 }
6039 }
6040
6041 alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6042 jbd2_journal_lock_updates(journal);
6043
6044 /*
6045 * OK, there are no updates running now, and all cached data is
6046 * synced to disk. We are now in a completely consistent state
6047 * which doesn't have anything in the journal, and we know that
6048 * no filesystem updates are running, so it is safe to modify
6049 * the inode's in-core data-journaling state flag now.
6050 */
6051
6052 if (val)
6053 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6054 else {
6055 err = jbd2_journal_flush(journal, 0);
6056 if (err < 0) {
6057 jbd2_journal_unlock_updates(journal);
6058 ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6059 return err;
6060 }
6061 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6062 }
6063 ext4_set_aops(inode);
6064
6065 jbd2_journal_unlock_updates(journal);
6066 ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6067
6068 if (val)
6069 filemap_invalidate_unlock(inode->i_mapping);
6070
6071 /* Finally we can mark the inode as dirty. */
6072
6073 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6074 if (IS_ERR(handle))
6075 return PTR_ERR(handle);
6076
6077 ext4_fc_mark_ineligible(inode->i_sb,
6078 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6079 err = ext4_mark_inode_dirty(handle, inode);
6080 ext4_handle_sync(handle);
6081 ext4_journal_stop(handle);
6082 ext4_std_error(inode->i_sb, err);
6083
6084 return err;
6085 }
6086
ext4_bh_unmapped(handle_t * handle,struct inode * inode,struct buffer_head * bh)6087 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6088 struct buffer_head *bh)
6089 {
6090 return !buffer_mapped(bh);
6091 }
6092
ext4_page_mkwrite(struct vm_fault * vmf)6093 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6094 {
6095 struct vm_area_struct *vma = vmf->vma;
6096 struct folio *folio = page_folio(vmf->page);
6097 loff_t size;
6098 unsigned long len;
6099 int err;
6100 vm_fault_t ret;
6101 struct file *file = vma->vm_file;
6102 struct inode *inode = file_inode(file);
6103 struct address_space *mapping = inode->i_mapping;
6104 handle_t *handle;
6105 get_block_t *get_block;
6106 int retries = 0;
6107
6108 if (unlikely(IS_IMMUTABLE(inode)))
6109 return VM_FAULT_SIGBUS;
6110
6111 sb_start_pagefault(inode->i_sb);
6112 file_update_time(vma->vm_file);
6113
6114 filemap_invalidate_lock_shared(mapping);
6115
6116 err = ext4_convert_inline_data(inode);
6117 if (err)
6118 goto out_ret;
6119
6120 /*
6121 * On data journalling we skip straight to the transaction handle:
6122 * there's no delalloc; page truncated will be checked later; the
6123 * early return w/ all buffers mapped (calculates size/len) can't
6124 * be used; and there's no dioread_nolock, so only ext4_get_block.
6125 */
6126 if (ext4_should_journal_data(inode))
6127 goto retry_alloc;
6128
6129 /* Delalloc case is easy... */
6130 if (test_opt(inode->i_sb, DELALLOC) &&
6131 !ext4_nonda_switch(inode->i_sb)) {
6132 do {
6133 err = block_page_mkwrite(vma, vmf,
6134 ext4_da_get_block_prep);
6135 } while (err == -ENOSPC &&
6136 ext4_should_retry_alloc(inode->i_sb, &retries));
6137 goto out_ret;
6138 }
6139
6140 folio_lock(folio);
6141 size = i_size_read(inode);
6142 /* Page got truncated from under us? */
6143 if (folio->mapping != mapping || folio_pos(folio) > size) {
6144 folio_unlock(folio);
6145 ret = VM_FAULT_NOPAGE;
6146 goto out;
6147 }
6148
6149 len = folio_size(folio);
6150 if (folio_pos(folio) + len > size)
6151 len = size - folio_pos(folio);
6152 /*
6153 * Return if we have all the buffers mapped. This avoids the need to do
6154 * journal_start/journal_stop which can block and take a long time
6155 *
6156 * This cannot be done for data journalling, as we have to add the
6157 * inode to the transaction's list to writeprotect pages on commit.
6158 */
6159 if (folio_buffers(folio)) {
6160 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6161 0, len, NULL,
6162 ext4_bh_unmapped)) {
6163 /* Wait so that we don't change page under IO */
6164 folio_wait_stable(folio);
6165 ret = VM_FAULT_LOCKED;
6166 goto out;
6167 }
6168 }
6169 folio_unlock(folio);
6170 /* OK, we need to fill the hole... */
6171 if (ext4_should_dioread_nolock(inode))
6172 get_block = ext4_get_block_unwritten;
6173 else
6174 get_block = ext4_get_block;
6175 retry_alloc:
6176 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6177 ext4_writepage_trans_blocks(inode));
6178 if (IS_ERR(handle)) {
6179 ret = VM_FAULT_SIGBUS;
6180 goto out;
6181 }
6182 /*
6183 * Data journalling can't use block_page_mkwrite() because it
6184 * will set_buffer_dirty() before do_journal_get_write_access()
6185 * thus might hit warning messages for dirty metadata buffers.
6186 */
6187 if (!ext4_should_journal_data(inode)) {
6188 err = block_page_mkwrite(vma, vmf, get_block);
6189 } else {
6190 folio_lock(folio);
6191 size = i_size_read(inode);
6192 /* Page got truncated from under us? */
6193 if (folio->mapping != mapping || folio_pos(folio) > size) {
6194 ret = VM_FAULT_NOPAGE;
6195 goto out_error;
6196 }
6197
6198 len = folio_size(folio);
6199 if (folio_pos(folio) + len > size)
6200 len = size - folio_pos(folio);
6201
6202 err = __block_write_begin(&folio->page, 0, len, ext4_get_block);
6203 if (!err) {
6204 ret = VM_FAULT_SIGBUS;
6205 if (ext4_journal_folio_buffers(handle, folio, len))
6206 goto out_error;
6207 } else {
6208 folio_unlock(folio);
6209 }
6210 }
6211 ext4_journal_stop(handle);
6212 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6213 goto retry_alloc;
6214 out_ret:
6215 ret = vmf_fs_error(err);
6216 out:
6217 filemap_invalidate_unlock_shared(mapping);
6218 sb_end_pagefault(inode->i_sb);
6219 return ret;
6220 out_error:
6221 folio_unlock(folio);
6222 ext4_journal_stop(handle);
6223 goto out;
6224 }
6225